mm/mmap: rename __vma_unlink_common() to __vma_unlink()
[linux-2.6-microblaze.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type     prot
88  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
89  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  *
93  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
94  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
95  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
96  */
97 pgprot_t protection_map[16] __ro_after_init = {
98         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105         return prot;
106 }
107 #endif
108
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
114
115         return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127         unsigned long vm_flags = vma->vm_flags;
128         pgprot_t vm_page_prot;
129
130         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131         if (vma_wants_writenotify(vma, vm_page_prot)) {
132                 vm_flags &= ~VM_SHARED;
133                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134         }
135         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138
139 /*
140  * Requires inode->i_mapping->i_mmap_rwsem
141  */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143                 struct file *file, struct address_space *mapping)
144 {
145         if (vma->vm_flags & VM_DENYWRITE)
146                 atomic_inc(&file_inode(file)->i_writecount);
147         if (vma->vm_flags & VM_SHARED)
148                 mapping_unmap_writable(mapping);
149
150         flush_dcache_mmap_lock(mapping);
151         vma_interval_tree_remove(vma, &mapping->i_mmap);
152         flush_dcache_mmap_unlock(mapping);
153 }
154
155 /*
156  * Unlink a file-based vm structure from its interval tree, to hide
157  * vma from rmap and vmtruncate before freeing its page tables.
158  */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161         struct file *file = vma->vm_file;
162
163         if (file) {
164                 struct address_space *mapping = file->f_mapping;
165                 i_mmap_lock_write(mapping);
166                 __remove_shared_vm_struct(vma, file, mapping);
167                 i_mmap_unlock_write(mapping);
168         }
169 }
170
171 /*
172  * Close a vm structure and free it, returning the next.
173  */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176         struct vm_area_struct *next = vma->vm_next;
177
178         might_sleep();
179         if (vma->vm_ops && vma->vm_ops->close)
180                 vma->vm_ops->close(vma);
181         if (vma->vm_file)
182                 fput(vma->vm_file);
183         mpol_put(vma_policy(vma));
184         vm_area_free(vma);
185         return next;
186 }
187
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189                 struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192         unsigned long retval;
193         unsigned long newbrk, oldbrk, origbrk;
194         struct mm_struct *mm = current->mm;
195         struct vm_area_struct *next;
196         unsigned long min_brk;
197         bool populate;
198         bool downgraded = false;
199         LIST_HEAD(uf);
200
201         if (mmap_write_lock_killable(mm))
202                 return -EINTR;
203
204         origbrk = mm->brk;
205
206 #ifdef CONFIG_COMPAT_BRK
207         /*
208          * CONFIG_COMPAT_BRK can still be overridden by setting
209          * randomize_va_space to 2, which will still cause mm->start_brk
210          * to be arbitrarily shifted
211          */
212         if (current->brk_randomized)
213                 min_brk = mm->start_brk;
214         else
215                 min_brk = mm->end_data;
216 #else
217         min_brk = mm->start_brk;
218 #endif
219         if (brk < min_brk)
220                 goto out;
221
222         /*
223          * Check against rlimit here. If this check is done later after the test
224          * of oldbrk with newbrk then it can escape the test and let the data
225          * segment grow beyond its set limit the in case where the limit is
226          * not page aligned -Ram Gupta
227          */
228         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229                               mm->end_data, mm->start_data))
230                 goto out;
231
232         newbrk = PAGE_ALIGN(brk);
233         oldbrk = PAGE_ALIGN(mm->brk);
234         if (oldbrk == newbrk) {
235                 mm->brk = brk;
236                 goto success;
237         }
238
239         /*
240          * Always allow shrinking brk.
241          * __do_munmap() may downgrade mmap_lock to read.
242          */
243         if (brk <= mm->brk) {
244                 int ret;
245
246                 /*
247                  * mm->brk must to be protected by write mmap_lock so update it
248                  * before downgrading mmap_lock. When __do_munmap() fails,
249                  * mm->brk will be restored from origbrk.
250                  */
251                 mm->brk = brk;
252                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253                 if (ret < 0) {
254                         mm->brk = origbrk;
255                         goto out;
256                 } else if (ret == 1) {
257                         downgraded = true;
258                 }
259                 goto success;
260         }
261
262         /* Check against existing mmap mappings. */
263         next = find_vma(mm, oldbrk);
264         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265                 goto out;
266
267         /* Ok, looks good - let it rip. */
268         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269                 goto out;
270         mm->brk = brk;
271
272 success:
273         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274         if (downgraded)
275                 mmap_read_unlock(mm);
276         else
277                 mmap_write_unlock(mm);
278         userfaultfd_unmap_complete(mm, &uf);
279         if (populate)
280                 mm_populate(oldbrk, newbrk - oldbrk);
281         return brk;
282
283 out:
284         retval = origbrk;
285         mmap_write_unlock(mm);
286         return retval;
287 }
288
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291         unsigned long gap, prev_end;
292
293         /*
294          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295          * allow two stack_guard_gaps between them here, and when choosing
296          * an unmapped area; whereas when expanding we only require one.
297          * That's a little inconsistent, but keeps the code here simpler.
298          */
299         gap = vm_start_gap(vma);
300         if (vma->vm_prev) {
301                 prev_end = vm_end_gap(vma->vm_prev);
302                 if (gap > prev_end)
303                         gap -= prev_end;
304                 else
305                         gap = 0;
306         }
307         return gap;
308 }
309
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313         unsigned long max = vma_compute_gap(vma), subtree_gap;
314         if (vma->vm_rb.rb_left) {
315                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
316                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317                 if (subtree_gap > max)
318                         max = subtree_gap;
319         }
320         if (vma->vm_rb.rb_right) {
321                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
322                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
323                 if (subtree_gap > max)
324                         max = subtree_gap;
325         }
326         return max;
327 }
328
329 static int browse_rb(struct mm_struct *mm)
330 {
331         struct rb_root *root = &mm->mm_rb;
332         int i = 0, j, bug = 0;
333         struct rb_node *nd, *pn = NULL;
334         unsigned long prev = 0, pend = 0;
335
336         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337                 struct vm_area_struct *vma;
338                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339                 if (vma->vm_start < prev) {
340                         pr_emerg("vm_start %lx < prev %lx\n",
341                                   vma->vm_start, prev);
342                         bug = 1;
343                 }
344                 if (vma->vm_start < pend) {
345                         pr_emerg("vm_start %lx < pend %lx\n",
346                                   vma->vm_start, pend);
347                         bug = 1;
348                 }
349                 if (vma->vm_start > vma->vm_end) {
350                         pr_emerg("vm_start %lx > vm_end %lx\n",
351                                   vma->vm_start, vma->vm_end);
352                         bug = 1;
353                 }
354                 spin_lock(&mm->page_table_lock);
355                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356                         pr_emerg("free gap %lx, correct %lx\n",
357                                vma->rb_subtree_gap,
358                                vma_compute_subtree_gap(vma));
359                         bug = 1;
360                 }
361                 spin_unlock(&mm->page_table_lock);
362                 i++;
363                 pn = nd;
364                 prev = vma->vm_start;
365                 pend = vma->vm_end;
366         }
367         j = 0;
368         for (nd = pn; nd; nd = rb_prev(nd))
369                 j++;
370         if (i != j) {
371                 pr_emerg("backwards %d, forwards %d\n", j, i);
372                 bug = 1;
373         }
374         return bug ? -1 : i;
375 }
376
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379         struct rb_node *nd;
380
381         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382                 struct vm_area_struct *vma;
383                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384                 VM_BUG_ON_VMA(vma != ignore &&
385                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386                         vma);
387         }
388 }
389
390 static void validate_mm(struct mm_struct *mm)
391 {
392         int bug = 0;
393         int i = 0;
394         unsigned long highest_address = 0;
395         struct vm_area_struct *vma = mm->mmap;
396
397         while (vma) {
398                 struct anon_vma *anon_vma = vma->anon_vma;
399                 struct anon_vma_chain *avc;
400
401                 if (anon_vma) {
402                         anon_vma_lock_read(anon_vma);
403                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404                                 anon_vma_interval_tree_verify(avc);
405                         anon_vma_unlock_read(anon_vma);
406                 }
407
408                 highest_address = vm_end_gap(vma);
409                 vma = vma->vm_next;
410                 i++;
411         }
412         if (i != mm->map_count) {
413                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414                 bug = 1;
415         }
416         if (highest_address != mm->highest_vm_end) {
417                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418                           mm->highest_vm_end, highest_address);
419                 bug = 1;
420         }
421         i = browse_rb(mm);
422         if (i != mm->map_count) {
423                 if (i != -1)
424                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425                 bug = 1;
426         }
427         VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435                          struct vm_area_struct, vm_rb,
436                          unsigned long, rb_subtree_gap, vma_compute_gap)
437
438 /*
439  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440  * vma->vm_prev->vm_end values changed, without modifying the vma's position
441  * in the rbtree.
442  */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445         /*
446          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447          * a callback function that does exactly what we want.
448          */
449         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453                                  struct rb_root *root)
454 {
455         /* All rb_subtree_gap values must be consistent prior to insertion */
456         validate_mm_rb(root, NULL);
457
458         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463         /*
464          * Note rb_erase_augmented is a fairly large inline function,
465          * so make sure we instantiate it only once with our desired
466          * augmented rbtree callbacks.
467          */
468         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472                                                 struct rb_root *root,
473                                                 struct vm_area_struct *ignore)
474 {
475         /*
476          * All rb_subtree_gap values must be consistent prior to erase,
477          * with the possible exception of the "next" vma being erased if
478          * next->vm_start was reduced.
479          */
480         validate_mm_rb(root, ignore);
481
482         __vma_rb_erase(vma, root);
483 }
484
485 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
486                                          struct rb_root *root)
487 {
488         /*
489          * All rb_subtree_gap values must be consistent prior to erase,
490          * with the possible exception of the vma being erased.
491          */
492         validate_mm_rb(root, vma);
493
494         __vma_rb_erase(vma, root);
495 }
496
497 /*
498  * vma has some anon_vma assigned, and is already inserted on that
499  * anon_vma's interval trees.
500  *
501  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502  * vma must be removed from the anon_vma's interval trees using
503  * anon_vma_interval_tree_pre_update_vma().
504  *
505  * After the update, the vma will be reinserted using
506  * anon_vma_interval_tree_post_update_vma().
507  *
508  * The entire update must be protected by exclusive mmap_lock and by
509  * the root anon_vma's mutex.
510  */
511 static inline void
512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 {
514         struct anon_vma_chain *avc;
515
516         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
518 }
519
520 static inline void
521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 {
523         struct anon_vma_chain *avc;
524
525         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
527 }
528
529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530                 unsigned long end, struct vm_area_struct **pprev,
531                 struct rb_node ***rb_link, struct rb_node **rb_parent)
532 {
533         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534
535         __rb_link = &mm->mm_rb.rb_node;
536         rb_prev = __rb_parent = NULL;
537
538         while (*__rb_link) {
539                 struct vm_area_struct *vma_tmp;
540
541                 __rb_parent = *__rb_link;
542                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
543
544                 if (vma_tmp->vm_end > addr) {
545                         /* Fail if an existing vma overlaps the area */
546                         if (vma_tmp->vm_start < end)
547                                 return -ENOMEM;
548                         __rb_link = &__rb_parent->rb_left;
549                 } else {
550                         rb_prev = __rb_parent;
551                         __rb_link = &__rb_parent->rb_right;
552                 }
553         }
554
555         *pprev = NULL;
556         if (rb_prev)
557                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
558         *rb_link = __rb_link;
559         *rb_parent = __rb_parent;
560         return 0;
561 }
562
563 static unsigned long count_vma_pages_range(struct mm_struct *mm,
564                 unsigned long addr, unsigned long end)
565 {
566         unsigned long nr_pages = 0;
567         struct vm_area_struct *vma;
568
569         /* Find first overlaping mapping */
570         vma = find_vma_intersection(mm, addr, end);
571         if (!vma)
572                 return 0;
573
574         nr_pages = (min(end, vma->vm_end) -
575                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
576
577         /* Iterate over the rest of the overlaps */
578         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
579                 unsigned long overlap_len;
580
581                 if (vma->vm_start > end)
582                         break;
583
584                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
585                 nr_pages += overlap_len >> PAGE_SHIFT;
586         }
587
588         return nr_pages;
589 }
590
591 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
592                 struct rb_node **rb_link, struct rb_node *rb_parent)
593 {
594         /* Update tracking information for the gap following the new vma. */
595         if (vma->vm_next)
596                 vma_gap_update(vma->vm_next);
597         else
598                 mm->highest_vm_end = vm_end_gap(vma);
599
600         /*
601          * vma->vm_prev wasn't known when we followed the rbtree to find the
602          * correct insertion point for that vma. As a result, we could not
603          * update the vma vm_rb parents rb_subtree_gap values on the way down.
604          * So, we first insert the vma with a zero rb_subtree_gap value
605          * (to be consistent with what we did on the way down), and then
606          * immediately update the gap to the correct value. Finally we
607          * rebalance the rbtree after all augmented values have been set.
608          */
609         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
610         vma->rb_subtree_gap = 0;
611         vma_gap_update(vma);
612         vma_rb_insert(vma, &mm->mm_rb);
613 }
614
615 static void __vma_link_file(struct vm_area_struct *vma)
616 {
617         struct file *file;
618
619         file = vma->vm_file;
620         if (file) {
621                 struct address_space *mapping = file->f_mapping;
622
623                 if (vma->vm_flags & VM_DENYWRITE)
624                         atomic_dec(&file_inode(file)->i_writecount);
625                 if (vma->vm_flags & VM_SHARED)
626                         atomic_inc(&mapping->i_mmap_writable);
627
628                 flush_dcache_mmap_lock(mapping);
629                 vma_interval_tree_insert(vma, &mapping->i_mmap);
630                 flush_dcache_mmap_unlock(mapping);
631         }
632 }
633
634 static void
635 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
636         struct vm_area_struct *prev, struct rb_node **rb_link,
637         struct rb_node *rb_parent)
638 {
639         __vma_link_list(mm, vma, prev);
640         __vma_link_rb(mm, vma, rb_link, rb_parent);
641 }
642
643 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
644                         struct vm_area_struct *prev, struct rb_node **rb_link,
645                         struct rb_node *rb_parent)
646 {
647         struct address_space *mapping = NULL;
648
649         if (vma->vm_file) {
650                 mapping = vma->vm_file->f_mapping;
651                 i_mmap_lock_write(mapping);
652         }
653
654         __vma_link(mm, vma, prev, rb_link, rb_parent);
655         __vma_link_file(vma);
656
657         if (mapping)
658                 i_mmap_unlock_write(mapping);
659
660         mm->map_count++;
661         validate_mm(mm);
662 }
663
664 /*
665  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
666  * mm's list and rbtree.  It has already been inserted into the interval tree.
