Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type     prot
88  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
89  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  *
93  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
94  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
95  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
96  */
97 pgprot_t protection_map[16] __ro_after_init = {
98         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105         return prot;
106 }
107 #endif
108
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
114
115         return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127         unsigned long vm_flags = vma->vm_flags;
128         pgprot_t vm_page_prot;
129
130         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131         if (vma_wants_writenotify(vma, vm_page_prot)) {
132                 vm_flags &= ~VM_SHARED;
133                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134         }
135         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138
139 /*
140  * Requires inode->i_mapping->i_mmap_rwsem
141  */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143                 struct file *file, struct address_space *mapping)
144 {
145         if (vma->vm_flags & VM_DENYWRITE)
146                 allow_write_access(file);
147         if (vma->vm_flags & VM_SHARED)
148                 mapping_unmap_writable(mapping);
149
150         flush_dcache_mmap_lock(mapping);
151         vma_interval_tree_remove(vma, &mapping->i_mmap);
152         flush_dcache_mmap_unlock(mapping);
153 }
154
155 /*
156  * Unlink a file-based vm structure from its interval tree, to hide
157  * vma from rmap and vmtruncate before freeing its page tables.
158  */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161         struct file *file = vma->vm_file;
162
163         if (file) {
164                 struct address_space *mapping = file->f_mapping;
165                 i_mmap_lock_write(mapping);
166                 __remove_shared_vm_struct(vma, file, mapping);
167                 i_mmap_unlock_write(mapping);
168         }
169 }
170
171 /*
172  * Close a vm structure and free it, returning the next.
173  */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176         struct vm_area_struct *next = vma->vm_next;
177
178         might_sleep();
179         if (vma->vm_ops && vma->vm_ops->close)
180                 vma->vm_ops->close(vma);
181         if (vma->vm_file)
182                 fput(vma->vm_file);
183         mpol_put(vma_policy(vma));
184         vm_area_free(vma);
185         return next;
186 }
187
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189                 struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192         unsigned long retval;
193         unsigned long newbrk, oldbrk, origbrk;
194         struct mm_struct *mm = current->mm;
195         struct vm_area_struct *next;
196         unsigned long min_brk;
197         bool populate;
198         bool downgraded = false;
199         LIST_HEAD(uf);
200
201         if (mmap_write_lock_killable(mm))
202                 return -EINTR;
203
204         origbrk = mm->brk;
205
206 #ifdef CONFIG_COMPAT_BRK
207         /*
208          * CONFIG_COMPAT_BRK can still be overridden by setting
209          * randomize_va_space to 2, which will still cause mm->start_brk
210          * to be arbitrarily shifted
211          */
212         if (current->brk_randomized)
213                 min_brk = mm->start_brk;
214         else
215                 min_brk = mm->end_data;
216 #else
217         min_brk = mm->start_brk;
218 #endif
219         if (brk < min_brk)
220                 goto out;
221
222         /*
223          * Check against rlimit here. If this check is done later after the test
224          * of oldbrk with newbrk then it can escape the test and let the data
225          * segment grow beyond its set limit the in case where the limit is
226          * not page aligned -Ram Gupta
227          */
228         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229                               mm->end_data, mm->start_data))
230                 goto out;
231
232         newbrk = PAGE_ALIGN(brk);
233         oldbrk = PAGE_ALIGN(mm->brk);
234         if (oldbrk == newbrk) {
235                 mm->brk = brk;
236                 goto success;
237         }
238
239         /*
240          * Always allow shrinking brk.
241          * __do_munmap() may downgrade mmap_lock to read.
242          */
243         if (brk <= mm->brk) {
244                 int ret;
245
246                 /*
247                  * mm->brk must to be protected by write mmap_lock so update it
248                  * before downgrading mmap_lock. When __do_munmap() fails,
249                  * mm->brk will be restored from origbrk.
250                  */
251                 mm->brk = brk;
252                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253                 if (ret < 0) {
254                         mm->brk = origbrk;
255                         goto out;
256                 } else if (ret == 1) {
257                         downgraded = true;
258                 }
259                 goto success;
260         }
261
262         /* Check against existing mmap mappings. */
263         next = find_vma(mm, oldbrk);
264         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265                 goto out;
266
267         /* Ok, looks good - let it rip. */
268         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269                 goto out;
270         mm->brk = brk;
271
272 success:
273         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274         if (downgraded)
275                 mmap_read_unlock(mm);
276         else
277                 mmap_write_unlock(mm);
278         userfaultfd_unmap_complete(mm, &uf);
279         if (populate)
280                 mm_populate(oldbrk, newbrk - oldbrk);
281         return brk;
282
283 out:
284         retval = origbrk;
285         mmap_write_unlock(mm);
286         return retval;
287 }
288
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291         unsigned long gap, prev_end;
292
293         /*
294          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295          * allow two stack_guard_gaps between them here, and when choosing
296          * an unmapped area; whereas when expanding we only require one.
297          * That's a little inconsistent, but keeps the code here simpler.
298          */
299         gap = vm_start_gap(vma);
300         if (vma->vm_prev) {
301                 prev_end = vm_end_gap(vma->vm_prev);
302                 if (gap > prev_end)
303                         gap -= prev_end;
304                 else
305                         gap = 0;
306         }
307         return gap;
308 }
309
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313         unsigned long max = vma_compute_gap(vma), subtree_gap;
314         if (vma->vm_rb.rb_left) {
315                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
316                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317                 if (subtree_gap > max)
318                         max = subtree_gap;
319         }
320         if (vma->vm_rb.rb_right) {
321                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
322                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
323                 if (subtree_gap > max)
324                         max = subtree_gap;
325         }
326         return max;
327 }
328
329 static int browse_rb(struct mm_struct *mm)
330 {
331         struct rb_root *root = &mm->mm_rb;
332         int i = 0, j, bug = 0;
333         struct rb_node *nd, *pn = NULL;
334         unsigned long prev = 0, pend = 0;
335
336         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337                 struct vm_area_struct *vma;
338                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339                 if (vma->vm_start < prev) {
340                         pr_emerg("vm_start %lx < prev %lx\n",
341                                   vma->vm_start, prev);
342                         bug = 1;
343                 }
344                 if (vma->vm_start < pend) {
345                         pr_emerg("vm_start %lx < pend %lx\n",
346                                   vma->vm_start, pend);
347                         bug = 1;
348                 }
349                 if (vma->vm_start > vma->vm_end) {
350                         pr_emerg("vm_start %lx > vm_end %lx\n",
351                                   vma->vm_start, vma->vm_end);
352                         bug = 1;
353                 }
354                 spin_lock(&mm->page_table_lock);
355                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356                         pr_emerg("free gap %lx, correct %lx\n",
357                                vma->rb_subtree_gap,
358                                vma_compute_subtree_gap(vma));
359                         bug = 1;
360                 }
361                 spin_unlock(&mm->page_table_lock);
362                 i++;
363                 pn = nd;
364                 prev = vma->vm_start;
365                 pend = vma->vm_end;
366         }
367         j = 0;
368         for (nd = pn; nd; nd = rb_prev(nd))
369                 j++;
370         if (i != j) {
371                 pr_emerg("backwards %d, forwards %d\n", j, i);
372                 bug = 1;
373         }
374         return bug ? -1 : i;
375 }
376
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379         struct rb_node *nd;
380
381         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382                 struct vm_area_struct *vma;
383                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384                 VM_BUG_ON_VMA(vma != ignore &&
385                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386                         vma);
387         }
388 }
389
390 static void validate_mm(struct mm_struct *mm)
391 {
392         int bug = 0;
393         int i = 0;
394         unsigned long highest_address = 0;
395         struct vm_area_struct *vma = mm->mmap;
396
397         while (vma) {
398                 struct anon_vma *anon_vma = vma->anon_vma;
399                 struct anon_vma_chain *avc;
400
401                 if (anon_vma) {
402                         anon_vma_lock_read(anon_vma);
403                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404                                 anon_vma_interval_tree_verify(avc);
405                         anon_vma_unlock_read(anon_vma);
406                 }
407
408                 highest_address = vm_end_gap(vma);
409                 vma = vma->vm_next;
410                 i++;
411         }
412         if (i != mm->map_count) {
413                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414                 bug = 1;
415         }
416         if (highest_address != mm->highest_vm_end) {
417                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418                           mm->highest_vm_end, highest_address);
419                 bug = 1;
420         }
421         i = browse_rb(mm);
422         if (i != mm->map_count) {
423                 if (i != -1)
424                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425                 bug = 1;
426         }
427         VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435                          struct vm_area_struct, vm_rb,
436                          unsigned long, rb_subtree_gap, vma_compute_gap)
437
438 /*
439  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440  * vma->vm_prev->vm_end values changed, without modifying the vma's position
441  * in the rbtree.
442  */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445         /*
446          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447          * a callback function that does exactly what we want.
448          */
449         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453                                  struct rb_root *root)
454 {
455         /* All rb_subtree_gap values must be consistent prior to insertion */
456         validate_mm_rb(root, NULL);
457
458         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463         /*
464          * Note rb_erase_augmented is a fairly large inline function,
465          * so make sure we instantiate it only once with our desired
466          * augmented rbtree callbacks.
467          */
468         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472                                                 struct rb_root *root,
473                                                 struct vm_area_struct *ignore)
474 {
475         /*
476          * All rb_subtree_gap values must be consistent prior to erase,
477          * with the possible exception of
478          *
479          * a. the "next" vma being erased if next->vm_start was reduced in
480          *    __vma_adjust() -> __vma_unlink()
481          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
482          *    vma_rb_erase()
483          */
484         validate_mm_rb(root, ignore);
485
486         __vma_rb_erase(vma, root);
487 }
488
489 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
490                                          struct rb_root *root)
491 {
492         vma_rb_erase_ignore(vma, root, vma);
493 }
494
495 /*
496  * vma has some anon_vma assigned, and is already inserted on that
497  * anon_vma's interval trees.
498  *
499  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
500  * vma must be removed from the anon_vma's interval trees using
501  * anon_vma_interval_tree_pre_update_vma().
502  *
503  * After the update, the vma will be reinserted using
504  * anon_vma_interval_tree_post_update_vma().
505  *
506  * The entire update must be protected by exclusive mmap_lock and by
507  * the root anon_vma's mutex.
508  */
509 static inline void
510 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
511 {
512         struct anon_vma_chain *avc;
513
514         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
515                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
516 }
517
518 static inline void
519 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
520 {
521         struct anon_vma_chain *avc;
522
523         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
524                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
525 }
526
527 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
528                 unsigned long end, struct vm_area_struct **pprev,
529                 struct rb_node ***rb_link, struct rb_node **rb_parent)
530 {
531         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
532
533         __rb_link = &mm->mm_rb.rb_node;
534         rb_prev = __rb_parent = NULL;
535
536         while (*__rb_link) {
537                 struct vm_area_struct *vma_tmp;
538
539                 __rb_parent = *__rb_link;
540                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
541
542                 if (vma_tmp->vm_end > addr) {
543                         /* Fail if an existing vma overlaps the area */
544                         if (vma_tmp->vm_start < end)
545                                 return -ENOMEM;
546                         __rb_link = &__rb_parent->rb_left;
547                 } else {
548                         rb_prev = __rb_parent;
549                         __rb_link = &__rb_parent->rb_right;
550                 }
551         }
552
553         *pprev = NULL;
554         if (rb_prev)
555                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
556         *rb_link = __rb_link;
557         *rb_parent = __rb_parent;
558         return 0;
559 }
560
561 static unsigned long count_vma_pages_range(struct mm_struct *mm,
562                 unsigned long addr, unsigned long end)
563 {
564         unsigned long nr_pages = 0;
565         struct vm_area_struct *vma;
566
567         /* Find first overlaping mapping */
568         vma = find_vma_intersection(mm, addr, end);
569         if (!vma)
570                 return 0;
571
572         nr_pages = (min(end, vma->vm_end) -
573                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
574
575         /* Iterate over the rest of the overlaps */
576         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
577                 unsigned long overlap_len;
578
579                 if (vma->vm_start > end)
580                         break;
581
582                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
583                 nr_pages += overlap_len >> PAGE_SHIFT;
584         }
585
586         return nr_pages;
587 }
588
589 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
590                 struct rb_node **rb_link, struct rb_node *rb_parent)
591 {
592         /* Update tracking information for the gap following the new vma. */
593         if (vma->vm_next)
594                 vma_gap_update(vma->vm_next);
595         else
596                 mm->highest_vm_end = vm_end_gap(vma);
597
598         /*
599          * vma->vm_prev wasn't known when we followed the rbtree to find the
600          * correct insertion point for that vma. As a result, we could not
601          * update the vma vm_rb parents rb_subtree_gap values on the way down.
602          * So, we first insert the vma with a zero rb_subtree_gap value
603          * (to be consistent with what we did on the way down), and then
604          * immediately update the gap to the correct value. Finally we
605          * rebalance the rbtree after all augmented values have been set.
606          */
607         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
608         vma->rb_subtree_gap = 0;
609         vma_gap_update(vma);
610         vma_rb_insert(vma, &mm->mm_rb);
611 }
612
613 static void __vma_link_file(struct vm_area_struct *vma)
614 {
615         struct file *file;
616
617         file = vma->vm_file;
618         if (file) {
619                 struct address_space *mapping = file->f_mapping;
620
621                 if (vma->vm_flags & VM_DENYWRITE)
622                         put_write_access(file_inode(file));
623                 if (vma->vm_flags & VM_SHARED)
624                         mapping_allow_writable(mapping);
625
626                 flush_dcache_mmap_lock(mapping);
627                 vma_interval_tree_insert(vma, &mapping->i_mmap);
628                 flush_dcache_mmap_unlock(mapping);
629         }
630 }
631
632 static void
633 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
634         struct vm_area_struct *prev, struct rb_node **rb_link,
635         struct rb_node *rb_parent)
636 {
637         __vma_link_list(mm, vma, prev);
638         __vma_link_rb(mm, vma, rb_link, rb_parent);
639 }
640
641 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
642                         struct vm_area_struct *prev, struct rb_node **rb_link,
643                         struct rb_node *rb_parent)
644 {
645         struct address_space *mapping = NULL;
646
647         if (vma->vm_file) {
648                 mapping = vma->vm_file->f_mapping;
649                 i_mmap_lock_write(mapping);
650         }
651
652         __vma_link(mm, vma, prev, rb_link, rb_parent);
653         __vma_link_file(vma);
654
655         if (mapping)
656                 i_mmap_unlock_write(mapping);
657
658         mm->map_count++;
659         validate_mm(mm);
660 }
661
662 /*
663  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
664  * mm's list and rbtree.  It has already been inserted into the interval tree.
