Merge tag 'timers-core-2020-01-27' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #include "internal.h"
57
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags)       (0)
60 #endif
61
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75
76 static void unmap_region(struct mm_struct *mm,
77                 struct vm_area_struct *vma, struct vm_area_struct *prev,
78                 unsigned long start, unsigned long end);
79
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type     prot
85  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
86  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
87  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
88  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
89  *
90  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
91  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
92  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
93  */
94 pgprot_t protection_map[16] __ro_after_init = {
95         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 };
98
99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
101 {
102         return prot;
103 }
104 #endif
105
106 pgprot_t vm_get_page_prot(unsigned long vm_flags)
107 {
108         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
111
112         return arch_filter_pgprot(ret);
113 }
114 EXPORT_SYMBOL(vm_get_page_prot);
115
116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
117 {
118         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
119 }
120
121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
122 void vma_set_page_prot(struct vm_area_struct *vma)
123 {
124         unsigned long vm_flags = vma->vm_flags;
125         pgprot_t vm_page_prot;
126
127         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128         if (vma_wants_writenotify(vma, vm_page_prot)) {
129                 vm_flags &= ~VM_SHARED;
130                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
131         }
132         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
134 }
135
136 /*
137  * Requires inode->i_mapping->i_mmap_rwsem
138  */
139 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140                 struct file *file, struct address_space *mapping)
141 {
142         if (vma->vm_flags & VM_DENYWRITE)
143                 atomic_inc(&file_inode(file)->i_writecount);
144         if (vma->vm_flags & VM_SHARED)
145                 mapping_unmap_writable(mapping);
146
147         flush_dcache_mmap_lock(mapping);
148         vma_interval_tree_remove(vma, &mapping->i_mmap);
149         flush_dcache_mmap_unlock(mapping);
150 }
151
152 /*
153  * Unlink a file-based vm structure from its interval tree, to hide
154  * vma from rmap and vmtruncate before freeing its page tables.
155  */
156 void unlink_file_vma(struct vm_area_struct *vma)
157 {
158         struct file *file = vma->vm_file;
159
160         if (file) {
161                 struct address_space *mapping = file->f_mapping;
162                 i_mmap_lock_write(mapping);
163                 __remove_shared_vm_struct(vma, file, mapping);
164                 i_mmap_unlock_write(mapping);
165         }
166 }
167
168 /*
169  * Close a vm structure and free it, returning the next.
170  */
171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
172 {
173         struct vm_area_struct *next = vma->vm_next;
174
175         might_sleep();
176         if (vma->vm_ops && vma->vm_ops->close)
177                 vma->vm_ops->close(vma);
178         if (vma->vm_file)
179                 fput(vma->vm_file);
180         mpol_put(vma_policy(vma));
181         vm_area_free(vma);
182         return next;
183 }
184
185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186                 struct list_head *uf);
187 SYSCALL_DEFINE1(brk, unsigned long, brk)
188 {
189         unsigned long retval;
190         unsigned long newbrk, oldbrk, origbrk;
191         struct mm_struct *mm = current->mm;
192         struct vm_area_struct *next;
193         unsigned long min_brk;
194         bool populate;
195         bool downgraded = false;
196         LIST_HEAD(uf);
197
198         brk = untagged_addr(brk);
199
200         if (down_write_killable(&mm->mmap_sem))
201                 return -EINTR;
202
203         origbrk = mm->brk;
204
205 #ifdef CONFIG_COMPAT_BRK
206         /*
207          * CONFIG_COMPAT_BRK can still be overridden by setting
208          * randomize_va_space to 2, which will still cause mm->start_brk
209          * to be arbitrarily shifted
210          */
211         if (current->brk_randomized)
212                 min_brk = mm->start_brk;
213         else
214                 min_brk = mm->end_data;
215 #else
216         min_brk = mm->start_brk;
217 #endif
218         if (brk < min_brk)
219                 goto out;
220
221         /*
222          * Check against rlimit here. If this check is done later after the test
223          * of oldbrk with newbrk then it can escape the test and let the data
224          * segment grow beyond its set limit the in case where the limit is
225          * not page aligned -Ram Gupta
226          */
227         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228                               mm->end_data, mm->start_data))
229                 goto out;
230
231         newbrk = PAGE_ALIGN(brk);
232         oldbrk = PAGE_ALIGN(mm->brk);
233         if (oldbrk == newbrk) {
234                 mm->brk = brk;
235                 goto success;
236         }
237
238         /*
239          * Always allow shrinking brk.
240          * __do_munmap() may downgrade mmap_sem to read.
241          */
242         if (brk <= mm->brk) {
243                 int ret;
244
245                 /*
246                  * mm->brk must to be protected by write mmap_sem so update it
247                  * before downgrading mmap_sem. When __do_munmap() fails,
248                  * mm->brk will be restored from origbrk.
249                  */
250                 mm->brk = brk;
251                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
252                 if (ret < 0) {
253                         mm->brk = origbrk;
254                         goto out;
255                 } else if (ret == 1) {
256                         downgraded = true;
257                 }
258                 goto success;
259         }
260
261         /* Check against existing mmap mappings. */
262         next = find_vma(mm, oldbrk);
263         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
264                 goto out;
265
266         /* Ok, looks good - let it rip. */
267         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
268                 goto out;
269         mm->brk = brk;
270
271 success:
272         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
273         if (downgraded)
274                 up_read(&mm->mmap_sem);
275         else
276                 up_write(&mm->mmap_sem);
277         userfaultfd_unmap_complete(mm, &uf);
278         if (populate)
279                 mm_populate(oldbrk, newbrk - oldbrk);
280         return brk;
281
282 out:
283         retval = origbrk;
284         up_write(&mm->mmap_sem);
285         return retval;
286 }
287
288 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
289 {
290         unsigned long gap, prev_end;
291
292         /*
293          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
294          * allow two stack_guard_gaps between them here, and when choosing
295          * an unmapped area; whereas when expanding we only require one.
296          * That's a little inconsistent, but keeps the code here simpler.
297          */
298         gap = vm_start_gap(vma);
299         if (vma->vm_prev) {
300                 prev_end = vm_end_gap(vma->vm_prev);
301                 if (gap > prev_end)
302                         gap -= prev_end;
303                 else
304                         gap = 0;
305         }
306         return gap;
307 }
308
309 #ifdef CONFIG_DEBUG_VM_RB
310 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
311 {
312         unsigned long max = vma_compute_gap(vma), subtree_gap;
313         if (vma->vm_rb.rb_left) {
314                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
315                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
316                 if (subtree_gap > max)
317                         max = subtree_gap;
318         }
319         if (vma->vm_rb.rb_right) {
320                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
321                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
322                 if (subtree_gap > max)
323                         max = subtree_gap;
324         }
325         return max;
326 }
327
328 static int browse_rb(struct mm_struct *mm)
329 {
330         struct rb_root *root = &mm->mm_rb;
331         int i = 0, j, bug = 0;
332         struct rb_node *nd, *pn = NULL;
333         unsigned long prev = 0, pend = 0;
334
335         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
336                 struct vm_area_struct *vma;
337                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
338                 if (vma->vm_start < prev) {
339                         pr_emerg("vm_start %lx < prev %lx\n",
340                                   vma->vm_start, prev);
341                         bug = 1;
342                 }
343                 if (vma->vm_start < pend) {
344                         pr_emerg("vm_start %lx < pend %lx\n",
345                                   vma->vm_start, pend);
346                         bug = 1;
347                 }
348                 if (vma->vm_start > vma->vm_end) {
349                         pr_emerg("vm_start %lx > vm_end %lx\n",
350                                   vma->vm_start, vma->vm_end);
351                         bug = 1;
352                 }
353                 spin_lock(&mm->page_table_lock);
354                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
355                         pr_emerg("free gap %lx, correct %lx\n",
356                                vma->rb_subtree_gap,
357                                vma_compute_subtree_gap(vma));
358                         bug = 1;
359                 }
360                 spin_unlock(&mm->page_table_lock);
361                 i++;
362                 pn = nd;
363                 prev = vma->vm_start;
364                 pend = vma->vm_end;
365         }
366         j = 0;
367         for (nd = pn; nd; nd = rb_prev(nd))
368                 j++;
369         if (i != j) {
370                 pr_emerg("backwards %d, forwards %d\n", j, i);
371                 bug = 1;
372         }
373         return bug ? -1 : i;
374 }
375
376 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
377 {
378         struct rb_node *nd;
379
380         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
381                 struct vm_area_struct *vma;
382                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
383                 VM_BUG_ON_VMA(vma != ignore &&
384                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
385                         vma);
386         }
387 }
388
389 static void validate_mm(struct mm_struct *mm)
390 {
391         int bug = 0;
392         int i = 0;
393         unsigned long highest_address = 0;
394         struct vm_area_struct *vma = mm->mmap;
395
396         while (vma) {
397                 struct anon_vma *anon_vma = vma->anon_vma;
398                 struct anon_vma_chain *avc;
399
400                 if (anon_vma) {
401                         anon_vma_lock_read(anon_vma);
402                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
403                                 anon_vma_interval_tree_verify(avc);
404                         anon_vma_unlock_read(anon_vma);
405                 }
406
407                 highest_address = vm_end_gap(vma);
408                 vma = vma->vm_next;
409                 i++;
410         }
411         if (i != mm->map_count) {
412                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
413                 bug = 1;
414         }
415         if (highest_address != mm->highest_vm_end) {
416                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
417                           mm->highest_vm_end, highest_address);
418                 bug = 1;
419         }
420         i = browse_rb(mm);
421         if (i != mm->map_count) {
422                 if (i != -1)
423                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
424                 bug = 1;
425         }
426         VM_BUG_ON_MM(bug, mm);
427 }
428 #else
429 #define validate_mm_rb(root, ignore) do { } while (0)
430 #define validate_mm(mm) do { } while (0)
431 #endif
432
433 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
434                          struct vm_area_struct, vm_rb,
435                          unsigned long, rb_subtree_gap, vma_compute_gap)
436
437 /*
438  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
439  * vma->vm_prev->vm_end values changed, without modifying the vma's position
440  * in the rbtree.
441  */
442 static void vma_gap_update(struct vm_area_struct *vma)
443 {
444         /*
445          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
446          * a callback function that does exactly what we want.
447          */
448         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
449 }
450
451 static inline void vma_rb_insert(struct vm_area_struct *vma,
452                                  struct rb_root *root)
453 {
454         /* All rb_subtree_gap values must be consistent prior to insertion */
455         validate_mm_rb(root, NULL);
456
457         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
458 }
459
460 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
461 {
462         /*
463          * Note rb_erase_augmented is a fairly large inline function,
464          * so make sure we instantiate it only once with our desired
465          * augmented rbtree callbacks.
466          */
467         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
468 }
469
470 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
471                                                 struct rb_root *root,
472                                                 struct vm_area_struct *ignore)
473 {
474         /*
475          * All rb_subtree_gap values must be consistent prior to erase,
476          * with the possible exception of the "next" vma being erased if
477          * next->vm_start was reduced.
478          */
479         validate_mm_rb(root, ignore);
480
481         __vma_rb_erase(vma, root);
482 }
483
484 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
485                                          struct rb_root *root)
486 {
487         /*
488          * All rb_subtree_gap values must be consistent prior to erase,
489          * with the possible exception of the vma being erased.
490          */
491         validate_mm_rb(root, vma);
492
493         __vma_rb_erase(vma, root);
494 }
495
496 /*
497  * vma has some anon_vma assigned, and is already inserted on that
498  * anon_vma's interval trees.
499  *
500  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
501  * vma must be removed from the anon_vma's interval trees using
502  * anon_vma_interval_tree_pre_update_vma().
503  *
504  * After the update, the vma will be reinserted using
505  * anon_vma_interval_tree_post_update_vma().
506  *
507  * The entire update must be protected by exclusive mmap_sem and by
508  * the root anon_vma's mutex.
509  */
510 static inline void
511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
512 {
513         struct anon_vma_chain *avc;
514
515         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
517 }
518
519 static inline void
520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
521 {
522         struct anon_vma_chain *avc;
523
524         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
525                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
526 }
527
528 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
529                 unsigned long end, struct vm_area_struct **pprev,
530                 struct rb_node ***rb_link, struct rb_node **rb_parent)
531 {
532         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
533
534         __rb_link = &mm->mm_rb.rb_node;
535         rb_prev = __rb_parent = NULL;
536
537         while (*__rb_link) {
538                 struct vm_area_struct *vma_tmp;
539
540                 __rb_parent = *__rb_link;
541                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
542
543                 if (vma_tmp->vm_end > addr) {
544                         /* Fail if an existing vma overlaps the area */
545                         if (vma_tmp->vm_start < end)
546                                 return -ENOMEM;
547                         __rb_link = &__rb_parent->rb_left;
548                 } else {
549                         rb_prev = __rb_parent;
550                         __rb_link = &__rb_parent->rb_right;
551                 }
552         }
553
554         *pprev = NULL;
555         if (rb_prev)
556                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
557         *rb_link = __rb_link;
558         *rb_parent = __rb_parent;
559         return 0;
560 }
561
562 static unsigned long count_vma_pages_range(struct mm_struct *mm,
563                 unsigned long addr, unsigned long end)
564 {
565         unsigned long nr_pages = 0;
566         struct vm_area_struct *vma;
567
568         /* Find first overlaping mapping */
569         vma = find_vma_intersection(mm, addr, end);
570         if (!vma)
571                 return 0;
572
573         nr_pages = (min(end, vma->vm_end) -
574                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
575
576         /* Iterate over the rest of the overlaps */
577         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
578                 unsigned long overlap_len;
579
580                 if (vma->vm_start > end)
581                         break;
582
583                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
584                 nr_pages += overlap_len >> PAGE_SHIFT;
585         }
586
587         return nr_pages;
588 }
589
590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
591                 struct rb_node **rb_link, struct rb_node *rb_parent)
592 {
593         /* Update tracking information for the gap following the new vma. */
594         if (vma->vm_next)
595                 vma_gap_update(vma->vm_next);
596         else
597                 mm->highest_vm_end = vm_end_gap(vma);
598
599         /*
600          * vma->vm_prev wasn't known when we followed the rbtree to find the
601          * correct insertion point for that vma. As a result, we could not
602          * update the vma vm_rb parents rb_subtree_gap values on the way down.
