Merge tag 'usb-6.0-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-2.6-microblaze.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59
60 #include "internal.h"
61
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags)       (0)
64 #endif
65
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79
80 static void unmap_region(struct mm_struct *mm,
81                 struct vm_area_struct *vma, struct vm_area_struct *prev,
82                 unsigned long start, unsigned long end);
83
84 /* description of effects of mapping type and prot in current implementation.
85  * this is due to the limited x86 page protection hardware.  The expected
86  * behavior is in parens:
87  *
88  * map_type     prot
89  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
90  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
91  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
92  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
93  *
94  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
95  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
96  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
97  *
98  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
99  * MAP_PRIVATE (with Enhanced PAN supported):
100  *                                                              r: (no) no
101  *                                                              w: (no) no
102  *                                                              x: (yes) yes
103  */
104 pgprot_t protection_map[16] __ro_after_init = {
105         [VM_NONE]                                       = __P000,
106         [VM_READ]                                       = __P001,
107         [VM_WRITE]                                      = __P010,
108         [VM_WRITE | VM_READ]                            = __P011,
109         [VM_EXEC]                                       = __P100,
110         [VM_EXEC | VM_READ]                             = __P101,
111         [VM_EXEC | VM_WRITE]                            = __P110,
112         [VM_EXEC | VM_WRITE | VM_READ]                  = __P111,
113         [VM_SHARED]                                     = __S000,
114         [VM_SHARED | VM_READ]                           = __S001,
115         [VM_SHARED | VM_WRITE]                          = __S010,
116         [VM_SHARED | VM_WRITE | VM_READ]                = __S011,
117         [VM_SHARED | VM_EXEC]                           = __S100,
118         [VM_SHARED | VM_EXEC | VM_READ]                 = __S101,
119         [VM_SHARED | VM_EXEC | VM_WRITE]                = __S110,
120         [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]      = __S111
121 };
122
123 #ifndef CONFIG_ARCH_HAS_VM_GET_PAGE_PROT
124 pgprot_t vm_get_page_prot(unsigned long vm_flags)
125 {
126         return protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
127 }
128 EXPORT_SYMBOL(vm_get_page_prot);
129 #endif  /* CONFIG_ARCH_HAS_VM_GET_PAGE_PROT */
130
131 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
132 {
133         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
134 }
135
136 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
137 void vma_set_page_prot(struct vm_area_struct *vma)
138 {
139         unsigned long vm_flags = vma->vm_flags;
140         pgprot_t vm_page_prot;
141
142         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
143         if (vma_wants_writenotify(vma, vm_page_prot)) {
144                 vm_flags &= ~VM_SHARED;
145                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
146         }
147         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
148         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
149 }
150
151 /*
152  * Requires inode->i_mapping->i_mmap_rwsem
153  */
154 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
155                 struct file *file, struct address_space *mapping)
156 {
157         if (vma->vm_flags & VM_SHARED)
158                 mapping_unmap_writable(mapping);
159
160         flush_dcache_mmap_lock(mapping);
161         vma_interval_tree_remove(vma, &mapping->i_mmap);
162         flush_dcache_mmap_unlock(mapping);
163 }
164
165 /*
166  * Unlink a file-based vm structure from its interval tree, to hide
167  * vma from rmap and vmtruncate before freeing its page tables.
168  */
169 void unlink_file_vma(struct vm_area_struct *vma)
170 {
171         struct file *file = vma->vm_file;
172
173         if (file) {
174                 struct address_space *mapping = file->f_mapping;
175                 i_mmap_lock_write(mapping);
176                 __remove_shared_vm_struct(vma, file, mapping);
177                 i_mmap_unlock_write(mapping);
178         }
179 }
180
181 /*
182  * Close a vm structure and free it, returning the next.
183  */
184 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
185 {
186         struct vm_area_struct *next = vma->vm_next;
187
188         might_sleep();
189         if (vma->vm_ops && vma->vm_ops->close)
190                 vma->vm_ops->close(vma);
191         if (vma->vm_file)
192                 fput(vma->vm_file);
193         mpol_put(vma_policy(vma));
194         vm_area_free(vma);
195         return next;
196 }
197
198 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
199                 struct list_head *uf);
200 SYSCALL_DEFINE1(brk, unsigned long, brk)
201 {
202         unsigned long newbrk, oldbrk, origbrk;
203         struct mm_struct *mm = current->mm;
204         struct vm_area_struct *next;
205         unsigned long min_brk;
206         bool populate;
207         bool downgraded = false;
208         LIST_HEAD(uf);
209
210         if (mmap_write_lock_killable(mm))
211                 return -EINTR;
212
213         origbrk = mm->brk;
214
215 #ifdef CONFIG_COMPAT_BRK
216         /*
217          * CONFIG_COMPAT_BRK can still be overridden by setting
218          * randomize_va_space to 2, which will still cause mm->start_brk
219          * to be arbitrarily shifted
220          */
221         if (current->brk_randomized)
222                 min_brk = mm->start_brk;
223         else
224                 min_brk = mm->end_data;
225 #else
226         min_brk = mm->start_brk;
227 #endif
228         if (brk < min_brk)
229                 goto out;
230
231         /*
232          * Check against rlimit here. If this check is done later after the test
233          * of oldbrk with newbrk then it can escape the test and let the data
234          * segment grow beyond its set limit the in case where the limit is
235          * not page aligned -Ram Gupta
236          */
237         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
238                               mm->end_data, mm->start_data))
239                 goto out;
240
241         newbrk = PAGE_ALIGN(brk);
242         oldbrk = PAGE_ALIGN(mm->brk);
243         if (oldbrk == newbrk) {
244                 mm->brk = brk;
245                 goto success;
246         }
247
248         /*
249          * Always allow shrinking brk.
250          * __do_munmap() may downgrade mmap_lock to read.
251          */
252         if (brk <= mm->brk) {
253                 int ret;
254
255                 /*
256                  * mm->brk must to be protected by write mmap_lock so update it
257                  * before downgrading mmap_lock. When __do_munmap() fails,
258                  * mm->brk will be restored from origbrk.
259                  */
260                 mm->brk = brk;
261                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
262                 if (ret < 0) {
263                         mm->brk = origbrk;
264                         goto out;
265                 } else if (ret == 1) {
266                         downgraded = true;
267                 }
268                 goto success;
269         }
270
271         /* Check against existing mmap mappings. */
272         next = find_vma(mm, oldbrk);
273         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
274                 goto out;
275
276         /* Ok, looks good - let it rip. */
277         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
278                 goto out;
279         mm->brk = brk;
280
281 success:
282         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
283         if (downgraded)
284                 mmap_read_unlock(mm);
285         else
286                 mmap_write_unlock(mm);
287         userfaultfd_unmap_complete(mm, &uf);
288         if (populate)
289                 mm_populate(oldbrk, newbrk - oldbrk);
290         return brk;
291
292 out:
293         mmap_write_unlock(mm);
294         return origbrk;
295 }
296
297 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
298 {
299         unsigned long gap, prev_end;
300
301         /*
302          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
303          * allow two stack_guard_gaps between them here, and when choosing
304          * an unmapped area; whereas when expanding we only require one.
305          * That's a little inconsistent, but keeps the code here simpler.
306          */
307         gap = vm_start_gap(vma);
308         if (vma->vm_prev) {
309                 prev_end = vm_end_gap(vma->vm_prev);
310                 if (gap > prev_end)
311                         gap -= prev_end;
312                 else
313                         gap = 0;
314         }
315         return gap;
316 }
317
318 #ifdef CONFIG_DEBUG_VM_RB
319 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
320 {
321         unsigned long max = vma_compute_gap(vma), subtree_gap;
322         if (vma->vm_rb.rb_left) {
323                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
324                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
325                 if (subtree_gap > max)
326                         max = subtree_gap;
327         }
328         if (vma->vm_rb.rb_right) {
329                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
330                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
331                 if (subtree_gap > max)
332                         max = subtree_gap;
333         }
334         return max;
335 }
336
337 static int browse_rb(struct mm_struct *mm)
338 {
339         struct rb_root *root = &mm->mm_rb;
340         int i = 0, j, bug = 0;
341         struct rb_node *nd, *pn = NULL;
342         unsigned long prev = 0, pend = 0;
343
344         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
345                 struct vm_area_struct *vma;
346                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
347                 if (vma->vm_start < prev) {
348                         pr_emerg("vm_start %lx < prev %lx\n",
349                                   vma->vm_start, prev);
350                         bug = 1;
351                 }
352                 if (vma->vm_start < pend) {
353                         pr_emerg("vm_start %lx < pend %lx\n",
354                                   vma->vm_start, pend);
355                         bug = 1;
356                 }
357                 if (vma->vm_start > vma->vm_end) {
358                         pr_emerg("vm_start %lx > vm_end %lx\n",
359                                   vma->vm_start, vma->vm_end);
360                         bug = 1;
361                 }
362                 spin_lock(&mm->page_table_lock);
363                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
364                         pr_emerg("free gap %lx, correct %lx\n",
365                                vma->rb_subtree_gap,
366                                vma_compute_subtree_gap(vma));
367                         bug = 1;
368                 }
369                 spin_unlock(&mm->page_table_lock);
370                 i++;
371                 pn = nd;
372                 prev = vma->vm_start;
373                 pend = vma->vm_end;
374         }
375         j = 0;
376         for (nd = pn; nd; nd = rb_prev(nd))
377                 j++;
378         if (i != j) {
379                 pr_emerg("backwards %d, forwards %d\n", j, i);
380                 bug = 1;
381         }
382         return bug ? -1 : i;
383 }
384
385 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
386 {
387         struct rb_node *nd;
388
389         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
390                 struct vm_area_struct *vma;
391                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
392                 VM_BUG_ON_VMA(vma != ignore &&
393                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
394                         vma);
395         }
396 }
397
398 static void validate_mm(struct mm_struct *mm)
399 {
400         int bug = 0;
401         int i = 0;
402         unsigned long highest_address = 0;
403         struct vm_area_struct *vma = mm->mmap;
404
405         while (vma) {
406                 struct anon_vma *anon_vma = vma->anon_vma;
407                 struct anon_vma_chain *avc;
408
409                 if (anon_vma) {
410                         anon_vma_lock_read(anon_vma);
411                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
412                                 anon_vma_interval_tree_verify(avc);
413                         anon_vma_unlock_read(anon_vma);
414                 }
415
416                 highest_address = vm_end_gap(vma);
417                 vma = vma->vm_next;
418                 i++;
419         }
420         if (i != mm->map_count) {
421                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
422                 bug = 1;
423         }
424         if (highest_address != mm->highest_vm_end) {
425                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
426                           mm->highest_vm_end, highest_address);
427                 bug = 1;
428         }
429         i = browse_rb(mm);
430         if (i != mm->map_count) {
431                 if (i != -1)
432                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
433                 bug = 1;
434         }
435         VM_BUG_ON_MM(bug, mm);
436 }
437 #else
438 #define validate_mm_rb(root, ignore) do { } while (0)
439 #define validate_mm(mm) do { } while (0)
440 #endif
441
442 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
443                          struct vm_area_struct, vm_rb,
444                          unsigned long, rb_subtree_gap, vma_compute_gap)
445
446 /*
447  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
448  * vma->vm_prev->vm_end values changed, without modifying the vma's position
449  * in the rbtree.