667  */
668 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
669 {
670         struct vm_area_struct *prev;
671         struct rb_node **rb_link, *rb_parent;
672
673         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
674                            &prev, &rb_link, &rb_parent))
675                 BUG();
676         __vma_link(mm, vma, prev, rb_link, rb_parent);
677         mm->map_count++;
678 }
679
680 static __always_inline void __vma_unlink(struct mm_struct *mm,
681                                                 struct vm_area_struct *vma,
682                                                 struct vm_area_struct *ignore)
683 {
684         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
685         __vma_unlink_list(mm, vma);
686         /* Kill the cache */
687         vmacache_invalidate(mm);
688 }
689
690 /*
691  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692  * is already present in an i_mmap tree without adjusting the tree.
693  * The following helper function should be used when such adjustments
694  * are necessary.  The "insert" vma (if any) is to be inserted
695  * before we drop the necessary locks.
696  */
697 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
698         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
699         struct vm_area_struct *expand)
700 {
701         struct mm_struct *mm = vma->vm_mm;
702         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
703         struct address_space *mapping = NULL;
704         struct rb_root_cached *root = NULL;
705         struct anon_vma *anon_vma = NULL;
706         struct file *file = vma->vm_file;
707         bool start_changed = false, end_changed = false;
708         long adjust_next = 0;
709         int remove_next = 0;
710
711         if (next && !insert) {
712                 struct vm_area_struct *exporter = NULL, *importer = NULL;
713
714                 if (end >= next->vm_end) {
715                         /*
716                          * vma expands, overlapping all the next, and
717                          * perhaps the one after too (mprotect case 6).
718                          * The only other cases that gets here are
719                          * case 1, case 7 and case 8.
720                          */
721                         if (next == expand) {
722                                 /*
723                                  * The only case where we don't expand "vma"
724                                  * and we expand "next" instead is case 8.
725                                  */
726                                 VM_WARN_ON(end != next->vm_end);
727                                 /*
728                                  * remove_next == 3 means we're
729                                  * removing "vma" and that to do so we
730                                  * swapped "vma" and "next".
731                                  */
732                                 remove_next = 3;
733                                 VM_WARN_ON(file != next->vm_file);
734                                 swap(vma, next);
735                         } else {
736                                 VM_WARN_ON(expand != vma);
737                                 /*
738                                  * case 1, 6, 7, remove_next == 2 is case 6,
739                                  * remove_next == 1 is case 1 or 7.
740                                  */
741                                 remove_next = 1 + (end > next->vm_end);
742                                 VM_WARN_ON(remove_next == 2 &&
743                                            end != next->vm_next->vm_end);
744                                 /* trim end to next, for case 6 first pass */
745                                 end = next->vm_end;
746                         }
747
748                         exporter = next;
749                         importer = vma;
750
751                         /*
752                          * If next doesn't have anon_vma, import from vma after
753                          * next, if the vma overlaps with it.
754                          */
755                         if (remove_next == 2 && !next->anon_vma)
756                                 exporter = next->vm_next;
757
758                 } else if (end > next->vm_start) {
759                         /*
760                          * vma expands, overlapping part of the next:
761                          * mprotect case 5 shifting the boundary up.
762                          */
763                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
764                         exporter = next;
765                         importer = vma;
766                         VM_WARN_ON(expand != importer);
767                 } else if (end < vma->vm_end) {
768                         /*
769                          * vma shrinks, and !insert tells it's not
770                          * split_vma inserting another: so it must be
771                          * mprotect case 4 shifting the boundary down.
772                          */
773                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
774                         exporter = vma;
775                         importer = next;
776                         VM_WARN_ON(expand != importer);
777                 }
778
779                 /*
780                  * Easily overlooked: when mprotect shifts the boundary,
781                  * make sure the expanding vma has anon_vma set if the
782                  * shrinking vma had, to cover any anon pages imported.
783                  */
784                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
785                         int error;
786
787                         importer->anon_vma = exporter->anon_vma;
788                         error = anon_vma_clone(importer, exporter);
789                         if (error)
790                                 return error;
791                 }
792         }
793 again:
794         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
795
796         if (file) {
797                 mapping = file->f_mapping;
798                 root = &mapping->i_mmap;
799                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
800
801                 if (adjust_next)
802                         uprobe_munmap(next, next->vm_start, next->vm_end);
803
804                 i_mmap_lock_write(mapping);
805                 if (insert) {
806                         /*
807                          * Put into interval tree now, so instantiated pages
808                          * are visible to arm/parisc __flush_dcache_page
809                          * throughout; but we cannot insert into address
810                          * space until vma start or end is updated.
811                          */
812                         __vma_link_file(insert);
813                 }
814         }
815
816         anon_vma = vma->anon_vma;
817         if (!anon_vma && adjust_next)
818                 anon_vma = next->anon_vma;
819         if (anon_vma) {
820                 VM_WARN_ON(adjust_next && next->anon_vma &&
821                            anon_vma != next->anon_vma);
822                 anon_vma_lock_write(anon_vma);
823                 anon_vma_interval_tree_pre_update_vma(vma);
824                 if (adjust_next)
825                         anon_vma_interval_tree_pre_update_vma(next);
826         }
827
828         if (root) {
829                 flush_dcache_mmap_lock(mapping);
830                 vma_interval_tree_remove(vma, root);
831                 if (adjust_next)
832                         vma_interval_tree_remove(next, root);
833         }
834
835         if (start != vma->vm_start) {
836                 vma->vm_start = start;
837                 start_changed = true;
838         }
839         if (end != vma->vm_end) {
840                 vma->vm_end = end;
841                 end_changed = true;
842         }
843         vma->vm_pgoff = pgoff;
844         if (adjust_next) {
845                 next->vm_start += adjust_next << PAGE_SHIFT;
846                 next->vm_pgoff += adjust_next;
847         }
848
849         if (root) {
850                 if (adjust_next)
851                         vma_interval_tree_insert(next, root);
852                 vma_interval_tree_insert(vma, root);
853                 flush_dcache_mmap_unlock(mapping);
854         }
855
856         if (remove_next) {
857                 /*
858                  * vma_merge has merged next into vma, and needs
859                  * us to remove next before dropping the locks.
860                  */
861                 if (remove_next != 3)
862                         __vma_unlink(mm, next, next);
863                 else
864                         /*
865                          * vma is not before next if they've been
866                          * swapped.
867                          *
868                          * pre-swap() next->vm_start was reduced so
869                          * tell validate_mm_rb to ignore pre-swap()
870                          * "next" (which is stored in post-swap()
871                          * "vma").
872                          */
873                         __vma_unlink(mm, next, vma);
874                 if (file)
875                         __remove_shared_vm_struct(next, file, mapping);
876         } else if (insert) {
877                 /*
878                  * split_vma has split insert from vma, and needs
879                  * us to insert it before dropping the locks
880                  * (it may either follow vma or precede it).
881                  */
882                 __insert_vm_struct(mm, insert);
883         } else {
884                 if (start_changed)
885                         vma_gap_update(vma);
886                 if (end_changed) {
887                         if (!next)
888                                 mm->highest_vm_end = vm_end_gap(vma);
889                         else if (!adjust_next)
890                                 vma_gap_update(next);
891                 }
892         }
893
894         if (anon_vma) {
895                 anon_vma_interval_tree_post_update_vma(vma);
896                 if (adjust_next)
897                         anon_vma_interval_tree_post_update_vma(next);
898                 anon_vma_unlock_write(anon_vma);
899         }
900         if (mapping)
901                 i_mmap_unlock_write(mapping);
902
903         if (root) {
904                 uprobe_mmap(vma);
905
906                 if (adjust_next)
907                         uprobe_mmap(next);
908         }
909
910         if (remove_next) {
911                 if (file) {
912                         uprobe_munmap(next, next->vm_start, next->vm_end);
913                         fput(file);
914                 }
915                 if (next->anon_vma)
916                         anon_vma_merge(vma, next);
917                 mm->map_count--;
918                 mpol_put(vma_policy(next));
919                 vm_area_free(next);
920                 /*
921                  * In mprotect's case 6 (see comments on vma_merge),
922                  * we must remove another next too. It would clutter
923                  * up the code too much to do both in one go.
924                  */
925                 if (remove_next != 3) {
926                         /*
927                          * If "next" was removed and vma->vm_end was
928                          * expanded (up) over it, in turn
929                          * "next->vm_prev->vm_end" changed and the
930                          * "vma->vm_next" gap must be updated.
931                          */
932                         next = vma->vm_next;
933                 } else {
934                         /*
935                          * For the scope of the comment "next" and
936                          * "vma" considered pre-swap(): if "vma" was
937                          * removed, next->vm_start was expanded (down)
938                          * over it and the "next" gap must be updated.
939                          * Because of the swap() the post-swap() "vma"
940                          * actually points to pre-swap() "next"
941                          * (post-swap() "next" as opposed is now a
942                          * dangling pointer).
943                          */
944                         next = vma;
945                 }
946                 if (remove_next == 2) {
947                         remove_next = 1;
948                         end = next->vm_end;
949                         goto again;
950                 }
951                 else if (next)
952                         vma_gap_update(next);
953                 else {
954                         /*
955                          * If remove_next == 2 we obviously can't
956                          * reach this path.
957                          *
958                          * If remove_next == 3 we can't reach this
959                          * path because pre-swap() next is always not
960                          * NULL. pre-swap() "next" is not being
961                          * removed and its next->vm_end is not altered
962                          * (and furthermore "end" already matches
963                          * next->vm_end in remove_next == 3).
964                          *
965                          * We reach this only in the remove_next == 1
966                          * case if the "next" vma that was removed was
967                          * the highest vma of the mm. However in such
968                          * case next->vm_end == "end" and the extended
969                          * "vma" has vma->vm_end == next->vm_end so
970                          * mm->highest_vm_end doesn't need any update
971                          * in remove_next == 1 case.
972                          */
973                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
974                 }
975         }
976         if (insert && file)
977                 uprobe_mmap(insert);
978
979         validate_mm(mm);
980
981         return 0;
982 }
983
984 /*
985  * If the vma has a ->close operation then the driver probably needs to release
986  * per-vma resources, so we don't attempt to merge those.
987  */
988 static inline int is_mergeable_vma(struct vm_area_struct *vma,
989                                 struct file *file, unsigned long vm_flags,
990                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
991 {
992         /*
993          * VM_SOFTDIRTY should not prevent from VMA merging, if we
994          * match the flags but dirty bit -- the caller should mark
995          * merged VMA as dirty. If dirty bit won't be excluded from
996          * comparison, we increase pressure on the memory system forcing
997          * the kernel to generate new VMAs when old one could be
998          * extended instead.
999          */
1000         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1001                 return 0;
1002         if (vma->vm_file != file)
1003                 return 0;
1004         if (vma->vm_ops && vma->vm_ops->close)
1005                 return 0;
1006         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1007                 return 0;
1008         return 1;
1009 }
1010
1011 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1012                                         struct anon_vma *anon_vma2,
1013                                         struct vm_area_struct *vma)
1014 {
1015         /*
1016          * The list_is_singular() test is to avoid merging VMA cloned from
1017          * parents. This can improve scalability caused by anon_vma lock.
1018          */
1019         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1020                 list_is_singular(&vma->anon_vma_chain)))
1021                 return 1;
1022         return anon_vma1 == anon_vma2;
1023 }
1024
1025 /*
1026  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1027  * in front of (at a lower virtual address and file offset than) the vma.
1028  *
1029  * We cannot merge two vmas if they have differently assigned (non-NULL)
1030  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1031  *
1032  * We don't check here for the merged mmap wrapping around the end of pagecache
1033  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1034  * wrap, nor mmaps which cover the final page at index -1UL.
1035  */
1036 static int
1037 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1038                      struct anon_vma *anon_vma, struct file *file,
1039                      pgoff_t vm_pgoff,
1040                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1041 {
1042         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1043             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1044                 if (vma->vm_pgoff == vm_pgoff)
1045                         return 1;
1046         }
1047         return 0;
1048 }
1049
1050 /*
1051  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1052  * beyond (at a higher virtual address and file offset than) the vma.
1053  *
1054  * We cannot merge two vmas if they have differently assigned (non-NULL)
1055  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1056  */
1057 static int
1058 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1059                     struct anon_vma *anon_vma, struct file *file,
1060                     pgoff_t vm_pgoff,
1061                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1062 {
1063         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1064             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1065                 pgoff_t vm_pglen;
1066                 vm_pglen = vma_pages(vma);
1067                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1068                         return 1;
1069         }
1070         return 0;
1071 }
1072
1073 /*
1074  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1075  * whether that can be merged with its predecessor or its successor.
1076  * Or both (it neatly fills a hole).
1077  *
1078  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1079  * certain not to be mapped by the time vma_merge is called; but when
1080  * called for mprotect, it is certain to be already mapped (either at
1081  * an offset within prev, or at the start of next), and the flags of
1082  * this area are about to be changed to vm_flags - and the no-change
1083  * case has already been eliminated.
