exfat: use i_blocksize() to get blocksize
[linux-2.6-microblaze.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type     prot
88  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
89  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  *
93  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
94  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
95  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
96  */
97 pgprot_t protection_map[16] __ro_after_init = {
98         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105         return prot;
106 }
107 #endif
108
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
114
115         return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127         unsigned long vm_flags = vma->vm_flags;
128         pgprot_t vm_page_prot;
129
130         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131         if (vma_wants_writenotify(vma, vm_page_prot)) {
132                 vm_flags &= ~VM_SHARED;
133                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134         }
135         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138
139 /*
140  * Requires inode->i_mapping->i_mmap_rwsem
141  */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143                 struct file *file, struct address_space *mapping)
144 {
145         if (vma->vm_flags & VM_DENYWRITE)
146                 atomic_inc(&file_inode(file)->i_writecount);
147         if (vma->vm_flags & VM_SHARED)
148                 mapping_unmap_writable(mapping);
149
150         flush_dcache_mmap_lock(mapping);
151         vma_interval_tree_remove(vma, &mapping->i_mmap);
152         flush_dcache_mmap_unlock(mapping);
153 }
154
155 /*
156  * Unlink a file-based vm structure from its interval tree, to hide
157  * vma from rmap and vmtruncate before freeing its page tables.
158  */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161         struct file *file = vma->vm_file;
162
163         if (file) {
164                 struct address_space *mapping = file->f_mapping;
165                 i_mmap_lock_write(mapping);
166                 __remove_shared_vm_struct(vma, file, mapping);
167                 i_mmap_unlock_write(mapping);
168         }
169 }
170
171 /*
172  * Close a vm structure and free it, returning the next.
173  */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176         struct vm_area_struct *next = vma->vm_next;
177
178         might_sleep();
179         if (vma->vm_ops && vma->vm_ops->close)
180                 vma->vm_ops->close(vma);
181         if (vma->vm_file)
182                 fput(vma->vm_file);
183         mpol_put(vma_policy(vma));
184         vm_area_free(vma);
185         return next;
186 }
187
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189                 struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192         unsigned long retval;
193         unsigned long newbrk, oldbrk, origbrk;
194         struct mm_struct *mm = current->mm;
195         struct vm_area_struct *next;
196         unsigned long min_brk;
197         bool populate;
198         bool downgraded = false;
199         LIST_HEAD(uf);
200
201         if (mmap_write_lock_killable(mm))
202                 return -EINTR;
203
204         origbrk = mm->brk;
205
206 #ifdef CONFIG_COMPAT_BRK
207         /*
208          * CONFIG_COMPAT_BRK can still be overridden by setting
209          * randomize_va_space to 2, which will still cause mm->start_brk
210          * to be arbitrarily shifted
211          */
212         if (current->brk_randomized)
213                 min_brk = mm->start_brk;
214         else
215                 min_brk = mm->end_data;
216 #else
217         min_brk = mm->start_brk;
218 #endif
219         if (brk < min_brk)
220                 goto out;
221
222         /*
223          * Check against rlimit here. If this check is done later after the test
224          * of oldbrk with newbrk then it can escape the test and let the data
225          * segment grow beyond its set limit the in case where the limit is
226          * not page aligned -Ram Gupta
227          */
228         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229                               mm->end_data, mm->start_data))
230                 goto out;
231
232         newbrk = PAGE_ALIGN(brk);
233         oldbrk = PAGE_ALIGN(mm->brk);
234         if (oldbrk == newbrk) {
235                 mm->brk = brk;
236                 goto success;
237         }
238
239         /*
240          * Always allow shrinking brk.
241          * __do_munmap() may downgrade mmap_lock to read.
242          */
243         if (brk <= mm->brk) {
244                 int ret;
245
246                 /*
247                  * mm->brk must to be protected by write mmap_lock so update it
248                  * before downgrading mmap_lock. When __do_munmap() fails,
249                  * mm->brk will be restored from origbrk.
250                  */
251                 mm->brk = brk;
252                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253                 if (ret < 0) {
254                         mm->brk = origbrk;
255                         goto out;
256                 } else if (ret == 1) {
257                         downgraded = true;
258                 }
259                 goto success;
260         }
261
262         /* Check against existing mmap mappings. */
263         next = find_vma(mm, oldbrk);
264         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265                 goto out;
266
267         /* Ok, looks good - let it rip. */
268         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269                 goto out;
270         mm->brk = brk;
271
272 success:
273         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274         if (downgraded)
275                 mmap_read_unlock(mm);
276         else
277                 mmap_write_unlock(mm);
278         userfaultfd_unmap_complete(mm, &uf);
279         if (populate)
280                 mm_populate(oldbrk, newbrk - oldbrk);
281         return brk;
282
283 out:
284         retval = origbrk;
285         mmap_write_unlock(mm);
286         return retval;
287 }
288
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291         unsigned long gap, prev_end;
292
293         /*
294          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295          * allow two stack_guard_gaps between them here, and when choosing
296          * an unmapped area; whereas when expanding we only require one.
297          * That's a little inconsistent, but keeps the code here simpler.
298          */
299         gap = vm_start_gap(vma);
300         if (vma->vm_prev) {
301                 prev_end = vm_end_gap(vma->vm_prev);
302                 if (gap > prev_end)
303                         gap -= prev_end;
304                 else
305                         gap = 0;
306         }
307         return gap;
308 }
309
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313         unsigned long max = vma_compute_gap(vma), subtree_gap;
314         if (vma->vm_rb.rb_left) {
315                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
316                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317                 if (subtree_gap > max)
318                         max = subtree_gap;
319         }
320         if (vma->vm_rb.rb_right) {
321                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
322                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
323                 if (subtree_gap > max)
324                         max = subtree_gap;
325         }
326         return max;
327 }
328
329 static int browse_rb(struct mm_struct *mm)
330 {
331         struct rb_root *root = &mm->mm_rb;
332         int i = 0, j, bug = 0;
333         struct rb_node *nd, *pn = NULL;
334         unsigned long prev = 0, pend = 0;
335
336         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337                 struct vm_area_struct *vma;
338                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339                 if (vma->vm_start < prev) {
340                         pr_emerg("vm_start %lx < prev %lx\n",
341                                   vma->vm_start, prev);
342                         bug = 1;
343                 }
344                 if (vma->vm_start < pend) {
345                         pr_emerg("vm_start %lx < pend %lx\n",
346                                   vma->vm_start, pend);
347                         bug = 1;
348                 }
349                 if (vma->vm_start > vma->vm_end) {
350                         pr_emerg("vm_start %lx > vm_end %lx\n",
351                                   vma->vm_start, vma->vm_end);
352                         bug = 1;
353                 }
354                 spin_lock(&mm->page_table_lock);
355                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356                         pr_emerg("free gap %lx, correct %lx\n",
357                                vma->rb_subtree_gap,
358                                vma_compute_subtree_gap(vma));
359                         bug = 1;
360                 }
361                 spin_unlock(&mm->page_table_lock);
362                 i++;
363                 pn = nd;
364                 prev = vma->vm_start;
365                 pend = vma->vm_end;
366         }
367         j = 0;
368         for (nd = pn; nd; nd = rb_prev(nd))
369                 j++;
370         if (i != j) {
371                 pr_emerg("backwards %d, forwards %d\n", j, i);
372                 bug = 1;
373         }
374         return bug ? -1 : i;
375 }
376
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379         struct rb_node *nd;
380
381         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382                 struct vm_area_struct *vma;
383                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384                 VM_BUG_ON_VMA(vma != ignore &&
385                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386                         vma);
387         }
388 }
389
390 static void validate_mm(struct mm_struct *mm)
391 {
392         int bug = 0;
393         int i = 0;
394         unsigned long highest_address = 0;
395         struct vm_area_struct *vma = mm->mmap;
396
397         while (vma) {
398                 struct anon_vma *anon_vma = vma->anon_vma;
399                 struct anon_vma_chain *avc;
400
401                 if (anon_vma) {
402                         anon_vma_lock_read(anon_vma);
403                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404                                 anon_vma_interval_tree_verify(avc);
405                         anon_vma_unlock_read(anon_vma);
406                 }
407
408                 highest_address = vm_end_gap(vma);
409                 vma = vma->vm_next;
410                 i++;
411         }
412         if (i != mm->map_count) {
413                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414                 bug = 1;
415         }
416         if (highest_address != mm->highest_vm_end) {
417                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418                           mm->highest_vm_end, highest_address);
419                 bug = 1;
420         }
421         i = browse_rb(mm);
422         if (i != mm->map_count) {
423                 if (i != -1)
424                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425                 bug = 1;
426         }
427         VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435                          struct vm_area_struct, vm_rb,
436                          unsigned long, rb_subtree_gap, vma_compute_gap)
437
438 /*
439  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440  * vma->vm_prev->vm_end values changed, without modifying the vma's position
441  * in the rbtree.
442  */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445         /*
446          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447          * a callback function that does exactly what we want.
448          */
449         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453                                  struct rb_root *root)
454 {
455         /* All rb_subtree_gap values must be consistent prior to insertion */
456         validate_mm_rb(root, NULL);
457
458         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463         /*
464          * Note rb_erase_augmented is a fairly large inline function,
465          * so make sure we instantiate it only once with our desired
466          * augmented rbtree callbacks.
467          */
468         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472                                                 struct rb_root *root,
473                                                 struct vm_area_struct *ignore)
474 {
475         /*
476          * All rb_subtree_gap values must be consistent prior to erase,
477          * with the possible exception of the "next" vma being erased if
478          * next->vm_start was reduced.
479          */
480         validate_mm_rb(root, ignore);
481
482         __vma_rb_erase(vma, root);
483 }
484
485 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
486                                          struct rb_root *root)
487 {
488         /*
489          * All rb_subtree_gap values must be consistent prior to erase,
490          * with the possible exception of the vma being erased.
491          */
492         validate_mm_rb(root, vma);
493
494         __vma_rb_erase(vma, root);
495 }
496
497 /*
498  * vma has some anon_vma assigned, and is already inserted on that
499  * anon_vma's interval trees.
500  *
501  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502  * vma must be removed from the anon_vma's interval trees using
503  * anon_vma_interval_tree_pre_update_vma().
504  *
505  * After the update, the vma will be reinserted using
506  * anon_vma_interval_tree_post_update_vma().
507  *
508  * The entire update must be protected by exclusive mmap_lock and by
509  * the root anon_vma's mutex.
510  */
511 static inline void
512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 {
514         struct anon_vma_chain *avc;
515
516         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
518 }
519
520 static inline void
521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 {
523         struct anon_vma_chain *avc;
524
525         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
527 }
528
529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530                 unsigned long end, struct vm_area_struct **pprev,
531                 struct rb_node ***rb_link, struct rb_node **rb_parent)
532 {
533         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534
535         __rb_link = &mm->mm_rb.rb_node;
536         rb_prev = __rb_parent = NULL;
537
538         while (*__rb_link) {
539                 struct vm_area_struct *vma_tmp;
540
541                 __rb_parent = *__rb_link;
542                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
543
544                 if (vma_tmp->vm_end > addr) {
545                         /* Fail if an existing vma overlaps the area */
546                         if (vma_tmp->vm_start < end)
547                                 return -ENOMEM;
548                         __rb_link = &__rb_parent->rb_left;
549                 } else {
550                         rb_prev = __rb_parent;
551                         __rb_link = &__rb_parent->rb_right;
552                 }
553         }
554
555         *pprev = NULL;
556         if (rb_prev)
557                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
558         *rb_link = __rb_link;
559         *rb_parent = __rb_parent;
560         return 0;
561 }
562
563 static unsigned long count_vma_pages_range(struct mm_struct *mm,
564                 unsigned long addr, unsigned long end)
565 {
566         unsigned long nr_pages = 0;
567         struct vm_area_struct *vma;
568
569         /* Find first overlaping mapping */
570         vma = find_vma_intersection(mm, addr, end);
571         if (!vma)
572                 return 0;
573
574         nr_pages = (min(end, vma->vm_end) -
575                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
576
577         /* Iterate over the rest of the overlaps */
578         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
579                 unsigned long overlap_len;
580
581                 if (vma->vm_start > end)
582                         break;
583
584                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
585                 nr_pages += overlap_len >> PAGE_SHIFT;
586         }
587
588         return nr_pages;
589 }
590
591 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
592                 struct rb_node **rb_link, struct rb_node *rb_parent)
593 {
594         /* Update tracking information for the gap following the new vma. */
595         if (vma->vm_next)
596                 vma_gap_update(vma->vm_next);
597         else
598                 mm->highest_vm_end = vm_end_gap(vma);
599
600         /*
601          * vma->vm_prev wasn't known when we followed the rbtree to find the
602          * correct insertion point for that vma. As a result, we could not
603          * update the vma vm_rb parents rb_subtree_gap values on the way down.
604          * So, we first insert the vma with a zero rb_subtree_gap value
605          * (to be consistent with what we did on the way down), and then
606          * immediately update the gap to the correct value. Finally we
607          * rebalance the rbtree after all augmented values have been set.
608          */
609         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
610         vma->rb_subtree_gap = 0;
611         vma_gap_update(vma);
612         vma_rb_insert(vma, &mm->mm_rb);
613 }
614
615 static void __vma_link_file(struct vm_area_struct *vma)
616 {
617         struct file *file;
618
619         file = vma->vm_file;
620         if (file) {
621                 struct address_space *mapping = file->f_mapping;
622
623                 if (vma->vm_flags & VM_DENYWRITE)
624                         atomic_dec(&file_inode(file)->i_writecount);
625                 if (vma->vm_flags & VM_SHARED)
626                         atomic_inc(&mapping->i_mmap_writable);
627
628                 flush_dcache_mmap_lock(mapping);
629                 vma_interval_tree_insert(vma, &mapping->i_mmap);
630                 flush_dcache_mmap_unlock(mapping);
631         }
632 }
633
634 static void
635 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
636         struct vm_area_struct *prev, struct rb_node **rb_link,
637         struct rb_node *rb_parent)
638 {
639         __vma_link_list(mm, vma, prev);
640         __vma_link_rb(mm, vma, rb_link, rb_parent);
641 }
642
643 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
644                         struct vm_area_struct *prev, struct rb_node **rb_link,
645                         struct rb_node *rb_parent)
646 {
647         struct address_space *mapping = NULL;
648
649         if (vma->vm_file) {
650                 mapping = vma->vm_file->f_mapping;
651                 i_mmap_lock_write(mapping);
652         }
653
654         __vma_link(mm, vma, prev, rb_link, rb_parent);
655         __vma_link_file(vma);
656
657         if (mapping)
658                 i_mmap_unlock_write(mapping);
659
660         mm->map_count++;
661         validate_mm(mm);
662 }
663
664 /*
665  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
666  * mm's list and rbtree.  It has already been inserted into the interval tree.