450  */
451 static void vma_gap_update(struct vm_area_struct *vma)
452 {
453         /*
454          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
455          * a callback function that does exactly what we want.
456          */
457         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
458 }
459
460 static inline void vma_rb_insert(struct vm_area_struct *vma,
461                                  struct rb_root *root)
462 {
463         /* All rb_subtree_gap values must be consistent prior to insertion */
464         validate_mm_rb(root, NULL);
465
466         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
467 }
468
469 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
470 {
471         /*
472          * Note rb_erase_augmented is a fairly large inline function,
473          * so make sure we instantiate it only once with our desired
474          * augmented rbtree callbacks.
475          */
476         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
477 }
478
479 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
480                                                 struct rb_root *root,
481                                                 struct vm_area_struct *ignore)
482 {
483         /*
484          * All rb_subtree_gap values must be consistent prior to erase,
485          * with the possible exception of
486          *
487          * a. the "next" vma being erased if next->vm_start was reduced in
488          *    __vma_adjust() -> __vma_unlink()
489          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
490          *    vma_rb_erase()
491          */
492         validate_mm_rb(root, ignore);
493
494         __vma_rb_erase(vma, root);
495 }
496
497 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
498                                          struct rb_root *root)
499 {
500         vma_rb_erase_ignore(vma, root, vma);
501 }
502
503 /*
504  * vma has some anon_vma assigned, and is already inserted on that
505  * anon_vma's interval trees.
506  *
507  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
508  * vma must be removed from the anon_vma's interval trees using
509  * anon_vma_interval_tree_pre_update_vma().
510  *
511  * After the update, the vma will be reinserted using
512  * anon_vma_interval_tree_post_update_vma().
513  *
514  * The entire update must be protected by exclusive mmap_lock and by
515  * the root anon_vma's mutex.
516  */
517 static inline void
518 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
519 {
520         struct anon_vma_chain *avc;
521
522         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
523                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
524 }
525
526 static inline void
527 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
528 {
529         struct anon_vma_chain *avc;
530
531         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
532                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
533 }
534
535 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
536                 unsigned long end, struct vm_area_struct **pprev,
537                 struct rb_node ***rb_link, struct rb_node **rb_parent)
538 {
539         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
540
541         mmap_assert_locked(mm);
542         __rb_link = &mm->mm_rb.rb_node;
543         rb_prev = __rb_parent = NULL;
544
545         while (*__rb_link) {
546                 struct vm_area_struct *vma_tmp;
547
548                 __rb_parent = *__rb_link;
549                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
550
551                 if (vma_tmp->vm_end > addr) {
552                         /* Fail if an existing vma overlaps the area */
553                         if (vma_tmp->vm_start < end)
554                                 return -ENOMEM;
555                         __rb_link = &__rb_parent->rb_left;
556                 } else {
557                         rb_prev = __rb_parent;
558                         __rb_link = &__rb_parent->rb_right;
559                 }
560         }
561
562         *pprev = NULL;
563         if (rb_prev)
564                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
565         *rb_link = __rb_link;
566         *rb_parent = __rb_parent;
567         return 0;
568 }
569
570 /*
571  * vma_next() - Get the next VMA.
572  * @mm: The mm_struct.
573  * @vma: The current vma.
574  *
575  * If @vma is NULL, return the first vma in the mm.
576  *
577  * Returns: The next VMA after @vma.
578  */
579 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
580                                          struct vm_area_struct *vma)
581 {
582         if (!vma)
583                 return mm->mmap;
584
585         return vma->vm_next;
586 }
587
588 /*
589  * munmap_vma_range() - munmap VMAs that overlap a range.
590  * @mm: The mm struct
591  * @start: The start of the range.
592  * @len: The length of the range.
593  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
594  * @rb_link: the rb_node
595  * @rb_parent: the parent rb_node
596  *
597  * Find all the vm_area_struct that overlap from @start to
598  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
599  *
600  * Returns: -ENOMEM on munmap failure or 0 on success.
601  */
602 static inline int
603 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
604                  struct vm_area_struct **pprev, struct rb_node ***link,
605                  struct rb_node **parent, struct list_head *uf)
606 {
607
608         while (find_vma_links(mm, start, start + len, pprev, link, parent))
609                 if (do_munmap(mm, start, len, uf))
610                         return -ENOMEM;
611
612         return 0;
613 }
614 static unsigned long count_vma_pages_range(struct mm_struct *mm,
615                 unsigned long addr, unsigned long end)
616 {
617         unsigned long nr_pages = 0;
618         struct vm_area_struct *vma;
619
620         /* Find first overlapping mapping */
621         vma = find_vma_intersection(mm, addr, end);
622         if (!vma)
623                 return 0;
624
625         nr_pages = (min(end, vma->vm_end) -
626                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
627
628         /* Iterate over the rest of the overlaps */
629         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
630                 unsigned long overlap_len;
631
632                 if (vma->vm_start > end)
633                         break;
634
635                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
636                 nr_pages += overlap_len >> PAGE_SHIFT;
637         }
638
639         return nr_pages;
640 }
641
642 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
643                 struct rb_node **rb_link, struct rb_node *rb_parent)
644 {
645         /* Update tracking information for the gap following the new vma. */
646         if (vma->vm_next)
647                 vma_gap_update(vma->vm_next);
648         else
649                 mm->highest_vm_end = vm_end_gap(vma);
650
651         /*
652          * vma->vm_prev wasn't known when we followed the rbtree to find the
653          * correct insertion point for that vma. As a result, we could not
654          * update the vma vm_rb parents rb_subtree_gap values on the way down.
655          * So, we first insert the vma with a zero rb_subtree_gap value
656          * (to be consistent with what we did on the way down), and then
657          * immediately update the gap to the correct value. Finally we
658          * rebalance the rbtree after all augmented values have been set.
659          */
660         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
661         vma->rb_subtree_gap = 0;
662         vma_gap_update(vma);
663         vma_rb_insert(vma, &mm->mm_rb);
664 }
665
666 static void __vma_link_file(struct vm_area_struct *vma)
667 {
668         struct file *file;
669
670         file = vma->vm_file;
671         if (file) {
672                 struct address_space *mapping = file->f_mapping;
673
674                 if (vma->vm_flags & VM_SHARED)
675                         mapping_allow_writable(mapping);
676
677                 flush_dcache_mmap_lock(mapping);
678                 vma_interval_tree_insert(vma, &mapping->i_mmap);
679                 flush_dcache_mmap_unlock(mapping);
680         }
681 }
682
683 static void
684 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
685         struct vm_area_struct *prev, struct rb_node **rb_link,
686         struct rb_node *rb_parent)
687 {
688         __vma_link_list(mm, vma, prev);
689         __vma_link_rb(mm, vma, rb_link, rb_parent);
690 }
691
692 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
693                         struct vm_area_struct *prev, struct rb_node **rb_link,
694                         struct rb_node *rb_parent)
695 {
696         struct address_space *mapping = NULL;
697
698         if (vma->vm_file) {
699                 mapping = vma->vm_file->f_mapping;
700                 i_mmap_lock_write(mapping);
701         }
702
703         __vma_link(mm, vma, prev, rb_link, rb_parent);
704         __vma_link_file(vma);
705
706         if (mapping)
707                 i_mmap_unlock_write(mapping);
708
709         mm->map_count++;
710         validate_mm(mm);
711 }
712
713 /*
714  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
715  * mm's list and rbtree.  It has already been inserted into the interval tree.
716  */
717 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719         struct vm_area_struct *prev;
720         struct rb_node **rb_link, *rb_parent;
721
722         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
723                            &prev, &rb_link, &rb_parent))
724                 BUG();
725         __vma_link(mm, vma, prev, rb_link, rb_parent);
726         mm->map_count++;
727 }
728
729 static __always_inline void __vma_unlink(struct mm_struct *mm,
730                                                 struct vm_area_struct *vma,
731                                                 struct vm_area_struct *ignore)
732 {
733         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
734         __vma_unlink_list(mm, vma);
735         /* Kill the cache */
736         vmacache_invalidate(mm);
737 }
738
739 /*
740  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
741  * is already present in an i_mmap tree without adjusting the tree.
742  * The following helper function should be used when such adjustments
743  * are necessary.  The "insert" vma (if any) is to be inserted
744  * before we drop the necessary locks.
745  */
746 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
747         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
748         struct vm_area_struct *expand)
749 {
750         struct mm_struct *mm = vma->vm_mm;
751         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
752         struct address_space *mapping = NULL;
753         struct rb_root_cached *root = NULL;
754         struct anon_vma *anon_vma = NULL;
755         struct file *file = vma->vm_file;
756         bool start_changed = false, end_changed = false;
757         long adjust_next = 0;
758         int remove_next = 0;
759
760         if (next && !insert) {
761                 struct vm_area_struct *exporter = NULL, *importer = NULL;
762
763                 if (end >= next->vm_end) {
764                         /*
765                          * vma expands, overlapping all the next, and
766                          * perhaps the one after too (mprotect case 6).
767                          * The only other cases that gets here are
768                          * case 1, case 7 and case 8.
769                          */
770                         if (next == expand) {
771                                 /*
772                                  * The only case where we don't expand "vma"
773                                  * and we expand "next" instead is case 8.
774                                  */
775                                 VM_WARN_ON(end != next->vm_end);
776                                 /*
777                                  * remove_next == 3 means we're
778                                  * removing "vma" and that to do so we
779                                  * swapped "vma" and "next".