603          * So, we first insert the vma with a zero rb_subtree_gap value
604          * (to be consistent with what we did on the way down), and then
605          * immediately update the gap to the correct value. Finally we
606          * rebalance the rbtree after all augmented values have been set.
607          */
608         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
609         vma->rb_subtree_gap = 0;
610         vma_gap_update(vma);
611         vma_rb_insert(vma, &mm->mm_rb);
612 }
613
614 static void __vma_link_file(struct vm_area_struct *vma)
615 {
616         struct file *file;
617
618         file = vma->vm_file;
619         if (file) {
620                 struct address_space *mapping = file->f_mapping;
621
622                 if (vma->vm_flags & VM_DENYWRITE)
623                         atomic_dec(&file_inode(file)->i_writecount);
624                 if (vma->vm_flags & VM_SHARED)
625                         atomic_inc(&mapping->i_mmap_writable);
626
627                 flush_dcache_mmap_lock(mapping);
628                 vma_interval_tree_insert(vma, &mapping->i_mmap);
629                 flush_dcache_mmap_unlock(mapping);
630         }
631 }
632
633 static void
634 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
635         struct vm_area_struct *prev, struct rb_node **rb_link,
636         struct rb_node *rb_parent)
637 {
638         __vma_link_list(mm, vma, prev);
639         __vma_link_rb(mm, vma, rb_link, rb_parent);
640 }
641
642 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
643                         struct vm_area_struct *prev, struct rb_node **rb_link,
644                         struct rb_node *rb_parent)
645 {
646         struct address_space *mapping = NULL;
647
648         if (vma->vm_file) {
649                 mapping = vma->vm_file->f_mapping;
650                 i_mmap_lock_write(mapping);
651         }
652
653         __vma_link(mm, vma, prev, rb_link, rb_parent);
654         __vma_link_file(vma);
655
656         if (mapping)
657                 i_mmap_unlock_write(mapping);
658
659         mm->map_count++;
660         validate_mm(mm);
661 }
662
663 /*
664  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
665  * mm's list and rbtree.  It has already been inserted into the interval tree.
666  */
667 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
668 {
669         struct vm_area_struct *prev;
670         struct rb_node **rb_link, *rb_parent;
671
672         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
673                            &prev, &rb_link, &rb_parent))
674                 BUG();
675         __vma_link(mm, vma, prev, rb_link, rb_parent);
676         mm->map_count++;
677 }
678
679 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
680                                                 struct vm_area_struct *vma,
681                                                 struct vm_area_struct *ignore)
682 {
683         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
684         __vma_unlink_list(mm, vma);
685         /* Kill the cache */
686         vmacache_invalidate(mm);
687 }
688
689 /*
690  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691  * is already present in an i_mmap tree without adjusting the tree.
692  * The following helper function should be used when such adjustments
693  * are necessary.  The "insert" vma (if any) is to be inserted
694  * before we drop the necessary locks.
695  */
696 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
697         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
698         struct vm_area_struct *expand)
699 {
700         struct mm_struct *mm = vma->vm_mm;
701         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
702         struct address_space *mapping = NULL;
703         struct rb_root_cached *root = NULL;
704         struct anon_vma *anon_vma = NULL;
705         struct file *file = vma->vm_file;
706         bool start_changed = false, end_changed = false;
707         long adjust_next = 0;
708         int remove_next = 0;
709
710         if (next && !insert) {
711                 struct vm_area_struct *exporter = NULL, *importer = NULL;
712
713                 if (end >= next->vm_end) {
714                         /*
715                          * vma expands, overlapping all the next, and
716                          * perhaps the one after too (mprotect case 6).
717                          * The only other cases that gets here are
718                          * case 1, case 7 and case 8.
719                          */
720                         if (next == expand) {
721                                 /*
722                                  * The only case where we don't expand "vma"
723                                  * and we expand "next" instead is case 8.
724                                  */
725                                 VM_WARN_ON(end != next->vm_end);
726                                 /*
727                                  * remove_next == 3 means we're
728                                  * removing "vma" and that to do so we
729                                  * swapped "vma" and "next".
730                                  */
731                                 remove_next = 3;
732                                 VM_WARN_ON(file != next->vm_file);
733                                 swap(vma, next);
734                         } else {
735                                 VM_WARN_ON(expand != vma);
736                                 /*
737                                  * case 1, 6, 7, remove_next == 2 is case 6,
738                                  * remove_next == 1 is case 1 or 7.
739                                  */
740                                 remove_next = 1 + (end > next->vm_end);
741                                 VM_WARN_ON(remove_next == 2 &&
742                                            end != next->vm_next->vm_end);
743                                 /* trim end to next, for case 6 first pass */
744                                 end = next->vm_end;
745                         }
746
747                         exporter = next;
748                         importer = vma;
749
750                         /*
751                          * If next doesn't have anon_vma, import from vma after
752                          * next, if the vma overlaps with it.
753                          */
754                         if (remove_next == 2 && !next->anon_vma)
755                                 exporter = next->vm_next;
756
757                 } else if (end > next->vm_start) {
758                         /*
759                          * vma expands, overlapping part of the next:
760                          * mprotect case 5 shifting the boundary up.
761                          */
762                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
763                         exporter = next;
764                         importer = vma;
765                         VM_WARN_ON(expand != importer);
766                 } else if (end < vma->vm_end) {
767                         /*
768                          * vma shrinks, and !insert tells it's not
769                          * split_vma inserting another: so it must be
770                          * mprotect case 4 shifting the boundary down.
771                          */
772                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
773                         exporter = vma;
774                         importer = next;
775                         VM_WARN_ON(expand != importer);
776                 }
777
778                 /*
779                  * Easily overlooked: when mprotect shifts the boundary,
780                  * make sure the expanding vma has anon_vma set if the
781                  * shrinking vma had, to cover any anon pages imported.
782                  */
783                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
784                         int error;
785
786                         importer->anon_vma = exporter->anon_vma;
787                         error = anon_vma_clone(importer, exporter);
788                         if (error)
789                                 return error;
790                 }
791         }
792 again:
793         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
794
795         if (file) {
796                 mapping = file->f_mapping;
797                 root = &mapping->i_mmap;
798                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
799
800                 if (adjust_next)
801                         uprobe_munmap(next, next->vm_start, next->vm_end);
802
803                 i_mmap_lock_write(mapping);
804                 if (insert) {
805                         /*
806                          * Put into interval tree now, so instantiated pages
807                          * are visible to arm/parisc __flush_dcache_page
808                          * throughout; but we cannot insert into address
809                          * space until vma start or end is updated.
810                          */
811                         __vma_link_file(insert);
812                 }
813         }
814
815         anon_vma = vma->anon_vma;
816         if (!anon_vma && adjust_next)
817                 anon_vma = next->anon_vma;
818         if (anon_vma) {
819                 VM_WARN_ON(adjust_next && next->anon_vma &&
820                            anon_vma != next->anon_vma);
821                 anon_vma_lock_write(anon_vma);
822                 anon_vma_interval_tree_pre_update_vma(vma);
823                 if (adjust_next)
824                         anon_vma_interval_tree_pre_update_vma(next);
825         }
826
827         if (root) {
828                 flush_dcache_mmap_lock(mapping);
829                 vma_interval_tree_remove(vma, root);
830                 if (adjust_next)
831                         vma_interval_tree_remove(next, root);
832         }
833
834         if (start != vma->vm_start) {
835                 vma->vm_start = start;
836                 start_changed = true;
837         }
838         if (end != vma->vm_end) {
839                 vma->vm_end = end;
840                 end_changed = true;
841         }
842         vma->vm_pgoff = pgoff;
843         if (adjust_next) {
844                 next->vm_start += adjust_next << PAGE_SHIFT;
845                 next->vm_pgoff += adjust_next;
846         }
847
848         if (root) {
849                 if (adjust_next)
850                         vma_interval_tree_insert(next, root);
851                 vma_interval_tree_insert(vma, root);
852                 flush_dcache_mmap_unlock(mapping);
853         }
854
855         if (remove_next) {
856                 /*
857                  * vma_merge has merged next into vma, and needs
858                  * us to remove next before dropping the locks.
859                  */
860                 if (remove_next != 3)
861                         __vma_unlink_common(mm, next, next);
862                 else
863                         /*
864                          * vma is not before next if they've been
865                          * swapped.
866                          *
867                          * pre-swap() next->vm_start was reduced so
868                          * tell validate_mm_rb to ignore pre-swap()
869                          * "next" (which is stored in post-swap()
870                          * "vma").
871                          */
872                         __vma_unlink_common(mm, next, vma);
873                 if (file)
874                         __remove_shared_vm_struct(next, file, mapping);
875         } else if (insert) {
876                 /*
877                  * split_vma has split insert from vma, and needs
878                  * us to insert it before dropping the locks
879                  * (it may either follow vma or precede it).
880                  */
881                 __insert_vm_struct(mm, insert);
882         } else {
883                 if (start_changed)
884                         vma_gap_update(vma);
885                 if (end_changed) {
886                         if (!next)
887                                 mm->highest_vm_end = vm_end_gap(vma);
888                         else if (!adjust_next)
889                                 vma_gap_update(next);
890                 }
891         }
892
893         if (anon_vma) {
894                 anon_vma_interval_tree_post_update_vma(vma);
895                 if (adjust_next)
896                         anon_vma_interval_tree_post_update_vma(next);
897                 anon_vma_unlock_write(anon_vma);
898         }
899         if (mapping)
900                 i_mmap_unlock_write(mapping);
901
902         if (root) {
903                 uprobe_mmap(vma);
904
905                 if (adjust_next)
906                         uprobe_mmap(next);
907         }
908
909         if (remove_next) {
910                 if (file) {
911                         uprobe_munmap(next, next->vm_start, next->vm_end);
912                         fput(file);
913                 }
914                 if (next->anon_vma)
915                         anon_vma_merge(vma, next);
916                 mm->map_count--;
917                 mpol_put(vma_policy(next));
918                 vm_area_free(next);
919                 /*
920                  * In mprotect's case 6 (see comments on vma_merge),
921                  * we must remove another next too. It would clutter
922                  * up the code too much to do both in one go.
923                  */
924                 if (remove_next != 3) {
925                         /*
926                          * If "next" was removed and vma->vm_end was
927                          * expanded (up) over it, in turn
928                          * "next->vm_prev->vm_end" changed and the
929                          * "vma->vm_next" gap must be updated.
930                          */
931                         next = vma->vm_next;
932                 } else {
933                         /*
934                          * For the scope of the comment "next" and
935                          * "vma" considered pre-swap(): if "vma" was
936                          * removed, next->vm_start was expanded (down)
937                          * over it and the "next" gap must be updated.
938                          * Because of the swap() the post-swap() "vma"
939                          * actually points to pre-swap() "next"
940                          * (post-swap() "next" as opposed is now a
941                          * dangling pointer).
942                          */
943                         next = vma;
944                 }
945                 if (remove_next == 2) {
946                         remove_next = 1;
947                         end = next->vm_end;
948                         goto again;
949                 }
950                 else if (next)
951                         vma_gap_update(next);
952                 else {
953                         /*
954                          * If remove_next == 2 we obviously can't
955                          * reach this path.
956                          *
957                          * If remove_next == 3 we can't reach this
958                          * path because pre-swap() next is always not
959                          * NULL. pre-swap() "next" is not being
960                          * removed and its next->vm_end is not altered
961                          * (and furthermore "end" already matches
962                          * next->vm_end in remove_next == 3).
963                          *
964                          * We reach this only in the remove_next == 1
965                          * case if the "next" vma that was removed was
966                          * the highest vma of the mm. However in such
967                          * case next->vm_end == "end" and the extended
968                          * "vma" has vma->vm_end == next->vm_end so
969                          * mm->highest_vm_end doesn't need any update
970                          * in remove_next == 1 case.
971                          */
972                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
973                 }
974         }
975         if (insert && file)
976                 uprobe_mmap(insert);
977
978         validate_mm(mm);
979
980         return 0;
981 }
982
983 /*
984  * If the vma has a ->close operation then the driver probably needs to release
985  * per-vma resources, so we don't attempt to merge those.
986  */
987 static inline int is_mergeable_vma(struct vm_area_struct *vma,
988                                 struct file *file, unsigned long vm_flags,
989                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
990 {
991         /*
992          * VM_SOFTDIRTY should not prevent from VMA merging, if we
993          * match the flags but dirty bit -- the caller should mark
994          * merged VMA as dirty. If dirty bit won't be excluded from
995          * comparison, we increase pressure on the memory system forcing
996          * the kernel to generate new VMAs when old one could be
997          * extended instead.
998          */
999         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1000                 return 0;
1001         if (vma->vm_file != file)
1002                 return 0;
1003         if (vma->vm_ops && vma->vm_ops->close)
1004                 return 0;
1005         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1006                 return 0;
1007         return 1;
1008 }
1009
1010 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1011                                         struct anon_vma *anon_vma2,
1012                                         struct vm_area_struct *vma)
1013 {
1014         /*
1015          * The list_is_singular() test is to avoid merging VMA cloned from
1016          * parents. This can improve scalability caused by anon_vma lock.
1017          */
1018         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1019                 list_is_singular(&vma->anon_vma_chain)))
1020                 return 1;
1021         return anon_vma1 == anon_vma2;
1022 }
1023
1024 /*
1025  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1026  * in front of (at a lower virtual address and file offset than) the vma.
1027  *
1028  * We cannot merge two vmas if they have differently assigned (non-NULL)
1029  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1030  *
1031  * We don't check here for the merged mmap wrapping around the end of pagecache
1032  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1033  * wrap, nor mmaps which cover the final page at index -1UL.
1034  */
1035 static int
1036 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1037                      struct anon_vma *anon_vma, struct file *file,
1038                      pgoff_t vm_pgoff,
1039                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1040 {
1041         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1042             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1043                 if (vma->vm_pgoff == vm_pgoff)
1044                         return 1;
1045         }
1046         return 0;
1047 }
1048
1049 /*
1050  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1051  * beyond (at a higher virtual address and file offset than) the vma.