1084  *
1085  * The following mprotect cases have to be considered, where AAAA is
1086  * the area passed down from mprotect_fixup, never extending beyond one
1087  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1088  *
1089  *     AAAA             AAAA                   AAAA
1090  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1091  *    cannot merge    might become       might become
1092  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1093  *    mmap, brk or    case 4 below       case 5 below
1094  *    mremap move:
1095  *                        AAAA               AAAA
1096  *                    PPPP    NNNN       PPPPNNNNXXXX
1097  *                    might become       might become
1098  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1099  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1100  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1101  *
1102  * It is important for case 8 that the vma NNNN overlapping the
1103  * region AAAA is never going to extended over XXXX. Instead XXXX must
1104  * be extended in region AAAA and NNNN must be removed. This way in
1105  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1106  * rmap_locks, the properties of the merged vma will be already
1107  * correct for the whole merged range. Some of those properties like
1108  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1109  * be correct for the whole merged range immediately after the
1110  * rmap_locks are released. Otherwise if XXXX would be removed and
1111  * NNNN would be extended over the XXXX range, remove_migration_ptes
1112  * or other rmap walkers (if working on addresses beyond the "end"
1113  * parameter) may establish ptes with the wrong permissions of NNNN
1114  * instead of the right permissions of XXXX.
1115  */
1116 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1117                         struct vm_area_struct *prev, unsigned long addr,
1118                         unsigned long end, unsigned long vm_flags,
1119                         struct anon_vma *anon_vma, struct file *file,
1120                         pgoff_t pgoff, struct mempolicy *policy,
1121                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1122 {
1123         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1124         struct vm_area_struct *area, *next;
1125         int err;
1126
1127         /*
1128          * We later require that vma->vm_flags == vm_flags,
1129          * so this tests vma->vm_flags & VM_SPECIAL, too.
1130          */
1131         if (vm_flags & VM_SPECIAL)
1132                 return NULL;
1133
1134         if (prev)
1135                 next = prev->vm_next;
1136         else
1137                 next = mm->mmap;
1138         area = next;
1139         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1140                 next = next->vm_next;
1141
1142         /* verify some invariant that must be enforced by the caller */
1143         VM_WARN_ON(prev && addr <= prev->vm_start);
1144         VM_WARN_ON(area && end > area->vm_end);
1145         VM_WARN_ON(addr >= end);
1146
1147         /*
1148          * Can it merge with the predecessor?
1149          */
1150         if (prev && prev->vm_end == addr &&
1151                         mpol_equal(vma_policy(prev), policy) &&
1152                         can_vma_merge_after(prev, vm_flags,
1153                                             anon_vma, file, pgoff,
1154                                             vm_userfaultfd_ctx)) {
1155                 /*
1156                  * OK, it can.  Can we now merge in the successor as well?
1157                  */
1158                 if (next && end == next->vm_start &&
1159                                 mpol_equal(policy, vma_policy(next)) &&
1160                                 can_vma_merge_before(next, vm_flags,
1161                                                      anon_vma, file,
1162                                                      pgoff+pglen,
1163                                                      vm_userfaultfd_ctx) &&
1164                                 is_mergeable_anon_vma(prev->anon_vma,
1165                                                       next->anon_vma, NULL)) {
1166                                                         /* cases 1, 6 */
1167                         err = __vma_adjust(prev, prev->vm_start,
1168                                          next->vm_end, prev->vm_pgoff, NULL,
1169                                          prev);
1170                 } else                                  /* cases 2, 5, 7 */
1171                         err = __vma_adjust(prev, prev->vm_start,
1172                                          end, prev->vm_pgoff, NULL, prev);
1173                 if (err)
1174                         return NULL;
1175                 khugepaged_enter_vma_merge(prev, vm_flags);
1176                 return prev;
1177         }
1178
1179         /*
1180          * Can this new request be merged in front of next?
1181          */
1182         if (next && end == next->vm_start &&
1183                         mpol_equal(policy, vma_policy(next)) &&
1184                         can_vma_merge_before(next, vm_flags,
1185                                              anon_vma, file, pgoff+pglen,
1186                                              vm_userfaultfd_ctx)) {
1187                 if (prev && addr < prev->vm_end)        /* case 4 */
1188                         err = __vma_adjust(prev, prev->vm_start,
1189                                          addr, prev->vm_pgoff, NULL, next);
1190                 else {                                  /* cases 3, 8 */
1191                         err = __vma_adjust(area, addr, next->vm_end,
1192                                          next->vm_pgoff - pglen, NULL, next);
1193                         /*
1194                          * In case 3 area is already equal to next and
1195                          * this is a noop, but in case 8 "area" has
1196                          * been removed and next was expanded over it.
1197                          */
1198                         area = next;
1199                 }
1200                 if (err)
1201                         return NULL;
1202                 khugepaged_enter_vma_merge(area, vm_flags);
1203                 return area;
1204         }
1205
1206         return NULL;
1207 }
1208
1209 /*
1210  * Rough compatibility check to quickly see if it's even worth looking
1211  * at sharing an anon_vma.
1212  *
1213  * They need to have the same vm_file, and the flags can only differ
1214  * in things that mprotect may change.
1215  *
1216  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1217  * we can merge the two vma's. For example, we refuse to merge a vma if
1218  * there is a vm_ops->close() function, because that indicates that the
1219  * driver is doing some kind of reference counting. But that doesn't
1220  * really matter for the anon_vma sharing case.
1221  */
1222 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1223 {
1224         return a->vm_end == b->vm_start &&
1225                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1226                 a->vm_file == b->vm_file &&
1227                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1228                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1229 }
1230
1231 /*
1232  * Do some basic sanity checking to see if we can re-use the anon_vma
1233  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1234  * the same as 'old', the other will be the new one that is trying
1235  * to share the anon_vma.
1236  *
1237  * NOTE! This runs with mm_sem held for reading, so it is possible that
1238  * the anon_vma of 'old' is concurrently in the process of being set up
1239  * by another page fault trying to merge _that_. But that's ok: if it
1240  * is being set up, that automatically means that it will be a singleton
1241  * acceptable for merging, so we can do all of this optimistically. But
1242  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1243  *
1244  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1245  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1246  * is to return an anon_vma that is "complex" due to having gone through
1247  * a fork).
1248  *
1249  * We also make sure that the two vma's are compatible (adjacent,
1250  * and with the same memory policies). That's all stable, even with just
1251  * a read lock on the mm_sem.
1252  */
1253 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1254 {
1255         if (anon_vma_compatible(a, b)) {
1256                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1257
1258                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1259                         return anon_vma;
1260         }
1261         return NULL;
1262 }
1263
1264 /*
1265  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1266  * neighbouring vmas for a suitable anon_vma, before it goes off
1267  * to allocate a new anon_vma.  It checks because a repetitive
1268  * sequence of mprotects and faults may otherwise lead to distinct
1269  * anon_vmas being allocated, preventing vma merge in subsequent
1270  * mprotect.
1271  */
1272 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1273 {
1274         struct anon_vma *anon_vma = NULL;
1275
1276         /* Try next first. */
1277         if (vma->vm_next) {
1278                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1279                 if (anon_vma)
1280                         return anon_vma;
1281         }
1282
1283         /* Try prev next. */
1284         if (vma->vm_prev)
1285                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1286
1287         /*
1288          * We might reach here with anon_vma == NULL if we can't find
1289          * any reusable anon_vma.
1290          * There's no absolute need to look only at touching neighbours:
1291          * we could search further afield for "compatible" anon_vmas.
1292          * But it would probably just be a waste of time searching,
1293          * or lead to too many vmas hanging off the same anon_vma.
1294          * We're trying to allow mprotect remerging later on,
1295          * not trying to minimize memory used for anon_vmas.
1296          */
1297         return anon_vma;
1298 }
1299
1300 /*
1301  * If a hint addr is less than mmap_min_addr change hint to be as
1302  * low as possible but still greater than mmap_min_addr
1303  */
1304 static inline unsigned long round_hint_to_min(unsigned long hint)
1305 {
1306         hint &= PAGE_MASK;
1307         if (((void *)hint != NULL) &&
1308             (hint < mmap_min_addr))
1309                 return PAGE_ALIGN(mmap_min_addr);
1310         return hint;
1311 }
1312
1313 static inline int mlock_future_check(struct mm_struct *mm,
1314                                      unsigned long flags,
1315                                      unsigned long len)
1316 {
1317         unsigned long locked, lock_limit;
1318
1319         /*  mlock MCL_FUTURE? */
1320         if (flags & VM_LOCKED) {
1321                 locked = len >> PAGE_SHIFT;
1322                 locked += mm->locked_vm;
1323                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1324                 lock_limit >>= PAGE_SHIFT;
1325                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1326                         return -EAGAIN;
1327         }
1328         return 0;
1329 }
1330
1331 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1332 {
1333         if (S_ISREG(inode->i_mode))
1334                 return MAX_LFS_FILESIZE;
1335
1336         if (S_ISBLK(inode->i_mode))
1337                 return MAX_LFS_FILESIZE;
1338
1339         if (S_ISSOCK(inode->i_mode))
1340                 return MAX_LFS_FILESIZE;
1341
1342         /* Special "we do even unsigned file positions" case */
1343         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1344                 return 0;
1345
1346         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1347         return ULONG_MAX;
1348 }
1349
1350 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1351                                 unsigned long pgoff, unsigned long len)
1352 {
1353         u64 maxsize = file_mmap_size_max(file, inode);
1354
1355         if (maxsize && len > maxsize)
1356                 return false;
1357         maxsize -= len;
1358         if (pgoff > maxsize >> PAGE_SHIFT)
1359                 return false;
1360         return true;
1361 }
1362
1363 /*
1364  * The caller must write-lock current->mm->mmap_lock.
1365  */
1366 unsigned long do_mmap(struct file *file, unsigned long addr,
1367                         unsigned long len, unsigned long prot,
1368                         unsigned long flags, unsigned long pgoff,
1369                         unsigned long *populate, struct list_head *uf)
1370 {
1371         struct mm_struct *mm = current->mm;
1372         vm_flags_t vm_flags;
1373         int pkey = 0;
1374
1375         *populate = 0;
1376
1377         if (!len)
1378                 return -EINVAL;
1379
1380         /*
1381          * Does the application expect PROT_READ to imply PROT_EXEC?
1382          *
1383          * (the exception is when the underlying filesystem is noexec
1384          *  mounted, in which case we dont add PROT_EXEC.)
1385          */
1386         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1387                 if (!(file && path_noexec(&file->f_path)))
1388                         prot |= PROT_EXEC;
1389
1390         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1391         if (flags & MAP_FIXED_NOREPLACE)
1392                 flags |= MAP_FIXED;
1393
1394         if (!(flags & MAP_FIXED))
1395                 addr = round_hint_to_min(addr);
1396
1397         /* Careful about overflows.. */
1398         len = PAGE_ALIGN(len);
1399         if (!len)
1400                 return -ENOMEM;
1401
1402         /* offset overflow? */
1403         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1404                 return -EOVERFLOW;
1405
1406         /* Too many mappings? */
1407         if (mm->map_count > sysctl_max_map_count)
1408                 return -ENOMEM;
1409
1410         /* Obtain the address to map to. we verify (or select) it and ensure
1411          * that it represents a valid section of the address space.
1412          */
1413         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1414         if (IS_ERR_VALUE(addr))
1415                 return addr;
1416
1417         if (flags & MAP_FIXED_NOREPLACE) {
1418                 struct vm_area_struct *vma = find_vma(mm, addr);
1419
1420                 if (vma && vma->vm_start < addr + len)
1421                         return -EEXIST;
1422         }
1423
1424         if (prot == PROT_EXEC) {
1425                 pkey = execute_only_pkey(mm);
1426                 if (pkey < 0)
1427                         pkey = 0;
1428         }
1429
1430         /* Do simple checking here so the lower-level routines won't have
1431          * to. we assume access permissions have been handled by the open
1432          * of the memory object, so we don't do any here.
1433          */
1434         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1435                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1436
1437         if (flags & MAP_LOCKED)
1438                 if (!can_do_mlock())
1439                         return -EPERM;
1440
1441         if (mlock_future_check(mm, vm_flags, len))
1442                 return -EAGAIN;
1443
1444         if (file) {
1445                 struct inode *inode = file_inode(file);
1446                 unsigned long flags_mask;
1447
1448                 if (!file_mmap_ok(file, inode, pgoff, len))
1449                         return -EOVERFLOW;
1450
1451                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1452
1453                 switch (flags & MAP_TYPE) {
1454                 case MAP_SHARED:
1455                         /*
1456                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1457                          * flags. E.g. MAP_SYNC is dangerous to use with
1458                          * MAP_SHARED as you don't know which consistency model
1459                          * you will get. We silently ignore unsupported flags
1460                          * with MAP_SHARED to preserve backward compatibility.
1461                          */
1462                         flags &= LEGACY_MAP_MASK;
1463                         fallthrough;
1464                 case MAP_SHARED_VALIDATE:
1465                         if (flags & ~flags_mask)
1466                                 return -EOPNOTSUPP;
1467                         if (prot & PROT_WRITE) {
1468                                 if (!(file->f_mode & FMODE_WRITE))
1469                                         return -EACCES;
1470                                 if (IS_SWAPFILE(file->f_mapping->host))
1471                                         return -ETXTBSY;
1472                         }
1473
1474                         /*
1475                          * Make sure we don't allow writing to an append-only
1476                          * file..
1477                          */
1478                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1479                                 return -EACCES;
1480
1481                         /*
1482                          * Make sure there are no mandatory locks on the file.
1483                          */
1484                         if (locks_verify_locked(file))
1485                                 return -EAGAIN;
1486
1487                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1488                         if (!(file->f_mode & FMODE_WRITE))
1489                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1490                         fallthrough;
1491                 case MAP_PRIVATE:
1492                         if (!(file->f_mode & FMODE_READ))
1493                                 return -EACCES;
1494                         if (path_noexec(&file->f_path)) {
1495                                 if (vm_flags & VM_EXEC)
1496                                         return -EPERM;
1497                                 vm_flags &= ~VM_MAYEXEC;
1498                         }
1499
1500                         if (!file->f_op->mmap)
1501                                 return -ENODEV;
1502                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503                                 return -EINVAL;
1504                         break;
1505
1506                 default:
1507                         return -EINVAL;
1508                 }
1509         } else {
1510                 switch (flags & MAP_TYPE) {
1511                 case MAP_SHARED:
1512                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1513                                 return -EINVAL;
1514                         /*
1515                          * Ignore pgoff.
1516                          */
1517                         pgoff = 0;
1518                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1519                         break;
1520                 case MAP_PRIVATE:
1521                         /*
1522                          * Set pgoff according to addr for anon_vma.
