Merge tag 'drm-misc-next-fixes-2023-07-06' of git://anongit.freedesktop.org/drm/drm...
[linux-2.6-microblaze.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                 struct file *file, struct address_space *mapping)
109 {
110         if (vma->vm_flags & VM_SHARED)
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, file, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158                         unsigned long start, unsigned long end, gfp_t gfp)
159 {
160         vmi->mas.index = start;
161         vmi->mas.last = end - 1;
162         mas_store_gfp(&vmi->mas, NULL, gfp);
163         if (unlikely(mas_is_err(&vmi->mas)))
164                 return -ENOMEM;
165
166         return 0;
167 }
168
169 /*
170  * check_brk_limits() - Use platform specific check of range & verify mlock
171  * limits.
172  * @addr: The address to check
173  * @len: The size of increase.
174  *
175  * Return: 0 on success.
176  */
177 static int check_brk_limits(unsigned long addr, unsigned long len)
178 {
179         unsigned long mapped_addr;
180
181         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182         if (IS_ERR_VALUE(mapped_addr))
183                 return mapped_addr;
184
185         return mlock_future_check(current->mm, current->mm->def_flags, len);
186 }
187 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
188                 unsigned long addr, unsigned long request, unsigned long flags);
189 SYSCALL_DEFINE1(brk, unsigned long, brk)
190 {
191         unsigned long newbrk, oldbrk, origbrk;
192         struct mm_struct *mm = current->mm;
193         struct vm_area_struct *brkvma, *next = NULL;
194         unsigned long min_brk;
195         bool populate;
196         bool downgraded = false;
197         LIST_HEAD(uf);
198         struct vma_iterator vmi;
199
200         if (mmap_write_lock_killable(mm))
201                 return -EINTR;
202
203         origbrk = mm->brk;
204
205 #ifdef CONFIG_COMPAT_BRK
206         /*
207          * CONFIG_COMPAT_BRK can still be overridden by setting
208          * randomize_va_space to 2, which will still cause mm->start_brk
209          * to be arbitrarily shifted
210          */
211         if (current->brk_randomized)
212                 min_brk = mm->start_brk;
213         else
214                 min_brk = mm->end_data;
215 #else
216         min_brk = mm->start_brk;
217 #endif
218         if (brk < min_brk)
219                 goto out;
220
221         /*
222          * Check against rlimit here. If this check is done later after the test
223          * of oldbrk with newbrk then it can escape the test and let the data
224          * segment grow beyond its set limit the in case where the limit is
225          * not page aligned -Ram Gupta
226          */
227         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228                               mm->end_data, mm->start_data))
229                 goto out;
230
231         newbrk = PAGE_ALIGN(brk);
232         oldbrk = PAGE_ALIGN(mm->brk);
233         if (oldbrk == newbrk) {
234                 mm->brk = brk;
235                 goto success;
236         }
237
238         /*
239          * Always allow shrinking brk.
240          * do_vma_munmap() may downgrade mmap_lock to read.
241          */
242         if (brk <= mm->brk) {
243                 int ret;
244
245                 /* Search one past newbrk */
246                 vma_iter_init(&vmi, mm, newbrk);
247                 brkvma = vma_find(&vmi, oldbrk);
248                 if (!brkvma || brkvma->vm_start >= oldbrk)
249                         goto out; /* mapping intersects with an existing non-brk vma. */
250                 /*
251                  * mm->brk must be protected by write mmap_lock.
252                  * do_vma_munmap() may downgrade the lock,  so update it
253                  * before calling do_vma_munmap().
254                  */
255                 mm->brk = brk;
256                 ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true);
257                 if (ret == 1)  {
258                         downgraded = true;
259                         goto success;
260                 } else if (!ret)
261                         goto success;
262
263                 mm->brk = origbrk;
264                 goto out;
265         }
266
267         if (check_brk_limits(oldbrk, newbrk - oldbrk))
268                 goto out;
269
270         /*
271          * Only check if the next VMA is within the stack_guard_gap of the
272          * expansion area
273          */
274         vma_iter_init(&vmi, mm, oldbrk);
275         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
276         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
277                 goto out;
278
279         brkvma = vma_prev_limit(&vmi, mm->start_brk);
280         /* Ok, looks good - let it rip. */
281         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
282                 goto out;
283
284         mm->brk = brk;
285
286 success:
287         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
288         if (downgraded)
289                 mmap_read_unlock(mm);
290         else
291                 mmap_write_unlock(mm);
292         userfaultfd_unmap_complete(mm, &uf);
293         if (populate)
294                 mm_populate(oldbrk, newbrk - oldbrk);
295         return brk;
296
297 out:
298         mmap_write_unlock(mm);
299         return origbrk;
300 }
301
302 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
303 extern void mt_validate(struct maple_tree *mt);
304 extern void mt_dump(const struct maple_tree *mt);
305
306 /* Validate the maple tree */
307 static void validate_mm_mt(struct mm_struct *mm)
308 {
309         struct maple_tree *mt = &mm->mm_mt;
310         struct vm_area_struct *vma_mt;
311
312         MA_STATE(mas, mt, 0, 0);
313
314         mt_validate(&mm->mm_mt);
315         mas_for_each(&mas, vma_mt, ULONG_MAX) {
316                 if ((vma_mt->vm_start != mas.index) ||
317                     (vma_mt->vm_end - 1 != mas.last)) {
318                         pr_emerg("issue in %s\n", current->comm);
319                         dump_stack();
320                         dump_vma(vma_mt);
321                         pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
322                                  mas.index, mas.last);
323                         pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
324                                  vma_mt->vm_start, vma_mt->vm_end);
325
326                         mt_dump(mas.tree);
327                         if (vma_mt->vm_end != mas.last + 1) {
328                                 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
329                                                 mm, vma_mt->vm_start, vma_mt->vm_end,
330                                                 mas.index, mas.last);
331                                 mt_dump(mas.tree);
332                         }
333                         VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
334                         if (vma_mt->vm_start != mas.index) {
335                                 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
336                                                 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
337                                 mt_dump(mas.tree);
338                         }
339                         VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
340                 }
341         }
342 }
343
344 static void validate_mm(struct mm_struct *mm)
345 {
346         int bug = 0;
347         int i = 0;
348         struct vm_area_struct *vma;
349         MA_STATE(mas, &mm->mm_mt, 0, 0);
350
351         validate_mm_mt(mm);
352
353         mas_for_each(&mas, vma, ULONG_MAX) {
354 #ifdef CONFIG_DEBUG_VM_RB
355                 struct anon_vma *anon_vma = vma->anon_vma;
356                 struct anon_vma_chain *avc;
357
358                 if (anon_vma) {
359                         anon_vma_lock_read(anon_vma);
360                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
361                                 anon_vma_interval_tree_verify(avc);
362                         anon_vma_unlock_read(anon_vma);
363                 }
364 #endif
365                 i++;
366         }
367         if (i != mm->map_count) {
368                 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
369                 bug = 1;
370         }
371         VM_BUG_ON_MM(bug, mm);
372 }
373
374 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
375 #define validate_mm_mt(root) do { } while (0)
376 #define validate_mm(mm) do { } while (0)
377 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
378
379 /*
380  * vma has some anon_vma assigned, and is already inserted on that
381  * anon_vma's interval trees.
382  *
383  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
384  * vma must be removed from the anon_vma's interval trees using
385  * anon_vma_interval_tree_pre_update_vma().
386  *
387  * After the update, the vma will be reinserted using
388  * anon_vma_interval_tree_post_update_vma().
389  *
390  * The entire update must be protected by exclusive mmap_lock and by
391  * the root anon_vma's mutex.
392  */
393 static inline void
394 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
395 {
396         struct anon_vma_chain *avc;
397
398         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
399                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
400 }
401
402 static inline void
403 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
404 {
405         struct anon_vma_chain *avc;
406
407         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
409 }
410
411 static unsigned long count_vma_pages_range(struct mm_struct *mm,
412                 unsigned long addr, unsigned long end)
413 {
414         VMA_ITERATOR(vmi, mm, addr);
415         struct vm_area_struct *vma;
416         unsigned long nr_pages = 0;
417
418         for_each_vma_range(vmi, vma, end) {
419                 unsigned long vm_start = max(addr, vma->vm_start);
420                 unsigned long vm_end = min(end, vma->vm_end);
421
422                 nr_pages += PHYS_PFN(vm_end - vm_start);
423         }
424
425         return nr_pages;
426 }
427
428 static void __vma_link_file(struct vm_area_struct *vma,
429                             struct address_space *mapping)
430 {
431         if (vma->vm_flags & VM_SHARED)
432                 mapping_allow_writable(mapping);
433
434         flush_dcache_mmap_lock(mapping);
435         vma_interval_tree_insert(vma, &mapping->i_mmap);
436         flush_dcache_mmap_unlock(mapping);
437 }
438
439 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
440 {
441         VMA_ITERATOR(vmi, mm, 0);
442         struct address_space *mapping = NULL;
443
444         if (vma_iter_prealloc(&vmi))
445                 return -ENOMEM;
446
447         if (vma->vm_file) {
448                 mapping = vma->vm_file->f_mapping;
449                 i_mmap_lock_write(mapping);
450         }
451
452         vma_iter_store(&vmi, vma);
453
454         if (mapping) {
455                 __vma_link_file(vma, mapping);
456                 i_mmap_unlock_write(mapping);
457         }
458
459         mm->map_count++;
460         validate_mm(mm);
461         return 0;
462 }
463
464 /*
465  * init_multi_vma_prep() - Initializer for struct vma_prepare
466  * @vp: The vma_prepare struct
467  * @vma: The vma that will be altered once locked
468  * @next: The next vma if it is to be adjusted
469  * @remove: The first vma to be removed
470  * @remove2: The second vma to be removed
471  */
472 static inline void init_multi_vma_prep(struct vma_prepare *vp,
473                 struct vm_area_struct *vma, struct vm_area_struct *next,
474                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
475 {
476         memset(vp, 0, sizeof(struct vma_prepare));
477         vp->vma = vma;
478         vp->anon_vma = vma->anon_vma;
479         vp->remove = remove;
480         vp->remove2 = remove2;
481         vp->adj_next = next;
482         if (!vp->anon_vma && next)
483                 vp->anon_vma = next->anon_vma;
484
485         vp->file = vma->vm_file;
486         if (vp->file)
487                 vp->mapping = vma->vm_file->f_mapping;
488
489 }
490
491 /*
492  * init_vma_prep() - Initializer wrapper for vma_prepare struct
493  * @vp: The vma_prepare struct
494  * @vma: The vma that will be altered once locked
495  */
496 static inline void init_vma_prep(struct vma_prepare *vp,
497                                  struct vm_area_struct *vma)
498 {
499         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
500 }
501
502
503 /*
504  * vma_prepare() - Helper function for handling locking VMAs prior to altering
505  * @vp: The initialized vma_prepare struct
506  */
507 static inline void vma_prepare(struct vma_prepare *vp)
508 {
509         vma_start_write(vp->vma);
510         if (vp->adj_next)
511                 vma_start_write(vp->adj_next);
512         /* vp->insert is always a newly created VMA, no need for locking */
513         if (vp->remove)
514                 vma_start_write(vp->remove);
515         if (vp->remove2)
516                 vma_start_write(vp->remove2);
517
518         if (vp->file) {
519                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
520
521                 if (vp->adj_next)
522                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
523                                       vp->adj_next->vm_end);
524
525                 i_mmap_lock_write(vp->mapping);
526                 if (vp->insert && vp->insert->vm_file) {
527                         /*
528                          * Put into interval tree now, so instantiated pages
529                          * are visible to arm/parisc __flush_dcache_page
530                          * throughout; but we cannot insert into address
531                          * space until vma start or end is updated.
532                          */
533                         __vma_link_file(vp->insert,
534                                         vp->insert->vm_file->f_mapping);
535                 }
536         }
537
538         if (vp->anon_vma) {
539                 anon_vma_lock_write(vp->anon_vma);
540                 anon_vma_interval_tree_pre_update_vma(vp->vma);
541                 if (vp->adj_next)
542                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
543         }
544
545         if (vp->file) {
546                 flush_dcache_mmap_lock(vp->mapping);
547                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
548                 if (vp->adj_next)
549                         vma_interval_tree_remove(vp->adj_next,
550                                                  &vp->mapping->i_mmap);
551         }
552
553 }
554
555 /*
556  * vma_complete- Helper function for handling the unlocking after altering VMAs,
557  * or for inserting a VMA.
558  *
559  * @vp: The vma_prepare struct
560  * @vmi: The vma iterator
561  * @mm: The mm_struct
562  */
563 static inline void vma_complete(struct vma_prepare *vp,
564                                 struct vma_iterator *vmi, struct mm_struct *mm)
565 {
566         if (vp->file) {
567                 if (vp->adj_next)
568                         vma_interval_tree_insert(vp->adj_next,
569                                                  &vp->mapping->i_mmap);
570                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
571                 flush_dcache_mmap_unlock(vp->mapping);
572         }
573
574         if (vp->remove && vp->file) {
575                 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
576                 if (vp->remove2)
577                         __remove_shared_vm_struct(vp->remove2, vp->file,
578                                                   vp->mapping);
579         } else if (vp->insert) {
580                 /*
581                  * split_vma has split insert from vma, and needs
582                  * us to insert it before dropping the locks
583                  * (it may either follow vma or precede it).
584                  */
585                 vma_iter_store(vmi, vp->insert);
586                 mm->map_count++;
587         }
588
589         if (vp->anon_vma) {
590                 anon_vma_interval_tree_post_update_vma(vp->vma);
591                 if (vp->adj_next)
592                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
593                 anon_vma_unlock_write(vp->anon_vma);
594         }
595
596         if (vp->file) {
597                 i_mmap_unlock_write(vp->mapping);
598                 uprobe_mmap(vp->vma);
599
600                 if (vp->adj_next)
601                         uprobe_mmap(vp->adj_next);
602         }
603
604         if (vp->remove) {
605 again:
606                 vma_mark_detached(vp->remove, true);
607                 if (vp->file) {
608                         uprobe_munmap(vp->remove, vp->remove->vm_start,
609                                       vp->remove->vm_end);
610                         fput(vp->file);
611                 }
612                 if (vp->remove->anon_vma)
613                         anon_vma_merge(vp->vma, vp->remove);
614                 mm->map_count--;
615                 mpol_put(vma_policy(vp->remove));
616                 if (!vp->remove2)
617                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
618                 vm_area_free(vp->remove);
619
620                 /*
621                  * In mprotect's case 6 (see comments on vma_merge),
622                  * we are removing both mid and next vmas
623                  */
624                 if (vp->remove2) {
625                         vp->remove = vp->remove2;
626                         vp->remove2 = NULL;
627                         goto again;
628                 }
629         }
630         if (vp->insert && vp->file)
631                 uprobe_mmap(vp->insert);
632 }
633
634 /*
635  * dup_anon_vma() - Helper function to duplicate anon_vma
636  * @dst: The destination VMA
637  * @src: The source VMA
638  *
639  * Returns: 0 on success.
