Merge tag 'jfs-5.19' of https://github.com/kleikamp/linux-shaggy
[linux-2.6-microblaze.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59
60 #include "internal.h"
61
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags)       (0)
64 #endif
65
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79
80 static void unmap_region(struct mm_struct *mm,
81                 struct vm_area_struct *vma, struct vm_area_struct *prev,
82                 unsigned long start, unsigned long end);
83
84 /* description of effects of mapping type and prot in current implementation.
85  * this is due to the limited x86 page protection hardware.  The expected
86  * behavior is in parens:
87  *
88  * map_type     prot
89  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
90  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
91  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
92  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
93  *
94  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
95  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
96  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
97  *
98  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
99  * MAP_PRIVATE (with Enhanced PAN supported):
100  *                                                              r: (no) no
101  *                                                              w: (no) no
102  *                                                              x: (yes) yes
103  */
104 pgprot_t protection_map[16] __ro_after_init = {
105         [VM_NONE]                                       = __P000,
106         [VM_READ]                                       = __P001,
107         [VM_WRITE]                                      = __P010,
108         [VM_WRITE | VM_READ]                            = __P011,
109         [VM_EXEC]                                       = __P100,
110         [VM_EXEC | VM_READ]                             = __P101,
111         [VM_EXEC | VM_WRITE]                            = __P110,
112         [VM_EXEC | VM_WRITE | VM_READ]                  = __P111,
113         [VM_SHARED]                                     = __S000,
114         [VM_SHARED | VM_READ]                           = __S001,
115         [VM_SHARED | VM_WRITE]                          = __S010,
116         [VM_SHARED | VM_WRITE | VM_READ]                = __S011,
117         [VM_SHARED | VM_EXEC]                           = __S100,
118         [VM_SHARED | VM_EXEC | VM_READ]                 = __S101,
119         [VM_SHARED | VM_EXEC | VM_WRITE]                = __S110,
120         [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]      = __S111
121 };
122
123 #ifndef CONFIG_ARCH_HAS_VM_GET_PAGE_PROT
124 pgprot_t vm_get_page_prot(unsigned long vm_flags)
125 {
126         return protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
127 }
128 EXPORT_SYMBOL(vm_get_page_prot);
129 #endif  /* CONFIG_ARCH_HAS_VM_GET_PAGE_PROT */
130
131 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
132 {
133         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
134 }
135
136 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
137 void vma_set_page_prot(struct vm_area_struct *vma)
138 {
139         unsigned long vm_flags = vma->vm_flags;
140         pgprot_t vm_page_prot;
141
142         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
143         if (vma_wants_writenotify(vma, vm_page_prot)) {
144                 vm_flags &= ~VM_SHARED;
145                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
146         }
147         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
148         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
149 }
150
151 /*
152  * Requires inode->i_mapping->i_mmap_rwsem
153  */
154 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
155                 struct file *file, struct address_space *mapping)
156 {
157         if (vma->vm_flags & VM_SHARED)
158                 mapping_unmap_writable(mapping);
159
160         flush_dcache_mmap_lock(mapping);
161         vma_interval_tree_remove(vma, &mapping->i_mmap);
162         flush_dcache_mmap_unlock(mapping);
163 }
164
165 /*
166  * Unlink a file-based vm structure from its interval tree, to hide
167  * vma from rmap and vmtruncate before freeing its page tables.
168  */
169 void unlink_file_vma(struct vm_area_struct *vma)
170 {
171         struct file *file = vma->vm_file;
172
173         if (file) {
174                 struct address_space *mapping = file->f_mapping;
175                 i_mmap_lock_write(mapping);
176                 __remove_shared_vm_struct(vma, file, mapping);
177                 i_mmap_unlock_write(mapping);
178         }
179 }
180
181 /*
182  * Close a vm structure and free it, returning the next.
183  */
184 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
185 {
186         struct vm_area_struct *next = vma->vm_next;
187
188         might_sleep();
189         if (vma->vm_ops && vma->vm_ops->close)
190                 vma->vm_ops->close(vma);
191         if (vma->vm_file)
192                 fput(vma->vm_file);
193         mpol_put(vma_policy(vma));
194         vm_area_free(vma);
195         return next;
196 }
197
198 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
199                 struct list_head *uf);
200 SYSCALL_DEFINE1(brk, unsigned long, brk)
201 {
202         unsigned long newbrk, oldbrk, origbrk;
203         struct mm_struct *mm = current->mm;
204         struct vm_area_struct *next;
205         unsigned long min_brk;
206         bool populate;
207         bool downgraded = false;
208         LIST_HEAD(uf);
209
210         if (mmap_write_lock_killable(mm))
211                 return -EINTR;
212
213         origbrk = mm->brk;
214
215 #ifdef CONFIG_COMPAT_BRK
216         /*
217          * CONFIG_COMPAT_BRK can still be overridden by setting
218          * randomize_va_space to 2, which will still cause mm->start_brk
219          * to be arbitrarily shifted
220          */
221         if (current->brk_randomized)
222                 min_brk = mm->start_brk;
223         else
224                 min_brk = mm->end_data;
225 #else
226         min_brk = mm->start_brk;
227 #endif
228         if (brk < min_brk)
229                 goto out;
230
231         /*
232          * Check against rlimit here. If this check is done later after the test
233          * of oldbrk with newbrk then it can escape the test and let the data
234          * segment grow beyond its set limit the in case where the limit is
235          * not page aligned -Ram Gupta
236          */
237         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
238                               mm->end_data, mm->start_data))
239                 goto out;
240
241         newbrk = PAGE_ALIGN(brk);
242         oldbrk = PAGE_ALIGN(mm->brk);
243         if (oldbrk == newbrk) {
244                 mm->brk = brk;
245                 goto success;
246         }
247
248         /*
249          * Always allow shrinking brk.
250          * __do_munmap() may downgrade mmap_lock to read.
251          */
252         if (brk <= mm->brk) {
253                 int ret;
254
255                 /*
256                  * mm->brk must to be protected by write mmap_lock so update it
257                  * before downgrading mmap_lock. When __do_munmap() fails,
258                  * mm->brk will be restored from origbrk.
259                  */
260                 mm->brk = brk;
261                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
262                 if (ret < 0) {
263                         mm->brk = origbrk;
264                         goto out;
265                 } else if (ret == 1) {
266                         downgraded = true;
267                 }
268                 goto success;
269         }
270
271         /* Check against existing mmap mappings. */
272         next = find_vma(mm, oldbrk);
273         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
274                 goto out;
275
276         /* Ok, looks good - let it rip. */
277         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
278                 goto out;
279         mm->brk = brk;
280
281 success:
282         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
283         if (downgraded)
284                 mmap_read_unlock(mm);
285         else
286                 mmap_write_unlock(mm);
287         userfaultfd_unmap_complete(mm, &uf);
288         if (populate)
289                 mm_populate(oldbrk, newbrk - oldbrk);
290         return brk;
291
292 out:
293         mmap_write_unlock(mm);
294         return origbrk;
295 }
296
297 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
298 {
299         unsigned long gap, prev_end;
300
301         /*
302          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
303          * allow two stack_guard_gaps between them here, and when choosing
304          * an unmapped area; whereas when expanding we only require one.
305          * That's a little inconsistent, but keeps the code here simpler.
306          */
307         gap = vm_start_gap(vma);
308         if (vma->vm_prev) {
309                 prev_end = vm_end_gap(vma->vm_prev);
310                 if (gap > prev_end)
311                         gap -= prev_end;
312                 else
313                         gap = 0;
314         }
315         return gap;
316 }
317
318 #ifdef CONFIG_DEBUG_VM_RB
319 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
320 {
321         unsigned long max = vma_compute_gap(vma), subtree_gap;
322         if (vma->vm_rb.rb_left) {
323                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
324                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
325                 if (subtree_gap > max)
326                         max = subtree_gap;
327         }
328         if (vma->vm_rb.rb_right) {
329                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
330                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
331                 if (subtree_gap > max)
332                         max = subtree_gap;
333         }
334         return max;
335 }
336
337 static int browse_rb(struct mm_struct *mm)
338 {
339         struct rb_root *root = &mm->mm_rb;
340         int i = 0, j, bug = 0;
341         struct rb_node *nd, *pn = NULL;
342         unsigned long prev = 0, pend = 0;
343
344         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
345                 struct vm_area_struct *vma;
346                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
347                 if (vma->vm_start < prev) {
348                         pr_emerg("vm_start %lx < prev %lx\n",
349                                   vma->vm_start, prev);
350                         bug = 1;
351                 }
352                 if (vma->vm_start < pend) {
353                         pr_emerg("vm_start %lx < pend %lx\n",
354                                   vma->vm_start, pend);
355                         bug = 1;
356                 }
357                 if (vma->vm_start > vma->vm_end) {
358                         pr_emerg("vm_start %lx > vm_end %lx\n",
359                                   vma->vm_start, vma->vm_end);
360                         bug = 1;
361                 }
362                 spin_lock(&mm->page_table_lock);
363                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
364                         pr_emerg("free gap %lx, correct %lx\n",
365                                vma->rb_subtree_gap,
366                                vma_compute_subtree_gap(vma));
367                         bug = 1;
368                 }
369                 spin_unlock(&mm->page_table_lock);
370                 i++;
371                 pn = nd;
372                 prev = vma->vm_start;
373                 pend = vma->vm_end;
374         }
375         j = 0;
376         for (nd = pn; nd; nd = rb_prev(nd))
377                 j++;
378         if (i != j) {
379                 pr_emerg("backwards %d, forwards %d\n", j, i);
380                 bug = 1;
381         }
382         return bug ? -1 : i;
383 }
384
385 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
386 {
387         struct rb_node *nd;
388
389         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
390                 struct vm_area_struct *vma;
391                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
392                 VM_BUG_ON_VMA(vma != ignore &&
393                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
394                         vma);
395         }
396 }
397
398 static void validate_mm(struct mm_struct *mm)
399 {
400         int bug = 0;
401         int i = 0;
402         unsigned long highest_address = 0;
403         struct vm_area_struct *vma = mm->mmap;
404
405         while (vma) {
406                 struct anon_vma *anon_vma = vma->anon_vma;
407                 struct anon_vma_chain *avc;
408
409                 if (anon_vma) {
410                         anon_vma_lock_read(anon_vma);
411                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
412                                 anon_vma_interval_tree_verify(avc);
413                         anon_vma_unlock_read(anon_vma);
414                 }
415
416                 highest_address = vm_end_gap(vma);
417                 vma = vma->vm_next;
418                 i++;
419         }
420         if (i != mm->map_count) {
421                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
422                 bug = 1;
423         }
424         if (highest_address != mm->highest_vm_end) {
425                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
426                           mm->highest_vm_end, highest_address);
427                 bug = 1;
428         }
429         i = browse_rb(mm);
430         if (i != mm->map_count) {
431                 if (i != -1)
432                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
433                 bug = 1;
434         }
435         VM_BUG_ON_MM(bug, mm);
436 }
437 #else
438 #define validate_mm_rb(root, ignore) do { } while (0)
439 #define validate_mm(mm) do { } while (0)
440 #endif
441
442 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
443                          struct vm_area_struct, vm_rb,
444                          unsigned long, rb_subtree_gap, vma_compute_gap)
445
446 /*
447  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
448  * vma->vm_prev->vm_end values changed, without modifying the vma's position
449  * in the rbtree.
450  */
451 static void vma_gap_update(struct vm_area_struct *vma)
452 {
453         /*
454          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
455          * a callback function that does exactly what we want.
456          */
457         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
458 }
459
460 static inline void vma_rb_insert(struct vm_area_struct *vma,
461                                  struct rb_root *root)
462 {
463         /* All rb_subtree_gap values must be consistent prior to insertion */
464         validate_mm_rb(root, NULL);
465
466         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
467 }
468
469 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
470 {
471         /*
472          * Note rb_erase_augmented is a fairly large inline function,
473          * so make sure we instantiate it only once with our desired
474          * augmented rbtree callbacks.
475          */
476         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
477 }
478
479 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
480                                                 struct rb_root *root,
481                                                 struct vm_area_struct *ignore)
482 {
483         /*
484          * All rb_subtree_gap values must be consistent prior to erase,
485          * with the possible exception of
486          *
487          * a. the "next" vma being erased if next->vm_start was reduced in
488          *    __vma_adjust() -> __vma_unlink()
489          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
490          *    vma_rb_erase()
491          */
492         validate_mm_rb(root, ignore);
493
494         __vma_rb_erase(vma, root);
495 }
496
497 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
498                                          struct rb_root *root)
499 {
500         vma_rb_erase_ignore(vma, root, vma);
501 }
502
503 /*
504  * vma has some anon_vma assigned, and is already inserted on that
505  * anon_vma's interval trees.
506  *
507  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
508  * vma must be removed from the anon_vma's interval trees using
509  * anon_vma_interval_tree_pre_update_vma().
510  *
511  * After the update, the vma will be reinserted using
512  * anon_vma_interval_tree_post_update_vma().
513  *
514  * The entire update must be protected by exclusive mmap_lock and by
515  * the root anon_vma's mutex.
516  */
517 static inline void
518 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
519 {
520         struct anon_vma_chain *avc;
521
522         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
523                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
524 }
525
526 static inline void
527 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
528 {
529         struct anon_vma_chain *avc;
530
531         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
532                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
533 }
534
535 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
536                 unsigned long end, struct vm_area_struct **pprev,
537                 struct rb_node ***rb_link, struct rb_node **rb_parent)
538 {
539         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
540
541         mmap_assert_locked(mm);
542         __rb_link = &mm->mm_rb.rb_node;
543         rb_prev = __rb_parent = NULL;
544
545         while (*__rb_link) {
546                 struct vm_area_struct *vma_tmp;
547
548                 __rb_parent = *__rb_link;
549                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
550
551                 if (vma_tmp->vm_end > addr) {
552                         /* Fail if an existing vma overlaps the area */
553                         if (vma_tmp->vm_start < end)
554                                 return -ENOMEM;
555                         __rb_link = &__rb_parent->rb_left;
556                 } else {
557                         rb_prev = __rb_parent;
558                         __rb_link = &__rb_parent->rb_right;
559                 }
560         }
561
562         *pprev = NULL;
563         if (rb_prev)
564                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
565         *rb_link = __rb_link;
566         *rb_parent = __rb_parent;
567         return 0;
568 }
569
570 /*
571  * vma_next() - Get the next VMA.