1052  *
1053  * We cannot merge two vmas if they have differently assigned (non-NULL)
1054  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1055  */
1056 static int
1057 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1058                     struct anon_vma *anon_vma, struct file *file,
1059                     pgoff_t vm_pgoff,
1060                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1061 {
1062         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1063             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1064                 pgoff_t vm_pglen;
1065                 vm_pglen = vma_pages(vma);
1066                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1067                         return 1;
1068         }
1069         return 0;
1070 }
1071
1072 /*
1073  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1074  * whether that can be merged with its predecessor or its successor.
1075  * Or both (it neatly fills a hole).
1076  *
1077  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1078  * certain not to be mapped by the time vma_merge is called; but when
1079  * called for mprotect, it is certain to be already mapped (either at
1080  * an offset within prev, or at the start of next), and the flags of
1081  * this area are about to be changed to vm_flags - and the no-change
1082  * case has already been eliminated.
1083  *
1084  * The following mprotect cases have to be considered, where AAAA is
1085  * the area passed down from mprotect_fixup, never extending beyond one
1086  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1087  *
1088  *     AAAA             AAAA                   AAAA
1089  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1090  *    cannot merge    might become       might become
1091  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1092  *    mmap, brk or    case 4 below       case 5 below
1093  *    mremap move:
1094  *                        AAAA               AAAA
1095  *                    PPPP    NNNN       PPPPNNNNXXXX
1096  *                    might become       might become
1097  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1098  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1099  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1100  *
1101  * It is important for case 8 that the vma NNNN overlapping the
1102  * region AAAA is never going to extended over XXXX. Instead XXXX must
1103  * be extended in region AAAA and NNNN must be removed. This way in
1104  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1105  * rmap_locks, the properties of the merged vma will be already
1106  * correct for the whole merged range. Some of those properties like
1107  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1108  * be correct for the whole merged range immediately after the
1109  * rmap_locks are released. Otherwise if XXXX would be removed and
1110  * NNNN would be extended over the XXXX range, remove_migration_ptes
1111  * or other rmap walkers (if working on addresses beyond the "end"
1112  * parameter) may establish ptes with the wrong permissions of NNNN
1113  * instead of the right permissions of XXXX.
1114  */
1115 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1116                         struct vm_area_struct *prev, unsigned long addr,
1117                         unsigned long end, unsigned long vm_flags,
1118                         struct anon_vma *anon_vma, struct file *file,
1119                         pgoff_t pgoff, struct mempolicy *policy,
1120                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1121 {
1122         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1123         struct vm_area_struct *area, *next;
1124         int err;
1125
1126         /*
1127          * We later require that vma->vm_flags == vm_flags,
1128          * so this tests vma->vm_flags & VM_SPECIAL, too.
1129          */
1130         if (vm_flags & VM_SPECIAL)
1131                 return NULL;
1132
1133         if (prev)
1134                 next = prev->vm_next;
1135         else
1136                 next = mm->mmap;
1137         area = next;
1138         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1139                 next = next->vm_next;
1140
1141         /* verify some invariant that must be enforced by the caller */
1142         VM_WARN_ON(prev && addr <= prev->vm_start);
1143         VM_WARN_ON(area && end > area->vm_end);
1144         VM_WARN_ON(addr >= end);
1145
1146         /*
1147          * Can it merge with the predecessor?
1148          */
1149         if (prev && prev->vm_end == addr &&
1150                         mpol_equal(vma_policy(prev), policy) &&
1151                         can_vma_merge_after(prev, vm_flags,
1152                                             anon_vma, file, pgoff,
1153                                             vm_userfaultfd_ctx)) {
1154                 /*
1155                  * OK, it can.  Can we now merge in the successor as well?
1156                  */
1157                 if (next && end == next->vm_start &&
1158                                 mpol_equal(policy, vma_policy(next)) &&
1159                                 can_vma_merge_before(next, vm_flags,
1160                                                      anon_vma, file,
1161                                                      pgoff+pglen,
1162                                                      vm_userfaultfd_ctx) &&
1163                                 is_mergeable_anon_vma(prev->anon_vma,
1164                                                       next->anon_vma, NULL)) {
1165                                                         /* cases 1, 6 */
1166                         err = __vma_adjust(prev, prev->vm_start,
1167                                          next->vm_end, prev->vm_pgoff, NULL,
1168                                          prev);
1169                 } else                                  /* cases 2, 5, 7 */
1170                         err = __vma_adjust(prev, prev->vm_start,
1171                                          end, prev->vm_pgoff, NULL, prev);
1172                 if (err)
1173                         return NULL;
1174                 khugepaged_enter_vma_merge(prev, vm_flags);
1175                 return prev;
1176         }
1177
1178         /*
1179          * Can this new request be merged in front of next?
1180          */
1181         if (next && end == next->vm_start &&
1182                         mpol_equal(policy, vma_policy(next)) &&
1183                         can_vma_merge_before(next, vm_flags,
1184                                              anon_vma, file, pgoff+pglen,
1185                                              vm_userfaultfd_ctx)) {
1186                 if (prev && addr < prev->vm_end)        /* case 4 */
1187                         err = __vma_adjust(prev, prev->vm_start,
1188                                          addr, prev->vm_pgoff, NULL, next);
1189                 else {                                  /* cases 3, 8 */
1190                         err = __vma_adjust(area, addr, next->vm_end,
1191                                          next->vm_pgoff - pglen, NULL, next);
1192                         /*
1193                          * In case 3 area is already equal to next and
1194                          * this is a noop, but in case 8 "area" has
1195                          * been removed and next was expanded over it.
1196                          */
1197                         area = next;
1198                 }
1199                 if (err)
1200                         return NULL;
1201                 khugepaged_enter_vma_merge(area, vm_flags);
1202                 return area;
1203         }
1204
1205         return NULL;
1206 }
1207
1208 /*
1209  * Rough compatbility check to quickly see if it's even worth looking
1210  * at sharing an anon_vma.
1211  *
1212  * They need to have the same vm_file, and the flags can only differ
1213  * in things that mprotect may change.
1214  *
1215  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1216  * we can merge the two vma's. For example, we refuse to merge a vma if
1217  * there is a vm_ops->close() function, because that indicates that the
1218  * driver is doing some kind of reference counting. But that doesn't
1219  * really matter for the anon_vma sharing case.
1220  */
1221 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1222 {
1223         return a->vm_end == b->vm_start &&
1224                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1225                 a->vm_file == b->vm_file &&
1226                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1227                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1228 }
1229
1230 /*
1231  * Do some basic sanity checking to see if we can re-use the anon_vma
1232  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1233  * the same as 'old', the other will be the new one that is trying
1234  * to share the anon_vma.
1235  *
1236  * NOTE! This runs with mm_sem held for reading, so it is possible that
1237  * the anon_vma of 'old' is concurrently in the process of being set up
1238  * by another page fault trying to merge _that_. But that's ok: if it
1239  * is being set up, that automatically means that it will be a singleton
1240  * acceptable for merging, so we can do all of this optimistically. But
1241  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1242  *
1243  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1244  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1245  * is to return an anon_vma that is "complex" due to having gone through
1246  * a fork).
1247  *
1248  * We also make sure that the two vma's are compatible (adjacent,
1249  * and with the same memory policies). That's all stable, even with just
1250  * a read lock on the mm_sem.
1251  */
1252 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1253 {
1254         if (anon_vma_compatible(a, b)) {
1255                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1256
1257                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1258                         return anon_vma;
1259         }
1260         return NULL;
1261 }
1262
1263 /*
1264  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1265  * neighbouring vmas for a suitable anon_vma, before it goes off
1266  * to allocate a new anon_vma.  It checks because a repetitive
1267  * sequence of mprotects and faults may otherwise lead to distinct
1268  * anon_vmas being allocated, preventing vma merge in subsequent
1269  * mprotect.
1270  */
1271 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1272 {
1273         struct anon_vma *anon_vma;
1274         struct vm_area_struct *near;
1275
1276         near = vma->vm_next;
1277         if (!near)
1278                 goto try_prev;
1279
1280         anon_vma = reusable_anon_vma(near, vma, near);
1281         if (anon_vma)
1282                 return anon_vma;
1283 try_prev:
1284         near = vma->vm_prev;
1285         if (!near)
1286                 goto none;
1287
1288         anon_vma = reusable_anon_vma(near, near, vma);
1289         if (anon_vma)
1290                 return anon_vma;
1291 none:
1292         /*
1293          * There's no absolute need to look only at touching neighbours:
1294          * we could search further afield for "compatible" anon_vmas.
1295          * But it would probably just be a waste of time searching,
1296          * or lead to too many vmas hanging off the same anon_vma.
1297          * We're trying to allow mprotect remerging later on,
1298          * not trying to minimize memory used for anon_vmas.
1299          */
1300         return NULL;
1301 }
1302
1303 /*
1304  * If a hint addr is less than mmap_min_addr change hint to be as
1305  * low as possible but still greater than mmap_min_addr
1306  */
1307 static inline unsigned long round_hint_to_min(unsigned long hint)
1308 {
1309         hint &= PAGE_MASK;
1310         if (((void *)hint != NULL) &&
1311             (hint < mmap_min_addr))
1312                 return PAGE_ALIGN(mmap_min_addr);
1313         return hint;
1314 }
1315
1316 static inline int mlock_future_check(struct mm_struct *mm,
1317                                      unsigned long flags,
1318                                      unsigned long len)
1319 {
1320         unsigned long locked, lock_limit;
1321
1322         /*  mlock MCL_FUTURE? */
1323         if (flags & VM_LOCKED) {
1324                 locked = len >> PAGE_SHIFT;
1325                 locked += mm->locked_vm;
1326                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1327                 lock_limit >>= PAGE_SHIFT;
1328                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1329                         return -EAGAIN;
1330         }
1331         return 0;
1332 }
1333
1334 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1335 {
1336         if (S_ISREG(inode->i_mode))
1337                 return MAX_LFS_FILESIZE;
1338
1339         if (S_ISBLK(inode->i_mode))
1340                 return MAX_LFS_FILESIZE;
1341
1342         if (S_ISSOCK(inode->i_mode))
1343                 return MAX_LFS_FILESIZE;
1344
1345         /* Special "we do even unsigned file positions" case */
1346         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1347                 return 0;
1348
1349         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1350         return ULONG_MAX;
1351 }
1352
1353 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1354                                 unsigned long pgoff, unsigned long len)
1355 {
1356         u64 maxsize = file_mmap_size_max(file, inode);
1357
1358         if (maxsize && len > maxsize)
1359                 return false;
1360         maxsize -= len;
1361         if (pgoff > maxsize >> PAGE_SHIFT)
1362                 return false;
1363         return true;
1364 }
1365
1366 /*
1367  * The caller must hold down_write(&current->mm->mmap_sem).
1368  */
1369 unsigned long do_mmap(struct file *file, unsigned long addr,
1370                         unsigned long len, unsigned long prot,
1371                         unsigned long flags, vm_flags_t vm_flags,
1372                         unsigned long pgoff, unsigned long *populate,
1373                         struct list_head *uf)
1374 {
1375         struct mm_struct *mm = current->mm;
1376         int pkey = 0;
1377
1378         *populate = 0;
1379
1380         if (!len)
1381                 return -EINVAL;
1382
1383         /*
1384          * Does the application expect PROT_READ to imply PROT_EXEC?
1385          *
1386          * (the exception is when the underlying filesystem is noexec
1387          *  mounted, in which case we dont add PROT_EXEC.)
1388          */
1389         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1390                 if (!(file && path_noexec(&file->f_path)))
1391                         prot |= PROT_EXEC;
1392
1393         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1394         if (flags & MAP_FIXED_NOREPLACE)
1395                 flags |= MAP_FIXED;
1396
1397         if (!(flags & MAP_FIXED))
1398                 addr = round_hint_to_min(addr);
1399
1400         /* Careful about overflows.. */
1401         len = PAGE_ALIGN(len);
1402         if (!len)
1403                 return -ENOMEM;
1404
1405         /* offset overflow? */
1406         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1407                 return -EOVERFLOW;
1408
1409         /* Too many mappings? */
1410         if (mm->map_count > sysctl_max_map_count)
1411                 return -ENOMEM;
1412
1413         /* Obtain the address to map to. we verify (or select) it and ensure
1414          * that it represents a valid section of the address space.
1415          */
1416         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1417         if (IS_ERR_VALUE(addr))
1418                 return addr;
1419
1420         if (flags & MAP_FIXED_NOREPLACE) {
1421                 struct vm_area_struct *vma = find_vma(mm, addr);
1422
1423                 if (vma && vma->vm_start < addr + len)
1424                         return -EEXIST;
1425         }
1426
1427         if (prot == PROT_EXEC) {
1428                 pkey = execute_only_pkey(mm);
1429                 if (pkey < 0)
1430                         pkey = 0;
1431         }
1432
1433         /* Do simple checking here so the lower-level routines won't have
1434          * to. we assume access permissions have been handled by the open
1435          * of the memory object, so we don't do any here.
1436          */
1437         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1438                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1439
1440         if (flags & MAP_LOCKED)
1441                 if (!can_do_mlock())
1442                         return -EPERM;
1443
1444         if (mlock_future_check(mm, vm_flags, len))
1445                 return -EAGAIN;
1446
1447         if (file) {
1448                 struct inode *inode = file_inode(file);
1449                 unsigned long flags_mask;
1450
1451                 if (!file_mmap_ok(file, inode, pgoff, len))
1452                         return -EOVERFLOW;
1453
1454                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1455
1456                 switch (flags & MAP_TYPE) {
1457                 case MAP_SHARED:
1458                         /*
1459                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1460                          * flags. E.g. MAP_SYNC is dangerous to use with
1461                          * MAP_SHARED as you don't know which consistency model
1462                          * you will get. We silently ignore unsupported flags
1463                          * with MAP_SHARED to preserve backward compatibility.