780                                  */
781                                 remove_next = 3;
782                                 VM_WARN_ON(file != next->vm_file);
783                                 swap(vma, next);
784                         } else {
785                                 VM_WARN_ON(expand != vma);
786                                 /*
787                                  * case 1, 6, 7, remove_next == 2 is case 6,
788                                  * remove_next == 1 is case 1 or 7.
789                                  */
790                                 remove_next = 1 + (end > next->vm_end);
791                                 VM_WARN_ON(remove_next == 2 &&
792                                            end != next->vm_next->vm_end);
793                                 /* trim end to next, for case 6 first pass */
794                                 end = next->vm_end;
795                         }
796
797                         exporter = next;
798                         importer = vma;
799
800                         /*
801                          * If next doesn't have anon_vma, import from vma after
802                          * next, if the vma overlaps with it.
803                          */
804                         if (remove_next == 2 && !next->anon_vma)
805                                 exporter = next->vm_next;
806
807                 } else if (end > next->vm_start) {
808                         /*
809                          * vma expands, overlapping part of the next:
810                          * mprotect case 5 shifting the boundary up.
811                          */
812                         adjust_next = (end - next->vm_start);
813                         exporter = next;
814                         importer = vma;
815                         VM_WARN_ON(expand != importer);
816                 } else if (end < vma->vm_end) {
817                         /*
818                          * vma shrinks, and !insert tells it's not
819                          * split_vma inserting another: so it must be
820                          * mprotect case 4 shifting the boundary down.
821                          */
822                         adjust_next = -(vma->vm_end - end);
823                         exporter = vma;
824                         importer = next;
825                         VM_WARN_ON(expand != importer);
826                 }
827
828                 /*
829                  * Easily overlooked: when mprotect shifts the boundary,
830                  * make sure the expanding vma has anon_vma set if the
831                  * shrinking vma had, to cover any anon pages imported.
832                  */
833                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
834                         int error;
835
836                         importer->anon_vma = exporter->anon_vma;
837                         error = anon_vma_clone(importer, exporter);
838                         if (error)
839                                 return error;
840                 }
841         }
842 again:
843         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
844
845         if (file) {
846                 mapping = file->f_mapping;
847                 root = &mapping->i_mmap;
848                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
849
850                 if (adjust_next)
851                         uprobe_munmap(next, next->vm_start, next->vm_end);
852
853                 i_mmap_lock_write(mapping);
854                 if (insert) {
855                         /*
856                          * Put into interval tree now, so instantiated pages
857                          * are visible to arm/parisc __flush_dcache_page
858                          * throughout; but we cannot insert into address
859                          * space until vma start or end is updated.
860                          */
861                         __vma_link_file(insert);
862                 }
863         }
864
865         anon_vma = vma->anon_vma;
866         if (!anon_vma && adjust_next)
867                 anon_vma = next->anon_vma;
868         if (anon_vma) {
869                 VM_WARN_ON(adjust_next && next->anon_vma &&
870                            anon_vma != next->anon_vma);
871                 anon_vma_lock_write(anon_vma);
872                 anon_vma_interval_tree_pre_update_vma(vma);
873                 if (adjust_next)
874                         anon_vma_interval_tree_pre_update_vma(next);
875         }
876
877         if (file) {
878                 flush_dcache_mmap_lock(mapping);
879                 vma_interval_tree_remove(vma, root);
880                 if (adjust_next)
881                         vma_interval_tree_remove(next, root);
882         }
883
884         if (start != vma->vm_start) {
885                 vma->vm_start = start;
886                 start_changed = true;
887         }
888         if (end != vma->vm_end) {
889                 vma->vm_end = end;
890                 end_changed = true;
891         }
892         vma->vm_pgoff = pgoff;
893         if (adjust_next) {
894                 next->vm_start += adjust_next;
895                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
896         }
897
898         if (file) {
899                 if (adjust_next)
900                         vma_interval_tree_insert(next, root);
901                 vma_interval_tree_insert(vma, root);
902                 flush_dcache_mmap_unlock(mapping);
903         }
904
905         if (remove_next) {
906                 /*
907                  * vma_merge has merged next into vma, and needs
908                  * us to remove next before dropping the locks.
909                  */
910                 if (remove_next != 3)
911                         __vma_unlink(mm, next, next);
912                 else
913                         /*
914                          * vma is not before next if they've been
915                          * swapped.
916                          *
917                          * pre-swap() next->vm_start was reduced so
918                          * tell validate_mm_rb to ignore pre-swap()
919                          * "next" (which is stored in post-swap()
920                          * "vma").
921                          */
922                         __vma_unlink(mm, next, vma);
923                 if (file)
924                         __remove_shared_vm_struct(next, file, mapping);
925         } else if (insert) {
926                 /*
927                  * split_vma has split insert from vma, and needs
928                  * us to insert it before dropping the locks
929                  * (it may either follow vma or precede it).
930                  */
931                 __insert_vm_struct(mm, insert);
932         } else {
933                 if (start_changed)
934                         vma_gap_update(vma);
935                 if (end_changed) {
936                         if (!next)
937                                 mm->highest_vm_end = vm_end_gap(vma);
938                         else if (!adjust_next)
939                                 vma_gap_update(next);
940                 }
941         }
942
943         if (anon_vma) {
944                 anon_vma_interval_tree_post_update_vma(vma);
945                 if (adjust_next)
946                         anon_vma_interval_tree_post_update_vma(next);
947                 anon_vma_unlock_write(anon_vma);
948         }
949
950         if (file) {
951                 i_mmap_unlock_write(mapping);
952                 uprobe_mmap(vma);
953
954                 if (adjust_next)
955                         uprobe_mmap(next);
956         }
957
958         if (remove_next) {
959                 if (file) {
960                         uprobe_munmap(next, next->vm_start, next->vm_end);
961                         fput(file);
962                 }
963                 if (next->anon_vma)
964                         anon_vma_merge(vma, next);
965                 mm->map_count--;
966                 mpol_put(vma_policy(next));
967                 vm_area_free(next);
968                 /*
969                  * In mprotect's case 6 (see comments on vma_merge),
970                  * we must remove another next too. It would clutter
971                  * up the code too much to do both in one go.
972                  */
973                 if (remove_next != 3) {
974                         /*
975                          * If "next" was removed and vma->vm_end was
976                          * expanded (up) over it, in turn
977                          * "next->vm_prev->vm_end" changed and the
978                          * "vma->vm_next" gap must be updated.
979                          */
980                         next = vma->vm_next;
981                 } else {
982                         /*
983                          * For the scope of the comment "next" and
984                          * "vma" considered pre-swap(): if "vma" was
985                          * removed, next->vm_start was expanded (down)
986                          * over it and the "next" gap must be updated.
987                          * Because of the swap() the post-swap() "vma"
988                          * actually points to pre-swap() "next"
989                          * (post-swap() "next" as opposed is now a
990                          * dangling pointer).
991                          */
992                         next = vma;
993                 }
994                 if (remove_next == 2) {
995                         remove_next = 1;
996                         end = next->vm_end;
997                         goto again;
998                 }
999                 else if (next)
1000                         vma_gap_update(next);
1001                 else {
1002                         /*
1003                          * If remove_next == 2 we obviously can't
1004                          * reach this path.
1005                          *
1006                          * If remove_next == 3 we can't reach this
1007                          * path because pre-swap() next is always not
1008                          * NULL. pre-swap() "next" is not being
1009                          * removed and its next->vm_end is not altered
1010                          * (and furthermore "end" already matches
1011                          * next->vm_end in remove_next == 3).
1012                          *
1013                          * We reach this only in the remove_next == 1
1014                          * case if the "next" vma that was removed was
1015                          * the highest vma of the mm. However in such
1016                          * case next->vm_end == "end" and the extended
1017                          * "vma" has vma->vm_end == next->vm_end so
1018                          * mm->highest_vm_end doesn't need any update
1019                          * in remove_next == 1 case.
1020                          */
1021                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1022                 }
1023         }
1024         if (insert && file)
1025                 uprobe_mmap(insert);
1026
1027         validate_mm(mm);
1028
1029         return 0;
1030 }
1031
1032 /*
1033  * If the vma has a ->close operation then the driver probably needs to release
1034  * per-vma resources, so we don't attempt to merge those.
1035  */
1036 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1037                                 struct file *file, unsigned long vm_flags,
1038                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1039                                 struct anon_vma_name *anon_name)
1040 {
1041         /*
1042          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1043          * match the flags but dirty bit -- the caller should mark
1044          * merged VMA as dirty. If dirty bit won't be excluded from
1045          * comparison, we increase pressure on the memory system forcing
1046          * the kernel to generate new VMAs when old one could be
1047          * extended instead.
1048          */
1049         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1050                 return 0;
1051         if (vma->vm_file != file)
1052                 return 0;
1053         if (vma->vm_ops && vma->vm_ops->close)
1054                 return 0;
1055         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1056                 return 0;
1057         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1058                 return 0;
1059         return 1;
1060 }
1061
1062 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1063                                         struct anon_vma *anon_vma2,
1064                                         struct vm_area_struct *vma)
1065 {
1066         /*
1067          * The list_is_singular() test is to avoid merging VMA cloned from
1068          * parents. This can improve scalability caused by anon_vma lock.
1069          */
1070         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1071                 list_is_singular(&vma->anon_vma_chain)))
1072                 return 1;
1073         return anon_vma1 == anon_vma2;
1074 }
1075
1076 /*
1077  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1078  * in front of (at a lower virtual address and file offset than) the vma.
1079  *
1080  * We cannot merge two vmas if they have differently assigned (non-NULL)
1081  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1082  *
1083  * We don't check here for the merged mmap wrapping around the end of pagecache
1084  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1085  * wrap, nor mmaps which cover the final page at index -1UL.
1086  */
1087 static int
1088 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1089                      struct anon_vma *anon_vma, struct file *file,
1090                      pgoff_t vm_pgoff,
1091                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1092                      struct anon_vma_name *anon_name)
1093 {
1094         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1095             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1096                 if (vma->vm_pgoff == vm_pgoff)
1097                         return 1;
1098         }
1099         return 0;
1100 }
1101
1102 /*
1103  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1104  * beyond (at a higher virtual address and file offset than) the vma.