572  * @mm: The mm_struct.
573  * @vma: The current vma.
574  *
575  * If @vma is NULL, return the first vma in the mm.
576  *
577  * Returns: The next VMA after @vma.
578  */
579 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
580                                          struct vm_area_struct *vma)
581 {
582         if (!vma)
583                 return mm->mmap;
584
585         return vma->vm_next;
586 }
587
588 /*
589  * munmap_vma_range() - munmap VMAs that overlap a range.
590  * @mm: The mm struct
591  * @start: The start of the range.
592  * @len: The length of the range.
593  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
594  * @rb_link: the rb_node
595  * @rb_parent: the parent rb_node
596  *
597  * Find all the vm_area_struct that overlap from @start to
598  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
599  *
600  * Returns: -ENOMEM on munmap failure or 0 on success.
601  */
602 static inline int
603 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
604                  struct vm_area_struct **pprev, struct rb_node ***link,
605                  struct rb_node **parent, struct list_head *uf)
606 {
607
608         while (find_vma_links(mm, start, start + len, pprev, link, parent))
609                 if (do_munmap(mm, start, len, uf))
610                         return -ENOMEM;
611
612         return 0;
613 }
614 static unsigned long count_vma_pages_range(struct mm_struct *mm,
615                 unsigned long addr, unsigned long end)
616 {
617         unsigned long nr_pages = 0;
618         struct vm_area_struct *vma;
619
620         /* Find first overlapping mapping */
621         vma = find_vma_intersection(mm, addr, end);
622         if (!vma)
623                 return 0;
624
625         nr_pages = (min(end, vma->vm_end) -
626                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
627
628         /* Iterate over the rest of the overlaps */
629         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
630                 unsigned long overlap_len;
631
632                 if (vma->vm_start > end)
633                         break;
634
635                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
636                 nr_pages += overlap_len >> PAGE_SHIFT;
637         }
638
639         return nr_pages;
640 }
641
642 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
643                 struct rb_node **rb_link, struct rb_node *rb_parent)
644 {
645         /* Update tracking information for the gap following the new vma. */
646         if (vma->vm_next)
647                 vma_gap_update(vma->vm_next);
648         else
649                 mm->highest_vm_end = vm_end_gap(vma);
650
651         /*
652          * vma->vm_prev wasn't known when we followed the rbtree to find the
653          * correct insertion point for that vma. As a result, we could not
654          * update the vma vm_rb parents rb_subtree_gap values on the way down.
655          * So, we first insert the vma with a zero rb_subtree_gap value
656          * (to be consistent with what we did on the way down), and then
657          * immediately update the gap to the correct value. Finally we
658          * rebalance the rbtree after all augmented values have been set.
659          */
660         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
661         vma->rb_subtree_gap = 0;
662         vma_gap_update(vma);
663         vma_rb_insert(vma, &mm->mm_rb);
664 }
665
666 static void __vma_link_file(struct vm_area_struct *vma)
667 {
668         struct file *file;
669
670         file = vma->vm_file;
671         if (file) {
672                 struct address_space *mapping = file->f_mapping;
673
674                 if (vma->vm_flags & VM_SHARED)
675                         mapping_allow_writable(mapping);
676
677                 flush_dcache_mmap_lock(mapping);
678                 vma_interval_tree_insert(vma, &mapping->i_mmap);
679                 flush_dcache_mmap_unlock(mapping);
680         }
681 }
682
683 static void
684 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
685         struct vm_area_struct *prev, struct rb_node **rb_link,
686         struct rb_node *rb_parent)
687 {
688         __vma_link_list(mm, vma, prev);
689         __vma_link_rb(mm, vma, rb_link, rb_parent);
690 }
691
692 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
693                         struct vm_area_struct *prev, struct rb_node **rb_link,
694                         struct rb_node *rb_parent)
695 {
696         struct address_space *mapping = NULL;
697
698         if (vma->vm_file) {
699                 mapping = vma->vm_file->f_mapping;
700                 i_mmap_lock_write(mapping);
701         }
702
703         __vma_link(mm, vma, prev, rb_link, rb_parent);
704         __vma_link_file(vma);
705
706         if (mapping)
707                 i_mmap_unlock_write(mapping);
708
709         mm->map_count++;
710         validate_mm(mm);
711 }
712
713 /*
714  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
715  * mm's list and rbtree.  It has already been inserted into the interval tree.
716  */
717 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719         struct vm_area_struct *prev;
720         struct rb_node **rb_link, *rb_parent;
721
722         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
723                            &prev, &rb_link, &rb_parent))
724                 BUG();
725         __vma_link(mm, vma, prev, rb_link, rb_parent);
726         mm->map_count++;
727 }
728
729 static __always_inline void __vma_unlink(struct mm_struct *mm,
730                                                 struct vm_area_struct *vma,
731                                                 struct vm_area_struct *ignore)
732 {
733         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
734         __vma_unlink_list(mm, vma);
735         /* Kill the cache */
736         vmacache_invalidate(mm);
737 }
738
739 /*
740  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
741  * is already present in an i_mmap tree without adjusting the tree.
742  * The following helper function should be used when such adjustments
743  * are necessary.  The "insert" vma (if any) is to be inserted
744  * before we drop the necessary locks.
745  */
746 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
747         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
748         struct vm_area_struct *expand)
749 {
750         struct mm_struct *mm = vma->vm_mm;
751         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
752         struct address_space *mapping = NULL;
753         struct rb_root_cached *root = NULL;
754         struct anon_vma *anon_vma = NULL;
755         struct file *file = vma->vm_file;
756         bool start_changed = false, end_changed = false;
757         long adjust_next = 0;
758         int remove_next = 0;
759
760         if (next && !insert) {
761                 struct vm_area_struct *exporter = NULL, *importer = NULL;
762
763                 if (end >= next->vm_end) {
764                         /*
765                          * vma expands, overlapping all the next, and
766                          * perhaps the one after too (mprotect case 6).
767                          * The only other cases that gets here are
768                          * case 1, case 7 and case 8.
769                          */
770                         if (next == expand) {
771                                 /*
772                                  * The only case where we don't expand "vma"
773                                  * and we expand "next" instead is case 8.
774                                  */
775                                 VM_WARN_ON(end != next->vm_end);
776                                 /*
777                                  * remove_next == 3 means we're
778                                  * removing "vma" and that to do so we
779                                  * swapped "vma" and "next".
780                                  */
781                                 remove_next = 3;
782                                 VM_WARN_ON(file != next->vm_file);
783                                 swap(vma, next);
784                         } else {
785                                 VM_WARN_ON(expand != vma);
786                                 /*
787                                  * case 1, 6, 7, remove_next == 2 is case 6,
788                                  * remove_next == 1 is case 1 or 7.
789                                  */
790                                 remove_next = 1 + (end > next->vm_end);
791                                 VM_WARN_ON(remove_next == 2 &&
792                                            end != next->vm_next->vm_end);
793                                 /* trim end to next, for case 6 first pass */
794                                 end = next->vm_end;
795                         }
796
797                         exporter = next;
798                         importer = vma;
799
800                         /*
801                          * If next doesn't have anon_vma, import from vma after
802                          * next, if the vma overlaps with it.
803                          */
804                         if (remove_next == 2 && !next->anon_vma)
805                                 exporter = next->vm_next;
806
807                 } else if (end > next->vm_start) {
808                         /*
809                          * vma expands, overlapping part of the next:
810                          * mprotect case 5 shifting the boundary up.
811                          */
812                         adjust_next = (end - next->vm_start);
813                         exporter = next;
814                         importer = vma;
815                         VM_WARN_ON(expand != importer);
816                 } else if (end < vma->vm_end) {
817                         /*
818                          * vma shrinks, and !insert tells it's not
819                          * split_vma inserting another: so it must be
820                          * mprotect case 4 shifting the boundary down.
821                          */
822                         adjust_next = -(vma->vm_end - end);
823                         exporter = vma;
824                         importer = next;
825                         VM_WARN_ON(expand != importer);
826                 }
827
828                 /*
829                  * Easily overlooked: when mprotect shifts the boundary,
830                  * make sure the expanding vma has anon_vma set if the
831                  * shrinking vma had, to cover any anon pages imported.
832                  */
833                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
834                         int error;
835
836                         importer->anon_vma = exporter->anon_vma;
837                         error = anon_vma_clone(importer, exporter);
838                         if (error)
839                                 return error;
840                 }
841         }
842 again:
843         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
844
845         if (file) {
846                 mapping = file->f_mapping;
847                 root = &mapping->i_mmap;
848                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
849
850                 if (adjust_next)
851                         uprobe_munmap(next, next->vm_start, next->vm_end);
852
853                 i_mmap_lock_write(mapping);
854                 if (insert) {
855                         /*
856                          * Put into interval tree now, so instantiated pages
857                          * are visible to arm/parisc __flush_dcache_page
858                          * throughout; but we cannot insert into address
859                          * space until vma start or end is updated.
860                          */
861                         __vma_link_file(insert);
862                 }
863         }
864
865         anon_vma = vma->anon_vma;
866         if (!anon_vma && adjust_next)
867                 anon_vma = next->anon_vma;
868         if (anon_vma) {
869                 VM_WARN_ON(adjust_next && next->anon_vma &&
870                            anon_vma != next->anon_vma);
871                 anon_vma_lock_write(anon_vma);
872                 anon_vma_interval_tree_pre_update_vma(vma);
873                 if (adjust_next)
874                         anon_vma_interval_tree_pre_update_vma(next);
875         }
876
877         if (file) {
878                 flush_dcache_mmap_lock(mapping);
879                 vma_interval_tree_remove(vma, root);
880                 if (adjust_next)
881                         vma_interval_tree_remove(next, root);
882         }
883
884         if (start != vma->vm_start) {
885                 vma->vm_start = start;
886                 start_changed = true;
887         }
888         if (end != vma->vm_end) {
889                 vma->vm_end = end;
890                 end_changed = true;
891         }
892         vma->vm_pgoff = pgoff;
893         if (adjust_next) {
894                 next->vm_start += adjust_next;
895                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
896         }
897
898         if (file) {
899                 if (adjust_next)
900                         vma_interval_tree_insert(next, root);
901                 vma_interval_tree_insert(vma, root);
902                 flush_dcache_mmap_unlock(mapping);
903         }
904
905         if (remove_next) {
906                 /*
907                  * vma_merge has merged next into vma, and needs
908                  * us to remove next before dropping the locks.
909                  */
910                 if (remove_next != 3)
911                         __vma_unlink(mm, next, next);
912                 else
913                         /*
914                          * vma is not before next if they've been
915                          * swapped.
916                          *
917                          * pre-swap() next->vm_start was reduced so
918                          * tell validate_mm_rb to ignore pre-swap()
919                          * "next" (which is stored in post-swap()
920                          * "vma").
921                          */
922                         __vma_unlink(mm, next, vma);
923                 if (file)
924                         __remove_shared_vm_struct(next, file, mapping);
925         } else if (insert) {
926                 /*
927                  * split_vma has split insert from vma, and needs
928                  * us to insert it before dropping the locks
929                  * (it may either follow vma or precede it).
930                  */
931                 __insert_vm_struct(mm, insert);
932         } else {
933                 if (start_changed)
934                         vma_gap_update(vma);
935                 if (end_changed) {
936                         if (!next)
937                                 mm->highest_vm_end = vm_end_gap(vma);
938                         else if (!adjust_next)
939                                 vma_gap_update(next);
940                 }
941         }
942
943         if (anon_vma) {
944                 anon_vma_interval_tree_post_update_vma(vma);
945                 if (adjust_next)
946                         anon_vma_interval_tree_post_update_vma(next);
947                 anon_vma_unlock_write(anon_vma);
948         }
949
950         if (file) {
951                 i_mmap_unlock_write(mapping);
952                 uprobe_mmap(vma);
953
954                 if (adjust_next)
955                         uprobe_mmap(next);
956         }
957
958         if (remove_next) {
959                 if (file) {
960                         uprobe_munmap(next, next->vm_start, next->vm_end);
961                         fput(file);
962                 }
963                 if (next->anon_vma)
964                         anon_vma_merge(vma, next);
965                 mm->map_count--;
966                 mpol_put(vma_policy(next));
967                 vm_area_free(next);
968                 /*
969                  * In mprotect's case 6 (see comments on vma_merge),
970                  * we must remove another next too. It would clutter
971                  * up the code too much to do both in one go.
972                  */
973                 if (remove_next != 3) {
974                         /*
975                          * If "next" was removed and vma->vm_end was
976                          * expanded (up) over it, in turn
977                          * "next->vm_prev->vm_end" changed and the
978                          * "vma->vm_next" gap must be updated.
979                          */
980                         next = vma->vm_next;
981                 } else {
982                         /*
983                          * For the scope of the comment "next" and
984                          * "vma" considered pre-swap(): if "vma" was
985                          * removed, next->vm_start was expanded (down)
986                          * over it and the "next" gap must be updated.
987                          * Because of the swap() the post-swap() "vma"
988                          * actually points to pre-swap() "next"
989                          * (post-swap() "next" as opposed is now a
990                          * dangling pointer).
991                          */
992                         next = vma;
993                 }
994                 if (remove_next == 2) {
995                         remove_next = 1;
996                         end = next->vm_end;
997                         goto again;
998                 }
999                 else if (next)
1000                         vma_gap_update(next);
1001                 else {
1002                         /*
1003                          * If remove_next == 2 we obviously can't
1004                          * reach this path.
1005                          *
1006                          * If remove_next == 3 we can't reach this
1007                          * path because pre-swap() next is always not
1008                          * NULL. pre-swap() "next" is not being
1009                          * removed and its next->vm_end is not altered
1010                          * (and furthermore "end" already matches
1011                          * next->vm_end in remove_next == 3).
1012                          *
1013                          * We reach this only in the remove_next == 1
1014                          * case if the "next" vma that was removed was
1015                          * the highest vma of the mm. However in such
1016                          * case next->vm_end == "end" and the extended
1017                          * "vma" has vma->vm_end == next->vm_end so
1018                          * mm->highest_vm_end doesn't need any update
1019                          * in remove_next == 1 case.