667  */
668 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
669 {
670         struct vm_area_struct *prev;
671         struct rb_node **rb_link, *rb_parent;
672
673         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
674                            &prev, &rb_link, &rb_parent))
675                 BUG();
676         __vma_link(mm, vma, prev, rb_link, rb_parent);
677         mm->map_count++;
678 }
679
680 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
681                                                 struct vm_area_struct *vma,
682                                                 struct vm_area_struct *ignore)
683 {
684         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
685         __vma_unlink_list(mm, vma);
686         /* Kill the cache */
687         vmacache_invalidate(mm);
688 }
689
690 /*
691  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692  * is already present in an i_mmap tree without adjusting the tree.
693  * The following helper function should be used when such adjustments
694  * are necessary.  The "insert" vma (if any) is to be inserted
695  * before we drop the necessary locks.
696  */
697 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
698         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
699         struct vm_area_struct *expand)
700 {
701         struct mm_struct *mm = vma->vm_mm;
702         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
703         struct address_space *mapping = NULL;
704         struct rb_root_cached *root = NULL;
705         struct anon_vma *anon_vma = NULL;
706         struct file *file = vma->vm_file;
707         bool start_changed = false, end_changed = false;
708         long adjust_next = 0;
709         int remove_next = 0;
710
711         if (next && !insert) {
712                 struct vm_area_struct *exporter = NULL, *importer = NULL;
713
714                 if (end >= next->vm_end) {
715                         /*
716                          * vma expands, overlapping all the next, and
717                          * perhaps the one after too (mprotect case 6).
718                          * The only other cases that gets here are
719                          * case 1, case 7 and case 8.
720                          */
721                         if (next == expand) {
722                                 /*
723                                  * The only case where we don't expand "vma"
724                                  * and we expand "next" instead is case 8.
725                                  */
726                                 VM_WARN_ON(end != next->vm_end);
727                                 /*
728                                  * remove_next == 3 means we're
729                                  * removing "vma" and that to do so we
730                                  * swapped "vma" and "next".
731                                  */
732                                 remove_next = 3;
733                                 VM_WARN_ON(file != next->vm_file);
734                                 swap(vma, next);
735                         } else {
736                                 VM_WARN_ON(expand != vma);
737                                 /*
738                                  * case 1, 6, 7, remove_next == 2 is case 6,
739                                  * remove_next == 1 is case 1 or 7.
740                                  */
741                                 remove_next = 1 + (end > next->vm_end);
742                                 VM_WARN_ON(remove_next == 2 &&
743                                            end != next->vm_next->vm_end);
744                                 /* trim end to next, for case 6 first pass */
745                                 end = next->vm_end;
746                         }
747
748                         exporter = next;
749                         importer = vma;
750
751                         /*
752                          * If next doesn't have anon_vma, import from vma after
753                          * next, if the vma overlaps with it.
754                          */
755                         if (remove_next == 2 && !next->anon_vma)
756                                 exporter = next->vm_next;
757
758                 } else if (end > next->vm_start) {
759                         /*
760                          * vma expands, overlapping part of the next:
761                          * mprotect case 5 shifting the boundary up.
762                          */
763                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
764                         exporter = next;
765                         importer = vma;
766                         VM_WARN_ON(expand != importer);
767                 } else if (end < vma->vm_end) {
768                         /*
769                          * vma shrinks, and !insert tells it's not
770                          * split_vma inserting another: so it must be
771                          * mprotect case 4 shifting the boundary down.
772                          */
773                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
774                         exporter = vma;
775                         importer = next;
776                         VM_WARN_ON(expand != importer);
777                 }
778
779                 /*
780                  * Easily overlooked: when mprotect shifts the boundary,
781                  * make sure the expanding vma has anon_vma set if the
782                  * shrinking vma had, to cover any anon pages imported.
783                  */
784                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
785                         int error;
786
787                         importer->anon_vma = exporter->anon_vma;
788                         error = anon_vma_clone(importer, exporter);
789                         if (error)
790                                 return error;
791                 }
792         }
793 again:
794         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
795
796         if (file) {
797                 mapping = file->f_mapping;
798                 root = &mapping->i_mmap;
799                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
800
801                 if (adjust_next)
802                         uprobe_munmap(next, next->vm_start, next->vm_end);
803
804                 i_mmap_lock_write(mapping);
805                 if (insert) {
806                         /*
807                          * Put into interval tree now, so instantiated pages
808                          * are visible to arm/parisc __flush_dcache_page
809                          * throughout; but we cannot insert into address
810                          * space until vma start or end is updated.
811                          */
812                         __vma_link_file(insert);
813                 }
814         }
815
816         anon_vma = vma->anon_vma;
817         if (!anon_vma && adjust_next)
818                 anon_vma = next->anon_vma;
819         if (anon_vma) {
820                 VM_WARN_ON(adjust_next && next->anon_vma &&
821                            anon_vma != next->anon_vma);
822                 anon_vma_lock_write(anon_vma);
823                 anon_vma_interval_tree_pre_update_vma(vma);
824                 if (adjust_next)
825                         anon_vma_interval_tree_pre_update_vma(next);
826         }
827
828         if (root) {
829                 flush_dcache_mmap_lock(mapping);
830                 vma_interval_tree_remove(vma, root);
831                 if (adjust_next)
832                         vma_interval_tree_remove(next, root);
833         }
834
835         if (start != vma->vm_start) {
836                 vma->vm_start = start;
837                 start_changed = true;
838         }
839         if (end != vma->vm_end) {
840                 vma->vm_end = end;
841                 end_changed = true;
842         }
843         vma->vm_pgoff = pgoff;
844         if (adjust_next) {
845                 next->vm_start += adjust_next << PAGE_SHIFT;
846                 next->vm_pgoff += adjust_next;
847         }
848
849         if (root) {
850                 if (adjust_next)
851                         vma_interval_tree_insert(next, root);
852                 vma_interval_tree_insert(vma, root);
853                 flush_dcache_mmap_unlock(mapping);
854         }
855
856         if (remove_next) {
857                 /*
858                  * vma_merge has merged next into vma, and needs
859                  * us to remove next before dropping the locks.
860                  */
861                 if (remove_next != 3)
862                         __vma_unlink_common(mm, next, next);
863                 else
864                         /*
865                          * vma is not before next if they've been
866                          * swapped.
867                          *
868                          * pre-swap() next->vm_start was reduced so
869                          * tell validate_mm_rb to ignore pre-swap()
870                          * "next" (which is stored in post-swap()
871                          * "vma").
872                          */
873                         __vma_unlink_common(mm, next, vma);
874                 if (file)
875                         __remove_shared_vm_struct(next, file, mapping);
876         } else if (insert) {
877                 /*
878                  * split_vma has split insert from vma, and needs
879                  * us to insert it before dropping the locks
880                  * (it may either follow vma or precede it).
881                  */
882                 __insert_vm_struct(mm, insert);
883         } else {
884                 if (start_changed)
885                         vma_gap_update(vma);
886                 if (end_changed) {
887                         if (!next)
888                                 mm->highest_vm_end = vm_end_gap(vma);
889                         else if (!adjust_next)
890                                 vma_gap_update(next);
891                 }
892         }
893
894         if (anon_vma) {
895                 anon_vma_interval_tree_post_update_vma(vma);
896                 if (adjust_next)
897                         anon_vma_interval_tree_post_update_vma(next);
898                 anon_vma_unlock_write(anon_vma);
899         }
900         if (mapping)
901                 i_mmap_unlock_write(mapping);
902
903         if (root) {
904                 uprobe_mmap(vma);
905
906                 if (adjust_next)
907                         uprobe_mmap(next);
908         }
909
910         if (remove_next) {
911                 if (file) {
912                         uprobe_munmap(next, next->vm_start, next->vm_end);
913                         fput(file);
914                 }
915                 if (next->anon_vma)
916                         anon_vma_merge(vma, next);
917                 mm->map_count--;
918                 mpol_put(vma_policy(next));
919                 vm_area_free(next);
920                 /*
921                  * In mprotect's case 6 (see comments on vma_merge),
922                  * we must remove another next too. It would clutter
923                  * up the code too much to do both in one go.
924                  */
925                 if (remove_next != 3) {
926                         /*
927                          * If "next" was removed and vma->vm_end was
928                          * expanded (up) over it, in turn
929                          * "next->vm_prev->vm_end" changed and the
930                          * "vma->vm_next" gap must be updated.
931                          */
932                         next = vma->vm_next;
933                 } else {
934                         /*
935                          * For the scope of the comment "next" and
936                          * "vma" considered pre-swap(): if "vma" was
937                          * removed, next->vm_start was expanded (down)
938                          * over it and the "next" gap must be updated.
939                          * Because of the swap() the post-swap() "vma"
940                          * actually points to pre-swap() "next"
941                          * (post-swap() "next" as opposed is now a
942                          * dangling pointer).
943                          */
944                         next = vma;
945                 }
946                 if (remove_next == 2) {
947                         remove_next = 1;
948                         end = next->vm_end;
949                         goto again;
950                 }
951                 else if (next)
952                         vma_gap_update(next);
953                 else {
954                         /*
955                          * If remove_next == 2 we obviously can't
956                          * reach this path.
957                          *
958                          * If remove_next == 3 we can't reach this
959                          * path because pre-swap() next is always not
960                          * NULL. pre-swap() "next" is not being
961                          * removed and its next->vm_end is not altered
962                          * (and furthermore "end" already matches
963                          * next->vm_end in remove_next == 3).
964                          *
965                          * We reach this only in the remove_next == 1
966                          * case if the "next" vma that was removed was
967                          * the highest vma of the mm. However in such
968                          * case next->vm_end == "end" and the extended
969                          * "vma" has vma->vm_end == next->vm_end so
970                          * mm->highest_vm_end doesn't need any update
971                          * in remove_next == 1 case.
972                          */
973                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
974                 }
975         }
976         if (insert && file)
977                 uprobe_mmap(insert);
978
979         validate_mm(mm);
980
981         return 0;
982 }
983
984 /*
985  * If the vma has a ->close operation then the driver probably needs to release
986  * per-vma resources, so we don't attempt to merge those.
987  */
988 static inline int is_mergeable_vma(struct vm_area_struct *vma,
989                                 struct file *file, unsigned long vm_flags,
990                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
991 {
992         /*
993          * VM_SOFTDIRTY should not prevent from VMA merging, if we
994          * match the flags but dirty bit -- the caller should mark
995          * merged VMA as dirty. If dirty bit won't be excluded from
996          * comparison, we increase pressure on the memory system forcing
997          * the kernel to generate new VMAs when old one could be
998          * extended instead.
999          */
1000         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1001                 return 0;
1002         if (vma->vm_file != file)
1003                 return 0;
1004         if (vma->vm_ops && vma->vm_ops->close)
1005                 return 0;
1006         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1007                 return 0;
1008         return 1;
1009 }
1010
1011 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1012                                         struct anon_vma *anon_vma2,
1013                                         struct vm_area_struct *vma)
1014 {
1015         /*
1016          * The list_is_singular() test is to avoid merging VMA cloned from
1017          * parents. This can improve scalability caused by anon_vma lock.
1018          */
1019         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1020                 list_is_singular(&vma->anon_vma_chain)))
1021                 return 1;
1022         return anon_vma1 == anon_vma2;
1023 }
1024
1025 /*
1026  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1027  * in front of (at a lower virtual address and file offset than) the vma.
1028  *
1029  * We cannot merge two vmas if they have differently assigned (non-NULL)
1030  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1031  *
1032  * We don't check here for the merged mmap wrapping around the end of pagecache
1033  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1034  * wrap, nor mmaps which cover the final page at index -1UL.
1035  */
1036 static int
1037 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1038                      struct anon_vma *anon_vma, struct file *file,
1039                      pgoff_t vm_pgoff,
1040                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1041 {
1042         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1043             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1044                 if (vma->vm_pgoff == vm_pgoff)
1045                         return 1;
1046         }
1047         return 0;
1048 }
1049
1050 /*
1051  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1052  * beyond (at a higher virtual address and file offset than) the vma.
1053  *
1054  * We cannot merge two vmas if they have differently assigned (non-NULL)
1055  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1056  */
1057 static int
1058 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1059                     struct anon_vma *anon_vma, struct file *file,
1060                     pgoff_t vm_pgoff,
1061                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1062 {
1063         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1064             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1065                 pgoff_t vm_pglen;
1066                 vm_pglen = vma_pages(vma);
1067                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1068                         return 1;
1069         }
1070         return 0;
1071 }
1072
1073 /*
1074  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1075  * whether that can be merged with its predecessor or its successor.
1076  * Or both (it neatly fills a hole).
1077  *
1078  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1079  * certain not to be mapped by the time vma_merge is called; but when
1080  * called for mprotect, it is certain to be already mapped (either at
1081  * an offset within prev, or at the start of next), and the flags of
1082  * this area are about to be changed to vm_flags - and the no-change
1083  * case has already been eliminated.