1105  *
1106  * We cannot merge two vmas if they have differently assigned (non-NULL)
1107  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1108  */
1109 static int
1110 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1111                     struct anon_vma *anon_vma, struct file *file,
1112                     pgoff_t vm_pgoff,
1113                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1114                     struct anon_vma_name *anon_name)
1115 {
1116         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1117             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1118                 pgoff_t vm_pglen;
1119                 vm_pglen = vma_pages(vma);
1120                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1121                         return 1;
1122         }
1123         return 0;
1124 }
1125
1126 /*
1127  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1128  * figure out whether that can be merged with its predecessor or its
1129  * successor.  Or both (it neatly fills a hole).
1130  *
1131  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1132  * certain not to be mapped by the time vma_merge is called; but when
1133  * called for mprotect, it is certain to be already mapped (either at
1134  * an offset within prev, or at the start of next), and the flags of
1135  * this area are about to be changed to vm_flags - and the no-change
1136  * case has already been eliminated.
1137  *
1138  * The following mprotect cases have to be considered, where AAAA is
1139  * the area passed down from mprotect_fixup, never extending beyond one
1140  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1141  *
1142  *     AAAA             AAAA                   AAAA
1143  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1144  *    cannot merge    might become       might become
1145  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1146  *    mmap, brk or    case 4 below       case 5 below
1147  *    mremap move:
1148  *                        AAAA               AAAA
1149  *                    PPPP    NNNN       PPPPNNNNXXXX
1150  *                    might become       might become
1151  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1152  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1153  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1154  *
1155  * It is important for case 8 that the vma NNNN overlapping the
1156  * region AAAA is never going to extended over XXXX. Instead XXXX must
1157  * be extended in region AAAA and NNNN must be removed. This way in
1158  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1159  * rmap_locks, the properties of the merged vma will be already
1160  * correct for the whole merged range. Some of those properties like
1161  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1162  * be correct for the whole merged range immediately after the
1163  * rmap_locks are released. Otherwise if XXXX would be removed and
1164  * NNNN would be extended over the XXXX range, remove_migration_ptes
1165  * or other rmap walkers (if working on addresses beyond the "end"
1166  * parameter) may establish ptes with the wrong permissions of NNNN
1167  * instead of the right permissions of XXXX.
1168  */
1169 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1170                         struct vm_area_struct *prev, unsigned long addr,
1171                         unsigned long end, unsigned long vm_flags,
1172                         struct anon_vma *anon_vma, struct file *file,
1173                         pgoff_t pgoff, struct mempolicy *policy,
1174                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1175                         struct anon_vma_name *anon_name)
1176 {
1177         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1178         struct vm_area_struct *area, *next;
1179         int err;
1180
1181         /*
1182          * We later require that vma->vm_flags == vm_flags,
1183          * so this tests vma->vm_flags & VM_SPECIAL, too.
1184          */
1185         if (vm_flags & VM_SPECIAL)
1186                 return NULL;
1187
1188         next = vma_next(mm, prev);
1189         area = next;
1190         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1191                 next = next->vm_next;
1192
1193         /* verify some invariant that must be enforced by the caller */
1194         VM_WARN_ON(prev && addr <= prev->vm_start);
1195         VM_WARN_ON(area && end > area->vm_end);
1196         VM_WARN_ON(addr >= end);
1197
1198         /*
1199          * Can it merge with the predecessor?
1200          */
1201         if (prev && prev->vm_end == addr &&
1202                         mpol_equal(vma_policy(prev), policy) &&
1203                         can_vma_merge_after(prev, vm_flags,
1204                                             anon_vma, file, pgoff,
1205                                             vm_userfaultfd_ctx, anon_name)) {
1206                 /*
1207                  * OK, it can.  Can we now merge in the successor as well?
1208                  */
1209                 if (next && end == next->vm_start &&
1210                                 mpol_equal(policy, vma_policy(next)) &&
1211                                 can_vma_merge_before(next, vm_flags,
1212                                                      anon_vma, file,
1213                                                      pgoff+pglen,
1214                                                      vm_userfaultfd_ctx, anon_name) &&
1215                                 is_mergeable_anon_vma(prev->anon_vma,
1216                                                       next->anon_vma, NULL)) {
1217                                                         /* cases 1, 6 */
1218                         err = __vma_adjust(prev, prev->vm_start,
1219                                          next->vm_end, prev->vm_pgoff, NULL,
1220                                          prev);
1221                 } else                                  /* cases 2, 5, 7 */
1222                         err = __vma_adjust(prev, prev->vm_start,
1223                                          end, prev->vm_pgoff, NULL, prev);
1224                 if (err)
1225                         return NULL;
1226                 khugepaged_enter_vma(prev, vm_flags);
1227                 return prev;
1228         }
1229
1230         /*
1231          * Can this new request be merged in front of next?
1232          */
1233         if (next && end == next->vm_start &&
1234                         mpol_equal(policy, vma_policy(next)) &&
1235                         can_vma_merge_before(next, vm_flags,
1236                                              anon_vma, file, pgoff+pglen,
1237                                              vm_userfaultfd_ctx, anon_name)) {
1238                 if (prev && addr < prev->vm_end)        /* case 4 */
1239                         err = __vma_adjust(prev, prev->vm_start,
1240                                          addr, prev->vm_pgoff, NULL, next);
1241                 else {                                  /* cases 3, 8 */
1242                         err = __vma_adjust(area, addr, next->vm_end,
1243                                          next->vm_pgoff - pglen, NULL, next);
1244                         /*
1245                          * In case 3 area is already equal to next and
1246                          * this is a noop, but in case 8 "area" has
1247                          * been removed and next was expanded over it.
1248                          */
1249                         area = next;
1250                 }
1251                 if (err)
1252                         return NULL;
1253                 khugepaged_enter_vma(area, vm_flags);
1254                 return area;
1255         }
1256
1257         return NULL;
1258 }
1259
1260 /*
1261  * Rough compatibility check to quickly see if it's even worth looking
1262  * at sharing an anon_vma.
1263  *
1264  * They need to have the same vm_file, and the flags can only differ
1265  * in things that mprotect may change.
1266  *
1267  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1268  * we can merge the two vma's. For example, we refuse to merge a vma if
1269  * there is a vm_ops->close() function, because that indicates that the
1270  * driver is doing some kind of reference counting. But that doesn't
1271  * really matter for the anon_vma sharing case.
1272  */
1273 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1274 {
1275         return a->vm_end == b->vm_start &&
1276                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1277                 a->vm_file == b->vm_file &&
1278                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1279                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1280 }
1281
1282 /*
1283  * Do some basic sanity checking to see if we can re-use the anon_vma
1284  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1285  * the same as 'old', the other will be the new one that is trying
1286  * to share the anon_vma.
1287  *
1288  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1289  * the anon_vma of 'old' is concurrently in the process of being set up
1290  * by another page fault trying to merge _that_. But that's ok: if it
1291  * is being set up, that automatically means that it will be a singleton
1292  * acceptable for merging, so we can do all of this optimistically. But
1293  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1294  *
1295  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1296  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1297  * is to return an anon_vma that is "complex" due to having gone through
1298  * a fork).
1299  *
1300  * We also make sure that the two vma's are compatible (adjacent,
1301  * and with the same memory policies). That's all stable, even with just
1302  * a read lock on the mmap_lock.
1303  */
1304 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1305 {
1306         if (anon_vma_compatible(a, b)) {
1307                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1308
1309                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1310                         return anon_vma;
1311         }
1312         return NULL;
1313 }
1314
1315 /*
1316  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1317  * neighbouring vmas for a suitable anon_vma, before it goes off
1318  * to allocate a new anon_vma.  It checks because a repetitive
1319  * sequence of mprotects and faults may otherwise lead to distinct
1320  * anon_vmas being allocated, preventing vma merge in subsequent
1321  * mprotect.
1322  */
1323 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1324 {
1325         struct anon_vma *anon_vma = NULL;
1326
1327         /* Try next first. */
1328         if (vma->vm_next) {
1329                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1330                 if (anon_vma)
1331                         return anon_vma;
1332         }
1333
1334         /* Try prev next. */
1335         if (vma->vm_prev)
1336                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1337
1338         /*
1339          * We might reach here with anon_vma == NULL if we can't find
1340          * any reusable anon_vma.
1341          * There's no absolute need to look only at touching neighbours:
1342          * we could search further afield for "compatible" anon_vmas.
1343          * But it would probably just be a waste of time searching,
1344          * or lead to too many vmas hanging off the same anon_vma.
1345          * We're trying to allow mprotect remerging later on,
1346          * not trying to minimize memory used for anon_vmas.
1347          */
1348         return anon_vma;
1349 }
1350
1351 /*
1352  * If a hint addr is less than mmap_min_addr change hint to be as
1353  * low as possible but still greater than mmap_min_addr
1354  */
1355 static inline unsigned long round_hint_to_min(unsigned long hint)
1356 {
1357         hint &= PAGE_MASK;
1358         if (((void *)hint != NULL) &&
1359             (hint < mmap_min_addr))
1360                 return PAGE_ALIGN(mmap_min_addr);
1361         return hint;
1362 }
1363
1364 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1365                        unsigned long len)
1366 {
1367         unsigned long locked, lock_limit;
1368
1369         /*  mlock MCL_FUTURE? */
1370         if (flags & VM_LOCKED) {
1371                 locked = len >> PAGE_SHIFT;
1372                 locked += mm->locked_vm;
1373                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1374                 lock_limit >>= PAGE_SHIFT;
1375                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1376                         return -EAGAIN;
1377         }
1378         return 0;
1379 }
1380
1381 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1382 {
1383         if (S_ISREG(inode->i_mode))
1384                 return MAX_LFS_FILESIZE;
1385
1386         if (S_ISBLK(inode->i_mode))
1387                 return MAX_LFS_FILESIZE;
1388
1389         if (S_ISSOCK(inode->i_mode))
1390                 return MAX_LFS_FILESIZE;
1391
1392         /* Special "we do even unsigned file positions" case */
1393         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1394                 return 0;
1395
1396         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1397         return ULONG_MAX;
1398 }
1399
1400 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1401                                 unsigned long pgoff, unsigned long len)
1402 {
1403         u64 maxsize = file_mmap_size_max(file, inode);
1404
1405         if (maxsize && len > maxsize)
1406                 return false;
1407         maxsize -= len;
1408         if (pgoff > maxsize >> PAGE_SHIFT)
1409                 return false;
1410         return true;
1411 }
1412
1413 /*
1414  * The caller must write-lock current->mm->mmap_lock.