1020                          */
1021                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1022                 }
1023         }
1024         if (insert && file)
1025                 uprobe_mmap(insert);
1026
1027         validate_mm(mm);
1028
1029         return 0;
1030 }
1031
1032 /*
1033  * If the vma has a ->close operation then the driver probably needs to release
1034  * per-vma resources, so we don't attempt to merge those.
1035  */
1036 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1037                                 struct file *file, unsigned long vm_flags,
1038                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1039                                 struct anon_vma_name *anon_name)
1040 {
1041         /*
1042          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1043          * match the flags but dirty bit -- the caller should mark
1044          * merged VMA as dirty. If dirty bit won't be excluded from
1045          * comparison, we increase pressure on the memory system forcing
1046          * the kernel to generate new VMAs when old one could be
1047          * extended instead.
1048          */
1049         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1050                 return 0;
1051         if (vma->vm_file != file)
1052                 return 0;
1053         if (vma->vm_ops && vma->vm_ops->close)
1054                 return 0;
1055         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1056                 return 0;
1057         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1058                 return 0;
1059         return 1;
1060 }
1061
1062 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1063                                         struct anon_vma *anon_vma2,
1064                                         struct vm_area_struct *vma)
1065 {
1066         /*
1067          * The list_is_singular() test is to avoid merging VMA cloned from
1068          * parents. This can improve scalability caused by anon_vma lock.
1069          */
1070         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1071                 list_is_singular(&vma->anon_vma_chain)))
1072                 return 1;
1073         return anon_vma1 == anon_vma2;
1074 }
1075
1076 /*
1077  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1078  * in front of (at a lower virtual address and file offset than) the vma.
1079  *
1080  * We cannot merge two vmas if they have differently assigned (non-NULL)
1081  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1082  *
1083  * We don't check here for the merged mmap wrapping around the end of pagecache
1084  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1085  * wrap, nor mmaps which cover the final page at index -1UL.
1086  */
1087 static int
1088 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1089                      struct anon_vma *anon_vma, struct file *file,
1090                      pgoff_t vm_pgoff,
1091                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1092                      struct anon_vma_name *anon_name)
1093 {
1094         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1095             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1096                 if (vma->vm_pgoff == vm_pgoff)
1097                         return 1;
1098         }
1099         return 0;
1100 }
1101
1102 /*
1103  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1104  * beyond (at a higher virtual address and file offset than) the vma.
1105  *
1106  * We cannot merge two vmas if they have differently assigned (non-NULL)
1107  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1108  */
1109 static int
1110 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1111                     struct anon_vma *anon_vma, struct file *file,
1112                     pgoff_t vm_pgoff,
1113                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1114                     struct anon_vma_name *anon_name)
1115 {
1116         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1117             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1118                 pgoff_t vm_pglen;
1119                 vm_pglen = vma_pages(vma);
1120                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1121                         return 1;
1122         }
1123         return 0;
1124 }
1125
1126 /*
1127  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1128  * figure out whether that can be merged with its predecessor or its
1129  * successor.  Or both (it neatly fills a hole).
1130  *
1131  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1132  * certain not to be mapped by the time vma_merge is called; but when
1133  * called for mprotect, it is certain to be already mapped (either at
1134  * an offset within prev, or at the start of next), and the flags of
1135  * this area are about to be changed to vm_flags - and the no-change
1136  * case has already been eliminated.
1137  *
1138  * The following mprotect cases have to be considered, where AAAA is
1139  * the area passed down from mprotect_fixup, never extending beyond one
1140  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1141  *
1142  *     AAAA             AAAA                   AAAA
1143  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1144  *    cannot merge    might become       might become
1145  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1146  *    mmap, brk or    case 4 below       case 5 below
1147  *    mremap move:
1148  *                        AAAA               AAAA
1149  *                    PPPP    NNNN       PPPPNNNNXXXX
1150  *                    might become       might become
1151  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1152  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1153  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1154  *
1155  * It is important for case 8 that the vma NNNN overlapping the
1156  * region AAAA is never going to extended over XXXX. Instead XXXX must
1157  * be extended in region AAAA and NNNN must be removed. This way in
1158  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1159  * rmap_locks, the properties of the merged vma will be already
1160  * correct for the whole merged range. Some of those properties like
1161  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1162  * be correct for the whole merged range immediately after the
1163  * rmap_locks are released. Otherwise if XXXX would be removed and
1164  * NNNN would be extended over the XXXX range, remove_migration_ptes
1165  * or other rmap walkers (if working on addresses beyond the "end"
1166  * parameter) may establish ptes with the wrong permissions of NNNN
1167  * instead of the right permissions of XXXX.
1168  */
1169 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1170                         struct vm_area_struct *prev, unsigned long addr,
1171                         unsigned long end, unsigned long vm_flags,
1172                         struct anon_vma *anon_vma, struct file *file,
1173                         pgoff_t pgoff, struct mempolicy *policy,
1174                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1175                         struct anon_vma_name *anon_name)
1176 {
1177         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1178         struct vm_area_struct *area, *next;
1179         int err;
1180
1181         /*
1182          * We later require that vma->vm_flags == vm_flags,
1183          * so this tests vma->vm_flags & VM_SPECIAL, too.
1184          */
1185         if (vm_flags & VM_SPECIAL)
1186                 return NULL;
1187
1188         next = vma_next(mm, prev);
1189         area = next;
1190         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1191                 next = next->vm_next;
1192
1193         /* verify some invariant that must be enforced by the caller */
1194         VM_WARN_ON(prev && addr <= prev->vm_start);
1195         VM_WARN_ON(area && end > area->vm_end);
1196         VM_WARN_ON(addr >= end);
1197
1198         /*
1199          * Can it merge with the predecessor?
1200          */
1201         if (prev && prev->vm_end == addr &&
1202                         mpol_equal(vma_policy(prev), policy) &&
1203                         can_vma_merge_after(prev, vm_flags,
1204                                             anon_vma, file, pgoff,
1205                                             vm_userfaultfd_ctx, anon_name)) {
1206                 /*
1207                  * OK, it can.  Can we now merge in the successor as well?
1208                  */
1209                 if (next && end == next->vm_start &&
1210                                 mpol_equal(policy, vma_policy(next)) &&
1211                                 can_vma_merge_before(next, vm_flags,
1212                                                      anon_vma, file,
1213                                                      pgoff+pglen,
1214                                                      vm_userfaultfd_ctx, anon_name) &&
1215                                 is_mergeable_anon_vma(prev->anon_vma,
1216                                                       next->anon_vma, NULL)) {
1217                                                         /* cases 1, 6 */
1218                         err = __vma_adjust(prev, prev->vm_start,
1219                                          next->vm_end, prev->vm_pgoff, NULL,
1220                                          prev);
1221                 } else                                  /* cases 2, 5, 7 */
1222                         err = __vma_adjust(prev, prev->vm_start,
1223                                          end, prev->vm_pgoff, NULL, prev);
1224                 if (err)
1225                         return NULL;
1226                 khugepaged_enter_vma(prev, vm_flags);
1227                 return prev;
1228         }
1229
1230         /*
1231          * Can this new request be merged in front of next?
1232          */
1233         if (next && end == next->vm_start &&
1234                         mpol_equal(policy, vma_policy(next)) &&
1235                         can_vma_merge_before(next, vm_flags,
1236                                              anon_vma, file, pgoff+pglen,
1237                                              vm_userfaultfd_ctx, anon_name)) {
1238                 if (prev && addr < prev->vm_end)        /* case 4 */
1239                         err = __vma_adjust(prev, prev->vm_start,
1240                                          addr, prev->vm_pgoff, NULL, next);
1241                 else {                                  /* cases 3, 8 */
1242                         err = __vma_adjust(area, addr, next->vm_end,
1243                                          next->vm_pgoff - pglen, NULL, next);
1244                         /*
1245                          * In case 3 area is already equal to next and
1246                          * this is a noop, but in case 8 "area" has
1247                          * been removed and next was expanded over it.
1248                          */
1249                         area = next;
1250                 }
1251                 if (err)
1252                         return NULL;
1253                 khugepaged_enter_vma(area, vm_flags);
1254                 return area;
1255         }
1256
1257         return NULL;
1258 }
1259
1260 /*
1261  * Rough compatibility check to quickly see if it's even worth looking
1262  * at sharing an anon_vma.
1263  *
1264  * They need to have the same vm_file, and the flags can only differ
1265  * in things that mprotect may change.
1266  *
1267  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1268  * we can merge the two vma's. For example, we refuse to merge a vma if
1269  * there is a vm_ops->close() function, because that indicates that the
1270  * driver is doing some kind of reference counting. But that doesn't
1271  * really matter for the anon_vma sharing case.
1272  */
1273 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1274 {
1275         return a->vm_end == b->vm_start &&
1276                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1277                 a->vm_file == b->vm_file &&
1278                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1279                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1280 }
1281
1282 /*
1283  * Do some basic sanity checking to see if we can re-use the anon_vma
1284  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1285  * the same as 'old', the other will be the new one that is trying
1286  * to share the anon_vma.
1287  *
1288  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1289  * the anon_vma of 'old' is concurrently in the process of being set up
1290  * by another page fault trying to merge _that_. But that's ok: if it
1291  * is being set up, that automatically means that it will be a singleton
1292  * acceptable for merging, so we can do all of this optimistically. But
1293  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1294  *
1295  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1296  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1297  * is to return an anon_vma that is "complex" due to having gone through
1298  * a fork).
1299  *
1300  * We also make sure that the two vma's are compatible (adjacent,
1301  * and with the same memory policies). That's all stable, even with just
1302  * a read lock on the mmap_lock.
1303  */
1304 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1305 {
1306         if (anon_vma_compatible(a, b)) {
1307                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1308
1309                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1310                         return anon_vma;
1311         }
1312         return NULL;
1313 }
1314
1315 /*
1316  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1317  * neighbouring vmas for a suitable anon_vma, before it goes off
1318  * to allocate a new anon_vma.  It checks because a repetitive
1319  * sequence of mprotects and faults may otherwise lead to distinct
1320  * anon_vmas being allocated, preventing vma merge in subsequent
1321  * mprotect.
1322  */
1323 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1324 {
1325         struct anon_vma *anon_vma = NULL;
1326
1327         /* Try next first. */
1328         if (vma->vm_next) {
1329                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1330                 if (anon_vma)
1331                         return anon_vma;
1332         }
1333
1334         /* Try prev next. */
1335         if (vma->vm_prev)
1336                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1337
1338         /*
1339          * We might reach here with anon_vma == NULL if we can't find
1340          * any reusable anon_vma.
1341          * There's no absolute need to look only at touching neighbours:
1342          * we could search further afield for "compatible" anon_vmas.
1343          * But it would probably just be a waste of time searching,
1344          * or lead to too many vmas hanging off the same anon_vma.
1345          * We're trying to allow mprotect remerging later on,
1346          * not trying to minimize memory used for anon_vmas.
1347          */
1348         return anon_vma;
1349 }
1350
1351 /*
1352  * If a hint addr is less than mmap_min_addr change hint to be as
1353  * low as possible but still greater than mmap_min_addr
1354  */
1355 static inline unsigned long round_hint_to_min(unsigned long hint)
1356 {
1357         hint &= PAGE_MASK;
1358         if (((void *)hint != NULL) &&
1359             (hint < mmap_min_addr))
1360                 return PAGE_ALIGN(mmap_min_addr);
1361         return hint;
1362 }
1363
1364 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1365                        unsigned long len)
1366 {
1367         unsigned long locked, lock_limit;
1368
1369         /*  mlock MCL_FUTURE? */
1370         if (flags & VM_LOCKED) {
1371                 locked = len >> PAGE_SHIFT;
1372                 locked += mm->locked_vm;
1373                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1374                 lock_limit >>= PAGE_SHIFT;
1375                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1376                         return -EAGAIN;
1377         }
1378         return 0;
1379 }
1380
1381 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1382 {
1383         if (S_ISREG(inode->i_mode))
1384                 return MAX_LFS_FILESIZE;
1385
1386         if (S_ISBLK(inode->i_mode))
1387                 return MAX_LFS_FILESIZE;
1388
1389         if (S_ISSOCK(inode->i_mode))
1390                 return MAX_LFS_FILESIZE;
1391
1392         /* Special "we do even unsigned file positions" case */
1393         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1394                 return 0;
1395
1396         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1397         return ULONG_MAX;
1398 }
1399
1400 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1401                                 unsigned long pgoff, unsigned long len)
1402 {
1403         u64 maxsize = file_mmap_size_max(file, inode);
1404
1405         if (maxsize && len > maxsize)
1406                 return false;
1407         maxsize -= len;
1408         if (pgoff > maxsize >> PAGE_SHIFT)
1409                 return false;
1410         return true;
1411 }
1412
1413 /*
1414  * The caller must write-lock current->mm->mmap_lock.
1415  */
1416 unsigned long do_mmap(struct file *file, unsigned long addr,
1417                         unsigned long len, unsigned long prot,
1418                         unsigned long flags, unsigned long pgoff,
1419                         unsigned long *populate, struct list_head *uf)
1420 {
1421         struct mm_struct *mm = current->mm;
1422         vm_flags_t vm_flags;
1423         int pkey = 0;
1424
1425         *populate = 0;
1426
1427         if (!len)
1428                 return -EINVAL;
1429
1430         /*
1431          * Does the application expect PROT_READ to imply PROT_EXEC?
1432          *
1433          * (the exception is when the underlying filesystem is noexec
1434          *  mounted, in which case we dont add PROT_EXEC.)
1435          */
1436         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1437                 if (!(file && path_noexec(&file->f_path)))
1438                         prot |= PROT_EXEC;
1439
1440         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1441         if (flags & MAP_FIXED_NOREPLACE)
1442                 flags |= MAP_FIXED;
1443
1444         if (!(flags & MAP_FIXED))
1445                 addr = round_hint_to_min(addr);
1446
1447         /* Careful about overflows.. */
1448         len = PAGE_ALIGN(len);
1449         if (!len)
1450                 return -ENOMEM;
1451
1452         /* offset overflow? */
1453         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1454                 return -EOVERFLOW;
1455
1456         /* Too many mappings? */
1457         if (mm->map_count > sysctl_max_map_count)
1458                 return -ENOMEM;
1459
1460         /* Obtain the address to map to. we verify (or select) it and ensure
1461          * that it represents a valid section of the address space.