640  */
641 static inline int dup_anon_vma(struct vm_area_struct *dst,
642                                struct vm_area_struct *src)
643 {
644         /*
645          * Easily overlooked: when mprotect shifts the boundary, make sure the
646          * expanding vma has anon_vma set if the shrinking vma had, to cover any
647          * anon pages imported.
648          */
649         if (src->anon_vma && !dst->anon_vma) {
650                 dst->anon_vma = src->anon_vma;
651                 return anon_vma_clone(dst, src);
652         }
653
654         return 0;
655 }
656
657 /*
658  * vma_expand - Expand an existing VMA
659  *
660  * @vmi: The vma iterator
661  * @vma: The vma to expand
662  * @start: The start of the vma
663  * @end: The exclusive end of the vma
664  * @pgoff: The page offset of vma
665  * @next: The current of next vma.
666  *
667  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
668  * expand over @next if it's different from @vma and @end == @next->vm_end.
669  * Checking if the @vma can expand and merge with @next needs to be handled by
670  * the caller.
671  *
672  * Returns: 0 on success
673  */
674 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
675                unsigned long start, unsigned long end, pgoff_t pgoff,
676                struct vm_area_struct *next)
677 {
678         bool remove_next = false;
679         struct vma_prepare vp;
680
681         if (next && (vma != next) && (end == next->vm_end)) {
682                 int ret;
683
684                 remove_next = true;
685                 ret = dup_anon_vma(vma, next);
686                 if (ret)
687                         return ret;
688         }
689
690         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
691         /* Not merging but overwriting any part of next is not handled. */
692         VM_WARN_ON(next && !vp.remove &&
693                   next != vma && end > next->vm_start);
694         /* Only handles expanding */
695         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
696
697         if (vma_iter_prealloc(vmi))
698                 goto nomem;
699
700         vma_prepare(&vp);
701         vma_adjust_trans_huge(vma, start, end, 0);
702         /* VMA iterator points to previous, so set to start if necessary */
703         if (vma_iter_addr(vmi) != start)
704                 vma_iter_set(vmi, start);
705
706         vma->vm_start = start;
707         vma->vm_end = end;
708         vma->vm_pgoff = pgoff;
709         /* Note: mas must be pointing to the expanding VMA */
710         vma_iter_store(vmi, vma);
711
712         vma_complete(&vp, vmi, vma->vm_mm);
713         validate_mm(vma->vm_mm);
714         return 0;
715
716 nomem:
717         return -ENOMEM;
718 }
719
720 /*
721  * vma_shrink() - Reduce an existing VMAs memory area
722  * @vmi: The vma iterator
723  * @vma: The VMA to modify
724  * @start: The new start
725  * @end: The new end
726  *
727  * Returns: 0 on success, -ENOMEM otherwise
728  */
729 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
730                unsigned long start, unsigned long end, pgoff_t pgoff)
731 {
732         struct vma_prepare vp;
733
734         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
735
736         if (vma_iter_prealloc(vmi))
737                 return -ENOMEM;
738
739         init_vma_prep(&vp, vma);
740         vma_prepare(&vp);
741         vma_adjust_trans_huge(vma, start, end, 0);
742
743         if (vma->vm_start < start)
744                 vma_iter_clear(vmi, vma->vm_start, start);
745
746         if (vma->vm_end > end)
747                 vma_iter_clear(vmi, end, vma->vm_end);
748
749         vma->vm_start = start;
750         vma->vm_end = end;
751         vma->vm_pgoff = pgoff;
752         vma_complete(&vp, vmi, vma->vm_mm);
753         validate_mm(vma->vm_mm);
754         return 0;
755 }
756
757 /*
758  * If the vma has a ->close operation then the driver probably needs to release
759  * per-vma resources, so we don't attempt to merge those if the caller indicates
760  * the current vma may be removed as part of the merge.
761  */
762 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
763                 struct file *file, unsigned long vm_flags,
764                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
765                 struct anon_vma_name *anon_name, bool may_remove_vma)
766 {
767         /*
768          * VM_SOFTDIRTY should not prevent from VMA merging, if we
769          * match the flags but dirty bit -- the caller should mark
770          * merged VMA as dirty. If dirty bit won't be excluded from
771          * comparison, we increase pressure on the memory system forcing
772          * the kernel to generate new VMAs when old one could be
773          * extended instead.
774          */
775         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
776                 return false;
777         if (vma->vm_file != file)
778                 return false;
779         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
780                 return false;
781         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
782                 return false;
783         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
784                 return false;
785         return true;
786 }
787
788 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
789                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
790 {
791         /*
792          * The list_is_singular() test is to avoid merging VMA cloned from
793          * parents. This can improve scalability caused by anon_vma lock.
794          */
795         if ((!anon_vma1 || !anon_vma2) && (!vma ||
796                 list_is_singular(&vma->anon_vma_chain)))
797                 return true;
798         return anon_vma1 == anon_vma2;
799 }
800
801 /*
802  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
803  * in front of (at a lower virtual address and file offset than) the vma.
804  *
805  * We cannot merge two vmas if they have differently assigned (non-NULL)
806  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
807  *
808  * We don't check here for the merged mmap wrapping around the end of pagecache
809  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
810  * wrap, nor mmaps which cover the final page at index -1UL.
811  *
812  * We assume the vma may be removed as part of the merge.
813  */
814 static bool
815 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
816                 struct anon_vma *anon_vma, struct file *file,
817                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
818                 struct anon_vma_name *anon_name)
819 {
820         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
821             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
822                 if (vma->vm_pgoff == vm_pgoff)
823                         return true;
824         }
825         return false;
826 }
827
828 /*
829  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
830  * beyond (at a higher virtual address and file offset than) the vma.
831  *
832  * We cannot merge two vmas if they have differently assigned (non-NULL)
833  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
834  *
835  * We assume that vma is not removed as part of the merge.
836  */
837 static bool
838 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
839                 struct anon_vma *anon_vma, struct file *file,
840                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
841                 struct anon_vma_name *anon_name)
842 {
843         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
844             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
845                 pgoff_t vm_pglen;
846                 vm_pglen = vma_pages(vma);
847                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
848                         return true;
849         }
850         return false;
851 }
852
853 /*
854  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
855  * figure out whether that can be merged with its predecessor or its
856  * successor.  Or both (it neatly fills a hole).
857  *
858  * In most cases - when called for mmap, brk or mremap - [addr,end) is
859  * certain not to be mapped by the time vma_merge is called; but when
860  * called for mprotect, it is certain to be already mapped (either at
861  * an offset within prev, or at the start of next), and the flags of
862  * this area are about to be changed to vm_flags - and the no-change
863  * case has already been eliminated.
864  *
865  * The following mprotect cases have to be considered, where **** is
866  * the area passed down from mprotect_fixup, never extending beyond one
867  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
868  * at the same address as **** and is of the same or larger span, and
869  * NNNN the next vma after ****:
870  *
871  *     ****             ****                   ****
872  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
873  *    cannot merge    might become       might become
874  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
875  *    mmap, brk or    case 4 below       case 5 below
876  *    mremap move:
877  *                        ****               ****
878  *                    PPPP    NNNN       PPPPCCCCNNNN
879  *                    might become       might become
880  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
881  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
882  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
883  *
884  * It is important for case 8 that the vma CCCC overlapping the
885  * region **** is never going to extended over NNNN. Instead NNNN must
886  * be extended in region **** and CCCC must be removed. This way in
887  * all cases where vma_merge succeeds, the moment vma_merge drops the
888  * rmap_locks, the properties of the merged vma will be already
889  * correct for the whole merged range. Some of those properties like
890  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
891  * be correct for the whole merged range immediately after the
892  * rmap_locks are released. Otherwise if NNNN would be removed and
893  * CCCC would be extended over the NNNN range, remove_migration_ptes
894  * or other rmap walkers (if working on addresses beyond the "end"
895  * parameter) may establish ptes with the wrong permissions of CCCC
896  * instead of the right permissions of NNNN.
897  *
898  * In the code below:
899  * PPPP is represented by *prev
900  * CCCC is represented by *curr or not represented at all (NULL)
901  * NNNN is represented by *next or not represented at all (NULL)
902  * **** is not represented - it will be merged and the vma containing the
903  *      area is returned, or the function will return NULL
904  */
905 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
906                         struct vm_area_struct *prev, unsigned long addr,
907                         unsigned long end, unsigned long vm_flags,
908                         struct anon_vma *anon_vma, struct file *file,
909                         pgoff_t pgoff, struct mempolicy *policy,
910                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
911                         struct anon_vma_name *anon_name)
912 {
913         struct vm_area_struct *curr, *next, *res;
914         struct vm_area_struct *vma, *adjust, *remove, *remove2;
915         struct vma_prepare vp;
916         pgoff_t vma_pgoff;
917         int err = 0;
918         bool merge_prev = false;
919         bool merge_next = false;
920         bool vma_expanded = false;
921         unsigned long vma_start = addr;
922         unsigned long vma_end = end;
923         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
924         long adj_start = 0;
925
926         validate_mm(mm);
927         /*
928          * We later require that vma->vm_flags == vm_flags,
929          * so this tests vma->vm_flags & VM_SPECIAL, too.
930          */
931         if (vm_flags & VM_SPECIAL)
932                 return NULL;
933
934         /* Does the input range span an existing VMA? (cases 5 - 8) */
935         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
936
937         if (!curr ||                    /* cases 1 - 4 */
938             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
939                 next = vma_lookup(mm, end);
940         else
941                 next = NULL;            /* case 5 */
942
943         if (prev) {
944                 vma_start = prev->vm_start;
945                 vma_pgoff = prev->vm_pgoff;
946
947                 /* Can we merge the predecessor? */
948                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
949                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
950                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
951                         merge_prev = true;
952                         vma_prev(vmi);
953                 }
954         }
955
956         /* Can we merge the successor? */
957         if (next && mpol_equal(policy, vma_policy(next)) &&
958             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
959                                  vm_userfaultfd_ctx, anon_name)) {
960                 merge_next = true;
961         }
962
963         /* Verify some invariant that must be enforced by the caller. */
964         VM_WARN_ON(prev && addr <= prev->vm_start);
965         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
966         VM_WARN_ON(addr >= end);
967
968         if (!merge_prev && !merge_next)
969                 return NULL; /* Not mergeable. */
970
971         res = vma = prev;
972         remove = remove2 = adjust = NULL;
973
974         /* Can we merge both the predecessor and the successor? */
975         if (merge_prev && merge_next &&
976             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
977                 remove = next;                          /* case 1 */
978                 vma_end = next->vm_end;
979                 err = dup_anon_vma(prev, next);
980                 if (curr) {                             /* case 6 */
981                         remove = curr;
982                         remove2 = next;
983                         if (!next->anon_vma)
984                                 err = dup_anon_vma(prev, curr);
985                 }
986         } else if (merge_prev) {                        /* case 2 */
987                 if (curr) {
988                         err = dup_anon_vma(prev, curr);
989                         if (end == curr->vm_end) {      /* case 7 */
990                                 remove = curr;
991                         } else {                        /* case 5 */
992                                 adjust = curr;
993                                 adj_start = (end - curr->vm_start);
994                         }
995                 }
996         } else { /* merge_next */
997                 res = next;
998                 if (prev && addr < prev->vm_end) {      /* case 4 */
999                         vma_end = addr;
1000                         adjust = next;
1001                         adj_start = -(prev->vm_end - addr);
1002                         err = dup_anon_vma(next, prev);
1003                 } else {
1004                         /*
1005                          * Note that cases 3 and 8 are the ONLY ones where prev
1006                          * is permitted to be (but is not necessarily) NULL.
1007                          */
1008                         vma = next;                     /* case 3 */
1009                         vma_start = addr;
1010                         vma_end = next->vm_end;
1011                         vma_pgoff = next->vm_pgoff - pglen;
1012                         if (curr) {                     /* case 8 */
1013                                 vma_pgoff = curr->vm_pgoff;
1014                                 remove = curr;
1015                                 err = dup_anon_vma(next, curr);
1016                         }
1017                 }
1018         }
1019
1020         /* Error in anon_vma clone. */
1021         if (err)
1022                 return NULL;
1023
1024         if (vma_iter_prealloc(vmi))
1025                 return NULL;
1026
1027         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1028         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1029                    vp.anon_vma != adjust->anon_vma);
1030
1031         vma_prepare(&vp);
1032         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1033         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1034                 vma_expanded = true;
1035
1036         vma->vm_start = vma_start;
1037         vma->vm_end = vma_end;
1038         vma->vm_pgoff = vma_pgoff;
1039
1040         if (vma_expanded)
1041                 vma_iter_store(vmi, vma);
1042
1043         if (adj_start) {
1044                 adjust->vm_start += adj_start;
1045                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1046                 if (adj_start < 0) {
1047                         WARN_ON(vma_expanded);
1048                         vma_iter_store(vmi, next);
1049                 }
1050         }
1051
1052         vma_complete(&vp, vmi, mm);
1053         vma_iter_free(vmi);
1054         validate_mm(mm);
1055         khugepaged_enter_vma(res, vm_flags);
1056
1057         return res;
1058 }
1059
1060 /*
1061  * Rough compatibility check to quickly see if it's even worth looking
1062  * at sharing an anon_vma.
1063  *
1064  * They need to have the same vm_file, and the flags can only differ
1065  * in things that mprotect may change.
1066  *
1067  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1068  * we can merge the two vma's. For example, we refuse to merge a vma if
1069  * there is a vm_ops->close() function, because that indicates that the
1070  * driver is doing some kind of reference counting. But that doesn't
1071  * really matter for the anon_vma sharing case.