1523                          */
1524                         pgoff = addr >> PAGE_SHIFT;
1525                         break;
1526                 default:
1527                         return -EINVAL;
1528                 }
1529         }
1530
1531         /*
1532          * Set 'VM_NORESERVE' if we should not account for the
1533          * memory use of this mapping.
1534          */
1535         if (flags & MAP_NORESERVE) {
1536                 /* We honor MAP_NORESERVE if allowed to overcommit */
1537                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1538                         vm_flags |= VM_NORESERVE;
1539
1540                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541                 if (file && is_file_hugepages(file))
1542                         vm_flags |= VM_NORESERVE;
1543         }
1544
1545         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1546         if (!IS_ERR_VALUE(addr) &&
1547             ((vm_flags & VM_LOCKED) ||
1548              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1549                 *populate = len;
1550         return addr;
1551 }
1552
1553 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1554                               unsigned long prot, unsigned long flags,
1555                               unsigned long fd, unsigned long pgoff)
1556 {
1557         struct file *file = NULL;
1558         unsigned long retval;
1559
1560         if (!(flags & MAP_ANONYMOUS)) {
1561                 audit_mmap_fd(fd, flags);
1562                 file = fget(fd);
1563                 if (!file)
1564                         return -EBADF;
1565                 if (is_file_hugepages(file)) {
1566                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1567                 } else if (unlikely(flags & MAP_HUGETLB)) {
1568                         retval = -EINVAL;
1569                         goto out_fput;
1570                 }
1571         } else if (flags & MAP_HUGETLB) {
1572                 struct user_struct *user = NULL;
1573                 struct hstate *hs;
1574
1575                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1576                 if (!hs)
1577                         return -EINVAL;
1578
1579                 len = ALIGN(len, huge_page_size(hs));
1580                 /*
1581                  * VM_NORESERVE is used because the reservations will be
1582                  * taken when vm_ops->mmap() is called
1583                  * A dummy user value is used because we are not locking
1584                  * memory so no accounting is necessary
1585                  */
1586                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1587                                 VM_NORESERVE,
1588                                 &user, HUGETLB_ANONHUGE_INODE,
1589                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1590                 if (IS_ERR(file))
1591                         return PTR_ERR(file);
1592         }
1593
1594         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1595
1596         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1597 out_fput:
1598         if (file)
1599                 fput(file);
1600         return retval;
1601 }
1602
1603 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1604                 unsigned long, prot, unsigned long, flags,
1605                 unsigned long, fd, unsigned long, pgoff)
1606 {
1607         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1608 }
1609
1610 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1611 struct mmap_arg_struct {
1612         unsigned long addr;
1613         unsigned long len;
1614         unsigned long prot;
1615         unsigned long flags;
1616         unsigned long fd;
1617         unsigned long offset;
1618 };
1619
1620 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1621 {
1622         struct mmap_arg_struct a;
1623
1624         if (copy_from_user(&a, arg, sizeof(a)))
1625                 return -EFAULT;
1626         if (offset_in_page(a.offset))
1627                 return -EINVAL;
1628
1629         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1630                                a.offset >> PAGE_SHIFT);
1631 }
1632 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1633
1634 /*
1635  * Some shared mappings will want the pages marked read-only
1636  * to track write events. If so, we'll downgrade vm_page_prot
1637  * to the private version (using protection_map[] without the
1638  * VM_SHARED bit).
1639  */
1640 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1641 {
1642         vm_flags_t vm_flags = vma->vm_flags;
1643         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1644
1645         /* If it was private or non-writable, the write bit is already clear */
1646         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1647                 return 0;
1648
1649         /* The backer wishes to know when pages are first written to? */
1650         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1651                 return 1;
1652
1653         /* The open routine did something to the protections that pgprot_modify
1654          * won't preserve? */
1655         if (pgprot_val(vm_page_prot) !=
1656             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1657                 return 0;
1658
1659         /* Do we need to track softdirty? */
1660         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1661                 return 1;
1662
1663         /* Specialty mapping? */
1664         if (vm_flags & VM_PFNMAP)
1665                 return 0;
1666
1667         /* Can the mapping track the dirty pages? */
1668         return vma->vm_file && vma->vm_file->f_mapping &&
1669                 mapping_can_writeback(vma->vm_file->f_mapping);
1670 }
1671
1672 /*
1673  * We account for memory if it's a private writeable mapping,
1674  * not hugepages and VM_NORESERVE wasn't set.
1675  */
1676 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1677 {
1678         /*
1679          * hugetlb has its own accounting separate from the core VM
1680          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1681          */
1682         if (file && is_file_hugepages(file))
1683                 return 0;
1684
1685         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1686 }
1687
1688 unsigned long mmap_region(struct file *file, unsigned long addr,
1689                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1690                 struct list_head *uf)
1691 {
1692         struct mm_struct *mm = current->mm;
1693         struct vm_area_struct *vma, *prev, *merge;
1694         int error;
1695         struct rb_node **rb_link, *rb_parent;
1696         unsigned long charged = 0;
1697
1698         /* Check against address space limit. */
1699         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1700                 unsigned long nr_pages;
1701
1702                 /*
1703                  * MAP_FIXED may remove pages of mappings that intersects with
1704                  * requested mapping. Account for the pages it would unmap.
1705                  */
1706                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1707
1708                 if (!may_expand_vm(mm, vm_flags,
1709                                         (len >> PAGE_SHIFT) - nr_pages))
1710                         return -ENOMEM;
1711         }
1712
1713         /* Clear old maps */
1714         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1715                               &rb_parent)) {
1716                 if (do_munmap(mm, addr, len, uf))
1717                         return -ENOMEM;
1718         }
1719
1720         /*
1721          * Private writable mapping: check memory availability
1722          */
1723         if (accountable_mapping(file, vm_flags)) {
1724                 charged = len >> PAGE_SHIFT;
1725                 if (security_vm_enough_memory_mm(mm, charged))
1726                         return -ENOMEM;
1727                 vm_flags |= VM_ACCOUNT;
1728         }
1729
1730         /*
1731          * Can we just expand an old mapping?
1732          */
1733         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1734                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1735         if (vma)
1736                 goto out;
1737
1738         /*
1739          * Determine the object being mapped and call the appropriate
1740          * specific mapper. the address has already been validated, but
1741          * not unmapped, but the maps are removed from the list.
1742          */
1743         vma = vm_area_alloc(mm);
1744         if (!vma) {
1745                 error = -ENOMEM;
1746                 goto unacct_error;
1747         }
1748
1749         vma->vm_start = addr;
1750         vma->vm_end = addr + len;
1751         vma->vm_flags = vm_flags;
1752         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1753         vma->vm_pgoff = pgoff;
1754
1755         if (file) {
1756                 if (vm_flags & VM_DENYWRITE) {
1757                         error = deny_write_access(file);
1758                         if (error)
1759                                 goto free_vma;
1760                 }
1761                 if (vm_flags & VM_SHARED) {
1762                         error = mapping_map_writable(file->f_mapping);
1763                         if (error)
1764                                 goto allow_write_and_free_vma;
1765                 }
1766
1767                 /* ->mmap() can change vma->vm_file, but must guarantee that
1768                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1769                  * and map writably if VM_SHARED is set. This usually means the
1770                  * new file must not have been exposed to user-space, yet.
1771                  */
1772                 vma->vm_file = get_file(file);
1773                 error = call_mmap(file, vma);
1774                 if (error)
1775                         goto unmap_and_free_vma;
1776
1777                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1778                  * as we may succeed this time.
1779                  */
1780                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1781                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1782                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1783                         if (merge) {
1784                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1785                                  * fput the vma->vm_file here or we would add an extra fput for file
1786                                  * and cause general protection fault ultimately.
1787                                  */
1788                                 fput(vma->vm_file);
1789                                 vm_area_free(vma);
1790                                 vma = merge;
1791                                 /* Update vm_flags and possible addr to pick up the change. We don't
1792                                  * warn here if addr changed as the vma is not linked by vma_link().
1793                                  */
1794                                 addr = vma->vm_start;
1795                                 vm_flags = vma->vm_flags;
1796                                 goto unmap_writable;
1797                         }
1798                 }
1799
1800                 /* Can addr have changed??
1801                  *
1802                  * Answer: Yes, several device drivers can do it in their
1803                  *         f_op->mmap method. -DaveM
1804                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1805                  *      be updated for vma_link()
1806                  */
1807                 WARN_ON_ONCE(addr != vma->vm_start);
1808
1809                 addr = vma->vm_start;
1810                 vm_flags = vma->vm_flags;
1811         } else if (vm_flags & VM_SHARED) {
1812                 error = shmem_zero_setup(vma);
1813                 if (error)
1814                         goto free_vma;
1815         } else {
1816                 vma_set_anonymous(vma);
1817         }
1818
1819         /* Allow architectures to sanity-check the vm_flags */
1820         if (!arch_validate_flags(vma->vm_flags)) {
1821                 error = -EINVAL;
1822                 if (file)
1823                         goto unmap_and_free_vma;
1824                 else
1825                         goto free_vma;
1826         }
1827
1828         vma_link(mm, vma, prev, rb_link, rb_parent);
1829         /* Once vma denies write, undo our temporary denial count */
1830         if (file) {
1831 unmap_writable:
1832                 if (vm_flags & VM_SHARED)
1833                         mapping_unmap_writable(file->f_mapping);
1834                 if (vm_flags & VM_DENYWRITE)
1835                         allow_write_access(file);
1836         }
1837         file = vma->vm_file;
1838 out:
1839         perf_event_mmap(vma);
1840
1841         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1842         if (vm_flags & VM_LOCKED) {
1843                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1844                                         is_vm_hugetlb_page(vma) ||
1845                                         vma == get_gate_vma(current->mm))
1846                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1847                 else
1848                         mm->locked_vm += (len >> PAGE_SHIFT);
1849         }
1850
1851         if (file)
1852                 uprobe_mmap(vma);
1853
1854         /*
1855          * New (or expanded) vma always get soft dirty status.
1856          * Otherwise user-space soft-dirty page tracker won't
1857          * be able to distinguish situation when vma area unmapped,
1858          * then new mapped in-place (which must be aimed as
1859          * a completely new data area).
1860          */
1861         vma->vm_flags |= VM_SOFTDIRTY;
1862
1863         vma_set_page_prot(vma);
1864
1865         return addr;
1866
1867 unmap_and_free_vma:
1868         vma->vm_file = NULL;
1869         fput(file);
1870
1871         /* Undo any partial mapping done by a device driver. */
1872         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1873         charged = 0;
1874         if (vm_flags & VM_SHARED)
1875                 mapping_unmap_writable(file->f_mapping);
1876 allow_write_and_free_vma:
1877         if (vm_flags & VM_DENYWRITE)
1878                 allow_write_access(file);
1879 free_vma:
1880         vm_area_free(vma);
1881 unacct_error:
1882         if (charged)
1883                 vm_unacct_memory(charged);
1884         return error;
1885 }
1886
1887 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1888 {
1889         /*
1890          * We implement the search by looking for an rbtree node that
1891          * immediately follows a suitable gap. That is,
1892          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1893          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1894          * - gap_end - gap_start >= length
1895          */
1896
1897         struct mm_struct *mm = current->mm;
1898         struct vm_area_struct *vma;
1899         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1900
1901         /* Adjust search length to account for worst case alignment overhead */
1902         length = info->length + info->align_mask;
1903         if (length < info->length)
1904                 return -ENOMEM;
1905
1906         /* Adjust search limits by the desired length */
1907         if (info->high_limit < length)
1908                 return -ENOMEM;
1909         high_limit = info->high_limit - length;
1910
1911         if (info->low_limit > high_limit)
1912                 return -ENOMEM;
1913         low_limit = info->low_limit + length;
1914
1915         /* Check if rbtree root looks promising */
1916         if (RB_EMPTY_ROOT(&mm->mm_rb))
1917                 goto check_highest;
1918         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1919         if (vma->rb_subtree_gap < length)
1920                 goto check_highest;
1921
1922         while (true) {
1923                 /* Visit left subtree if it looks promising */
1924                 gap_end = vm_start_gap(vma);
1925                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1926                         struct vm_area_struct *left =
1927                                 rb_entry(vma->vm_rb.rb_left,
1928                                          struct vm_area_struct, vm_rb);
1929                         if (left->rb_subtree_gap >= length) {
1930                                 vma = left;
1931                                 continue;
1932                         }
1933                 }
1934
1935                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1936 check_current:
1937                 /* Check if current node has a suitable gap */
1938                 if (gap_start > high_limit)
1939                         return -ENOMEM;
1940                 if (gap_end >= low_limit &&
1941                     gap_end > gap_start && gap_end - gap_start >= length)
1942                         goto found;
1943
1944                 /* Visit right subtree if it looks promising */
1945                 if (vma->vm_rb.rb_right) {
1946                         struct vm_area_struct *right =
1947                                 rb_entry(vma->vm_rb.rb_right,
1948                                          struct vm_area_struct, vm_rb);
1949                         if (right->rb_subtree_gap >= length) {
1950                                 vma = right;
1951                                 continue;
1952                         }
1953                 }
1954
1955                 /* Go back up the rbtree to find next candidate node */
1956                 while (true) {
1957                         struct rb_node *prev = &vma->vm_rb;
1958                         if (!rb_parent(prev))
1959                                 goto check_highest;
1960                         vma = rb_entry(rb_parent(prev),
1961                                        struct vm_area_struct, vm_rb);
1962                         if (prev == vma->vm_rb.rb_left) {
1963                                 gap_start = vm_end_gap(vma->vm_prev);
1964                                 gap_end = vm_start_gap(vma);
1965                                 goto check_current;
1966                         }
1967                 }
1968         }
1969
1970 check_highest:
1971         /* Check highest gap, which does not precede any rbtree node */
1972         gap_start = mm->highest_vm_end;
1973         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1974         if (gap_start > high_limit)
1975                 return -ENOMEM;
1976
1977 found:
1978         /* We found a suitable gap. Clip it with the original low_limit. */
1979         if (gap_start < info->low_limit)
1980                 gap_start = info->low_limit;
1981
1982         /* Adjust gap address to the desired alignment */
1983         gap_start += (info->align_offset - gap_start) & info->align_mask;
1984
1985         VM_BUG_ON(gap_start + info->length > info->high_limit);
1986         VM_BUG_ON(gap_start + info->length > gap_end);
1987         return gap_start;
1988 }
1989
1990 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1991 {
1992         struct mm_struct *mm = current->mm;
1993         struct vm_area_struct *vma;
1994         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1995
1996         /* Adjust search length to account for worst case alignment overhead */
1997         length = info->length + info->align_mask;
1998         if (length < info->length)
1999                 return -ENOMEM;
2000
2001         /*
2002          * Adjust search limits by the desired length.