665  */
666 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
667 {
668         struct vm_area_struct *prev;
669         struct rb_node **rb_link, *rb_parent;
670
671         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
672                            &prev, &rb_link, &rb_parent))
673                 BUG();
674         __vma_link(mm, vma, prev, rb_link, rb_parent);
675         mm->map_count++;
676 }
677
678 static __always_inline void __vma_unlink(struct mm_struct *mm,
679                                                 struct vm_area_struct *vma,
680                                                 struct vm_area_struct *ignore)
681 {
682         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
683         __vma_unlink_list(mm, vma);
684         /* Kill the cache */
685         vmacache_invalidate(mm);
686 }
687
688 /*
689  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
690  * is already present in an i_mmap tree without adjusting the tree.
691  * The following helper function should be used when such adjustments
692  * are necessary.  The "insert" vma (if any) is to be inserted
693  * before we drop the necessary locks.
694  */
695 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
696         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
697         struct vm_area_struct *expand)
698 {
699         struct mm_struct *mm = vma->vm_mm;
700         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
701         struct address_space *mapping = NULL;
702         struct rb_root_cached *root = NULL;
703         struct anon_vma *anon_vma = NULL;
704         struct file *file = vma->vm_file;
705         bool start_changed = false, end_changed = false;
706         long adjust_next = 0;
707         int remove_next = 0;
708
709         if (next && !insert) {
710                 struct vm_area_struct *exporter = NULL, *importer = NULL;
711
712                 if (end >= next->vm_end) {
713                         /*
714                          * vma expands, overlapping all the next, and
715                          * perhaps the one after too (mprotect case 6).
716                          * The only other cases that gets here are
717                          * case 1, case 7 and case 8.
718                          */
719                         if (next == expand) {
720                                 /*
721                                  * The only case where we don't expand "vma"
722                                  * and we expand "next" instead is case 8.
723                                  */
724                                 VM_WARN_ON(end != next->vm_end);
725                                 /*
726                                  * remove_next == 3 means we're
727                                  * removing "vma" and that to do so we
728                                  * swapped "vma" and "next".
729                                  */
730                                 remove_next = 3;
731                                 VM_WARN_ON(file != next->vm_file);
732                                 swap(vma, next);
733                         } else {
734                                 VM_WARN_ON(expand != vma);
735                                 /*
736                                  * case 1, 6, 7, remove_next == 2 is case 6,
737                                  * remove_next == 1 is case 1 or 7.
738                                  */
739                                 remove_next = 1 + (end > next->vm_end);
740                                 VM_WARN_ON(remove_next == 2 &&
741                                            end != next->vm_next->vm_end);
742                                 /* trim end to next, for case 6 first pass */
743                                 end = next->vm_end;
744                         }
745
746                         exporter = next;
747                         importer = vma;
748
749                         /*
750                          * If next doesn't have anon_vma, import from vma after
751                          * next, if the vma overlaps with it.
752                          */
753                         if (remove_next == 2 && !next->anon_vma)
754                                 exporter = next->vm_next;
755
756                 } else if (end > next->vm_start) {
757                         /*
758                          * vma expands, overlapping part of the next:
759                          * mprotect case 5 shifting the boundary up.
760                          */
761                         adjust_next = (end - next->vm_start);
762                         exporter = next;
763                         importer = vma;
764                         VM_WARN_ON(expand != importer);
765                 } else if (end < vma->vm_end) {
766                         /*
767                          * vma shrinks, and !insert tells it's not
768                          * split_vma inserting another: so it must be
769                          * mprotect case 4 shifting the boundary down.
770                          */
771                         adjust_next = -(vma->vm_end - end);
772                         exporter = vma;
773                         importer = next;
774                         VM_WARN_ON(expand != importer);
775                 }
776
777                 /*
778                  * Easily overlooked: when mprotect shifts the boundary,
779                  * make sure the expanding vma has anon_vma set if the
780                  * shrinking vma had, to cover any anon pages imported.
781                  */
782                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
783                         int error;
784
785                         importer->anon_vma = exporter->anon_vma;
786                         error = anon_vma_clone(importer, exporter);
787                         if (error)
788                                 return error;
789                 }
790         }
791 again:
792         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
793
794         if (file) {
795                 mapping = file->f_mapping;
796                 root = &mapping->i_mmap;
797                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
798
799                 if (adjust_next)
800                         uprobe_munmap(next, next->vm_start, next->vm_end);
801
802                 i_mmap_lock_write(mapping);
803                 if (insert) {
804                         /*
805                          * Put into interval tree now, so instantiated pages
806                          * are visible to arm/parisc __flush_dcache_page
807                          * throughout; but we cannot insert into address
808                          * space until vma start or end is updated.
809                          */
810                         __vma_link_file(insert);
811                 }
812         }
813
814         anon_vma = vma->anon_vma;
815         if (!anon_vma && adjust_next)
816                 anon_vma = next->anon_vma;
817         if (anon_vma) {
818                 VM_WARN_ON(adjust_next && next->anon_vma &&
819                            anon_vma != next->anon_vma);
820                 anon_vma_lock_write(anon_vma);
821                 anon_vma_interval_tree_pre_update_vma(vma);
822                 if (adjust_next)
823                         anon_vma_interval_tree_pre_update_vma(next);
824         }
825
826         if (file) {
827                 flush_dcache_mmap_lock(mapping);
828                 vma_interval_tree_remove(vma, root);
829                 if (adjust_next)
830                         vma_interval_tree_remove(next, root);
831         }
832
833         if (start != vma->vm_start) {
834                 vma->vm_start = start;
835                 start_changed = true;
836         }
837         if (end != vma->vm_end) {
838                 vma->vm_end = end;
839                 end_changed = true;
840         }
841         vma->vm_pgoff = pgoff;
842         if (adjust_next) {
843                 next->vm_start += adjust_next;
844                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
845         }
846
847         if (file) {
848                 if (adjust_next)
849                         vma_interval_tree_insert(next, root);
850                 vma_interval_tree_insert(vma, root);
851                 flush_dcache_mmap_unlock(mapping);
852         }
853
854         if (remove_next) {
855                 /*
856                  * vma_merge has merged next into vma, and needs
857                  * us to remove next before dropping the locks.
858                  */
859                 if (remove_next != 3)
860                         __vma_unlink(mm, next, next);
861                 else
862                         /*
863                          * vma is not before next if they've been
864                          * swapped.
865                          *
866                          * pre-swap() next->vm_start was reduced so
867                          * tell validate_mm_rb to ignore pre-swap()
868                          * "next" (which is stored in post-swap()
869                          * "vma").
870                          */
871                         __vma_unlink(mm, next, vma);
872                 if (file)
873                         __remove_shared_vm_struct(next, file, mapping);
874         } else if (insert) {
875                 /*
876                  * split_vma has split insert from vma, and needs
877                  * us to insert it before dropping the locks
878                  * (it may either follow vma or precede it).
879                  */
880                 __insert_vm_struct(mm, insert);
881         } else {
882                 if (start_changed)
883                         vma_gap_update(vma);
884                 if (end_changed) {
885                         if (!next)
886                                 mm->highest_vm_end = vm_end_gap(vma);
887                         else if (!adjust_next)
888                                 vma_gap_update(next);
889                 }
890         }
891
892         if (anon_vma) {
893                 anon_vma_interval_tree_post_update_vma(vma);
894                 if (adjust_next)
895                         anon_vma_interval_tree_post_update_vma(next);
896                 anon_vma_unlock_write(anon_vma);
897         }
898
899         if (file) {
900                 i_mmap_unlock_write(mapping);
901                 uprobe_mmap(vma);
902
903                 if (adjust_next)
904                         uprobe_mmap(next);
905         }
906
907         if (remove_next) {
908                 if (file) {
909                         uprobe_munmap(next, next->vm_start, next->vm_end);
910                         fput(file);
911                 }
912                 if (next->anon_vma)
913                         anon_vma_merge(vma, next);
914                 mm->map_count--;
915                 mpol_put(vma_policy(next));
916                 vm_area_free(next);
917                 /*
918                  * In mprotect's case 6 (see comments on vma_merge),
919                  * we must remove another next too. It would clutter
920                  * up the code too much to do both in one go.
921                  */
922                 if (remove_next != 3) {
923                         /*
924                          * If "next" was removed and vma->vm_end was
925                          * expanded (up) over it, in turn
926                          * "next->vm_prev->vm_end" changed and the
927                          * "vma->vm_next" gap must be updated.
928                          */
929                         next = vma->vm_next;
930                 } else {
931                         /*
932                          * For the scope of the comment "next" and
933                          * "vma" considered pre-swap(): if "vma" was
934                          * removed, next->vm_start was expanded (down)
935                          * over it and the "next" gap must be updated.
936                          * Because of the swap() the post-swap() "vma"
937                          * actually points to pre-swap() "next"
938                          * (post-swap() "next" as opposed is now a
939                          * dangling pointer).
940                          */
941                         next = vma;
942                 }
943                 if (remove_next == 2) {
944                         remove_next = 1;
945                         end = next->vm_end;
946                         goto again;
947                 }
948                 else if (next)
949                         vma_gap_update(next);
950                 else {
951                         /*
952                          * If remove_next == 2 we obviously can't
953                          * reach this path.
954                          *
955                          * If remove_next == 3 we can't reach this
956                          * path because pre-swap() next is always not
957                          * NULL. pre-swap() "next" is not being
958                          * removed and its next->vm_end is not altered
959                          * (and furthermore "end" already matches
960                          * next->vm_end in remove_next == 3).
961                          *
962                          * We reach this only in the remove_next == 1
963                          * case if the "next" vma that was removed was
964                          * the highest vma of the mm. However in such
965                          * case next->vm_end == "end" and the extended
966                          * "vma" has vma->vm_end == next->vm_end so
967                          * mm->highest_vm_end doesn't need any update
968                          * in remove_next == 1 case.
969                          */
970                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
971                 }
972         }
973         if (insert && file)
974                 uprobe_mmap(insert);
975
976         validate_mm(mm);
977
978         return 0;
979 }
980
981 /*
982  * If the vma has a ->close operation then the driver probably needs to release
983  * per-vma resources, so we don't attempt to merge those.
984  */
985 static inline int is_mergeable_vma(struct vm_area_struct *vma,
986                                 struct file *file, unsigned long vm_flags,
987                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
988 {
989         /*
990          * VM_SOFTDIRTY should not prevent from VMA merging, if we
991          * match the flags but dirty bit -- the caller should mark
992          * merged VMA as dirty. If dirty bit won't be excluded from
993          * comparison, we increase pressure on the memory system forcing
994          * the kernel to generate new VMAs when old one could be
995          * extended instead.
996          */
997         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
998                 return 0;
999         if (vma->vm_file != file)
1000                 return 0;
1001         if (vma->vm_ops && vma->vm_ops->close)
1002                 return 0;
1003         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1004                 return 0;
1005         return 1;
1006 }
1007
1008 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1009                                         struct anon_vma *anon_vma2,
1010                                         struct vm_area_struct *vma)
1011 {
1012         /*
1013          * The list_is_singular() test is to avoid merging VMA cloned from
1014          * parents. This can improve scalability caused by anon_vma lock.
1015          */
1016         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1017                 list_is_singular(&vma->anon_vma_chain)))
1018                 return 1;
1019         return anon_vma1 == anon_vma2;
1020 }
1021
1022 /*
1023  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1024  * in front of (at a lower virtual address and file offset than) the vma.
1025  *
1026  * We cannot merge two vmas if they have differently assigned (non-NULL)
1027  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1028  *
1029  * We don't check here for the merged mmap wrapping around the end of pagecache
1030  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1031  * wrap, nor mmaps which cover the final page at index -1UL.
1032  */
1033 static int
1034 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1035                      struct anon_vma *anon_vma, struct file *file,
1036                      pgoff_t vm_pgoff,
1037                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1038 {
1039         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1040             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1041                 if (vma->vm_pgoff == vm_pgoff)
1042                         return 1;
1043         }
1044         return 0;
1045 }
1046
1047 /*
1048  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1049  * beyond (at a higher virtual address and file offset than) the vma.
1050  *
1051  * We cannot merge two vmas if they have differently assigned (non-NULL)
1052  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1053  */
1054 static int
1055 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1056                     struct anon_vma *anon_vma, struct file *file,
1057                     pgoff_t vm_pgoff,
1058                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1059 {
1060         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1061             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1062                 pgoff_t vm_pglen;
1063                 vm_pglen = vma_pages(vma);
1064                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1065                         return 1;
1066         }
1067         return 0;
1068 }
1069
1070 /*
1071  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1072  * whether that can be merged with its predecessor or its successor.
1073  * Or both (it neatly fills a hole).
1074  *
1075  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1076  * certain not to be mapped by the time vma_merge is called; but when
1077  * called for mprotect, it is certain to be already mapped (either at
1078  * an offset within prev, or at the start of next), and the flags of
1079  * this area are about to be changed to vm_flags - and the no-change
1080  * case has already been eliminated.
1081  *
1082  * The following mprotect cases have to be considered, where AAAA is
1083  * the area passed down from mprotect_fixup, never extending beyond one
1084  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1085  *
1086  *     AAAA             AAAA                   AAAA
1087  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1088  *    cannot merge    might become       might become
1089  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1090  *    mmap, brk or    case 4 below       case 5 below
1091  *    mremap move:
1092  *                        AAAA               AAAA
1093  *                    PPPP    NNNN       PPPPNNNNXXXX
1094  *                    might become       might become
1095  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1096  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1097  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1098  *
1099  * It is important for case 8 that the vma NNNN overlapping the
1100  * region AAAA is never going to extended over XXXX. Instead XXXX must
1101  * be extended in region AAAA and NNNN must be removed. This way in
1102  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1103  * rmap_locks, the properties of the merged vma will be already
1104  * correct for the whole merged range. Some of those properties like
1105  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1106  * be correct for the whole merged range immediately after the
1107  * rmap_locks are released. Otherwise if XXXX would be removed and
1108  * NNNN would be extended over the XXXX range, remove_migration_ptes
1109  * or other rmap walkers (if working on addresses beyond the "end"
1110  * parameter) may establish ptes with the wrong permissions of NNNN
1111  * instead of the right permissions of XXXX.