1072  */
1073 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1074 {
1075         return a->vm_end == b->vm_start &&
1076                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1077                 a->vm_file == b->vm_file &&
1078                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1079                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1080 }
1081
1082 /*
1083  * Do some basic sanity checking to see if we can re-use the anon_vma
1084  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1085  * the same as 'old', the other will be the new one that is trying
1086  * to share the anon_vma.
1087  *
1088  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1089  * the anon_vma of 'old' is concurrently in the process of being set up
1090  * by another page fault trying to merge _that_. But that's ok: if it
1091  * is being set up, that automatically means that it will be a singleton
1092  * acceptable for merging, so we can do all of this optimistically. But
1093  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1094  *
1095  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1096  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1097  * is to return an anon_vma that is "complex" due to having gone through
1098  * a fork).
1099  *
1100  * We also make sure that the two vma's are compatible (adjacent,
1101  * and with the same memory policies). That's all stable, even with just
1102  * a read lock on the mmap_lock.
1103  */
1104 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1105 {
1106         if (anon_vma_compatible(a, b)) {
1107                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1108
1109                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1110                         return anon_vma;
1111         }
1112         return NULL;
1113 }
1114
1115 /*
1116  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1117  * neighbouring vmas for a suitable anon_vma, before it goes off
1118  * to allocate a new anon_vma.  It checks because a repetitive
1119  * sequence of mprotects and faults may otherwise lead to distinct
1120  * anon_vmas being allocated, preventing vma merge in subsequent
1121  * mprotect.
1122  */
1123 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1124 {
1125         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1126         struct anon_vma *anon_vma = NULL;
1127         struct vm_area_struct *prev, *next;
1128
1129         /* Try next first. */
1130         next = mas_walk(&mas);
1131         if (next) {
1132                 anon_vma = reusable_anon_vma(next, vma, next);
1133                 if (anon_vma)
1134                         return anon_vma;
1135         }
1136
1137         prev = mas_prev(&mas, 0);
1138         VM_BUG_ON_VMA(prev != vma, vma);
1139         prev = mas_prev(&mas, 0);
1140         /* Try prev next. */
1141         if (prev)
1142                 anon_vma = reusable_anon_vma(prev, prev, vma);
1143
1144         /*
1145          * We might reach here with anon_vma == NULL if we can't find
1146          * any reusable anon_vma.
1147          * There's no absolute need to look only at touching neighbours:
1148          * we could search further afield for "compatible" anon_vmas.
1149          * But it would probably just be a waste of time searching,
1150          * or lead to too many vmas hanging off the same anon_vma.
1151          * We're trying to allow mprotect remerging later on,
1152          * not trying to minimize memory used for anon_vmas.
1153          */
1154         return anon_vma;
1155 }
1156
1157 /*
1158  * If a hint addr is less than mmap_min_addr change hint to be as
1159  * low as possible but still greater than mmap_min_addr
1160  */
1161 static inline unsigned long round_hint_to_min(unsigned long hint)
1162 {
1163         hint &= PAGE_MASK;
1164         if (((void *)hint != NULL) &&
1165             (hint < mmap_min_addr))
1166                 return PAGE_ALIGN(mmap_min_addr);
1167         return hint;
1168 }
1169
1170 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1171                        unsigned long len)
1172 {
1173         unsigned long locked, lock_limit;
1174
1175         /*  mlock MCL_FUTURE? */
1176         if (flags & VM_LOCKED) {
1177                 locked = len >> PAGE_SHIFT;
1178                 locked += mm->locked_vm;
1179                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1180                 lock_limit >>= PAGE_SHIFT;
1181                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1182                         return -EAGAIN;
1183         }
1184         return 0;
1185 }
1186
1187 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1188 {
1189         if (S_ISREG(inode->i_mode))
1190                 return MAX_LFS_FILESIZE;
1191
1192         if (S_ISBLK(inode->i_mode))
1193                 return MAX_LFS_FILESIZE;
1194
1195         if (S_ISSOCK(inode->i_mode))
1196                 return MAX_LFS_FILESIZE;
1197
1198         /* Special "we do even unsigned file positions" case */
1199         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1200                 return 0;
1201
1202         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1203         return ULONG_MAX;
1204 }
1205
1206 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1207                                 unsigned long pgoff, unsigned long len)
1208 {
1209         u64 maxsize = file_mmap_size_max(file, inode);
1210
1211         if (maxsize && len > maxsize)
1212                 return false;
1213         maxsize -= len;
1214         if (pgoff > maxsize >> PAGE_SHIFT)
1215                 return false;
1216         return true;
1217 }
1218
1219 /*
1220  * The caller must write-lock current->mm->mmap_lock.
1221  */
1222 unsigned long do_mmap(struct file *file, unsigned long addr,
1223                         unsigned long len, unsigned long prot,
1224                         unsigned long flags, unsigned long pgoff,
1225                         unsigned long *populate, struct list_head *uf)
1226 {
1227         struct mm_struct *mm = current->mm;
1228         vm_flags_t vm_flags;
1229         int pkey = 0;
1230
1231         validate_mm(mm);
1232         *populate = 0;
1233
1234         if (!len)
1235                 return -EINVAL;
1236
1237         /*
1238          * Does the application expect PROT_READ to imply PROT_EXEC?
1239          *
1240          * (the exception is when the underlying filesystem is noexec
1241          *  mounted, in which case we dont add PROT_EXEC.)
1242          */
1243         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1244                 if (!(file && path_noexec(&file->f_path)))
1245                         prot |= PROT_EXEC;
1246
1247         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1248         if (flags & MAP_FIXED_NOREPLACE)
1249                 flags |= MAP_FIXED;
1250
1251         if (!(flags & MAP_FIXED))
1252                 addr = round_hint_to_min(addr);
1253
1254         /* Careful about overflows.. */
1255         len = PAGE_ALIGN(len);
1256         if (!len)
1257                 return -ENOMEM;
1258
1259         /* offset overflow? */
1260         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1261                 return -EOVERFLOW;
1262
1263         /* Too many mappings? */
1264         if (mm->map_count > sysctl_max_map_count)
1265                 return -ENOMEM;
1266
1267         /* Obtain the address to map to. we verify (or select) it and ensure
1268          * that it represents a valid section of the address space.
1269          */
1270         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1271         if (IS_ERR_VALUE(addr))
1272                 return addr;
1273
1274         if (flags & MAP_FIXED_NOREPLACE) {
1275                 if (find_vma_intersection(mm, addr, addr + len))
1276                         return -EEXIST;
1277         }
1278
1279         if (prot == PROT_EXEC) {
1280                 pkey = execute_only_pkey(mm);
1281                 if (pkey < 0)
1282                         pkey = 0;
1283         }
1284
1285         /* Do simple checking here so the lower-level routines won't have
1286          * to. we assume access permissions have been handled by the open
1287          * of the memory object, so we don't do any here.
1288          */
1289         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1290                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1291
1292         if (flags & MAP_LOCKED)
1293                 if (!can_do_mlock())
1294                         return -EPERM;
1295
1296         if (mlock_future_check(mm, vm_flags, len))
1297                 return -EAGAIN;
1298
1299         if (file) {
1300                 struct inode *inode = file_inode(file);
1301                 unsigned long flags_mask;
1302
1303                 if (!file_mmap_ok(file, inode, pgoff, len))
1304                         return -EOVERFLOW;
1305
1306                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1307
1308                 switch (flags & MAP_TYPE) {
1309                 case MAP_SHARED:
1310                         /*
1311                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1312                          * flags. E.g. MAP_SYNC is dangerous to use with
1313                          * MAP_SHARED as you don't know which consistency model
1314                          * you will get. We silently ignore unsupported flags
1315                          * with MAP_SHARED to preserve backward compatibility.
1316                          */
1317                         flags &= LEGACY_MAP_MASK;
1318                         fallthrough;
1319                 case MAP_SHARED_VALIDATE:
1320                         if (flags & ~flags_mask)
1321                                 return -EOPNOTSUPP;
1322                         if (prot & PROT_WRITE) {
1323                                 if (!(file->f_mode & FMODE_WRITE))
1324                                         return -EACCES;
1325                                 if (IS_SWAPFILE(file->f_mapping->host))
1326                                         return -ETXTBSY;
1327                         }
1328
1329                         /*
1330                          * Make sure we don't allow writing to an append-only
1331                          * file..
1332                          */
1333                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1334                                 return -EACCES;
1335
1336                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1337                         if (!(file->f_mode & FMODE_WRITE))
1338                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1339                         fallthrough;
1340                 case MAP_PRIVATE:
1341                         if (!(file->f_mode & FMODE_READ))
1342                                 return -EACCES;
1343                         if (path_noexec(&file->f_path)) {
1344                                 if (vm_flags & VM_EXEC)
1345                                         return -EPERM;
1346                                 vm_flags &= ~VM_MAYEXEC;
1347                         }
1348
1349                         if (!file->f_op->mmap)
1350                                 return -ENODEV;
1351                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1352                                 return -EINVAL;
1353                         break;
1354
1355                 default:
1356                         return -EINVAL;
1357                 }
1358         } else {
1359                 switch (flags & MAP_TYPE) {
1360                 case MAP_SHARED:
1361                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1362                                 return -EINVAL;
1363                         /*
1364                          * Ignore pgoff.
1365                          */
1366                         pgoff = 0;
1367                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1368                         break;
1369                 case MAP_PRIVATE:
1370                         /*
1371                          * Set pgoff according to addr for anon_vma.
1372                          */
1373                         pgoff = addr >> PAGE_SHIFT;
1374                         break;
1375                 default:
1376                         return -EINVAL;
1377                 }
1378         }
1379
1380         /*
1381          * Set 'VM_NORESERVE' if we should not account for the
1382          * memory use of this mapping.
1383          */
1384         if (flags & MAP_NORESERVE) {
1385                 /* We honor MAP_NORESERVE if allowed to overcommit */
1386                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1387                         vm_flags |= VM_NORESERVE;
1388
1389                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1390                 if (file && is_file_hugepages(file))
1391                         vm_flags |= VM_NORESERVE;
1392         }
1393
1394         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1395         if (!IS_ERR_VALUE(addr) &&
1396             ((vm_flags & VM_LOCKED) ||
1397              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1398                 *populate = len;
1399         return addr;
1400 }
1401
1402 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1403                               unsigned long prot, unsigned long flags,
1404                               unsigned long fd, unsigned long pgoff)
1405 {
1406         struct file *file = NULL;
1407         unsigned long retval;
1408
1409         if (!(flags & MAP_ANONYMOUS)) {
1410                 audit_mmap_fd(fd, flags);
1411                 file = fget(fd);
1412                 if (!file)
1413                         return -EBADF;
1414                 if (is_file_hugepages(file)) {
1415                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1416                 } else if (unlikely(flags & MAP_HUGETLB)) {
1417                         retval = -EINVAL;
1418                         goto out_fput;
1419                 }
1420         } else if (flags & MAP_HUGETLB) {
1421                 struct hstate *hs;
1422
1423                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1424                 if (!hs)
1425                         return -EINVAL;
1426
1427                 len = ALIGN(len, huge_page_size(hs));
1428                 /*
1429                  * VM_NORESERVE is used because the reservations will be
1430                  * taken when vm_ops->mmap() is called
1431                  */
1432                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1433                                 VM_NORESERVE,
1434                                 HUGETLB_ANONHUGE_INODE,
1435                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1436                 if (IS_ERR(file))
1437                         return PTR_ERR(file);
1438         }
1439
1440         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1441 out_fput:
1442         if (file)
1443                 fput(file);
1444         return retval;
1445 }
1446
1447 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1448                 unsigned long, prot, unsigned long, flags,
1449                 unsigned long, fd, unsigned long, pgoff)
1450 {
1451         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1452 }
1453
1454 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1455 struct mmap_arg_struct {
1456         unsigned long addr;
1457         unsigned long len;
1458         unsigned long prot;
1459         unsigned long flags;
1460         unsigned long fd;
1461         unsigned long offset;
1462 };
1463
1464 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1465 {
1466         struct mmap_arg_struct a;
1467
1468         if (copy_from_user(&a, arg, sizeof(a)))
1469                 return -EFAULT;
1470         if (offset_in_page(a.offset))
1471                 return -EINVAL;
1472
1473         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1474                                a.offset >> PAGE_SHIFT);
1475 }
1476 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1477
1478 /*
1479  * Some shared mappings will want the pages marked read-only
1480  * to track write events. If so, we'll downgrade vm_page_prot
1481  * to the private version (using protection_map[] without the
1482  * VM_SHARED bit).
1483  */
1484 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1485 {
1486         vm_flags_t vm_flags = vma->vm_flags;
1487         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1488
1489         /* If it was private or non-writable, the write bit is already clear */
1490         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1491                 return 0;
1492
1493         /* The backer wishes to know when pages are first written to? */
1494         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1495                 return 1;
1496
1497         /* The open routine did something to the protections that pgprot_modify
1498          * won't preserve? */
1499         if (pgprot_val(vm_page_prot) !=
1500             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1501                 return 0;
1502
1503         /*
1504          * Do we need to track softdirty? hugetlb does not support softdirty
1505          * tracking yet.
1506          */
1507         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1508                 return 1;
1509
1510         /* Do we need write faults for uffd-wp tracking? */
1511         if (userfaultfd_wp(vma))
1512                 return 1;
1513
1514         /* Specialty mapping? */
1515         if (vm_flags & VM_PFNMAP)
1516                 return 0;
1517
1518         /* Can the mapping track the dirty pages? */
1519         return vma->vm_file && vma->vm_file->f_mapping &&
1520                 mapping_can_writeback(vma->vm_file->f_mapping);
1521 }
1522
1523 /*
1524  * We account for memory if it's a private writeable mapping,
1525  * not hugepages and VM_NORESERVE wasn't set.
1526  */
1527 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1528 {
1529         /*
1530          * hugetlb has its own accounting separate from the core VM
1531          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1532          */
1533         if (file && is_file_hugepages(file))
1534                 return 0;
1535
1536         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1537 }
1538
1539 /**
1540  * unmapped_area() - Find an area between the low_limit and the high_limit with
1541  * the correct alignment and offset, all from @info. Note: current->mm is used
1542  * for the search.