1462          */
1463         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1464         if (IS_ERR_VALUE(addr))
1465                 return addr;
1466
1467         if (flags & MAP_FIXED_NOREPLACE) {
1468                 if (find_vma_intersection(mm, addr, addr + len))
1469                         return -EEXIST;
1470         }
1471
1472         if (prot == PROT_EXEC) {
1473                 pkey = execute_only_pkey(mm);
1474                 if (pkey < 0)
1475                         pkey = 0;
1476         }
1477
1478         /* Do simple checking here so the lower-level routines won't have
1479          * to. we assume access permissions have been handled by the open
1480          * of the memory object, so we don't do any here.
1481          */
1482         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1483                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1484
1485         if (flags & MAP_LOCKED)
1486                 if (!can_do_mlock())
1487                         return -EPERM;
1488
1489         if (mlock_future_check(mm, vm_flags, len))
1490                 return -EAGAIN;
1491
1492         if (file) {
1493                 struct inode *inode = file_inode(file);
1494                 unsigned long flags_mask;
1495
1496                 if (!file_mmap_ok(file, inode, pgoff, len))
1497                         return -EOVERFLOW;
1498
1499                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1500
1501                 switch (flags & MAP_TYPE) {
1502                 case MAP_SHARED:
1503                         /*
1504                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1505                          * flags. E.g. MAP_SYNC is dangerous to use with
1506                          * MAP_SHARED as you don't know which consistency model
1507                          * you will get. We silently ignore unsupported flags
1508                          * with MAP_SHARED to preserve backward compatibility.
1509                          */
1510                         flags &= LEGACY_MAP_MASK;
1511                         fallthrough;
1512                 case MAP_SHARED_VALIDATE:
1513                         if (flags & ~flags_mask)
1514                                 return -EOPNOTSUPP;
1515                         if (prot & PROT_WRITE) {
1516                                 if (!(file->f_mode & FMODE_WRITE))
1517                                         return -EACCES;
1518                                 if (IS_SWAPFILE(file->f_mapping->host))
1519                                         return -ETXTBSY;
1520                         }
1521
1522                         /*
1523                          * Make sure we don't allow writing to an append-only
1524                          * file..
1525                          */
1526                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1527                                 return -EACCES;
1528
1529                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1530                         if (!(file->f_mode & FMODE_WRITE))
1531                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1532                         fallthrough;
1533                 case MAP_PRIVATE:
1534                         if (!(file->f_mode & FMODE_READ))
1535                                 return -EACCES;
1536                         if (path_noexec(&file->f_path)) {
1537                                 if (vm_flags & VM_EXEC)
1538                                         return -EPERM;
1539                                 vm_flags &= ~VM_MAYEXEC;
1540                         }
1541
1542                         if (!file->f_op->mmap)
1543                                 return -ENODEV;
1544                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545                                 return -EINVAL;
1546                         break;
1547
1548                 default:
1549                         return -EINVAL;
1550                 }
1551         } else {
1552                 switch (flags & MAP_TYPE) {
1553                 case MAP_SHARED:
1554                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1555                                 return -EINVAL;
1556                         /*
1557                          * Ignore pgoff.
1558                          */
1559                         pgoff = 0;
1560                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1561                         break;
1562                 case MAP_PRIVATE:
1563                         /*
1564                          * Set pgoff according to addr for anon_vma.
1565                          */
1566                         pgoff = addr >> PAGE_SHIFT;
1567                         break;
1568                 default:
1569                         return -EINVAL;
1570                 }
1571         }
1572
1573         /*
1574          * Set 'VM_NORESERVE' if we should not account for the
1575          * memory use of this mapping.
1576          */
1577         if (flags & MAP_NORESERVE) {
1578                 /* We honor MAP_NORESERVE if allowed to overcommit */
1579                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1580                         vm_flags |= VM_NORESERVE;
1581
1582                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1583                 if (file && is_file_hugepages(file))
1584                         vm_flags |= VM_NORESERVE;
1585         }
1586
1587         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1588         if (!IS_ERR_VALUE(addr) &&
1589             ((vm_flags & VM_LOCKED) ||
1590              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1591                 *populate = len;
1592         return addr;
1593 }
1594
1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1596                               unsigned long prot, unsigned long flags,
1597                               unsigned long fd, unsigned long pgoff)
1598 {
1599         struct file *file = NULL;
1600         unsigned long retval;
1601
1602         if (!(flags & MAP_ANONYMOUS)) {
1603                 audit_mmap_fd(fd, flags);
1604                 file = fget(fd);
1605                 if (!file)
1606                         return -EBADF;
1607                 if (is_file_hugepages(file)) {
1608                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1609                 } else if (unlikely(flags & MAP_HUGETLB)) {
1610                         retval = -EINVAL;
1611                         goto out_fput;
1612                 }
1613         } else if (flags & MAP_HUGETLB) {
1614                 struct hstate *hs;
1615
1616                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1617                 if (!hs)
1618                         return -EINVAL;
1619
1620                 len = ALIGN(len, huge_page_size(hs));
1621                 /*
1622                  * VM_NORESERVE is used because the reservations will be
1623                  * taken when vm_ops->mmap() is called
1624                  */
1625                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1626                                 VM_NORESERVE,
1627                                 HUGETLB_ANONHUGE_INODE,
1628                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1629                 if (IS_ERR(file))
1630                         return PTR_ERR(file);
1631         }
1632
1633         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1634 out_fput:
1635         if (file)
1636                 fput(file);
1637         return retval;
1638 }
1639
1640 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1641                 unsigned long, prot, unsigned long, flags,
1642                 unsigned long, fd, unsigned long, pgoff)
1643 {
1644         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1645 }
1646
1647 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1648 struct mmap_arg_struct {
1649         unsigned long addr;
1650         unsigned long len;
1651         unsigned long prot;
1652         unsigned long flags;
1653         unsigned long fd;
1654         unsigned long offset;
1655 };
1656
1657 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1658 {
1659         struct mmap_arg_struct a;
1660
1661         if (copy_from_user(&a, arg, sizeof(a)))
1662                 return -EFAULT;
1663         if (offset_in_page(a.offset))
1664                 return -EINVAL;
1665
1666         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1667                                a.offset >> PAGE_SHIFT);
1668 }
1669 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1670
1671 /*
1672  * Some shared mappings will want the pages marked read-only
1673  * to track write events. If so, we'll downgrade vm_page_prot
1674  * to the private version (using protection_map[] without the
1675  * VM_SHARED bit).
1676  */
1677 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1678 {
1679         vm_flags_t vm_flags = vma->vm_flags;
1680         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1681
1682         /* If it was private or non-writable, the write bit is already clear */
1683         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1684                 return 0;
1685
1686         /* The backer wishes to know when pages are first written to? */
1687         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1688                 return 1;
1689
1690         /* The open routine did something to the protections that pgprot_modify
1691          * won't preserve? */
1692         if (pgprot_val(vm_page_prot) !=
1693             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1694                 return 0;
1695
1696         /* Do we need to track softdirty? */
1697         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1698                 return 1;
1699
1700         /* Specialty mapping? */
1701         if (vm_flags & VM_PFNMAP)
1702                 return 0;
1703
1704         /* Can the mapping track the dirty pages? */
1705         return vma->vm_file && vma->vm_file->f_mapping &&
1706                 mapping_can_writeback(vma->vm_file->f_mapping);
1707 }
1708
1709 /*
1710  * We account for memory if it's a private writeable mapping,
1711  * not hugepages and VM_NORESERVE wasn't set.
1712  */
1713 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1714 {
1715         /*
1716          * hugetlb has its own accounting separate from the core VM
1717          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1718          */
1719         if (file && is_file_hugepages(file))
1720                 return 0;
1721
1722         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1723 }
1724
1725 unsigned long mmap_region(struct file *file, unsigned long addr,
1726                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1727                 struct list_head *uf)
1728 {
1729         struct mm_struct *mm = current->mm;
1730         struct vm_area_struct *vma, *prev, *merge;
1731         int error;
1732         struct rb_node **rb_link, *rb_parent;
1733         unsigned long charged = 0;
1734
1735         /* Check against address space limit. */
1736         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1737                 unsigned long nr_pages;
1738
1739                 /*
1740                  * MAP_FIXED may remove pages of mappings that intersects with
1741                  * requested mapping. Account for the pages it would unmap.
1742                  */
1743                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1744
1745                 if (!may_expand_vm(mm, vm_flags,
1746                                         (len >> PAGE_SHIFT) - nr_pages))
1747                         return -ENOMEM;
1748         }
1749
1750         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1751         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1752                 return -ENOMEM;
1753         /*
1754          * Private writable mapping: check memory availability
1755          */
1756         if (accountable_mapping(file, vm_flags)) {
1757                 charged = len >> PAGE_SHIFT;
1758                 if (security_vm_enough_memory_mm(mm, charged))
1759                         return -ENOMEM;
1760                 vm_flags |= VM_ACCOUNT;
1761         }
1762
1763         /*
1764          * Can we just expand an old mapping?
1765          */
1766         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1767                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1768         if (vma)
1769                 goto out;
1770
1771         /*
1772          * Determine the object being mapped and call the appropriate
1773          * specific mapper. the address has already been validated, but
1774          * not unmapped, but the maps are removed from the list.
1775          */
1776         vma = vm_area_alloc(mm);
1777         if (!vma) {
1778                 error = -ENOMEM;
1779                 goto unacct_error;
1780         }
1781
1782         vma->vm_start = addr;
1783         vma->vm_end = addr + len;
1784         vma->vm_flags = vm_flags;
1785         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1786         vma->vm_pgoff = pgoff;
1787
1788         if (file) {
1789                 if (vm_flags & VM_SHARED) {
1790                         error = mapping_map_writable(file->f_mapping);
1791                         if (error)
1792                                 goto free_vma;
1793                 }
1794
1795                 vma->vm_file = get_file(file);
1796                 error = call_mmap(file, vma);
1797                 if (error)
1798                         goto unmap_and_free_vma;
1799
1800                 /* Can addr have changed??
1801                  *
1802                  * Answer: Yes, several device drivers can do it in their
1803                  *         f_op->mmap method. -DaveM
1804                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1805                  *      be updated for vma_link()
1806                  */
1807                 WARN_ON_ONCE(addr != vma->vm_start);
1808
1809                 addr = vma->vm_start;
1810
1811                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1812                  * as we may succeed this time.
1813                  */
1814                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1815                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1816                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1817                         if (merge) {
1818                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1819                                  * fput the vma->vm_file here or we would add an extra fput for file
1820                                  * and cause general protection fault ultimately.
1821                                  */
1822                                 fput(vma->vm_file);
1823                                 vm_area_free(vma);
1824                                 vma = merge;
1825                                 /* Update vm_flags to pick up the change. */
1826                                 vm_flags = vma->vm_flags;
1827                                 goto unmap_writable;
1828                         }
1829                 }
1830
1831                 vm_flags = vma->vm_flags;
1832         } else if (vm_flags & VM_SHARED) {
1833                 error = shmem_zero_setup(vma);
1834                 if (error)
1835                         goto free_vma;
1836         } else {
1837                 vma_set_anonymous(vma);
1838         }
1839
1840         /* Allow architectures to sanity-check the vm_flags */
1841         if (!arch_validate_flags(vma->vm_flags)) {
1842                 error = -EINVAL;
1843                 if (file)
1844                         goto unmap_and_free_vma;
1845                 else
1846                         goto free_vma;
1847         }
1848
1849         vma_link(mm, vma, prev, rb_link, rb_parent);
1850
1851         /*
1852          * vma_merge() calls khugepaged_enter_vma() either, the below
1853          * call covers the non-merge case.
1854          */
1855         khugepaged_enter_vma(vma, vma->vm_flags);
1856
1857         /* Once vma denies write, undo our temporary denial count */
1858 unmap_writable:
1859         if (file && vm_flags & VM_SHARED)
1860                 mapping_unmap_writable(file->f_mapping);
1861         file = vma->vm_file;
1862 out:
1863         perf_event_mmap(vma);
1864
1865         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1866         if (vm_flags & VM_LOCKED) {
1867                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1868                                         is_vm_hugetlb_page(vma) ||
1869                                         vma == get_gate_vma(current->mm))
1870                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1871                 else
1872                         mm->locked_vm += (len >> PAGE_SHIFT);
1873         }
1874
1875         if (file)
1876                 uprobe_mmap(vma);
1877
1878         /*
1879          * New (or expanded) vma always get soft dirty status.
1880          * Otherwise user-space soft-dirty page tracker won't
1881          * be able to distinguish situation when vma area unmapped,
1882          * then new mapped in-place (which must be aimed as
1883          * a completely new data area).