1084  *
1085  * The following mprotect cases have to be considered, where AAAA is
1086  * the area passed down from mprotect_fixup, never extending beyond one
1087  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1088  *
1089  *     AAAA             AAAA                   AAAA
1090  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1091  *    cannot merge    might become       might become
1092  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1093  *    mmap, brk or    case 4 below       case 5 below
1094  *    mremap move:
1095  *                        AAAA               AAAA
1096  *                    PPPP    NNNN       PPPPNNNNXXXX
1097  *                    might become       might become
1098  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1099  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1100  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1101  *
1102  * It is important for case 8 that the vma NNNN overlapping the
1103  * region AAAA is never going to extended over XXXX. Instead XXXX must
1104  * be extended in region AAAA and NNNN must be removed. This way in
1105  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1106  * rmap_locks, the properties of the merged vma will be already
1107  * correct for the whole merged range. Some of those properties like
1108  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1109  * be correct for the whole merged range immediately after the
1110  * rmap_locks are released. Otherwise if XXXX would be removed and
1111  * NNNN would be extended over the XXXX range, remove_migration_ptes
1112  * or other rmap walkers (if working on addresses beyond the "end"
1113  * parameter) may establish ptes with the wrong permissions of NNNN
1114  * instead of the right permissions of XXXX.
1115  */
1116 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1117                         struct vm_area_struct *prev, unsigned long addr,
1118                         unsigned long end, unsigned long vm_flags,
1119                         struct anon_vma *anon_vma, struct file *file,
1120                         pgoff_t pgoff, struct mempolicy *policy,
1121                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1122 {
1123         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1124         struct vm_area_struct *area, *next;
1125         int err;
1126
1127         /*
1128          * We later require that vma->vm_flags == vm_flags,
1129          * so this tests vma->vm_flags & VM_SPECIAL, too.
1130          */
1131         if (vm_flags & VM_SPECIAL)
1132                 return NULL;
1133
1134         if (prev)
1135                 next = prev->vm_next;
1136         else
1137                 next = mm->mmap;
1138         area = next;
1139         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1140                 next = next->vm_next;
1141
1142         /* verify some invariant that must be enforced by the caller */
1143         VM_WARN_ON(prev && addr <= prev->vm_start);
1144         VM_WARN_ON(area && end > area->vm_end);
1145         VM_WARN_ON(addr >= end);
1146
1147         /*
1148          * Can it merge with the predecessor?
1149          */
1150         if (prev && prev->vm_end == addr &&
1151                         mpol_equal(vma_policy(prev), policy) &&
1152                         can_vma_merge_after(prev, vm_flags,
1153                                             anon_vma, file, pgoff,
1154                                             vm_userfaultfd_ctx)) {
1155                 /*
1156                  * OK, it can.  Can we now merge in the successor as well?
1157                  */
1158                 if (next && end == next->vm_start &&
1159                                 mpol_equal(policy, vma_policy(next)) &&
1160                                 can_vma_merge_before(next, vm_flags,
1161                                                      anon_vma, file,
1162                                                      pgoff+pglen,
1163                                                      vm_userfaultfd_ctx) &&
1164                                 is_mergeable_anon_vma(prev->anon_vma,
1165                                                       next->anon_vma, NULL)) {
1166                                                         /* cases 1, 6 */
1167                         err = __vma_adjust(prev, prev->vm_start,
1168                                          next->vm_end, prev->vm_pgoff, NULL,
1169                                          prev);
1170                 } else                                  /* cases 2, 5, 7 */
1171                         err = __vma_adjust(prev, prev->vm_start,
1172                                          end, prev->vm_pgoff, NULL, prev);
1173                 if (err)
1174                         return NULL;
1175                 khugepaged_enter_vma_merge(prev, vm_flags);
1176                 return prev;
1177         }
1178
1179         /*
1180          * Can this new request be merged in front of next?
1181          */
1182         if (next && end == next->vm_start &&
1183                         mpol_equal(policy, vma_policy(next)) &&
1184                         can_vma_merge_before(next, vm_flags,
1185                                              anon_vma, file, pgoff+pglen,
1186                                              vm_userfaultfd_ctx)) {
1187                 if (prev && addr < prev->vm_end)        /* case 4 */
1188                         err = __vma_adjust(prev, prev->vm_start,
1189                                          addr, prev->vm_pgoff, NULL, next);
1190                 else {                                  /* cases 3, 8 */
1191                         err = __vma_adjust(area, addr, next->vm_end,
1192                                          next->vm_pgoff - pglen, NULL, next);
1193                         /*
1194                          * In case 3 area is already equal to next and
1195                          * this is a noop, but in case 8 "area" has
1196                          * been removed and next was expanded over it.
1197                          */
1198                         area = next;
1199                 }
1200                 if (err)
1201                         return NULL;
1202                 khugepaged_enter_vma_merge(area, vm_flags);
1203                 return area;
1204         }
1205
1206         return NULL;
1207 }
1208
1209 /*
1210  * Rough compatibility check to quickly see if it's even worth looking
1211  * at sharing an anon_vma.
1212  *
1213  * They need to have the same vm_file, and the flags can only differ
1214  * in things that mprotect may change.
1215  *
1216  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1217  * we can merge the two vma's. For example, we refuse to merge a vma if
1218  * there is a vm_ops->close() function, because that indicates that the
1219  * driver is doing some kind of reference counting. But that doesn't
1220  * really matter for the anon_vma sharing case.
1221  */
1222 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1223 {
1224         return a->vm_end == b->vm_start &&
1225                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1226                 a->vm_file == b->vm_file &&
1227                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1228                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1229 }
1230
1231 /*
1232  * Do some basic sanity checking to see if we can re-use the anon_vma
1233  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1234  * the same as 'old', the other will be the new one that is trying
1235  * to share the anon_vma.
1236  *
1237  * NOTE! This runs with mm_sem held for reading, so it is possible that
1238  * the anon_vma of 'old' is concurrently in the process of being set up
1239  * by another page fault trying to merge _that_. But that's ok: if it
1240  * is being set up, that automatically means that it will be a singleton
1241  * acceptable for merging, so we can do all of this optimistically. But
1242  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1243  *
1244  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1245  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1246  * is to return an anon_vma that is "complex" due to having gone through
1247  * a fork).
1248  *
1249  * We also make sure that the two vma's are compatible (adjacent,
1250  * and with the same memory policies). That's all stable, even with just
1251  * a read lock on the mm_sem.
1252  */
1253 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1254 {
1255         if (anon_vma_compatible(a, b)) {
1256                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1257
1258                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1259                         return anon_vma;
1260         }
1261         return NULL;
1262 }
1263
1264 /*
1265  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1266  * neighbouring vmas for a suitable anon_vma, before it goes off
1267  * to allocate a new anon_vma.  It checks because a repetitive
1268  * sequence of mprotects and faults may otherwise lead to distinct
1269  * anon_vmas being allocated, preventing vma merge in subsequent
1270  * mprotect.
1271  */
1272 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1273 {
1274         struct anon_vma *anon_vma = NULL;
1275
1276         /* Try next first. */
1277         if (vma->vm_next) {
1278                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1279                 if (anon_vma)
1280                         return anon_vma;
1281         }
1282
1283         /* Try prev next. */
1284         if (vma->vm_prev)
1285                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1286
1287         /*
1288          * We might reach here with anon_vma == NULL if we can't find
1289          * any reusable anon_vma.
1290          * There's no absolute need to look only at touching neighbours:
1291          * we could search further afield for "compatible" anon_vmas.
1292          * But it would probably just be a waste of time searching,
1293          * or lead to too many vmas hanging off the same anon_vma.
1294          * We're trying to allow mprotect remerging later on,
1295          * not trying to minimize memory used for anon_vmas.
1296          */
1297         return anon_vma;
1298 }
1299
1300 /*
1301  * If a hint addr is less than mmap_min_addr change hint to be as
1302  * low as possible but still greater than mmap_min_addr
1303  */
1304 static inline unsigned long round_hint_to_min(unsigned long hint)
1305 {
1306         hint &= PAGE_MASK;
1307         if (((void *)hint != NULL) &&
1308             (hint < mmap_min_addr))
1309                 return PAGE_ALIGN(mmap_min_addr);
1310         return hint;
1311 }
1312
1313 static inline int mlock_future_check(struct mm_struct *mm,
1314                                      unsigned long flags,
1315                                      unsigned long len)
1316 {
1317         unsigned long locked, lock_limit;
1318
1319         /*  mlock MCL_FUTURE? */
1320         if (flags & VM_LOCKED) {
1321                 locked = len >> PAGE_SHIFT;
1322                 locked += mm->locked_vm;
1323                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1324                 lock_limit >>= PAGE_SHIFT;
1325                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1326                         return -EAGAIN;
1327         }
1328         return 0;
1329 }
1330
1331 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1332 {
1333         if (S_ISREG(inode->i_mode))
1334                 return MAX_LFS_FILESIZE;
1335
1336         if (S_ISBLK(inode->i_mode))
1337                 return MAX_LFS_FILESIZE;
1338
1339         if (S_ISSOCK(inode->i_mode))
1340                 return MAX_LFS_FILESIZE;
1341
1342         /* Special "we do even unsigned file positions" case */
1343         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1344                 return 0;
1345
1346         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1347         return ULONG_MAX;
1348 }
1349
1350 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1351                                 unsigned long pgoff, unsigned long len)
1352 {
1353         u64 maxsize = file_mmap_size_max(file, inode);
1354
1355         if (maxsize && len > maxsize)
1356                 return false;
1357         maxsize -= len;
1358         if (pgoff > maxsize >> PAGE_SHIFT)
1359                 return false;
1360         return true;
1361 }
1362
1363 /*
1364  * The caller must write-lock current->mm->mmap_lock.
1365  */
1366 unsigned long do_mmap(struct file *file, unsigned long addr,
1367                         unsigned long len, unsigned long prot,
1368                         unsigned long flags, unsigned long pgoff,
1369                         unsigned long *populate, struct list_head *uf)
1370 {
1371         struct mm_struct *mm = current->mm;
1372         vm_flags_t vm_flags;
1373         int pkey = 0;
1374
1375         *populate = 0;
1376
1377         if (!len)
1378                 return -EINVAL;
1379
1380         /*
1381          * Does the application expect PROT_READ to imply PROT_EXEC?
1382          *
1383          * (the exception is when the underlying filesystem is noexec
1384          *  mounted, in which case we dont add PROT_EXEC.)
1385          */
1386         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1387                 if (!(file && path_noexec(&file->f_path)))
1388                         prot |= PROT_EXEC;
1389
1390         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1391         if (flags & MAP_FIXED_NOREPLACE)
1392                 flags |= MAP_FIXED;
1393
1394         if (!(flags & MAP_FIXED))
1395                 addr = round_hint_to_min(addr);
1396
1397         /* Careful about overflows.. */
1398         len = PAGE_ALIGN(len);
1399         if (!len)
1400                 return -ENOMEM;
1401
1402         /* offset overflow? */
1403         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1404                 return -EOVERFLOW;
1405
1406         /* Too many mappings? */
1407         if (mm->map_count > sysctl_max_map_count)
1408                 return -ENOMEM;
1409
1410         /* Obtain the address to map to. we verify (or select) it and ensure
1411          * that it represents a valid section of the address space.
1412          */
1413         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1414         if (IS_ERR_VALUE(addr))
1415                 return addr;
1416
1417         if (flags & MAP_FIXED_NOREPLACE) {
1418                 struct vm_area_struct *vma = find_vma(mm, addr);
1419
1420                 if (vma && vma->vm_start < addr + len)
1421                         return -EEXIST;
1422         }
1423
1424         if (prot == PROT_EXEC) {
1425                 pkey = execute_only_pkey(mm);
1426                 if (pkey < 0)
1427                         pkey = 0;
1428         }
1429
1430         /* Do simple checking here so the lower-level routines won't have
1431          * to. we assume access permissions have been handled by the open
1432          * of the memory object, so we don't do any here.
1433          */
1434         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1435                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1436
1437         if (flags & MAP_LOCKED)
1438                 if (!can_do_mlock())
1439                         return -EPERM;
1440
1441         if (mlock_future_check(mm, vm_flags, len))
1442                 return -EAGAIN;
1443
1444         if (file) {
1445                 struct inode *inode = file_inode(file);
1446                 unsigned long flags_mask;
1447
1448                 if (!file_mmap_ok(file, inode, pgoff, len))
1449                         return -EOVERFLOW;
1450
1451                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1452
1453                 switch (flags & MAP_TYPE) {
1454                 case MAP_SHARED:
1455                         /*
1456                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1457                          * flags. E.g. MAP_SYNC is dangerous to use with
1458                          * MAP_SHARED as you don't know which consistency model
1459                          * you will get. We silently ignore unsupported flags
1460                          * with MAP_SHARED to preserve backward compatibility.
1461                          */
1462                         flags &= LEGACY_MAP_MASK;
1463                         fallthrough;
1464                 case MAP_SHARED_VALIDATE:
1465                         if (flags & ~flags_mask)
1466                                 return -EOPNOTSUPP;
1467                         if (prot & PROT_WRITE) {
1468                                 if (!(file->f_mode & FMODE_WRITE))
1469                                         return -EACCES;
1470                                 if (IS_SWAPFILE(file->f_mapping->host))
1471                                         return -ETXTBSY;
1472                         }
1473
1474                         /*
1475                          * Make sure we don't allow writing to an append-only
1476                          * file..
1477                          */
1478                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1479                                 return -EACCES;
1480
1481                         /*
1482                          * Make sure there are no mandatory locks on the file.
1483                          */
1484                         if (locks_verify_locked(file))
1485                                 return -EAGAIN;
1486
1487                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1488                         if (!(file->f_mode & FMODE_WRITE))
1489                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1490                         fallthrough;
1491                 case MAP_PRIVATE:
1492                         if (!(file->f_mode & FMODE_READ))
1493                                 return -EACCES;
1494                         if (path_noexec(&file->f_path)) {
1495                                 if (vm_flags & VM_EXEC)
1496                                         return -EPERM;
1497                                 vm_flags &= ~VM_MAYEXEC;
1498                         }
1499
1500                         if (!file->f_op->mmap)
1501                                 return -ENODEV;
1502                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503                                 return -EINVAL;
1504                         break;
1505
1506                 default:
1507                         return -EINVAL;
1508                 }
1509         } else {
1510                 switch (flags & MAP_TYPE) {
1511                 case MAP_SHARED:
1512                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1513                                 return -EINVAL;
1514                         /*
1515                          * Ignore pgoff.
1516                          */
1517                         pgoff = 0;
1518                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1519                         break;
1520                 case MAP_PRIVATE:
1521                         /*
1522                          * Set pgoff according to addr for anon_vma.