1415  */
1416 unsigned long do_mmap(struct file *file, unsigned long addr,
1417                         unsigned long len, unsigned long prot,
1418                         unsigned long flags, unsigned long pgoff,
1419                         unsigned long *populate, struct list_head *uf)
1420 {
1421         struct mm_struct *mm = current->mm;
1422         vm_flags_t vm_flags;
1423         int pkey = 0;
1424
1425         *populate = 0;
1426
1427         if (!len)
1428                 return -EINVAL;
1429
1430         /*
1431          * Does the application expect PROT_READ to imply PROT_EXEC?
1432          *
1433          * (the exception is when the underlying filesystem is noexec
1434          *  mounted, in which case we dont add PROT_EXEC.)
1435          */
1436         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1437                 if (!(file && path_noexec(&file->f_path)))
1438                         prot |= PROT_EXEC;
1439
1440         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1441         if (flags & MAP_FIXED_NOREPLACE)
1442                 flags |= MAP_FIXED;
1443
1444         if (!(flags & MAP_FIXED))
1445                 addr = round_hint_to_min(addr);
1446
1447         /* Careful about overflows.. */
1448         len = PAGE_ALIGN(len);
1449         if (!len)
1450                 return -ENOMEM;
1451
1452         /* offset overflow? */
1453         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1454                 return -EOVERFLOW;
1455
1456         /* Too many mappings? */
1457         if (mm->map_count > sysctl_max_map_count)
1458                 return -ENOMEM;
1459
1460         /* Obtain the address to map to. we verify (or select) it and ensure
1461          * that it represents a valid section of the address space.
1462          */
1463         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1464         if (IS_ERR_VALUE(addr))
1465                 return addr;
1466
1467         if (flags & MAP_FIXED_NOREPLACE) {
1468                 if (find_vma_intersection(mm, addr, addr + len))
1469                         return -EEXIST;
1470         }
1471
1472         if (prot == PROT_EXEC) {
1473                 pkey = execute_only_pkey(mm);
1474                 if (pkey < 0)
1475                         pkey = 0;
1476         }
1477
1478         /* Do simple checking here so the lower-level routines won't have
1479          * to. we assume access permissions have been handled by the open
1480          * of the memory object, so we don't do any here.
1481          */
1482         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1483                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1484
1485         if (flags & MAP_LOCKED)
1486                 if (!can_do_mlock())
1487                         return -EPERM;
1488
1489         if (mlock_future_check(mm, vm_flags, len))
1490                 return -EAGAIN;
1491
1492         if (file) {
1493                 struct inode *inode = file_inode(file);
1494                 unsigned long flags_mask;
1495
1496                 if (!file_mmap_ok(file, inode, pgoff, len))
1497                         return -EOVERFLOW;
1498
1499                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1500
1501                 switch (flags & MAP_TYPE) {
1502                 case MAP_SHARED:
1503                         /*
1504                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1505                          * flags. E.g. MAP_SYNC is dangerous to use with
1506                          * MAP_SHARED as you don't know which consistency model
1507                          * you will get. We silently ignore unsupported flags
1508                          * with MAP_SHARED to preserve backward compatibility.
1509                          */
1510                         flags &= LEGACY_MAP_MASK;
1511                         fallthrough;
1512                 case MAP_SHARED_VALIDATE:
1513                         if (flags & ~flags_mask)
1514                                 return -EOPNOTSUPP;
1515                         if (prot & PROT_WRITE) {
1516                                 if (!(file->f_mode & FMODE_WRITE))
1517                                         return -EACCES;
1518                                 if (IS_SWAPFILE(file->f_mapping->host))
1519                                         return -ETXTBSY;
1520                         }
1521
1522                         /*
1523                          * Make sure we don't allow writing to an append-only
1524                          * file..
1525                          */
1526                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1527                                 return -EACCES;
1528
1529                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1530                         if (!(file->f_mode & FMODE_WRITE))
1531                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1532                         fallthrough;
1533                 case MAP_PRIVATE:
1534                         if (!(file->f_mode & FMODE_READ))
1535                                 return -EACCES;
1536                         if (path_noexec(&file->f_path)) {
1537                                 if (vm_flags & VM_EXEC)
1538                                         return -EPERM;
1539                                 vm_flags &= ~VM_MAYEXEC;
1540                         }
1541
1542                         if (!file->f_op->mmap)
1543                                 return -ENODEV;
1544                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545                                 return -EINVAL;
1546                         break;
1547
1548                 default:
1549                         return -EINVAL;
1550                 }
1551         } else {
1552                 switch (flags & MAP_TYPE) {
1553                 case MAP_SHARED:
1554                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1555                                 return -EINVAL;
1556                         /*
1557                          * Ignore pgoff.
1558                          */
1559                         pgoff = 0;
1560                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1561                         break;
1562                 case MAP_PRIVATE:
1563                         /*
1564                          * Set pgoff according to addr for anon_vma.
1565                          */
1566                         pgoff = addr >> PAGE_SHIFT;
1567                         break;
1568                 default:
1569                         return -EINVAL;
1570                 }
1571         }
1572
1573         /*
1574          * Set 'VM_NORESERVE' if we should not account for the
1575          * memory use of this mapping.
1576          */
1577         if (flags & MAP_NORESERVE) {
1578                 /* We honor MAP_NORESERVE if allowed to overcommit */
1579                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1580                         vm_flags |= VM_NORESERVE;
1581
1582                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1583                 if (file && is_file_hugepages(file))
1584                         vm_flags |= VM_NORESERVE;
1585         }
1586
1587         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1588         if (!IS_ERR_VALUE(addr) &&
1589             ((vm_flags & VM_LOCKED) ||
1590              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1591                 *populate = len;
1592         return addr;
1593 }
1594
1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1596                               unsigned long prot, unsigned long flags,
1597                               unsigned long fd, unsigned long pgoff)
1598 {
1599         struct file *file = NULL;
1600         unsigned long retval;
1601
1602         if (!(flags & MAP_ANONYMOUS)) {
1603                 audit_mmap_fd(fd, flags);
1604                 file = fget(fd);
1605                 if (!file)
1606                         return -EBADF;
1607                 if (is_file_hugepages(file)) {
1608                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1609                 } else if (unlikely(flags & MAP_HUGETLB)) {
1610                         retval = -EINVAL;
1611                         goto out_fput;
1612                 }
1613         } else if (flags & MAP_HUGETLB) {
1614                 struct hstate *hs;
1615
1616                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1617                 if (!hs)
1618                         return -EINVAL;
1619
1620                 len = ALIGN(len, huge_page_size(hs));
1621                 /*
1622                  * VM_NORESERVE is used because the reservations will be
1623                  * taken when vm_ops->mmap() is called
1624                  */
1625                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1626                                 VM_NORESERVE,
1627                                 HUGETLB_ANONHUGE_INODE,
1628                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1629                 if (IS_ERR(file))
1630                         return PTR_ERR(file);
1631         }
1632
1633         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1634 out_fput:
1635         if (file)
1636                 fput(file);
1637         return retval;
1638 }
1639
1640 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1641                 unsigned long, prot, unsigned long, flags,
1642                 unsigned long, fd, unsigned long, pgoff)
1643 {
1644         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1645 }
1646
1647 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1648 struct mmap_arg_struct {
1649         unsigned long addr;
1650         unsigned long len;
1651         unsigned long prot;
1652         unsigned long flags;
1653         unsigned long fd;
1654         unsigned long offset;
1655 };
1656
1657 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1658 {
1659         struct mmap_arg_struct a;
1660
1661         if (copy_from_user(&a, arg, sizeof(a)))
1662                 return -EFAULT;
1663         if (offset_in_page(a.offset))
1664                 return -EINVAL;
1665
1666         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1667                                a.offset >> PAGE_SHIFT);
1668 }
1669 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1670
1671 /*
1672  * Some shared mappings will want the pages marked read-only
1673  * to track write events. If so, we'll downgrade vm_page_prot
1674  * to the private version (using protection_map[] without the
1675  * VM_SHARED bit).
1676  */
1677 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1678 {
1679         vm_flags_t vm_flags = vma->vm_flags;
1680         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1681
1682         /* If it was private or non-writable, the write bit is already clear */
1683         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1684                 return 0;
1685
1686         /* The backer wishes to know when pages are first written to? */
1687         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1688                 return 1;
1689
1690         /* The open routine did something to the protections that pgprot_modify
1691          * won't preserve? */
1692         if (pgprot_val(vm_page_prot) !=
1693             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1694                 return 0;
1695
1696         /* Do we need to track softdirty? */
1697         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1698                 return 1;
1699
1700         /* Specialty mapping? */
1701         if (vm_flags & VM_PFNMAP)
1702                 return 0;
1703
1704         /* Can the mapping track the dirty pages? */
1705         return vma->vm_file && vma->vm_file->f_mapping &&
1706                 mapping_can_writeback(vma->vm_file->f_mapping);
1707 }
1708
1709 /*
1710  * We account for memory if it's a private writeable mapping,
1711  * not hugepages and VM_NORESERVE wasn't set.
1712  */
1713 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1714 {
1715         /*
1716          * hugetlb has its own accounting separate from the core VM
1717          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1718          */
1719         if (file && is_file_hugepages(file))
1720                 return 0;
1721
1722         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1723 }
1724
1725 unsigned long mmap_region(struct file *file, unsigned long addr,
1726                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1727                 struct list_head *uf)
1728 {
1729         struct mm_struct *mm = current->mm;
1730         struct vm_area_struct *vma, *prev, *merge;
1731         int error;
1732         struct rb_node **rb_link, *rb_parent;
1733         unsigned long charged = 0;
1734
1735         /* Check against address space limit. */
1736         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1737                 unsigned long nr_pages;
1738
1739                 /*
1740                  * MAP_FIXED may remove pages of mappings that intersects with
1741                  * requested mapping. Account for the pages it would unmap.
1742                  */
1743                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1744
1745                 if (!may_expand_vm(mm, vm_flags,
1746                                         (len >> PAGE_SHIFT) - nr_pages))
1747                         return -ENOMEM;
1748         }
1749
1750         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1751         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1752                 return -ENOMEM;
1753         /*
1754          * Private writable mapping: check memory availability
1755          */
1756         if (accountable_mapping(file, vm_flags)) {
1757                 charged = len >> PAGE_SHIFT;
1758                 if (security_vm_enough_memory_mm(mm, charged))
1759                         return -ENOMEM;
1760                 vm_flags |= VM_ACCOUNT;
1761         }
1762
1763         /*
1764          * Can we just expand an old mapping?