1112  */
1113 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1114                         struct vm_area_struct *prev, unsigned long addr,
1115                         unsigned long end, unsigned long vm_flags,
1116                         struct anon_vma *anon_vma, struct file *file,
1117                         pgoff_t pgoff, struct mempolicy *policy,
1118                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1119 {
1120         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1121         struct vm_area_struct *area, *next;
1122         int err;
1123
1124         /*
1125          * We later require that vma->vm_flags == vm_flags,
1126          * so this tests vma->vm_flags & VM_SPECIAL, too.
1127          */
1128         if (vm_flags & VM_SPECIAL)
1129                 return NULL;
1130
1131         if (prev)
1132                 next = prev->vm_next;
1133         else
1134                 next = mm->mmap;
1135         area = next;
1136         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1137                 next = next->vm_next;
1138
1139         /* verify some invariant that must be enforced by the caller */
1140         VM_WARN_ON(prev && addr <= prev->vm_start);
1141         VM_WARN_ON(area && end > area->vm_end);
1142         VM_WARN_ON(addr >= end);
1143
1144         /*
1145          * Can it merge with the predecessor?
1146          */
1147         if (prev && prev->vm_end == addr &&
1148                         mpol_equal(vma_policy(prev), policy) &&
1149                         can_vma_merge_after(prev, vm_flags,
1150                                             anon_vma, file, pgoff,
1151                                             vm_userfaultfd_ctx)) {
1152                 /*
1153                  * OK, it can.  Can we now merge in the successor as well?
1154                  */
1155                 if (next && end == next->vm_start &&
1156                                 mpol_equal(policy, vma_policy(next)) &&
1157                                 can_vma_merge_before(next, vm_flags,
1158                                                      anon_vma, file,
1159                                                      pgoff+pglen,
1160                                                      vm_userfaultfd_ctx) &&
1161                                 is_mergeable_anon_vma(prev->anon_vma,
1162                                                       next->anon_vma, NULL)) {
1163                                                         /* cases 1, 6 */
1164                         err = __vma_adjust(prev, prev->vm_start,
1165                                          next->vm_end, prev->vm_pgoff, NULL,
1166                                          prev);
1167                 } else                                  /* cases 2, 5, 7 */
1168                         err = __vma_adjust(prev, prev->vm_start,
1169                                          end, prev->vm_pgoff, NULL, prev);
1170                 if (err)
1171                         return NULL;
1172                 khugepaged_enter_vma_merge(prev, vm_flags);
1173                 return prev;
1174         }
1175
1176         /*
1177          * Can this new request be merged in front of next?
1178          */
1179         if (next && end == next->vm_start &&
1180                         mpol_equal(policy, vma_policy(next)) &&
1181                         can_vma_merge_before(next, vm_flags,
1182                                              anon_vma, file, pgoff+pglen,
1183                                              vm_userfaultfd_ctx)) {
1184                 if (prev && addr < prev->vm_end)        /* case 4 */
1185                         err = __vma_adjust(prev, prev->vm_start,
1186                                          addr, prev->vm_pgoff, NULL, next);
1187                 else {                                  /* cases 3, 8 */
1188                         err = __vma_adjust(area, addr, next->vm_end,
1189                                          next->vm_pgoff - pglen, NULL, next);
1190                         /*
1191                          * In case 3 area is already equal to next and
1192                          * this is a noop, but in case 8 "area" has
1193                          * been removed and next was expanded over it.
1194                          */
1195                         area = next;
1196                 }
1197                 if (err)
1198                         return NULL;
1199                 khugepaged_enter_vma_merge(area, vm_flags);
1200                 return area;
1201         }
1202
1203         return NULL;
1204 }
1205
1206 /*
1207  * Rough compatibility check to quickly see if it's even worth looking
1208  * at sharing an anon_vma.
1209  *
1210  * They need to have the same vm_file, and the flags can only differ
1211  * in things that mprotect may change.
1212  *
1213  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1214  * we can merge the two vma's. For example, we refuse to merge a vma if
1215  * there is a vm_ops->close() function, because that indicates that the
1216  * driver is doing some kind of reference counting. But that doesn't
1217  * really matter for the anon_vma sharing case.
1218  */
1219 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1220 {
1221         return a->vm_end == b->vm_start &&
1222                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1223                 a->vm_file == b->vm_file &&
1224                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1225                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1226 }
1227
1228 /*
1229  * Do some basic sanity checking to see if we can re-use the anon_vma
1230  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1231  * the same as 'old', the other will be the new one that is trying
1232  * to share the anon_vma.
1233  *
1234  * NOTE! This runs with mm_sem held for reading, so it is possible that
1235  * the anon_vma of 'old' is concurrently in the process of being set up
1236  * by another page fault trying to merge _that_. But that's ok: if it
1237  * is being set up, that automatically means that it will be a singleton
1238  * acceptable for merging, so we can do all of this optimistically. But
1239  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1240  *
1241  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1242  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1243  * is to return an anon_vma that is "complex" due to having gone through
1244  * a fork).
1245  *
1246  * We also make sure that the two vma's are compatible (adjacent,
1247  * and with the same memory policies). That's all stable, even with just
1248  * a read lock on the mm_sem.
1249  */
1250 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1251 {
1252         if (anon_vma_compatible(a, b)) {
1253                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1254
1255                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1256                         return anon_vma;
1257         }
1258         return NULL;
1259 }
1260
1261 /*
1262  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1263  * neighbouring vmas for a suitable anon_vma, before it goes off
1264  * to allocate a new anon_vma.  It checks because a repetitive
1265  * sequence of mprotects and faults may otherwise lead to distinct
1266  * anon_vmas being allocated, preventing vma merge in subsequent
1267  * mprotect.
1268  */
1269 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1270 {
1271         struct anon_vma *anon_vma = NULL;
1272
1273         /* Try next first. */
1274         if (vma->vm_next) {
1275                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1276                 if (anon_vma)
1277                         return anon_vma;
1278         }
1279
1280         /* Try prev next. */
1281         if (vma->vm_prev)
1282                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1283
1284         /*
1285          * We might reach here with anon_vma == NULL if we can't find
1286          * any reusable anon_vma.
1287          * There's no absolute need to look only at touching neighbours:
1288          * we could search further afield for "compatible" anon_vmas.
1289          * But it would probably just be a waste of time searching,
1290          * or lead to too many vmas hanging off the same anon_vma.
1291          * We're trying to allow mprotect remerging later on,
1292          * not trying to minimize memory used for anon_vmas.
1293          */
1294         return anon_vma;
1295 }
1296
1297 /*
1298  * If a hint addr is less than mmap_min_addr change hint to be as
1299  * low as possible but still greater than mmap_min_addr
1300  */
1301 static inline unsigned long round_hint_to_min(unsigned long hint)
1302 {
1303         hint &= PAGE_MASK;
1304         if (((void *)hint != NULL) &&
1305             (hint < mmap_min_addr))
1306                 return PAGE_ALIGN(mmap_min_addr);
1307         return hint;
1308 }
1309
1310 static inline int mlock_future_check(struct mm_struct *mm,
1311                                      unsigned long flags,
1312                                      unsigned long len)
1313 {
1314         unsigned long locked, lock_limit;
1315
1316         /*  mlock MCL_FUTURE? */
1317         if (flags & VM_LOCKED) {
1318                 locked = len >> PAGE_SHIFT;
1319                 locked += mm->locked_vm;
1320                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1321                 lock_limit >>= PAGE_SHIFT;
1322                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1323                         return -EAGAIN;
1324         }
1325         return 0;
1326 }
1327
1328 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1329 {
1330         if (S_ISREG(inode->i_mode))
1331                 return MAX_LFS_FILESIZE;
1332
1333         if (S_ISBLK(inode->i_mode))
1334                 return MAX_LFS_FILESIZE;
1335
1336         if (S_ISSOCK(inode->i_mode))
1337                 return MAX_LFS_FILESIZE;
1338
1339         /* Special "we do even unsigned file positions" case */
1340         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1341                 return 0;
1342
1343         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1344         return ULONG_MAX;
1345 }
1346
1347 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1348                                 unsigned long pgoff, unsigned long len)
1349 {
1350         u64 maxsize = file_mmap_size_max(file, inode);
1351
1352         if (maxsize && len > maxsize)
1353                 return false;
1354         maxsize -= len;
1355         if (pgoff > maxsize >> PAGE_SHIFT)
1356                 return false;
1357         return true;
1358 }
1359
1360 /*
1361  * The caller must write-lock current->mm->mmap_lock.
1362  */
1363 unsigned long do_mmap(struct file *file, unsigned long addr,
1364                         unsigned long len, unsigned long prot,
1365                         unsigned long flags, unsigned long pgoff,
1366                         unsigned long *populate, struct list_head *uf)
1367 {
1368         struct mm_struct *mm = current->mm;
1369         vm_flags_t vm_flags;
1370         int pkey = 0;
1371
1372         *populate = 0;
1373
1374         if (!len)
1375                 return -EINVAL;
1376
1377         /*
1378          * Does the application expect PROT_READ to imply PROT_EXEC?
1379          *
1380          * (the exception is when the underlying filesystem is noexec
1381          *  mounted, in which case we dont add PROT_EXEC.)
1382          */
1383         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1384                 if (!(file && path_noexec(&file->f_path)))
1385                         prot |= PROT_EXEC;
1386
1387         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1388         if (flags & MAP_FIXED_NOREPLACE)
1389                 flags |= MAP_FIXED;
1390
1391         if (!(flags & MAP_FIXED))
1392                 addr = round_hint_to_min(addr);
1393
1394         /* Careful about overflows.. */
1395         len = PAGE_ALIGN(len);
1396         if (!len)
1397                 return -ENOMEM;
1398
1399         /* offset overflow? */
1400         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1401                 return -EOVERFLOW;
1402
1403         /* Too many mappings? */
1404         if (mm->map_count > sysctl_max_map_count)
1405                 return -ENOMEM;
1406
1407         /* Obtain the address to map to. we verify (or select) it and ensure
1408          * that it represents a valid section of the address space.
1409          */
1410         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1411         if (IS_ERR_VALUE(addr))
1412                 return addr;
1413
1414         if (flags & MAP_FIXED_NOREPLACE) {
1415                 struct vm_area_struct *vma = find_vma(mm, addr);
1416
1417                 if (vma && vma->vm_start < addr + len)
1418                         return -EEXIST;
1419         }
1420
1421         if (prot == PROT_EXEC) {
1422                 pkey = execute_only_pkey(mm);
1423                 if (pkey < 0)
1424                         pkey = 0;
1425         }
1426
1427         /* Do simple checking here so the lower-level routines won't have
1428          * to. we assume access permissions have been handled by the open
1429          * of the memory object, so we don't do any here.
1430          */
1431         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1432                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1433
1434         if (flags & MAP_LOCKED)
1435                 if (!can_do_mlock())
1436                         return -EPERM;
1437
1438         if (mlock_future_check(mm, vm_flags, len))
1439                 return -EAGAIN;
1440
1441         if (file) {
1442                 struct inode *inode = file_inode(file);
1443                 unsigned long flags_mask;
1444
1445                 if (!file_mmap_ok(file, inode, pgoff, len))
1446                         return -EOVERFLOW;
1447
1448                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1449
1450                 switch (flags & MAP_TYPE) {
1451                 case MAP_SHARED:
1452                         /*
1453                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1454                          * flags. E.g. MAP_SYNC is dangerous to use with
1455                          * MAP_SHARED as you don't know which consistency model
1456                          * you will get. We silently ignore unsupported flags
1457                          * with MAP_SHARED to preserve backward compatibility.
1458                          */
1459                         flags &= LEGACY_MAP_MASK;
1460                         fallthrough;
1461                 case MAP_SHARED_VALIDATE:
1462                         if (flags & ~flags_mask)
1463                                 return -EOPNOTSUPP;
1464                         if (prot & PROT_WRITE) {
1465                                 if (!(file->f_mode & FMODE_WRITE))
1466                                         return -EACCES;
1467                                 if (IS_SWAPFILE(file->f_mapping->host))
1468                                         return -ETXTBSY;
1469                         }
1470
1471                         /*
1472                          * Make sure we don't allow writing to an append-only
1473                          * file..
1474                          */
1475                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1476                                 return -EACCES;
1477
1478                         /*
1479                          * Make sure there are no mandatory locks on the file.
1480                          */
1481                         if (locks_verify_locked(file))
1482                                 return -EAGAIN;
1483
1484                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1485                         if (!(file->f_mode & FMODE_WRITE))
1486                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1487                         fallthrough;
1488                 case MAP_PRIVATE:
1489                         if (!(file->f_mode & FMODE_READ))
1490                                 return -EACCES;
1491                         if (path_noexec(&file->f_path)) {
1492                                 if (vm_flags & VM_EXEC)
1493                                         return -EPERM;
1494                                 vm_flags &= ~VM_MAYEXEC;
1495                         }
1496
1497                         if (!file->f_op->mmap)
1498                                 return -ENODEV;
1499                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1500                                 return -EINVAL;
1501                         break;
1502
1503                 default:
1504                         return -EINVAL;
1505                 }
1506         } else {
1507                 switch (flags & MAP_TYPE) {
1508                 case MAP_SHARED:
1509                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1510                                 return -EINVAL;
1511                         /*
1512                          * Ignore pgoff.
1513                          */
1514                         pgoff = 0;
1515                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1516                         break;
1517                 case MAP_PRIVATE:
1518                         /*
1519                          * Set pgoff according to addr for anon_vma.
1520                          */
1521                         pgoff = addr >> PAGE_SHIFT;
1522                         break;
1523                 default:
1524                         return -EINVAL;
1525                 }
1526         }
1527
1528         /*
1529          * Set 'VM_NORESERVE' if we should not account for the
1530          * memory use of this mapping.