2003          * See implementation comment at top of unmapped_area().
2004          */
2005         gap_end = info->high_limit;
2006         if (gap_end < length)
2007                 return -ENOMEM;
2008         high_limit = gap_end - length;
2009
2010         if (info->low_limit > high_limit)
2011                 return -ENOMEM;
2012         low_limit = info->low_limit + length;
2013
2014         /* Check highest gap, which does not precede any rbtree node */
2015         gap_start = mm->highest_vm_end;
2016         if (gap_start <= high_limit)
2017                 goto found_highest;
2018
2019         /* Check if rbtree root looks promising */
2020         if (RB_EMPTY_ROOT(&mm->mm_rb))
2021                 return -ENOMEM;
2022         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2023         if (vma->rb_subtree_gap < length)
2024                 return -ENOMEM;
2025
2026         while (true) {
2027                 /* Visit right subtree if it looks promising */
2028                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2029                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2030                         struct vm_area_struct *right =
2031                                 rb_entry(vma->vm_rb.rb_right,
2032                                          struct vm_area_struct, vm_rb);
2033                         if (right->rb_subtree_gap >= length) {
2034                                 vma = right;
2035                                 continue;
2036                         }
2037                 }
2038
2039 check_current:
2040                 /* Check if current node has a suitable gap */
2041                 gap_end = vm_start_gap(vma);
2042                 if (gap_end < low_limit)
2043                         return -ENOMEM;
2044                 if (gap_start <= high_limit &&
2045                     gap_end > gap_start && gap_end - gap_start >= length)
2046                         goto found;
2047
2048                 /* Visit left subtree if it looks promising */
2049                 if (vma->vm_rb.rb_left) {
2050                         struct vm_area_struct *left =
2051                                 rb_entry(vma->vm_rb.rb_left,
2052                                          struct vm_area_struct, vm_rb);
2053                         if (left->rb_subtree_gap >= length) {
2054                                 vma = left;
2055                                 continue;
2056                         }
2057                 }
2058
2059                 /* Go back up the rbtree to find next candidate node */
2060                 while (true) {
2061                         struct rb_node *prev = &vma->vm_rb;
2062                         if (!rb_parent(prev))
2063                                 return -ENOMEM;
2064                         vma = rb_entry(rb_parent(prev),
2065                                        struct vm_area_struct, vm_rb);
2066                         if (prev == vma->vm_rb.rb_right) {
2067                                 gap_start = vma->vm_prev ?
2068                                         vm_end_gap(vma->vm_prev) : 0;
2069                                 goto check_current;
2070                         }
2071                 }
2072         }
2073
2074 found:
2075         /* We found a suitable gap. Clip it with the original high_limit. */
2076         if (gap_end > info->high_limit)
2077                 gap_end = info->high_limit;
2078
2079 found_highest:
2080         /* Compute highest gap address at the desired alignment */
2081         gap_end -= info->length;
2082         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2083
2084         VM_BUG_ON(gap_end < info->low_limit);
2085         VM_BUG_ON(gap_end < gap_start);
2086         return gap_end;
2087 }
2088
2089 /*
2090  * Search for an unmapped address range.
2091  *
2092  * We are looking for a range that:
2093  * - does not intersect with any VMA;
2094  * - is contained within the [low_limit, high_limit) interval;
2095  * - is at least the desired size.
2096  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2097  */
2098 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2099 {
2100         unsigned long addr;
2101
2102         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2103                 addr = unmapped_area_topdown(info);
2104         else
2105                 addr = unmapped_area(info);
2106
2107         trace_vm_unmapped_area(addr, info);
2108         return addr;
2109 }
2110
2111 #ifndef arch_get_mmap_end
2112 #define arch_get_mmap_end(addr) (TASK_SIZE)
2113 #endif
2114
2115 #ifndef arch_get_mmap_base
2116 #define arch_get_mmap_base(addr, base) (base)
2117 #endif
2118
2119 /* Get an address range which is currently unmapped.
2120  * For shmat() with addr=0.
2121  *
2122  * Ugly calling convention alert:
2123  * Return value with the low bits set means error value,
2124  * ie
2125  *      if (ret & ~PAGE_MASK)
2126  *              error = ret;
2127  *
2128  * This function "knows" that -ENOMEM has the bits set.
2129  */
2130 #ifndef HAVE_ARCH_UNMAPPED_AREA
2131 unsigned long
2132 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2133                 unsigned long len, unsigned long pgoff, unsigned long flags)
2134 {
2135         struct mm_struct *mm = current->mm;
2136         struct vm_area_struct *vma, *prev;
2137         struct vm_unmapped_area_info info;
2138         const unsigned long mmap_end = arch_get_mmap_end(addr);
2139
2140         if (len > mmap_end - mmap_min_addr)
2141                 return -ENOMEM;
2142
2143         if (flags & MAP_FIXED)
2144                 return addr;
2145
2146         if (addr) {
2147                 addr = PAGE_ALIGN(addr);
2148                 vma = find_vma_prev(mm, addr, &prev);
2149                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2150                     (!vma || addr + len <= vm_start_gap(vma)) &&
2151                     (!prev || addr >= vm_end_gap(prev)))
2152                         return addr;
2153         }
2154
2155         info.flags = 0;
2156         info.length = len;
2157         info.low_limit = mm->mmap_base;
2158         info.high_limit = mmap_end;
2159         info.align_mask = 0;
2160         info.align_offset = 0;
2161         return vm_unmapped_area(&info);
2162 }
2163 #endif
2164
2165 /*
2166  * This mmap-allocator allocates new areas top-down from below the
2167  * stack's low limit (the base):
2168  */
2169 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2170 unsigned long
2171 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2172                           unsigned long len, unsigned long pgoff,
2173                           unsigned long flags)
2174 {
2175         struct vm_area_struct *vma, *prev;
2176         struct mm_struct *mm = current->mm;
2177         struct vm_unmapped_area_info info;
2178         const unsigned long mmap_end = arch_get_mmap_end(addr);
2179
2180         /* requested length too big for entire address space */
2181         if (len > mmap_end - mmap_min_addr)
2182                 return -ENOMEM;
2183
2184         if (flags & MAP_FIXED)
2185                 return addr;
2186
2187         /* requesting a specific address */
2188         if (addr) {
2189                 addr = PAGE_ALIGN(addr);
2190                 vma = find_vma_prev(mm, addr, &prev);
2191                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2192                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2193                                 (!prev || addr >= vm_end_gap(prev)))
2194                         return addr;
2195         }
2196
2197         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2198         info.length = len;
2199         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2200         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2201         info.align_mask = 0;
2202         info.align_offset = 0;
2203         addr = vm_unmapped_area(&info);
2204
2205         /*
2206          * A failed mmap() very likely causes application failure,
2207          * so fall back to the bottom-up function here. This scenario
2208          * can happen with large stack limits and large mmap()
2209          * allocations.
2210          */
2211         if (offset_in_page(addr)) {
2212                 VM_BUG_ON(addr != -ENOMEM);
2213                 info.flags = 0;
2214                 info.low_limit = TASK_UNMAPPED_BASE;
2215                 info.high_limit = mmap_end;
2216                 addr = vm_unmapped_area(&info);
2217         }
2218
2219         return addr;
2220 }
2221 #endif
2222
2223 unsigned long
2224 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2225                 unsigned long pgoff, unsigned long flags)
2226 {
2227         unsigned long (*get_area)(struct file *, unsigned long,
2228                                   unsigned long, unsigned long, unsigned long);
2229
2230         unsigned long error = arch_mmap_check(addr, len, flags);
2231         if (error)
2232                 return error;
2233
2234         /* Careful about overflows.. */
2235         if (len > TASK_SIZE)
2236                 return -ENOMEM;
2237
2238         get_area = current->mm->get_unmapped_area;
2239         if (file) {
2240                 if (file->f_op->get_unmapped_area)
2241                         get_area = file->f_op->get_unmapped_area;
2242         } else if (flags & MAP_SHARED) {
2243                 /*
2244                  * mmap_region() will call shmem_zero_setup() to create a file,
2245                  * so use shmem's get_unmapped_area in case it can be huge.
2246                  * do_mmap() will clear pgoff, so match alignment.
2247                  */
2248                 pgoff = 0;
2249                 get_area = shmem_get_unmapped_area;
2250         }
2251
2252         addr = get_area(file, addr, len, pgoff, flags);
2253         if (IS_ERR_VALUE(addr))
2254                 return addr;
2255
2256         if (addr > TASK_SIZE - len)
2257                 return -ENOMEM;
2258         if (offset_in_page(addr))
2259                 return -EINVAL;
2260
2261         error = security_mmap_addr(addr);
2262         return error ? error : addr;
2263 }
2264
2265 EXPORT_SYMBOL(get_unmapped_area);
2266
2267 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2268 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2269 {
2270         struct rb_node *rb_node;
2271         struct vm_area_struct *vma;
2272
2273         /* Check the cache first. */
2274         vma = vmacache_find(mm, addr);
2275         if (likely(vma))
2276                 return vma;
2277
2278         rb_node = mm->mm_rb.rb_node;
2279
2280         while (rb_node) {
2281                 struct vm_area_struct *tmp;
2282
2283                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2284
2285                 if (tmp->vm_end > addr) {
2286                         vma = tmp;
2287                         if (tmp->vm_start <= addr)
2288                                 break;
2289                         rb_node = rb_node->rb_left;
2290                 } else
2291                         rb_node = rb_node->rb_right;
2292         }
2293
2294         if (vma)
2295                 vmacache_update(addr, vma);
2296         return vma;
2297 }
2298
2299 EXPORT_SYMBOL(find_vma);
2300
2301 /*
2302  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2303  */
2304 struct vm_area_struct *
2305 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2306                         struct vm_area_struct **pprev)
2307 {
2308         struct vm_area_struct *vma;
2309
2310         vma = find_vma(mm, addr);
2311         if (vma) {
2312                 *pprev = vma->vm_prev;
2313         } else {
2314                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2315
2316                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2317         }
2318         return vma;
2319 }
2320
2321 /*
2322  * Verify that the stack growth is acceptable and
2323  * update accounting. This is shared with both the
2324  * grow-up and grow-down cases.
2325  */
2326 static int acct_stack_growth(struct vm_area_struct *vma,
2327                              unsigned long size, unsigned long grow)
2328 {
2329         struct mm_struct *mm = vma->vm_mm;
2330         unsigned long new_start;
2331
2332         /* address space limit tests */
2333         if (!may_expand_vm(mm, vma->vm_flags, grow))
2334                 return -ENOMEM;
2335
2336         /* Stack limit test */
2337         if (size > rlimit(RLIMIT_STACK))
2338                 return -ENOMEM;
2339
2340         /* mlock limit tests */
2341         if (vma->vm_flags & VM_LOCKED) {
2342                 unsigned long locked;
2343                 unsigned long limit;
2344                 locked = mm->locked_vm + grow;
2345                 limit = rlimit(RLIMIT_MEMLOCK);
2346                 limit >>= PAGE_SHIFT;
2347                 if (locked > limit && !capable(CAP_IPC_LOCK))
2348                         return -ENOMEM;
2349         }
2350
2351         /* Check to ensure the stack will not grow into a hugetlb-only region */
2352         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2353                         vma->vm_end - size;
2354         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2355                 return -EFAULT;
2356
2357         /*
2358          * Overcommit..  This must be the final test, as it will
2359          * update security statistics.
2360          */
2361         if (security_vm_enough_memory_mm(mm, grow))
2362                 return -ENOMEM;
2363
2364         return 0;
2365 }
2366
2367 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2368 /*
2369  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2370  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2371  */
2372 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2373 {
2374         struct mm_struct *mm = vma->vm_mm;
2375         struct vm_area_struct *next;
2376         unsigned long gap_addr;
2377         int error = 0;
2378
2379         if (!(vma->vm_flags & VM_GROWSUP))
2380                 return -EFAULT;
2381
2382         /* Guard against exceeding limits of the address space. */
2383         address &= PAGE_MASK;
2384         if (address >= (TASK_SIZE & PAGE_MASK))
2385                 return -ENOMEM;
2386         address += PAGE_SIZE;
2387
2388         /* Enforce stack_guard_gap */
2389         gap_addr = address + stack_guard_gap;
2390
2391         /* Guard against overflow */
2392         if (gap_addr < address || gap_addr > TASK_SIZE)
2393                 gap_addr = TASK_SIZE;
2394
2395         next = vma->vm_next;
2396         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2397                 if (!(next->vm_flags & VM_GROWSUP))
2398                         return -ENOMEM;
2399                 /* Check that both stack segments have the same anon_vma? */
2400         }
2401
2402         /* We must make sure the anon_vma is allocated. */
2403         if (unlikely(anon_vma_prepare(vma)))
2404                 return -ENOMEM;
2405
2406         /*
2407          * vma->vm_start/vm_end cannot change under us because the caller
2408          * is required to hold the mmap_lock in read mode.  We need the
2409          * anon_vma lock to serialize against concurrent expand_stacks.
2410          */
2411         anon_vma_lock_write(vma->anon_vma);
2412
2413         /* Somebody else might have raced and expanded it already */
2414         if (address > vma->vm_end) {
2415                 unsigned long size, grow;
2416
2417                 size = address - vma->vm_start;
2418                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2419
2420                 error = -ENOMEM;
2421                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2422                         error = acct_stack_growth(vma, size, grow);
2423                         if (!error) {
2424                                 /*
2425                                  * vma_gap_update() doesn't support concurrent
2426                                  * updates, but we only hold a shared mmap_lock
2427                                  * lock here, so we need to protect against
2428                                  * concurrent vma expansions.
2429                                  * anon_vma_lock_write() doesn't help here, as
2430                                  * we don't guarantee that all growable vmas
2431                                  * in a mm share the same root anon vma.