1543  *
1544  * @info: The unmapped area information including the range [low_limit -
1545  * high_limit), the alignment offset and mask.
1546  *
1547  * Return: A memory address or -ENOMEM.
1548  */
1549 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1550 {
1551         unsigned long length, gap;
1552         unsigned long low_limit, high_limit;
1553         struct vm_area_struct *tmp;
1554
1555         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1556
1557         /* Adjust search length to account for worst case alignment overhead */
1558         length = info->length + info->align_mask;
1559         if (length < info->length)
1560                 return -ENOMEM;
1561
1562         low_limit = info->low_limit;
1563         if (low_limit < mmap_min_addr)
1564                 low_limit = mmap_min_addr;
1565         high_limit = info->high_limit;
1566 retry:
1567         if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1568                 return -ENOMEM;
1569
1570         gap = mas.index;
1571         gap += (info->align_offset - gap) & info->align_mask;
1572         tmp = mas_next(&mas, ULONG_MAX);
1573         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1574                 if (vm_start_gap(tmp) < gap + length - 1) {
1575                         low_limit = tmp->vm_end;
1576                         mas_reset(&mas);
1577                         goto retry;
1578                 }
1579         } else {
1580                 tmp = mas_prev(&mas, 0);
1581                 if (tmp && vm_end_gap(tmp) > gap) {
1582                         low_limit = vm_end_gap(tmp);
1583                         mas_reset(&mas);
1584                         goto retry;
1585                 }
1586         }
1587
1588         return gap;
1589 }
1590
1591 /**
1592  * unmapped_area_topdown() - Find an area between the low_limit and the
1593  * high_limit with the correct alignment and offset at the highest available
1594  * address, all from @info. Note: current->mm is used for the search.
1595  *
1596  * @info: The unmapped area information including the range [low_limit -
1597  * high_limit), the alignment offset and mask.
1598  *
1599  * Return: A memory address or -ENOMEM.
1600  */
1601 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1602 {
1603         unsigned long length, gap, gap_end;
1604         unsigned long low_limit, high_limit;
1605         struct vm_area_struct *tmp;
1606
1607         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1608         /* Adjust search length to account for worst case alignment overhead */
1609         length = info->length + info->align_mask;
1610         if (length < info->length)
1611                 return -ENOMEM;
1612
1613         low_limit = info->low_limit;
1614         if (low_limit < mmap_min_addr)
1615                 low_limit = mmap_min_addr;
1616         high_limit = info->high_limit;
1617 retry:
1618         if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1619                 return -ENOMEM;
1620
1621         gap = mas.last + 1 - info->length;
1622         gap -= (gap - info->align_offset) & info->align_mask;
1623         gap_end = mas.last;
1624         tmp = mas_next(&mas, ULONG_MAX);
1625         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1626                 if (vm_start_gap(tmp) <= gap_end) {
1627                         high_limit = vm_start_gap(tmp);
1628                         mas_reset(&mas);
1629                         goto retry;
1630                 }
1631         } else {
1632                 tmp = mas_prev(&mas, 0);
1633                 if (tmp && vm_end_gap(tmp) > gap) {
1634                         high_limit = tmp->vm_start;
1635                         mas_reset(&mas);
1636                         goto retry;
1637                 }
1638         }
1639
1640         return gap;
1641 }
1642
1643 /*
1644  * Search for an unmapped address range.
1645  *
1646  * We are looking for a range that:
1647  * - does not intersect with any VMA;
1648  * - is contained within the [low_limit, high_limit) interval;
1649  * - is at least the desired size.
1650  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1651  */
1652 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1653 {
1654         unsigned long addr;
1655
1656         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1657                 addr = unmapped_area_topdown(info);
1658         else
1659                 addr = unmapped_area(info);
1660
1661         trace_vm_unmapped_area(addr, info);
1662         return addr;
1663 }
1664
1665 /* Get an address range which is currently unmapped.
1666  * For shmat() with addr=0.
1667  *
1668  * Ugly calling convention alert:
1669  * Return value with the low bits set means error value,
1670  * ie
1671  *      if (ret & ~PAGE_MASK)
1672  *              error = ret;
1673  *
1674  * This function "knows" that -ENOMEM has the bits set.
1675  */
1676 unsigned long
1677 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1678                           unsigned long len, unsigned long pgoff,
1679                           unsigned long flags)
1680 {
1681         struct mm_struct *mm = current->mm;
1682         struct vm_area_struct *vma, *prev;
1683         struct vm_unmapped_area_info info;
1684         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1685
1686         if (len > mmap_end - mmap_min_addr)
1687                 return -ENOMEM;
1688
1689         if (flags & MAP_FIXED)
1690                 return addr;
1691
1692         if (addr) {
1693                 addr = PAGE_ALIGN(addr);
1694                 vma = find_vma_prev(mm, addr, &prev);
1695                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1696                     (!vma || addr + len <= vm_start_gap(vma)) &&
1697                     (!prev || addr >= vm_end_gap(prev)))
1698                         return addr;
1699         }
1700
1701         info.flags = 0;
1702         info.length = len;
1703         info.low_limit = mm->mmap_base;
1704         info.high_limit = mmap_end;
1705         info.align_mask = 0;
1706         info.align_offset = 0;
1707         return vm_unmapped_area(&info);
1708 }
1709
1710 #ifndef HAVE_ARCH_UNMAPPED_AREA
1711 unsigned long
1712 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1713                        unsigned long len, unsigned long pgoff,
1714                        unsigned long flags)
1715 {
1716         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1717 }
1718 #endif
1719
1720 /*
1721  * This mmap-allocator allocates new areas top-down from below the
1722  * stack's low limit (the base):
1723  */
1724 unsigned long
1725 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1726                                   unsigned long len, unsigned long pgoff,
1727                                   unsigned long flags)
1728 {
1729         struct vm_area_struct *vma, *prev;
1730         struct mm_struct *mm = current->mm;
1731         struct vm_unmapped_area_info info;
1732         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1733
1734         /* requested length too big for entire address space */
1735         if (len > mmap_end - mmap_min_addr)
1736                 return -ENOMEM;
1737
1738         if (flags & MAP_FIXED)
1739                 return addr;
1740
1741         /* requesting a specific address */
1742         if (addr) {
1743                 addr = PAGE_ALIGN(addr);
1744                 vma = find_vma_prev(mm, addr, &prev);
1745                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1746                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1747                                 (!prev || addr >= vm_end_gap(prev)))
1748                         return addr;
1749         }
1750
1751         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1752         info.length = len;
1753         info.low_limit = PAGE_SIZE;
1754         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1755         info.align_mask = 0;
1756         info.align_offset = 0;
1757         addr = vm_unmapped_area(&info);
1758
1759         /*
1760          * A failed mmap() very likely causes application failure,
1761          * so fall back to the bottom-up function here. This scenario
1762          * can happen with large stack limits and large mmap()
1763          * allocations.
1764          */
1765         if (offset_in_page(addr)) {
1766                 VM_BUG_ON(addr != -ENOMEM);
1767                 info.flags = 0;
1768                 info.low_limit = TASK_UNMAPPED_BASE;
1769                 info.high_limit = mmap_end;
1770                 addr = vm_unmapped_area(&info);
1771         }
1772
1773         return addr;
1774 }
1775
1776 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1777 unsigned long
1778 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1779                                unsigned long len, unsigned long pgoff,
1780                                unsigned long flags)
1781 {
1782         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1783 }
1784 #endif
1785
1786 unsigned long
1787 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1788                 unsigned long pgoff, unsigned long flags)
1789 {
1790         unsigned long (*get_area)(struct file *, unsigned long,
1791                                   unsigned long, unsigned long, unsigned long);
1792
1793         unsigned long error = arch_mmap_check(addr, len, flags);
1794         if (error)
1795                 return error;
1796
1797         /* Careful about overflows.. */
1798         if (len > TASK_SIZE)
1799                 return -ENOMEM;
1800
1801         get_area = current->mm->get_unmapped_area;
1802         if (file) {
1803                 if (file->f_op->get_unmapped_area)
1804                         get_area = file->f_op->get_unmapped_area;
1805         } else if (flags & MAP_SHARED) {
1806                 /*
1807                  * mmap_region() will call shmem_zero_setup() to create a file,
1808                  * so use shmem's get_unmapped_area in case it can be huge.
1809                  * do_mmap() will clear pgoff, so match alignment.
1810                  */
1811                 pgoff = 0;
1812                 get_area = shmem_get_unmapped_area;
1813         }
1814
1815         addr = get_area(file, addr, len, pgoff, flags);
1816         if (IS_ERR_VALUE(addr))
1817                 return addr;
1818
1819         if (addr > TASK_SIZE - len)
1820                 return -ENOMEM;
1821         if (offset_in_page(addr))
1822                 return -EINVAL;
1823
1824         error = security_mmap_addr(addr);
1825         return error ? error : addr;
1826 }
1827
1828 EXPORT_SYMBOL(get_unmapped_area);
1829
1830 /**
1831  * find_vma_intersection() - Look up the first VMA which intersects the interval
1832  * @mm: The process address space.
1833  * @start_addr: The inclusive start user address.
1834  * @end_addr: The exclusive end user address.
1835  *
1836  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1837  * start_addr < end_addr.
1838  */
1839 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1840                                              unsigned long start_addr,
1841                                              unsigned long end_addr)
1842 {
1843         unsigned long index = start_addr;
1844
1845         mmap_assert_locked(mm);
1846         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1847 }
1848 EXPORT_SYMBOL(find_vma_intersection);
1849
1850 /**
1851  * find_vma() - Find the VMA for a given address, or the next VMA.
1852  * @mm: The mm_struct to check
1853  * @addr: The address
1854  *
1855  * Returns: The VMA associated with addr, or the next VMA.
1856  * May return %NULL in the case of no VMA at addr or above.
1857  */
1858 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1859 {
1860         unsigned long index = addr;
1861
1862         mmap_assert_locked(mm);
1863         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1864 }
1865 EXPORT_SYMBOL(find_vma);
1866
1867 /**
1868  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1869  * set %pprev to the previous VMA, if any.
1870  * @mm: The mm_struct to check
1871  * @addr: The address
1872  * @pprev: The pointer to set to the previous VMA
1873  *
1874  * Note that RCU lock is missing here since the external mmap_lock() is used
1875  * instead.
1876  *
1877  * Returns: The VMA associated with @addr, or the next vma.
1878  * May return %NULL in the case of no vma at addr or above.
1879  */
1880 struct vm_area_struct *
1881 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1882                         struct vm_area_struct **pprev)
1883 {
1884         struct vm_area_struct *vma;
1885         MA_STATE(mas, &mm->mm_mt, addr, addr);
1886
1887         vma = mas_walk(&mas);
1888         *pprev = mas_prev(&mas, 0);
1889         if (!vma)
1890                 vma = mas_next(&mas, ULONG_MAX);
1891         return vma;
1892 }
1893
1894 /*
1895  * Verify that the stack growth is acceptable and
1896  * update accounting. This is shared with both the
1897  * grow-up and grow-down cases.
1898  */
1899 static int acct_stack_growth(struct vm_area_struct *vma,
1900                              unsigned long size, unsigned long grow)
1901 {
1902         struct mm_struct *mm = vma->vm_mm;
1903         unsigned long new_start;
1904
1905         /* address space limit tests */
1906         if (!may_expand_vm(mm, vma->vm_flags, grow))
1907                 return -ENOMEM;
1908
1909         /* Stack limit test */
1910         if (size > rlimit(RLIMIT_STACK))
1911                 return -ENOMEM;
1912
1913         /* mlock limit tests */
1914         if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1915                 return -ENOMEM;
1916
1917         /* Check to ensure the stack will not grow into a hugetlb-only region */
1918         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1919                         vma->vm_end - size;
1920         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1921                 return -EFAULT;
1922
1923         /*
1924          * Overcommit..  This must be the final test, as it will
1925          * update security statistics.
1926          */
1927         if (security_vm_enough_memory_mm(mm, grow))
1928                 return -ENOMEM;
1929
1930         return 0;
1931 }
1932
1933 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1934 /*
1935  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1936  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1937  */
1938 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1939 {
1940         struct mm_struct *mm = vma->vm_mm;
1941         struct vm_area_struct *next;
1942         unsigned long gap_addr;
1943         int error = 0;
1944         MA_STATE(mas, &mm->mm_mt, 0, 0);
1945
1946         if (!(vma->vm_flags & VM_GROWSUP))
1947                 return -EFAULT;
1948
1949         /* Guard against exceeding limits of the address space. */
1950         address &= PAGE_MASK;
1951         if (address >= (TASK_SIZE & PAGE_MASK))
1952                 return -ENOMEM;
1953         address += PAGE_SIZE;
1954
1955         /* Enforce stack_guard_gap */
1956         gap_addr = address + stack_guard_gap;
1957
1958         /* Guard against overflow */
1959         if (gap_addr < address || gap_addr > TASK_SIZE)
1960                 gap_addr = TASK_SIZE;
1961
1962         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1963         if (next && vma_is_accessible(next)) {
1964                 if (!(next->vm_flags & VM_GROWSUP))
1965                         return -ENOMEM;
1966                 /* Check that both stack segments have the same anon_vma? */
1967         }
1968
1969         if (mas_preallocate(&mas, GFP_KERNEL))
1970                 return -ENOMEM;
1971
1972         /* We must make sure the anon_vma is allocated. */
1973         if (unlikely(anon_vma_prepare(vma))) {
1974                 mas_destroy(&mas);
1975                 return -ENOMEM;
1976         }
1977
1978         /*
1979          * vma->vm_start/vm_end cannot change under us because the caller
1980          * is required to hold the mmap_lock in read mode.  We need the
1981          * anon_vma lock to serialize against concurrent expand_stacks.
1982          */
1983         anon_vma_lock_write(vma->anon_vma);
1984
1985         /* Somebody else might have raced and expanded it already */
1986         if (address > vma->vm_end) {
1987                 unsigned long size, grow;
1988
1989                 size = address - vma->vm_start;
1990                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1991
1992                 error = -ENOMEM;
1993                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1994                         error = acct_stack_growth(vma, size, grow);
1995                         if (!error) {
1996                                 /*
1997                                  * We only hold a shared mmap_lock lock here, so
1998                                  * we need to protect against concurrent vma
1999                                  * expansions.  anon_vma_lock_write() doesn't
2000                                  * help here, as we don't guarantee that all
2001                                  * growable vmas in a mm share the same root
2002                                  * anon vma.  So, we reuse mm->page_table_lock
2003                                  * to guard against concurrent vma expansions.