1531          */
1532         if (flags & MAP_NORESERVE) {
1533                 /* We honor MAP_NORESERVE if allowed to overcommit */
1534                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1535                         vm_flags |= VM_NORESERVE;
1536
1537                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1538                 if (file && is_file_hugepages(file))
1539                         vm_flags |= VM_NORESERVE;
1540         }
1541
1542         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1543         if (!IS_ERR_VALUE(addr) &&
1544             ((vm_flags & VM_LOCKED) ||
1545              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1546                 *populate = len;
1547         return addr;
1548 }
1549
1550 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1551                               unsigned long prot, unsigned long flags,
1552                               unsigned long fd, unsigned long pgoff)
1553 {
1554         struct file *file = NULL;
1555         unsigned long retval;
1556
1557         if (!(flags & MAP_ANONYMOUS)) {
1558                 audit_mmap_fd(fd, flags);
1559                 file = fget(fd);
1560                 if (!file)
1561                         return -EBADF;
1562                 if (is_file_hugepages(file)) {
1563                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1564                 } else if (unlikely(flags & MAP_HUGETLB)) {
1565                         retval = -EINVAL;
1566                         goto out_fput;
1567                 }
1568         } else if (flags & MAP_HUGETLB) {
1569                 struct user_struct *user = NULL;
1570                 struct hstate *hs;
1571
1572                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1573                 if (!hs)
1574                         return -EINVAL;
1575
1576                 len = ALIGN(len, huge_page_size(hs));
1577                 /*
1578                  * VM_NORESERVE is used because the reservations will be
1579                  * taken when vm_ops->mmap() is called
1580                  * A dummy user value is used because we are not locking
1581                  * memory so no accounting is necessary
1582                  */
1583                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1584                                 VM_NORESERVE,
1585                                 &user, HUGETLB_ANONHUGE_INODE,
1586                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1587                 if (IS_ERR(file))
1588                         return PTR_ERR(file);
1589         }
1590
1591         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1592
1593         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1594 out_fput:
1595         if (file)
1596                 fput(file);
1597         return retval;
1598 }
1599
1600 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1601                 unsigned long, prot, unsigned long, flags,
1602                 unsigned long, fd, unsigned long, pgoff)
1603 {
1604         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1605 }
1606
1607 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1608 struct mmap_arg_struct {
1609         unsigned long addr;
1610         unsigned long len;
1611         unsigned long prot;
1612         unsigned long flags;
1613         unsigned long fd;
1614         unsigned long offset;
1615 };
1616
1617 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1618 {
1619         struct mmap_arg_struct a;
1620
1621         if (copy_from_user(&a, arg, sizeof(a)))
1622                 return -EFAULT;
1623         if (offset_in_page(a.offset))
1624                 return -EINVAL;
1625
1626         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1627                                a.offset >> PAGE_SHIFT);
1628 }
1629 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1630
1631 /*
1632  * Some shared mappings will want the pages marked read-only
1633  * to track write events. If so, we'll downgrade vm_page_prot
1634  * to the private version (using protection_map[] without the
1635  * VM_SHARED bit).
1636  */
1637 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1638 {
1639         vm_flags_t vm_flags = vma->vm_flags;
1640         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1641
1642         /* If it was private or non-writable, the write bit is already clear */
1643         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1644                 return 0;
1645
1646         /* The backer wishes to know when pages are first written to? */
1647         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1648                 return 1;
1649
1650         /* The open routine did something to the protections that pgprot_modify
1651          * won't preserve? */
1652         if (pgprot_val(vm_page_prot) !=
1653             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1654                 return 0;
1655
1656         /* Do we need to track softdirty? */
1657         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1658                 return 1;
1659
1660         /* Specialty mapping? */
1661         if (vm_flags & VM_PFNMAP)
1662                 return 0;
1663
1664         /* Can the mapping track the dirty pages? */
1665         return vma->vm_file && vma->vm_file->f_mapping &&
1666                 mapping_can_writeback(vma->vm_file->f_mapping);
1667 }
1668
1669 /*
1670  * We account for memory if it's a private writeable mapping,
1671  * not hugepages and VM_NORESERVE wasn't set.
1672  */
1673 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1674 {
1675         /*
1676          * hugetlb has its own accounting separate from the core VM
1677          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1678          */
1679         if (file && is_file_hugepages(file))
1680                 return 0;
1681
1682         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1683 }
1684
1685 unsigned long mmap_region(struct file *file, unsigned long addr,
1686                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1687                 struct list_head *uf)
1688 {
1689         struct mm_struct *mm = current->mm;
1690         struct vm_area_struct *vma, *prev, *merge;
1691         int error;
1692         struct rb_node **rb_link, *rb_parent;
1693         unsigned long charged = 0;
1694
1695         /* Check against address space limit. */
1696         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1697                 unsigned long nr_pages;
1698
1699                 /*
1700                  * MAP_FIXED may remove pages of mappings that intersects with
1701                  * requested mapping. Account for the pages it would unmap.
1702                  */
1703                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1704
1705                 if (!may_expand_vm(mm, vm_flags,
1706                                         (len >> PAGE_SHIFT) - nr_pages))
1707                         return -ENOMEM;
1708         }
1709
1710         /* Clear old maps */
1711         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1712                               &rb_parent)) {
1713                 if (do_munmap(mm, addr, len, uf))
1714                         return -ENOMEM;
1715         }
1716
1717         /*
1718          * Private writable mapping: check memory availability
1719          */
1720         if (accountable_mapping(file, vm_flags)) {
1721                 charged = len >> PAGE_SHIFT;
1722                 if (security_vm_enough_memory_mm(mm, charged))
1723                         return -ENOMEM;
1724                 vm_flags |= VM_ACCOUNT;
1725         }
1726
1727         /*
1728          * Can we just expand an old mapping?
1729          */
1730         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1731                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1732         if (vma)
1733                 goto out;
1734
1735         /*
1736          * Determine the object being mapped and call the appropriate
1737          * specific mapper. the address has already been validated, but
1738          * not unmapped, but the maps are removed from the list.
1739          */
1740         vma = vm_area_alloc(mm);
1741         if (!vma) {
1742                 error = -ENOMEM;
1743                 goto unacct_error;
1744         }
1745
1746         vma->vm_start = addr;
1747         vma->vm_end = addr + len;
1748         vma->vm_flags = vm_flags;
1749         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1750         vma->vm_pgoff = pgoff;
1751
1752         if (file) {
1753                 if (vm_flags & VM_DENYWRITE) {
1754                         error = deny_write_access(file);
1755                         if (error)
1756                                 goto free_vma;
1757                 }
1758                 if (vm_flags & VM_SHARED) {
1759                         error = mapping_map_writable(file->f_mapping);
1760                         if (error)
1761                                 goto allow_write_and_free_vma;
1762                 }
1763
1764                 /* ->mmap() can change vma->vm_file, but must guarantee that
1765                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1766                  * and map writably if VM_SHARED is set. This usually means the
1767                  * new file must not have been exposed to user-space, yet.
1768                  */
1769                 vma->vm_file = get_file(file);
1770                 error = call_mmap(file, vma);
1771                 if (error)
1772                         goto unmap_and_free_vma;
1773
1774                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1775                  * as we may succeed this time.
1776                  */
1777                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1778                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1779                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1780                         if (merge) {
1781                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1782                                  * fput the vma->vm_file here or we would add an extra fput for file
1783                                  * and cause general protection fault ultimately.
1784                                  */
1785                                 fput(vma->vm_file);
1786                                 vm_area_free(vma);
1787                                 vma = merge;
1788                                 /* Update vm_flags and possible addr to pick up the change. We don't
1789                                  * warn here if addr changed as the vma is not linked by vma_link().
1790                                  */
1791                                 addr = vma->vm_start;
1792                                 vm_flags = vma->vm_flags;
1793                                 goto unmap_writable;
1794                         }
1795                 }
1796
1797                 /* Can addr have changed??
1798                  *
1799                  * Answer: Yes, several device drivers can do it in their
1800                  *         f_op->mmap method. -DaveM
1801                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1802                  *      be updated for vma_link()
1803                  */
1804                 WARN_ON_ONCE(addr != vma->vm_start);
1805
1806                 addr = vma->vm_start;
1807                 vm_flags = vma->vm_flags;
1808         } else if (vm_flags & VM_SHARED) {
1809                 error = shmem_zero_setup(vma);
1810                 if (error)
1811                         goto free_vma;
1812         } else {
1813                 vma_set_anonymous(vma);
1814         }
1815
1816         /* Allow architectures to sanity-check the vm_flags */
1817         if (!arch_validate_flags(vma->vm_flags)) {
1818                 error = -EINVAL;
1819                 if (file)
1820                         goto unmap_and_free_vma;
1821                 else
1822                         goto free_vma;
1823         }
1824
1825         vma_link(mm, vma, prev, rb_link, rb_parent);
1826         /* Once vma denies write, undo our temporary denial count */
1827         if (file) {
1828 unmap_writable:
1829                 if (vm_flags & VM_SHARED)
1830                         mapping_unmap_writable(file->f_mapping);
1831                 if (vm_flags & VM_DENYWRITE)
1832                         allow_write_access(file);
1833         }
1834         file = vma->vm_file;
1835 out:
1836         perf_event_mmap(vma);
1837
1838         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1839         if (vm_flags & VM_LOCKED) {
1840                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1841                                         is_vm_hugetlb_page(vma) ||
1842                                         vma == get_gate_vma(current->mm))
1843                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1844                 else
1845                         mm->locked_vm += (len >> PAGE_SHIFT);
1846         }
1847
1848         if (file)
1849                 uprobe_mmap(vma);
1850
1851         /*
1852          * New (or expanded) vma always get soft dirty status.
1853          * Otherwise user-space soft-dirty page tracker won't
1854          * be able to distinguish situation when vma area unmapped,
1855          * then new mapped in-place (which must be aimed as
1856          * a completely new data area).
1857          */
1858         vma->vm_flags |= VM_SOFTDIRTY;
1859
1860         vma_set_page_prot(vma);
1861
1862         return addr;
1863
1864 unmap_and_free_vma:
1865         vma->vm_file = NULL;
1866         fput(file);
1867
1868         /* Undo any partial mapping done by a device driver. */
1869         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1870         charged = 0;
1871         if (vm_flags & VM_SHARED)
1872                 mapping_unmap_writable(file->f_mapping);
1873 allow_write_and_free_vma:
1874         if (vm_flags & VM_DENYWRITE)
1875                 allow_write_access(file);
1876 free_vma:
1877         vm_area_free(vma);
1878 unacct_error:
1879         if (charged)
1880                 vm_unacct_memory(charged);
1881         return error;
1882 }
1883
1884 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1885 {
1886         /*
1887          * We implement the search by looking for an rbtree node that
1888          * immediately follows a suitable gap. That is,
1889          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1890          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1891          * - gap_end - gap_start >= length
1892          */
1893
1894         struct mm_struct *mm = current->mm;
1895         struct vm_area_struct *vma;
1896         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1897
1898         /* Adjust search length to account for worst case alignment overhead */
1899         length = info->length + info->align_mask;
1900         if (length < info->length)
1901                 return -ENOMEM;
1902
1903         /* Adjust search limits by the desired length */
1904         if (info->high_limit < length)
1905                 return -ENOMEM;
1906         high_limit = info->high_limit - length;
1907
1908         if (info->low_limit > high_limit)
1909                 return -ENOMEM;
1910         low_limit = info->low_limit + length;
1911
1912         /* Check if rbtree root looks promising */
1913         if (RB_EMPTY_ROOT(&mm->mm_rb))
1914                 goto check_highest;
1915         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1916         if (vma->rb_subtree_gap < length)
1917                 goto check_highest;
1918
1919         while (true) {
1920                 /* Visit left subtree if it looks promising */
1921                 gap_end = vm_start_gap(vma);
1922                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1923                         struct vm_area_struct *left =
1924                                 rb_entry(vma->vm_rb.rb_left,
1925                                          struct vm_area_struct, vm_rb);
1926                         if (left->rb_subtree_gap >= length) {
1927                                 vma = left;
1928                                 continue;
1929                         }
1930                 }
1931
1932                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1933 check_current:
1934                 /* Check if current node has a suitable gap */
1935                 if (gap_start > high_limit)
1936                         return -ENOMEM;
1937                 if (gap_end >= low_limit &&
1938                     gap_end > gap_start && gap_end - gap_start >= length)
1939                         goto found;
1940
1941                 /* Visit right subtree if it looks promising */
1942                 if (vma->vm_rb.rb_right) {
1943                         struct vm_area_struct *right =
1944                                 rb_entry(vma->vm_rb.rb_right,
1945                                          struct vm_area_struct, vm_rb);
1946                         if (right->rb_subtree_gap >= length) {
1947                                 vma = right;
1948                                 continue;
1949                         }
1950                 }
1951
1952                 /* Go back up the rbtree to find next candidate node */
1953                 while (true) {
1954                         struct rb_node *prev = &vma->vm_rb;
1955                         if (!rb_parent(prev))
1956                                 goto check_highest;
1957                         vma = rb_entry(rb_parent(prev),
1958                                        struct vm_area_struct, vm_rb);
1959                         if (prev == vma->vm_rb.rb_left) {
1960                                 gap_start = vm_end_gap(vma->vm_prev);
1961                                 gap_end = vm_start_gap(vma);
1962                                 goto check_current;
1963                         }
1964                 }
1965         }
1966
1967 check_highest:
1968         /* Check highest gap, which does not precede any rbtree node */
1969         gap_start = mm->highest_vm_end;
1970         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1971         if (gap_start > high_limit)
1972                 return -ENOMEM;
1973
1974 found:
1975         /* We found a suitable gap. Clip it with the original low_limit. */
1976         if (gap_start < info->low_limit)
1977                 gap_start = info->low_limit;
1978
1979         /* Adjust gap address to the desired alignment */
1980         gap_start += (info->align_offset - gap_start) & info->align_mask;
1981
1982         VM_BUG_ON(gap_start + info->length > info->high_limit);
1983         VM_BUG_ON(gap_start + info->length > gap_end);
1984         return gap_start;
1985 }
1986
1987 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1988 {
1989         struct mm_struct *mm = current->mm;
1990         struct vm_area_struct *vma;
1991         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1992
1993         /* Adjust search length to account for worst case alignment overhead */
1994         length = info->length + info->align_mask;
1995         if (length < info->length)
1996                 return -ENOMEM;
1997
1998         /*
1999          * Adjust search limits by the desired length.