2432                                  * So, we reuse mm->page_table_lock to guard
2433                                  * against concurrent vma expansions.
2434                                  */
2435                                 spin_lock(&mm->page_table_lock);
2436                                 if (vma->vm_flags & VM_LOCKED)
2437                                         mm->locked_vm += grow;
2438                                 vm_stat_account(mm, vma->vm_flags, grow);
2439                                 anon_vma_interval_tree_pre_update_vma(vma);
2440                                 vma->vm_end = address;
2441                                 anon_vma_interval_tree_post_update_vma(vma);
2442                                 if (vma->vm_next)
2443                                         vma_gap_update(vma->vm_next);
2444                                 else
2445                                         mm->highest_vm_end = vm_end_gap(vma);
2446                                 spin_unlock(&mm->page_table_lock);
2447
2448                                 perf_event_mmap(vma);
2449                         }
2450                 }
2451         }
2452         anon_vma_unlock_write(vma->anon_vma);
2453         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2454         validate_mm(mm);
2455         return error;
2456 }
2457 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2458
2459 /*
2460  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2461  */
2462 int expand_downwards(struct vm_area_struct *vma,
2463                                    unsigned long address)
2464 {
2465         struct mm_struct *mm = vma->vm_mm;
2466         struct vm_area_struct *prev;
2467         int error = 0;
2468
2469         address &= PAGE_MASK;
2470         if (address < mmap_min_addr)
2471                 return -EPERM;
2472
2473         /* Enforce stack_guard_gap */
2474         prev = vma->vm_prev;
2475         /* Check that both stack segments have the same anon_vma? */
2476         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2477                         vma_is_accessible(prev)) {
2478                 if (address - prev->vm_end < stack_guard_gap)
2479                         return -ENOMEM;
2480         }
2481
2482         /* We must make sure the anon_vma is allocated. */
2483         if (unlikely(anon_vma_prepare(vma)))
2484                 return -ENOMEM;
2485
2486         /*
2487          * vma->vm_start/vm_end cannot change under us because the caller
2488          * is required to hold the mmap_lock in read mode.  We need the
2489          * anon_vma lock to serialize against concurrent expand_stacks.
2490          */
2491         anon_vma_lock_write(vma->anon_vma);
2492
2493         /* Somebody else might have raced and expanded it already */
2494         if (address < vma->vm_start) {
2495                 unsigned long size, grow;
2496
2497                 size = vma->vm_end - address;
2498                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2499
2500                 error = -ENOMEM;
2501                 if (grow <= vma->vm_pgoff) {
2502                         error = acct_stack_growth(vma, size, grow);
2503                         if (!error) {
2504                                 /*
2505                                  * vma_gap_update() doesn't support concurrent
2506                                  * updates, but we only hold a shared mmap_lock
2507                                  * lock here, so we need to protect against
2508                                  * concurrent vma expansions.
2509                                  * anon_vma_lock_write() doesn't help here, as
2510                                  * we don't guarantee that all growable vmas
2511                                  * in a mm share the same root anon vma.
2512                                  * So, we reuse mm->page_table_lock to guard
2513                                  * against concurrent vma expansions.
2514                                  */
2515                                 spin_lock(&mm->page_table_lock);
2516                                 if (vma->vm_flags & VM_LOCKED)
2517                                         mm->locked_vm += grow;
2518                                 vm_stat_account(mm, vma->vm_flags, grow);
2519                                 anon_vma_interval_tree_pre_update_vma(vma);
2520                                 vma->vm_start = address;
2521                                 vma->vm_pgoff -= grow;
2522                                 anon_vma_interval_tree_post_update_vma(vma);
2523                                 vma_gap_update(vma);
2524                                 spin_unlock(&mm->page_table_lock);
2525
2526                                 perf_event_mmap(vma);
2527                         }
2528                 }
2529         }
2530         anon_vma_unlock_write(vma->anon_vma);
2531         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2532         validate_mm(mm);
2533         return error;
2534 }
2535
2536 /* enforced gap between the expanding stack and other mappings. */
2537 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2538
2539 static int __init cmdline_parse_stack_guard_gap(char *p)
2540 {
2541         unsigned long val;
2542         char *endptr;
2543
2544         val = simple_strtoul(p, &endptr, 10);
2545         if (!*endptr)
2546                 stack_guard_gap = val << PAGE_SHIFT;
2547
2548         return 0;
2549 }
2550 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2551
2552 #ifdef CONFIG_STACK_GROWSUP
2553 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2554 {
2555         return expand_upwards(vma, address);
2556 }
2557
2558 struct vm_area_struct *
2559 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2560 {
2561         struct vm_area_struct *vma, *prev;
2562
2563         addr &= PAGE_MASK;
2564         vma = find_vma_prev(mm, addr, &prev);
2565         if (vma && (vma->vm_start <= addr))
2566                 return vma;
2567         /* don't alter vm_end if the coredump is running */
2568         if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2569                 return NULL;
2570         if (prev->vm_flags & VM_LOCKED)
2571                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2572         return prev;
2573 }
2574 #else
2575 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2576 {
2577         return expand_downwards(vma, address);
2578 }
2579
2580 struct vm_area_struct *
2581 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2582 {
2583         struct vm_area_struct *vma;
2584         unsigned long start;
2585
2586         addr &= PAGE_MASK;
2587         vma = find_vma(mm, addr);
2588         if (!vma)
2589                 return NULL;
2590         if (vma->vm_start <= addr)
2591                 return vma;
2592         if (!(vma->vm_flags & VM_GROWSDOWN))
2593                 return NULL;
2594         /* don't alter vm_start if the coredump is running */
2595         if (!mmget_still_valid(mm))
2596                 return NULL;
2597         start = vma->vm_start;
2598         if (expand_stack(vma, addr))
2599                 return NULL;
2600         if (vma->vm_flags & VM_LOCKED)
2601                 populate_vma_page_range(vma, addr, start, NULL);
2602         return vma;
2603 }
2604 #endif
2605
2606 EXPORT_SYMBOL_GPL(find_extend_vma);
2607
2608 /*
2609  * Ok - we have the memory areas we should free on the vma list,
2610  * so release them, and do the vma updates.
2611  *
2612  * Called with the mm semaphore held.
2613  */
2614 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2615 {
2616         unsigned long nr_accounted = 0;
2617
2618         /* Update high watermark before we lower total_vm */
2619         update_hiwater_vm(mm);
2620         do {
2621                 long nrpages = vma_pages(vma);
2622
2623                 if (vma->vm_flags & VM_ACCOUNT)
2624                         nr_accounted += nrpages;
2625                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2626                 vma = remove_vma(vma);
2627         } while (vma);
2628         vm_unacct_memory(nr_accounted);
2629         validate_mm(mm);
2630 }
2631
2632 /*
2633  * Get rid of page table information in the indicated region.
2634  *
2635  * Called with the mm semaphore held.
2636  */
2637 static void unmap_region(struct mm_struct *mm,
2638                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2639                 unsigned long start, unsigned long end)
2640 {
2641         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2642         struct mmu_gather tlb;
2643
2644         lru_add_drain();
2645         tlb_gather_mmu(&tlb, mm, start, end);
2646         update_hiwater_rss(mm);
2647         unmap_vmas(&tlb, vma, start, end);
2648         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2649                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2650         tlb_finish_mmu(&tlb, start, end);
2651 }
2652
2653 /*
2654  * Create a list of vma's touched by the unmap, removing them from the mm's
2655  * vma list as we go..
2656  */
2657 static bool
2658 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2659         struct vm_area_struct *prev, unsigned long end)
2660 {
2661         struct vm_area_struct **insertion_point;
2662         struct vm_area_struct *tail_vma = NULL;
2663
2664         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2665         vma->vm_prev = NULL;
2666         do {
2667                 vma_rb_erase(vma, &mm->mm_rb);
2668                 mm->map_count--;
2669                 tail_vma = vma;
2670                 vma = vma->vm_next;
2671         } while (vma && vma->vm_start < end);
2672         *insertion_point = vma;
2673         if (vma) {
2674                 vma->vm_prev = prev;
2675                 vma_gap_update(vma);
2676         } else
2677                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2678         tail_vma->vm_next = NULL;
2679
2680         /* Kill the cache */
2681         vmacache_invalidate(mm);
2682
2683         /*
2684          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2685          * VM_GROWSUP VMA. Such VMAs can change their size under
2686          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2687          */
2688         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2689                 return false;
2690         if (prev && (prev->vm_flags & VM_GROWSUP))
2691                 return false;
2692         return true;
2693 }
2694
2695 /*
2696  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2697  * has already been checked or doesn't make sense to fail.
2698  */
2699 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2700                 unsigned long addr, int new_below)
2701 {
2702         struct vm_area_struct *new;
2703         int err;
2704
2705         if (vma->vm_ops && vma->vm_ops->split) {
2706                 err = vma->vm_ops->split(vma, addr);
2707                 if (err)
2708                         return err;
2709         }
2710
2711         new = vm_area_dup(vma);
2712         if (!new)
2713                 return -ENOMEM;
2714
2715         if (new_below)
2716                 new->vm_end = addr;
2717         else {
2718                 new->vm_start = addr;
2719                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2720         }
2721
2722         err = vma_dup_policy(vma, new);
2723         if (err)
2724                 goto out_free_vma;
2725
2726         err = anon_vma_clone(new, vma);
2727         if (err)
2728                 goto out_free_mpol;
2729
2730         if (new->vm_file)
2731                 get_file(new->vm_file);
2732
2733         if (new->vm_ops && new->vm_ops->open)
2734                 new->vm_ops->open(new);
2735
2736         if (new_below)
2737                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2738                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2739         else
2740                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2741
2742         /* Success. */
2743         if (!err)
2744                 return 0;
2745
2746         /* Clean everything up if vma_adjust failed. */
2747         if (new->vm_ops && new->vm_ops->close)
2748                 new->vm_ops->close(new);
2749         if (new->vm_file)
2750                 fput(new->vm_file);
2751         unlink_anon_vmas(new);
2752  out_free_mpol:
2753         mpol_put(vma_policy(new));
2754  out_free_vma:
2755         vm_area_free(new);
2756         return err;
2757 }
2758
2759 /*
2760  * Split a vma into two pieces at address 'addr', a new vma is allocated
2761  * either for the first part or the tail.
2762  */
2763 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2764               unsigned long addr, int new_below)
2765 {
2766         if (mm->map_count >= sysctl_max_map_count)
2767                 return -ENOMEM;
2768
2769         return __split_vma(mm, vma, addr, new_below);
2770 }
2771
2772 /* Munmap is split into 2 main parts -- this part which finds
2773  * what needs doing, and the areas themselves, which do the
2774  * work.  This now handles partial unmappings.
2775  * Jeremy Fitzhardinge <jeremy@goop.org>
2776  */
2777 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2778                 struct list_head *uf, bool downgrade)
2779 {
2780         unsigned long end;
2781         struct vm_area_struct *vma, *prev, *last;
2782
2783         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2784                 return -EINVAL;
2785
2786         len = PAGE_ALIGN(len);
2787         end = start + len;
2788         if (len == 0)
2789                 return -EINVAL;
2790
2791         /*
2792          * arch_unmap() might do unmaps itself.  It must be called
2793          * and finish any rbtree manipulation before this code
2794          * runs and also starts to manipulate the rbtree.
2795          */
2796         arch_unmap(mm, start, end);
2797
2798         /* Find the first overlapping VMA */
2799         vma = find_vma(mm, start);
2800         if (!vma)
2801                 return 0;
2802         prev = vma->vm_prev;
2803         /* we have  start < vma->vm_end  */
2804
2805         /* if it doesn't overlap, we have nothing.. */
2806         if (vma->vm_start >= end)
2807                 return 0;
2808
2809         /*
2810          * If we need to split any vma, do it now to save pain later.
2811          *
2812          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2813          * unmapped vm_area_struct will remain in use: so lower split_vma
2814          * places tmp vma above, and higher split_vma places tmp vma below.
2815          */
2816         if (start > vma->vm_start) {
2817                 int error;
2818
2819                 /*
2820                  * Make sure that map_count on return from munmap() will
2821                  * not exceed its limit; but let map_count go just above
2822                  * its limit temporarily, to help free resources as expected.
2823                  */
2824                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2825                         return -ENOMEM;
2826
2827                 error = __split_vma(mm, vma, start, 0);
2828                 if (error)
2829                         return error;
2830                 prev = vma;
2831         }
2832
2833         /* Does it split the last one? */
2834         last = find_vma(mm, end);
2835         if (last && end > last->vm_start) {
2836                 int error = __split_vma(mm, last, end, 1);
2837                 if (error)
2838                         return error;
2839         }
2840         vma = prev ? prev->vm_next : mm->mmap;
2841
2842         if (unlikely(uf)) {
2843                 /*
2844                  * If userfaultfd_unmap_prep returns an error the vmas
2845                  * will remain splitted, but userland will get a
2846                  * highly unexpected error anyway. This is no
2847                  * different than the case where the first of the two
2848                  * __split_vma fails, but we don't undo the first
2849                  * split, despite we could. This is unlikely enough
2850                  * failure that it's not worth optimizing it for.
2851                  */
2852                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2853                 if (error)
2854                         return error;
2855         }
2856
2857         /*
2858          * unlock any mlock()ed ranges before detaching vmas
2859          */
2860         if (mm->locked_vm) {
2861                 struct vm_area_struct *tmp = vma;
2862                 while (tmp && tmp->vm_start < end) {
2863                         if (tmp->vm_flags & VM_LOCKED) {
2864                                 mm->locked_vm -= vma_pages(tmp);
2865                                 munlock_vma_pages_all(tmp);
2866                         }
2867
2868                         tmp = tmp->vm_next;
2869                 }
2870         }
2871
2872         /* Detach vmas from rbtree */
2873         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2874                 downgrade = false;
2875
2876         if (downgrade)
2877                 mmap_write_downgrade(mm);
2878
2879         unmap_region(mm, vma, prev, start, end);
2880
2881         /* Fix up all other VM information */
2882         remove_vma_list(mm, vma);
2883
2884         return downgrade ? 1 : 0;
2885 }
2886
2887 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2888               struct list_head *uf)
2889 {
2890         return __do_munmap(mm, start, len, uf, false);
2891 }
2892
2893 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2894 {
2895         int ret;
2896         struct mm_struct *mm = current->mm;
2897         LIST_HEAD(uf);
2898
2899         if (mmap_write_lock_killable(mm))
2900                 return -EINTR;
2901
2902         ret = __do_munmap(mm, start, len, &uf, downgrade);
2903         /*
2904          * Returning 1 indicates mmap_lock is downgraded.