2004                                  */
2005                                 spin_lock(&mm->page_table_lock);
2006                                 if (vma->vm_flags & VM_LOCKED)
2007                                         mm->locked_vm += grow;
2008                                 vm_stat_account(mm, vma->vm_flags, grow);
2009                                 anon_vma_interval_tree_pre_update_vma(vma);
2010                                 vma->vm_end = address;
2011                                 /* Overwrite old entry in mtree. */
2012                                 mas_set_range(&mas, vma->vm_start, address - 1);
2013                                 mas_store_prealloc(&mas, vma);
2014                                 anon_vma_interval_tree_post_update_vma(vma);
2015                                 spin_unlock(&mm->page_table_lock);
2016
2017                                 perf_event_mmap(vma);
2018                         }
2019                 }
2020         }
2021         anon_vma_unlock_write(vma->anon_vma);
2022         khugepaged_enter_vma(vma, vma->vm_flags);
2023         mas_destroy(&mas);
2024         return error;
2025 }
2026 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2027
2028 /*
2029  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2030  */
2031 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2032 {
2033         struct mm_struct *mm = vma->vm_mm;
2034         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2035         struct vm_area_struct *prev;
2036         int error = 0;
2037
2038         address &= PAGE_MASK;
2039         if (address < mmap_min_addr)
2040                 return -EPERM;
2041
2042         /* Enforce stack_guard_gap */
2043         prev = mas_prev(&mas, 0);
2044         /* Check that both stack segments have the same anon_vma? */
2045         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2046                         vma_is_accessible(prev)) {
2047                 if (address - prev->vm_end < stack_guard_gap)
2048                         return -ENOMEM;
2049         }
2050
2051         if (mas_preallocate(&mas, GFP_KERNEL))
2052                 return -ENOMEM;
2053
2054         /* We must make sure the anon_vma is allocated. */
2055         if (unlikely(anon_vma_prepare(vma))) {
2056                 mas_destroy(&mas);
2057                 return -ENOMEM;
2058         }
2059
2060         /*
2061          * vma->vm_start/vm_end cannot change under us because the caller
2062          * is required to hold the mmap_lock in read mode.  We need the
2063          * anon_vma lock to serialize against concurrent expand_stacks.
2064          */
2065         anon_vma_lock_write(vma->anon_vma);
2066
2067         /* Somebody else might have raced and expanded it already */
2068         if (address < vma->vm_start) {
2069                 unsigned long size, grow;
2070
2071                 size = vma->vm_end - address;
2072                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2073
2074                 error = -ENOMEM;
2075                 if (grow <= vma->vm_pgoff) {
2076                         error = acct_stack_growth(vma, size, grow);
2077                         if (!error) {
2078                                 /*
2079                                  * We only hold a shared mmap_lock lock here, so
2080                                  * we need to protect against concurrent vma
2081                                  * expansions.  anon_vma_lock_write() doesn't
2082                                  * help here, as we don't guarantee that all
2083                                  * growable vmas in a mm share the same root
2084                                  * anon vma.  So, we reuse mm->page_table_lock
2085                                  * to guard against concurrent vma expansions.
2086                                  */
2087                                 spin_lock(&mm->page_table_lock);
2088                                 if (vma->vm_flags & VM_LOCKED)
2089                                         mm->locked_vm += grow;
2090                                 vm_stat_account(mm, vma->vm_flags, grow);
2091                                 anon_vma_interval_tree_pre_update_vma(vma);
2092                                 vma->vm_start = address;
2093                                 vma->vm_pgoff -= grow;
2094                                 /* Overwrite old entry in mtree. */
2095                                 mas_set_range(&mas, address, vma->vm_end - 1);
2096                                 mas_store_prealloc(&mas, vma);
2097                                 anon_vma_interval_tree_post_update_vma(vma);
2098                                 spin_unlock(&mm->page_table_lock);
2099
2100                                 perf_event_mmap(vma);
2101                         }
2102                 }
2103         }
2104         anon_vma_unlock_write(vma->anon_vma);
2105         khugepaged_enter_vma(vma, vma->vm_flags);
2106         mas_destroy(&mas);
2107         return error;
2108 }
2109
2110 /* enforced gap between the expanding stack and other mappings. */
2111 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2112
2113 static int __init cmdline_parse_stack_guard_gap(char *p)
2114 {
2115         unsigned long val;
2116         char *endptr;
2117
2118         val = simple_strtoul(p, &endptr, 10);
2119         if (!*endptr)
2120                 stack_guard_gap = val << PAGE_SHIFT;
2121
2122         return 1;
2123 }
2124 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2125
2126 #ifdef CONFIG_STACK_GROWSUP
2127 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2128 {
2129         return expand_upwards(vma, address);
2130 }
2131
2132 struct vm_area_struct *
2133 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2134 {
2135         struct vm_area_struct *vma, *prev;
2136
2137         addr &= PAGE_MASK;
2138         vma = find_vma_prev(mm, addr, &prev);
2139         if (vma && (vma->vm_start <= addr))
2140                 return vma;
2141         if (!prev || expand_stack(prev, addr))
2142                 return NULL;
2143         if (prev->vm_flags & VM_LOCKED)
2144                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2145         return prev;
2146 }
2147 #else
2148 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2149 {
2150         return expand_downwards(vma, address);
2151 }
2152
2153 struct vm_area_struct *
2154 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2155 {
2156         struct vm_area_struct *vma;
2157         unsigned long start;
2158
2159         addr &= PAGE_MASK;
2160         vma = find_vma(mm, addr);
2161         if (!vma)
2162                 return NULL;
2163         if (vma->vm_start <= addr)
2164                 return vma;
2165         if (!(vma->vm_flags & VM_GROWSDOWN))
2166                 return NULL;
2167         start = vma->vm_start;
2168         if (expand_stack(vma, addr))
2169                 return NULL;
2170         if (vma->vm_flags & VM_LOCKED)
2171                 populate_vma_page_range(vma, addr, start, NULL);
2172         return vma;
2173 }
2174 #endif
2175
2176 EXPORT_SYMBOL_GPL(find_extend_vma);
2177
2178 /*
2179  * Ok - we have the memory areas we should free on a maple tree so release them,
2180  * and do the vma updates.
2181  *
2182  * Called with the mm semaphore held.
2183  */
2184 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2185 {
2186         unsigned long nr_accounted = 0;
2187         struct vm_area_struct *vma;
2188
2189         /* Update high watermark before we lower total_vm */
2190         update_hiwater_vm(mm);
2191         mas_for_each(mas, vma, ULONG_MAX) {
2192                 long nrpages = vma_pages(vma);
2193
2194                 if (vma->vm_flags & VM_ACCOUNT)
2195                         nr_accounted += nrpages;
2196                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2197                 remove_vma(vma, false);
2198         }
2199         vm_unacct_memory(nr_accounted);
2200         validate_mm(mm);
2201 }
2202
2203 /*
2204  * Get rid of page table information in the indicated region.
2205  *
2206  * Called with the mm semaphore held.
2207  */
2208 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2209                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2210                 struct vm_area_struct *next,
2211                 unsigned long start, unsigned long end, bool mm_wr_locked)
2212 {
2213         struct mmu_gather tlb;
2214
2215         lru_add_drain();
2216         tlb_gather_mmu(&tlb, mm);
2217         update_hiwater_rss(mm);
2218         unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2219         free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2220                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2221                                  mm_wr_locked);
2222         tlb_finish_mmu(&tlb);
2223 }
2224
2225 /*
2226  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2227  * has already been checked or doesn't make sense to fail.
2228  * VMA Iterator will point to the end VMA.
2229  */
2230 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2231                 unsigned long addr, int new_below)
2232 {
2233         struct vma_prepare vp;
2234         struct vm_area_struct *new;
2235         int err;
2236
2237         validate_mm_mt(vma->vm_mm);
2238
2239         WARN_ON(vma->vm_start >= addr);
2240         WARN_ON(vma->vm_end <= addr);
2241
2242         if (vma->vm_ops && vma->vm_ops->may_split) {
2243                 err = vma->vm_ops->may_split(vma, addr);
2244                 if (err)
2245                         return err;
2246         }
2247
2248         new = vm_area_dup(vma);
2249         if (!new)
2250                 return -ENOMEM;
2251
2252         err = -ENOMEM;
2253         if (vma_iter_prealloc(vmi))
2254                 goto out_free_vma;
2255
2256         if (new_below) {
2257                 new->vm_end = addr;
2258         } else {
2259                 new->vm_start = addr;
2260                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2261         }
2262
2263         err = vma_dup_policy(vma, new);
2264         if (err)
2265                 goto out_free_vmi;
2266
2267         err = anon_vma_clone(new, vma);
2268         if (err)
2269                 goto out_free_mpol;
2270
2271         if (new->vm_file)
2272                 get_file(new->vm_file);
2273
2274         if (new->vm_ops && new->vm_ops->open)
2275                 new->vm_ops->open(new);
2276
2277         init_vma_prep(&vp, vma);
2278         vp.insert = new;
2279         vma_prepare(&vp);
2280         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2281
2282         if (new_below) {
2283                 vma->vm_start = addr;
2284                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2285         } else {
2286                 vma->vm_end = addr;
2287         }
2288
2289         /* vma_complete stores the new vma */
2290         vma_complete(&vp, vmi, vma->vm_mm);
2291
2292         /* Success. */
2293         if (new_below)
2294                 vma_next(vmi);
2295         validate_mm_mt(vma->vm_mm);
2296         return 0;
2297
2298 out_free_mpol:
2299         mpol_put(vma_policy(new));
2300 out_free_vmi:
2301         vma_iter_free(vmi);
2302 out_free_vma:
2303         vm_area_free(new);
2304         validate_mm_mt(vma->vm_mm);
2305         return err;
2306 }
2307
2308 /*
2309  * Split a vma into two pieces at address 'addr', a new vma is allocated
2310  * either for the first part or the tail.
2311  */
2312 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2313               unsigned long addr, int new_below)
2314 {
2315         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2316                 return -ENOMEM;
2317
2318         return __split_vma(vmi, vma, addr, new_below);
2319 }
2320
2321 /*
2322  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2323  * @vmi: The vma iterator
2324  * @vma: The starting vm_area_struct
2325  * @mm: The mm_struct
2326  * @start: The aligned start address to munmap.
2327  * @end: The aligned end address to munmap.
2328  * @uf: The userfaultfd list_head
2329  * @downgrade: Set to true to attempt a write downgrade of the mmap_lock
2330  *
2331  * If @downgrade is true, check return code for potential release of the lock.
2332  */
2333 static int
2334 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2335                     struct mm_struct *mm, unsigned long start,
2336                     unsigned long end, struct list_head *uf, bool downgrade)
2337 {
2338         struct vm_area_struct *prev, *next = NULL;
2339         struct maple_tree mt_detach;
2340         int count = 0;
2341         int error = -ENOMEM;
2342         unsigned long locked_vm = 0;
2343         MA_STATE(mas_detach, &mt_detach, 0, 0);
2344         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2345         mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2346
2347         /*
2348          * If we need to split any vma, do it now to save pain later.
2349          *
2350          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2351          * unmapped vm_area_struct will remain in use: so lower split_vma
2352          * places tmp vma above, and higher split_vma places tmp vma below.
2353          */
2354
2355         /* Does it split the first one? */
2356         if (start > vma->vm_start) {
2357
2358                 /*
2359                  * Make sure that map_count on return from munmap() will
2360                  * not exceed its limit; but let map_count go just above
2361                  * its limit temporarily, to help free resources as expected.
2362                  */
2363                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2364                         goto map_count_exceeded;
2365
2366                 error = __split_vma(vmi, vma, start, 0);
2367                 if (error)
2368                         goto start_split_failed;
2369
2370                 vma = vma_iter_load(vmi);
2371         }
2372
2373         prev = vma_prev(vmi);
2374         if (unlikely((!prev)))
2375                 vma_iter_set(vmi, start);
2376
2377         /*
2378          * Detach a range of VMAs from the mm. Using next as a temp variable as
2379          * it is always overwritten.
2380          */
2381         for_each_vma_range(*vmi, next, end) {
2382                 /* Does it split the end? */
2383                 if (next->vm_end > end) {
2384                         error = __split_vma(vmi, next, end, 0);
2385                         if (error)
2386                                 goto end_split_failed;
2387                 }
2388                 vma_start_write(next);
2389                 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2390                 if (mas_store_gfp(&mas_detach, next, GFP_KERNEL))
2391                         goto munmap_gather_failed;
2392                 vma_mark_detached(next, true);
2393                 if (next->vm_flags & VM_LOCKED)
2394                         locked_vm += vma_pages(next);
2395
2396                 count++;
2397 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2398                 BUG_ON(next->vm_start < start);
2399                 BUG_ON(next->vm_start > end);
2400 #endif
2401         }
2402
2403         next = vma_next(vmi);
2404         if (unlikely(uf)) {
2405                 /*
2406                  * If userfaultfd_unmap_prep returns an error the vmas
2407                  * will remain split, but userland will get a
2408                  * highly unexpected error anyway. This is no
2409                  * different than the case where the first of the two
2410                  * __split_vma fails, but we don't undo the first
2411                  * split, despite we could. This is unlikely enough
2412                  * failure that it's not worth optimizing it for.