1464                          */
1465                         flags &= LEGACY_MAP_MASK;
1466                         /* fall through */
1467                 case MAP_SHARED_VALIDATE:
1468                         if (flags & ~flags_mask)
1469                                 return -EOPNOTSUPP;
1470                         if (prot & PROT_WRITE) {
1471                                 if (!(file->f_mode & FMODE_WRITE))
1472                                         return -EACCES;
1473                                 if (IS_SWAPFILE(file->f_mapping->host))
1474                                         return -ETXTBSY;
1475                         }
1476
1477                         /*
1478                          * Make sure we don't allow writing to an append-only
1479                          * file..
1480                          */
1481                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1482                                 return -EACCES;
1483
1484                         /*
1485                          * Make sure there are no mandatory locks on the file.
1486                          */
1487                         if (locks_verify_locked(file))
1488                                 return -EAGAIN;
1489
1490                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1491                         if (!(file->f_mode & FMODE_WRITE))
1492                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1493
1494                         /* fall through */
1495                 case MAP_PRIVATE:
1496                         if (!(file->f_mode & FMODE_READ))
1497                                 return -EACCES;
1498                         if (path_noexec(&file->f_path)) {
1499                                 if (vm_flags & VM_EXEC)
1500                                         return -EPERM;
1501                                 vm_flags &= ~VM_MAYEXEC;
1502                         }
1503
1504                         if (!file->f_op->mmap)
1505                                 return -ENODEV;
1506                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1507                                 return -EINVAL;
1508                         break;
1509
1510                 default:
1511                         return -EINVAL;
1512                 }
1513         } else {
1514                 switch (flags & MAP_TYPE) {
1515                 case MAP_SHARED:
1516                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1517                                 return -EINVAL;
1518                         /*
1519                          * Ignore pgoff.
1520                          */
1521                         pgoff = 0;
1522                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1523                         break;
1524                 case MAP_PRIVATE:
1525                         /*
1526                          * Set pgoff according to addr for anon_vma.
1527                          */
1528                         pgoff = addr >> PAGE_SHIFT;
1529                         break;
1530                 default:
1531                         return -EINVAL;
1532                 }
1533         }
1534
1535         /*
1536          * Set 'VM_NORESERVE' if we should not account for the
1537          * memory use of this mapping.
1538          */
1539         if (flags & MAP_NORESERVE) {
1540                 /* We honor MAP_NORESERVE if allowed to overcommit */
1541                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1542                         vm_flags |= VM_NORESERVE;
1543
1544                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1545                 if (file && is_file_hugepages(file))
1546                         vm_flags |= VM_NORESERVE;
1547         }
1548
1549         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1550         if (!IS_ERR_VALUE(addr) &&
1551             ((vm_flags & VM_LOCKED) ||
1552              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1553                 *populate = len;
1554         return addr;
1555 }
1556
1557 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1558                               unsigned long prot, unsigned long flags,
1559                               unsigned long fd, unsigned long pgoff)
1560 {
1561         struct file *file = NULL;
1562         unsigned long retval;
1563
1564         addr = untagged_addr(addr);
1565
1566         if (!(flags & MAP_ANONYMOUS)) {
1567                 audit_mmap_fd(fd, flags);
1568                 file = fget(fd);
1569                 if (!file)
1570                         return -EBADF;
1571                 if (is_file_hugepages(file))
1572                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1573                 retval = -EINVAL;
1574                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1575                         goto out_fput;
1576         } else if (flags & MAP_HUGETLB) {
1577                 struct user_struct *user = NULL;
1578                 struct hstate *hs;
1579
1580                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1581                 if (!hs)
1582                         return -EINVAL;
1583
1584                 len = ALIGN(len, huge_page_size(hs));
1585                 /*
1586                  * VM_NORESERVE is used because the reservations will be
1587                  * taken when vm_ops->mmap() is called
1588                  * A dummy user value is used because we are not locking
1589                  * memory so no accounting is necessary
1590                  */
1591                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1592                                 VM_NORESERVE,
1593                                 &user, HUGETLB_ANONHUGE_INODE,
1594                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1595                 if (IS_ERR(file))
1596                         return PTR_ERR(file);
1597         }
1598
1599         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1600
1601         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1602 out_fput:
1603         if (file)
1604                 fput(file);
1605         return retval;
1606 }
1607
1608 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1609                 unsigned long, prot, unsigned long, flags,
1610                 unsigned long, fd, unsigned long, pgoff)
1611 {
1612         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1613 }
1614
1615 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1616 struct mmap_arg_struct {
1617         unsigned long addr;
1618         unsigned long len;
1619         unsigned long prot;
1620         unsigned long flags;
1621         unsigned long fd;
1622         unsigned long offset;
1623 };
1624
1625 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1626 {
1627         struct mmap_arg_struct a;
1628
1629         if (copy_from_user(&a, arg, sizeof(a)))
1630                 return -EFAULT;
1631         if (offset_in_page(a.offset))
1632                 return -EINVAL;
1633
1634         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1635                                a.offset >> PAGE_SHIFT);
1636 }
1637 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1638
1639 /*
1640  * Some shared mappings will want the pages marked read-only
1641  * to track write events. If so, we'll downgrade vm_page_prot
1642  * to the private version (using protection_map[] without the
1643  * VM_SHARED bit).
1644  */
1645 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1646 {
1647         vm_flags_t vm_flags = vma->vm_flags;
1648         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1649
1650         /* If it was private or non-writable, the write bit is already clear */
1651         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1652                 return 0;
1653
1654         /* The backer wishes to know when pages are first written to? */
1655         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1656                 return 1;
1657
1658         /* The open routine did something to the protections that pgprot_modify
1659          * won't preserve? */
1660         if (pgprot_val(vm_page_prot) !=
1661             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1662                 return 0;
1663
1664         /* Do we need to track softdirty? */
1665         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1666                 return 1;
1667
1668         /* Specialty mapping? */
1669         if (vm_flags & VM_PFNMAP)
1670                 return 0;
1671
1672         /* Can the mapping track the dirty pages? */
1673         return vma->vm_file && vma->vm_file->f_mapping &&
1674                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1675 }
1676
1677 /*
1678  * We account for memory if it's a private writeable mapping,
1679  * not hugepages and VM_NORESERVE wasn't set.
1680  */
1681 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1682 {
1683         /*
1684          * hugetlb has its own accounting separate from the core VM
1685          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1686          */
1687         if (file && is_file_hugepages(file))
1688                 return 0;
1689
1690         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1691 }
1692
1693 unsigned long mmap_region(struct file *file, unsigned long addr,
1694                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1695                 struct list_head *uf)
1696 {
1697         struct mm_struct *mm = current->mm;
1698         struct vm_area_struct *vma, *prev;
1699         int error;
1700         struct rb_node **rb_link, *rb_parent;
1701         unsigned long charged = 0;
1702
1703         /* Check against address space limit. */
1704         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1705                 unsigned long nr_pages;
1706
1707                 /*
1708                  * MAP_FIXED may remove pages of mappings that intersects with
1709                  * requested mapping. Account for the pages it would unmap.
1710                  */
1711                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1712
1713                 if (!may_expand_vm(mm, vm_flags,
1714                                         (len >> PAGE_SHIFT) - nr_pages))
1715                         return -ENOMEM;
1716         }
1717
1718         /* Clear old maps */
1719         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1720                               &rb_parent)) {
1721                 if (do_munmap(mm, addr, len, uf))
1722                         return -ENOMEM;
1723         }
1724
1725         /*
1726          * Private writable mapping: check memory availability
1727          */
1728         if (accountable_mapping(file, vm_flags)) {
1729                 charged = len >> PAGE_SHIFT;
1730                 if (security_vm_enough_memory_mm(mm, charged))
1731                         return -ENOMEM;
1732                 vm_flags |= VM_ACCOUNT;
1733         }
1734
1735         /*
1736          * Can we just expand an old mapping?
1737          */
1738         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1739                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1740         if (vma)
1741                 goto out;
1742
1743         /*
1744          * Determine the object being mapped and call the appropriate
1745          * specific mapper. the address has already been validated, but
1746          * not unmapped, but the maps are removed from the list.
1747          */
1748         vma = vm_area_alloc(mm);
1749         if (!vma) {
1750                 error = -ENOMEM;
1751                 goto unacct_error;
1752         }
1753
1754         vma->vm_start = addr;
1755         vma->vm_end = addr + len;
1756         vma->vm_flags = vm_flags;
1757         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1758         vma->vm_pgoff = pgoff;
1759
1760         if (file) {
1761                 if (vm_flags & VM_DENYWRITE) {
1762                         error = deny_write_access(file);
1763                         if (error)
1764                                 goto free_vma;
1765                 }
1766                 if (vm_flags & VM_SHARED) {
1767                         error = mapping_map_writable(file->f_mapping);
1768                         if (error)
1769                                 goto allow_write_and_free_vma;
1770                 }
1771
1772                 /* ->mmap() can change vma->vm_file, but must guarantee that
1773                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1774                  * and map writably if VM_SHARED is set. This usually means the
1775                  * new file must not have been exposed to user-space, yet.
1776                  */
1777                 vma->vm_file = get_file(file);
1778                 error = call_mmap(file, vma);
1779                 if (error)
1780                         goto unmap_and_free_vma;
1781
1782                 /* Can addr have changed??
1783                  *
1784                  * Answer: Yes, several device drivers can do it in their
1785                  *         f_op->mmap method. -DaveM
1786                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1787                  *      be updated for vma_link()
1788                  */
1789                 WARN_ON_ONCE(addr != vma->vm_start);
1790
1791                 addr = vma->vm_start;
1792                 vm_flags = vma->vm_flags;
1793         } else if (vm_flags & VM_SHARED) {
1794                 error = shmem_zero_setup(vma);
1795                 if (error)
1796                         goto free_vma;
1797         } else {
1798                 vma_set_anonymous(vma);
1799         }
1800
1801         vma_link(mm, vma, prev, rb_link, rb_parent);
1802         /* Once vma denies write, undo our temporary denial count */
1803         if (file) {
1804                 if (vm_flags & VM_SHARED)
1805                         mapping_unmap_writable(file->f_mapping);
1806                 if (vm_flags & VM_DENYWRITE)
1807                         allow_write_access(file);
1808         }
1809         file = vma->vm_file;
1810 out:
1811         perf_event_mmap(vma);
1812
1813         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1814         if (vm_flags & VM_LOCKED) {
1815                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1816                                         is_vm_hugetlb_page(vma) ||
1817                                         vma == get_gate_vma(current->mm))
1818                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1819                 else
1820                         mm->locked_vm += (len >> PAGE_SHIFT);
1821         }
1822
1823         if (file)
1824                 uprobe_mmap(vma);
1825
1826         /*
1827          * New (or expanded) vma always get soft dirty status.
1828          * Otherwise user-space soft-dirty page tracker won't
1829          * be able to distinguish situation when vma area unmapped,
1830          * then new mapped in-place (which must be aimed as
1831          * a completely new data area).
1832          */
1833         vma->vm_flags |= VM_SOFTDIRTY;
1834
1835         vma_set_page_prot(vma);
1836
1837         return addr;
1838
1839 unmap_and_free_vma:
1840         vma->vm_file = NULL;
1841         fput(file);
1842
1843         /* Undo any partial mapping done by a device driver. */
1844         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1845         charged = 0;
1846         if (vm_flags & VM_SHARED)
1847                 mapping_unmap_writable(file->f_mapping);
1848 allow_write_and_free_vma:
1849         if (vm_flags & VM_DENYWRITE)
1850                 allow_write_access(file);
1851 free_vma:
1852         vm_area_free(vma);
1853 unacct_error:
1854         if (charged)
1855                 vm_unacct_memory(charged);
1856         return error;
1857 }
1858
1859 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1860 {
1861         /*
1862          * We implement the search by looking for an rbtree node that
1863          * immediately follows a suitable gap. That is,
1864          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1865          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1866          * - gap_end - gap_start >= length
1867          */
1868
1869         struct mm_struct *mm = current->mm;
1870         struct vm_area_struct *vma;
1871         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1872
1873         /* Adjust search length to account for worst case alignment overhead */
1874         length = info->length + info->align_mask;
1875         if (length < info->length)
1876                 return -ENOMEM;
1877
1878         /* Adjust search limits by the desired length */
1879         if (info->high_limit < length)
1880                 return -ENOMEM;
1881         high_limit = info->high_limit - length;
1882
1883         if (info->low_limit > high_limit)
1884                 return -ENOMEM;
1885         low_limit = info->low_limit + length;
1886
1887         /* Check if rbtree root looks promising */
1888         if (RB_EMPTY_ROOT(&mm->mm_rb))
1889                 goto check_highest;
1890         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1891         if (vma->rb_subtree_gap < length)
1892                 goto check_highest;
1893
1894         while (true) {
1895                 /* Visit left subtree if it looks promising */
1896                 gap_end = vm_start_gap(vma);
1897                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1898                         struct vm_area_struct *left =
1899                                 rb_entry(vma->vm_rb.rb_left,
1900                                          struct vm_area_struct, vm_rb);
1901                         if (left->rb_subtree_gap >= length) {
1902                                 vma = left;
1903                                 continue;
1904                         }
1905                 }
1906
1907                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1908 check_current:
1909                 /* Check if current node has a suitable gap */
1910                 if (gap_start > high_limit)
1911                         return -ENOMEM;
1912                 if (gap_end >= low_limit &&
1913                     gap_end > gap_start && gap_end - gap_start >= length)
1914                         goto found;
1915
1916                 /* Visit right subtree if it looks promising */
1917                 if (vma->vm_rb.rb_right) {
1918                         struct vm_area_struct *right =
1919                                 rb_entry(vma->vm_rb.rb_right,
1920                                          struct vm_area_struct, vm_rb);
1921                         if (right->rb_subtree_gap >= length) {
1922                                 vma = right;
1923                                 continue;
1924                         }
1925                 }
1926
1927                 /* Go back up the rbtree to find next candidate node */
1928                 while (true) {
1929                         struct rb_node *prev = &vma->vm_rb;
1930                         if (!rb_parent(prev))
1931                                 goto check_highest;
1932                         vma = rb_entry(rb_parent(prev),
1933                                        struct vm_area_struct, vm_rb);
1934                         if (prev == vma->vm_rb.rb_left) {
1935                                 gap_start = vm_end_gap(vma->vm_prev);
1936                                 gap_end = vm_start_gap(vma);
1937                                 goto check_current;
1938                         }
1939                 }
1940         }
1941
1942 check_highest:
1943         /* Check highest gap, which does not precede any rbtree node */
1944         gap_start = mm->highest_vm_end;
1945         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1946         if (gap_start > high_limit)
1947                 return -ENOMEM;
1948
1949 found:
1950         /* We found a suitable gap. Clip it with the original low_limit. */
1951         if (gap_start < info->low_limit)
1952                 gap_start = info->low_limit;
1953
1954         /* Adjust gap address to the desired alignment */
1955         gap_start += (info->align_offset - gap_start) & info->align_mask;
1956
1957         VM_BUG_ON(gap_start + info->length > info->high_limit);
1958         VM_BUG_ON(gap_start + info->length > gap_end);
1959         return gap_start;
1960 }
1961
1962 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1963 {
1964         struct mm_struct *mm = current->mm;
1965         struct vm_area_struct *vma;
1966         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1967
1968         /* Adjust search length to account for worst case alignment overhead */
1969         length = info->length + info->align_mask;
1970         if (length < info->length)
1971                 return -ENOMEM;
1972
1973         /*
1974          * Adjust search limits by the desired length.