1523                          */
1524                         pgoff = addr >> PAGE_SHIFT;
1525                         break;
1526                 default:
1527                         return -EINVAL;
1528                 }
1529         }
1530
1531         /*
1532          * Set 'VM_NORESERVE' if we should not account for the
1533          * memory use of this mapping.
1534          */
1535         if (flags & MAP_NORESERVE) {
1536                 /* We honor MAP_NORESERVE if allowed to overcommit */
1537                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1538                         vm_flags |= VM_NORESERVE;
1539
1540                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541                 if (file && is_file_hugepages(file))
1542                         vm_flags |= VM_NORESERVE;
1543         }
1544
1545         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1546         if (!IS_ERR_VALUE(addr) &&
1547             ((vm_flags & VM_LOCKED) ||
1548              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1549                 *populate = len;
1550         return addr;
1551 }
1552
1553 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1554                               unsigned long prot, unsigned long flags,
1555                               unsigned long fd, unsigned long pgoff)
1556 {
1557         struct file *file = NULL;
1558         unsigned long retval;
1559
1560         if (!(flags & MAP_ANONYMOUS)) {
1561                 audit_mmap_fd(fd, flags);
1562                 file = fget(fd);
1563                 if (!file)
1564                         return -EBADF;
1565                 if (is_file_hugepages(file)) {
1566                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1567                 } else if (unlikely(flags & MAP_HUGETLB)) {
1568                         retval = -EINVAL;
1569                         goto out_fput;
1570                 }
1571         } else if (flags & MAP_HUGETLB) {
1572                 struct user_struct *user = NULL;
1573                 struct hstate *hs;
1574
1575                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1576                 if (!hs)
1577                         return -EINVAL;
1578
1579                 len = ALIGN(len, huge_page_size(hs));
1580                 /*
1581                  * VM_NORESERVE is used because the reservations will be
1582                  * taken when vm_ops->mmap() is called
1583                  * A dummy user value is used because we are not locking
1584                  * memory so no accounting is necessary
1585                  */
1586                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1587                                 VM_NORESERVE,
1588                                 &user, HUGETLB_ANONHUGE_INODE,
1589                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1590                 if (IS_ERR(file))
1591                         return PTR_ERR(file);
1592         }
1593
1594         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1595
1596         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1597 out_fput:
1598         if (file)
1599                 fput(file);
1600         return retval;
1601 }
1602
1603 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1604                 unsigned long, prot, unsigned long, flags,
1605                 unsigned long, fd, unsigned long, pgoff)
1606 {
1607         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1608 }
1609
1610 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1611 struct mmap_arg_struct {
1612         unsigned long addr;
1613         unsigned long len;
1614         unsigned long prot;
1615         unsigned long flags;
1616         unsigned long fd;
1617         unsigned long offset;
1618 };
1619
1620 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1621 {
1622         struct mmap_arg_struct a;
1623
1624         if (copy_from_user(&a, arg, sizeof(a)))
1625                 return -EFAULT;
1626         if (offset_in_page(a.offset))
1627                 return -EINVAL;
1628
1629         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1630                                a.offset >> PAGE_SHIFT);
1631 }
1632 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1633
1634 /*
1635  * Some shared mappings will want the pages marked read-only
1636  * to track write events. If so, we'll downgrade vm_page_prot
1637  * to the private version (using protection_map[] without the
1638  * VM_SHARED bit).
1639  */
1640 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1641 {
1642         vm_flags_t vm_flags = vma->vm_flags;
1643         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1644
1645         /* If it was private or non-writable, the write bit is already clear */
1646         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1647                 return 0;
1648
1649         /* The backer wishes to know when pages are first written to? */
1650         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1651                 return 1;
1652
1653         /* The open routine did something to the protections that pgprot_modify
1654          * won't preserve? */
1655         if (pgprot_val(vm_page_prot) !=
1656             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1657                 return 0;
1658
1659         /* Do we need to track softdirty? */
1660         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1661                 return 1;
1662
1663         /* Specialty mapping? */
1664         if (vm_flags & VM_PFNMAP)
1665                 return 0;
1666
1667         /* Can the mapping track the dirty pages? */
1668         return vma->vm_file && vma->vm_file->f_mapping &&
1669                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1670 }
1671
1672 /*
1673  * We account for memory if it's a private writeable mapping,
1674  * not hugepages and VM_NORESERVE wasn't set.
1675  */
1676 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1677 {
1678         /*
1679          * hugetlb has its own accounting separate from the core VM
1680          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1681          */
1682         if (file && is_file_hugepages(file))
1683                 return 0;
1684
1685         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1686 }
1687
1688 unsigned long mmap_region(struct file *file, unsigned long addr,
1689                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1690                 struct list_head *uf)
1691 {
1692         struct mm_struct *mm = current->mm;
1693         struct vm_area_struct *vma, *prev, *merge;
1694         int error;
1695         struct rb_node **rb_link, *rb_parent;
1696         unsigned long charged = 0;
1697
1698         /* Check against address space limit. */
1699         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1700                 unsigned long nr_pages;
1701
1702                 /*
1703                  * MAP_FIXED may remove pages of mappings that intersects with
1704                  * requested mapping. Account for the pages it would unmap.
1705                  */
1706                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1707
1708                 if (!may_expand_vm(mm, vm_flags,
1709                                         (len >> PAGE_SHIFT) - nr_pages))
1710                         return -ENOMEM;
1711         }
1712
1713         /* Clear old maps */
1714         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1715                               &rb_parent)) {
1716                 if (do_munmap(mm, addr, len, uf))
1717                         return -ENOMEM;
1718         }
1719
1720         /*
1721          * Private writable mapping: check memory availability
1722          */
1723         if (accountable_mapping(file, vm_flags)) {
1724                 charged = len >> PAGE_SHIFT;
1725                 if (security_vm_enough_memory_mm(mm, charged))
1726                         return -ENOMEM;
1727                 vm_flags |= VM_ACCOUNT;
1728         }
1729
1730         /*
1731          * Can we just expand an old mapping?
1732          */
1733         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1734                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1735         if (vma)
1736                 goto out;
1737
1738         /*
1739          * Determine the object being mapped and call the appropriate
1740          * specific mapper. the address has already been validated, but
1741          * not unmapped, but the maps are removed from the list.
1742          */
1743         vma = vm_area_alloc(mm);
1744         if (!vma) {
1745                 error = -ENOMEM;
1746                 goto unacct_error;
1747         }
1748
1749         vma->vm_start = addr;
1750         vma->vm_end = addr + len;
1751         vma->vm_flags = vm_flags;
1752         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1753         vma->vm_pgoff = pgoff;
1754
1755         if (file) {
1756                 if (vm_flags & VM_DENYWRITE) {
1757                         error = deny_write_access(file);
1758                         if (error)
1759                                 goto free_vma;
1760                 }
1761                 if (vm_flags & VM_SHARED) {
1762                         error = mapping_map_writable(file->f_mapping);
1763                         if (error)
1764                                 goto allow_write_and_free_vma;
1765                 }
1766
1767                 /* ->mmap() can change vma->vm_file, but must guarantee that
1768                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1769                  * and map writably if VM_SHARED is set. This usually means the
1770                  * new file must not have been exposed to user-space, yet.
1771                  */
1772                 vma->vm_file = get_file(file);
1773                 error = call_mmap(file, vma);
1774                 if (error)
1775                         goto unmap_and_free_vma;
1776
1777                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1778                  * as we may succeed this time.
1779                  */
1780                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1781                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1782                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1783                         if (merge) {
1784                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1785                                  * fput the vma->vm_file here or we would add an extra fput for file
1786                                  * and cause general protection fault ultimately.
1787                                  */
1788                                 fput(vma->vm_file);
1789                                 vm_area_free(vma);
1790                                 vma = merge;
1791                                 /* Update vm_flags and possible addr to pick up the change. We don't
1792                                  * warn here if addr changed as the vma is not linked by vma_link().
1793                                  */
1794                                 addr = vma->vm_start;
1795                                 vm_flags = vma->vm_flags;
1796                                 goto unmap_writable;
1797                         }
1798                 }
1799
1800                 /* Can addr have changed??
1801                  *
1802                  * Answer: Yes, several device drivers can do it in their
1803                  *         f_op->mmap method. -DaveM
1804                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1805                  *      be updated for vma_link()
1806                  */
1807                 WARN_ON_ONCE(addr != vma->vm_start);
1808
1809                 addr = vma->vm_start;
1810                 vm_flags = vma->vm_flags;
1811         } else if (vm_flags & VM_SHARED) {
1812                 error = shmem_zero_setup(vma);
1813                 if (error)
1814                         goto free_vma;
1815         } else {
1816                 vma_set_anonymous(vma);
1817         }
1818
1819         vma_link(mm, vma, prev, rb_link, rb_parent);
1820         /* Once vma denies write, undo our temporary denial count */
1821         if (file) {
1822 unmap_writable:
1823                 if (vm_flags & VM_SHARED)
1824                         mapping_unmap_writable(file->f_mapping);
1825                 if (vm_flags & VM_DENYWRITE)
1826                         allow_write_access(file);
1827         }
1828         file = vma->vm_file;
1829 out:
1830         perf_event_mmap(vma);
1831
1832         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1833         if (vm_flags & VM_LOCKED) {
1834                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1835                                         is_vm_hugetlb_page(vma) ||
1836                                         vma == get_gate_vma(current->mm))
1837                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1838                 else
1839                         mm->locked_vm += (len >> PAGE_SHIFT);
1840         }
1841
1842         if (file)
1843                 uprobe_mmap(vma);
1844
1845         /*
1846          * New (or expanded) vma always get soft dirty status.
1847          * Otherwise user-space soft-dirty page tracker won't
1848          * be able to distinguish situation when vma area unmapped,
1849          * then new mapped in-place (which must be aimed as
1850          * a completely new data area).
1851          */
1852         vma->vm_flags |= VM_SOFTDIRTY;
1853
1854         vma_set_page_prot(vma);
1855
1856         return addr;
1857
1858 unmap_and_free_vma:
1859         vma->vm_file = NULL;
1860         fput(file);
1861
1862         /* Undo any partial mapping done by a device driver. */
1863         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1864         charged = 0;
1865         if (vm_flags & VM_SHARED)
1866                 mapping_unmap_writable(file->f_mapping);
1867 allow_write_and_free_vma:
1868         if (vm_flags & VM_DENYWRITE)
1869                 allow_write_access(file);
1870 free_vma:
1871         vm_area_free(vma);
1872 unacct_error:
1873         if (charged)
1874                 vm_unacct_memory(charged);
1875         return error;
1876 }
1877
1878 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1879 {
1880         /*
1881          * We implement the search by looking for an rbtree node that
1882          * immediately follows a suitable gap. That is,
1883          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1884          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1885          * - gap_end - gap_start >= length
1886          */
1887
1888         struct mm_struct *mm = current->mm;
1889         struct vm_area_struct *vma;
1890         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1891
1892         /* Adjust search length to account for worst case alignment overhead */
1893         length = info->length + info->align_mask;
1894         if (length < info->length)
1895                 return -ENOMEM;
1896
1897         /* Adjust search limits by the desired length */
1898         if (info->high_limit < length)
1899                 return -ENOMEM;
1900         high_limit = info->high_limit - length;
1901
1902         if (info->low_limit > high_limit)
1903                 return -ENOMEM;
1904         low_limit = info->low_limit + length;
1905
1906         /* Check if rbtree root looks promising */
1907         if (RB_EMPTY_ROOT(&mm->mm_rb))
1908                 goto check_highest;
1909         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1910         if (vma->rb_subtree_gap < length)
1911                 goto check_highest;
1912
1913         while (true) {
1914                 /* Visit left subtree if it looks promising */
1915                 gap_end = vm_start_gap(vma);
1916                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1917                         struct vm_area_struct *left =
1918                                 rb_entry(vma->vm_rb.rb_left,
1919                                          struct vm_area_struct, vm_rb);
1920                         if (left->rb_subtree_gap >= length) {
1921                                 vma = left;
1922                                 continue;
1923                         }
1924                 }
1925
1926                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1927 check_current:
1928                 /* Check if current node has a suitable gap */
1929                 if (gap_start > high_limit)
1930                         return -ENOMEM;
1931                 if (gap_end >= low_limit &&
1932                     gap_end > gap_start && gap_end - gap_start >= length)
1933                         goto found;
1934
1935                 /* Visit right subtree if it looks promising */
1936                 if (vma->vm_rb.rb_right) {
1937                         struct vm_area_struct *right =
1938                                 rb_entry(vma->vm_rb.rb_right,
1939                                          struct vm_area_struct, vm_rb);
1940                         if (right->rb_subtree_gap >= length) {
1941                                 vma = right;
1942                                 continue;
1943                         }
1944                 }
1945
1946                 /* Go back up the rbtree to find next candidate node */
1947                 while (true) {
1948                         struct rb_node *prev = &vma->vm_rb;
1949                         if (!rb_parent(prev))
1950                                 goto check_highest;
1951                         vma = rb_entry(rb_parent(prev),
1952                                        struct vm_area_struct, vm_rb);
1953                         if (prev == vma->vm_rb.rb_left) {
1954                                 gap_start = vm_end_gap(vma->vm_prev);
1955                                 gap_end = vm_start_gap(vma);
1956                                 goto check_current;
1957                         }
1958                 }
1959         }
1960
1961 check_highest:
1962         /* Check highest gap, which does not precede any rbtree node */
1963         gap_start = mm->highest_vm_end;
1964         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1965         if (gap_start > high_limit)
1966                 return -ENOMEM;
1967
1968 found:
1969         /* We found a suitable gap. Clip it with the original low_limit. */
1970         if (gap_start < info->low_limit)
1971                 gap_start = info->low_limit;
1972
1973         /* Adjust gap address to the desired alignment */
1974         gap_start += (info->align_offset - gap_start) & info->align_mask;
1975
1976         VM_BUG_ON(gap_start + info->length > info->high_limit);
1977         VM_BUG_ON(gap_start + info->length > gap_end);
1978         return gap_start;
1979 }
1980
1981 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1982 {
1983         struct mm_struct *mm = current->mm;
1984         struct vm_area_struct *vma;
1985         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1986
1987         /* Adjust search length to account for worst case alignment overhead */
1988         length = info->length + info->align_mask;
1989         if (length < info->length)
1990                 return -ENOMEM;
1991
1992         /*
1993          * Adjust search limits by the desired length.