1884          */
1885         vma->vm_flags |= VM_SOFTDIRTY;
1886
1887         vma_set_page_prot(vma);
1888
1889         return addr;
1890
1891 unmap_and_free_vma:
1892         fput(vma->vm_file);
1893         vma->vm_file = NULL;
1894
1895         /* Undo any partial mapping done by a device driver. */
1896         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1897         charged = 0;
1898         if (vm_flags & VM_SHARED)
1899                 mapping_unmap_writable(file->f_mapping);
1900 free_vma:
1901         vm_area_free(vma);
1902 unacct_error:
1903         if (charged)
1904                 vm_unacct_memory(charged);
1905         return error;
1906 }
1907
1908 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1909 {
1910         /*
1911          * We implement the search by looking for an rbtree node that
1912          * immediately follows a suitable gap. That is,
1913          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1914          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1915          * - gap_end - gap_start >= length
1916          */
1917
1918         struct mm_struct *mm = current->mm;
1919         struct vm_area_struct *vma;
1920         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1921
1922         /* Adjust search length to account for worst case alignment overhead */
1923         length = info->length + info->align_mask;
1924         if (length < info->length)
1925                 return -ENOMEM;
1926
1927         /* Adjust search limits by the desired length */
1928         if (info->high_limit < length)
1929                 return -ENOMEM;
1930         high_limit = info->high_limit - length;
1931
1932         if (info->low_limit > high_limit)
1933                 return -ENOMEM;
1934         low_limit = info->low_limit + length;
1935
1936         /* Check if rbtree root looks promising */
1937         if (RB_EMPTY_ROOT(&mm->mm_rb))
1938                 goto check_highest;
1939         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1940         if (vma->rb_subtree_gap < length)
1941                 goto check_highest;
1942
1943         while (true) {
1944                 /* Visit left subtree if it looks promising */
1945                 gap_end = vm_start_gap(vma);
1946                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1947                         struct vm_area_struct *left =
1948                                 rb_entry(vma->vm_rb.rb_left,
1949                                          struct vm_area_struct, vm_rb);
1950                         if (left->rb_subtree_gap >= length) {
1951                                 vma = left;
1952                                 continue;
1953                         }
1954                 }
1955
1956                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1957 check_current:
1958                 /* Check if current node has a suitable gap */
1959                 if (gap_start > high_limit)
1960                         return -ENOMEM;
1961                 if (gap_end >= low_limit &&
1962                     gap_end > gap_start && gap_end - gap_start >= length)
1963                         goto found;
1964
1965                 /* Visit right subtree if it looks promising */
1966                 if (vma->vm_rb.rb_right) {
1967                         struct vm_area_struct *right =
1968                                 rb_entry(vma->vm_rb.rb_right,
1969                                          struct vm_area_struct, vm_rb);
1970                         if (right->rb_subtree_gap >= length) {
1971                                 vma = right;
1972                                 continue;
1973                         }
1974                 }
1975
1976                 /* Go back up the rbtree to find next candidate node */
1977                 while (true) {
1978                         struct rb_node *prev = &vma->vm_rb;
1979                         if (!rb_parent(prev))
1980                                 goto check_highest;
1981                         vma = rb_entry(rb_parent(prev),
1982                                        struct vm_area_struct, vm_rb);
1983                         if (prev == vma->vm_rb.rb_left) {
1984                                 gap_start = vm_end_gap(vma->vm_prev);
1985                                 gap_end = vm_start_gap(vma);
1986                                 goto check_current;
1987                         }
1988                 }
1989         }
1990
1991 check_highest:
1992         /* Check highest gap, which does not precede any rbtree node */
1993         gap_start = mm->highest_vm_end;
1994         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1995         if (gap_start > high_limit)
1996                 return -ENOMEM;
1997
1998 found:
1999         /* We found a suitable gap. Clip it with the original low_limit. */
2000         if (gap_start < info->low_limit)
2001                 gap_start = info->low_limit;
2002
2003         /* Adjust gap address to the desired alignment */
2004         gap_start += (info->align_offset - gap_start) & info->align_mask;
2005
2006         VM_BUG_ON(gap_start + info->length > info->high_limit);
2007         VM_BUG_ON(gap_start + info->length > gap_end);
2008         return gap_start;
2009 }
2010
2011 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2012 {
2013         struct mm_struct *mm = current->mm;
2014         struct vm_area_struct *vma;
2015         unsigned long length, low_limit, high_limit, gap_start, gap_end;
2016
2017         /* Adjust search length to account for worst case alignment overhead */
2018         length = info->length + info->align_mask;
2019         if (length < info->length)
2020                 return -ENOMEM;
2021
2022         /*
2023          * Adjust search limits by the desired length.
2024          * See implementation comment at top of unmapped_area().
2025          */
2026         gap_end = info->high_limit;
2027         if (gap_end < length)
2028                 return -ENOMEM;
2029         high_limit = gap_end - length;
2030
2031         if (info->low_limit > high_limit)
2032                 return -ENOMEM;
2033         low_limit = info->low_limit + length;
2034
2035         /* Check highest gap, which does not precede any rbtree node */
2036         gap_start = mm->highest_vm_end;
2037         if (gap_start <= high_limit)
2038                 goto found_highest;
2039
2040         /* Check if rbtree root looks promising */
2041         if (RB_EMPTY_ROOT(&mm->mm_rb))
2042                 return -ENOMEM;
2043         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2044         if (vma->rb_subtree_gap < length)
2045                 return -ENOMEM;
2046
2047         while (true) {
2048                 /* Visit right subtree if it looks promising */
2049                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2050                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2051                         struct vm_area_struct *right =
2052                                 rb_entry(vma->vm_rb.rb_right,
2053                                          struct vm_area_struct, vm_rb);
2054                         if (right->rb_subtree_gap >= length) {
2055                                 vma = right;
2056                                 continue;
2057                         }
2058                 }
2059
2060 check_current:
2061                 /* Check if current node has a suitable gap */
2062                 gap_end = vm_start_gap(vma);
2063                 if (gap_end < low_limit)
2064                         return -ENOMEM;
2065                 if (gap_start <= high_limit &&
2066                     gap_end > gap_start && gap_end - gap_start >= length)
2067                         goto found;
2068
2069                 /* Visit left subtree if it looks promising */
2070                 if (vma->vm_rb.rb_left) {
2071                         struct vm_area_struct *left =
2072                                 rb_entry(vma->vm_rb.rb_left,
2073                                          struct vm_area_struct, vm_rb);
2074                         if (left->rb_subtree_gap >= length) {
2075                                 vma = left;
2076                                 continue;
2077                         }
2078                 }
2079
2080                 /* Go back up the rbtree to find next candidate node */
2081                 while (true) {
2082                         struct rb_node *prev = &vma->vm_rb;
2083                         if (!rb_parent(prev))
2084                                 return -ENOMEM;
2085                         vma = rb_entry(rb_parent(prev),
2086                                        struct vm_area_struct, vm_rb);
2087                         if (prev == vma->vm_rb.rb_right) {
2088                                 gap_start = vma->vm_prev ?
2089                                         vm_end_gap(vma->vm_prev) : 0;
2090                                 goto check_current;
2091                         }
2092                 }
2093         }
2094
2095 found:
2096         /* We found a suitable gap. Clip it with the original high_limit. */
2097         if (gap_end > info->high_limit)
2098                 gap_end = info->high_limit;
2099
2100 found_highest:
2101         /* Compute highest gap address at the desired alignment */
2102         gap_end -= info->length;
2103         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2104
2105         VM_BUG_ON(gap_end < info->low_limit);
2106         VM_BUG_ON(gap_end < gap_start);
2107         return gap_end;
2108 }
2109
2110 /*
2111  * Search for an unmapped address range.
2112  *
2113  * We are looking for a range that:
2114  * - does not intersect with any VMA;
2115  * - is contained within the [low_limit, high_limit) interval;
2116  * - is at least the desired size.
2117  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2118  */
2119 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2120 {
2121         unsigned long addr;
2122
2123         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2124                 addr = unmapped_area_topdown(info);
2125         else
2126                 addr = unmapped_area(info);
2127
2128         trace_vm_unmapped_area(addr, info);
2129         return addr;
2130 }
2131
2132 /* Get an address range which is currently unmapped.
2133  * For shmat() with addr=0.
2134  *
2135  * Ugly calling convention alert:
2136  * Return value with the low bits set means error value,
2137  * ie
2138  *      if (ret & ~PAGE_MASK)
2139  *              error = ret;
2140  *
2141  * This function "knows" that -ENOMEM has the bits set.
2142  */
2143 #ifndef HAVE_ARCH_UNMAPPED_AREA
2144 unsigned long
2145 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2146                 unsigned long len, unsigned long pgoff, unsigned long flags)
2147 {
2148         struct mm_struct *mm = current->mm;
2149         struct vm_area_struct *vma, *prev;
2150         struct vm_unmapped_area_info info;
2151         const unsigned long mmap_end = arch_get_mmap_end(addr);
2152
2153         if (len > mmap_end - mmap_min_addr)
2154                 return -ENOMEM;
2155
2156         if (flags & MAP_FIXED)
2157                 return addr;
2158
2159         if (addr) {
2160                 addr = PAGE_ALIGN(addr);
2161                 vma = find_vma_prev(mm, addr, &prev);
2162                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2163                     (!vma || addr + len <= vm_start_gap(vma)) &&
2164                     (!prev || addr >= vm_end_gap(prev)))
2165                         return addr;
2166         }
2167
2168         info.flags = 0;
2169         info.length = len;
2170         info.low_limit = mm->mmap_base;
2171         info.high_limit = mmap_end;
2172         info.align_mask = 0;
2173         info.align_offset = 0;
2174         return vm_unmapped_area(&info);
2175 }
2176 #endif
2177
2178 /*
2179  * This mmap-allocator allocates new areas top-down from below the
2180  * stack's low limit (the base):
2181  */
2182 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2183 unsigned long
2184 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2185                           unsigned long len, unsigned long pgoff,
2186                           unsigned long flags)
2187 {
2188         struct vm_area_struct *vma, *prev;
2189         struct mm_struct *mm = current->mm;
2190         struct vm_unmapped_area_info info;
2191         const unsigned long mmap_end = arch_get_mmap_end(addr);
2192
2193         /* requested length too big for entire address space */
2194         if (len > mmap_end - mmap_min_addr)
2195                 return -ENOMEM;
2196
2197         if (flags & MAP_FIXED)
2198                 return addr;
2199
2200         /* requesting a specific address */
2201         if (addr) {
2202                 addr = PAGE_ALIGN(addr);
2203                 vma = find_vma_prev(mm, addr, &prev);
2204                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2205                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2206                                 (!prev || addr >= vm_end_gap(prev)))
2207                         return addr;
2208         }
2209
2210         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2211         info.length = len;
2212         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2213         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2214         info.align_mask = 0;
2215         info.align_offset = 0;
2216         addr = vm_unmapped_area(&info);
2217
2218         /*
2219          * A failed mmap() very likely causes application failure,
2220          * so fall back to the bottom-up function here. This scenario
2221          * can happen with large stack limits and large mmap()
2222          * allocations.
2223          */
2224         if (offset_in_page(addr)) {
2225                 VM_BUG_ON(addr != -ENOMEM);
2226                 info.flags = 0;
2227                 info.low_limit = TASK_UNMAPPED_BASE;
2228                 info.high_limit = mmap_end;
2229                 addr = vm_unmapped_area(&info);
2230         }
2231
2232         return addr;
2233 }
2234 #endif
2235
2236 unsigned long
2237 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2238                 unsigned long pgoff, unsigned long flags)
2239 {
2240         unsigned long (*get_area)(struct file *, unsigned long,
2241                                   unsigned long, unsigned long, unsigned long);
2242
2243         unsigned long error = arch_mmap_check(addr, len, flags);
2244         if (error)
2245                 return error;
2246
2247         /* Careful about overflows.. */
2248         if (len > TASK_SIZE)
2249                 return -ENOMEM;
2250
2251         get_area = current->mm->get_unmapped_area;
2252         if (file) {
2253                 if (file->f_op->get_unmapped_area)
2254                         get_area = file->f_op->get_unmapped_area;
2255         } else if (flags & MAP_SHARED) {
2256                 /*
2257                  * mmap_region() will call shmem_zero_setup() to create a file,
2258                  * so use shmem's get_unmapped_area in case it can be huge.
2259                  * do_mmap() will clear pgoff, so match alignment.
2260                  */
2261                 pgoff = 0;
2262                 get_area = shmem_get_unmapped_area;
2263         }
2264
2265         addr = get_area(file, addr, len, pgoff, flags);
2266         if (IS_ERR_VALUE(addr))
2267                 return addr;
2268
2269         if (addr > TASK_SIZE - len)
2270                 return -ENOMEM;
2271         if (offset_in_page(addr))
2272                 return -EINVAL;
2273
2274         error = security_mmap_addr(addr);
2275         return error ? error : addr;
2276 }
2277
2278 EXPORT_SYMBOL(get_unmapped_area);
2279
2280 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2281 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2282 {
2283         struct rb_node *rb_node;
2284         struct vm_area_struct *vma;
2285
2286         mmap_assert_locked(mm);
2287         /* Check the cache first. */
2288         vma = vmacache_find(mm, addr);
2289         if (likely(vma))
2290                 return vma;
2291
2292         rb_node = mm->mm_rb.rb_node;
2293
2294         while (rb_node) {
2295                 struct vm_area_struct *tmp;
2296
2297                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2298
2299                 if (tmp->vm_end > addr) {
2300                         vma = tmp;
2301                         if (tmp->vm_start <= addr)
2302                                 break;
2303                         rb_node = rb_node->rb_left;
2304                 } else
2305                         rb_node = rb_node->rb_right;
2306         }
2307
2308         if (vma)
2309                 vmacache_update(addr, vma);
2310         return vma;
2311 }
2312
2313 EXPORT_SYMBOL(find_vma);
2314
2315 /*
2316  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2317  */
2318 struct vm_area_struct *
2319 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2320                         struct vm_area_struct **pprev)
2321 {
2322         struct vm_area_struct *vma;
2323
2324         vma = find_vma(mm, addr);
2325         if (vma) {
2326                 *pprev = vma->vm_prev;
2327         } else {
2328                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2329
2330                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2331         }
2332         return vma;
2333 }
2334
2335 /*
2336  * Verify that the stack growth is acceptable and
2337  * update accounting. This is shared with both the
2338  * grow-up and grow-down cases.
2339  */
2340 static int acct_stack_growth(struct vm_area_struct *vma,
2341                              unsigned long size, unsigned long grow)
2342 {
2343         struct mm_struct *mm = vma->vm_mm;
2344         unsigned long new_start;
2345
2346         /* address space limit tests */
2347         if (!may_expand_vm(mm, vma->vm_flags, grow))
2348                 return -ENOMEM;
2349
2350         /* Stack limit test */
2351         if (size > rlimit(RLIMIT_STACK))
2352                 return -ENOMEM;
2353
2354         /* mlock limit tests */
2355         if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
2356                 return -ENOMEM;
2357
2358         /* Check to ensure the stack will not grow into a hugetlb-only region */
2359         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2360                         vma->vm_end - size;
2361         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2362                 return -EFAULT;
2363
2364         /*
2365          * Overcommit..  This must be the final test, as it will
2366          * update security statistics.