1975          * See implementation comment at top of unmapped_area().
1976          */
1977         gap_end = info->high_limit;
1978         if (gap_end < length)
1979                 return -ENOMEM;
1980         high_limit = gap_end - length;
1981
1982         if (info->low_limit > high_limit)
1983                 return -ENOMEM;
1984         low_limit = info->low_limit + length;
1985
1986         /* Check highest gap, which does not precede any rbtree node */
1987         gap_start = mm->highest_vm_end;
1988         if (gap_start <= high_limit)
1989                 goto found_highest;
1990
1991         /* Check if rbtree root looks promising */
1992         if (RB_EMPTY_ROOT(&mm->mm_rb))
1993                 return -ENOMEM;
1994         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1995         if (vma->rb_subtree_gap < length)
1996                 return -ENOMEM;
1997
1998         while (true) {
1999                 /* Visit right subtree if it looks promising */
2000                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2001                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2002                         struct vm_area_struct *right =
2003                                 rb_entry(vma->vm_rb.rb_right,
2004                                          struct vm_area_struct, vm_rb);
2005                         if (right->rb_subtree_gap >= length) {
2006                                 vma = right;
2007                                 continue;
2008                         }
2009                 }
2010
2011 check_current:
2012                 /* Check if current node has a suitable gap */
2013                 gap_end = vm_start_gap(vma);
2014                 if (gap_end < low_limit)
2015                         return -ENOMEM;
2016                 if (gap_start <= high_limit &&
2017                     gap_end > gap_start && gap_end - gap_start >= length)
2018                         goto found;
2019
2020                 /* Visit left subtree if it looks promising */
2021                 if (vma->vm_rb.rb_left) {
2022                         struct vm_area_struct *left =
2023                                 rb_entry(vma->vm_rb.rb_left,
2024                                          struct vm_area_struct, vm_rb);
2025                         if (left->rb_subtree_gap >= length) {
2026                                 vma = left;
2027                                 continue;
2028                         }
2029                 }
2030
2031                 /* Go back up the rbtree to find next candidate node */
2032                 while (true) {
2033                         struct rb_node *prev = &vma->vm_rb;
2034                         if (!rb_parent(prev))
2035                                 return -ENOMEM;
2036                         vma = rb_entry(rb_parent(prev),
2037                                        struct vm_area_struct, vm_rb);
2038                         if (prev == vma->vm_rb.rb_right) {
2039                                 gap_start = vma->vm_prev ?
2040                                         vm_end_gap(vma->vm_prev) : 0;
2041                                 goto check_current;
2042                         }
2043                 }
2044         }
2045
2046 found:
2047         /* We found a suitable gap. Clip it with the original high_limit. */
2048         if (gap_end > info->high_limit)
2049                 gap_end = info->high_limit;
2050
2051 found_highest:
2052         /* Compute highest gap address at the desired alignment */
2053         gap_end -= info->length;
2054         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2055
2056         VM_BUG_ON(gap_end < info->low_limit);
2057         VM_BUG_ON(gap_end < gap_start);
2058         return gap_end;
2059 }
2060
2061
2062 #ifndef arch_get_mmap_end
2063 #define arch_get_mmap_end(addr) (TASK_SIZE)
2064 #endif
2065
2066 #ifndef arch_get_mmap_base
2067 #define arch_get_mmap_base(addr, base) (base)
2068 #endif
2069
2070 /* Get an address range which is currently unmapped.
2071  * For shmat() with addr=0.
2072  *
2073  * Ugly calling convention alert:
2074  * Return value with the low bits set means error value,
2075  * ie
2076  *      if (ret & ~PAGE_MASK)
2077  *              error = ret;
2078  *
2079  * This function "knows" that -ENOMEM has the bits set.
2080  */
2081 #ifndef HAVE_ARCH_UNMAPPED_AREA
2082 unsigned long
2083 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2084                 unsigned long len, unsigned long pgoff, unsigned long flags)
2085 {
2086         struct mm_struct *mm = current->mm;
2087         struct vm_area_struct *vma, *prev;
2088         struct vm_unmapped_area_info info;
2089         const unsigned long mmap_end = arch_get_mmap_end(addr);
2090
2091         if (len > mmap_end - mmap_min_addr)
2092                 return -ENOMEM;
2093
2094         if (flags & MAP_FIXED)
2095                 return addr;
2096
2097         if (addr) {
2098                 addr = PAGE_ALIGN(addr);
2099                 vma = find_vma_prev(mm, addr, &prev);
2100                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2101                     (!vma || addr + len <= vm_start_gap(vma)) &&
2102                     (!prev || addr >= vm_end_gap(prev)))
2103                         return addr;
2104         }
2105
2106         info.flags = 0;
2107         info.length = len;
2108         info.low_limit = mm->mmap_base;
2109         info.high_limit = mmap_end;
2110         info.align_mask = 0;
2111         return vm_unmapped_area(&info);
2112 }
2113 #endif
2114
2115 /*
2116  * This mmap-allocator allocates new areas top-down from below the
2117  * stack's low limit (the base):
2118  */
2119 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2120 unsigned long
2121 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2122                           unsigned long len, unsigned long pgoff,
2123                           unsigned long flags)
2124 {
2125         struct vm_area_struct *vma, *prev;
2126         struct mm_struct *mm = current->mm;
2127         struct vm_unmapped_area_info info;
2128         const unsigned long mmap_end = arch_get_mmap_end(addr);
2129
2130         /* requested length too big for entire address space */
2131         if (len > mmap_end - mmap_min_addr)
2132                 return -ENOMEM;
2133
2134         if (flags & MAP_FIXED)
2135                 return addr;
2136
2137         /* requesting a specific address */
2138         if (addr) {
2139                 addr = PAGE_ALIGN(addr);
2140                 vma = find_vma_prev(mm, addr, &prev);
2141                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2142                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2143                                 (!prev || addr >= vm_end_gap(prev)))
2144                         return addr;
2145         }
2146
2147         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2148         info.length = len;
2149         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2150         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2151         info.align_mask = 0;
2152         addr = vm_unmapped_area(&info);
2153
2154         /*
2155          * A failed mmap() very likely causes application failure,
2156          * so fall back to the bottom-up function here. This scenario
2157          * can happen with large stack limits and large mmap()
2158          * allocations.
2159          */
2160         if (offset_in_page(addr)) {
2161                 VM_BUG_ON(addr != -ENOMEM);
2162                 info.flags = 0;
2163                 info.low_limit = TASK_UNMAPPED_BASE;
2164                 info.high_limit = mmap_end;
2165                 addr = vm_unmapped_area(&info);
2166         }
2167
2168         return addr;
2169 }
2170 #endif
2171
2172 unsigned long
2173 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2174                 unsigned long pgoff, unsigned long flags)
2175 {
2176         unsigned long (*get_area)(struct file *, unsigned long,
2177                                   unsigned long, unsigned long, unsigned long);
2178
2179         unsigned long error = arch_mmap_check(addr, len, flags);
2180         if (error)
2181                 return error;
2182
2183         /* Careful about overflows.. */
2184         if (len > TASK_SIZE)
2185                 return -ENOMEM;
2186
2187         get_area = current->mm->get_unmapped_area;
2188         if (file) {
2189                 if (file->f_op->get_unmapped_area)
2190                         get_area = file->f_op->get_unmapped_area;
2191         } else if (flags & MAP_SHARED) {
2192                 /*
2193                  * mmap_region() will call shmem_zero_setup() to create a file,
2194                  * so use shmem's get_unmapped_area in case it can be huge.
2195                  * do_mmap_pgoff() will clear pgoff, so match alignment.
2196                  */
2197                 pgoff = 0;
2198                 get_area = shmem_get_unmapped_area;
2199         }
2200
2201         addr = get_area(file, addr, len, pgoff, flags);
2202         if (IS_ERR_VALUE(addr))
2203                 return addr;
2204
2205         if (addr > TASK_SIZE - len)
2206                 return -ENOMEM;
2207         if (offset_in_page(addr))
2208                 return -EINVAL;
2209
2210         error = security_mmap_addr(addr);
2211         return error ? error : addr;
2212 }
2213
2214 EXPORT_SYMBOL(get_unmapped_area);
2215
2216 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2217 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2218 {
2219         struct rb_node *rb_node;
2220         struct vm_area_struct *vma;
2221
2222         /* Check the cache first. */
2223         vma = vmacache_find(mm, addr);
2224         if (likely(vma))
2225                 return vma;
2226
2227         rb_node = mm->mm_rb.rb_node;
2228
2229         while (rb_node) {
2230                 struct vm_area_struct *tmp;
2231
2232                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2233
2234                 if (tmp->vm_end > addr) {
2235                         vma = tmp;
2236                         if (tmp->vm_start <= addr)
2237                                 break;
2238                         rb_node = rb_node->rb_left;
2239                 } else
2240                         rb_node = rb_node->rb_right;
2241         }
2242
2243         if (vma)
2244                 vmacache_update(addr, vma);
2245         return vma;
2246 }
2247
2248 EXPORT_SYMBOL(find_vma);
2249
2250 /*
2251  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2252  */
2253 struct vm_area_struct *
2254 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2255                         struct vm_area_struct **pprev)
2256 {
2257         struct vm_area_struct *vma;
2258
2259         vma = find_vma(mm, addr);
2260         if (vma) {
2261                 *pprev = vma->vm_prev;
2262         } else {
2263                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2264
2265                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2266         }
2267         return vma;
2268 }
2269
2270 /*
2271  * Verify that the stack growth is acceptable and
2272  * update accounting. This is shared with both the
2273  * grow-up and grow-down cases.
2274  */
2275 static int acct_stack_growth(struct vm_area_struct *vma,
2276                              unsigned long size, unsigned long grow)
2277 {
2278         struct mm_struct *mm = vma->vm_mm;
2279         unsigned long new_start;
2280
2281         /* address space limit tests */
2282         if (!may_expand_vm(mm, vma->vm_flags, grow))
2283                 return -ENOMEM;
2284
2285         /* Stack limit test */
2286         if (size > rlimit(RLIMIT_STACK))
2287                 return -ENOMEM;
2288
2289         /* mlock limit tests */
2290         if (vma->vm_flags & VM_LOCKED) {
2291                 unsigned long locked;
2292                 unsigned long limit;
2293                 locked = mm->locked_vm + grow;
2294                 limit = rlimit(RLIMIT_MEMLOCK);
2295                 limit >>= PAGE_SHIFT;
2296                 if (locked > limit && !capable(CAP_IPC_LOCK))
2297                         return -ENOMEM;
2298         }
2299
2300         /* Check to ensure the stack will not grow into a hugetlb-only region */
2301         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2302                         vma->vm_end - size;
2303         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2304                 return -EFAULT;
2305
2306         /*
2307          * Overcommit..  This must be the final test, as it will
2308          * update security statistics.
2309          */
2310         if (security_vm_enough_memory_mm(mm, grow))
2311                 return -ENOMEM;
2312
2313         return 0;
2314 }
2315
2316 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2317 /*
2318  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2319  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2320  */
2321 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2322 {
2323         struct mm_struct *mm = vma->vm_mm;
2324         struct vm_area_struct *next;
2325         unsigned long gap_addr;
2326         int error = 0;
2327
2328         if (!(vma->vm_flags & VM_GROWSUP))
2329                 return -EFAULT;
2330
2331         /* Guard against exceeding limits of the address space. */
2332         address &= PAGE_MASK;
2333         if (address >= (TASK_SIZE & PAGE_MASK))
2334                 return -ENOMEM;
2335         address += PAGE_SIZE;
2336
2337         /* Enforce stack_guard_gap */
2338         gap_addr = address + stack_guard_gap;
2339
2340         /* Guard against overflow */
2341         if (gap_addr < address || gap_addr > TASK_SIZE)
2342                 gap_addr = TASK_SIZE;
2343
2344         next = vma->vm_next;
2345         if (next && next->vm_start < gap_addr &&
2346                         (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2347                 if (!(next->vm_flags & VM_GROWSUP))
2348                         return -ENOMEM;
2349                 /* Check that both stack segments have the same anon_vma? */
2350         }
2351
2352         /* We must make sure the anon_vma is allocated. */
2353         if (unlikely(anon_vma_prepare(vma)))
2354                 return -ENOMEM;
2355
2356         /*
2357          * vma->vm_start/vm_end cannot change under us because the caller
2358          * is required to hold the mmap_sem in read mode.  We need the
2359          * anon_vma lock to serialize against concurrent expand_stacks.
2360          */
2361         anon_vma_lock_write(vma->anon_vma);
2362
2363         /* Somebody else might have raced and expanded it already */
2364         if (address > vma->vm_end) {
2365                 unsigned long size, grow;
2366
2367                 size = address - vma->vm_start;
2368                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2369
2370                 error = -ENOMEM;
2371                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2372                         error = acct_stack_growth(vma, size, grow);
2373                         if (!error) {
2374                                 /*
2375                                  * vma_gap_update() doesn't support concurrent
2376                                  * updates, but we only hold a shared mmap_sem
2377                                  * lock here, so we need to protect against
2378                                  * concurrent vma expansions.