2000          * See implementation comment at top of unmapped_area().
2001          */
2002         gap_end = info->high_limit;
2003         if (gap_end < length)
2004                 return -ENOMEM;
2005         high_limit = gap_end - length;
2006
2007         if (info->low_limit > high_limit)
2008                 return -ENOMEM;
2009         low_limit = info->low_limit + length;
2010
2011         /* Check highest gap, which does not precede any rbtree node */
2012         gap_start = mm->highest_vm_end;
2013         if (gap_start <= high_limit)
2014                 goto found_highest;
2015
2016         /* Check if rbtree root looks promising */
2017         if (RB_EMPTY_ROOT(&mm->mm_rb))
2018                 return -ENOMEM;
2019         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2020         if (vma->rb_subtree_gap < length)
2021                 return -ENOMEM;
2022
2023         while (true) {
2024                 /* Visit right subtree if it looks promising */
2025                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2026                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2027                         struct vm_area_struct *right =
2028                                 rb_entry(vma->vm_rb.rb_right,
2029                                          struct vm_area_struct, vm_rb);
2030                         if (right->rb_subtree_gap >= length) {
2031                                 vma = right;
2032                                 continue;
2033                         }
2034                 }
2035
2036 check_current:
2037                 /* Check if current node has a suitable gap */
2038                 gap_end = vm_start_gap(vma);
2039                 if (gap_end < low_limit)
2040                         return -ENOMEM;
2041                 if (gap_start <= high_limit &&
2042                     gap_end > gap_start && gap_end - gap_start >= length)
2043                         goto found;
2044
2045                 /* Visit left subtree if it looks promising */
2046                 if (vma->vm_rb.rb_left) {
2047                         struct vm_area_struct *left =
2048                                 rb_entry(vma->vm_rb.rb_left,
2049                                          struct vm_area_struct, vm_rb);
2050                         if (left->rb_subtree_gap >= length) {
2051                                 vma = left;
2052                                 continue;
2053                         }
2054                 }
2055
2056                 /* Go back up the rbtree to find next candidate node */
2057                 while (true) {
2058                         struct rb_node *prev = &vma->vm_rb;
2059                         if (!rb_parent(prev))
2060                                 return -ENOMEM;
2061                         vma = rb_entry(rb_parent(prev),
2062                                        struct vm_area_struct, vm_rb);
2063                         if (prev == vma->vm_rb.rb_right) {
2064                                 gap_start = vma->vm_prev ?
2065                                         vm_end_gap(vma->vm_prev) : 0;
2066                                 goto check_current;
2067                         }
2068                 }
2069         }
2070
2071 found:
2072         /* We found a suitable gap. Clip it with the original high_limit. */
2073         if (gap_end > info->high_limit)
2074                 gap_end = info->high_limit;
2075
2076 found_highest:
2077         /* Compute highest gap address at the desired alignment */
2078         gap_end -= info->length;
2079         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2080
2081         VM_BUG_ON(gap_end < info->low_limit);
2082         VM_BUG_ON(gap_end < gap_start);
2083         return gap_end;
2084 }
2085
2086 /*
2087  * Search for an unmapped address range.
2088  *
2089  * We are looking for a range that:
2090  * - does not intersect with any VMA;
2091  * - is contained within the [low_limit, high_limit) interval;
2092  * - is at least the desired size.
2093  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2094  */
2095 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2096 {
2097         unsigned long addr;
2098
2099         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2100                 addr = unmapped_area_topdown(info);
2101         else
2102                 addr = unmapped_area(info);
2103
2104         trace_vm_unmapped_area(addr, info);
2105         return addr;
2106 }
2107
2108 #ifndef arch_get_mmap_end
2109 #define arch_get_mmap_end(addr) (TASK_SIZE)
2110 #endif
2111
2112 #ifndef arch_get_mmap_base
2113 #define arch_get_mmap_base(addr, base) (base)
2114 #endif
2115
2116 /* Get an address range which is currently unmapped.
2117  * For shmat() with addr=0.
2118  *
2119  * Ugly calling convention alert:
2120  * Return value with the low bits set means error value,
2121  * ie
2122  *      if (ret & ~PAGE_MASK)
2123  *              error = ret;
2124  *
2125  * This function "knows" that -ENOMEM has the bits set.
2126  */
2127 #ifndef HAVE_ARCH_UNMAPPED_AREA
2128 unsigned long
2129 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2130                 unsigned long len, unsigned long pgoff, unsigned long flags)
2131 {
2132         struct mm_struct *mm = current->mm;
2133         struct vm_area_struct *vma, *prev;
2134         struct vm_unmapped_area_info info;
2135         const unsigned long mmap_end = arch_get_mmap_end(addr);
2136
2137         if (len > mmap_end - mmap_min_addr)
2138                 return -ENOMEM;
2139
2140         if (flags & MAP_FIXED)
2141                 return addr;
2142
2143         if (addr) {
2144                 addr = PAGE_ALIGN(addr);
2145                 vma = find_vma_prev(mm, addr, &prev);
2146                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2147                     (!vma || addr + len <= vm_start_gap(vma)) &&
2148                     (!prev || addr >= vm_end_gap(prev)))
2149                         return addr;
2150         }
2151
2152         info.flags = 0;
2153         info.length = len;
2154         info.low_limit = mm->mmap_base;
2155         info.high_limit = mmap_end;
2156         info.align_mask = 0;
2157         info.align_offset = 0;
2158         return vm_unmapped_area(&info);
2159 }
2160 #endif
2161
2162 /*
2163  * This mmap-allocator allocates new areas top-down from below the
2164  * stack's low limit (the base):
2165  */
2166 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2167 unsigned long
2168 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2169                           unsigned long len, unsigned long pgoff,
2170                           unsigned long flags)
2171 {
2172         struct vm_area_struct *vma, *prev;
2173         struct mm_struct *mm = current->mm;
2174         struct vm_unmapped_area_info info;
2175         const unsigned long mmap_end = arch_get_mmap_end(addr);
2176
2177         /* requested length too big for entire address space */
2178         if (len > mmap_end - mmap_min_addr)
2179                 return -ENOMEM;
2180
2181         if (flags & MAP_FIXED)
2182                 return addr;
2183
2184         /* requesting a specific address */
2185         if (addr) {
2186                 addr = PAGE_ALIGN(addr);
2187                 vma = find_vma_prev(mm, addr, &prev);
2188                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2189                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2190                                 (!prev || addr >= vm_end_gap(prev)))
2191                         return addr;
2192         }
2193
2194         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2195         info.length = len;
2196         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2197         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2198         info.align_mask = 0;
2199         info.align_offset = 0;
2200         addr = vm_unmapped_area(&info);
2201
2202         /*
2203          * A failed mmap() very likely causes application failure,
2204          * so fall back to the bottom-up function here. This scenario
2205          * can happen with large stack limits and large mmap()
2206          * allocations.
2207          */
2208         if (offset_in_page(addr)) {
2209                 VM_BUG_ON(addr != -ENOMEM);
2210                 info.flags = 0;
2211                 info.low_limit = TASK_UNMAPPED_BASE;
2212                 info.high_limit = mmap_end;
2213                 addr = vm_unmapped_area(&info);
2214         }
2215
2216         return addr;
2217 }
2218 #endif
2219
2220 unsigned long
2221 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2222                 unsigned long pgoff, unsigned long flags)
2223 {
2224         unsigned long (*get_area)(struct file *, unsigned long,
2225                                   unsigned long, unsigned long, unsigned long);
2226
2227         unsigned long error = arch_mmap_check(addr, len, flags);
2228         if (error)
2229                 return error;
2230
2231         /* Careful about overflows.. */
2232         if (len > TASK_SIZE)
2233                 return -ENOMEM;
2234
2235         get_area = current->mm->get_unmapped_area;
2236         if (file) {
2237                 if (file->f_op->get_unmapped_area)
2238                         get_area = file->f_op->get_unmapped_area;
2239         } else if (flags & MAP_SHARED) {
2240                 /*
2241                  * mmap_region() will call shmem_zero_setup() to create a file,
2242                  * so use shmem's get_unmapped_area in case it can be huge.
2243                  * do_mmap() will clear pgoff, so match alignment.
2244                  */
2245                 pgoff = 0;
2246                 get_area = shmem_get_unmapped_area;
2247         }
2248
2249         addr = get_area(file, addr, len, pgoff, flags);
2250         if (IS_ERR_VALUE(addr))
2251                 return addr;
2252
2253         if (addr > TASK_SIZE - len)
2254                 return -ENOMEM;
2255         if (offset_in_page(addr))
2256                 return -EINVAL;
2257
2258         error = security_mmap_addr(addr);
2259         return error ? error : addr;
2260 }
2261
2262 EXPORT_SYMBOL(get_unmapped_area);
2263
2264 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2265 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2266 {
2267         struct rb_node *rb_node;
2268         struct vm_area_struct *vma;
2269
2270         /* Check the cache first. */
2271         vma = vmacache_find(mm, addr);
2272         if (likely(vma))
2273                 return vma;
2274
2275         rb_node = mm->mm_rb.rb_node;
2276
2277         while (rb_node) {
2278                 struct vm_area_struct *tmp;
2279
2280                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2281
2282                 if (tmp->vm_end > addr) {
2283                         vma = tmp;
2284                         if (tmp->vm_start <= addr)
2285                                 break;
2286                         rb_node = rb_node->rb_left;
2287                 } else
2288                         rb_node = rb_node->rb_right;
2289         }
2290
2291         if (vma)
2292                 vmacache_update(addr, vma);
2293         return vma;
2294 }
2295
2296 EXPORT_SYMBOL(find_vma);
2297
2298 /*
2299  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2300  */
2301 struct vm_area_struct *
2302 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2303                         struct vm_area_struct **pprev)
2304 {
2305         struct vm_area_struct *vma;
2306
2307         vma = find_vma(mm, addr);
2308         if (vma) {
2309                 *pprev = vma->vm_prev;
2310         } else {
2311                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2312
2313                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2314         }
2315         return vma;
2316 }
2317
2318 /*
2319  * Verify that the stack growth is acceptable and
2320  * update accounting. This is shared with both the
2321  * grow-up and grow-down cases.
2322  */
2323 static int acct_stack_growth(struct vm_area_struct *vma,
2324                              unsigned long size, unsigned long grow)
2325 {
2326         struct mm_struct *mm = vma->vm_mm;
2327         unsigned long new_start;
2328
2329         /* address space limit tests */
2330         if (!may_expand_vm(mm, vma->vm_flags, grow))
2331                 return -ENOMEM;
2332
2333         /* Stack limit test */
2334         if (size > rlimit(RLIMIT_STACK))
2335                 return -ENOMEM;
2336
2337         /* mlock limit tests */
2338         if (vma->vm_flags & VM_LOCKED) {
2339                 unsigned long locked;
2340                 unsigned long limit;
2341                 locked = mm->locked_vm + grow;
2342                 limit = rlimit(RLIMIT_MEMLOCK);
2343                 limit >>= PAGE_SHIFT;
2344                 if (locked > limit && !capable(CAP_IPC_LOCK))
2345                         return -ENOMEM;
2346         }
2347
2348         /* Check to ensure the stack will not grow into a hugetlb-only region */
2349         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2350                         vma->vm_end - size;
2351         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2352                 return -EFAULT;
2353
2354         /*
2355          * Overcommit..  This must be the final test, as it will
2356          * update security statistics.
2357          */
2358         if (security_vm_enough_memory_mm(mm, grow))
2359                 return -ENOMEM;
2360
2361         return 0;
2362 }
2363
2364 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2365 /*
2366  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2367  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2368  */
2369 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2370 {
2371         struct mm_struct *mm = vma->vm_mm;
2372         struct vm_area_struct *next;
2373         unsigned long gap_addr;
2374         int error = 0;
2375
2376         if (!(vma->vm_flags & VM_GROWSUP))
2377                 return -EFAULT;
2378
2379         /* Guard against exceeding limits of the address space. */
2380         address &= PAGE_MASK;
2381         if (address >= (TASK_SIZE & PAGE_MASK))
2382                 return -ENOMEM;
2383         address += PAGE_SIZE;
2384
2385         /* Enforce stack_guard_gap */
2386         gap_addr = address + stack_guard_gap;
2387
2388         /* Guard against overflow */
2389         if (gap_addr < address || gap_addr > TASK_SIZE)
2390                 gap_addr = TASK_SIZE;
2391
2392         next = vma->vm_next;
2393         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2394                 if (!(next->vm_flags & VM_GROWSUP))
2395                         return -ENOMEM;
2396                 /* Check that both stack segments have the same anon_vma? */
2397         }
2398
2399         /* We must make sure the anon_vma is allocated. */
2400         if (unlikely(anon_vma_prepare(vma)))
2401                 return -ENOMEM;
2402
2403         /*
2404          * vma->vm_start/vm_end cannot change under us because the caller
2405          * is required to hold the mmap_lock in read mode.  We need the
2406          * anon_vma lock to serialize against concurrent expand_stacks.
2407          */
2408         anon_vma_lock_write(vma->anon_vma);
2409
2410         /* Somebody else might have raced and expanded it already */
2411         if (address > vma->vm_end) {
2412                 unsigned long size, grow;
2413
2414                 size = address - vma->vm_start;
2415                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2416
2417                 error = -ENOMEM;
2418                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2419                         error = acct_stack_growth(vma, size, grow);
2420                         if (!error) {
2421                                 /*
2422                                  * vma_gap_update() doesn't support concurrent
2423                                  * updates, but we only hold a shared mmap_lock
2424                                  * lock here, so we need to protect against
2425                                  * concurrent vma expansions.
2426                                  * anon_vma_lock_write() doesn't help here, as
2427                                  * we don't guarantee that all growable vmas
2428                                  * in a mm share the same root anon vma.