2367          */
2368         if (security_vm_enough_memory_mm(mm, grow))
2369                 return -ENOMEM;
2370
2371         return 0;
2372 }
2373
2374 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2375 /*
2376  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2377  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2378  */
2379 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2380 {
2381         struct mm_struct *mm = vma->vm_mm;
2382         struct vm_area_struct *next;
2383         unsigned long gap_addr;
2384         int error = 0;
2385
2386         if (!(vma->vm_flags & VM_GROWSUP))
2387                 return -EFAULT;
2388
2389         /* Guard against exceeding limits of the address space. */
2390         address &= PAGE_MASK;
2391         if (address >= (TASK_SIZE & PAGE_MASK))
2392                 return -ENOMEM;
2393         address += PAGE_SIZE;
2394
2395         /* Enforce stack_guard_gap */
2396         gap_addr = address + stack_guard_gap;
2397
2398         /* Guard against overflow */
2399         if (gap_addr < address || gap_addr > TASK_SIZE)
2400                 gap_addr = TASK_SIZE;
2401
2402         next = vma->vm_next;
2403         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2404                 if (!(next->vm_flags & VM_GROWSUP))
2405                         return -ENOMEM;
2406                 /* Check that both stack segments have the same anon_vma? */
2407         }
2408
2409         /* We must make sure the anon_vma is allocated. */
2410         if (unlikely(anon_vma_prepare(vma)))
2411                 return -ENOMEM;
2412
2413         /*
2414          * vma->vm_start/vm_end cannot change under us because the caller
2415          * is required to hold the mmap_lock in read mode.  We need the
2416          * anon_vma lock to serialize against concurrent expand_stacks.
2417          */
2418         anon_vma_lock_write(vma->anon_vma);
2419
2420         /* Somebody else might have raced and expanded it already */
2421         if (address > vma->vm_end) {
2422                 unsigned long size, grow;
2423
2424                 size = address - vma->vm_start;
2425                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2426
2427                 error = -ENOMEM;
2428                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2429                         error = acct_stack_growth(vma, size, grow);
2430                         if (!error) {
2431                                 /*
2432                                  * vma_gap_update() doesn't support concurrent
2433                                  * updates, but we only hold a shared mmap_lock
2434                                  * lock here, so we need to protect against
2435                                  * concurrent vma expansions.
2436                                  * anon_vma_lock_write() doesn't help here, as
2437                                  * we don't guarantee that all growable vmas
2438                                  * in a mm share the same root anon vma.
2439                                  * So, we reuse mm->page_table_lock to guard
2440                                  * against concurrent vma expansions.
2441                                  */
2442                                 spin_lock(&mm->page_table_lock);
2443                                 if (vma->vm_flags & VM_LOCKED)
2444                                         mm->locked_vm += grow;
2445                                 vm_stat_account(mm, vma->vm_flags, grow);
2446                                 anon_vma_interval_tree_pre_update_vma(vma);
2447                                 vma->vm_end = address;
2448                                 anon_vma_interval_tree_post_update_vma(vma);
2449                                 if (vma->vm_next)
2450                                         vma_gap_update(vma->vm_next);
2451                                 else
2452                                         mm->highest_vm_end = vm_end_gap(vma);
2453                                 spin_unlock(&mm->page_table_lock);
2454
2455                                 perf_event_mmap(vma);
2456                         }
2457                 }
2458         }
2459         anon_vma_unlock_write(vma->anon_vma);
2460         khugepaged_enter_vma(vma, vma->vm_flags);
2461         validate_mm(mm);
2462         return error;
2463 }
2464 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2465
2466 /*
2467  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2468  */
2469 int expand_downwards(struct vm_area_struct *vma,
2470                                    unsigned long address)
2471 {
2472         struct mm_struct *mm = vma->vm_mm;
2473         struct vm_area_struct *prev;
2474         int error = 0;
2475
2476         address &= PAGE_MASK;
2477         if (address < mmap_min_addr)
2478                 return -EPERM;
2479
2480         /* Enforce stack_guard_gap */
2481         prev = vma->vm_prev;
2482         /* Check that both stack segments have the same anon_vma? */
2483         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2484                         vma_is_accessible(prev)) {
2485                 if (address - prev->vm_end < stack_guard_gap)
2486                         return -ENOMEM;
2487         }
2488
2489         /* We must make sure the anon_vma is allocated. */
2490         if (unlikely(anon_vma_prepare(vma)))
2491                 return -ENOMEM;
2492
2493         /*
2494          * vma->vm_start/vm_end cannot change under us because the caller
2495          * is required to hold the mmap_lock in read mode.  We need the
2496          * anon_vma lock to serialize against concurrent expand_stacks.
2497          */
2498         anon_vma_lock_write(vma->anon_vma);
2499
2500         /* Somebody else might have raced and expanded it already */
2501         if (address < vma->vm_start) {
2502                 unsigned long size, grow;
2503
2504                 size = vma->vm_end - address;
2505                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2506
2507                 error = -ENOMEM;
2508                 if (grow <= vma->vm_pgoff) {
2509                         error = acct_stack_growth(vma, size, grow);
2510                         if (!error) {
2511                                 /*
2512                                  * vma_gap_update() doesn't support concurrent
2513                                  * updates, but we only hold a shared mmap_lock
2514                                  * lock here, so we need to protect against
2515                                  * concurrent vma expansions.
2516                                  * anon_vma_lock_write() doesn't help here, as
2517                                  * we don't guarantee that all growable vmas
2518                                  * in a mm share the same root anon vma.
2519                                  * So, we reuse mm->page_table_lock to guard
2520                                  * against concurrent vma expansions.
2521                                  */
2522                                 spin_lock(&mm->page_table_lock);
2523                                 if (vma->vm_flags & VM_LOCKED)
2524                                         mm->locked_vm += grow;
2525                                 vm_stat_account(mm, vma->vm_flags, grow);
2526                                 anon_vma_interval_tree_pre_update_vma(vma);
2527                                 vma->vm_start = address;
2528                                 vma->vm_pgoff -= grow;
2529                                 anon_vma_interval_tree_post_update_vma(vma);
2530                                 vma_gap_update(vma);
2531                                 spin_unlock(&mm->page_table_lock);
2532
2533                                 perf_event_mmap(vma);
2534                         }
2535                 }
2536         }
2537         anon_vma_unlock_write(vma->anon_vma);
2538         khugepaged_enter_vma(vma, vma->vm_flags);
2539         validate_mm(mm);
2540         return error;
2541 }
2542
2543 /* enforced gap between the expanding stack and other mappings. */
2544 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2545
2546 static int __init cmdline_parse_stack_guard_gap(char *p)
2547 {
2548         unsigned long val;
2549         char *endptr;
2550
2551         val = simple_strtoul(p, &endptr, 10);
2552         if (!*endptr)
2553                 stack_guard_gap = val << PAGE_SHIFT;
2554
2555         return 1;
2556 }
2557 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2558
2559 #ifdef CONFIG_STACK_GROWSUP
2560 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2561 {
2562         return expand_upwards(vma, address);
2563 }
2564
2565 struct vm_area_struct *
2566 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2567 {
2568         struct vm_area_struct *vma, *prev;
2569
2570         addr &= PAGE_MASK;
2571         vma = find_vma_prev(mm, addr, &prev);
2572         if (vma && (vma->vm_start <= addr))
2573                 return vma;
2574         /* don't alter vm_end if the coredump is running */
2575         if (!prev || expand_stack(prev, addr))
2576                 return NULL;
2577         if (prev->vm_flags & VM_LOCKED)
2578                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2579         return prev;
2580 }
2581 #else
2582 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2583 {
2584         return expand_downwards(vma, address);
2585 }
2586
2587 struct vm_area_struct *
2588 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2589 {
2590         struct vm_area_struct *vma;
2591         unsigned long start;
2592
2593         addr &= PAGE_MASK;
2594         vma = find_vma(mm, addr);
2595         if (!vma)
2596                 return NULL;
2597         if (vma->vm_start <= addr)
2598                 return vma;
2599         if (!(vma->vm_flags & VM_GROWSDOWN))
2600                 return NULL;
2601         start = vma->vm_start;
2602         if (expand_stack(vma, addr))
2603                 return NULL;
2604         if (vma->vm_flags & VM_LOCKED)
2605                 populate_vma_page_range(vma, addr, start, NULL);
2606         return vma;
2607 }
2608 #endif
2609
2610 EXPORT_SYMBOL_GPL(find_extend_vma);
2611
2612 /*
2613  * Ok - we have the memory areas we should free on the vma list,
2614  * so release them, and do the vma updates.
2615  *
2616  * Called with the mm semaphore held.
2617  */
2618 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2619 {
2620         unsigned long nr_accounted = 0;
2621
2622         /* Update high watermark before we lower total_vm */
2623         update_hiwater_vm(mm);
2624         do {
2625                 long nrpages = vma_pages(vma);
2626
2627                 if (vma->vm_flags & VM_ACCOUNT)
2628                         nr_accounted += nrpages;
2629                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2630                 vma = remove_vma(vma);
2631         } while (vma);
2632         vm_unacct_memory(nr_accounted);
2633         validate_mm(mm);
2634 }
2635
2636 /*
2637  * Get rid of page table information in the indicated region.
2638  *
2639  * Called with the mm semaphore held.
2640  */
2641 static void unmap_region(struct mm_struct *mm,
2642                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2643                 unsigned long start, unsigned long end)
2644 {
2645         struct vm_area_struct *next = vma_next(mm, prev);
2646         struct mmu_gather tlb;
2647
2648         lru_add_drain();
2649         tlb_gather_mmu(&tlb, mm);
2650         update_hiwater_rss(mm);
2651         unmap_vmas(&tlb, vma, start, end);
2652         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2653                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2654         tlb_finish_mmu(&tlb);
2655 }
2656
2657 /*
2658  * Create a list of vma's touched by the unmap, removing them from the mm's
2659  * vma list as we go..
2660  */
2661 static bool
2662 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2663         struct vm_area_struct *prev, unsigned long end)
2664 {
2665         struct vm_area_struct **insertion_point;
2666         struct vm_area_struct *tail_vma = NULL;
2667
2668         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2669         vma->vm_prev = NULL;
2670         do {
2671                 vma_rb_erase(vma, &mm->mm_rb);
2672                 if (vma->vm_flags & VM_LOCKED)
2673                         mm->locked_vm -= vma_pages(vma);
2674                 mm->map_count--;
2675                 tail_vma = vma;
2676                 vma = vma->vm_next;
2677         } while (vma && vma->vm_start < end);
2678         *insertion_point = vma;
2679         if (vma) {
2680                 vma->vm_prev = prev;
2681                 vma_gap_update(vma);
2682         } else
2683                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2684         tail_vma->vm_next = NULL;
2685
2686         /* Kill the cache */
2687         vmacache_invalidate(mm);
2688
2689         /*
2690          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2691          * VM_GROWSUP VMA. Such VMAs can change their size under
2692          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2693          */
2694         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2695                 return false;
2696         if (prev && (prev->vm_flags & VM_GROWSUP))
2697                 return false;
2698         return true;
2699 }
2700
2701 /*
2702  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2703  * has already been checked or doesn't make sense to fail.
2704  */
2705 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2706                 unsigned long addr, int new_below)
2707 {
2708         struct vm_area_struct *new;
2709         int err;
2710
2711         if (vma->vm_ops && vma->vm_ops->may_split) {
2712                 err = vma->vm_ops->may_split(vma, addr);
2713                 if (err)
2714                         return err;
2715         }
2716
2717         new = vm_area_dup(vma);
2718         if (!new)
2719                 return -ENOMEM;
2720
2721         if (new_below)
2722                 new->vm_end = addr;
2723         else {
2724                 new->vm_start = addr;
2725                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2726         }
2727
2728         err = vma_dup_policy(vma, new);
2729         if (err)
2730                 goto out_free_vma;
2731
2732         err = anon_vma_clone(new, vma);
2733         if (err)
2734                 goto out_free_mpol;
2735
2736         if (new->vm_file)
2737                 get_file(new->vm_file);
2738
2739         if (new->vm_ops && new->vm_ops->open)
2740                 new->vm_ops->open(new);
2741
2742         if (new_below)
2743                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2744                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2745         else
2746                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2747
2748         /* Success. */
2749         if (!err)
2750                 return 0;
2751
2752         /* Clean everything up if vma_adjust failed. */
2753         if (new->vm_ops && new->vm_ops->close)
2754                 new->vm_ops->close(new);
2755         if (new->vm_file)
2756                 fput(new->vm_file);
2757         unlink_anon_vmas(new);
2758  out_free_mpol:
2759         mpol_put(vma_policy(new));
2760  out_free_vma:
2761         vm_area_free(new);
2762         return err;
2763 }
2764
2765 /*
2766  * Split a vma into two pieces at address 'addr', a new vma is allocated
2767  * either for the first part or the tail.
2768  */
2769 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2770               unsigned long addr, int new_below)
2771 {
2772         if (mm->map_count >= sysctl_max_map_count)
2773                 return -ENOMEM;
2774
2775         return __split_vma(mm, vma, addr, new_below);
2776 }
2777
2778 /* Munmap is split into 2 main parts -- this part which finds
2779  * what needs doing, and the areas themselves, which do the
2780  * work.  This now handles partial unmappings.
2781  * Jeremy Fitzhardinge <jeremy@goop.org>
2782  */
2783 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2784                 struct list_head *uf, bool downgrade)
2785 {
2786         unsigned long end;
2787         struct vm_area_struct *vma, *prev, *last;
2788
2789         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2790                 return -EINVAL;
2791
2792         len = PAGE_ALIGN(len);
2793         end = start + len;
2794         if (len == 0)
2795                 return -EINVAL;
2796
2797         /*
2798          * arch_unmap() might do unmaps itself.  It must be called
2799          * and finish any rbtree manipulation before this code
2800          * runs and also starts to manipulate the rbtree.
2801          */
2802         arch_unmap(mm, start, end);
2803
2804         /* Find the first overlapping VMA where start < vma->vm_end */
2805         vma = find_vma_intersection(mm, start, end);
2806         if (!vma)
2807                 return 0;
2808         prev = vma->vm_prev;
2809
2810         /*
2811          * If we need to split any vma, do it now to save pain later.
2812          *
2813          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2814          * unmapped vm_area_struct will remain in use: so lower split_vma
2815          * places tmp vma above, and higher split_vma places tmp vma below.
2816          */
2817         if (start > vma->vm_start) {
2818                 int error;
2819
2820                 /*
2821                  * Make sure that map_count on return from munmap() will
2822                  * not exceed its limit; but let map_count go just above
2823                  * its limit temporarily, to help free resources as expected.