2905          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2906          * it to 0 before return.
2907          */
2908         if (ret == 1) {
2909                 mmap_read_unlock(mm);
2910                 ret = 0;
2911         } else
2912                 mmap_write_unlock(mm);
2913
2914         userfaultfd_unmap_complete(mm, &uf);
2915         return ret;
2916 }
2917
2918 int vm_munmap(unsigned long start, size_t len)
2919 {
2920         return __vm_munmap(start, len, false);
2921 }
2922 EXPORT_SYMBOL(vm_munmap);
2923
2924 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2925 {
2926         addr = untagged_addr(addr);
2927         profile_munmap(addr);
2928         return __vm_munmap(addr, len, true);
2929 }
2930
2931
2932 /*
2933  * Emulation of deprecated remap_file_pages() syscall.
2934  */
2935 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2936                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2937 {
2938
2939         struct mm_struct *mm = current->mm;
2940         struct vm_area_struct *vma;
2941         unsigned long populate = 0;
2942         unsigned long ret = -EINVAL;
2943         struct file *file;
2944
2945         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2946                      current->comm, current->pid);
2947
2948         if (prot)
2949                 return ret;
2950         start = start & PAGE_MASK;
2951         size = size & PAGE_MASK;
2952
2953         if (start + size <= start)
2954                 return ret;
2955
2956         /* Does pgoff wrap? */
2957         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2958                 return ret;
2959
2960         if (mmap_write_lock_killable(mm))
2961                 return -EINTR;
2962
2963         vma = find_vma(mm, start);
2964
2965         if (!vma || !(vma->vm_flags & VM_SHARED))
2966                 goto out;
2967
2968         if (start < vma->vm_start)
2969                 goto out;
2970
2971         if (start + size > vma->vm_end) {
2972                 struct vm_area_struct *next;
2973
2974                 for (next = vma->vm_next; next; next = next->vm_next) {
2975                         /* hole between vmas ? */
2976                         if (next->vm_start != next->vm_prev->vm_end)
2977                                 goto out;
2978
2979                         if (next->vm_file != vma->vm_file)
2980                                 goto out;
2981
2982                         if (next->vm_flags != vma->vm_flags)
2983                                 goto out;
2984
2985                         if (start + size <= next->vm_end)
2986                                 break;
2987                 }
2988
2989                 if (!next)
2990                         goto out;
2991         }
2992
2993         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2994         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2995         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2996
2997         flags &= MAP_NONBLOCK;
2998         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2999         if (vma->vm_flags & VM_LOCKED) {
3000                 struct vm_area_struct *tmp;
3001                 flags |= MAP_LOCKED;
3002
3003                 /* drop PG_Mlocked flag for over-mapped range */
3004                 for (tmp = vma; tmp->vm_start >= start + size;
3005                                 tmp = tmp->vm_next) {
3006                         /*
3007                          * Split pmd and munlock page on the border
3008                          * of the range.
3009                          */
3010                         vma_adjust_trans_huge(tmp, start, start + size, 0);
3011
3012                         munlock_vma_pages_range(tmp,
3013                                         max(tmp->vm_start, start),
3014                                         min(tmp->vm_end, start + size));
3015                 }
3016         }
3017
3018         file = get_file(vma->vm_file);
3019         ret = do_mmap(vma->vm_file, start, size,
3020                         prot, flags, pgoff, &populate, NULL);
3021         fput(file);
3022 out:
3023         mmap_write_unlock(mm);
3024         if (populate)
3025                 mm_populate(ret, populate);
3026         if (!IS_ERR_VALUE(ret))
3027                 ret = 0;
3028         return ret;
3029 }
3030
3031 /*
3032  *  this is really a simplified "do_mmap".  it only handles
3033  *  anonymous maps.  eventually we may be able to do some
3034  *  brk-specific accounting here.
3035  */
3036 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3037 {
3038         struct mm_struct *mm = current->mm;
3039         struct vm_area_struct *vma, *prev;
3040         struct rb_node **rb_link, *rb_parent;
3041         pgoff_t pgoff = addr >> PAGE_SHIFT;
3042         int error;
3043         unsigned long mapped_addr;
3044
3045         /* Until we need other flags, refuse anything except VM_EXEC. */
3046         if ((flags & (~VM_EXEC)) != 0)
3047                 return -EINVAL;
3048         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3049
3050         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3051         if (IS_ERR_VALUE(mapped_addr))
3052                 return mapped_addr;
3053
3054         error = mlock_future_check(mm, mm->def_flags, len);
3055         if (error)
3056                 return error;
3057
3058         /*
3059          * Clear old maps.  this also does some error checking for us
3060          */
3061         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3062                               &rb_parent)) {
3063                 if (do_munmap(mm, addr, len, uf))
3064                         return -ENOMEM;
3065         }
3066
3067         /* Check against address space limits *after* clearing old maps... */
3068         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3069                 return -ENOMEM;
3070
3071         if (mm->map_count > sysctl_max_map_count)
3072                 return -ENOMEM;
3073
3074         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3075                 return -ENOMEM;
3076
3077         /* Can we just expand an old private anonymous mapping? */
3078         vma = vma_merge(mm, prev, addr, addr + len, flags,
3079                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3080         if (vma)
3081                 goto out;
3082
3083         /*
3084          * create a vma struct for an anonymous mapping
3085          */
3086         vma = vm_area_alloc(mm);
3087         if (!vma) {
3088                 vm_unacct_memory(len >> PAGE_SHIFT);
3089                 return -ENOMEM;
3090         }
3091
3092         vma_set_anonymous(vma);
3093         vma->vm_start = addr;
3094         vma->vm_end = addr + len;
3095         vma->vm_pgoff = pgoff;
3096         vma->vm_flags = flags;
3097         vma->vm_page_prot = vm_get_page_prot(flags);
3098         vma_link(mm, vma, prev, rb_link, rb_parent);
3099 out:
3100         perf_event_mmap(vma);
3101         mm->total_vm += len >> PAGE_SHIFT;
3102         mm->data_vm += len >> PAGE_SHIFT;
3103         if (flags & VM_LOCKED)
3104                 mm->locked_vm += (len >> PAGE_SHIFT);
3105         vma->vm_flags |= VM_SOFTDIRTY;
3106         return 0;
3107 }
3108
3109 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3110 {
3111         struct mm_struct *mm = current->mm;
3112         unsigned long len;
3113         int ret;
3114         bool populate;
3115         LIST_HEAD(uf);
3116
3117         len = PAGE_ALIGN(request);
3118         if (len < request)
3119                 return -ENOMEM;
3120         if (!len)
3121                 return 0;
3122
3123         if (mmap_write_lock_killable(mm))
3124                 return -EINTR;
3125
3126         ret = do_brk_flags(addr, len, flags, &uf);
3127         populate = ((mm->def_flags & VM_LOCKED) != 0);
3128         mmap_write_unlock(mm);
3129         userfaultfd_unmap_complete(mm, &uf);
3130         if (populate && !ret)
3131                 mm_populate(addr, len);
3132         return ret;
3133 }
3134 EXPORT_SYMBOL(vm_brk_flags);
3135
3136 int vm_brk(unsigned long addr, unsigned long len)
3137 {
3138         return vm_brk_flags(addr, len, 0);
3139 }
3140 EXPORT_SYMBOL(vm_brk);
3141
3142 /* Release all mmaps. */
3143 void exit_mmap(struct mm_struct *mm)
3144 {
3145         struct mmu_gather tlb;
3146         struct vm_area_struct *vma;
3147         unsigned long nr_accounted = 0;
3148
3149         /* mm's last user has gone, and its about to be pulled down */
3150         mmu_notifier_release(mm);
3151
3152         if (unlikely(mm_is_oom_victim(mm))) {
3153                 /*
3154                  * Manually reap the mm to free as much memory as possible.
3155                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3156                  * this mm from further consideration.  Taking mm->mmap_lock for
3157                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3158                  * reaper will not run on this mm again after mmap_lock is
3159                  * dropped.
3160                  *
3161                  * Nothing can be holding mm->mmap_lock here and the above call
3162                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3163                  * __oom_reap_task_mm() will not block.
3164                  *
3165                  * This needs to be done before calling munlock_vma_pages_all(),
3166                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3167                  * reliably test it.
3168                  */
3169                 (void)__oom_reap_task_mm(mm);
3170
3171                 set_bit(MMF_OOM_SKIP, &mm->flags);
3172                 mmap_write_lock(mm);
3173                 mmap_write_unlock(mm);
3174         }
3175
3176         if (mm->locked_vm) {
3177                 vma = mm->mmap;
3178                 while (vma) {
3179                         if (vma->vm_flags & VM_LOCKED)
3180                                 munlock_vma_pages_all(vma);
3181                         vma = vma->vm_next;
3182                 }
3183         }
3184
3185         arch_exit_mmap(mm);
3186
3187         vma = mm->mmap;
3188         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3189                 return;
3190
3191         lru_add_drain();
3192         flush_cache_mm(mm);
3193         tlb_gather_mmu(&tlb, mm, 0, -1);
3194         /* update_hiwater_rss(mm) here? but nobody should be looking */
3195         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3196         unmap_vmas(&tlb, vma, 0, -1);
3197         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3198         tlb_finish_mmu(&tlb, 0, -1);
3199
3200         /*
3201          * Walk the list again, actually closing and freeing it,
3202          * with preemption enabled, without holding any MM locks.
3203          */
3204         while (vma) {
3205                 if (vma->vm_flags & VM_ACCOUNT)
3206                         nr_accounted += vma_pages(vma);
3207                 vma = remove_vma(vma);
3208                 cond_resched();
3209         }
3210         vm_unacct_memory(nr_accounted);
3211 }
3212
3213 /* Insert vm structure into process list sorted by address
3214  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3215  * then i_mmap_rwsem is taken here.
3216  */
3217 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3218 {
3219         struct vm_area_struct *prev;
3220         struct rb_node **rb_link, *rb_parent;
3221
3222         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3223                            &prev, &rb_link, &rb_parent))
3224                 return -ENOMEM;
3225         if ((vma->vm_flags & VM_ACCOUNT) &&
3226              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3227                 return -ENOMEM;
3228
3229         /*
3230          * The vm_pgoff of a purely anonymous vma should be irrelevant
3231          * until its first write fault, when page's anon_vma and index
3232          * are set.  But now set the vm_pgoff it will almost certainly
3233          * end up with (unless mremap moves it elsewhere before that
3234          * first wfault), so /proc/pid/maps tells a consistent story.
3235          *
3236          * By setting it to reflect the virtual start address of the
3237          * vma, merges and splits can happen in a seamless way, just
3238          * using the existing file pgoff checks and manipulations.
3239          * Similarly in do_mmap and in do_brk.
3240          */
3241         if (vma_is_anonymous(vma)) {
3242                 BUG_ON(vma->anon_vma);
3243                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3244         }
3245
3246         vma_link(mm, vma, prev, rb_link, rb_parent);
3247         return 0;
3248 }
3249
3250 /*
3251  * Copy the vma structure to a new location in the same mm,
3252  * prior to moving page table entries, to effect an mremap move.
3253  */
3254 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3255         unsigned long addr, unsigned long len, pgoff_t pgoff,
3256         bool *need_rmap_locks)
3257 {
3258         struct vm_area_struct *vma = *vmap;
3259         unsigned long vma_start = vma->vm_start;
3260         struct mm_struct *mm = vma->vm_mm;
3261         struct vm_area_struct *new_vma, *prev;
3262         struct rb_node **rb_link, *rb_parent;
3263         bool faulted_in_anon_vma = true;
3264
3265         /*
3266          * If anonymous vma has not yet been faulted, update new pgoff
3267          * to match new location, to increase its chance of merging.
3268          */
3269         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3270                 pgoff = addr >> PAGE_SHIFT;
3271                 faulted_in_anon_vma = false;
3272         }
3273
3274         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3275                 return NULL;    /* should never get here */
3276         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3277                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3278                             vma->vm_userfaultfd_ctx);
3279         if (new_vma) {
3280                 /*
3281                  * Source vma may have been merged into new_vma
3282                  */
3283                 if (unlikely(vma_start >= new_vma->vm_start &&
3284                              vma_start < new_vma->vm_end)) {
3285                         /*
3286                          * The only way we can get a vma_merge with
3287                          * self during an mremap is if the vma hasn't
3288                          * been faulted in yet and we were allowed to
3289                          * reset the dst vma->vm_pgoff to the
3290                          * destination address of the mremap to allow
3291                          * the merge to happen. mremap must change the
3292                          * vm_pgoff linearity between src and dst vmas
3293                          * (in turn preventing a vma_merge) to be
3294                          * safe. It is only safe to keep the vm_pgoff
3295                          * linear if there are no pages mapped yet.
3296                          */
3297                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3298                         *vmap = vma = new_vma;
3299                 }
3300                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3301         } else {
3302                 new_vma = vm_area_dup(vma);
3303                 if (!new_vma)
3304                         goto out;
3305                 new_vma->vm_start = addr;
3306                 new_vma->vm_end = addr + len;
3307                 new_vma->vm_pgoff = pgoff;
3308                 if (vma_dup_policy(vma, new_vma))
3309                         goto out_free_vma;
3310                 if (anon_vma_clone(new_vma, vma))
3311                         goto out_free_mempol;
3312                 if (new_vma->vm_file)
3313                         get_file(new_vma->vm_file);
3314                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3315                         new_vma->vm_ops->open(new_vma);
3316                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3317                 *need_rmap_locks = false;
3318         }
3319         return new_vma;
3320
3321 out_free_mempol:
3322         mpol_put(vma_policy(new_vma));
3323 out_free_vma:
3324         vm_area_free(new_vma);
3325 out:
3326         return NULL;
3327 }
3328
3329 /*
3330  * Return true if the calling process may expand its vm space by the passed
3331  * number of pages
3332  */
3333 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3334 {
3335         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3336                 return false;
3337
3338         if (is_data_mapping(flags) &&
3339             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3340                 /* Workaround for Valgrind */
3341                 if (rlimit(RLIMIT_DATA) == 0 &&
3342                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3343                         return true;
3344
3345                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3346                              current->comm, current->pid,
3347                              (mm->data_vm + npages) << PAGE_SHIFT,
3348                              rlimit(RLIMIT_DATA),
3349                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3350
3351                 if (!ignore_rlimit_data)
3352                         return false;
3353         }
3354
3355         return true;
3356 }
3357
3358 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3359 {
3360         mm->total_vm += npages;
3361
3362         if (is_exec_mapping(flags))
3363                 mm->exec_vm += npages;
3364         else if (is_stack_mapping(flags))
3365                 mm->stack_vm += npages;
3366         else if (is_data_mapping(flags))
3367                 mm->data_vm += npages;
3368 }
3369
3370 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3371
3372 /*
3373  * Having a close hook prevents vma merging regardless of flags.