2429                                  * So, we reuse mm->page_table_lock to guard
2430                                  * against concurrent vma expansions.
2431                                  */
2432                                 spin_lock(&mm->page_table_lock);
2433                                 if (vma->vm_flags & VM_LOCKED)
2434                                         mm->locked_vm += grow;
2435                                 vm_stat_account(mm, vma->vm_flags, grow);
2436                                 anon_vma_interval_tree_pre_update_vma(vma);
2437                                 vma->vm_end = address;
2438                                 anon_vma_interval_tree_post_update_vma(vma);
2439                                 if (vma->vm_next)
2440                                         vma_gap_update(vma->vm_next);
2441                                 else
2442                                         mm->highest_vm_end = vm_end_gap(vma);
2443                                 spin_unlock(&mm->page_table_lock);
2444
2445                                 perf_event_mmap(vma);
2446                         }
2447                 }
2448         }
2449         anon_vma_unlock_write(vma->anon_vma);
2450         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2451         validate_mm(mm);
2452         return error;
2453 }
2454 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2455
2456 /*
2457  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2458  */
2459 int expand_downwards(struct vm_area_struct *vma,
2460                                    unsigned long address)
2461 {
2462         struct mm_struct *mm = vma->vm_mm;
2463         struct vm_area_struct *prev;
2464         int error = 0;
2465
2466         address &= PAGE_MASK;
2467         if (address < mmap_min_addr)
2468                 return -EPERM;
2469
2470         /* Enforce stack_guard_gap */
2471         prev = vma->vm_prev;
2472         /* Check that both stack segments have the same anon_vma? */
2473         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2474                         vma_is_accessible(prev)) {
2475                 if (address - prev->vm_end < stack_guard_gap)
2476                         return -ENOMEM;
2477         }
2478
2479         /* We must make sure the anon_vma is allocated. */
2480         if (unlikely(anon_vma_prepare(vma)))
2481                 return -ENOMEM;
2482
2483         /*
2484          * vma->vm_start/vm_end cannot change under us because the caller
2485          * is required to hold the mmap_lock in read mode.  We need the
2486          * anon_vma lock to serialize against concurrent expand_stacks.
2487          */
2488         anon_vma_lock_write(vma->anon_vma);
2489
2490         /* Somebody else might have raced and expanded it already */
2491         if (address < vma->vm_start) {
2492                 unsigned long size, grow;
2493
2494                 size = vma->vm_end - address;
2495                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2496
2497                 error = -ENOMEM;
2498                 if (grow <= vma->vm_pgoff) {
2499                         error = acct_stack_growth(vma, size, grow);
2500                         if (!error) {
2501                                 /*
2502                                  * vma_gap_update() doesn't support concurrent
2503                                  * updates, but we only hold a shared mmap_lock
2504                                  * lock here, so we need to protect against
2505                                  * concurrent vma expansions.
2506                                  * anon_vma_lock_write() doesn't help here, as
2507                                  * we don't guarantee that all growable vmas
2508                                  * in a mm share the same root anon vma.
2509                                  * So, we reuse mm->page_table_lock to guard
2510                                  * against concurrent vma expansions.
2511                                  */
2512                                 spin_lock(&mm->page_table_lock);
2513                                 if (vma->vm_flags & VM_LOCKED)
2514                                         mm->locked_vm += grow;
2515                                 vm_stat_account(mm, vma->vm_flags, grow);
2516                                 anon_vma_interval_tree_pre_update_vma(vma);
2517                                 vma->vm_start = address;
2518                                 vma->vm_pgoff -= grow;
2519                                 anon_vma_interval_tree_post_update_vma(vma);
2520                                 vma_gap_update(vma);
2521                                 spin_unlock(&mm->page_table_lock);
2522
2523                                 perf_event_mmap(vma);
2524                         }
2525                 }
2526         }
2527         anon_vma_unlock_write(vma->anon_vma);
2528         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2529         validate_mm(mm);
2530         return error;
2531 }
2532
2533 /* enforced gap between the expanding stack and other mappings. */
2534 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2535
2536 static int __init cmdline_parse_stack_guard_gap(char *p)
2537 {
2538         unsigned long val;
2539         char *endptr;
2540
2541         val = simple_strtoul(p, &endptr, 10);
2542         if (!*endptr)
2543                 stack_guard_gap = val << PAGE_SHIFT;
2544
2545         return 0;
2546 }
2547 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2548
2549 #ifdef CONFIG_STACK_GROWSUP
2550 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2551 {
2552         return expand_upwards(vma, address);
2553 }
2554
2555 struct vm_area_struct *
2556 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2557 {
2558         struct vm_area_struct *vma, *prev;
2559
2560         addr &= PAGE_MASK;
2561         vma = find_vma_prev(mm, addr, &prev);
2562         if (vma && (vma->vm_start <= addr))
2563                 return vma;
2564         /* don't alter vm_end if the coredump is running */
2565         if (!prev || expand_stack(prev, addr))
2566                 return NULL;
2567         if (prev->vm_flags & VM_LOCKED)
2568                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2569         return prev;
2570 }
2571 #else
2572 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2573 {
2574         return expand_downwards(vma, address);
2575 }
2576
2577 struct vm_area_struct *
2578 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2579 {
2580         struct vm_area_struct *vma;
2581         unsigned long start;
2582
2583         addr &= PAGE_MASK;
2584         vma = find_vma(mm, addr);
2585         if (!vma)
2586                 return NULL;
2587         if (vma->vm_start <= addr)
2588                 return vma;
2589         if (!(vma->vm_flags & VM_GROWSDOWN))
2590                 return NULL;
2591         start = vma->vm_start;
2592         if (expand_stack(vma, addr))
2593                 return NULL;
2594         if (vma->vm_flags & VM_LOCKED)
2595                 populate_vma_page_range(vma, addr, start, NULL);
2596         return vma;
2597 }
2598 #endif
2599
2600 EXPORT_SYMBOL_GPL(find_extend_vma);
2601
2602 /*
2603  * Ok - we have the memory areas we should free on the vma list,
2604  * so release them, and do the vma updates.
2605  *
2606  * Called with the mm semaphore held.
2607  */
2608 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2609 {
2610         unsigned long nr_accounted = 0;
2611
2612         /* Update high watermark before we lower total_vm */
2613         update_hiwater_vm(mm);
2614         do {
2615                 long nrpages = vma_pages(vma);
2616
2617                 if (vma->vm_flags & VM_ACCOUNT)
2618                         nr_accounted += nrpages;
2619                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2620                 vma = remove_vma(vma);
2621         } while (vma);
2622         vm_unacct_memory(nr_accounted);
2623         validate_mm(mm);
2624 }
2625
2626 /*
2627  * Get rid of page table information in the indicated region.
2628  *
2629  * Called with the mm semaphore held.
2630  */
2631 static void unmap_region(struct mm_struct *mm,
2632                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2633                 unsigned long start, unsigned long end)
2634 {
2635         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2636         struct mmu_gather tlb;
2637
2638         lru_add_drain();
2639         tlb_gather_mmu(&tlb, mm, start, end);
2640         update_hiwater_rss(mm);
2641         unmap_vmas(&tlb, vma, start, end);
2642         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2643                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2644         tlb_finish_mmu(&tlb, start, end);
2645 }
2646
2647 /*
2648  * Create a list of vma's touched by the unmap, removing them from the mm's
2649  * vma list as we go..
2650  */
2651 static bool
2652 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2653         struct vm_area_struct *prev, unsigned long end)
2654 {
2655         struct vm_area_struct **insertion_point;
2656         struct vm_area_struct *tail_vma = NULL;
2657
2658         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2659         vma->vm_prev = NULL;
2660         do {
2661                 vma_rb_erase(vma, &mm->mm_rb);
2662                 mm->map_count--;
2663                 tail_vma = vma;
2664                 vma = vma->vm_next;
2665         } while (vma && vma->vm_start < end);
2666         *insertion_point = vma;
2667         if (vma) {
2668                 vma->vm_prev = prev;
2669                 vma_gap_update(vma);
2670         } else
2671                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2672         tail_vma->vm_next = NULL;
2673
2674         /* Kill the cache */
2675         vmacache_invalidate(mm);
2676
2677         /*
2678          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2679          * VM_GROWSUP VMA. Such VMAs can change their size under
2680          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2681          */
2682         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2683                 return false;
2684         if (prev && (prev->vm_flags & VM_GROWSUP))
2685                 return false;
2686         return true;
2687 }
2688
2689 /*
2690  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2691  * has already been checked or doesn't make sense to fail.
2692  */
2693 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2694                 unsigned long addr, int new_below)
2695 {
2696         struct vm_area_struct *new;
2697         int err;
2698
2699         if (vma->vm_ops && vma->vm_ops->split) {
2700                 err = vma->vm_ops->split(vma, addr);
2701                 if (err)
2702                         return err;
2703         }
2704
2705         new = vm_area_dup(vma);
2706         if (!new)
2707                 return -ENOMEM;
2708
2709         if (new_below)
2710                 new->vm_end = addr;
2711         else {
2712                 new->vm_start = addr;
2713                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2714         }
2715
2716         err = vma_dup_policy(vma, new);
2717         if (err)
2718                 goto out_free_vma;
2719
2720         err = anon_vma_clone(new, vma);
2721         if (err)
2722                 goto out_free_mpol;
2723
2724         if (new->vm_file)
2725                 get_file(new->vm_file);
2726
2727         if (new->vm_ops && new->vm_ops->open)
2728                 new->vm_ops->open(new);
2729
2730         if (new_below)
2731                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2732                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2733         else
2734                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2735
2736         /* Success. */
2737         if (!err)
2738                 return 0;
2739
2740         /* Clean everything up if vma_adjust failed. */
2741         if (new->vm_ops && new->vm_ops->close)
2742                 new->vm_ops->close(new);
2743         if (new->vm_file)
2744                 fput(new->vm_file);
2745         unlink_anon_vmas(new);
2746  out_free_mpol:
2747         mpol_put(vma_policy(new));
2748  out_free_vma:
2749         vm_area_free(new);
2750         return err;
2751 }
2752
2753 /*
2754  * Split a vma into two pieces at address 'addr', a new vma is allocated
2755  * either for the first part or the tail.
2756  */
2757 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2758               unsigned long addr, int new_below)
2759 {
2760         if (mm->map_count >= sysctl_max_map_count)
2761                 return -ENOMEM;
2762
2763         return __split_vma(mm, vma, addr, new_below);
2764 }
2765
2766 /* Munmap is split into 2 main parts -- this part which finds
2767  * what needs doing, and the areas themselves, which do the
2768  * work.  This now handles partial unmappings.
2769  * Jeremy Fitzhardinge <jeremy@goop.org>
2770  */
2771 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2772                 struct list_head *uf, bool downgrade)
2773 {
2774         unsigned long end;
2775         struct vm_area_struct *vma, *prev, *last;
2776
2777         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2778                 return -EINVAL;
2779
2780         len = PAGE_ALIGN(len);
2781         end = start + len;
2782         if (len == 0)
2783                 return -EINVAL;
2784
2785         /*
2786          * arch_unmap() might do unmaps itself.  It must be called
2787          * and finish any rbtree manipulation before this code
2788          * runs and also starts to manipulate the rbtree.
2789          */
2790         arch_unmap(mm, start, end);
2791
2792         /* Find the first overlapping VMA */
2793         vma = find_vma(mm, start);
2794         if (!vma)
2795                 return 0;
2796         prev = vma->vm_prev;
2797         /* we have  start < vma->vm_end  */
2798
2799         /* if it doesn't overlap, we have nothing.. */
2800         if (vma->vm_start >= end)
2801                 return 0;
2802
2803         /*
2804          * If we need to split any vma, do it now to save pain later.
2805          *
2806          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2807          * unmapped vm_area_struct will remain in use: so lower split_vma
2808          * places tmp vma above, and higher split_vma places tmp vma below.
2809          */
2810         if (start > vma->vm_start) {
2811                 int error;
2812
2813                 /*
2814                  * Make sure that map_count on return from munmap() will
2815                  * not exceed its limit; but let map_count go just above
2816                  * its limit temporarily, to help free resources as expected.
2817                  */
2818                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2819                         return -ENOMEM;
2820
2821                 error = __split_vma(mm, vma, start, 0);
2822                 if (error)
2823                         return error;
2824                 prev = vma;
2825         }
2826
2827         /* Does it split the last one? */
2828         last = find_vma(mm, end);
2829         if (last && end > last->vm_start) {
2830                 int error = __split_vma(mm, last, end, 1);
2831                 if (error)
2832                         return error;
2833         }
2834         vma = prev ? prev->vm_next : mm->mmap;
2835
2836         if (unlikely(uf)) {
2837                 /*
2838                  * If userfaultfd_unmap_prep returns an error the vmas
2839                  * will remain splitted, but userland will get a
2840                  * highly unexpected error anyway. This is no
2841                  * different than the case where the first of the two
2842                  * __split_vma fails, but we don't undo the first
2843                  * split, despite we could. This is unlikely enough
2844                  * failure that it's not worth optimizing it for.
2845                  */
2846                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2847                 if (error)
2848                         return error;
2849         }
2850
2851         /*
2852          * unlock any mlock()ed ranges before detaching vmas
2853          */
2854         if (mm->locked_vm) {
2855                 struct vm_area_struct *tmp = vma;
2856                 while (tmp && tmp->vm_start < end) {
2857                         if (tmp->vm_flags & VM_LOCKED) {
2858                                 mm->locked_vm -= vma_pages(tmp);
2859                                 munlock_vma_pages_all(tmp);
2860                         }
2861
2862                         tmp = tmp->vm_next;
2863                 }
2864         }
2865
2866         /* Detach vmas from rbtree */
2867         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2868                 downgrade = false;
2869
2870         if (downgrade)
2871                 mmap_write_downgrade(mm);
2872
2873         unmap_region(mm, vma, prev, start, end);
2874
2875         /* Fix up all other VM information */
2876         remove_vma_list(mm, vma);
2877
2878         return downgrade ? 1 : 0;
2879 }
2880
2881 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2882               struct list_head *uf)
2883 {
2884         return __do_munmap(mm, start, len, uf, false);
2885 }
2886
2887 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2888 {
2889         int ret;
2890         struct mm_struct *mm = current->mm;
2891         LIST_HEAD(uf);
2892
2893         if (mmap_write_lock_killable(mm))
2894                 return -EINTR;
2895
2896         ret = __do_munmap(mm, start, len, &uf, downgrade);
2897         /*
2898          * Returning 1 indicates mmap_lock is downgraded.