2379                                  * anon_vma_lock_write() doesn't help here, as
2380                                  * we don't guarantee that all growable vmas
2381                                  * in a mm share the same root anon vma.
2382                                  * So, we reuse mm->page_table_lock to guard
2383                                  * against concurrent vma expansions.
2384                                  */
2385                                 spin_lock(&mm->page_table_lock);
2386                                 if (vma->vm_flags & VM_LOCKED)
2387                                         mm->locked_vm += grow;
2388                                 vm_stat_account(mm, vma->vm_flags, grow);
2389                                 anon_vma_interval_tree_pre_update_vma(vma);
2390                                 vma->vm_end = address;
2391                                 anon_vma_interval_tree_post_update_vma(vma);
2392                                 if (vma->vm_next)
2393                                         vma_gap_update(vma->vm_next);
2394                                 else
2395                                         mm->highest_vm_end = vm_end_gap(vma);
2396                                 spin_unlock(&mm->page_table_lock);
2397
2398                                 perf_event_mmap(vma);
2399                         }
2400                 }
2401         }
2402         anon_vma_unlock_write(vma->anon_vma);
2403         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2404         validate_mm(mm);
2405         return error;
2406 }
2407 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2408
2409 /*
2410  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2411  */
2412 int expand_downwards(struct vm_area_struct *vma,
2413                                    unsigned long address)
2414 {
2415         struct mm_struct *mm = vma->vm_mm;
2416         struct vm_area_struct *prev;
2417         int error = 0;
2418
2419         address &= PAGE_MASK;
2420         if (address < mmap_min_addr)
2421                 return -EPERM;
2422
2423         /* Enforce stack_guard_gap */
2424         prev = vma->vm_prev;
2425         /* Check that both stack segments have the same anon_vma? */
2426         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2427                         (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2428                 if (address - prev->vm_end < stack_guard_gap)
2429                         return -ENOMEM;
2430         }
2431
2432         /* We must make sure the anon_vma is allocated. */
2433         if (unlikely(anon_vma_prepare(vma)))
2434                 return -ENOMEM;
2435
2436         /*
2437          * vma->vm_start/vm_end cannot change under us because the caller
2438          * is required to hold the mmap_sem in read mode.  We need the
2439          * anon_vma lock to serialize against concurrent expand_stacks.
2440          */
2441         anon_vma_lock_write(vma->anon_vma);
2442
2443         /* Somebody else might have raced and expanded it already */
2444         if (address < vma->vm_start) {
2445                 unsigned long size, grow;
2446
2447                 size = vma->vm_end - address;
2448                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2449
2450                 error = -ENOMEM;
2451                 if (grow <= vma->vm_pgoff) {
2452                         error = acct_stack_growth(vma, size, grow);
2453                         if (!error) {
2454                                 /*
2455                                  * vma_gap_update() doesn't support concurrent
2456                                  * updates, but we only hold a shared mmap_sem
2457                                  * lock here, so we need to protect against
2458                                  * concurrent vma expansions.
2459                                  * anon_vma_lock_write() doesn't help here, as
2460                                  * we don't guarantee that all growable vmas
2461                                  * in a mm share the same root anon vma.
2462                                  * So, we reuse mm->page_table_lock to guard
2463                                  * against concurrent vma expansions.
2464                                  */
2465                                 spin_lock(&mm->page_table_lock);
2466                                 if (vma->vm_flags & VM_LOCKED)
2467                                         mm->locked_vm += grow;
2468                                 vm_stat_account(mm, vma->vm_flags, grow);
2469                                 anon_vma_interval_tree_pre_update_vma(vma);
2470                                 vma->vm_start = address;
2471                                 vma->vm_pgoff -= grow;
2472                                 anon_vma_interval_tree_post_update_vma(vma);
2473                                 vma_gap_update(vma);
2474                                 spin_unlock(&mm->page_table_lock);
2475
2476                                 perf_event_mmap(vma);
2477                         }
2478                 }
2479         }
2480         anon_vma_unlock_write(vma->anon_vma);
2481         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2482         validate_mm(mm);
2483         return error;
2484 }
2485
2486 /* enforced gap between the expanding stack and other mappings. */
2487 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2488
2489 static int __init cmdline_parse_stack_guard_gap(char *p)
2490 {
2491         unsigned long val;
2492         char *endptr;
2493
2494         val = simple_strtoul(p, &endptr, 10);
2495         if (!*endptr)
2496                 stack_guard_gap = val << PAGE_SHIFT;
2497
2498         return 0;
2499 }
2500 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2501
2502 #ifdef CONFIG_STACK_GROWSUP
2503 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2504 {
2505         return expand_upwards(vma, address);
2506 }
2507
2508 struct vm_area_struct *
2509 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2510 {
2511         struct vm_area_struct *vma, *prev;
2512
2513         addr &= PAGE_MASK;
2514         vma = find_vma_prev(mm, addr, &prev);
2515         if (vma && (vma->vm_start <= addr))
2516                 return vma;
2517         /* don't alter vm_end if the coredump is running */
2518         if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2519                 return NULL;
2520         if (prev->vm_flags & VM_LOCKED)
2521                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2522         return prev;
2523 }
2524 #else
2525 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2526 {
2527         return expand_downwards(vma, address);
2528 }
2529
2530 struct vm_area_struct *
2531 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2532 {
2533         struct vm_area_struct *vma;
2534         unsigned long start;
2535
2536         addr &= PAGE_MASK;
2537         vma = find_vma(mm, addr);
2538         if (!vma)
2539                 return NULL;
2540         if (vma->vm_start <= addr)
2541                 return vma;
2542         if (!(vma->vm_flags & VM_GROWSDOWN))
2543                 return NULL;
2544         /* don't alter vm_start if the coredump is running */
2545         if (!mmget_still_valid(mm))
2546                 return NULL;
2547         start = vma->vm_start;
2548         if (expand_stack(vma, addr))
2549                 return NULL;
2550         if (vma->vm_flags & VM_LOCKED)
2551                 populate_vma_page_range(vma, addr, start, NULL);
2552         return vma;
2553 }
2554 #endif
2555
2556 EXPORT_SYMBOL_GPL(find_extend_vma);
2557
2558 /*
2559  * Ok - we have the memory areas we should free on the vma list,
2560  * so release them, and do the vma updates.
2561  *
2562  * Called with the mm semaphore held.
2563  */
2564 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2565 {
2566         unsigned long nr_accounted = 0;
2567
2568         /* Update high watermark before we lower total_vm */
2569         update_hiwater_vm(mm);
2570         do {
2571                 long nrpages = vma_pages(vma);
2572
2573                 if (vma->vm_flags & VM_ACCOUNT)
2574                         nr_accounted += nrpages;
2575                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2576                 vma = remove_vma(vma);
2577         } while (vma);
2578         vm_unacct_memory(nr_accounted);
2579         validate_mm(mm);
2580 }
2581
2582 /*
2583  * Get rid of page table information in the indicated region.
2584  *
2585  * Called with the mm semaphore held.
2586  */
2587 static void unmap_region(struct mm_struct *mm,
2588                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2589                 unsigned long start, unsigned long end)
2590 {
2591         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2592         struct mmu_gather tlb;
2593
2594         lru_add_drain();
2595         tlb_gather_mmu(&tlb, mm, start, end);
2596         update_hiwater_rss(mm);
2597         unmap_vmas(&tlb, vma, start, end);
2598         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2599                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2600         tlb_finish_mmu(&tlb, start, end);
2601 }
2602
2603 /*
2604  * Create a list of vma's touched by the unmap, removing them from the mm's
2605  * vma list as we go..
2606  */
2607 static void
2608 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2609         struct vm_area_struct *prev, unsigned long end)
2610 {
2611         struct vm_area_struct **insertion_point;
2612         struct vm_area_struct *tail_vma = NULL;
2613
2614         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2615         vma->vm_prev = NULL;
2616         do {
2617                 vma_rb_erase(vma, &mm->mm_rb);
2618                 mm->map_count--;
2619                 tail_vma = vma;
2620                 vma = vma->vm_next;
2621         } while (vma && vma->vm_start < end);
2622         *insertion_point = vma;
2623         if (vma) {
2624                 vma->vm_prev = prev;
2625                 vma_gap_update(vma);
2626         } else
2627                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2628         tail_vma->vm_next = NULL;
2629
2630         /* Kill the cache */
2631         vmacache_invalidate(mm);
2632 }
2633
2634 /*
2635  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2636  * has already been checked or doesn't make sense to fail.
2637  */
2638 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2639                 unsigned long addr, int new_below)
2640 {
2641         struct vm_area_struct *new;
2642         int err;
2643
2644         if (vma->vm_ops && vma->vm_ops->split) {
2645                 err = vma->vm_ops->split(vma, addr);
2646                 if (err)
2647                         return err;
2648         }
2649
2650         new = vm_area_dup(vma);
2651         if (!new)
2652                 return -ENOMEM;
2653
2654         if (new_below)
2655                 new->vm_end = addr;
2656         else {
2657                 new->vm_start = addr;
2658                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2659         }
2660
2661         err = vma_dup_policy(vma, new);
2662         if (err)
2663                 goto out_free_vma;
2664
2665         err = anon_vma_clone(new, vma);
2666         if (err)
2667                 goto out_free_mpol;
2668
2669         if (new->vm_file)
2670                 get_file(new->vm_file);
2671
2672         if (new->vm_ops && new->vm_ops->open)
2673                 new->vm_ops->open(new);
2674
2675         if (new_below)
2676                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2677                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2678         else
2679                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2680
2681         /* Success. */
2682         if (!err)
2683                 return 0;
2684
2685         /* Clean everything up if vma_adjust failed. */
2686         if (new->vm_ops && new->vm_ops->close)
2687                 new->vm_ops->close(new);
2688         if (new->vm_file)
2689                 fput(new->vm_file);
2690         unlink_anon_vmas(new);
2691  out_free_mpol:
2692         mpol_put(vma_policy(new));
2693  out_free_vma:
2694         vm_area_free(new);
2695         return err;
2696 }
2697
2698 /*
2699  * Split a vma into two pieces at address 'addr', a new vma is allocated
2700  * either for the first part or the tail.
2701  */
2702 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2703               unsigned long addr, int new_below)
2704 {
2705         if (mm->map_count >= sysctl_max_map_count)
2706                 return -ENOMEM;
2707
2708         return __split_vma(mm, vma, addr, new_below);
2709 }
2710
2711 /* Munmap is split into 2 main parts -- this part which finds
2712  * what needs doing, and the areas themselves, which do the
2713  * work.  This now handles partial unmappings.
2714  * Jeremy Fitzhardinge <jeremy@goop.org>
2715  */
2716 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2717                 struct list_head *uf, bool downgrade)
2718 {
2719         unsigned long end;
2720         struct vm_area_struct *vma, *prev, *last;
2721
2722         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2723                 return -EINVAL;
2724
2725         len = PAGE_ALIGN(len);
2726         end = start + len;
2727         if (len == 0)
2728                 return -EINVAL;
2729
2730         /*
2731          * arch_unmap() might do unmaps itself.  It must be called
2732          * and finish any rbtree manipulation before this code
2733          * runs and also starts to manipulate the rbtree.
2734          */
2735         arch_unmap(mm, start, end);
2736
2737         /* Find the first overlapping VMA */
2738         vma = find_vma(mm, start);
2739         if (!vma)
2740                 return 0;
2741         prev = vma->vm_prev;
2742         /* we have  start < vma->vm_end  */
2743
2744         /* if it doesn't overlap, we have nothing.. */
2745         if (vma->vm_start >= end)
2746                 return 0;
2747
2748         /*
2749          * If we need to split any vma, do it now to save pain later.
2750          *
2751          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2752          * unmapped vm_area_struct will remain in use: so lower split_vma
2753          * places tmp vma above, and higher split_vma places tmp vma below.
2754          */
2755         if (start > vma->vm_start) {
2756                 int error;
2757
2758                 /*
2759                  * Make sure that map_count on return from munmap() will
2760                  * not exceed its limit; but let map_count go just above
2761                  * its limit temporarily, to help free resources as expected.
2762                  */
2763                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2764                         return -ENOMEM;
2765
2766                 error = __split_vma(mm, vma, start, 0);
2767                 if (error)
2768                         return error;
2769                 prev = vma;
2770         }
2771
2772         /* Does it split the last one? */
2773         last = find_vma(mm, end);
2774         if (last && end > last->vm_start) {
2775                 int error = __split_vma(mm, last, end, 1);
2776                 if (error)
2777                         return error;
2778         }
2779         vma = prev ? prev->vm_next : mm->mmap;
2780
2781         if (unlikely(uf)) {
2782                 /*
2783                  * If userfaultfd_unmap_prep returns an error the vmas
2784                  * will remain splitted, but userland will get a
2785                  * highly unexpected error anyway. This is no
2786                  * different than the case where the first of the two
2787                  * __split_vma fails, but we don't undo the first
2788                  * split, despite we could. This is unlikely enough
2789                  * failure that it's not worth optimizing it for.
2790                  */
2791                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2792                 if (error)
2793                         return error;
2794         }
2795
2796         /*
2797          * unlock any mlock()ed ranges before detaching vmas
2798          */
2799         if (mm->locked_vm) {
2800                 struct vm_area_struct *tmp = vma;
2801                 while (tmp && tmp->vm_start < end) {
2802                         if (tmp->vm_flags & VM_LOCKED) {
2803                                 mm->locked_vm -= vma_pages(tmp);
2804                                 munlock_vma_pages_all(tmp);
2805                         }
2806
2807                         tmp = tmp->vm_next;
2808                 }
2809         }
2810
2811         /* Detach vmas from rbtree */
2812         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2813
2814         if (downgrade)
2815                 downgrade_write(&mm->mmap_sem);
2816
2817         unmap_region(mm, vma, prev, start, end);
2818
2819         /* Fix up all other VM information */
2820         remove_vma_list(mm, vma);
2821
2822         return downgrade ? 1 : 0;
2823 }
2824
2825 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2826               struct list_head *uf)
2827 {
2828         return __do_munmap(mm, start, len, uf, false);
2829 }
2830
2831 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2832 {
2833         int ret;
2834         struct mm_struct *mm = current->mm;
2835         LIST_HEAD(uf);
2836
2837         if (down_write_killable(&mm->mmap_sem))
2838                 return -EINTR;
2839
2840         ret = __do_munmap(mm, start, len, &uf, downgrade);
2841         /*
2842          * Returning 1 indicates mmap_sem is downgraded.