1994          * See implementation comment at top of unmapped_area().
1995          */
1996         gap_end = info->high_limit;
1997         if (gap_end < length)
1998                 return -ENOMEM;
1999         high_limit = gap_end - length;
2000
2001         if (info->low_limit > high_limit)
2002                 return -ENOMEM;
2003         low_limit = info->low_limit + length;
2004
2005         /* Check highest gap, which does not precede any rbtree node */
2006         gap_start = mm->highest_vm_end;
2007         if (gap_start <= high_limit)
2008                 goto found_highest;
2009
2010         /* Check if rbtree root looks promising */
2011         if (RB_EMPTY_ROOT(&mm->mm_rb))
2012                 return -ENOMEM;
2013         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2014         if (vma->rb_subtree_gap < length)
2015                 return -ENOMEM;
2016
2017         while (true) {
2018                 /* Visit right subtree if it looks promising */
2019                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2020                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2021                         struct vm_area_struct *right =
2022                                 rb_entry(vma->vm_rb.rb_right,
2023                                          struct vm_area_struct, vm_rb);
2024                         if (right->rb_subtree_gap >= length) {
2025                                 vma = right;
2026                                 continue;
2027                         }
2028                 }
2029
2030 check_current:
2031                 /* Check if current node has a suitable gap */
2032                 gap_end = vm_start_gap(vma);
2033                 if (gap_end < low_limit)
2034                         return -ENOMEM;
2035                 if (gap_start <= high_limit &&
2036                     gap_end > gap_start && gap_end - gap_start >= length)
2037                         goto found;
2038
2039                 /* Visit left subtree if it looks promising */
2040                 if (vma->vm_rb.rb_left) {
2041                         struct vm_area_struct *left =
2042                                 rb_entry(vma->vm_rb.rb_left,
2043                                          struct vm_area_struct, vm_rb);
2044                         if (left->rb_subtree_gap >= length) {
2045                                 vma = left;
2046                                 continue;
2047                         }
2048                 }
2049
2050                 /* Go back up the rbtree to find next candidate node */
2051                 while (true) {
2052                         struct rb_node *prev = &vma->vm_rb;
2053                         if (!rb_parent(prev))
2054                                 return -ENOMEM;
2055                         vma = rb_entry(rb_parent(prev),
2056                                        struct vm_area_struct, vm_rb);
2057                         if (prev == vma->vm_rb.rb_right) {
2058                                 gap_start = vma->vm_prev ?
2059                                         vm_end_gap(vma->vm_prev) : 0;
2060                                 goto check_current;
2061                         }
2062                 }
2063         }
2064
2065 found:
2066         /* We found a suitable gap. Clip it with the original high_limit. */
2067         if (gap_end > info->high_limit)
2068                 gap_end = info->high_limit;
2069
2070 found_highest:
2071         /* Compute highest gap address at the desired alignment */
2072         gap_end -= info->length;
2073         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2074
2075         VM_BUG_ON(gap_end < info->low_limit);
2076         VM_BUG_ON(gap_end < gap_start);
2077         return gap_end;
2078 }
2079
2080 /*
2081  * Search for an unmapped address range.
2082  *
2083  * We are looking for a range that:
2084  * - does not intersect with any VMA;
2085  * - is contained within the [low_limit, high_limit) interval;
2086  * - is at least the desired size.
2087  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2088  */
2089 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2090 {
2091         unsigned long addr;
2092
2093         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2094                 addr = unmapped_area_topdown(info);
2095         else
2096                 addr = unmapped_area(info);
2097
2098         trace_vm_unmapped_area(addr, info);
2099         return addr;
2100 }
2101
2102 #ifndef arch_get_mmap_end
2103 #define arch_get_mmap_end(addr) (TASK_SIZE)
2104 #endif
2105
2106 #ifndef arch_get_mmap_base
2107 #define arch_get_mmap_base(addr, base) (base)
2108 #endif
2109
2110 /* Get an address range which is currently unmapped.
2111  * For shmat() with addr=0.
2112  *
2113  * Ugly calling convention alert:
2114  * Return value with the low bits set means error value,
2115  * ie
2116  *      if (ret & ~PAGE_MASK)
2117  *              error = ret;
2118  *
2119  * This function "knows" that -ENOMEM has the bits set.
2120  */
2121 #ifndef HAVE_ARCH_UNMAPPED_AREA
2122 unsigned long
2123 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2124                 unsigned long len, unsigned long pgoff, unsigned long flags)
2125 {
2126         struct mm_struct *mm = current->mm;
2127         struct vm_area_struct *vma, *prev;
2128         struct vm_unmapped_area_info info;
2129         const unsigned long mmap_end = arch_get_mmap_end(addr);
2130
2131         if (len > mmap_end - mmap_min_addr)
2132                 return -ENOMEM;
2133
2134         if (flags & MAP_FIXED)
2135                 return addr;
2136
2137         if (addr) {
2138                 addr = PAGE_ALIGN(addr);
2139                 vma = find_vma_prev(mm, addr, &prev);
2140                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2141                     (!vma || addr + len <= vm_start_gap(vma)) &&
2142                     (!prev || addr >= vm_end_gap(prev)))
2143                         return addr;
2144         }
2145
2146         info.flags = 0;
2147         info.length = len;
2148         info.low_limit = mm->mmap_base;
2149         info.high_limit = mmap_end;
2150         info.align_mask = 0;
2151         info.align_offset = 0;
2152         return vm_unmapped_area(&info);
2153 }
2154 #endif
2155
2156 /*
2157  * This mmap-allocator allocates new areas top-down from below the
2158  * stack's low limit (the base):
2159  */
2160 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2161 unsigned long
2162 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2163                           unsigned long len, unsigned long pgoff,
2164                           unsigned long flags)
2165 {
2166         struct vm_area_struct *vma, *prev;
2167         struct mm_struct *mm = current->mm;
2168         struct vm_unmapped_area_info info;
2169         const unsigned long mmap_end = arch_get_mmap_end(addr);
2170
2171         /* requested length too big for entire address space */
2172         if (len > mmap_end - mmap_min_addr)
2173                 return -ENOMEM;
2174
2175         if (flags & MAP_FIXED)
2176                 return addr;
2177
2178         /* requesting a specific address */
2179         if (addr) {
2180                 addr = PAGE_ALIGN(addr);
2181                 vma = find_vma_prev(mm, addr, &prev);
2182                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2183                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2184                                 (!prev || addr >= vm_end_gap(prev)))
2185                         return addr;
2186         }
2187
2188         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2189         info.length = len;
2190         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2191         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2192         info.align_mask = 0;
2193         info.align_offset = 0;
2194         addr = vm_unmapped_area(&info);
2195
2196         /*
2197          * A failed mmap() very likely causes application failure,
2198          * so fall back to the bottom-up function here. This scenario
2199          * can happen with large stack limits and large mmap()
2200          * allocations.
2201          */
2202         if (offset_in_page(addr)) {
2203                 VM_BUG_ON(addr != -ENOMEM);
2204                 info.flags = 0;
2205                 info.low_limit = TASK_UNMAPPED_BASE;
2206                 info.high_limit = mmap_end;
2207                 addr = vm_unmapped_area(&info);
2208         }
2209
2210         return addr;
2211 }
2212 #endif
2213
2214 unsigned long
2215 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2216                 unsigned long pgoff, unsigned long flags)
2217 {
2218         unsigned long (*get_area)(struct file *, unsigned long,
2219                                   unsigned long, unsigned long, unsigned long);
2220
2221         unsigned long error = arch_mmap_check(addr, len, flags);
2222         if (error)
2223                 return error;
2224
2225         /* Careful about overflows.. */
2226         if (len > TASK_SIZE)
2227                 return -ENOMEM;
2228
2229         get_area = current->mm->get_unmapped_area;
2230         if (file) {
2231                 if (file->f_op->get_unmapped_area)
2232                         get_area = file->f_op->get_unmapped_area;
2233         } else if (flags & MAP_SHARED) {
2234                 /*
2235                  * mmap_region() will call shmem_zero_setup() to create a file,
2236                  * so use shmem's get_unmapped_area in case it can be huge.
2237                  * do_mmap() will clear pgoff, so match alignment.
2238                  */
2239                 pgoff = 0;
2240                 get_area = shmem_get_unmapped_area;
2241         }
2242
2243         addr = get_area(file, addr, len, pgoff, flags);
2244         if (IS_ERR_VALUE(addr))
2245                 return addr;
2246
2247         if (addr > TASK_SIZE - len)
2248                 return -ENOMEM;
2249         if (offset_in_page(addr))
2250                 return -EINVAL;
2251
2252         error = security_mmap_addr(addr);
2253         return error ? error : addr;
2254 }
2255
2256 EXPORT_SYMBOL(get_unmapped_area);
2257
2258 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2259 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2260 {
2261         struct rb_node *rb_node;
2262         struct vm_area_struct *vma;
2263
2264         /* Check the cache first. */
2265         vma = vmacache_find(mm, addr);
2266         if (likely(vma))
2267                 return vma;
2268
2269         rb_node = mm->mm_rb.rb_node;
2270
2271         while (rb_node) {
2272                 struct vm_area_struct *tmp;
2273
2274                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2275
2276                 if (tmp->vm_end > addr) {
2277                         vma = tmp;
2278                         if (tmp->vm_start <= addr)
2279                                 break;
2280                         rb_node = rb_node->rb_left;
2281                 } else
2282                         rb_node = rb_node->rb_right;
2283         }
2284
2285         if (vma)
2286                 vmacache_update(addr, vma);
2287         return vma;
2288 }
2289
2290 EXPORT_SYMBOL(find_vma);
2291
2292 /*
2293  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2294  */
2295 struct vm_area_struct *
2296 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2297                         struct vm_area_struct **pprev)
2298 {
2299         struct vm_area_struct *vma;
2300
2301         vma = find_vma(mm, addr);
2302         if (vma) {
2303                 *pprev = vma->vm_prev;
2304         } else {
2305                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2306
2307                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2308         }
2309         return vma;
2310 }
2311
2312 /*
2313  * Verify that the stack growth is acceptable and
2314  * update accounting. This is shared with both the
2315  * grow-up and grow-down cases.
2316  */
2317 static int acct_stack_growth(struct vm_area_struct *vma,
2318                              unsigned long size, unsigned long grow)
2319 {
2320         struct mm_struct *mm = vma->vm_mm;
2321         unsigned long new_start;
2322
2323         /* address space limit tests */
2324         if (!may_expand_vm(mm, vma->vm_flags, grow))
2325                 return -ENOMEM;
2326
2327         /* Stack limit test */
2328         if (size > rlimit(RLIMIT_STACK))
2329                 return -ENOMEM;
2330
2331         /* mlock limit tests */
2332         if (vma->vm_flags & VM_LOCKED) {
2333                 unsigned long locked;
2334                 unsigned long limit;
2335                 locked = mm->locked_vm + grow;
2336                 limit = rlimit(RLIMIT_MEMLOCK);
2337                 limit >>= PAGE_SHIFT;
2338                 if (locked > limit && !capable(CAP_IPC_LOCK))
2339                         return -ENOMEM;
2340         }
2341
2342         /* Check to ensure the stack will not grow into a hugetlb-only region */
2343         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2344                         vma->vm_end - size;
2345         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2346                 return -EFAULT;
2347
2348         /*
2349          * Overcommit..  This must be the final test, as it will
2350          * update security statistics.
2351          */
2352         if (security_vm_enough_memory_mm(mm, grow))
2353                 return -ENOMEM;
2354
2355         return 0;
2356 }
2357
2358 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2359 /*
2360  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2361  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2362  */
2363 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2364 {
2365         struct mm_struct *mm = vma->vm_mm;
2366         struct vm_area_struct *next;
2367         unsigned long gap_addr;
2368         int error = 0;
2369
2370         if (!(vma->vm_flags & VM_GROWSUP))
2371                 return -EFAULT;
2372
2373         /* Guard against exceeding limits of the address space. */
2374         address &= PAGE_MASK;
2375         if (address >= (TASK_SIZE & PAGE_MASK))
2376                 return -ENOMEM;
2377         address += PAGE_SIZE;
2378
2379         /* Enforce stack_guard_gap */
2380         gap_addr = address + stack_guard_gap;
2381
2382         /* Guard against overflow */
2383         if (gap_addr < address || gap_addr > TASK_SIZE)
2384                 gap_addr = TASK_SIZE;
2385
2386         next = vma->vm_next;
2387         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2388                 if (!(next->vm_flags & VM_GROWSUP))
2389                         return -ENOMEM;
2390                 /* Check that both stack segments have the same anon_vma? */
2391         }
2392
2393         /* We must make sure the anon_vma is allocated. */
2394         if (unlikely(anon_vma_prepare(vma)))
2395                 return -ENOMEM;
2396
2397         /*
2398          * vma->vm_start/vm_end cannot change under us because the caller
2399          * is required to hold the mmap_lock in read mode.  We need the
2400          * anon_vma lock to serialize against concurrent expand_stacks.
2401          */
2402         anon_vma_lock_write(vma->anon_vma);
2403
2404         /* Somebody else might have raced and expanded it already */
2405         if (address > vma->vm_end) {
2406                 unsigned long size, grow;
2407
2408                 size = address - vma->vm_start;
2409                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2410
2411                 error = -ENOMEM;
2412                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2413                         error = acct_stack_growth(vma, size, grow);
2414                         if (!error) {
2415                                 /*
2416                                  * vma_gap_update() doesn't support concurrent
2417                                  * updates, but we only hold a shared mmap_lock
2418                                  * lock here, so we need to protect against
2419                                  * concurrent vma expansions.
2420                                  * anon_vma_lock_write() doesn't help here, as
2421                                  * we don't guarantee that all growable vmas
2422                                  * in a mm share the same root anon vma.
2423                                  * So, we reuse mm->page_table_lock to guard
2424                                  * against concurrent vma expansions.