2824                  */
2825                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2826                         return -ENOMEM;
2827
2828                 error = __split_vma(mm, vma, start, 0);
2829                 if (error)
2830                         return error;
2831                 prev = vma;
2832         }
2833
2834         /* Does it split the last one? */
2835         last = find_vma(mm, end);
2836         if (last && end > last->vm_start) {
2837                 int error = __split_vma(mm, last, end, 1);
2838                 if (error)
2839                         return error;
2840         }
2841         vma = vma_next(mm, prev);
2842
2843         if (unlikely(uf)) {
2844                 /*
2845                  * If userfaultfd_unmap_prep returns an error the vmas
2846                  * will remain split, but userland will get a
2847                  * highly unexpected error anyway. This is no
2848                  * different than the case where the first of the two
2849                  * __split_vma fails, but we don't undo the first
2850                  * split, despite we could. This is unlikely enough
2851                  * failure that it's not worth optimizing it for.
2852                  */
2853                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2854                 if (error)
2855                         return error;
2856         }
2857
2858         /* Detach vmas from rbtree */
2859         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2860                 downgrade = false;
2861
2862         if (downgrade)
2863                 mmap_write_downgrade(mm);
2864
2865         unmap_region(mm, vma, prev, start, end);
2866
2867         /* Fix up all other VM information */
2868         remove_vma_list(mm, vma);
2869
2870         return downgrade ? 1 : 0;
2871 }
2872
2873 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2874               struct list_head *uf)
2875 {
2876         return __do_munmap(mm, start, len, uf, false);
2877 }
2878
2879 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2880 {
2881         int ret;
2882         struct mm_struct *mm = current->mm;
2883         LIST_HEAD(uf);
2884
2885         if (mmap_write_lock_killable(mm))
2886                 return -EINTR;
2887
2888         ret = __do_munmap(mm, start, len, &uf, downgrade);
2889         /*
2890          * Returning 1 indicates mmap_lock is downgraded.
2891          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2892          * it to 0 before return.
2893          */
2894         if (ret == 1) {
2895                 mmap_read_unlock(mm);
2896                 ret = 0;
2897         } else
2898                 mmap_write_unlock(mm);
2899
2900         userfaultfd_unmap_complete(mm, &uf);
2901         return ret;
2902 }
2903
2904 int vm_munmap(unsigned long start, size_t len)
2905 {
2906         return __vm_munmap(start, len, false);
2907 }
2908 EXPORT_SYMBOL(vm_munmap);
2909
2910 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2911 {
2912         addr = untagged_addr(addr);
2913         return __vm_munmap(addr, len, true);
2914 }
2915
2916
2917 /*
2918  * Emulation of deprecated remap_file_pages() syscall.
2919  */
2920 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2921                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2922 {
2923
2924         struct mm_struct *mm = current->mm;
2925         struct vm_area_struct *vma;
2926         unsigned long populate = 0;
2927         unsigned long ret = -EINVAL;
2928         struct file *file;
2929
2930         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2931                      current->comm, current->pid);
2932
2933         if (prot)
2934                 return ret;
2935         start = start & PAGE_MASK;
2936         size = size & PAGE_MASK;
2937
2938         if (start + size <= start)
2939                 return ret;
2940
2941         /* Does pgoff wrap? */
2942         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2943                 return ret;
2944
2945         if (mmap_write_lock_killable(mm))
2946                 return -EINTR;
2947
2948         vma = vma_lookup(mm, start);
2949
2950         if (!vma || !(vma->vm_flags & VM_SHARED))
2951                 goto out;
2952
2953         if (start + size > vma->vm_end) {
2954                 struct vm_area_struct *next;
2955
2956                 for (next = vma->vm_next; next; next = next->vm_next) {
2957                         /* hole between vmas ? */
2958                         if (next->vm_start != next->vm_prev->vm_end)
2959                                 goto out;
2960
2961                         if (next->vm_file != vma->vm_file)
2962                                 goto out;
2963
2964                         if (next->vm_flags != vma->vm_flags)
2965                                 goto out;
2966
2967                         if (start + size <= next->vm_end)
2968                                 break;
2969                 }
2970
2971                 if (!next)
2972                         goto out;
2973         }
2974
2975         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2976         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2977         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2978
2979         flags &= MAP_NONBLOCK;
2980         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2981         if (vma->vm_flags & VM_LOCKED)
2982                 flags |= MAP_LOCKED;
2983
2984         file = get_file(vma->vm_file);
2985         ret = do_mmap(vma->vm_file, start, size,
2986                         prot, flags, pgoff, &populate, NULL);
2987         fput(file);
2988 out:
2989         mmap_write_unlock(mm);
2990         if (populate)
2991                 mm_populate(ret, populate);
2992         if (!IS_ERR_VALUE(ret))
2993                 ret = 0;
2994         return ret;
2995 }
2996
2997 /*
2998  *  this is really a simplified "do_mmap".  it only handles
2999  *  anonymous maps.  eventually we may be able to do some
3000  *  brk-specific accounting here.
3001  */
3002 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3003 {
3004         struct mm_struct *mm = current->mm;
3005         struct vm_area_struct *vma, *prev;
3006         struct rb_node **rb_link, *rb_parent;
3007         pgoff_t pgoff = addr >> PAGE_SHIFT;
3008         int error;
3009         unsigned long mapped_addr;
3010
3011         /* Until we need other flags, refuse anything except VM_EXEC. */
3012         if ((flags & (~VM_EXEC)) != 0)
3013                 return -EINVAL;
3014         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3015
3016         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3017         if (IS_ERR_VALUE(mapped_addr))
3018                 return mapped_addr;
3019
3020         error = mlock_future_check(mm, mm->def_flags, len);
3021         if (error)
3022                 return error;
3023
3024         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3025         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3026                 return -ENOMEM;
3027
3028         /* Check against address space limits *after* clearing old maps... */
3029         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3030                 return -ENOMEM;
3031
3032         if (mm->map_count > sysctl_max_map_count)
3033                 return -ENOMEM;
3034
3035         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3036                 return -ENOMEM;
3037
3038         /* Can we just expand an old private anonymous mapping? */
3039         vma = vma_merge(mm, prev, addr, addr + len, flags,
3040                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3041         if (vma)
3042                 goto out;
3043
3044         /*
3045          * create a vma struct for an anonymous mapping
3046          */
3047         vma = vm_area_alloc(mm);
3048         if (!vma) {
3049                 vm_unacct_memory(len >> PAGE_SHIFT);
3050                 return -ENOMEM;
3051         }
3052
3053         vma_set_anonymous(vma);
3054         vma->vm_start = addr;
3055         vma->vm_end = addr + len;
3056         vma->vm_pgoff = pgoff;
3057         vma->vm_flags = flags;
3058         vma->vm_page_prot = vm_get_page_prot(flags);
3059         vma_link(mm, vma, prev, rb_link, rb_parent);
3060 out:
3061         perf_event_mmap(vma);
3062         mm->total_vm += len >> PAGE_SHIFT;
3063         mm->data_vm += len >> PAGE_SHIFT;
3064         if (flags & VM_LOCKED)
3065                 mm->locked_vm += (len >> PAGE_SHIFT);
3066         vma->vm_flags |= VM_SOFTDIRTY;
3067         return 0;
3068 }
3069
3070 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3071 {
3072         struct mm_struct *mm = current->mm;
3073         unsigned long len;
3074         int ret;
3075         bool populate;
3076         LIST_HEAD(uf);
3077
3078         len = PAGE_ALIGN(request);
3079         if (len < request)
3080                 return -ENOMEM;
3081         if (!len)
3082                 return 0;
3083
3084         if (mmap_write_lock_killable(mm))
3085                 return -EINTR;
3086
3087         ret = do_brk_flags(addr, len, flags, &uf);
3088         populate = ((mm->def_flags & VM_LOCKED) != 0);
3089         mmap_write_unlock(mm);
3090         userfaultfd_unmap_complete(mm, &uf);
3091         if (populate && !ret)
3092                 mm_populate(addr, len);
3093         return ret;
3094 }
3095 EXPORT_SYMBOL(vm_brk_flags);
3096
3097 int vm_brk(unsigned long addr, unsigned long len)
3098 {
3099         return vm_brk_flags(addr, len, 0);
3100 }
3101 EXPORT_SYMBOL(vm_brk);
3102
3103 /* Release all mmaps. */
3104 void exit_mmap(struct mm_struct *mm)
3105 {
3106         struct mmu_gather tlb;
3107         struct vm_area_struct *vma;
3108         unsigned long nr_accounted = 0;
3109
3110         /* mm's last user has gone, and its about to be pulled down */
3111         mmu_notifier_release(mm);
3112
3113         if (unlikely(mm_is_oom_victim(mm))) {
3114                 /*
3115                  * Manually reap the mm to free as much memory as possible.
3116                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3117                  * this mm from further consideration.  Taking mm->mmap_lock for
3118                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3119                  * reaper will not run on this mm again after mmap_lock is
3120                  * dropped.
3121                  *
3122                  * Nothing can be holding mm->mmap_lock here and the above call
3123                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3124                  * __oom_reap_task_mm() will not block.
3125                  */
3126                 (void)__oom_reap_task_mm(mm);
3127                 set_bit(MMF_OOM_SKIP, &mm->flags);
3128         }
3129
3130         mmap_write_lock(mm);
3131         arch_exit_mmap(mm);
3132
3133         vma = mm->mmap;
3134         if (!vma) {
3135                 /* Can happen if dup_mmap() received an OOM */
3136                 mmap_write_unlock(mm);
3137                 return;
3138         }
3139
3140         lru_add_drain();
3141         flush_cache_mm(mm);
3142         tlb_gather_mmu_fullmm(&tlb, mm);
3143         /* update_hiwater_rss(mm) here? but nobody should be looking */
3144         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3145         unmap_vmas(&tlb, vma, 0, -1);
3146         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3147         tlb_finish_mmu(&tlb);
3148
3149         /* Walk the list again, actually closing and freeing it. */
3150         while (vma) {
3151                 if (vma->vm_flags & VM_ACCOUNT)
3152                         nr_accounted += vma_pages(vma);
3153                 vma = remove_vma(vma);
3154                 cond_resched();
3155         }
3156         mm->mmap = NULL;
3157         mmap_write_unlock(mm);
3158         vm_unacct_memory(nr_accounted);
3159 }
3160
3161 /* Insert vm structure into process list sorted by address
3162  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3163  * then i_mmap_rwsem is taken here.
3164  */
3165 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3166 {
3167         struct vm_area_struct *prev;
3168         struct rb_node **rb_link, *rb_parent;
3169
3170         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3171                            &prev, &rb_link, &rb_parent))
3172                 return -ENOMEM;
3173         if ((vma->vm_flags & VM_ACCOUNT) &&
3174              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3175                 return -ENOMEM;
3176
3177         /*
3178          * The vm_pgoff of a purely anonymous vma should be irrelevant
3179          * until its first write fault, when page's anon_vma and index
3180          * are set.  But now set the vm_pgoff it will almost certainly
3181          * end up with (unless mremap moves it elsewhere before that
3182          * first wfault), so /proc/pid/maps tells a consistent story.
3183          *
3184          * By setting it to reflect the virtual start address of the
3185          * vma, merges and splits can happen in a seamless way, just
3186          * using the existing file pgoff checks and manipulations.
3187          * Similarly in do_mmap and in do_brk_flags.
3188          */
3189         if (vma_is_anonymous(vma)) {
3190                 BUG_ON(vma->anon_vma);
3191                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3192         }
3193
3194         vma_link(mm, vma, prev, rb_link, rb_parent);
3195         return 0;
3196 }
3197
3198 /*
3199  * Copy the vma structure to a new location in the same mm,
3200  * prior to moving page table entries, to effect an mremap move.
3201  */
3202 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3203         unsigned long addr, unsigned long len, pgoff_t pgoff,
3204         bool *need_rmap_locks)
3205 {
3206         struct vm_area_struct *vma = *vmap;
3207         unsigned long vma_start = vma->vm_start;
3208         struct mm_struct *mm = vma->vm_mm;
3209         struct vm_area_struct *new_vma, *prev;
3210         struct rb_node **rb_link, *rb_parent;
3211         bool faulted_in_anon_vma = true;
3212
3213         /*
3214          * If anonymous vma has not yet been faulted, update new pgoff
3215          * to match new location, to increase its chance of merging.
3216          */
3217         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3218                 pgoff = addr >> PAGE_SHIFT;
3219                 faulted_in_anon_vma = false;
3220         }
3221
3222         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3223                 return NULL;    /* should never get here */
3224         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3225                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3226                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3227         if (new_vma) {
3228                 /*
3229                  * Source vma may have been merged into new_vma
3230                  */
3231                 if (unlikely(vma_start >= new_vma->vm_start &&
3232                              vma_start < new_vma->vm_end)) {
3233                         /*
3234                          * The only way we can get a vma_merge with
3235                          * self during an mremap is if the vma hasn't
3236                          * been faulted in yet and we were allowed to
3237                          * reset the dst vma->vm_pgoff to the
3238                          * destination address of the mremap to allow
3239                          * the merge to happen. mremap must change the
3240                          * vm_pgoff linearity between src and dst vmas
3241                          * (in turn preventing a vma_merge) to be
3242                          * safe. It is only safe to keep the vm_pgoff
3243                          * linear if there are no pages mapped yet.
3244                          */
3245                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3246                         *vmap = vma = new_vma;
3247                 }
3248                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3249         } else {
3250                 new_vma = vm_area_dup(vma);
3251                 if (!new_vma)
3252                         goto out;
3253                 new_vma->vm_start = addr;
3254                 new_vma->vm_end = addr + len;
3255                 new_vma->vm_pgoff = pgoff;
3256                 if (vma_dup_policy(vma, new_vma))
3257                         goto out_free_vma;
3258                 if (anon_vma_clone(new_vma, vma))
3259                         goto out_free_mempol;
3260                 if (new_vma->vm_file)
3261                         get_file(new_vma->vm_file);
3262                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3263                         new_vma->vm_ops->open(new_vma);
3264                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3265                 *need_rmap_locks = false;
3266         }
3267         return new_vma;
3268
3269 out_free_mempol:
3270         mpol_put(vma_policy(new_vma));
3271 out_free_vma:
3272         vm_area_free(new_vma);
3273 out:
3274         return NULL;
3275 }
3276
3277 /*
3278  * Return true if the calling process may expand its vm space by the passed
3279  * number of pages
3280  */
3281 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3282 {
3283         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3284                 return false;
3285
3286         if (is_data_mapping(flags) &&
3287             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3288                 /* Workaround for Valgrind */
3289                 if (rlimit(RLIMIT_DATA) == 0 &&
3290                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3291                         return true;
3292
3293                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3294                              current->comm, current->pid,
3295                              (mm->data_vm + npages) << PAGE_SHIFT,
3296                              rlimit(RLIMIT_DATA),
3297                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3298
3299                 if (!ignore_rlimit_data)
3300                         return false;
3301         }
3302
3303         return true;
3304 }
3305
3306 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3307 {
3308         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3309
3310         if (is_exec_mapping(flags))
3311                 mm->exec_vm += npages;
3312         else if (is_stack_mapping(flags))
3313                 mm->stack_vm += npages;
3314         else if (is_data_mapping(flags))
3315                 mm->data_vm += npages;
3316 }
3317
3318 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3319
3320 /*
3321  * Having a close hook prevents vma merging regardless of flags.