2843          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2844          * it to 0 before return.
2845          */
2846         if (ret == 1) {
2847                 up_read(&mm->mmap_sem);
2848                 ret = 0;
2849         } else
2850                 up_write(&mm->mmap_sem);
2851
2852         userfaultfd_unmap_complete(mm, &uf);
2853         return ret;
2854 }
2855
2856 int vm_munmap(unsigned long start, size_t len)
2857 {
2858         return __vm_munmap(start, len, false);
2859 }
2860 EXPORT_SYMBOL(vm_munmap);
2861
2862 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2863 {
2864         addr = untagged_addr(addr);
2865         profile_munmap(addr);
2866         return __vm_munmap(addr, len, true);
2867 }
2868
2869
2870 /*
2871  * Emulation of deprecated remap_file_pages() syscall.
2872  */
2873 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2874                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2875 {
2876
2877         struct mm_struct *mm = current->mm;
2878         struct vm_area_struct *vma;
2879         unsigned long populate = 0;
2880         unsigned long ret = -EINVAL;
2881         struct file *file;
2882
2883         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2884                      current->comm, current->pid);
2885
2886         if (prot)
2887                 return ret;
2888         start = start & PAGE_MASK;
2889         size = size & PAGE_MASK;
2890
2891         if (start + size <= start)
2892                 return ret;
2893
2894         /* Does pgoff wrap? */
2895         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2896                 return ret;
2897
2898         if (down_write_killable(&mm->mmap_sem))
2899                 return -EINTR;
2900
2901         vma = find_vma(mm, start);
2902
2903         if (!vma || !(vma->vm_flags & VM_SHARED))
2904                 goto out;
2905
2906         if (start < vma->vm_start)
2907                 goto out;
2908
2909         if (start + size > vma->vm_end) {
2910                 struct vm_area_struct *next;
2911
2912                 for (next = vma->vm_next; next; next = next->vm_next) {
2913                         /* hole between vmas ? */
2914                         if (next->vm_start != next->vm_prev->vm_end)
2915                                 goto out;
2916
2917                         if (next->vm_file != vma->vm_file)
2918                                 goto out;
2919
2920                         if (next->vm_flags != vma->vm_flags)
2921                                 goto out;
2922
2923                         if (start + size <= next->vm_end)
2924                                 break;
2925                 }
2926
2927                 if (!next)
2928                         goto out;
2929         }
2930
2931         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2932         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2933         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2934
2935         flags &= MAP_NONBLOCK;
2936         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2937         if (vma->vm_flags & VM_LOCKED) {
2938                 struct vm_area_struct *tmp;
2939                 flags |= MAP_LOCKED;
2940
2941                 /* drop PG_Mlocked flag for over-mapped range */
2942                 for (tmp = vma; tmp->vm_start >= start + size;
2943                                 tmp = tmp->vm_next) {
2944                         /*
2945                          * Split pmd and munlock page on the border
2946                          * of the range.
2947                          */
2948                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2949
2950                         munlock_vma_pages_range(tmp,
2951                                         max(tmp->vm_start, start),
2952                                         min(tmp->vm_end, start + size));
2953                 }
2954         }
2955
2956         file = get_file(vma->vm_file);
2957         ret = do_mmap_pgoff(vma->vm_file, start, size,
2958                         prot, flags, pgoff, &populate, NULL);
2959         fput(file);
2960 out:
2961         up_write(&mm->mmap_sem);
2962         if (populate)
2963                 mm_populate(ret, populate);
2964         if (!IS_ERR_VALUE(ret))
2965                 ret = 0;
2966         return ret;
2967 }
2968
2969 /*
2970  *  this is really a simplified "do_mmap".  it only handles
2971  *  anonymous maps.  eventually we may be able to do some
2972  *  brk-specific accounting here.
2973  */
2974 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2975 {
2976         struct mm_struct *mm = current->mm;
2977         struct vm_area_struct *vma, *prev;
2978         struct rb_node **rb_link, *rb_parent;
2979         pgoff_t pgoff = addr >> PAGE_SHIFT;
2980         int error;
2981         unsigned long mapped_addr;
2982
2983         /* Until we need other flags, refuse anything except VM_EXEC. */
2984         if ((flags & (~VM_EXEC)) != 0)
2985                 return -EINVAL;
2986         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2987
2988         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2989         if (IS_ERR_VALUE(mapped_addr))
2990                 return mapped_addr;
2991
2992         error = mlock_future_check(mm, mm->def_flags, len);
2993         if (error)
2994                 return error;
2995
2996         /*
2997          * Clear old maps.  this also does some error checking for us
2998          */
2999         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3000                               &rb_parent)) {
3001                 if (do_munmap(mm, addr, len, uf))
3002                         return -ENOMEM;
3003         }
3004
3005         /* Check against address space limits *after* clearing old maps... */
3006         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3007                 return -ENOMEM;
3008
3009         if (mm->map_count > sysctl_max_map_count)
3010                 return -ENOMEM;
3011
3012         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3013                 return -ENOMEM;
3014
3015         /* Can we just expand an old private anonymous mapping? */
3016         vma = vma_merge(mm, prev, addr, addr + len, flags,
3017                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3018         if (vma)
3019                 goto out;
3020
3021         /*
3022          * create a vma struct for an anonymous mapping
3023          */
3024         vma = vm_area_alloc(mm);
3025         if (!vma) {
3026                 vm_unacct_memory(len >> PAGE_SHIFT);
3027                 return -ENOMEM;
3028         }
3029
3030         vma_set_anonymous(vma);
3031         vma->vm_start = addr;
3032         vma->vm_end = addr + len;
3033         vma->vm_pgoff = pgoff;
3034         vma->vm_flags = flags;
3035         vma->vm_page_prot = vm_get_page_prot(flags);
3036         vma_link(mm, vma, prev, rb_link, rb_parent);
3037 out:
3038         perf_event_mmap(vma);
3039         mm->total_vm += len >> PAGE_SHIFT;
3040         mm->data_vm += len >> PAGE_SHIFT;
3041         if (flags & VM_LOCKED)
3042                 mm->locked_vm += (len >> PAGE_SHIFT);
3043         vma->vm_flags |= VM_SOFTDIRTY;
3044         return 0;
3045 }
3046
3047 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3048 {
3049         struct mm_struct *mm = current->mm;
3050         unsigned long len;
3051         int ret;
3052         bool populate;
3053         LIST_HEAD(uf);
3054
3055         len = PAGE_ALIGN(request);
3056         if (len < request)
3057                 return -ENOMEM;
3058         if (!len)
3059                 return 0;
3060
3061         if (down_write_killable(&mm->mmap_sem))
3062                 return -EINTR;
3063
3064         ret = do_brk_flags(addr, len, flags, &uf);
3065         populate = ((mm->def_flags & VM_LOCKED) != 0);
3066         up_write(&mm->mmap_sem);
3067         userfaultfd_unmap_complete(mm, &uf);
3068         if (populate && !ret)
3069                 mm_populate(addr, len);
3070         return ret;
3071 }
3072 EXPORT_SYMBOL(vm_brk_flags);
3073
3074 int vm_brk(unsigned long addr, unsigned long len)
3075 {
3076         return vm_brk_flags(addr, len, 0);
3077 }
3078 EXPORT_SYMBOL(vm_brk);
3079
3080 /* Release all mmaps. */
3081 void exit_mmap(struct mm_struct *mm)
3082 {
3083         struct mmu_gather tlb;
3084         struct vm_area_struct *vma;
3085         unsigned long nr_accounted = 0;
3086
3087         /* mm's last user has gone, and its about to be pulled down */
3088         mmu_notifier_release(mm);
3089
3090         if (unlikely(mm_is_oom_victim(mm))) {
3091                 /*
3092                  * Manually reap the mm to free as much memory as possible.
3093                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3094                  * this mm from further consideration.  Taking mm->mmap_sem for
3095                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3096                  * reaper will not run on this mm again after mmap_sem is
3097                  * dropped.
3098                  *
3099                  * Nothing can be holding mm->mmap_sem here and the above call
3100                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3101                  * __oom_reap_task_mm() will not block.
3102                  *
3103                  * This needs to be done before calling munlock_vma_pages_all(),
3104                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3105                  * reliably test it.
3106                  */
3107                 (void)__oom_reap_task_mm(mm);
3108
3109                 set_bit(MMF_OOM_SKIP, &mm->flags);
3110                 down_write(&mm->mmap_sem);
3111                 up_write(&mm->mmap_sem);
3112         }
3113
3114         if (mm->locked_vm) {
3115                 vma = mm->mmap;
3116                 while (vma) {
3117                         if (vma->vm_flags & VM_LOCKED)
3118                                 munlock_vma_pages_all(vma);
3119                         vma = vma->vm_next;
3120                 }
3121         }
3122
3123         arch_exit_mmap(mm);
3124
3125         vma = mm->mmap;
3126         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3127                 return;
3128
3129         lru_add_drain();
3130         flush_cache_mm(mm);
3131         tlb_gather_mmu(&tlb, mm, 0, -1);
3132         /* update_hiwater_rss(mm) here? but nobody should be looking */
3133         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3134         unmap_vmas(&tlb, vma, 0, -1);
3135         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3136         tlb_finish_mmu(&tlb, 0, -1);
3137
3138         /*
3139          * Walk the list again, actually closing and freeing it,
3140          * with preemption enabled, without holding any MM locks.
3141          */
3142         while (vma) {
3143                 if (vma->vm_flags & VM_ACCOUNT)
3144                         nr_accounted += vma_pages(vma);
3145                 vma = remove_vma(vma);
3146         }
3147         vm_unacct_memory(nr_accounted);
3148 }
3149
3150 /* Insert vm structure into process list sorted by address
3151  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3152  * then i_mmap_rwsem is taken here.
3153  */
3154 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3155 {
3156         struct vm_area_struct *prev;
3157         struct rb_node **rb_link, *rb_parent;
3158
3159         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3160                            &prev, &rb_link, &rb_parent))
3161                 return -ENOMEM;
3162         if ((vma->vm_flags & VM_ACCOUNT) &&
3163              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3164                 return -ENOMEM;
3165
3166         /*
3167          * The vm_pgoff of a purely anonymous vma should be irrelevant
3168          * until its first write fault, when page's anon_vma and index
3169          * are set.  But now set the vm_pgoff it will almost certainly
3170          * end up with (unless mremap moves it elsewhere before that
3171          * first wfault), so /proc/pid/maps tells a consistent story.
3172          *
3173          * By setting it to reflect the virtual start address of the
3174          * vma, merges and splits can happen in a seamless way, just
3175          * using the existing file pgoff checks and manipulations.
3176          * Similarly in do_mmap_pgoff and in do_brk.
3177          */
3178         if (vma_is_anonymous(vma)) {
3179                 BUG_ON(vma->anon_vma);
3180                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3181         }
3182
3183         vma_link(mm, vma, prev, rb_link, rb_parent);
3184         return 0;
3185 }
3186
3187 /*
3188  * Copy the vma structure to a new location in the same mm,
3189  * prior to moving page table entries, to effect an mremap move.
3190  */
3191 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3192         unsigned long addr, unsigned long len, pgoff_t pgoff,
3193         bool *need_rmap_locks)
3194 {
3195         struct vm_area_struct *vma = *vmap;
3196         unsigned long vma_start = vma->vm_start;
3197         struct mm_struct *mm = vma->vm_mm;
3198         struct vm_area_struct *new_vma, *prev;
3199         struct rb_node **rb_link, *rb_parent;
3200         bool faulted_in_anon_vma = true;
3201
3202         /*
3203          * If anonymous vma has not yet been faulted, update new pgoff
3204          * to match new location, to increase its chance of merging.
3205          */
3206         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3207                 pgoff = addr >> PAGE_SHIFT;
3208                 faulted_in_anon_vma = false;
3209         }
3210
3211         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3212                 return NULL;    /* should never get here */
3213         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3214                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3215                             vma->vm_userfaultfd_ctx);
3216         if (new_vma) {
3217                 /*
3218                  * Source vma may have been merged into new_vma
3219                  */
3220                 if (unlikely(vma_start >= new_vma->vm_start &&
3221                              vma_start < new_vma->vm_end)) {
3222                         /*
3223                          * The only way we can get a vma_merge with
3224                          * self during an mremap is if the vma hasn't
3225                          * been faulted in yet and we were allowed to
3226                          * reset the dst vma->vm_pgoff to the
3227                          * destination address of the mremap to allow
3228                          * the merge to happen. mremap must change the
3229                          * vm_pgoff linearity between src and dst vmas
3230                          * (in turn preventing a vma_merge) to be
3231                          * safe. It is only safe to keep the vm_pgoff
3232                          * linear if there are no pages mapped yet.
3233                          */
3234                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3235                         *vmap = vma = new_vma;
3236                 }
3237                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3238         } else {
3239                 new_vma = vm_area_dup(vma);
3240                 if (!new_vma)
3241                         goto out;
3242                 new_vma->vm_start = addr;
3243                 new_vma->vm_end = addr + len;
3244                 new_vma->vm_pgoff = pgoff;
3245                 if (vma_dup_policy(vma, new_vma))
3246                         goto out_free_vma;
3247                 if (anon_vma_clone(new_vma, vma))
3248                         goto out_free_mempol;
3249                 if (new_vma->vm_file)
3250                         get_file(new_vma->vm_file);
3251                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3252                         new_vma->vm_ops->open(new_vma);
3253                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3254                 *need_rmap_locks = false;
3255         }
3256         return new_vma;
3257
3258 out_free_mempol:
3259         mpol_put(vma_policy(new_vma));
3260 out_free_vma:
3261         vm_area_free(new_vma);
3262 out:
3263         return NULL;
3264 }
3265
3266 /*
3267  * Return true if the calling process may expand its vm space by the passed
3268  * number of pages
3269  */
3270 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3271 {
3272         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3273                 return false;
3274
3275         if (is_data_mapping(flags) &&
3276             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3277                 /* Workaround for Valgrind */
3278                 if (rlimit(RLIMIT_DATA) == 0 &&
3279                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3280                         return true;
3281
3282                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3283                              current->comm, current->pid,
3284                              (mm->data_vm + npages) << PAGE_SHIFT,
3285                              rlimit(RLIMIT_DATA),
3286                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3287
3288                 if (!ignore_rlimit_data)
3289                         return false;
3290         }
3291
3292         return true;
3293 }
3294
3295 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3296 {
3297         mm->total_vm += npages;
3298
3299         if (is_exec_mapping(flags))
3300                 mm->exec_vm += npages;
3301         else if (is_stack_mapping(flags))
3302                 mm->stack_vm += npages;
3303         else if (is_data_mapping(flags))
3304                 mm->data_vm += npages;
3305 }
3306
3307 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3308
3309 /*
3310  * Having a close hook prevents vma merging regardless of flags.