2425                                  */
2426                                 spin_lock(&mm->page_table_lock);
2427                                 if (vma->vm_flags & VM_LOCKED)
2428                                         mm->locked_vm += grow;
2429                                 vm_stat_account(mm, vma->vm_flags, grow);
2430                                 anon_vma_interval_tree_pre_update_vma(vma);
2431                                 vma->vm_end = address;
2432                                 anon_vma_interval_tree_post_update_vma(vma);
2433                                 if (vma->vm_next)
2434                                         vma_gap_update(vma->vm_next);
2435                                 else
2436                                         mm->highest_vm_end = vm_end_gap(vma);
2437                                 spin_unlock(&mm->page_table_lock);
2438
2439                                 perf_event_mmap(vma);
2440                         }
2441                 }
2442         }
2443         anon_vma_unlock_write(vma->anon_vma);
2444         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2445         validate_mm(mm);
2446         return error;
2447 }
2448 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2449
2450 /*
2451  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2452  */
2453 int expand_downwards(struct vm_area_struct *vma,
2454                                    unsigned long address)
2455 {
2456         struct mm_struct *mm = vma->vm_mm;
2457         struct vm_area_struct *prev;
2458         int error = 0;
2459
2460         address &= PAGE_MASK;
2461         if (address < mmap_min_addr)
2462                 return -EPERM;
2463
2464         /* Enforce stack_guard_gap */
2465         prev = vma->vm_prev;
2466         /* Check that both stack segments have the same anon_vma? */
2467         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2468                         vma_is_accessible(prev)) {
2469                 if (address - prev->vm_end < stack_guard_gap)
2470                         return -ENOMEM;
2471         }
2472
2473         /* We must make sure the anon_vma is allocated. */
2474         if (unlikely(anon_vma_prepare(vma)))
2475                 return -ENOMEM;
2476
2477         /*
2478          * vma->vm_start/vm_end cannot change under us because the caller
2479          * is required to hold the mmap_lock in read mode.  We need the
2480          * anon_vma lock to serialize against concurrent expand_stacks.
2481          */
2482         anon_vma_lock_write(vma->anon_vma);
2483
2484         /* Somebody else might have raced and expanded it already */
2485         if (address < vma->vm_start) {
2486                 unsigned long size, grow;
2487
2488                 size = vma->vm_end - address;
2489                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2490
2491                 error = -ENOMEM;
2492                 if (grow <= vma->vm_pgoff) {
2493                         error = acct_stack_growth(vma, size, grow);
2494                         if (!error) {
2495                                 /*
2496                                  * vma_gap_update() doesn't support concurrent
2497                                  * updates, but we only hold a shared mmap_lock
2498                                  * lock here, so we need to protect against
2499                                  * concurrent vma expansions.
2500                                  * anon_vma_lock_write() doesn't help here, as
2501                                  * we don't guarantee that all growable vmas
2502                                  * in a mm share the same root anon vma.
2503                                  * So, we reuse mm->page_table_lock to guard
2504                                  * against concurrent vma expansions.
2505                                  */
2506                                 spin_lock(&mm->page_table_lock);
2507                                 if (vma->vm_flags & VM_LOCKED)
2508                                         mm->locked_vm += grow;
2509                                 vm_stat_account(mm, vma->vm_flags, grow);
2510                                 anon_vma_interval_tree_pre_update_vma(vma);
2511                                 vma->vm_start = address;
2512                                 vma->vm_pgoff -= grow;
2513                                 anon_vma_interval_tree_post_update_vma(vma);
2514                                 vma_gap_update(vma);
2515                                 spin_unlock(&mm->page_table_lock);
2516
2517                                 perf_event_mmap(vma);
2518                         }
2519                 }
2520         }
2521         anon_vma_unlock_write(vma->anon_vma);
2522         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2523         validate_mm(mm);
2524         return error;
2525 }
2526
2527 /* enforced gap between the expanding stack and other mappings. */
2528 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2529
2530 static int __init cmdline_parse_stack_guard_gap(char *p)
2531 {
2532         unsigned long val;
2533         char *endptr;
2534
2535         val = simple_strtoul(p, &endptr, 10);
2536         if (!*endptr)
2537                 stack_guard_gap = val << PAGE_SHIFT;
2538
2539         return 0;
2540 }
2541 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2542
2543 #ifdef CONFIG_STACK_GROWSUP
2544 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2545 {
2546         return expand_upwards(vma, address);
2547 }
2548
2549 struct vm_area_struct *
2550 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2551 {
2552         struct vm_area_struct *vma, *prev;
2553
2554         addr &= PAGE_MASK;
2555         vma = find_vma_prev(mm, addr, &prev);
2556         if (vma && (vma->vm_start <= addr))
2557                 return vma;
2558         /* don't alter vm_end if the coredump is running */
2559         if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2560                 return NULL;
2561         if (prev->vm_flags & VM_LOCKED)
2562                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2563         return prev;
2564 }
2565 #else
2566 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2567 {
2568         return expand_downwards(vma, address);
2569 }
2570
2571 struct vm_area_struct *
2572 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2573 {
2574         struct vm_area_struct *vma;
2575         unsigned long start;
2576
2577         addr &= PAGE_MASK;
2578         vma = find_vma(mm, addr);
2579         if (!vma)
2580                 return NULL;
2581         if (vma->vm_start <= addr)
2582                 return vma;
2583         if (!(vma->vm_flags & VM_GROWSDOWN))
2584                 return NULL;
2585         /* don't alter vm_start if the coredump is running */
2586         if (!mmget_still_valid(mm))
2587                 return NULL;
2588         start = vma->vm_start;
2589         if (expand_stack(vma, addr))
2590                 return NULL;
2591         if (vma->vm_flags & VM_LOCKED)
2592                 populate_vma_page_range(vma, addr, start, NULL);
2593         return vma;
2594 }
2595 #endif
2596
2597 EXPORT_SYMBOL_GPL(find_extend_vma);
2598
2599 /*
2600  * Ok - we have the memory areas we should free on the vma list,
2601  * so release them, and do the vma updates.
2602  *
2603  * Called with the mm semaphore held.
2604  */
2605 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2606 {
2607         unsigned long nr_accounted = 0;
2608
2609         /* Update high watermark before we lower total_vm */
2610         update_hiwater_vm(mm);
2611         do {
2612                 long nrpages = vma_pages(vma);
2613
2614                 if (vma->vm_flags & VM_ACCOUNT)
2615                         nr_accounted += nrpages;
2616                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2617                 vma = remove_vma(vma);
2618         } while (vma);
2619         vm_unacct_memory(nr_accounted);
2620         validate_mm(mm);
2621 }
2622
2623 /*
2624  * Get rid of page table information in the indicated region.
2625  *
2626  * Called with the mm semaphore held.
2627  */
2628 static void unmap_region(struct mm_struct *mm,
2629                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2630                 unsigned long start, unsigned long end)
2631 {
2632         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2633         struct mmu_gather tlb;
2634
2635         lru_add_drain();
2636         tlb_gather_mmu(&tlb, mm, start, end);
2637         update_hiwater_rss(mm);
2638         unmap_vmas(&tlb, vma, start, end);
2639         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2640                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2641         tlb_finish_mmu(&tlb, start, end);
2642 }
2643
2644 /*
2645  * Create a list of vma's touched by the unmap, removing them from the mm's
2646  * vma list as we go..
2647  */
2648 static bool
2649 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2650         struct vm_area_struct *prev, unsigned long end)
2651 {
2652         struct vm_area_struct **insertion_point;
2653         struct vm_area_struct *tail_vma = NULL;
2654
2655         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2656         vma->vm_prev = NULL;
2657         do {
2658                 vma_rb_erase(vma, &mm->mm_rb);
2659                 mm->map_count--;
2660                 tail_vma = vma;
2661                 vma = vma->vm_next;
2662         } while (vma && vma->vm_start < end);
2663         *insertion_point = vma;
2664         if (vma) {
2665                 vma->vm_prev = prev;
2666                 vma_gap_update(vma);
2667         } else
2668                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2669         tail_vma->vm_next = NULL;
2670
2671         /* Kill the cache */
2672         vmacache_invalidate(mm);
2673
2674         /*
2675          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2676          * VM_GROWSUP VMA. Such VMAs can change their size under
2677          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2678          */
2679         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2680                 return false;
2681         if (prev && (prev->vm_flags & VM_GROWSUP))
2682                 return false;
2683         return true;
2684 }
2685
2686 /*
2687  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2688  * has already been checked or doesn't make sense to fail.
2689  */
2690 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2691                 unsigned long addr, int new_below)
2692 {
2693         struct vm_area_struct *new;
2694         int err;
2695
2696         if (vma->vm_ops && vma->vm_ops->split) {
2697                 err = vma->vm_ops->split(vma, addr);
2698                 if (err)
2699                         return err;
2700         }
2701
2702         new = vm_area_dup(vma);
2703         if (!new)
2704                 return -ENOMEM;
2705
2706         if (new_below)
2707                 new->vm_end = addr;
2708         else {
2709                 new->vm_start = addr;
2710                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2711         }
2712
2713         err = vma_dup_policy(vma, new);
2714         if (err)
2715                 goto out_free_vma;
2716
2717         err = anon_vma_clone(new, vma);
2718         if (err)
2719                 goto out_free_mpol;
2720
2721         if (new->vm_file)
2722                 get_file(new->vm_file);
2723
2724         if (new->vm_ops && new->vm_ops->open)
2725                 new->vm_ops->open(new);
2726
2727         if (new_below)
2728                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2729                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2730         else
2731                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2732
2733         /* Success. */
2734         if (!err)
2735                 return 0;
2736
2737         /* Clean everything up if vma_adjust failed. */
2738         if (new->vm_ops && new->vm_ops->close)
2739                 new->vm_ops->close(new);
2740         if (new->vm_file)
2741                 fput(new->vm_file);
2742         unlink_anon_vmas(new);
2743  out_free_mpol:
2744         mpol_put(vma_policy(new));
2745  out_free_vma:
2746         vm_area_free(new);
2747         return err;
2748 }
2749
2750 /*
2751  * Split a vma into two pieces at address 'addr', a new vma is allocated
2752  * either for the first part or the tail.
2753  */
2754 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2755               unsigned long addr, int new_below)
2756 {
2757         if (mm->map_count >= sysctl_max_map_count)
2758                 return -ENOMEM;
2759
2760         return __split_vma(mm, vma, addr, new_below);
2761 }
2762
2763 /* Munmap is split into 2 main parts -- this part which finds
2764  * what needs doing, and the areas themselves, which do the
2765  * work.  This now handles partial unmappings.
2766  * Jeremy Fitzhardinge <jeremy@goop.org>
2767  */
2768 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2769                 struct list_head *uf, bool downgrade)
2770 {
2771         unsigned long end;
2772         struct vm_area_struct *vma, *prev, *last;
2773
2774         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2775                 return -EINVAL;
2776
2777         len = PAGE_ALIGN(len);
2778         end = start + len;
2779         if (len == 0)
2780                 return -EINVAL;
2781
2782         /*
2783          * arch_unmap() might do unmaps itself.  It must be called
2784          * and finish any rbtree manipulation before this code
2785          * runs and also starts to manipulate the rbtree.
2786          */
2787         arch_unmap(mm, start, end);
2788
2789         /* Find the first overlapping VMA */
2790         vma = find_vma(mm, start);
2791         if (!vma)
2792                 return 0;
2793         prev = vma->vm_prev;
2794         /* we have  start < vma->vm_end  */
2795
2796         /* if it doesn't overlap, we have nothing.. */
2797         if (vma->vm_start >= end)
2798                 return 0;
2799
2800         /*
2801          * If we need to split any vma, do it now to save pain later.
2802          *
2803          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2804          * unmapped vm_area_struct will remain in use: so lower split_vma
2805          * places tmp vma above, and higher split_vma places tmp vma below.
2806          */
2807         if (start > vma->vm_start) {
2808                 int error;
2809
2810                 /*
2811                  * Make sure that map_count on return from munmap() will
2812                  * not exceed its limit; but let map_count go just above
2813                  * its limit temporarily, to help free resources as expected.
2814                  */
2815                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2816                         return -ENOMEM;
2817
2818                 error = __split_vma(mm, vma, start, 0);
2819                 if (error)
2820                         return error;
2821                 prev = vma;
2822         }
2823
2824         /* Does it split the last one? */
2825         last = find_vma(mm, end);
2826         if (last && end > last->vm_start) {
2827                 int error = __split_vma(mm, last, end, 1);
2828                 if (error)
2829                         return error;
2830         }
2831         vma = prev ? prev->vm_next : mm->mmap;
2832
2833         if (unlikely(uf)) {
2834                 /*
2835                  * If userfaultfd_unmap_prep returns an error the vmas
2836                  * will remain splitted, but userland will get a
2837                  * highly unexpected error anyway. This is no
2838                  * different than the case where the first of the two
2839                  * __split_vma fails, but we don't undo the first
2840                  * split, despite we could. This is unlikely enough
2841                  * failure that it's not worth optimizing it for.
2842                  */
2843                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2844                 if (error)
2845                         return error;
2846         }
2847
2848         /*
2849          * unlock any mlock()ed ranges before detaching vmas
2850          */
2851         if (mm->locked_vm) {
2852                 struct vm_area_struct *tmp = vma;
2853                 while (tmp && tmp->vm_start < end) {
2854                         if (tmp->vm_flags & VM_LOCKED) {
2855                                 mm->locked_vm -= vma_pages(tmp);
2856                                 munlock_vma_pages_all(tmp);
2857                         }
2858
2859                         tmp = tmp->vm_next;
2860                 }
2861         }
2862
2863         /* Detach vmas from rbtree */
2864         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2865                 downgrade = false;
2866
2867         if (downgrade)
2868                 mmap_write_downgrade(mm);
2869
2870         unmap_region(mm, vma, prev, start, end);
2871
2872         /* Fix up all other VM information */
2873         remove_vma_list(mm, vma);
2874
2875         return downgrade ? 1 : 0;
2876 }
2877
2878 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2879               struct list_head *uf)
2880 {
2881         return __do_munmap(mm, start, len, uf, false);
2882 }
2883
2884 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2885 {
2886         int ret;
2887         struct mm_struct *mm = current->mm;
2888         LIST_HEAD(uf);
2889
2890         if (mmap_write_lock_killable(mm))
2891                 return -EINTR;
2892
2893         ret = __do_munmap(mm, start, len, &uf, downgrade);
2894         /*
2895          * Returning 1 indicates mmap_lock is downgraded.