2899          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2900          * it to 0 before return.
2901          */
2902         if (ret == 1) {
2903                 mmap_read_unlock(mm);
2904                 ret = 0;
2905         } else
2906                 mmap_write_unlock(mm);
2907
2908         userfaultfd_unmap_complete(mm, &uf);
2909         return ret;
2910 }
2911
2912 int vm_munmap(unsigned long start, size_t len)
2913 {
2914         return __vm_munmap(start, len, false);
2915 }
2916 EXPORT_SYMBOL(vm_munmap);
2917
2918 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2919 {
2920         addr = untagged_addr(addr);
2921         profile_munmap(addr);
2922         return __vm_munmap(addr, len, true);
2923 }
2924
2925
2926 /*
2927  * Emulation of deprecated remap_file_pages() syscall.
2928  */
2929 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2930                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2931 {
2932
2933         struct mm_struct *mm = current->mm;
2934         struct vm_area_struct *vma;
2935         unsigned long populate = 0;
2936         unsigned long ret = -EINVAL;
2937         struct file *file;
2938
2939         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2940                      current->comm, current->pid);
2941
2942         if (prot)
2943                 return ret;
2944         start = start & PAGE_MASK;
2945         size = size & PAGE_MASK;
2946
2947         if (start + size <= start)
2948                 return ret;
2949
2950         /* Does pgoff wrap? */
2951         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2952                 return ret;
2953
2954         if (mmap_write_lock_killable(mm))
2955                 return -EINTR;
2956
2957         vma = find_vma(mm, start);
2958
2959         if (!vma || !(vma->vm_flags & VM_SHARED))
2960                 goto out;
2961
2962         if (start < vma->vm_start)
2963                 goto out;
2964
2965         if (start + size > vma->vm_end) {
2966                 struct vm_area_struct *next;
2967
2968                 for (next = vma->vm_next; next; next = next->vm_next) {
2969                         /* hole between vmas ? */
2970                         if (next->vm_start != next->vm_prev->vm_end)
2971                                 goto out;
2972
2973                         if (next->vm_file != vma->vm_file)
2974                                 goto out;
2975
2976                         if (next->vm_flags != vma->vm_flags)
2977                                 goto out;
2978
2979                         if (start + size <= next->vm_end)
2980                                 break;
2981                 }
2982
2983                 if (!next)
2984                         goto out;
2985         }
2986
2987         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2988         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2989         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2990
2991         flags &= MAP_NONBLOCK;
2992         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2993         if (vma->vm_flags & VM_LOCKED) {
2994                 struct vm_area_struct *tmp;
2995                 flags |= MAP_LOCKED;
2996
2997                 /* drop PG_Mlocked flag for over-mapped range */
2998                 for (tmp = vma; tmp->vm_start >= start + size;
2999                                 tmp = tmp->vm_next) {
3000                         /*
3001                          * Split pmd and munlock page on the border
3002                          * of the range.
3003                          */
3004                         vma_adjust_trans_huge(tmp, start, start + size, 0);
3005
3006                         munlock_vma_pages_range(tmp,
3007                                         max(tmp->vm_start, start),
3008                                         min(tmp->vm_end, start + size));
3009                 }
3010         }
3011
3012         file = get_file(vma->vm_file);
3013         ret = do_mmap(vma->vm_file, start, size,
3014                         prot, flags, pgoff, &populate, NULL);
3015         fput(file);
3016 out:
3017         mmap_write_unlock(mm);
3018         if (populate)
3019                 mm_populate(ret, populate);
3020         if (!IS_ERR_VALUE(ret))
3021                 ret = 0;
3022         return ret;
3023 }
3024
3025 /*
3026  *  this is really a simplified "do_mmap".  it only handles
3027  *  anonymous maps.  eventually we may be able to do some
3028  *  brk-specific accounting here.
3029  */
3030 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3031 {
3032         struct mm_struct *mm = current->mm;
3033         struct vm_area_struct *vma, *prev;
3034         struct rb_node **rb_link, *rb_parent;
3035         pgoff_t pgoff = addr >> PAGE_SHIFT;
3036         int error;
3037         unsigned long mapped_addr;
3038
3039         /* Until we need other flags, refuse anything except VM_EXEC. */
3040         if ((flags & (~VM_EXEC)) != 0)
3041                 return -EINVAL;
3042         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3043
3044         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3045         if (IS_ERR_VALUE(mapped_addr))
3046                 return mapped_addr;
3047
3048         error = mlock_future_check(mm, mm->def_flags, len);
3049         if (error)
3050                 return error;
3051
3052         /*
3053          * Clear old maps.  this also does some error checking for us
3054          */
3055         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3056                               &rb_parent)) {
3057                 if (do_munmap(mm, addr, len, uf))
3058                         return -ENOMEM;
3059         }
3060
3061         /* Check against address space limits *after* clearing old maps... */
3062         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3063                 return -ENOMEM;
3064
3065         if (mm->map_count > sysctl_max_map_count)
3066                 return -ENOMEM;
3067
3068         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3069                 return -ENOMEM;
3070
3071         /* Can we just expand an old private anonymous mapping? */
3072         vma = vma_merge(mm, prev, addr, addr + len, flags,
3073                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3074         if (vma)
3075                 goto out;
3076
3077         /*
3078          * create a vma struct for an anonymous mapping
3079          */
3080         vma = vm_area_alloc(mm);
3081         if (!vma) {
3082                 vm_unacct_memory(len >> PAGE_SHIFT);
3083                 return -ENOMEM;
3084         }
3085
3086         vma_set_anonymous(vma);
3087         vma->vm_start = addr;
3088         vma->vm_end = addr + len;
3089         vma->vm_pgoff = pgoff;
3090         vma->vm_flags = flags;
3091         vma->vm_page_prot = vm_get_page_prot(flags);
3092         vma_link(mm, vma, prev, rb_link, rb_parent);
3093 out:
3094         perf_event_mmap(vma);
3095         mm->total_vm += len >> PAGE_SHIFT;
3096         mm->data_vm += len >> PAGE_SHIFT;
3097         if (flags & VM_LOCKED)
3098                 mm->locked_vm += (len >> PAGE_SHIFT);
3099         vma->vm_flags |= VM_SOFTDIRTY;
3100         return 0;
3101 }
3102
3103 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3104 {
3105         struct mm_struct *mm = current->mm;
3106         unsigned long len;
3107         int ret;
3108         bool populate;
3109         LIST_HEAD(uf);
3110
3111         len = PAGE_ALIGN(request);
3112         if (len < request)
3113                 return -ENOMEM;
3114         if (!len)
3115                 return 0;
3116
3117         if (mmap_write_lock_killable(mm))
3118                 return -EINTR;
3119
3120         ret = do_brk_flags(addr, len, flags, &uf);
3121         populate = ((mm->def_flags & VM_LOCKED) != 0);
3122         mmap_write_unlock(mm);
3123         userfaultfd_unmap_complete(mm, &uf);
3124         if (populate && !ret)
3125                 mm_populate(addr, len);
3126         return ret;
3127 }
3128 EXPORT_SYMBOL(vm_brk_flags);
3129
3130 int vm_brk(unsigned long addr, unsigned long len)
3131 {
3132         return vm_brk_flags(addr, len, 0);
3133 }
3134 EXPORT_SYMBOL(vm_brk);
3135
3136 /* Release all mmaps. */
3137 void exit_mmap(struct mm_struct *mm)
3138 {
3139         struct mmu_gather tlb;
3140         struct vm_area_struct *vma;
3141         unsigned long nr_accounted = 0;
3142
3143         /* mm's last user has gone, and its about to be pulled down */
3144         mmu_notifier_release(mm);
3145
3146         if (unlikely(mm_is_oom_victim(mm))) {
3147                 /*
3148                  * Manually reap the mm to free as much memory as possible.
3149                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3150                  * this mm from further consideration.  Taking mm->mmap_lock for
3151                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3152                  * reaper will not run on this mm again after mmap_lock is
3153                  * dropped.
3154                  *
3155                  * Nothing can be holding mm->mmap_lock here and the above call
3156                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3157                  * __oom_reap_task_mm() will not block.
3158                  *
3159                  * This needs to be done before calling munlock_vma_pages_all(),
3160                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3161                  * reliably test it.
3162                  */
3163                 (void)__oom_reap_task_mm(mm);
3164
3165                 set_bit(MMF_OOM_SKIP, &mm->flags);
3166                 mmap_write_lock(mm);
3167                 mmap_write_unlock(mm);
3168         }
3169
3170         if (mm->locked_vm) {
3171                 vma = mm->mmap;
3172                 while (vma) {
3173                         if (vma->vm_flags & VM_LOCKED)
3174                                 munlock_vma_pages_all(vma);
3175                         vma = vma->vm_next;
3176                 }
3177         }
3178
3179         arch_exit_mmap(mm);
3180
3181         vma = mm->mmap;
3182         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3183                 return;
3184
3185         lru_add_drain();
3186         flush_cache_mm(mm);
3187         tlb_gather_mmu(&tlb, mm, 0, -1);
3188         /* update_hiwater_rss(mm) here? but nobody should be looking */
3189         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3190         unmap_vmas(&tlb, vma, 0, -1);
3191         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3192         tlb_finish_mmu(&tlb, 0, -1);
3193
3194         /*
3195          * Walk the list again, actually closing and freeing it,
3196          * with preemption enabled, without holding any MM locks.
3197          */
3198         while (vma) {
3199                 if (vma->vm_flags & VM_ACCOUNT)
3200                         nr_accounted += vma_pages(vma);
3201                 vma = remove_vma(vma);
3202                 cond_resched();
3203         }
3204         vm_unacct_memory(nr_accounted);
3205 }
3206
3207 /* Insert vm structure into process list sorted by address
3208  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3209  * then i_mmap_rwsem is taken here.
3210  */
3211 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3212 {
3213         struct vm_area_struct *prev;
3214         struct rb_node **rb_link, *rb_parent;
3215
3216         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3217                            &prev, &rb_link, &rb_parent))
3218                 return -ENOMEM;
3219         if ((vma->vm_flags & VM_ACCOUNT) &&
3220              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3221                 return -ENOMEM;
3222
3223         /*
3224          * The vm_pgoff of a purely anonymous vma should be irrelevant
3225          * until its first write fault, when page's anon_vma and index
3226          * are set.  But now set the vm_pgoff it will almost certainly
3227          * end up with (unless mremap moves it elsewhere before that
3228          * first wfault), so /proc/pid/maps tells a consistent story.
3229          *
3230          * By setting it to reflect the virtual start address of the
3231          * vma, merges and splits can happen in a seamless way, just
3232          * using the existing file pgoff checks and manipulations.
3233          * Similarly in do_mmap and in do_brk_flags.
3234          */
3235         if (vma_is_anonymous(vma)) {
3236                 BUG_ON(vma->anon_vma);
3237                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3238         }
3239
3240         vma_link(mm, vma, prev, rb_link, rb_parent);
3241         return 0;
3242 }
3243
3244 /*
3245  * Copy the vma structure to a new location in the same mm,
3246  * prior to moving page table entries, to effect an mremap move.
3247  */
3248 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3249         unsigned long addr, unsigned long len, pgoff_t pgoff,
3250         bool *need_rmap_locks)
3251 {
3252         struct vm_area_struct *vma = *vmap;
3253         unsigned long vma_start = vma->vm_start;
3254         struct mm_struct *mm = vma->vm_mm;
3255         struct vm_area_struct *new_vma, *prev;
3256         struct rb_node **rb_link, *rb_parent;
3257         bool faulted_in_anon_vma = true;
3258
3259         /*
3260          * If anonymous vma has not yet been faulted, update new pgoff
3261          * to match new location, to increase its chance of merging.
3262          */
3263         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3264                 pgoff = addr >> PAGE_SHIFT;
3265                 faulted_in_anon_vma = false;
3266         }
3267
3268         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3269                 return NULL;    /* should never get here */
3270         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3271                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3272                             vma->vm_userfaultfd_ctx);
3273         if (new_vma) {
3274                 /*
3275                  * Source vma may have been merged into new_vma
3276                  */
3277                 if (unlikely(vma_start >= new_vma->vm_start &&
3278                              vma_start < new_vma->vm_end)) {
3279                         /*
3280                          * The only way we can get a vma_merge with
3281                          * self during an mremap is if the vma hasn't
3282                          * been faulted in yet and we were allowed to
3283                          * reset the dst vma->vm_pgoff to the
3284                          * destination address of the mremap to allow
3285                          * the merge to happen. mremap must change the
3286                          * vm_pgoff linearity between src and dst vmas
3287                          * (in turn preventing a vma_merge) to be
3288                          * safe. It is only safe to keep the vm_pgoff
3289                          * linear if there are no pages mapped yet.
3290                          */
3291                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3292                         *vmap = vma = new_vma;
3293                 }
3294                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3295         } else {
3296                 new_vma = vm_area_dup(vma);
3297                 if (!new_vma)
3298                         goto out;
3299                 new_vma->vm_start = addr;
3300                 new_vma->vm_end = addr + len;
3301                 new_vma->vm_pgoff = pgoff;
3302                 if (vma_dup_policy(vma, new_vma))
3303                         goto out_free_vma;
3304                 if (anon_vma_clone(new_vma, vma))
3305                         goto out_free_mempol;
3306                 if (new_vma->vm_file)
3307                         get_file(new_vma->vm_file);
3308                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3309                         new_vma->vm_ops->open(new_vma);
3310                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3311                 *need_rmap_locks = false;
3312         }
3313         return new_vma;
3314
3315 out_free_mempol:
3316         mpol_put(vma_policy(new_vma));
3317 out_free_vma:
3318         vm_area_free(new_vma);
3319 out:
3320         return NULL;
3321 }
3322
3323 /*
3324  * Return true if the calling process may expand its vm space by the passed
3325  * number of pages
3326  */
3327 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3328 {
3329         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3330                 return false;
3331
3332         if (is_data_mapping(flags) &&
3333             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3334                 /* Workaround for Valgrind */
3335                 if (rlimit(RLIMIT_DATA) == 0 &&
3336                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3337                         return true;
3338
3339                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3340                              current->comm, current->pid,
3341                              (mm->data_vm + npages) << PAGE_SHIFT,
3342                              rlimit(RLIMIT_DATA),
3343                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3344
3345                 if (!ignore_rlimit_data)
3346                         return false;
3347         }
3348
3349         return true;
3350 }
3351
3352 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3353 {
3354         mm->total_vm += npages;
3355
3356         if (is_exec_mapping(flags))
3357                 mm->exec_vm += npages;
3358         else if (is_stack_mapping(flags))
3359                 mm->stack_vm += npages;
3360         else if (is_data_mapping(flags))
3361                 mm->data_vm += npages;
3362 }
3363
3364 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3365
3366 /*
3367  * Having a close hook prevents vma merging regardless of flags.