3322  */
3323 static void special_mapping_close(struct vm_area_struct *vma)
3324 {
3325 }
3326
3327 static const char *special_mapping_name(struct vm_area_struct *vma)
3328 {
3329         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3330 }
3331
3332 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3333 {
3334         struct vm_special_mapping *sm = new_vma->vm_private_data;
3335
3336         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3337                 return -EFAULT;
3338
3339         if (sm->mremap)
3340                 return sm->mremap(sm, new_vma);
3341
3342         return 0;
3343 }
3344
3345 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3346 {
3347         /*
3348          * Forbid splitting special mappings - kernel has expectations over
3349          * the number of pages in mapping. Together with VM_DONTEXPAND
3350          * the size of vma should stay the same over the special mapping's
3351          * lifetime.
3352          */
3353         return -EINVAL;
3354 }
3355
3356 static const struct vm_operations_struct special_mapping_vmops = {
3357         .close = special_mapping_close,
3358         .fault = special_mapping_fault,
3359         .mremap = special_mapping_mremap,
3360         .name = special_mapping_name,
3361         /* vDSO code relies that VVAR can't be accessed remotely */
3362         .access = NULL,
3363         .may_split = special_mapping_split,
3364 };
3365
3366 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3367         .close = special_mapping_close,
3368         .fault = special_mapping_fault,
3369 };
3370
3371 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3372 {
3373         struct vm_area_struct *vma = vmf->vma;
3374         pgoff_t pgoff;
3375         struct page **pages;
3376
3377         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3378                 pages = vma->vm_private_data;
3379         } else {
3380                 struct vm_special_mapping *sm = vma->vm_private_data;
3381
3382                 if (sm->fault)
3383                         return sm->fault(sm, vmf->vma, vmf);
3384
3385                 pages = sm->pages;
3386         }
3387
3388         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3389                 pgoff--;
3390
3391         if (*pages) {
3392                 struct page *page = *pages;
3393                 get_page(page);
3394                 vmf->page = page;
3395                 return 0;
3396         }
3397
3398         return VM_FAULT_SIGBUS;
3399 }
3400
3401 static struct vm_area_struct *__install_special_mapping(
3402         struct mm_struct *mm,
3403         unsigned long addr, unsigned long len,
3404         unsigned long vm_flags, void *priv,
3405         const struct vm_operations_struct *ops)
3406 {
3407         int ret;
3408         struct vm_area_struct *vma;
3409
3410         vma = vm_area_alloc(mm);
3411         if (unlikely(vma == NULL))
3412                 return ERR_PTR(-ENOMEM);
3413
3414         vma->vm_start = addr;
3415         vma->vm_end = addr + len;
3416
3417         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3418         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3419         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3420
3421         vma->vm_ops = ops;
3422         vma->vm_private_data = priv;
3423
3424         ret = insert_vm_struct(mm, vma);
3425         if (ret)
3426                 goto out;
3427
3428         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3429
3430         perf_event_mmap(vma);
3431
3432         return vma;
3433
3434 out:
3435         vm_area_free(vma);
3436         return ERR_PTR(ret);
3437 }
3438
3439 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3440         const struct vm_special_mapping *sm)
3441 {
3442         return vma->vm_private_data == sm &&
3443                 (vma->vm_ops == &special_mapping_vmops ||
3444                  vma->vm_ops == &legacy_special_mapping_vmops);
3445 }
3446
3447 /*
3448  * Called with mm->mmap_lock held for writing.
3449  * Insert a new vma covering the given region, with the given flags.
3450  * Its pages are supplied by the given array of struct page *.
3451  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3452  * The region past the last page supplied will always produce SIGBUS.
3453  * The array pointer and the pages it points to are assumed to stay alive
3454  * for as long as this mapping might exist.
3455  */
3456 struct vm_area_struct *_install_special_mapping(
3457         struct mm_struct *mm,
3458         unsigned long addr, unsigned long len,
3459         unsigned long vm_flags, const struct vm_special_mapping *spec)
3460 {
3461         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3462                                         &special_mapping_vmops);
3463 }
3464
3465 int install_special_mapping(struct mm_struct *mm,
3466                             unsigned long addr, unsigned long len,
3467                             unsigned long vm_flags, struct page **pages)
3468 {
3469         struct vm_area_struct *vma = __install_special_mapping(
3470                 mm, addr, len, vm_flags, (void *)pages,
3471                 &legacy_special_mapping_vmops);
3472
3473         return PTR_ERR_OR_ZERO(vma);
3474 }
3475
3476 static DEFINE_MUTEX(mm_all_locks_mutex);
3477
3478 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3479 {
3480         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3481                 /*
3482                  * The LSB of head.next can't change from under us
3483                  * because we hold the mm_all_locks_mutex.
3484                  */
3485                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3486                 /*
3487                  * We can safely modify head.next after taking the
3488                  * anon_vma->root->rwsem. If some other vma in this mm shares
3489                  * the same anon_vma we won't take it again.
3490                  *
3491                  * No need of atomic instructions here, head.next
3492                  * can't change from under us thanks to the
3493                  * anon_vma->root->rwsem.
3494                  */
3495                 if (__test_and_set_bit(0, (unsigned long *)
3496                                        &anon_vma->root->rb_root.rb_root.rb_node))
3497                         BUG();
3498         }
3499 }
3500
3501 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3502 {
3503         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3504                 /*
3505                  * AS_MM_ALL_LOCKS can't change from under us because
3506                  * we hold the mm_all_locks_mutex.
3507                  *
3508                  * Operations on ->flags have to be atomic because
3509                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3510                  * mm_all_locks_mutex, there may be other cpus
3511                  * changing other bitflags in parallel to us.
3512                  */
3513                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3514                         BUG();
3515                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3516         }
3517 }
3518
3519 /*
3520  * This operation locks against the VM for all pte/vma/mm related
3521  * operations that could ever happen on a certain mm. This includes
3522  * vmtruncate, try_to_unmap, and all page faults.
3523  *
3524  * The caller must take the mmap_lock in write mode before calling
3525  * mm_take_all_locks(). The caller isn't allowed to release the
3526  * mmap_lock until mm_drop_all_locks() returns.
3527  *
3528  * mmap_lock in write mode is required in order to block all operations
3529  * that could modify pagetables and free pages without need of
3530  * altering the vma layout. It's also needed in write mode to avoid new
3531  * anon_vmas to be associated with existing vmas.
3532  *
3533  * A single task can't take more than one mm_take_all_locks() in a row
3534  * or it would deadlock.
3535  *
3536  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3537  * mapping->flags avoid to take the same lock twice, if more than one
3538  * vma in this mm is backed by the same anon_vma or address_space.
3539  *
3540  * We take locks in following order, accordingly to comment at beginning
3541  * of mm/rmap.c:
3542  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3543  *     hugetlb mapping);
3544  *   - all i_mmap_rwsem locks;
3545  *   - all anon_vma->rwseml
3546  *
3547  * We can take all locks within these types randomly because the VM code
3548  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3549  * mm_all_locks_mutex.
3550  *
3551  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3552  * that may have to take thousand of locks.
3553  *
3554  * mm_take_all_locks() can fail if it's interrupted by signals.
3555  */
3556 int mm_take_all_locks(struct mm_struct *mm)
3557 {
3558         struct vm_area_struct *vma;
3559         struct anon_vma_chain *avc;
3560
3561         mmap_assert_write_locked(mm);
3562
3563         mutex_lock(&mm_all_locks_mutex);
3564
3565         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3566                 if (signal_pending(current))
3567                         goto out_unlock;
3568                 if (vma->vm_file && vma->vm_file->f_mapping &&
3569                                 is_vm_hugetlb_page(vma))
3570                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3571         }
3572
3573         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3574                 if (signal_pending(current))
3575                         goto out_unlock;
3576                 if (vma->vm_file && vma->vm_file->f_mapping &&
3577                                 !is_vm_hugetlb_page(vma))
3578                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3579         }
3580
3581         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3582                 if (signal_pending(current))
3583                         goto out_unlock;
3584                 if (vma->anon_vma)
3585                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3586                                 vm_lock_anon_vma(mm, avc->anon_vma);
3587         }
3588
3589         return 0;
3590
3591 out_unlock:
3592         mm_drop_all_locks(mm);
3593         return -EINTR;
3594 }
3595
3596 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3597 {
3598         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3599                 /*
3600                  * The LSB of head.next can't change to 0 from under
3601                  * us because we hold the mm_all_locks_mutex.
3602                  *
3603                  * We must however clear the bitflag before unlocking
3604                  * the vma so the users using the anon_vma->rb_root will
3605                  * never see our bitflag.
3606                  *
3607                  * No need of atomic instructions here, head.next
3608                  * can't change from under us until we release the
3609                  * anon_vma->root->rwsem.
3610                  */
3611                 if (!__test_and_clear_bit(0, (unsigned long *)
3612                                           &anon_vma->root->rb_root.rb_root.rb_node))
3613                         BUG();
3614                 anon_vma_unlock_write(anon_vma);
3615         }
3616 }
3617
3618 static void vm_unlock_mapping(struct address_space *mapping)
3619 {
3620         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3621                 /*
3622                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3623                  * because we hold the mm_all_locks_mutex.
3624                  */
3625                 i_mmap_unlock_write(mapping);
3626                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3627                                         &mapping->flags))
3628                         BUG();
3629         }
3630 }
3631
3632 /*
3633  * The mmap_lock cannot be released by the caller until
3634  * mm_drop_all_locks() returns.
3635  */
3636 void mm_drop_all_locks(struct mm_struct *mm)
3637 {
3638         struct vm_area_struct *vma;
3639         struct anon_vma_chain *avc;
3640
3641         mmap_assert_write_locked(mm);
3642         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3643
3644         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3645                 if (vma->anon_vma)
3646                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3647                                 vm_unlock_anon_vma(avc->anon_vma);
3648                 if (vma->vm_file && vma->vm_file->f_mapping)
3649                         vm_unlock_mapping(vma->vm_file->f_mapping);
3650         }
3651
3652         mutex_unlock(&mm_all_locks_mutex);
3653 }
3654
3655 /*
3656  * initialise the percpu counter for VM
3657  */
3658 void __init mmap_init(void)
3659 {
3660         int ret;
3661
3662         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3663         VM_BUG_ON(ret);
3664 }
3665
3666 /*
3667  * Initialise sysctl_user_reserve_kbytes.
3668  *
3669  * This is intended to prevent a user from starting a single memory hogging
3670  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3671  * mode.
3672  *
3673  * The default value is min(3% of free memory, 128MB)
3674  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3675  */
3676 static int init_user_reserve(void)
3677 {
3678         unsigned long free_kbytes;
3679
3680         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3681
3682         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3683         return 0;
3684 }
3685 subsys_initcall(init_user_reserve);
3686
3687 /*
3688  * Initialise sysctl_admin_reserve_kbytes.
3689  *
3690  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3691  * to log in and kill a memory hogging process.
3692  *
3693  * Systems with more than 256MB will reserve 8MB, enough to recover
3694  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3695  * only reserve 3% of free pages by default.
3696  */
3697 static int init_admin_reserve(void)
3698 {
3699         unsigned long free_kbytes;
3700
3701         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3702
3703         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3704         return 0;
3705 }
3706 subsys_initcall(init_admin_reserve);
3707
3708 /*
3709  * Reinititalise user and admin reserves if memory is added or removed.
3710  *
3711  * The default user reserve max is 128MB, and the default max for the
3712  * admin reserve is 8MB. These are usually, but not always, enough to
3713  * enable recovery from a memory hogging process using login/sshd, a shell,
3714  * and tools like top. It may make sense to increase or even disable the
3715  * reserve depending on the existence of swap or variations in the recovery
3716  * tools. So, the admin may have changed them.
3717  *
3718  * If memory is added and the reserves have been eliminated or increased above
3719  * the default max, then we'll trust the admin.
3720  *
3721  * If memory is removed and there isn't enough free memory, then we
3722  * need to reset the reserves.
3723  *
3724  * Otherwise keep the reserve set by the admin.
3725  */
3726 static int reserve_mem_notifier(struct notifier_block *nb,
3727                              unsigned long action, void *data)
3728 {
3729         unsigned long tmp, free_kbytes;
3730
3731         switch (action) {
3732         case MEM_ONLINE:
3733                 /* Default max is 128MB. Leave alone if modified by operator. */
3734                 tmp = sysctl_user_reserve_kbytes;
3735                 if (0 < tmp && tmp < (1UL << 17))
3736                         init_user_reserve();
3737
3738                 /* Default max is 8MB.  Leave alone if modified by operator. */
3739                 tmp = sysctl_admin_reserve_kbytes;
3740                 if (0 < tmp && tmp < (1UL << 13))
3741                         init_admin_reserve();
3742
3743                 break;
3744         case MEM_OFFLINE:
3745                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3746
3747                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3748                         init_user_reserve();
3749                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3750                                 sysctl_user_reserve_kbytes);
3751                 }
3752
3753                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3754                         init_admin_reserve();
3755                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3756                                 sysctl_admin_reserve_kbytes);
3757                 }
3758                 break;
3759         default:
3760                 break;
3761         }
3762         return NOTIFY_OK;
3763 }
3764
3765 static struct notifier_block reserve_mem_nb = {
3766         .notifier_call = reserve_mem_notifier,
3767 };
3768
3769 static int __meminit init_reserve_notifier(void)
3770 {
3771         if (register_hotmemory_notifier(&reserve_mem_nb))
3772                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3773
3774         return 0;
3775 }
3776 subsys_initcall(init_reserve_notifier);