2896          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2897          * it to 0 before return.
2898          */
2899         if (ret == 1) {
2900                 mmap_read_unlock(mm);
2901                 ret = 0;
2902         } else
2903                 mmap_write_unlock(mm);
2904
2905         userfaultfd_unmap_complete(mm, &uf);
2906         return ret;
2907 }
2908
2909 int vm_munmap(unsigned long start, size_t len)
2910 {
2911         return __vm_munmap(start, len, false);
2912 }
2913 EXPORT_SYMBOL(vm_munmap);
2914
2915 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2916 {
2917         addr = untagged_addr(addr);
2918         profile_munmap(addr);
2919         return __vm_munmap(addr, len, true);
2920 }
2921
2922
2923 /*
2924  * Emulation of deprecated remap_file_pages() syscall.
2925  */
2926 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2927                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2928 {
2929
2930         struct mm_struct *mm = current->mm;
2931         struct vm_area_struct *vma;
2932         unsigned long populate = 0;
2933         unsigned long ret = -EINVAL;
2934         struct file *file;
2935
2936         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2937                      current->comm, current->pid);
2938
2939         if (prot)
2940                 return ret;
2941         start = start & PAGE_MASK;
2942         size = size & PAGE_MASK;
2943
2944         if (start + size <= start)
2945                 return ret;
2946
2947         /* Does pgoff wrap? */
2948         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2949                 return ret;
2950
2951         if (mmap_write_lock_killable(mm))
2952                 return -EINTR;
2953
2954         vma = find_vma(mm, start);
2955
2956         if (!vma || !(vma->vm_flags & VM_SHARED))
2957                 goto out;
2958
2959         if (start < vma->vm_start)
2960                 goto out;
2961
2962         if (start + size > vma->vm_end) {
2963                 struct vm_area_struct *next;
2964
2965                 for (next = vma->vm_next; next; next = next->vm_next) {
2966                         /* hole between vmas ? */
2967                         if (next->vm_start != next->vm_prev->vm_end)
2968                                 goto out;
2969
2970                         if (next->vm_file != vma->vm_file)
2971                                 goto out;
2972
2973                         if (next->vm_flags != vma->vm_flags)
2974                                 goto out;
2975
2976                         if (start + size <= next->vm_end)
2977                                 break;
2978                 }
2979
2980                 if (!next)
2981                         goto out;
2982         }
2983
2984         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2985         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2986         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2987
2988         flags &= MAP_NONBLOCK;
2989         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2990         if (vma->vm_flags & VM_LOCKED) {
2991                 struct vm_area_struct *tmp;
2992                 flags |= MAP_LOCKED;
2993
2994                 /* drop PG_Mlocked flag for over-mapped range */
2995                 for (tmp = vma; tmp->vm_start >= start + size;
2996                                 tmp = tmp->vm_next) {
2997                         /*
2998                          * Split pmd and munlock page on the border
2999                          * of the range.
3000                          */
3001                         vma_adjust_trans_huge(tmp, start, start + size, 0);
3002
3003                         munlock_vma_pages_range(tmp,
3004                                         max(tmp->vm_start, start),
3005                                         min(tmp->vm_end, start + size));
3006                 }
3007         }
3008
3009         file = get_file(vma->vm_file);
3010         ret = do_mmap(vma->vm_file, start, size,
3011                         prot, flags, pgoff, &populate, NULL);
3012         fput(file);
3013 out:
3014         mmap_write_unlock(mm);
3015         if (populate)
3016                 mm_populate(ret, populate);
3017         if (!IS_ERR_VALUE(ret))
3018                 ret = 0;
3019         return ret;
3020 }
3021
3022 /*
3023  *  this is really a simplified "do_mmap".  it only handles
3024  *  anonymous maps.  eventually we may be able to do some
3025  *  brk-specific accounting here.
3026  */
3027 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3028 {
3029         struct mm_struct *mm = current->mm;
3030         struct vm_area_struct *vma, *prev;
3031         struct rb_node **rb_link, *rb_parent;
3032         pgoff_t pgoff = addr >> PAGE_SHIFT;
3033         int error;
3034         unsigned long mapped_addr;
3035
3036         /* Until we need other flags, refuse anything except VM_EXEC. */
3037         if ((flags & (~VM_EXEC)) != 0)
3038                 return -EINVAL;
3039         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3040
3041         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3042         if (IS_ERR_VALUE(mapped_addr))
3043                 return mapped_addr;
3044
3045         error = mlock_future_check(mm, mm->def_flags, len);
3046         if (error)
3047                 return error;
3048
3049         /*
3050          * Clear old maps.  this also does some error checking for us
3051          */
3052         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3053                               &rb_parent)) {
3054                 if (do_munmap(mm, addr, len, uf))
3055                         return -ENOMEM;
3056         }
3057
3058         /* Check against address space limits *after* clearing old maps... */
3059         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3060                 return -ENOMEM;
3061
3062         if (mm->map_count > sysctl_max_map_count)
3063                 return -ENOMEM;
3064
3065         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3066                 return -ENOMEM;
3067
3068         /* Can we just expand an old private anonymous mapping? */
3069         vma = vma_merge(mm, prev, addr, addr + len, flags,
3070                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3071         if (vma)
3072                 goto out;
3073
3074         /*
3075          * create a vma struct for an anonymous mapping
3076          */
3077         vma = vm_area_alloc(mm);
3078         if (!vma) {
3079                 vm_unacct_memory(len >> PAGE_SHIFT);
3080                 return -ENOMEM;
3081         }
3082
3083         vma_set_anonymous(vma);
3084         vma->vm_start = addr;
3085         vma->vm_end = addr + len;
3086         vma->vm_pgoff = pgoff;
3087         vma->vm_flags = flags;
3088         vma->vm_page_prot = vm_get_page_prot(flags);
3089         vma_link(mm, vma, prev, rb_link, rb_parent);
3090 out:
3091         perf_event_mmap(vma);
3092         mm->total_vm += len >> PAGE_SHIFT;
3093         mm->data_vm += len >> PAGE_SHIFT;
3094         if (flags & VM_LOCKED)
3095                 mm->locked_vm += (len >> PAGE_SHIFT);
3096         vma->vm_flags |= VM_SOFTDIRTY;
3097         return 0;
3098 }
3099
3100 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3101 {
3102         struct mm_struct *mm = current->mm;
3103         unsigned long len;
3104         int ret;
3105         bool populate;
3106         LIST_HEAD(uf);
3107
3108         len = PAGE_ALIGN(request);
3109         if (len < request)
3110                 return -ENOMEM;
3111         if (!len)
3112                 return 0;
3113
3114         if (mmap_write_lock_killable(mm))
3115                 return -EINTR;
3116
3117         ret = do_brk_flags(addr, len, flags, &uf);
3118         populate = ((mm->def_flags & VM_LOCKED) != 0);
3119         mmap_write_unlock(mm);
3120         userfaultfd_unmap_complete(mm, &uf);
3121         if (populate && !ret)
3122                 mm_populate(addr, len);
3123         return ret;
3124 }
3125 EXPORT_SYMBOL(vm_brk_flags);
3126
3127 int vm_brk(unsigned long addr, unsigned long len)
3128 {
3129         return vm_brk_flags(addr, len, 0);
3130 }
3131 EXPORT_SYMBOL(vm_brk);
3132
3133 /* Release all mmaps. */
3134 void exit_mmap(struct mm_struct *mm)
3135 {
3136         struct mmu_gather tlb;
3137         struct vm_area_struct *vma;
3138         unsigned long nr_accounted = 0;
3139
3140         /* mm's last user has gone, and its about to be pulled down */
3141         mmu_notifier_release(mm);
3142
3143         if (unlikely(mm_is_oom_victim(mm))) {
3144                 /*
3145                  * Manually reap the mm to free as much memory as possible.
3146                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3147                  * this mm from further consideration.  Taking mm->mmap_lock for
3148                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3149                  * reaper will not run on this mm again after mmap_lock is
3150                  * dropped.
3151                  *
3152                  * Nothing can be holding mm->mmap_lock here and the above call
3153                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3154                  * __oom_reap_task_mm() will not block.
3155                  *
3156                  * This needs to be done before calling munlock_vma_pages_all(),
3157                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3158                  * reliably test it.
3159                  */
3160                 (void)__oom_reap_task_mm(mm);
3161
3162                 set_bit(MMF_OOM_SKIP, &mm->flags);
3163                 mmap_write_lock(mm);
3164                 mmap_write_unlock(mm);
3165         }
3166
3167         if (mm->locked_vm) {
3168                 vma = mm->mmap;
3169                 while (vma) {
3170                         if (vma->vm_flags & VM_LOCKED)
3171                                 munlock_vma_pages_all(vma);
3172                         vma = vma->vm_next;
3173                 }
3174         }
3175
3176         arch_exit_mmap(mm);
3177
3178         vma = mm->mmap;
3179         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3180                 return;
3181
3182         lru_add_drain();
3183         flush_cache_mm(mm);
3184         tlb_gather_mmu(&tlb, mm, 0, -1);
3185         /* update_hiwater_rss(mm) here? but nobody should be looking */
3186         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3187         unmap_vmas(&tlb, vma, 0, -1);
3188         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3189         tlb_finish_mmu(&tlb, 0, -1);
3190
3191         /*
3192          * Walk the list again, actually closing and freeing it,
3193          * with preemption enabled, without holding any MM locks.
3194          */
3195         while (vma) {
3196                 if (vma->vm_flags & VM_ACCOUNT)
3197                         nr_accounted += vma_pages(vma);
3198                 vma = remove_vma(vma);
3199                 cond_resched();
3200         }
3201         vm_unacct_memory(nr_accounted);
3202 }
3203
3204 /* Insert vm structure into process list sorted by address
3205  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3206  * then i_mmap_rwsem is taken here.
3207  */
3208 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3209 {
3210         struct vm_area_struct *prev;
3211         struct rb_node **rb_link, *rb_parent;
3212
3213         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3214                            &prev, &rb_link, &rb_parent))
3215                 return -ENOMEM;
3216         if ((vma->vm_flags & VM_ACCOUNT) &&
3217              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3218                 return -ENOMEM;
3219
3220         /*
3221          * The vm_pgoff of a purely anonymous vma should be irrelevant
3222          * until its first write fault, when page's anon_vma and index
3223          * are set.  But now set the vm_pgoff it will almost certainly
3224          * end up with (unless mremap moves it elsewhere before that
3225          * first wfault), so /proc/pid/maps tells a consistent story.
3226          *
3227          * By setting it to reflect the virtual start address of the
3228          * vma, merges and splits can happen in a seamless way, just
3229          * using the existing file pgoff checks and manipulations.
3230          * Similarly in do_mmap and in do_brk.
3231          */
3232         if (vma_is_anonymous(vma)) {
3233                 BUG_ON(vma->anon_vma);
3234                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3235         }
3236
3237         vma_link(mm, vma, prev, rb_link, rb_parent);
3238         return 0;
3239 }
3240
3241 /*
3242  * Copy the vma structure to a new location in the same mm,
3243  * prior to moving page table entries, to effect an mremap move.
3244  */
3245 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3246         unsigned long addr, unsigned long len, pgoff_t pgoff,
3247         bool *need_rmap_locks)
3248 {
3249         struct vm_area_struct *vma = *vmap;
3250         unsigned long vma_start = vma->vm_start;
3251         struct mm_struct *mm = vma->vm_mm;
3252         struct vm_area_struct *new_vma, *prev;
3253         struct rb_node **rb_link, *rb_parent;
3254         bool faulted_in_anon_vma = true;
3255
3256         /*
3257          * If anonymous vma has not yet been faulted, update new pgoff
3258          * to match new location, to increase its chance of merging.
3259          */
3260         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3261                 pgoff = addr >> PAGE_SHIFT;
3262                 faulted_in_anon_vma = false;
3263         }
3264
3265         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3266                 return NULL;    /* should never get here */
3267         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3268                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3269                             vma->vm_userfaultfd_ctx);
3270         if (new_vma) {
3271                 /*
3272                  * Source vma may have been merged into new_vma
3273                  */
3274                 if (unlikely(vma_start >= new_vma->vm_start &&
3275                              vma_start < new_vma->vm_end)) {
3276                         /*
3277                          * The only way we can get a vma_merge with
3278                          * self during an mremap is if the vma hasn't
3279                          * been faulted in yet and we were allowed to
3280                          * reset the dst vma->vm_pgoff to the
3281                          * destination address of the mremap to allow
3282                          * the merge to happen. mremap must change the
3283                          * vm_pgoff linearity between src and dst vmas
3284                          * (in turn preventing a vma_merge) to be
3285                          * safe. It is only safe to keep the vm_pgoff
3286                          * linear if there are no pages mapped yet.
3287                          */
3288                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3289                         *vmap = vma = new_vma;
3290                 }
3291                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3292         } else {
3293                 new_vma = vm_area_dup(vma);
3294                 if (!new_vma)
3295                         goto out;
3296                 new_vma->vm_start = addr;
3297                 new_vma->vm_end = addr + len;
3298                 new_vma->vm_pgoff = pgoff;
3299                 if (vma_dup_policy(vma, new_vma))
3300                         goto out_free_vma;
3301                 if (anon_vma_clone(new_vma, vma))
3302                         goto out_free_mempol;
3303                 if (new_vma->vm_file)
3304                         get_file(new_vma->vm_file);
3305                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3306                         new_vma->vm_ops->open(new_vma);
3307                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3308                 *need_rmap_locks = false;
3309         }
3310         return new_vma;
3311
3312 out_free_mempol:
3313         mpol_put(vma_policy(new_vma));
3314 out_free_vma:
3315         vm_area_free(new_vma);
3316 out:
3317         return NULL;
3318 }
3319
3320 /*
3321  * Return true if the calling process may expand its vm space by the passed
3322  * number of pages
3323  */
3324 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3325 {
3326         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3327                 return false;
3328
3329         if (is_data_mapping(flags) &&
3330             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3331                 /* Workaround for Valgrind */
3332                 if (rlimit(RLIMIT_DATA) == 0 &&
3333                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3334                         return true;
3335
3336                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3337                              current->comm, current->pid,
3338                              (mm->data_vm + npages) << PAGE_SHIFT,
3339                              rlimit(RLIMIT_DATA),
3340                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3341
3342                 if (!ignore_rlimit_data)
3343                         return false;
3344         }
3345
3346         return true;
3347 }
3348
3349 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3350 {
3351         mm->total_vm += npages;
3352
3353         if (is_exec_mapping(flags))
3354                 mm->exec_vm += npages;
3355         else if (is_stack_mapping(flags))
3356                 mm->stack_vm += npages;
3357         else if (is_data_mapping(flags))
3358                 mm->data_vm += npages;
3359 }
3360
3361 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3362
3363 /*
3364  * Having a close hook prevents vma merging regardless of flags.