2413                  */
2414                 error = userfaultfd_unmap_prep(mm, start, end, uf);
2415
2416                 if (error)
2417                         goto userfaultfd_error;
2418         }
2419
2420 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2421         /* Make sure no VMAs are about to be lost. */
2422         {
2423                 MA_STATE(test, &mt_detach, start, end - 1);
2424                 struct vm_area_struct *vma_mas, *vma_test;
2425                 int test_count = 0;
2426
2427                 vma_iter_set(vmi, start);
2428                 rcu_read_lock();
2429                 vma_test = mas_find(&test, end - 1);
2430                 for_each_vma_range(*vmi, vma_mas, end) {
2431                         BUG_ON(vma_mas != vma_test);
2432                         test_count++;
2433                         vma_test = mas_next(&test, end - 1);
2434                 }
2435                 rcu_read_unlock();
2436                 BUG_ON(count != test_count);
2437         }
2438 #endif
2439         /* Point of no return */
2440         error = -ENOMEM;
2441         vma_iter_set(vmi, start);
2442         if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL))
2443                 goto clear_tree_failed;
2444
2445         mm->locked_vm -= locked_vm;
2446         mm->map_count -= count;
2447         /*
2448          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2449          * VM_GROWSUP VMA. Such VMAs can change their size under
2450          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2451          */
2452         if (downgrade) {
2453                 if (next && (next->vm_flags & VM_GROWSDOWN))
2454                         downgrade = false;
2455                 else if (prev && (prev->vm_flags & VM_GROWSUP))
2456                         downgrade = false;
2457                 else
2458                         mmap_write_downgrade(mm);
2459         }
2460
2461         /*
2462          * We can free page tables without write-locking mmap_lock because VMAs
2463          * were isolated before we downgraded mmap_lock.
2464          */
2465         unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade);
2466         /* Statistics and freeing VMAs */
2467         mas_set(&mas_detach, start);
2468         remove_mt(mm, &mas_detach);
2469         __mt_destroy(&mt_detach);
2470
2471
2472         validate_mm(mm);
2473         return downgrade ? 1 : 0;
2474
2475 clear_tree_failed:
2476 userfaultfd_error:
2477 munmap_gather_failed:
2478 end_split_failed:
2479         mas_set(&mas_detach, 0);
2480         mas_for_each(&mas_detach, next, end)
2481                 vma_mark_detached(next, false);
2482
2483         __mt_destroy(&mt_detach);
2484 start_split_failed:
2485 map_count_exceeded:
2486         return error;
2487 }
2488
2489 /*
2490  * do_vmi_munmap() - munmap a given range.
2491  * @vmi: The vma iterator
2492  * @mm: The mm_struct
2493  * @start: The start address to munmap
2494  * @len: The length of the range to munmap
2495  * @uf: The userfaultfd list_head
2496  * @downgrade: set to true if the user wants to attempt to write_downgrade the
2497  * mmap_lock
2498  *
2499  * This function takes a @mas that is either pointing to the previous VMA or set
2500  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2501  * aligned and any arch_unmap work will be preformed.
2502  *
2503  * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2504  */
2505 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2506                   unsigned long start, size_t len, struct list_head *uf,
2507                   bool downgrade)
2508 {
2509         unsigned long end;
2510         struct vm_area_struct *vma;
2511
2512         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2513                 return -EINVAL;
2514
2515         end = start + PAGE_ALIGN(len);
2516         if (end == start)
2517                 return -EINVAL;
2518
2519          /* arch_unmap() might do unmaps itself.  */
2520         arch_unmap(mm, start, end);
2521
2522         /* Find the first overlapping VMA */
2523         vma = vma_find(vmi, end);
2524         if (!vma)
2525                 return 0;
2526
2527         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2528 }
2529
2530 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2531  * @mm: The mm_struct
2532  * @start: The start address to munmap
2533  * @len: The length to be munmapped.
2534  * @uf: The userfaultfd list_head
2535  */
2536 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2537               struct list_head *uf)
2538 {
2539         VMA_ITERATOR(vmi, mm, start);
2540
2541         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2542 }
2543
2544 unsigned long mmap_region(struct file *file, unsigned long addr,
2545                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2546                 struct list_head *uf)
2547 {
2548         struct mm_struct *mm = current->mm;
2549         struct vm_area_struct *vma = NULL;
2550         struct vm_area_struct *next, *prev, *merge;
2551         pgoff_t pglen = len >> PAGE_SHIFT;
2552         unsigned long charged = 0;
2553         unsigned long end = addr + len;
2554         unsigned long merge_start = addr, merge_end = end;
2555         pgoff_t vm_pgoff;
2556         int error;
2557         VMA_ITERATOR(vmi, mm, addr);
2558
2559         /* Check against address space limit. */
2560         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2561                 unsigned long nr_pages;
2562
2563                 /*
2564                  * MAP_FIXED may remove pages of mappings that intersects with
2565                  * requested mapping. Account for the pages it would unmap.
2566                  */
2567                 nr_pages = count_vma_pages_range(mm, addr, end);
2568
2569                 if (!may_expand_vm(mm, vm_flags,
2570                                         (len >> PAGE_SHIFT) - nr_pages))
2571                         return -ENOMEM;
2572         }
2573
2574         /* Unmap any existing mapping in the area */
2575         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2576                 return -ENOMEM;
2577
2578         /*
2579          * Private writable mapping: check memory availability
2580          */
2581         if (accountable_mapping(file, vm_flags)) {
2582                 charged = len >> PAGE_SHIFT;
2583                 if (security_vm_enough_memory_mm(mm, charged))
2584                         return -ENOMEM;
2585                 vm_flags |= VM_ACCOUNT;
2586         }
2587
2588         next = vma_next(&vmi);
2589         prev = vma_prev(&vmi);
2590         if (vm_flags & VM_SPECIAL)
2591                 goto cannot_expand;
2592
2593         /* Attempt to expand an old mapping */
2594         /* Check next */
2595         if (next && next->vm_start == end && !vma_policy(next) &&
2596             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2597                                  NULL_VM_UFFD_CTX, NULL)) {
2598                 merge_end = next->vm_end;
2599                 vma = next;
2600                 vm_pgoff = next->vm_pgoff - pglen;
2601         }
2602
2603         /* Check prev */
2604         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2605             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2606                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2607                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2608                                        NULL_VM_UFFD_CTX, NULL))) {
2609                 merge_start = prev->vm_start;
2610                 vma = prev;
2611                 vm_pgoff = prev->vm_pgoff;
2612         }
2613
2614
2615         /* Actually expand, if possible */
2616         if (vma &&
2617             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2618                 khugepaged_enter_vma(vma, vm_flags);
2619                 goto expanded;
2620         }
2621
2622 cannot_expand:
2623         /*
2624          * Determine the object being mapped and call the appropriate
2625          * specific mapper. the address has already been validated, but
2626          * not unmapped, but the maps are removed from the list.
2627          */
2628         vma = vm_area_alloc(mm);
2629         if (!vma) {
2630                 error = -ENOMEM;
2631                 goto unacct_error;
2632         }
2633
2634         vma_iter_set(&vmi, addr);
2635         vma->vm_start = addr;
2636         vma->vm_end = end;
2637         vm_flags_init(vma, vm_flags);
2638         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2639         vma->vm_pgoff = pgoff;
2640
2641         if (file) {
2642                 if (vm_flags & VM_SHARED) {
2643                         error = mapping_map_writable(file->f_mapping);
2644                         if (error)
2645                                 goto free_vma;
2646                 }
2647
2648                 vma->vm_file = get_file(file);
2649                 error = call_mmap(file, vma);
2650                 if (error)
2651                         goto unmap_and_free_vma;
2652
2653                 /*
2654                  * Expansion is handled above, merging is handled below.
2655                  * Drivers should not alter the address of the VMA.
2656                  */
2657                 error = -EINVAL;
2658                 if (WARN_ON((addr != vma->vm_start)))
2659                         goto close_and_free_vma;
2660
2661                 vma_iter_set(&vmi, addr);
2662                 /*
2663                  * If vm_flags changed after call_mmap(), we should try merge
2664                  * vma again as we may succeed this time.
2665                  */
2666                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2667                         merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2668                                     vma->vm_end, vma->vm_flags, NULL,
2669                                     vma->vm_file, vma->vm_pgoff, NULL,
2670                                     NULL_VM_UFFD_CTX, NULL);
2671                         if (merge) {
2672                                 /*
2673                                  * ->mmap() can change vma->vm_file and fput
2674                                  * the original file. So fput the vma->vm_file
2675                                  * here or we would add an extra fput for file
2676                                  * and cause general protection fault
2677                                  * ultimately.
2678                                  */
2679                                 fput(vma->vm_file);
2680                                 vm_area_free(vma);
2681                                 vma = merge;
2682                                 /* Update vm_flags to pick up the change. */
2683                                 vm_flags = vma->vm_flags;
2684                                 goto unmap_writable;
2685                         }
2686                 }
2687
2688                 vm_flags = vma->vm_flags;
2689         } else if (vm_flags & VM_SHARED) {
2690                 error = shmem_zero_setup(vma);
2691                 if (error)
2692                         goto free_vma;
2693         } else {
2694                 vma_set_anonymous(vma);
2695         }
2696
2697         if (map_deny_write_exec(vma, vma->vm_flags)) {
2698                 error = -EACCES;
2699                 goto close_and_free_vma;
2700         }
2701
2702         /* Allow architectures to sanity-check the vm_flags */
2703         error = -EINVAL;
2704         if (!arch_validate_flags(vma->vm_flags))
2705                 goto close_and_free_vma;
2706
2707         error = -ENOMEM;
2708         if (vma_iter_prealloc(&vmi))
2709                 goto close_and_free_vma;
2710
2711         if (vma->vm_file)
2712                 i_mmap_lock_write(vma->vm_file->f_mapping);
2713
2714         vma_iter_store(&vmi, vma);
2715         mm->map_count++;
2716         if (vma->vm_file) {
2717                 if (vma->vm_flags & VM_SHARED)
2718                         mapping_allow_writable(vma->vm_file->f_mapping);
2719
2720                 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2721                 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2722                 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2723                 i_mmap_unlock_write(vma->vm_file->f_mapping);
2724         }
2725
2726         /*
2727          * vma_merge() calls khugepaged_enter_vma() either, the below
2728          * call covers the non-merge case.
2729          */
2730         khugepaged_enter_vma(vma, vma->vm_flags);
2731
2732         /* Once vma denies write, undo our temporary denial count */
2733 unmap_writable:
2734         if (file && vm_flags & VM_SHARED)
2735                 mapping_unmap_writable(file->f_mapping);
2736         file = vma->vm_file;
2737         ksm_add_vma(vma);
2738 expanded:
2739         perf_event_mmap(vma);
2740
2741         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2742         if (vm_flags & VM_LOCKED) {
2743                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2744                                         is_vm_hugetlb_page(vma) ||
2745                                         vma == get_gate_vma(current->mm))
2746                         vm_flags_clear(vma, VM_LOCKED_MASK);
2747                 else
2748                         mm->locked_vm += (len >> PAGE_SHIFT);
2749         }
2750
2751         if (file)
2752                 uprobe_mmap(vma);
2753
2754         /*
2755          * New (or expanded) vma always get soft dirty status.
2756          * Otherwise user-space soft-dirty page tracker won't
2757          * be able to distinguish situation when vma area unmapped,
2758          * then new mapped in-place (which must be aimed as
2759          * a completely new data area).
2760          */
2761         vm_flags_set(vma, VM_SOFTDIRTY);
2762
2763         vma_set_page_prot(vma);
2764
2765         validate_mm(mm);
2766         return addr;
2767
2768 close_and_free_vma:
2769         if (file && vma->vm_ops && vma->vm_ops->close)
2770                 vma->vm_ops->close(vma);
2771
2772         if (file || vma->vm_file) {
2773 unmap_and_free_vma:
2774                 fput(vma->vm_file);
2775                 vma->vm_file = NULL;
2776
2777                 /* Undo any partial mapping done by a device driver. */
2778                 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2779                              vma->vm_end, true);
2780         }
2781         if (file && (vm_flags & VM_SHARED))
2782                 mapping_unmap_writable(file->f_mapping);
2783 free_vma:
2784         vm_area_free(vma);
2785 unacct_error:
2786         if (charged)
2787                 vm_unacct_memory(charged);
2788         validate_mm(mm);
2789         return error;
2790 }
2791
2792 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2793 {
2794         int ret;
2795         struct mm_struct *mm = current->mm;
2796         LIST_HEAD(uf);
2797         VMA_ITERATOR(vmi, mm, start);
2798
2799         if (mmap_write_lock_killable(mm))
2800                 return -EINTR;
2801
2802         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade);
2803         /*
2804          * Returning 1 indicates mmap_lock is downgraded.
2805          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2806          * it to 0 before return.
2807          */
2808         if (ret == 1) {
2809                 mmap_read_unlock(mm);
2810                 ret = 0;
2811         } else
2812                 mmap_write_unlock(mm);
2813
2814         userfaultfd_unmap_complete(mm, &uf);
2815         return ret;
2816 }
2817
2818 int vm_munmap(unsigned long start, size_t len)
2819 {
2820         return __vm_munmap(start, len, false);
2821 }
2822 EXPORT_SYMBOL(vm_munmap);
2823
2824 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2825 {
2826         addr = untagged_addr(addr);
2827         return __vm_munmap(addr, len, true);
2828 }
2829
2830
2831 /*
2832  * Emulation of deprecated remap_file_pages() syscall.
2833  */
2834 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2835                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2836 {
2837
2838         struct mm_struct *mm = current->mm;
2839         struct vm_area_struct *vma;
2840         unsigned long populate = 0;
2841         unsigned long ret = -EINVAL;
2842         struct file *file;
2843
2844         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2845                      current->comm, current->pid);
2846
2847         if (prot)
2848                 return ret;
2849         start = start & PAGE_MASK;
2850         size = size & PAGE_MASK;
2851
2852         if (start + size <= start)
2853                 return ret;
2854
2855         /* Does pgoff wrap? */
2856         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2857                 return ret;
2858
2859         if (mmap_write_lock_killable(mm))
2860                 return -EINTR;
2861
2862         vma = vma_lookup(mm, start);
2863
2864         if (!vma || !(vma->vm_flags & VM_SHARED))
2865                 goto out;
2866
2867         if (start + size > vma->vm_end) {
2868                 VMA_ITERATOR(vmi, mm, vma->vm_end);
2869                 struct vm_area_struct *next, *prev = vma;
2870
2871                 for_each_vma_range(vmi, next, start + size) {
2872                         /* hole between vmas ? */
2873                         if (next->vm_start != prev->vm_end)
2874                                 goto out;
2875
2876                         if (next->vm_file != vma->vm_file)
2877                                 goto out;
2878
2879                         if (next->vm_flags != vma->vm_flags)
2880                                 goto out;
2881
2882                         if (start + size <= next->vm_end)
2883                                 break;
2884
2885                         prev = next;
2886                 }
2887
2888                 if (!next)
2889                         goto out;
2890         }
2891
2892         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2893         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2894         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2895
2896         flags &= MAP_NONBLOCK;
2897         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2898         if (vma->vm_flags & VM_LOCKED)
2899                 flags |= MAP_LOCKED;
2900
2901         file = get_file(vma->vm_file);
2902         ret = do_mmap(vma->vm_file, start, size,
2903                         prot, flags, pgoff, &populate, NULL);
2904         fput(file);
2905 out:
2906         mmap_write_unlock(mm);
2907         if (populate)
2908                 mm_populate(ret, populate);
2909         if (!IS_ERR_VALUE(ret))
2910                 ret = 0;
2911         return ret;
2912 }
2913
2914 /*
2915  * do_vma_munmap() - Unmap a full or partial vma.