1765          */
1766         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1767                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1768         if (vma)
1769                 goto out;
1770
1771         /*
1772          * Determine the object being mapped and call the appropriate
1773          * specific mapper. the address has already been validated, but
1774          * not unmapped, but the maps are removed from the list.
1775          */
1776         vma = vm_area_alloc(mm);
1777         if (!vma) {
1778                 error = -ENOMEM;
1779                 goto unacct_error;
1780         }
1781
1782         vma->vm_start = addr;
1783         vma->vm_end = addr + len;
1784         vma->vm_flags = vm_flags;
1785         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1786         vma->vm_pgoff = pgoff;
1787
1788         if (file) {
1789                 if (vm_flags & VM_SHARED) {
1790                         error = mapping_map_writable(file->f_mapping);
1791                         if (error)
1792                                 goto free_vma;
1793                 }
1794
1795                 vma->vm_file = get_file(file);
1796                 error = call_mmap(file, vma);
1797                 if (error)
1798                         goto unmap_and_free_vma;
1799
1800                 /* Can addr have changed??
1801                  *
1802                  * Answer: Yes, several device drivers can do it in their
1803                  *         f_op->mmap method. -DaveM
1804                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1805                  *      be updated for vma_link()
1806                  */
1807                 WARN_ON_ONCE(addr != vma->vm_start);
1808
1809                 addr = vma->vm_start;
1810
1811                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1812                  * as we may succeed this time.
1813                  */
1814                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1815                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1816                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1817                         if (merge) {
1818                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1819                                  * fput the vma->vm_file here or we would add an extra fput for file
1820                                  * and cause general protection fault ultimately.
1821                                  */
1822                                 fput(vma->vm_file);
1823                                 vm_area_free(vma);
1824                                 vma = merge;
1825                                 /* Update vm_flags to pick up the change. */
1826                                 vm_flags = vma->vm_flags;
1827                                 goto unmap_writable;
1828                         }
1829                 }
1830
1831                 vm_flags = vma->vm_flags;
1832         } else if (vm_flags & VM_SHARED) {
1833                 error = shmem_zero_setup(vma);
1834                 if (error)
1835                         goto free_vma;
1836         } else {
1837                 vma_set_anonymous(vma);
1838         }
1839
1840         /* Allow architectures to sanity-check the vm_flags */
1841         if (!arch_validate_flags(vma->vm_flags)) {
1842                 error = -EINVAL;
1843                 if (file)
1844                         goto unmap_and_free_vma;
1845                 else
1846                         goto free_vma;
1847         }
1848
1849         vma_link(mm, vma, prev, rb_link, rb_parent);
1850
1851         /*
1852          * vma_merge() calls khugepaged_enter_vma() either, the below
1853          * call covers the non-merge case.
1854          */
1855         khugepaged_enter_vma(vma, vma->vm_flags);
1856
1857         /* Once vma denies write, undo our temporary denial count */
1858 unmap_writable:
1859         if (file && vm_flags & VM_SHARED)
1860                 mapping_unmap_writable(file->f_mapping);
1861         file = vma->vm_file;
1862 out:
1863         perf_event_mmap(vma);
1864
1865         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1866         if (vm_flags & VM_LOCKED) {
1867                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1868                                         is_vm_hugetlb_page(vma) ||
1869                                         vma == get_gate_vma(current->mm))
1870                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1871                 else
1872                         mm->locked_vm += (len >> PAGE_SHIFT);
1873         }
1874
1875         if (file)
1876                 uprobe_mmap(vma);
1877
1878         /*
1879          * New (or expanded) vma always get soft dirty status.
1880          * Otherwise user-space soft-dirty page tracker won't
1881          * be able to distinguish situation when vma area unmapped,
1882          * then new mapped in-place (which must be aimed as
1883          * a completely new data area).
1884          */
1885         vma->vm_flags |= VM_SOFTDIRTY;
1886
1887         vma_set_page_prot(vma);
1888
1889         return addr;
1890
1891 unmap_and_free_vma:
1892         fput(vma->vm_file);
1893         vma->vm_file = NULL;
1894
1895         /* Undo any partial mapping done by a device driver. */
1896         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1897         charged = 0;
1898         if (vm_flags & VM_SHARED)
1899                 mapping_unmap_writable(file->f_mapping);
1900 free_vma:
1901         vm_area_free(vma);
1902 unacct_error:
1903         if (charged)
1904                 vm_unacct_memory(charged);
1905         return error;
1906 }
1907
1908 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1909 {
1910         /*
1911          * We implement the search by looking for an rbtree node that
1912          * immediately follows a suitable gap. That is,
1913          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1914          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1915          * - gap_end - gap_start >= length
1916          */
1917
1918         struct mm_struct *mm = current->mm;
1919         struct vm_area_struct *vma;
1920         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1921
1922         /* Adjust search length to account for worst case alignment overhead */
1923         length = info->length + info->align_mask;
1924         if (length < info->length)
1925                 return -ENOMEM;
1926
1927         /* Adjust search limits by the desired length */
1928         if (info->high_limit < length)
1929                 return -ENOMEM;
1930         high_limit = info->high_limit - length;
1931
1932         if (info->low_limit > high_limit)
1933                 return -ENOMEM;
1934         low_limit = info->low_limit + length;
1935
1936         /* Check if rbtree root looks promising */
1937         if (RB_EMPTY_ROOT(&mm->mm_rb))
1938                 goto check_highest;
1939         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1940         if (vma->rb_subtree_gap < length)
1941                 goto check_highest;
1942
1943         while (true) {
1944                 /* Visit left subtree if it looks promising */
1945                 gap_end = vm_start_gap(vma);
1946                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1947                         struct vm_area_struct *left =
1948                                 rb_entry(vma->vm_rb.rb_left,
1949                                          struct vm_area_struct, vm_rb);
1950                         if (left->rb_subtree_gap >= length) {
1951                                 vma = left;
1952                                 continue;
1953                         }
1954                 }
1955
1956                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1957 check_current:
1958                 /* Check if current node has a suitable gap */
1959                 if (gap_start > high_limit)
1960                         return -ENOMEM;
1961                 if (gap_end >= low_limit &&
1962                     gap_end > gap_start && gap_end - gap_start >= length)
1963                         goto found;
1964
1965                 /* Visit right subtree if it looks promising */
1966                 if (vma->vm_rb.rb_right) {
1967                         struct vm_area_struct *right =
1968                                 rb_entry(vma->vm_rb.rb_right,
1969                                          struct vm_area_struct, vm_rb);
1970                         if (right->rb_subtree_gap >= length) {
1971                                 vma = right;
1972                                 continue;
1973                         }
1974                 }
1975
1976                 /* Go back up the rbtree to find next candidate node */
1977                 while (true) {
1978                         struct rb_node *prev = &vma->vm_rb;
1979                         if (!rb_parent(prev))
1980                                 goto check_highest;
1981                         vma = rb_entry(rb_parent(prev),
1982                                        struct vm_area_struct, vm_rb);
1983                         if (prev == vma->vm_rb.rb_left) {
1984                                 gap_start = vm_end_gap(vma->vm_prev);
1985                                 gap_end = vm_start_gap(vma);
1986                                 goto check_current;
1987                         }
1988                 }
1989         }
1990
1991 check_highest:
1992         /* Check highest gap, which does not precede any rbtree node */
1993         gap_start = mm->highest_vm_end;
1994         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1995         if (gap_start > high_limit)
1996                 return -ENOMEM;
1997
1998 found:
1999         /* We found a suitable gap. Clip it with the original low_limit. */
2000         if (gap_start < info->low_limit)
2001                 gap_start = info->low_limit;
2002
2003         /* Adjust gap address to the desired alignment */
2004         gap_start += (info->align_offset - gap_start) & info->align_mask;
2005
2006         VM_BUG_ON(gap_start + info->length > info->high_limit);
2007         VM_BUG_ON(gap_start + info->length > gap_end);
2008         return gap_start;
2009 }
2010
2011 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2012 {
2013         struct mm_struct *mm = current->mm;
2014         struct vm_area_struct *vma;
2015         unsigned long length, low_limit, high_limit, gap_start, gap_end;
2016
2017         /* Adjust search length to account for worst case alignment overhead */
2018         length = info->length + info->align_mask;
2019         if (length < info->length)
2020                 return -ENOMEM;
2021
2022         /*
2023          * Adjust search limits by the desired length.
2024          * See implementation comment at top of unmapped_area().
2025          */
2026         gap_end = info->high_limit;
2027         if (gap_end < length)
2028                 return -ENOMEM;
2029         high_limit = gap_end - length;
2030
2031         if (info->low_limit > high_limit)
2032                 return -ENOMEM;
2033         low_limit = info->low_limit + length;
2034
2035         /* Check highest gap, which does not precede any rbtree node */
2036         gap_start = mm->highest_vm_end;
2037         if (gap_start <= high_limit)
2038                 goto found_highest;
2039
2040         /* Check if rbtree root looks promising */
2041         if (RB_EMPTY_ROOT(&mm->mm_rb))
2042                 return -ENOMEM;
2043         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2044         if (vma->rb_subtree_gap < length)
2045                 return -ENOMEM;
2046
2047         while (true) {
2048                 /* Visit right subtree if it looks promising */
2049                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2050                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2051                         struct vm_area_struct *right =
2052                                 rb_entry(vma->vm_rb.rb_right,
2053                                          struct vm_area_struct, vm_rb);
2054                         if (right->rb_subtree_gap >= length) {
2055                                 vma = right;
2056                                 continue;
2057                         }
2058                 }
2059
2060 check_current:
2061                 /* Check if current node has a suitable gap */
2062                 gap_end = vm_start_gap(vma);
2063                 if (gap_end < low_limit)
2064                         return -ENOMEM;
2065                 if (gap_start <= high_limit &&
2066                     gap_end > gap_start && gap_end - gap_start >= length)
2067                         goto found;
2068
2069                 /* Visit left subtree if it looks promising */
2070                 if (vma->vm_rb.rb_left) {
2071                         struct vm_area_struct *left =
2072                                 rb_entry(vma->vm_rb.rb_left,
2073                                          struct vm_area_struct, vm_rb);
2074                         if (left->rb_subtree_gap >= length) {
2075                                 vma = left;
2076                                 continue;
2077                         }
2078                 }
2079
2080                 /* Go back up the rbtree to find next candidate node */
2081                 while (true) {
2082                         struct rb_node *prev = &vma->vm_rb;
2083                         if (!rb_parent(prev))
2084                                 return -ENOMEM;
2085                         vma = rb_entry(rb_parent(prev),
2086                                        struct vm_area_struct, vm_rb);
2087                         if (prev == vma->vm_rb.rb_right) {
2088                                 gap_start = vma->vm_prev ?