3365  */
3366 static void special_mapping_close(struct vm_area_struct *vma)
3367 {
3368 }
3369
3370 static const char *special_mapping_name(struct vm_area_struct *vma)
3371 {
3372         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3373 }
3374
3375 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3376 {
3377         struct vm_special_mapping *sm = new_vma->vm_private_data;
3378
3379         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3380                 return -EFAULT;
3381
3382         if (sm->mremap)
3383                 return sm->mremap(sm, new_vma);
3384
3385         return 0;
3386 }
3387
3388 static const struct vm_operations_struct special_mapping_vmops = {
3389         .close = special_mapping_close,
3390         .fault = special_mapping_fault,
3391         .mremap = special_mapping_mremap,
3392         .name = special_mapping_name,
3393         /* vDSO code relies that VVAR can't be accessed remotely */
3394         .access = NULL,
3395 };
3396
3397 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3398         .close = special_mapping_close,
3399         .fault = special_mapping_fault,
3400 };
3401
3402 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3403 {
3404         struct vm_area_struct *vma = vmf->vma;
3405         pgoff_t pgoff;
3406         struct page **pages;
3407
3408         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3409                 pages = vma->vm_private_data;
3410         } else {
3411                 struct vm_special_mapping *sm = vma->vm_private_data;
3412
3413                 if (sm->fault)
3414                         return sm->fault(sm, vmf->vma, vmf);
3415
3416                 pages = sm->pages;
3417         }
3418
3419         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3420                 pgoff--;
3421
3422         if (*pages) {
3423                 struct page *page = *pages;
3424                 get_page(page);
3425                 vmf->page = page;
3426                 return 0;
3427         }
3428
3429         return VM_FAULT_SIGBUS;
3430 }
3431
3432 static struct vm_area_struct *__install_special_mapping(
3433         struct mm_struct *mm,
3434         unsigned long addr, unsigned long len,
3435         unsigned long vm_flags, void *priv,
3436         const struct vm_operations_struct *ops)
3437 {
3438         int ret;
3439         struct vm_area_struct *vma;
3440
3441         vma = vm_area_alloc(mm);
3442         if (unlikely(vma == NULL))
3443                 return ERR_PTR(-ENOMEM);
3444
3445         vma->vm_start = addr;
3446         vma->vm_end = addr + len;
3447
3448         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3449         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3450
3451         vma->vm_ops = ops;
3452         vma->vm_private_data = priv;
3453
3454         ret = insert_vm_struct(mm, vma);
3455         if (ret)
3456                 goto out;
3457
3458         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3459
3460         perf_event_mmap(vma);
3461
3462         return vma;
3463
3464 out:
3465         vm_area_free(vma);
3466         return ERR_PTR(ret);
3467 }
3468
3469 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3470         const struct vm_special_mapping *sm)
3471 {
3472         return vma->vm_private_data == sm &&
3473                 (vma->vm_ops == &special_mapping_vmops ||
3474                  vma->vm_ops == &legacy_special_mapping_vmops);
3475 }
3476
3477 /*
3478  * Called with mm->mmap_lock held for writing.
3479  * Insert a new vma covering the given region, with the given flags.
3480  * Its pages are supplied by the given array of struct page *.
3481  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3482  * The region past the last page supplied will always produce SIGBUS.
3483  * The array pointer and the pages it points to are assumed to stay alive
3484  * for as long as this mapping might exist.
3485  */
3486 struct vm_area_struct *_install_special_mapping(
3487         struct mm_struct *mm,
3488         unsigned long addr, unsigned long len,
3489         unsigned long vm_flags, const struct vm_special_mapping *spec)
3490 {
3491         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3492                                         &special_mapping_vmops);
3493 }
3494
3495 int install_special_mapping(struct mm_struct *mm,
3496                             unsigned long addr, unsigned long len,
3497                             unsigned long vm_flags, struct page **pages)
3498 {
3499         struct vm_area_struct *vma = __install_special_mapping(
3500                 mm, addr, len, vm_flags, (void *)pages,
3501                 &legacy_special_mapping_vmops);
3502
3503         return PTR_ERR_OR_ZERO(vma);
3504 }
3505
3506 static DEFINE_MUTEX(mm_all_locks_mutex);
3507
3508 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3509 {
3510         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3511                 /*
3512                  * The LSB of head.next can't change from under us
3513                  * because we hold the mm_all_locks_mutex.
3514                  */
3515                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3516                 /*
3517                  * We can safely modify head.next after taking the
3518                  * anon_vma->root->rwsem. If some other vma in this mm shares
3519                  * the same anon_vma we won't take it again.
3520                  *
3521                  * No need of atomic instructions here, head.next
3522                  * can't change from under us thanks to the
3523                  * anon_vma->root->rwsem.
3524                  */
3525                 if (__test_and_set_bit(0, (unsigned long *)
3526                                        &anon_vma->root->rb_root.rb_root.rb_node))
3527                         BUG();
3528         }
3529 }
3530
3531 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3532 {
3533         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3534                 /*
3535                  * AS_MM_ALL_LOCKS can't change from under us because
3536                  * we hold the mm_all_locks_mutex.
3537                  *
3538                  * Operations on ->flags have to be atomic because
3539                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3540                  * mm_all_locks_mutex, there may be other cpus
3541                  * changing other bitflags in parallel to us.
3542                  */
3543                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3544                         BUG();
3545                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3546         }
3547 }
3548
3549 /*
3550  * This operation locks against the VM for all pte/vma/mm related
3551  * operations that could ever happen on a certain mm. This includes
3552  * vmtruncate, try_to_unmap, and all page faults.
3553  *
3554  * The caller must take the mmap_lock in write mode before calling
3555  * mm_take_all_locks(). The caller isn't allowed to release the
3556  * mmap_lock until mm_drop_all_locks() returns.
3557  *
3558  * mmap_lock in write mode is required in order to block all operations
3559  * that could modify pagetables and free pages without need of
3560  * altering the vma layout. It's also needed in write mode to avoid new
3561  * anon_vmas to be associated with existing vmas.
3562  *
3563  * A single task can't take more than one mm_take_all_locks() in a row
3564  * or it would deadlock.
3565  *
3566  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3567  * mapping->flags avoid to take the same lock twice, if more than one
3568  * vma in this mm is backed by the same anon_vma or address_space.
3569  *
3570  * We take locks in following order, accordingly to comment at beginning
3571  * of mm/rmap.c:
3572  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3573  *     hugetlb mapping);
3574  *   - all i_mmap_rwsem locks;
3575  *   - all anon_vma->rwseml
3576  *
3577  * We can take all locks within these types randomly because the VM code
3578  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3579  * mm_all_locks_mutex.
3580  *
3581  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3582  * that may have to take thousand of locks.
3583  *
3584  * mm_take_all_locks() can fail if it's interrupted by signals.
3585  */
3586 int mm_take_all_locks(struct mm_struct *mm)
3587 {
3588         struct vm_area_struct *vma;
3589         struct anon_vma_chain *avc;
3590
3591         BUG_ON(mmap_read_trylock(mm));
3592
3593         mutex_lock(&mm_all_locks_mutex);
3594
3595         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3596                 if (signal_pending(current))
3597                         goto out_unlock;
3598                 if (vma->vm_file && vma->vm_file->f_mapping &&
3599                                 is_vm_hugetlb_page(vma))
3600                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3601         }
3602
3603         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3604                 if (signal_pending(current))
3605                         goto out_unlock;
3606                 if (vma->vm_file && vma->vm_file->f_mapping &&
3607                                 !is_vm_hugetlb_page(vma))
3608                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3609         }
3610
3611         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3612                 if (signal_pending(current))
3613                         goto out_unlock;
3614                 if (vma->anon_vma)
3615                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3616                                 vm_lock_anon_vma(mm, avc->anon_vma);
3617         }
3618
3619         return 0;
3620
3621 out_unlock:
3622         mm_drop_all_locks(mm);
3623         return -EINTR;
3624 }
3625
3626 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3627 {
3628         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3629                 /*
3630                  * The LSB of head.next can't change to 0 from under
3631                  * us because we hold the mm_all_locks_mutex.
3632                  *
3633                  * We must however clear the bitflag before unlocking
3634                  * the vma so the users using the anon_vma->rb_root will
3635                  * never see our bitflag.
3636                  *
3637                  * No need of atomic instructions here, head.next
3638                  * can't change from under us until we release the
3639                  * anon_vma->root->rwsem.
3640                  */
3641                 if (!__test_and_clear_bit(0, (unsigned long *)
3642                                           &anon_vma->root->rb_root.rb_root.rb_node))
3643                         BUG();
3644                 anon_vma_unlock_write(anon_vma);
3645         }
3646 }
3647
3648 static void vm_unlock_mapping(struct address_space *mapping)
3649 {
3650         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3651                 /*
3652                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3653                  * because we hold the mm_all_locks_mutex.
3654                  */
3655                 i_mmap_unlock_write(mapping);
3656                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3657                                         &mapping->flags))
3658                         BUG();
3659         }
3660 }
3661
3662 /*
3663  * The mmap_lock cannot be released by the caller until
3664  * mm_drop_all_locks() returns.
3665  */
3666 void mm_drop_all_locks(struct mm_struct *mm)
3667 {
3668         struct vm_area_struct *vma;
3669         struct anon_vma_chain *avc;
3670
3671         BUG_ON(mmap_read_trylock(mm));
3672         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3673
3674         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3675                 if (vma->anon_vma)
3676                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3677                                 vm_unlock_anon_vma(avc->anon_vma);
3678                 if (vma->vm_file && vma->vm_file->f_mapping)
3679                         vm_unlock_mapping(vma->vm_file->f_mapping);
3680         }
3681
3682         mutex_unlock(&mm_all_locks_mutex);
3683 }
3684
3685 /*
3686  * initialise the percpu counter for VM
3687  */
3688 void __init mmap_init(void)
3689 {
3690         int ret;
3691
3692         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3693         VM_BUG_ON(ret);
3694 }
3695
3696 /*
3697  * Initialise sysctl_user_reserve_kbytes.
3698  *
3699  * This is intended to prevent a user from starting a single memory hogging
3700  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3701  * mode.
3702  *
3703  * The default value is min(3% of free memory, 128MB)
3704  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3705  */
3706 static int init_user_reserve(void)
3707 {
3708         unsigned long free_kbytes;
3709
3710         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3711
3712         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3713         return 0;
3714 }
3715 subsys_initcall(init_user_reserve);
3716
3717 /*
3718  * Initialise sysctl_admin_reserve_kbytes.
3719  *
3720  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3721  * to log in and kill a memory hogging process.
3722  *
3723  * Systems with more than 256MB will reserve 8MB, enough to recover
3724  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3725  * only reserve 3% of free pages by default.
3726  */
3727 static int init_admin_reserve(void)
3728 {
3729         unsigned long free_kbytes;
3730
3731         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3732
3733         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3734         return 0;
3735 }
3736 subsys_initcall(init_admin_reserve);
3737
3738 /*
3739  * Reinititalise user and admin reserves if memory is added or removed.
3740  *
3741  * The default user reserve max is 128MB, and the default max for the
3742  * admin reserve is 8MB. These are usually, but not always, enough to
3743  * enable recovery from a memory hogging process using login/sshd, a shell,
3744  * and tools like top. It may make sense to increase or even disable the
3745  * reserve depending on the existence of swap or variations in the recovery
3746  * tools. So, the admin may have changed them.
3747  *
3748  * If memory is added and the reserves have been eliminated or increased above
3749  * the default max, then we'll trust the admin.
3750  *
3751  * If memory is removed and there isn't enough free memory, then we
3752  * need to reset the reserves.
3753  *
3754  * Otherwise keep the reserve set by the admin.
3755  */
3756 static int reserve_mem_notifier(struct notifier_block *nb,
3757                              unsigned long action, void *data)
3758 {
3759         unsigned long tmp, free_kbytes;
3760
3761         switch (action) {
3762         case MEM_ONLINE:
3763                 /* Default max is 128MB. Leave alone if modified by operator. */
3764                 tmp = sysctl_user_reserve_kbytes;
3765                 if (0 < tmp && tmp < (1UL << 17))
3766                         init_user_reserve();
3767
3768                 /* Default max is 8MB.  Leave alone if modified by operator. */
3769                 tmp = sysctl_admin_reserve_kbytes;
3770                 if (0 < tmp && tmp < (1UL << 13))
3771                         init_admin_reserve();
3772
3773                 break;
3774         case MEM_OFFLINE:
3775                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3776
3777                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3778                         init_user_reserve();
3779                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3780                                 sysctl_user_reserve_kbytes);
3781                 }
3782
3783                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3784                         init_admin_reserve();
3785                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3786                                 sysctl_admin_reserve_kbytes);
3787                 }
3788                 break;
3789         default:
3790                 break;
3791         }
3792         return NOTIFY_OK;
3793 }
3794
3795 static struct notifier_block reserve_mem_nb = {
3796         .notifier_call = reserve_mem_notifier,
3797 };
3798
3799 static int __meminit init_reserve_notifier(void)
3800 {
3801         if (register_hotmemory_notifier(&reserve_mem_nb))
3802                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3803
3804         return 0;
3805 }
3806 subsys_initcall(init_reserve_notifier);