2916  * @vmi: The vma iterator pointing at the vma
2917  * @vma: The first vma to be munmapped
2918  * @start: the start of the address to unmap
2919  * @end: The end of the address to unmap
2920  * @uf: The userfaultfd list_head
2921  * @downgrade: Attempt to downgrade or not
2922  *
2923  * Returns: 0 on success and not downgraded, 1 on success and downgraded.
2924  * unmaps a VMA mapping when the vma iterator is already in position.
2925  * Does not handle alignment.
2926  */
2927 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2928                   unsigned long start, unsigned long end,
2929                   struct list_head *uf, bool downgrade)
2930 {
2931         struct mm_struct *mm = vma->vm_mm;
2932         int ret;
2933
2934         arch_unmap(mm, start, end);
2935         ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2936         validate_mm_mt(mm);
2937         return ret;
2938 }
2939
2940 /*
2941  * do_brk_flags() - Increase the brk vma if the flags match.
2942  * @vmi: The vma iterator
2943  * @addr: The start address
2944  * @len: The length of the increase
2945  * @vma: The vma,
2946  * @flags: The VMA Flags
2947  *
2948  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2949  * do not match then create a new anonymous VMA.  Eventually we may be able to
2950  * do some brk-specific accounting here.
2951  */
2952 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2953                 unsigned long addr, unsigned long len, unsigned long flags)
2954 {
2955         struct mm_struct *mm = current->mm;
2956         struct vma_prepare vp;
2957
2958         validate_mm_mt(mm);
2959         /*
2960          * Check against address space limits by the changed size
2961          * Note: This happens *after* clearing old mappings in some code paths.
2962          */
2963         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2964         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2965                 return -ENOMEM;
2966
2967         if (mm->map_count > sysctl_max_map_count)
2968                 return -ENOMEM;
2969
2970         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2971                 return -ENOMEM;
2972
2973         /*
2974          * Expand the existing vma if possible; Note that singular lists do not
2975          * occur after forking, so the expand will only happen on new VMAs.
2976          */
2977         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
2978             can_vma_merge_after(vma, flags, NULL, NULL,
2979                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
2980                 if (vma_iter_prealloc(vmi))
2981                         goto unacct_fail;
2982
2983                 init_vma_prep(&vp, vma);
2984                 vma_prepare(&vp);
2985                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
2986                 vma->vm_end = addr + len;
2987                 vm_flags_set(vma, VM_SOFTDIRTY);
2988                 vma_iter_store(vmi, vma);
2989
2990                 vma_complete(&vp, vmi, mm);
2991                 khugepaged_enter_vma(vma, flags);
2992                 goto out;
2993         }
2994
2995         /* create a vma struct for an anonymous mapping */
2996         vma = vm_area_alloc(mm);
2997         if (!vma)
2998                 goto unacct_fail;
2999
3000         vma_set_anonymous(vma);
3001         vma->vm_start = addr;
3002         vma->vm_end = addr + len;
3003         vma->vm_pgoff = addr >> PAGE_SHIFT;
3004         vm_flags_init(vma, flags);
3005         vma->vm_page_prot = vm_get_page_prot(flags);
3006         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3007                 goto mas_store_fail;
3008
3009         mm->map_count++;
3010         ksm_add_vma(vma);
3011 out:
3012         perf_event_mmap(vma);
3013         mm->total_vm += len >> PAGE_SHIFT;
3014         mm->data_vm += len >> PAGE_SHIFT;
3015         if (flags & VM_LOCKED)
3016                 mm->locked_vm += (len >> PAGE_SHIFT);
3017         vm_flags_set(vma, VM_SOFTDIRTY);
3018         validate_mm(mm);
3019         return 0;
3020
3021 mas_store_fail:
3022         vm_area_free(vma);
3023 unacct_fail:
3024         vm_unacct_memory(len >> PAGE_SHIFT);
3025         return -ENOMEM;
3026 }
3027
3028 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3029 {
3030         struct mm_struct *mm = current->mm;
3031         struct vm_area_struct *vma = NULL;
3032         unsigned long len;
3033         int ret;
3034         bool populate;
3035         LIST_HEAD(uf);
3036         VMA_ITERATOR(vmi, mm, addr);
3037
3038         len = PAGE_ALIGN(request);
3039         if (len < request)
3040                 return -ENOMEM;
3041         if (!len)
3042                 return 0;
3043
3044         if (mmap_write_lock_killable(mm))
3045                 return -EINTR;
3046
3047         /* Until we need other flags, refuse anything except VM_EXEC. */
3048         if ((flags & (~VM_EXEC)) != 0)
3049                 return -EINVAL;
3050
3051         ret = check_brk_limits(addr, len);
3052         if (ret)
3053                 goto limits_failed;
3054
3055         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3056         if (ret)
3057                 goto munmap_failed;
3058
3059         vma = vma_prev(&vmi);
3060         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3061         populate = ((mm->def_flags & VM_LOCKED) != 0);
3062         mmap_write_unlock(mm);
3063         userfaultfd_unmap_complete(mm, &uf);
3064         if (populate && !ret)
3065                 mm_populate(addr, len);
3066         return ret;
3067
3068 munmap_failed:
3069 limits_failed:
3070         mmap_write_unlock(mm);
3071         return ret;
3072 }
3073 EXPORT_SYMBOL(vm_brk_flags);
3074
3075 int vm_brk(unsigned long addr, unsigned long len)
3076 {
3077         return vm_brk_flags(addr, len, 0);
3078 }
3079 EXPORT_SYMBOL(vm_brk);
3080
3081 /* Release all mmaps. */
3082 void exit_mmap(struct mm_struct *mm)
3083 {
3084         struct mmu_gather tlb;
3085         struct vm_area_struct *vma;
3086         unsigned long nr_accounted = 0;
3087         MA_STATE(mas, &mm->mm_mt, 0, 0);
3088         int count = 0;
3089
3090         /* mm's last user has gone, and its about to be pulled down */
3091         mmu_notifier_release(mm);
3092
3093         mmap_read_lock(mm);
3094         arch_exit_mmap(mm);
3095
3096         vma = mas_find(&mas, ULONG_MAX);
3097         if (!vma) {
3098                 /* Can happen if dup_mmap() received an OOM */
3099                 mmap_read_unlock(mm);
3100                 return;
3101         }
3102
3103         lru_add_drain();
3104         flush_cache_mm(mm);
3105         tlb_gather_mmu_fullmm(&tlb, mm);
3106         /* update_hiwater_rss(mm) here? but nobody should be looking */
3107         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3108         unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3109         mmap_read_unlock(mm);
3110
3111         /*
3112          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3113          * because the memory has been already freed.
3114          */
3115         set_bit(MMF_OOM_SKIP, &mm->flags);
3116         mmap_write_lock(mm);
3117         mt_clear_in_rcu(&mm->mm_mt);
3118         free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3119                       USER_PGTABLES_CEILING, true);
3120         tlb_finish_mmu(&tlb);
3121
3122         /*
3123          * Walk the list again, actually closing and freeing it, with preemption
3124          * enabled, without holding any MM locks besides the unreachable
3125          * mmap_write_lock.
3126          */
3127         do {
3128                 if (vma->vm_flags & VM_ACCOUNT)
3129                         nr_accounted += vma_pages(vma);
3130                 remove_vma(vma, true);
3131                 count++;
3132                 cond_resched();
3133         } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3134
3135         BUG_ON(count != mm->map_count);
3136
3137         trace_exit_mmap(mm);
3138         __mt_destroy(&mm->mm_mt);
3139         mmap_write_unlock(mm);
3140         vm_unacct_memory(nr_accounted);
3141 }
3142
3143 /* Insert vm structure into process list sorted by address
3144  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3145  * then i_mmap_rwsem is taken here.
3146  */
3147 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3148 {
3149         unsigned long charged = vma_pages(vma);
3150
3151
3152         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3153                 return -ENOMEM;
3154
3155         if ((vma->vm_flags & VM_ACCOUNT) &&
3156              security_vm_enough_memory_mm(mm, charged))
3157                 return -ENOMEM;
3158
3159         /*
3160          * The vm_pgoff of a purely anonymous vma should be irrelevant
3161          * until its first write fault, when page's anon_vma and index
3162          * are set.  But now set the vm_pgoff it will almost certainly
3163          * end up with (unless mremap moves it elsewhere before that
3164          * first wfault), so /proc/pid/maps tells a consistent story.
3165          *
3166          * By setting it to reflect the virtual start address of the
3167          * vma, merges and splits can happen in a seamless way, just
3168          * using the existing file pgoff checks and manipulations.
3169          * Similarly in do_mmap and in do_brk_flags.
3170          */
3171         if (vma_is_anonymous(vma)) {
3172                 BUG_ON(vma->anon_vma);
3173                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3174         }
3175
3176         if (vma_link(mm, vma)) {
3177                 vm_unacct_memory(charged);
3178                 return -ENOMEM;
3179         }
3180
3181         return 0;
3182 }
3183
3184 /*
3185  * Copy the vma structure to a new location in the same mm,
3186  * prior to moving page table entries, to effect an mremap move.
3187  */
3188 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3189         unsigned long addr, unsigned long len, pgoff_t pgoff,
3190         bool *need_rmap_locks)
3191 {
3192         struct vm_area_struct *vma = *vmap;
3193         unsigned long vma_start = vma->vm_start;
3194         struct mm_struct *mm = vma->vm_mm;
3195         struct vm_area_struct *new_vma, *prev;
3196         bool faulted_in_anon_vma = true;
3197         VMA_ITERATOR(vmi, mm, addr);
3198
3199         validate_mm_mt(mm);
3200         /*
3201          * If anonymous vma has not yet been faulted, update new pgoff
3202          * to match new location, to increase its chance of merging.
3203          */
3204         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3205                 pgoff = addr >> PAGE_SHIFT;
3206                 faulted_in_anon_vma = false;
3207         }
3208
3209         new_vma = find_vma_prev(mm, addr, &prev);
3210         if (new_vma && new_vma->vm_start < addr + len)
3211                 return NULL;    /* should never get here */
3212
3213         new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3214                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3215                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3216         if (new_vma) {
3217                 /*
3218                  * Source vma may have been merged into new_vma
3219                  */
3220                 if (unlikely(vma_start >= new_vma->vm_start &&
3221                              vma_start < new_vma->vm_end)) {
3222                         /*
3223                          * The only way we can get a vma_merge with
3224                          * self during an mremap is if the vma hasn't
3225                          * been faulted in yet and we were allowed to
3226                          * reset the dst vma->vm_pgoff to the
3227                          * destination address of the mremap to allow
3228                          * the merge to happen. mremap must change the
3229                          * vm_pgoff linearity between src and dst vmas
3230                          * (in turn preventing a vma_merge) to be
3231                          * safe. It is only safe to keep the vm_pgoff
3232                          * linear if there are no pages mapped yet.
3233                          */
3234                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3235                         *vmap = vma = new_vma;
3236                 }
3237                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3238         } else {
3239                 new_vma = vm_area_dup(vma);
3240                 if (!new_vma)
3241                         goto out;
3242                 new_vma->vm_start = addr;
3243                 new_vma->vm_end = addr + len;
3244                 new_vma->vm_pgoff = pgoff;
3245                 if (vma_dup_policy(vma, new_vma))
3246                         goto out_free_vma;
3247                 if (anon_vma_clone(new_vma, vma))
3248                         goto out_free_mempol;
3249                 if (new_vma->vm_file)
3250                         get_file(new_vma->vm_file);
3251                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3252                         new_vma->vm_ops->open(new_vma);
3253                 vma_start_write(new_vma);
3254                 if (vma_link(mm, new_vma))
3255                         goto out_vma_link;
3256                 *need_rmap_locks = false;
3257         }
3258         validate_mm_mt(mm);
3259         return new_vma;
3260
3261 out_vma_link:
3262         if (new_vma->vm_ops && new_vma->vm_ops->close)
3263                 new_vma->vm_ops->close(new_vma);
3264
3265         if (new_vma->vm_file)
3266                 fput(new_vma->vm_file);
3267
3268         unlink_anon_vmas(new_vma);
3269 out_free_mempol:
3270         mpol_put(vma_policy(new_vma));
3271 out_free_vma:
3272         vm_area_free(new_vma);
3273 out:
3274         validate_mm_mt(mm);
3275         return NULL;
3276 }
3277
3278 /*
3279  * Return true if the calling process may expand its vm space by the passed
3280  * number of pages
3281  */
3282 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3283 {
3284         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3285                 return false;
3286
3287         if (is_data_mapping(flags) &&
3288             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3289                 /* Workaround for Valgrind */
3290                 if (rlimit(RLIMIT_DATA) == 0 &&
3291                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3292                         return true;
3293
3294                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3295                              current->comm, current->pid,
3296                              (mm->data_vm + npages) << PAGE_SHIFT,
3297                              rlimit(RLIMIT_DATA),
3298                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3299
3300                 if (!ignore_rlimit_data)
3301                         return false;
3302         }
3303
3304         return true;
3305 }
3306
3307 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3308 {
3309         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3310
3311         if (is_exec_mapping(flags))
3312                 mm->exec_vm += npages;
3313         else if (is_stack_mapping(flags))
3314                 mm->stack_vm += npages;
3315         else if (is_data_mapping(flags))
3316                 mm->data_vm += npages;
3317 }
3318
3319 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3320
3321 /*
3322  * Having a close hook prevents vma merging regardless of flags.