2089                                         vm_end_gap(vma->vm_prev) : 0;
2090                                 goto check_current;
2091                         }
2092                 }
2093         }
2094
2095 found:
2096         /* We found a suitable gap. Clip it with the original high_limit. */
2097         if (gap_end > info->high_limit)
2098                 gap_end = info->high_limit;
2099
2100 found_highest:
2101         /* Compute highest gap address at the desired alignment */
2102         gap_end -= info->length;
2103         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2104
2105         VM_BUG_ON(gap_end < info->low_limit);
2106         VM_BUG_ON(gap_end < gap_start);
2107         return gap_end;
2108 }
2109
2110 /*
2111  * Search for an unmapped address range.
2112  *
2113  * We are looking for a range that:
2114  * - does not intersect with any VMA;
2115  * - is contained within the [low_limit, high_limit) interval;
2116  * - is at least the desired size.
2117  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2118  */
2119 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2120 {
2121         unsigned long addr;
2122
2123         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2124                 addr = unmapped_area_topdown(info);
2125         else
2126                 addr = unmapped_area(info);
2127
2128         trace_vm_unmapped_area(addr, info);
2129         return addr;
2130 }
2131
2132 /* Get an address range which is currently unmapped.
2133  * For shmat() with addr=0.
2134  *
2135  * Ugly calling convention alert:
2136  * Return value with the low bits set means error value,
2137  * ie
2138  *      if (ret & ~PAGE_MASK)
2139  *              error = ret;
2140  *
2141  * This function "knows" that -ENOMEM has the bits set.
2142  */
2143 unsigned long
2144 generic_get_unmapped_area(struct file *filp, unsigned long addr,
2145                           unsigned long len, unsigned long pgoff,
2146                           unsigned long flags)
2147 {
2148         struct mm_struct *mm = current->mm;
2149         struct vm_area_struct *vma, *prev;
2150         struct vm_unmapped_area_info info;
2151         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
2152
2153         if (len > mmap_end - mmap_min_addr)
2154                 return -ENOMEM;
2155
2156         if (flags & MAP_FIXED)
2157                 return addr;
2158
2159         if (addr) {
2160                 addr = PAGE_ALIGN(addr);
2161                 vma = find_vma_prev(mm, addr, &prev);
2162                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2163                     (!vma || addr + len <= vm_start_gap(vma)) &&
2164                     (!prev || addr >= vm_end_gap(prev)))
2165                         return addr;
2166         }
2167
2168         info.flags = 0;
2169         info.length = len;
2170         info.low_limit = mm->mmap_base;
2171         info.high_limit = mmap_end;
2172         info.align_mask = 0;
2173         info.align_offset = 0;
2174         return vm_unmapped_area(&info);
2175 }
2176
2177 #ifndef HAVE_ARCH_UNMAPPED_AREA
2178 unsigned long
2179 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2180                        unsigned long len, unsigned long pgoff,
2181                        unsigned long flags)
2182 {
2183         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
2184 }
2185 #endif
2186
2187 /*
2188  * This mmap-allocator allocates new areas top-down from below the
2189  * stack's low limit (the base):
2190  */
2191 unsigned long
2192 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2193                                   unsigned long len, unsigned long pgoff,
2194                                   unsigned long flags)
2195 {
2196         struct vm_area_struct *vma, *prev;
2197         struct mm_struct *mm = current->mm;
2198         struct vm_unmapped_area_info info;
2199         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
2200
2201         /* requested length too big for entire address space */
2202         if (len > mmap_end - mmap_min_addr)
2203                 return -ENOMEM;
2204
2205         if (flags & MAP_FIXED)
2206                 return addr;
2207
2208         /* requesting a specific address */
2209         if (addr) {
2210                 addr = PAGE_ALIGN(addr);
2211                 vma = find_vma_prev(mm, addr, &prev);
2212                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2213                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2214                                 (!prev || addr >= vm_end_gap(prev)))
2215                         return addr;
2216         }
2217
2218         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2219         info.length = len;
2220         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2221         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2222         info.align_mask = 0;
2223         info.align_offset = 0;
2224         addr = vm_unmapped_area(&info);
2225
2226         /*
2227          * A failed mmap() very likely causes application failure,
2228          * so fall back to the bottom-up function here. This scenario
2229          * can happen with large stack limits and large mmap()
2230          * allocations.
2231          */
2232         if (offset_in_page(addr)) {
2233                 VM_BUG_ON(addr != -ENOMEM);
2234                 info.flags = 0;
2235                 info.low_limit = TASK_UNMAPPED_BASE;
2236                 info.high_limit = mmap_end;
2237                 addr = vm_unmapped_area(&info);
2238         }
2239
2240         return addr;
2241 }
2242
2243 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2244 unsigned long
2245 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2246                                unsigned long len, unsigned long pgoff,
2247                                unsigned long flags)
2248 {
2249         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
2250 }
2251 #endif
2252
2253 unsigned long
2254 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2255                 unsigned long pgoff, unsigned long flags)
2256 {
2257         unsigned long (*get_area)(struct file *, unsigned long,
2258                                   unsigned long, unsigned long, unsigned long);
2259
2260         unsigned long error = arch_mmap_check(addr, len, flags);
2261         if (error)
2262                 return error;
2263
2264         /* Careful about overflows.. */
2265         if (len > TASK_SIZE)
2266                 return -ENOMEM;
2267
2268         get_area = current->mm->get_unmapped_area;
2269         if (file) {
2270                 if (file->f_op->get_unmapped_area)
2271                         get_area = file->f_op->get_unmapped_area;
2272         } else if (flags & MAP_SHARED) {
2273                 /*
2274                  * mmap_region() will call shmem_zero_setup() to create a file,
2275                  * so use shmem's get_unmapped_area in case it can be huge.
2276                  * do_mmap() will clear pgoff, so match alignment.
2277                  */
2278                 pgoff = 0;
2279                 get_area = shmem_get_unmapped_area;
2280         }
2281
2282         addr = get_area(file, addr, len, pgoff, flags);
2283         if (IS_ERR_VALUE(addr))
2284                 return addr;
2285
2286         if (addr > TASK_SIZE - len)
2287                 return -ENOMEM;
2288         if (offset_in_page(addr))
2289                 return -EINVAL;
2290
2291         error = security_mmap_addr(addr);
2292         return error ? error : addr;
2293 }
2294
2295 EXPORT_SYMBOL(get_unmapped_area);
2296
2297 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2298 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2299 {
2300         struct rb_node *rb_node;
2301         struct vm_area_struct *vma;
2302
2303         mmap_assert_locked(mm);
2304         /* Check the cache first. */
2305         vma = vmacache_find(mm, addr);
2306         if (likely(vma))
2307                 return vma;
2308
2309         rb_node = mm->mm_rb.rb_node;
2310
2311         while (rb_node) {
2312                 struct vm_area_struct *tmp;
2313
2314                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2315
2316                 if (tmp->vm_end > addr) {
2317                         vma = tmp;
2318                         if (tmp->vm_start <= addr)
2319                                 break;
2320                         rb_node = rb_node->rb_left;
2321                 } else
2322                         rb_node = rb_node->rb_right;
2323         }
2324
2325         if (vma)
2326                 vmacache_update(addr, vma);
2327         return vma;
2328 }
2329
2330 EXPORT_SYMBOL(find_vma);
2331
2332 /*
2333  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2334  */
2335 struct vm_area_struct *
2336 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2337                         struct vm_area_struct **pprev)
2338 {
2339         struct vm_area_struct *vma;
2340
2341         vma = find_vma(mm, addr);
2342         if (vma) {
2343                 *pprev = vma->vm_prev;
2344         } else {
2345                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2346
2347                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2348         }
2349         return vma;
2350 }
2351
2352 /*
2353  * Verify that the stack growth is acceptable and
2354  * update accounting. This is shared with both the
2355  * grow-up and grow-down cases.
2356  */
2357 static int acct_stack_growth(struct vm_area_struct *vma,
2358                              unsigned long size, unsigned long grow)
2359 {
2360         struct mm_struct *mm = vma->vm_mm;
2361         unsigned long new_start;
2362
2363         /* address space limit tests */
2364         if (!may_expand_vm(mm, vma->vm_flags, grow))
2365                 return -ENOMEM;
2366
2367         /* Stack limit test */
2368         if (size > rlimit(RLIMIT_STACK))
2369                 return -ENOMEM;
2370
2371         /* mlock limit tests */
2372         if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
2373                 return -ENOMEM;
2374
2375         /* Check to ensure the stack will not grow into a hugetlb-only region */
2376         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2377                         vma->vm_end - size;
2378         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2379                 return -EFAULT;
2380
2381         /*
2382          * Overcommit..  This must be the final test, as it will
2383          * update security statistics.
2384          */
2385         if (security_vm_enough_memory_mm(mm, grow))
2386                 return -ENOMEM;
2387
2388         return 0;
2389 }
2390
2391 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2392 /*
2393  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2394  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2395  */
2396 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2397 {
2398         struct mm_struct *mm = vma->vm_mm;
2399         struct vm_area_struct *next;
2400         unsigned long gap_addr;
2401         int error = 0;
2402
2403         if (!(vma->vm_flags & VM_GROWSUP))
2404                 return -EFAULT;
2405
2406         /* Guard against exceeding limits of the address space. */
2407         address &= PAGE_MASK;
2408         if (address >= (TASK_SIZE & PAGE_MASK))
2409                 return -ENOMEM;
2410         address += PAGE_SIZE;
2411
2412         /* Enforce stack_guard_gap */
2413         gap_addr = address + stack_guard_gap;
2414
2415         /* Guard against overflow */
2416         if (gap_addr < address || gap_addr > TASK_SIZE)
2417                 gap_addr = TASK_SIZE;
2418
2419         next = vma->vm_next;
2420         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2421                 if (!(next->vm_flags & VM_GROWSUP))
2422                         return -ENOMEM;
2423                 /* Check that both stack segments have the same anon_vma? */
2424         }
2425
2426         /* We must make sure the anon_vma is allocated. */
2427         if (unlikely(anon_vma_prepare(vma)))
2428                 return -ENOMEM;
2429
2430         /*
2431          * vma->vm_start/vm_end cannot change under us because the caller
2432          * is required to hold the mmap_lock in read mode.  We need the
2433          * anon_vma lock to serialize against concurrent expand_stacks.