3374  */
3375 static void special_mapping_close(struct vm_area_struct *vma)
3376 {
3377 }
3378
3379 static const char *special_mapping_name(struct vm_area_struct *vma)
3380 {
3381         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3382 }
3383
3384 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3385 {
3386         struct vm_special_mapping *sm = new_vma->vm_private_data;
3387
3388         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3389                 return -EFAULT;
3390
3391         if (sm->mremap)
3392                 return sm->mremap(sm, new_vma);
3393
3394         return 0;
3395 }
3396
3397 static const struct vm_operations_struct special_mapping_vmops = {
3398         .close = special_mapping_close,
3399         .fault = special_mapping_fault,
3400         .mremap = special_mapping_mremap,
3401         .name = special_mapping_name,
3402         /* vDSO code relies that VVAR can't be accessed remotely */
3403         .access = NULL,
3404 };
3405
3406 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3407         .close = special_mapping_close,
3408         .fault = special_mapping_fault,
3409 };
3410
3411 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3412 {
3413         struct vm_area_struct *vma = vmf->vma;
3414         pgoff_t pgoff;
3415         struct page **pages;
3416
3417         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3418                 pages = vma->vm_private_data;
3419         } else {
3420                 struct vm_special_mapping *sm = vma->vm_private_data;
3421
3422                 if (sm->fault)
3423                         return sm->fault(sm, vmf->vma, vmf);
3424
3425                 pages = sm->pages;
3426         }
3427
3428         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3429                 pgoff--;
3430
3431         if (*pages) {
3432                 struct page *page = *pages;
3433                 get_page(page);
3434                 vmf->page = page;
3435                 return 0;
3436         }
3437
3438         return VM_FAULT_SIGBUS;
3439 }
3440
3441 static struct vm_area_struct *__install_special_mapping(
3442         struct mm_struct *mm,
3443         unsigned long addr, unsigned long len,
3444         unsigned long vm_flags, void *priv,
3445         const struct vm_operations_struct *ops)
3446 {
3447         int ret;
3448         struct vm_area_struct *vma;
3449
3450         vma = vm_area_alloc(mm);
3451         if (unlikely(vma == NULL))
3452                 return ERR_PTR(-ENOMEM);
3453
3454         vma->vm_start = addr;
3455         vma->vm_end = addr + len;
3456
3457         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3458         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3459
3460         vma->vm_ops = ops;
3461         vma->vm_private_data = priv;
3462
3463         ret = insert_vm_struct(mm, vma);
3464         if (ret)
3465                 goto out;
3466
3467         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3468
3469         perf_event_mmap(vma);
3470
3471         return vma;
3472
3473 out:
3474         vm_area_free(vma);
3475         return ERR_PTR(ret);
3476 }
3477
3478 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3479         const struct vm_special_mapping *sm)
3480 {
3481         return vma->vm_private_data == sm &&
3482                 (vma->vm_ops == &special_mapping_vmops ||
3483                  vma->vm_ops == &legacy_special_mapping_vmops);
3484 }
3485
3486 /*
3487  * Called with mm->mmap_lock held for writing.
3488  * Insert a new vma covering the given region, with the given flags.
3489  * Its pages are supplied by the given array of struct page *.
3490  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3491  * The region past the last page supplied will always produce SIGBUS.
3492  * The array pointer and the pages it points to are assumed to stay alive
3493  * for as long as this mapping might exist.
3494  */
3495 struct vm_area_struct *_install_special_mapping(
3496         struct mm_struct *mm,
3497         unsigned long addr, unsigned long len,
3498         unsigned long vm_flags, const struct vm_special_mapping *spec)
3499 {
3500         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3501                                         &special_mapping_vmops);
3502 }
3503
3504 int install_special_mapping(struct mm_struct *mm,
3505                             unsigned long addr, unsigned long len,
3506                             unsigned long vm_flags, struct page **pages)
3507 {
3508         struct vm_area_struct *vma = __install_special_mapping(
3509                 mm, addr, len, vm_flags, (void *)pages,
3510                 &legacy_special_mapping_vmops);
3511
3512         return PTR_ERR_OR_ZERO(vma);
3513 }
3514
3515 static DEFINE_MUTEX(mm_all_locks_mutex);
3516
3517 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3518 {
3519         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3520                 /*
3521                  * The LSB of head.next can't change from under us
3522                  * because we hold the mm_all_locks_mutex.
3523                  */
3524                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3525                 /*
3526                  * We can safely modify head.next after taking the
3527                  * anon_vma->root->rwsem. If some other vma in this mm shares
3528                  * the same anon_vma we won't take it again.
3529                  *
3530                  * No need of atomic instructions here, head.next
3531                  * can't change from under us thanks to the
3532                  * anon_vma->root->rwsem.
3533                  */
3534                 if (__test_and_set_bit(0, (unsigned long *)
3535                                        &anon_vma->root->rb_root.rb_root.rb_node))
3536                         BUG();
3537         }
3538 }
3539
3540 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3541 {
3542         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3543                 /*
3544                  * AS_MM_ALL_LOCKS can't change from under us because
3545                  * we hold the mm_all_locks_mutex.
3546                  *
3547                  * Operations on ->flags have to be atomic because
3548                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3549                  * mm_all_locks_mutex, there may be other cpus
3550                  * changing other bitflags in parallel to us.
3551                  */
3552                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3553                         BUG();
3554                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3555         }
3556 }
3557
3558 /*
3559  * This operation locks against the VM for all pte/vma/mm related
3560  * operations that could ever happen on a certain mm. This includes
3561  * vmtruncate, try_to_unmap, and all page faults.
3562  *
3563  * The caller must take the mmap_lock in write mode before calling
3564  * mm_take_all_locks(). The caller isn't allowed to release the
3565  * mmap_lock until mm_drop_all_locks() returns.
3566  *
3567  * mmap_lock in write mode is required in order to block all operations
3568  * that could modify pagetables and free pages without need of
3569  * altering the vma layout. It's also needed in write mode to avoid new
3570  * anon_vmas to be associated with existing vmas.
3571  *
3572  * A single task can't take more than one mm_take_all_locks() in a row
3573  * or it would deadlock.
3574  *
3575  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3576  * mapping->flags avoid to take the same lock twice, if more than one
3577  * vma in this mm is backed by the same anon_vma or address_space.
3578  *
3579  * We take locks in following order, accordingly to comment at beginning
3580  * of mm/rmap.c:
3581  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3582  *     hugetlb mapping);
3583  *   - all i_mmap_rwsem locks;
3584  *   - all anon_vma->rwseml
3585  *
3586  * We can take all locks within these types randomly because the VM code
3587  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3588  * mm_all_locks_mutex.
3589  *
3590  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3591  * that may have to take thousand of locks.
3592  *
3593  * mm_take_all_locks() can fail if it's interrupted by signals.
3594  */
3595 int mm_take_all_locks(struct mm_struct *mm)
3596 {
3597         struct vm_area_struct *vma;
3598         struct anon_vma_chain *avc;
3599
3600         BUG_ON(mmap_read_trylock(mm));
3601
3602         mutex_lock(&mm_all_locks_mutex);
3603
3604         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3605                 if (signal_pending(current))
3606                         goto out_unlock;
3607                 if (vma->vm_file && vma->vm_file->f_mapping &&
3608                                 is_vm_hugetlb_page(vma))
3609                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3610         }
3611
3612         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3613                 if (signal_pending(current))
3614                         goto out_unlock;
3615                 if (vma->vm_file && vma->vm_file->f_mapping &&
3616                                 !is_vm_hugetlb_page(vma))
3617                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3618         }
3619
3620         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3621                 if (signal_pending(current))
3622                         goto out_unlock;
3623                 if (vma->anon_vma)
3624                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3625                                 vm_lock_anon_vma(mm, avc->anon_vma);
3626         }
3627
3628         return 0;
3629
3630 out_unlock:
3631         mm_drop_all_locks(mm);
3632         return -EINTR;
3633 }
3634
3635 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3636 {
3637         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3638                 /*
3639                  * The LSB of head.next can't change to 0 from under
3640                  * us because we hold the mm_all_locks_mutex.
3641                  *
3642                  * We must however clear the bitflag before unlocking
3643                  * the vma so the users using the anon_vma->rb_root will
3644                  * never see our bitflag.
3645                  *
3646                  * No need of atomic instructions here, head.next
3647                  * can't change from under us until we release the
3648                  * anon_vma->root->rwsem.
3649                  */
3650                 if (!__test_and_clear_bit(0, (unsigned long *)
3651                                           &anon_vma->root->rb_root.rb_root.rb_node))
3652                         BUG();
3653                 anon_vma_unlock_write(anon_vma);
3654         }
3655 }
3656
3657 static void vm_unlock_mapping(struct address_space *mapping)
3658 {
3659         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3660                 /*
3661                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3662                  * because we hold the mm_all_locks_mutex.
3663                  */
3664                 i_mmap_unlock_write(mapping);
3665                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3666                                         &mapping->flags))
3667                         BUG();
3668         }
3669 }
3670
3671 /*
3672  * The mmap_lock cannot be released by the caller until
3673  * mm_drop_all_locks() returns.
3674  */
3675 void mm_drop_all_locks(struct mm_struct *mm)
3676 {
3677         struct vm_area_struct *vma;
3678         struct anon_vma_chain *avc;
3679
3680         BUG_ON(mmap_read_trylock(mm));
3681         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3682
3683         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3684                 if (vma->anon_vma)
3685                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3686                                 vm_unlock_anon_vma(avc->anon_vma);
3687                 if (vma->vm_file && vma->vm_file->f_mapping)
3688                         vm_unlock_mapping(vma->vm_file->f_mapping);
3689         }
3690
3691         mutex_unlock(&mm_all_locks_mutex);
3692 }
3693
3694 /*
3695  * initialise the percpu counter for VM
3696  */
3697 void __init mmap_init(void)
3698 {
3699         int ret;
3700
3701         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3702         VM_BUG_ON(ret);
3703 }
3704
3705 /*
3706  * Initialise sysctl_user_reserve_kbytes.
3707  *
3708  * This is intended to prevent a user from starting a single memory hogging
3709  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3710  * mode.
3711  *
3712  * The default value is min(3% of free memory, 128MB)
3713  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3714  */
3715 static int init_user_reserve(void)
3716 {
3717         unsigned long free_kbytes;
3718
3719         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3720
3721         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3722         return 0;
3723 }
3724 subsys_initcall(init_user_reserve);
3725
3726 /*
3727  * Initialise sysctl_admin_reserve_kbytes.
3728  *
3729  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3730  * to log in and kill a memory hogging process.
3731  *
3732  * Systems with more than 256MB will reserve 8MB, enough to recover
3733  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3734  * only reserve 3% of free pages by default.
3735  */
3736 static int init_admin_reserve(void)
3737 {
3738         unsigned long free_kbytes;
3739
3740         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3741
3742         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3743         return 0;
3744 }
3745 subsys_initcall(init_admin_reserve);
3746
3747 /*
3748  * Reinititalise user and admin reserves if memory is added or removed.
3749  *
3750  * The default user reserve max is 128MB, and the default max for the
3751  * admin reserve is 8MB. These are usually, but not always, enough to
3752  * enable recovery from a memory hogging process using login/sshd, a shell,
3753  * and tools like top. It may make sense to increase or even disable the
3754  * reserve depending on the existence of swap or variations in the recovery
3755  * tools. So, the admin may have changed them.
3756  *
3757  * If memory is added and the reserves have been eliminated or increased above
3758  * the default max, then we'll trust the admin.
3759  *
3760  * If memory is removed and there isn't enough free memory, then we
3761  * need to reset the reserves.
3762  *
3763  * Otherwise keep the reserve set by the admin.
3764  */
3765 static int reserve_mem_notifier(struct notifier_block *nb,
3766                              unsigned long action, void *data)
3767 {
3768         unsigned long tmp, free_kbytes;
3769
3770         switch (action) {
3771         case MEM_ONLINE:
3772                 /* Default max is 128MB. Leave alone if modified by operator. */
3773                 tmp = sysctl_user_reserve_kbytes;
3774                 if (0 < tmp && tmp < (1UL << 17))
3775                         init_user_reserve();
3776
3777                 /* Default max is 8MB.  Leave alone if modified by operator. */
3778                 tmp = sysctl_admin_reserve_kbytes;
3779                 if (0 < tmp && tmp < (1UL << 13))
3780                         init_admin_reserve();
3781
3782                 break;
3783         case MEM_OFFLINE:
3784                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3785
3786                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3787                         init_user_reserve();
3788                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3789                                 sysctl_user_reserve_kbytes);
3790                 }
3791
3792                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3793                         init_admin_reserve();
3794                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3795                                 sysctl_admin_reserve_kbytes);
3796                 }
3797                 break;
3798         default:
3799                 break;
3800         }
3801         return NOTIFY_OK;
3802 }
3803
3804 static struct notifier_block reserve_mem_nb = {
3805         .notifier_call = reserve_mem_notifier,
3806 };
3807
3808 static int __meminit init_reserve_notifier(void)
3809 {
3810         if (register_hotmemory_notifier(&reserve_mem_nb))
3811                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3812
3813         return 0;
3814 }
3815 subsys_initcall(init_reserve_notifier);