3323  */
3324 static void special_mapping_close(struct vm_area_struct *vma)
3325 {
3326 }
3327
3328 static const char *special_mapping_name(struct vm_area_struct *vma)
3329 {
3330         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3331 }
3332
3333 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3334 {
3335         struct vm_special_mapping *sm = new_vma->vm_private_data;
3336
3337         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3338                 return -EFAULT;
3339
3340         if (sm->mremap)
3341                 return sm->mremap(sm, new_vma);
3342
3343         return 0;
3344 }
3345
3346 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3347 {
3348         /*
3349          * Forbid splitting special mappings - kernel has expectations over
3350          * the number of pages in mapping. Together with VM_DONTEXPAND
3351          * the size of vma should stay the same over the special mapping's
3352          * lifetime.
3353          */
3354         return -EINVAL;
3355 }
3356
3357 static const struct vm_operations_struct special_mapping_vmops = {
3358         .close = special_mapping_close,
3359         .fault = special_mapping_fault,
3360         .mremap = special_mapping_mremap,
3361         .name = special_mapping_name,
3362         /* vDSO code relies that VVAR can't be accessed remotely */
3363         .access = NULL,
3364         .may_split = special_mapping_split,
3365 };
3366
3367 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3368         .close = special_mapping_close,
3369         .fault = special_mapping_fault,
3370 };
3371
3372 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3373 {
3374         struct vm_area_struct *vma = vmf->vma;
3375         pgoff_t pgoff;
3376         struct page **pages;
3377
3378         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3379                 pages = vma->vm_private_data;
3380         } else {
3381                 struct vm_special_mapping *sm = vma->vm_private_data;
3382
3383                 if (sm->fault)
3384                         return sm->fault(sm, vmf->vma, vmf);
3385
3386                 pages = sm->pages;
3387         }
3388
3389         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3390                 pgoff--;
3391
3392         if (*pages) {
3393                 struct page *page = *pages;
3394                 get_page(page);
3395                 vmf->page = page;
3396                 return 0;
3397         }
3398
3399         return VM_FAULT_SIGBUS;
3400 }
3401
3402 static struct vm_area_struct *__install_special_mapping(
3403         struct mm_struct *mm,
3404         unsigned long addr, unsigned long len,
3405         unsigned long vm_flags, void *priv,
3406         const struct vm_operations_struct *ops)
3407 {
3408         int ret;
3409         struct vm_area_struct *vma;
3410
3411         validate_mm_mt(mm);
3412         vma = vm_area_alloc(mm);
3413         if (unlikely(vma == NULL))
3414                 return ERR_PTR(-ENOMEM);
3415
3416         vma->vm_start = addr;
3417         vma->vm_end = addr + len;
3418
3419         vm_flags_init(vma, (vm_flags | mm->def_flags |
3420                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3421         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3422
3423         vma->vm_ops = ops;
3424         vma->vm_private_data = priv;
3425
3426         ret = insert_vm_struct(mm, vma);
3427         if (ret)
3428                 goto out;
3429
3430         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3431
3432         perf_event_mmap(vma);
3433
3434         validate_mm_mt(mm);
3435         return vma;
3436
3437 out:
3438         vm_area_free(vma);
3439         validate_mm_mt(mm);
3440         return ERR_PTR(ret);
3441 }
3442
3443 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3444         const struct vm_special_mapping *sm)
3445 {
3446         return vma->vm_private_data == sm &&
3447                 (vma->vm_ops == &special_mapping_vmops ||
3448                  vma->vm_ops == &legacy_special_mapping_vmops);
3449 }
3450
3451 /*
3452  * Called with mm->mmap_lock held for writing.
3453  * Insert a new vma covering the given region, with the given flags.
3454  * Its pages are supplied by the given array of struct page *.
3455  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3456  * The region past the last page supplied will always produce SIGBUS.
3457  * The array pointer and the pages it points to are assumed to stay alive
3458  * for as long as this mapping might exist.
3459  */
3460 struct vm_area_struct *_install_special_mapping(
3461         struct mm_struct *mm,
3462         unsigned long addr, unsigned long len,
3463         unsigned long vm_flags, const struct vm_special_mapping *spec)
3464 {
3465         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3466                                         &special_mapping_vmops);
3467 }
3468
3469 int install_special_mapping(struct mm_struct *mm,
3470                             unsigned long addr, unsigned long len,
3471                             unsigned long vm_flags, struct page **pages)
3472 {
3473         struct vm_area_struct *vma = __install_special_mapping(
3474                 mm, addr, len, vm_flags, (void *)pages,
3475                 &legacy_special_mapping_vmops);
3476
3477         return PTR_ERR_OR_ZERO(vma);
3478 }
3479
3480 static DEFINE_MUTEX(mm_all_locks_mutex);
3481
3482 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3483 {
3484         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3485                 /*
3486                  * The LSB of head.next can't change from under us
3487                  * because we hold the mm_all_locks_mutex.
3488                  */
3489                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3490                 /*
3491                  * We can safely modify head.next after taking the
3492                  * anon_vma->root->rwsem. If some other vma in this mm shares
3493                  * the same anon_vma we won't take it again.
3494                  *
3495                  * No need of atomic instructions here, head.next
3496                  * can't change from under us thanks to the
3497                  * anon_vma->root->rwsem.
3498                  */
3499                 if (__test_and_set_bit(0, (unsigned long *)
3500                                        &anon_vma->root->rb_root.rb_root.rb_node))
3501                         BUG();
3502         }
3503 }
3504
3505 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3506 {
3507         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3508                 /*
3509                  * AS_MM_ALL_LOCKS can't change from under us because
3510                  * we hold the mm_all_locks_mutex.
3511                  *
3512                  * Operations on ->flags have to be atomic because
3513                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3514                  * mm_all_locks_mutex, there may be other cpus
3515                  * changing other bitflags in parallel to us.
3516                  */
3517                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3518                         BUG();
3519                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3520         }
3521 }
3522
3523 /*
3524  * This operation locks against the VM for all pte/vma/mm related
3525  * operations that could ever happen on a certain mm. This includes
3526  * vmtruncate, try_to_unmap, and all page faults.
3527  *
3528  * The caller must take the mmap_lock in write mode before calling
3529  * mm_take_all_locks(). The caller isn't allowed to release the
3530  * mmap_lock until mm_drop_all_locks() returns.
3531  *
3532  * mmap_lock in write mode is required in order to block all operations
3533  * that could modify pagetables and free pages without need of
3534  * altering the vma layout. It's also needed in write mode to avoid new
3535  * anon_vmas to be associated with existing vmas.
3536  *
3537  * A single task can't take more than one mm_take_all_locks() in a row
3538  * or it would deadlock.
3539  *
3540  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3541  * mapping->flags avoid to take the same lock twice, if more than one
3542  * vma in this mm is backed by the same anon_vma or address_space.
3543  *
3544  * We take locks in following order, accordingly to comment at beginning
3545  * of mm/rmap.c:
3546  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3547  *     hugetlb mapping);
3548  *   - all vmas marked locked
3549  *   - all i_mmap_rwsem locks;
3550  *   - all anon_vma->rwseml
3551  *
3552  * We can take all locks within these types randomly because the VM code
3553  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3554  * mm_all_locks_mutex.
3555  *
3556  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3557  * that may have to take thousand of locks.
3558  *
3559  * mm_take_all_locks() can fail if it's interrupted by signals.
3560  */
3561 int mm_take_all_locks(struct mm_struct *mm)
3562 {
3563         struct vm_area_struct *vma;
3564         struct anon_vma_chain *avc;
3565         MA_STATE(mas, &mm->mm_mt, 0, 0);
3566
3567         mmap_assert_write_locked(mm);
3568
3569         mutex_lock(&mm_all_locks_mutex);
3570
3571         mas_for_each(&mas, vma, ULONG_MAX) {
3572                 if (signal_pending(current))
3573                         goto out_unlock;
3574                 vma_start_write(vma);
3575         }
3576
3577         mas_set(&mas, 0);
3578         mas_for_each(&mas, vma, ULONG_MAX) {
3579                 if (signal_pending(current))
3580                         goto out_unlock;
3581                 if (vma->vm_file && vma->vm_file->f_mapping &&
3582                                 is_vm_hugetlb_page(vma))
3583                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3584         }
3585
3586         mas_set(&mas, 0);
3587         mas_for_each(&mas, vma, ULONG_MAX) {
3588                 if (signal_pending(current))
3589                         goto out_unlock;
3590                 if (vma->vm_file && vma->vm_file->f_mapping &&
3591                                 !is_vm_hugetlb_page(vma))
3592                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3593         }
3594
3595         mas_set(&mas, 0);
3596         mas_for_each(&mas, vma, ULONG_MAX) {
3597                 if (signal_pending(current))
3598                         goto out_unlock;
3599                 if (vma->anon_vma)
3600                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3601                                 vm_lock_anon_vma(mm, avc->anon_vma);
3602         }
3603
3604         return 0;
3605
3606 out_unlock:
3607         mm_drop_all_locks(mm);
3608         return -EINTR;
3609 }
3610
3611 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3612 {
3613         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3614                 /*
3615                  * The LSB of head.next can't change to 0 from under
3616                  * us because we hold the mm_all_locks_mutex.
3617                  *
3618                  * We must however clear the bitflag before unlocking
3619                  * the vma so the users using the anon_vma->rb_root will
3620                  * never see our bitflag.
3621                  *
3622                  * No need of atomic instructions here, head.next
3623                  * can't change from under us until we release the
3624                  * anon_vma->root->rwsem.
3625                  */
3626                 if (!__test_and_clear_bit(0, (unsigned long *)
3627                                           &anon_vma->root->rb_root.rb_root.rb_node))
3628                         BUG();
3629                 anon_vma_unlock_write(anon_vma);
3630         }
3631 }
3632
3633 static void vm_unlock_mapping(struct address_space *mapping)
3634 {
3635         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3636                 /*
3637                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3638                  * because we hold the mm_all_locks_mutex.
3639                  */
3640                 i_mmap_unlock_write(mapping);
3641                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3642                                         &mapping->flags))
3643                         BUG();
3644         }
3645 }
3646
3647 /*
3648  * The mmap_lock cannot be released by the caller until
3649  * mm_drop_all_locks() returns.
3650  */
3651 void mm_drop_all_locks(struct mm_struct *mm)
3652 {
3653         struct vm_area_struct *vma;
3654         struct anon_vma_chain *avc;
3655         MA_STATE(mas, &mm->mm_mt, 0, 0);
3656
3657         mmap_assert_write_locked(mm);
3658         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3659
3660         mas_for_each(&mas, vma, ULONG_MAX) {
3661                 if (vma->anon_vma)
3662                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3663                                 vm_unlock_anon_vma(avc->anon_vma);
3664                 if (vma->vm_file && vma->vm_file->f_mapping)
3665                         vm_unlock_mapping(vma->vm_file->f_mapping);
3666         }
3667         vma_end_write_all(mm);
3668
3669         mutex_unlock(&mm_all_locks_mutex);
3670 }
3671
3672 /*
3673  * initialise the percpu counter for VM
3674  */
3675 void __init mmap_init(void)
3676 {
3677         int ret;
3678
3679         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3680         VM_BUG_ON(ret);
3681 }
3682
3683 /*
3684  * Initialise sysctl_user_reserve_kbytes.
3685  *
3686  * This is intended to prevent a user from starting a single memory hogging
3687  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3688  * mode.
3689  *
3690  * The default value is min(3% of free memory, 128MB)
3691  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3692  */
3693 static int init_user_reserve(void)
3694 {
3695         unsigned long free_kbytes;
3696
3697         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3698
3699         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3700         return 0;
3701 }
3702 subsys_initcall(init_user_reserve);
3703
3704 /*
3705  * Initialise sysctl_admin_reserve_kbytes.
3706  *
3707  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3708  * to log in and kill a memory hogging process.
3709  *
3710  * Systems with more than 256MB will reserve 8MB, enough to recover
3711  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3712  * only reserve 3% of free pages by default.
3713  */
3714 static int init_admin_reserve(void)
3715 {
3716         unsigned long free_kbytes;
3717
3718         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3719
3720         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3721         return 0;
3722 }
3723 subsys_initcall(init_admin_reserve);
3724
3725 /*
3726  * Reinititalise user and admin reserves if memory is added or removed.
3727  *
3728  * The default user reserve max is 128MB, and the default max for the
3729  * admin reserve is 8MB. These are usually, but not always, enough to
3730  * enable recovery from a memory hogging process using login/sshd, a shell,
3731  * and tools like top. It may make sense to increase or even disable the
3732  * reserve depending on the existence of swap or variations in the recovery
3733  * tools. So, the admin may have changed them.
3734  *
3735  * If memory is added and the reserves have been eliminated or increased above
3736  * the default max, then we'll trust the admin.
3737  *
3738  * If memory is removed and there isn't enough free memory, then we
3739  * need to reset the reserves.
3740  *
3741  * Otherwise keep the reserve set by the admin.
3742  */
3743 static int reserve_mem_notifier(struct notifier_block *nb,
3744                              unsigned long action, void *data)
3745 {
3746         unsigned long tmp, free_kbytes;
3747
3748         switch (action) {
3749         case MEM_ONLINE:
3750                 /* Default max is 128MB. Leave alone if modified by operator. */
3751                 tmp = sysctl_user_reserve_kbytes;
3752                 if (0 < tmp && tmp < (1UL << 17))
3753                         init_user_reserve();
3754
3755                 /* Default max is 8MB.  Leave alone if modified by operator. */
3756                 tmp = sysctl_admin_reserve_kbytes;
3757                 if (0 < tmp && tmp < (1UL << 13))
3758                         init_admin_reserve();
3759
3760                 break;
3761         case MEM_OFFLINE:
3762                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3763
3764                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3765                         init_user_reserve();
3766                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3767                                 sysctl_user_reserve_kbytes);
3768                 }
3769
3770                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3771                         init_admin_reserve();
3772                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3773                                 sysctl_admin_reserve_kbytes);
3774                 }
3775                 break;
3776         default:
3777                 break;
3778         }
3779         return NOTIFY_OK;
3780 }
3781
3782 static int __meminit init_reserve_notifier(void)
3783 {
3784         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3785                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3786
3787         return 0;
3788 }
3789 subsys_initcall(init_reserve_notifier);