3368  */
3369 static void special_mapping_close(struct vm_area_struct *vma)
3370 {
3371 }
3372
3373 static const char *special_mapping_name(struct vm_area_struct *vma)
3374 {
3375         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3376 }
3377
3378 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3379 {
3380         struct vm_special_mapping *sm = new_vma->vm_private_data;
3381
3382         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3383                 return -EFAULT;
3384
3385         if (sm->mremap)
3386                 return sm->mremap(sm, new_vma);
3387
3388         return 0;
3389 }
3390
3391 static const struct vm_operations_struct special_mapping_vmops = {
3392         .close = special_mapping_close,
3393         .fault = special_mapping_fault,
3394         .mremap = special_mapping_mremap,
3395         .name = special_mapping_name,
3396         /* vDSO code relies that VVAR can't be accessed remotely */
3397         .access = NULL,
3398 };
3399
3400 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3401         .close = special_mapping_close,
3402         .fault = special_mapping_fault,
3403 };
3404
3405 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3406 {
3407         struct vm_area_struct *vma = vmf->vma;
3408         pgoff_t pgoff;
3409         struct page **pages;
3410
3411         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3412                 pages = vma->vm_private_data;
3413         } else {
3414                 struct vm_special_mapping *sm = vma->vm_private_data;
3415
3416                 if (sm->fault)
3417                         return sm->fault(sm, vmf->vma, vmf);
3418
3419                 pages = sm->pages;
3420         }
3421
3422         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3423                 pgoff--;
3424
3425         if (*pages) {
3426                 struct page *page = *pages;
3427                 get_page(page);
3428                 vmf->page = page;
3429                 return 0;
3430         }
3431
3432         return VM_FAULT_SIGBUS;
3433 }
3434
3435 static struct vm_area_struct *__install_special_mapping(
3436         struct mm_struct *mm,
3437         unsigned long addr, unsigned long len,
3438         unsigned long vm_flags, void *priv,
3439         const struct vm_operations_struct *ops)
3440 {
3441         int ret;
3442         struct vm_area_struct *vma;
3443
3444         vma = vm_area_alloc(mm);
3445         if (unlikely(vma == NULL))
3446                 return ERR_PTR(-ENOMEM);
3447
3448         vma->vm_start = addr;
3449         vma->vm_end = addr + len;
3450
3451         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3452         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3453
3454         vma->vm_ops = ops;
3455         vma->vm_private_data = priv;
3456
3457         ret = insert_vm_struct(mm, vma);
3458         if (ret)
3459                 goto out;
3460
3461         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3462
3463         perf_event_mmap(vma);
3464
3465         return vma;
3466
3467 out:
3468         vm_area_free(vma);
3469         return ERR_PTR(ret);
3470 }
3471
3472 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3473         const struct vm_special_mapping *sm)
3474 {
3475         return vma->vm_private_data == sm &&
3476                 (vma->vm_ops == &special_mapping_vmops ||
3477                  vma->vm_ops == &legacy_special_mapping_vmops);
3478 }
3479
3480 /*
3481  * Called with mm->mmap_lock held for writing.
3482  * Insert a new vma covering the given region, with the given flags.
3483  * Its pages are supplied by the given array of struct page *.
3484  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3485  * The region past the last page supplied will always produce SIGBUS.
3486  * The array pointer and the pages it points to are assumed to stay alive
3487  * for as long as this mapping might exist.
3488  */
3489 struct vm_area_struct *_install_special_mapping(
3490         struct mm_struct *mm,
3491         unsigned long addr, unsigned long len,
3492         unsigned long vm_flags, const struct vm_special_mapping *spec)
3493 {
3494         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3495                                         &special_mapping_vmops);
3496 }
3497
3498 int install_special_mapping(struct mm_struct *mm,
3499                             unsigned long addr, unsigned long len,
3500                             unsigned long vm_flags, struct page **pages)
3501 {
3502         struct vm_area_struct *vma = __install_special_mapping(
3503                 mm, addr, len, vm_flags, (void *)pages,
3504                 &legacy_special_mapping_vmops);
3505
3506         return PTR_ERR_OR_ZERO(vma);
3507 }
3508
3509 static DEFINE_MUTEX(mm_all_locks_mutex);
3510
3511 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3512 {
3513         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3514                 /*
3515                  * The LSB of head.next can't change from under us
3516                  * because we hold the mm_all_locks_mutex.
3517                  */
3518                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3519                 /*
3520                  * We can safely modify head.next after taking the
3521                  * anon_vma->root->rwsem. If some other vma in this mm shares
3522                  * the same anon_vma we won't take it again.
3523                  *
3524                  * No need of atomic instructions here, head.next
3525                  * can't change from under us thanks to the
3526                  * anon_vma->root->rwsem.
3527                  */
3528                 if (__test_and_set_bit(0, (unsigned long *)
3529                                        &anon_vma->root->rb_root.rb_root.rb_node))
3530                         BUG();
3531         }
3532 }
3533
3534 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3535 {
3536         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3537                 /*
3538                  * AS_MM_ALL_LOCKS can't change from under us because
3539                  * we hold the mm_all_locks_mutex.
3540                  *
3541                  * Operations on ->flags have to be atomic because
3542                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3543                  * mm_all_locks_mutex, there may be other cpus
3544                  * changing other bitflags in parallel to us.
3545                  */
3546                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3547                         BUG();
3548                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3549         }
3550 }
3551
3552 /*
3553  * This operation locks against the VM for all pte/vma/mm related
3554  * operations that could ever happen on a certain mm. This includes
3555  * vmtruncate, try_to_unmap, and all page faults.
3556  *
3557  * The caller must take the mmap_lock in write mode before calling
3558  * mm_take_all_locks(). The caller isn't allowed to release the
3559  * mmap_lock until mm_drop_all_locks() returns.
3560  *
3561  * mmap_lock in write mode is required in order to block all operations
3562  * that could modify pagetables and free pages without need of
3563  * altering the vma layout. It's also needed in write mode to avoid new
3564  * anon_vmas to be associated with existing vmas.
3565  *
3566  * A single task can't take more than one mm_take_all_locks() in a row
3567  * or it would deadlock.
3568  *
3569  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3570  * mapping->flags avoid to take the same lock twice, if more than one
3571  * vma in this mm is backed by the same anon_vma or address_space.
3572  *
3573  * We take locks in following order, accordingly to comment at beginning
3574  * of mm/rmap.c:
3575  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3576  *     hugetlb mapping);
3577  *   - all i_mmap_rwsem locks;
3578  *   - all anon_vma->rwseml
3579  *
3580  * We can take all locks within these types randomly because the VM code
3581  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3582  * mm_all_locks_mutex.
3583  *
3584  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3585  * that may have to take thousand of locks.
3586  *
3587  * mm_take_all_locks() can fail if it's interrupted by signals.
3588  */
3589 int mm_take_all_locks(struct mm_struct *mm)
3590 {
3591         struct vm_area_struct *vma;
3592         struct anon_vma_chain *avc;
3593
3594         BUG_ON(mmap_read_trylock(mm));
3595
3596         mutex_lock(&mm_all_locks_mutex);
3597
3598         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3599                 if (signal_pending(current))
3600                         goto out_unlock;
3601                 if (vma->vm_file && vma->vm_file->f_mapping &&
3602                                 is_vm_hugetlb_page(vma))
3603                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3604         }
3605
3606         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3607                 if (signal_pending(current))
3608                         goto out_unlock;
3609                 if (vma->vm_file && vma->vm_file->f_mapping &&
3610                                 !is_vm_hugetlb_page(vma))
3611                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3612         }
3613
3614         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3615                 if (signal_pending(current))
3616                         goto out_unlock;
3617                 if (vma->anon_vma)
3618                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3619                                 vm_lock_anon_vma(mm, avc->anon_vma);
3620         }
3621
3622         return 0;
3623
3624 out_unlock:
3625         mm_drop_all_locks(mm);
3626         return -EINTR;
3627 }
3628
3629 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3630 {
3631         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3632                 /*
3633                  * The LSB of head.next can't change to 0 from under
3634                  * us because we hold the mm_all_locks_mutex.
3635                  *
3636                  * We must however clear the bitflag before unlocking
3637                  * the vma so the users using the anon_vma->rb_root will
3638                  * never see our bitflag.
3639                  *
3640                  * No need of atomic instructions here, head.next
3641                  * can't change from under us until we release the
3642                  * anon_vma->root->rwsem.
3643                  */
3644                 if (!__test_and_clear_bit(0, (unsigned long *)
3645                                           &anon_vma->root->rb_root.rb_root.rb_node))
3646                         BUG();
3647                 anon_vma_unlock_write(anon_vma);
3648         }
3649 }
3650
3651 static void vm_unlock_mapping(struct address_space *mapping)
3652 {
3653         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3654                 /*
3655                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3656                  * because we hold the mm_all_locks_mutex.
3657                  */
3658                 i_mmap_unlock_write(mapping);
3659                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3660                                         &mapping->flags))
3661                         BUG();
3662         }
3663 }
3664
3665 /*
3666  * The mmap_lock cannot be released by the caller until
3667  * mm_drop_all_locks() returns.
3668  */
3669 void mm_drop_all_locks(struct mm_struct *mm)
3670 {
3671         struct vm_area_struct *vma;
3672         struct anon_vma_chain *avc;
3673
3674         BUG_ON(mmap_read_trylock(mm));
3675         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3676
3677         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3678                 if (vma->anon_vma)
3679                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3680                                 vm_unlock_anon_vma(avc->anon_vma);
3681                 if (vma->vm_file && vma->vm_file->f_mapping)
3682                         vm_unlock_mapping(vma->vm_file->f_mapping);
3683         }
3684
3685         mutex_unlock(&mm_all_locks_mutex);
3686 }
3687
3688 /*
3689  * initialise the percpu counter for VM
3690  */
3691 void __init mmap_init(void)
3692 {
3693         int ret;
3694
3695         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3696         VM_BUG_ON(ret);
3697 }
3698
3699 /*
3700  * Initialise sysctl_user_reserve_kbytes.
3701  *
3702  * This is intended to prevent a user from starting a single memory hogging
3703  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3704  * mode.
3705  *
3706  * The default value is min(3% of free memory, 128MB)
3707  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3708  */
3709 static int init_user_reserve(void)
3710 {
3711         unsigned long free_kbytes;
3712
3713         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3714
3715         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3716         return 0;
3717 }
3718 subsys_initcall(init_user_reserve);
3719
3720 /*
3721  * Initialise sysctl_admin_reserve_kbytes.
3722  *
3723  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3724  * to log in and kill a memory hogging process.
3725  *
3726  * Systems with more than 256MB will reserve 8MB, enough to recover
3727  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3728  * only reserve 3% of free pages by default.
3729  */
3730 static int init_admin_reserve(void)
3731 {
3732         unsigned long free_kbytes;
3733
3734         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3735
3736         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3737         return 0;
3738 }
3739 subsys_initcall(init_admin_reserve);
3740
3741 /*
3742  * Reinititalise user and admin reserves if memory is added or removed.
3743  *
3744  * The default user reserve max is 128MB, and the default max for the
3745  * admin reserve is 8MB. These are usually, but not always, enough to
3746  * enable recovery from a memory hogging process using login/sshd, a shell,
3747  * and tools like top. It may make sense to increase or even disable the
3748  * reserve depending on the existence of swap or variations in the recovery
3749  * tools. So, the admin may have changed them.
3750  *
3751  * If memory is added and the reserves have been eliminated or increased above
3752  * the default max, then we'll trust the admin.
3753  *
3754  * If memory is removed and there isn't enough free memory, then we
3755  * need to reset the reserves.
3756  *
3757  * Otherwise keep the reserve set by the admin.
3758  */
3759 static int reserve_mem_notifier(struct notifier_block *nb,
3760                              unsigned long action, void *data)
3761 {
3762         unsigned long tmp, free_kbytes;
3763
3764         switch (action) {
3765         case MEM_ONLINE:
3766                 /* Default max is 128MB. Leave alone if modified by operator. */
3767                 tmp = sysctl_user_reserve_kbytes;
3768                 if (0 < tmp && tmp < (1UL << 17))
3769                         init_user_reserve();
3770
3771                 /* Default max is 8MB.  Leave alone if modified by operator. */
3772                 tmp = sysctl_admin_reserve_kbytes;
3773                 if (0 < tmp && tmp < (1UL << 13))
3774                         init_admin_reserve();
3775
3776                 break;
3777         case MEM_OFFLINE:
3778                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3779
3780                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3781                         init_user_reserve();
3782                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3783                                 sysctl_user_reserve_kbytes);
3784                 }
3785
3786                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3787                         init_admin_reserve();
3788                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3789                                 sysctl_admin_reserve_kbytes);
3790                 }
3791                 break;
3792         default:
3793                 break;
3794         }
3795         return NOTIFY_OK;
3796 }
3797
3798 static struct notifier_block reserve_mem_nb = {
3799         .notifier_call = reserve_mem_notifier,
3800 };
3801
3802 static int __meminit init_reserve_notifier(void)
3803 {
3804         if (register_hotmemory_notifier(&reserve_mem_nb))
3805                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3806
3807         return 0;
3808 }
3809 subsys_initcall(init_reserve_notifier);