3311  */
3312 static void special_mapping_close(struct vm_area_struct *vma)
3313 {
3314 }
3315
3316 static const char *special_mapping_name(struct vm_area_struct *vma)
3317 {
3318         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3319 }
3320
3321 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3322 {
3323         struct vm_special_mapping *sm = new_vma->vm_private_data;
3324
3325         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3326                 return -EFAULT;
3327
3328         if (sm->mremap)
3329                 return sm->mremap(sm, new_vma);
3330
3331         return 0;
3332 }
3333
3334 static const struct vm_operations_struct special_mapping_vmops = {
3335         .close = special_mapping_close,
3336         .fault = special_mapping_fault,
3337         .mremap = special_mapping_mremap,
3338         .name = special_mapping_name,
3339         /* vDSO code relies that VVAR can't be accessed remotely */
3340         .access = NULL,
3341 };
3342
3343 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3344         .close = special_mapping_close,
3345         .fault = special_mapping_fault,
3346 };
3347
3348 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3349 {
3350         struct vm_area_struct *vma = vmf->vma;
3351         pgoff_t pgoff;
3352         struct page **pages;
3353
3354         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3355                 pages = vma->vm_private_data;
3356         } else {
3357                 struct vm_special_mapping *sm = vma->vm_private_data;
3358
3359                 if (sm->fault)
3360                         return sm->fault(sm, vmf->vma, vmf);
3361
3362                 pages = sm->pages;
3363         }
3364
3365         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3366                 pgoff--;
3367
3368         if (*pages) {
3369                 struct page *page = *pages;
3370                 get_page(page);
3371                 vmf->page = page;
3372                 return 0;
3373         }
3374
3375         return VM_FAULT_SIGBUS;
3376 }
3377
3378 static struct vm_area_struct *__install_special_mapping(
3379         struct mm_struct *mm,
3380         unsigned long addr, unsigned long len,
3381         unsigned long vm_flags, void *priv,
3382         const struct vm_operations_struct *ops)
3383 {
3384         int ret;
3385         struct vm_area_struct *vma;
3386
3387         vma = vm_area_alloc(mm);
3388         if (unlikely(vma == NULL))
3389                 return ERR_PTR(-ENOMEM);
3390
3391         vma->vm_start = addr;
3392         vma->vm_end = addr + len;
3393
3394         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3395         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3396
3397         vma->vm_ops = ops;
3398         vma->vm_private_data = priv;
3399
3400         ret = insert_vm_struct(mm, vma);
3401         if (ret)
3402                 goto out;
3403
3404         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3405
3406         perf_event_mmap(vma);
3407
3408         return vma;
3409
3410 out:
3411         vm_area_free(vma);
3412         return ERR_PTR(ret);
3413 }
3414
3415 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3416         const struct vm_special_mapping *sm)
3417 {
3418         return vma->vm_private_data == sm &&
3419                 (vma->vm_ops == &special_mapping_vmops ||
3420                  vma->vm_ops == &legacy_special_mapping_vmops);
3421 }
3422
3423 /*
3424  * Called with mm->mmap_sem held for writing.
3425  * Insert a new vma covering the given region, with the given flags.
3426  * Its pages are supplied by the given array of struct page *.
3427  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3428  * The region past the last page supplied will always produce SIGBUS.
3429  * The array pointer and the pages it points to are assumed to stay alive
3430  * for as long as this mapping might exist.
3431  */
3432 struct vm_area_struct *_install_special_mapping(
3433         struct mm_struct *mm,
3434         unsigned long addr, unsigned long len,
3435         unsigned long vm_flags, const struct vm_special_mapping *spec)
3436 {
3437         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3438                                         &special_mapping_vmops);
3439 }
3440
3441 int install_special_mapping(struct mm_struct *mm,
3442                             unsigned long addr, unsigned long len,
3443                             unsigned long vm_flags, struct page **pages)
3444 {
3445         struct vm_area_struct *vma = __install_special_mapping(
3446                 mm, addr, len, vm_flags, (void *)pages,
3447                 &legacy_special_mapping_vmops);
3448
3449         return PTR_ERR_OR_ZERO(vma);
3450 }
3451
3452 static DEFINE_MUTEX(mm_all_locks_mutex);
3453
3454 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3455 {
3456         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3457                 /*
3458                  * The LSB of head.next can't change from under us
3459                  * because we hold the mm_all_locks_mutex.
3460                  */
3461                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3462                 /*
3463                  * We can safely modify head.next after taking the
3464                  * anon_vma->root->rwsem. If some other vma in this mm shares
3465                  * the same anon_vma we won't take it again.
3466                  *
3467                  * No need of atomic instructions here, head.next
3468                  * can't change from under us thanks to the
3469                  * anon_vma->root->rwsem.
3470                  */
3471                 if (__test_and_set_bit(0, (unsigned long *)
3472                                        &anon_vma->root->rb_root.rb_root.rb_node))
3473                         BUG();
3474         }
3475 }
3476
3477 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3478 {
3479         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3480                 /*
3481                  * AS_MM_ALL_LOCKS can't change from under us because
3482                  * we hold the mm_all_locks_mutex.
3483                  *
3484                  * Operations on ->flags have to be atomic because
3485                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3486                  * mm_all_locks_mutex, there may be other cpus
3487                  * changing other bitflags in parallel to us.
3488                  */
3489                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3490                         BUG();
3491                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3492         }
3493 }
3494
3495 /*
3496  * This operation locks against the VM for all pte/vma/mm related
3497  * operations that could ever happen on a certain mm. This includes
3498  * vmtruncate, try_to_unmap, and all page faults.
3499  *
3500  * The caller must take the mmap_sem in write mode before calling
3501  * mm_take_all_locks(). The caller isn't allowed to release the
3502  * mmap_sem until mm_drop_all_locks() returns.
3503  *
3504  * mmap_sem in write mode is required in order to block all operations
3505  * that could modify pagetables and free pages without need of
3506  * altering the vma layout. It's also needed in write mode to avoid new
3507  * anon_vmas to be associated with existing vmas.
3508  *
3509  * A single task can't take more than one mm_take_all_locks() in a row
3510  * or it would deadlock.
3511  *
3512  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3513  * mapping->flags avoid to take the same lock twice, if more than one
3514  * vma in this mm is backed by the same anon_vma or address_space.
3515  *
3516  * We take locks in following order, accordingly to comment at beginning
3517  * of mm/rmap.c:
3518  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3519  *     hugetlb mapping);
3520  *   - all i_mmap_rwsem locks;
3521  *   - all anon_vma->rwseml
3522  *
3523  * We can take all locks within these types randomly because the VM code
3524  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3525  * mm_all_locks_mutex.
3526  *
3527  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3528  * that may have to take thousand of locks.
3529  *
3530  * mm_take_all_locks() can fail if it's interrupted by signals.
3531  */
3532 int mm_take_all_locks(struct mm_struct *mm)
3533 {
3534         struct vm_area_struct *vma;
3535         struct anon_vma_chain *avc;
3536
3537         BUG_ON(down_read_trylock(&mm->mmap_sem));
3538
3539         mutex_lock(&mm_all_locks_mutex);
3540
3541         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3542                 if (signal_pending(current))
3543                         goto out_unlock;
3544                 if (vma->vm_file && vma->vm_file->f_mapping &&
3545                                 is_vm_hugetlb_page(vma))
3546                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3547         }
3548
3549         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3550                 if (signal_pending(current))
3551                         goto out_unlock;
3552                 if (vma->vm_file && vma->vm_file->f_mapping &&
3553                                 !is_vm_hugetlb_page(vma))
3554                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3555         }
3556
3557         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3558                 if (signal_pending(current))
3559                         goto out_unlock;
3560                 if (vma->anon_vma)
3561                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3562                                 vm_lock_anon_vma(mm, avc->anon_vma);
3563         }
3564
3565         return 0;
3566
3567 out_unlock:
3568         mm_drop_all_locks(mm);
3569         return -EINTR;
3570 }
3571
3572 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3573 {
3574         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3575                 /*
3576                  * The LSB of head.next can't change to 0 from under
3577                  * us because we hold the mm_all_locks_mutex.
3578                  *
3579                  * We must however clear the bitflag before unlocking
3580                  * the vma so the users using the anon_vma->rb_root will
3581                  * never see our bitflag.
3582                  *
3583                  * No need of atomic instructions here, head.next
3584                  * can't change from under us until we release the
3585                  * anon_vma->root->rwsem.
3586                  */
3587                 if (!__test_and_clear_bit(0, (unsigned long *)
3588                                           &anon_vma->root->rb_root.rb_root.rb_node))
3589                         BUG();
3590                 anon_vma_unlock_write(anon_vma);
3591         }
3592 }
3593
3594 static void vm_unlock_mapping(struct address_space *mapping)
3595 {
3596         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3597                 /*
3598                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3599                  * because we hold the mm_all_locks_mutex.
3600                  */
3601                 i_mmap_unlock_write(mapping);
3602                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3603                                         &mapping->flags))
3604                         BUG();
3605         }
3606 }
3607
3608 /*
3609  * The mmap_sem cannot be released by the caller until
3610  * mm_drop_all_locks() returns.
3611  */
3612 void mm_drop_all_locks(struct mm_struct *mm)
3613 {
3614         struct vm_area_struct *vma;
3615         struct anon_vma_chain *avc;
3616
3617         BUG_ON(down_read_trylock(&mm->mmap_sem));
3618         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3619
3620         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3621                 if (vma->anon_vma)
3622                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3623                                 vm_unlock_anon_vma(avc->anon_vma);
3624                 if (vma->vm_file && vma->vm_file->f_mapping)
3625                         vm_unlock_mapping(vma->vm_file->f_mapping);
3626         }
3627
3628         mutex_unlock(&mm_all_locks_mutex);
3629 }
3630
3631 /*
3632  * initialise the percpu counter for VM
3633  */
3634 void __init mmap_init(void)
3635 {
3636         int ret;
3637
3638         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3639         VM_BUG_ON(ret);
3640 }
3641
3642 /*
3643  * Initialise sysctl_user_reserve_kbytes.
3644  *
3645  * This is intended to prevent a user from starting a single memory hogging
3646  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3647  * mode.
3648  *
3649  * The default value is min(3% of free memory, 128MB)
3650  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3651  */
3652 static int init_user_reserve(void)
3653 {
3654         unsigned long free_kbytes;
3655
3656         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3657
3658         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3659         return 0;
3660 }
3661 subsys_initcall(init_user_reserve);
3662
3663 /*
3664  * Initialise sysctl_admin_reserve_kbytes.
3665  *
3666  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3667  * to log in and kill a memory hogging process.
3668  *
3669  * Systems with more than 256MB will reserve 8MB, enough to recover
3670  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3671  * only reserve 3% of free pages by default.
3672  */
3673 static int init_admin_reserve(void)
3674 {
3675         unsigned long free_kbytes;
3676
3677         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3678
3679         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3680         return 0;
3681 }
3682 subsys_initcall(init_admin_reserve);
3683
3684 /*
3685  * Reinititalise user and admin reserves if memory is added or removed.
3686  *
3687  * The default user reserve max is 128MB, and the default max for the
3688  * admin reserve is 8MB. These are usually, but not always, enough to
3689  * enable recovery from a memory hogging process using login/sshd, a shell,
3690  * and tools like top. It may make sense to increase or even disable the
3691  * reserve depending on the existence of swap or variations in the recovery
3692  * tools. So, the admin may have changed them.
3693  *
3694  * If memory is added and the reserves have been eliminated or increased above
3695  * the default max, then we'll trust the admin.
3696  *
3697  * If memory is removed and there isn't enough free memory, then we
3698  * need to reset the reserves.
3699  *
3700  * Otherwise keep the reserve set by the admin.
3701  */
3702 static int reserve_mem_notifier(struct notifier_block *nb,
3703                              unsigned long action, void *data)
3704 {
3705         unsigned long tmp, free_kbytes;
3706
3707         switch (action) {
3708         case MEM_ONLINE:
3709                 /* Default max is 128MB. Leave alone if modified by operator. */
3710                 tmp = sysctl_user_reserve_kbytes;
3711                 if (0 < tmp && tmp < (1UL << 17))
3712                         init_user_reserve();
3713
3714                 /* Default max is 8MB.  Leave alone if modified by operator. */
3715                 tmp = sysctl_admin_reserve_kbytes;
3716                 if (0 < tmp && tmp < (1UL << 13))
3717                         init_admin_reserve();
3718
3719                 break;
3720         case MEM_OFFLINE:
3721                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3722
3723                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3724                         init_user_reserve();
3725                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3726                                 sysctl_user_reserve_kbytes);
3727                 }
3728
3729                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3730                         init_admin_reserve();
3731                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3732                                 sysctl_admin_reserve_kbytes);
3733                 }
3734                 break;
3735         default:
3736                 break;
3737         }
3738         return NOTIFY_OK;
3739 }
3740
3741 static struct notifier_block reserve_mem_nb = {
3742         .notifier_call = reserve_mem_notifier,
3743 };
3744
3745 static int __meminit init_reserve_notifier(void)
3746 {
3747         if (register_hotmemory_notifier(&reserve_mem_nb))
3748                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3749
3750         return 0;
3751 }
3752 subsys_initcall(init_reserve_notifier);