2434          */
2435         anon_vma_lock_write(vma->anon_vma);
2436
2437         /* Somebody else might have raced and expanded it already */
2438         if (address > vma->vm_end) {
2439                 unsigned long size, grow;
2440
2441                 size = address - vma->vm_start;
2442                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2443
2444                 error = -ENOMEM;
2445                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2446                         error = acct_stack_growth(vma, size, grow);
2447                         if (!error) {
2448                                 /*
2449                                  * vma_gap_update() doesn't support concurrent
2450                                  * updates, but we only hold a shared mmap_lock
2451                                  * lock here, so we need to protect against
2452                                  * concurrent vma expansions.
2453                                  * anon_vma_lock_write() doesn't help here, as
2454                                  * we don't guarantee that all growable vmas
2455                                  * in a mm share the same root anon vma.
2456                                  * So, we reuse mm->page_table_lock to guard
2457                                  * against concurrent vma expansions.
2458                                  */
2459                                 spin_lock(&mm->page_table_lock);
2460                                 if (vma->vm_flags & VM_LOCKED)
2461                                         mm->locked_vm += grow;
2462                                 vm_stat_account(mm, vma->vm_flags, grow);
2463                                 anon_vma_interval_tree_pre_update_vma(vma);
2464                                 vma->vm_end = address;
2465                                 anon_vma_interval_tree_post_update_vma(vma);
2466                                 if (vma->vm_next)
2467                                         vma_gap_update(vma->vm_next);
2468                                 else
2469                                         mm->highest_vm_end = vm_end_gap(vma);
2470                                 spin_unlock(&mm->page_table_lock);
2471
2472                                 perf_event_mmap(vma);
2473                         }
2474                 }
2475         }
2476         anon_vma_unlock_write(vma->anon_vma);
2477         khugepaged_enter_vma(vma, vma->vm_flags);
2478         validate_mm(mm);
2479         return error;
2480 }
2481 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2482
2483 /*
2484  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2485  */
2486 int expand_downwards(struct vm_area_struct *vma,
2487                                    unsigned long address)
2488 {
2489         struct mm_struct *mm = vma->vm_mm;
2490         struct vm_area_struct *prev;
2491         int error = 0;
2492
2493         address &= PAGE_MASK;
2494         if (address < mmap_min_addr)
2495                 return -EPERM;
2496
2497         /* Enforce stack_guard_gap */
2498         prev = vma->vm_prev;
2499         /* Check that both stack segments have the same anon_vma? */
2500         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2501                         vma_is_accessible(prev)) {
2502                 if (address - prev->vm_end < stack_guard_gap)
2503                         return -ENOMEM;
2504         }
2505
2506         /* We must make sure the anon_vma is allocated. */
2507         if (unlikely(anon_vma_prepare(vma)))
2508                 return -ENOMEM;
2509
2510         /*
2511          * vma->vm_start/vm_end cannot change under us because the caller
2512          * is required to hold the mmap_lock in read mode.  We need the
2513          * anon_vma lock to serialize against concurrent expand_stacks.
2514          */
2515         anon_vma_lock_write(vma->anon_vma);
2516
2517         /* Somebody else might have raced and expanded it already */
2518         if (address < vma->vm_start) {
2519                 unsigned long size, grow;
2520
2521                 size = vma->vm_end - address;
2522                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2523
2524                 error = -ENOMEM;
2525                 if (grow <= vma->vm_pgoff) {
2526                         error = acct_stack_growth(vma, size, grow);
2527                         if (!error) {
2528                                 /*
2529                                  * vma_gap_update() doesn't support concurrent
2530                                  * updates, but we only hold a shared mmap_lock
2531                                  * lock here, so we need to protect against
2532                                  * concurrent vma expansions.
2533                                  * anon_vma_lock_write() doesn't help here, as
2534                                  * we don't guarantee that all growable vmas
2535                                  * in a mm share the same root anon vma.
2536                                  * So, we reuse mm->page_table_lock to guard
2537                                  * against concurrent vma expansions.
2538                                  */
2539                                 spin_lock(&mm->page_table_lock);
2540                                 if (vma->vm_flags & VM_LOCKED)
2541                                         mm->locked_vm += grow;
2542                                 vm_stat_account(mm, vma->vm_flags, grow);
2543                                 anon_vma_interval_tree_pre_update_vma(vma);
2544                                 vma->vm_start = address;
2545                                 vma->vm_pgoff -= grow;
2546                                 anon_vma_interval_tree_post_update_vma(vma);
2547                                 vma_gap_update(vma);
2548                                 spin_unlock(&mm->page_table_lock);
2549
2550                                 perf_event_mmap(vma);
2551                         }
2552                 }
2553         }
2554         anon_vma_unlock_write(vma->anon_vma);
2555         khugepaged_enter_vma(vma, vma->vm_flags);
2556         validate_mm(mm);
2557         return error;
2558 }
2559
2560 /* enforced gap between the expanding stack and other mappings. */
2561 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2562
2563 static int __init cmdline_parse_stack_guard_gap(char *p)
2564 {
2565         unsigned long val;
2566         char *endptr;
2567
2568         val = simple_strtoul(p, &endptr, 10);
2569         if (!*endptr)
2570                 stack_guard_gap = val << PAGE_SHIFT;
2571
2572         return 1;
2573 }
2574 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2575
2576 #ifdef CONFIG_STACK_GROWSUP
2577 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2578 {
2579         return expand_upwards(vma, address);
2580 }
2581
2582 struct vm_area_struct *
2583 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2584 {
2585         struct vm_area_struct *vma, *prev;
2586
2587         addr &= PAGE_MASK;
2588         vma = find_vma_prev(mm, addr, &prev);
2589         if (vma && (vma->vm_start <= addr))
2590                 return vma;
2591         /* don't alter vm_end if the coredump is running */
2592         if (!prev || expand_stack(prev, addr))
2593                 return NULL;
2594         if (prev->vm_flags & VM_LOCKED)
2595                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2596         return prev;
2597 }
2598 #else
2599 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2600 {
2601         return expand_downwards(vma, address);
2602 }
2603
2604 struct vm_area_struct *
2605 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2606 {
2607         struct vm_area_struct *vma;
2608         unsigned long start;
2609
2610         addr &= PAGE_MASK;
2611         vma = find_vma(mm, addr);
2612         if (!vma)
2613                 return NULL;
2614         if (vma->vm_start <= addr)
2615                 return vma;
2616         if (!(vma->vm_flags & VM_GROWSDOWN))
2617                 return NULL;
2618         start = vma->vm_start;
2619         if (expand_stack(vma, addr))
2620                 return NULL;
2621         if (vma->vm_flags & VM_LOCKED)
2622                 populate_vma_page_range(vma, addr, start, NULL);
2623         return vma;
2624 }
2625 #endif
2626
2627 EXPORT_SYMBOL_GPL(find_extend_vma);
2628
2629 /*
2630  * Ok - we have the memory areas we should free on the vma list,
2631  * so release them, and do the vma updates.
2632  *
2633  * Called with the mm semaphore held.
2634  */
2635 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2636 {
2637         unsigned long nr_accounted = 0;
2638
2639         /* Update high watermark before we lower total_vm */
2640         update_hiwater_vm(mm);
2641         do {
2642                 long nrpages = vma_pages(vma);
2643
2644                 if (vma->vm_flags & VM_ACCOUNT)
2645                         nr_accounted += nrpages;
2646                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2647                 vma = remove_vma(vma);
2648         } while (vma);
2649         vm_unacct_memory(nr_accounted);
2650         validate_mm(mm);
2651 }
2652
2653 /*
2654  * Get rid of page table information in the indicated region.
2655  *
2656  * Called with the mm semaphore held.
2657  */
2658 static void unmap_region(struct mm_struct *mm,
2659                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2660                 unsigned long start, unsigned long end)
2661 {
2662         struct vm_area_struct *next = vma_next(mm, prev);
2663         struct mmu_gather tlb;
2664
2665         lru_add_drain();
2666         tlb_gather_mmu(&tlb, mm);
2667         update_hiwater_rss(mm);
2668         unmap_vmas(&tlb, vma, start, end);
2669         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2670                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2671         tlb_finish_mmu(&tlb);
2672 }
2673
2674 /*
2675  * Create a list of vma's touched by the unmap, removing them from the mm's
2676  * vma list as we go..
2677  */
2678 static bool
2679 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2680         struct vm_area_struct *prev, unsigned long end)
2681 {
2682         struct vm_area_struct **insertion_point;
2683         struct vm_area_struct *tail_vma = NULL;
2684
2685         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2686         vma->vm_prev = NULL;
2687         do {
2688                 vma_rb_erase(vma, &mm->mm_rb);
2689                 if (vma->vm_flags & VM_LOCKED)
2690                         mm->locked_vm -= vma_pages(vma);
2691                 mm->map_count--;
2692                 tail_vma = vma;
2693                 vma = vma->vm_next;
2694         } while (vma && vma->vm_start < end);
2695         *insertion_point = vma;
2696         if (vma) {
2697                 vma->vm_prev = prev;
2698                 vma_gap_update(vma);
2699         } else
2700                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2701         tail_vma->vm_next = NULL;
2702
2703         /* Kill the cache */
2704         vmacache_invalidate(mm);
2705
2706         /*
2707          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2708          * VM_GROWSUP VMA. Such VMAs can change their size under
2709          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2710          */
2711         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2712                 return false;
2713         if (prev && (prev->vm_flags & VM_GROWSUP))
2714                 return false;
2715         return true;
2716 }
2717
2718 /*
2719  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2720  * has already been checked or doesn't make sense to fail.
2721  */
2722 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2723                 unsigned long addr, int new_below)
2724 {
2725         struct vm_area_struct *new;
2726         int err;
2727
2728         if (vma->vm_ops && vma->vm_ops->may_split) {
2729                 err = vma->vm_ops->may_split(vma, addr);
2730                 if (err)
2731                         return err;
2732         }
2733
2734         new = vm_area_dup(vma);
2735         if (!new)
2736                 return -ENOMEM;
2737
2738         if (new_below)
2739                 new->vm_end = addr;
2740         else {
2741                 new->vm_start = addr;
2742                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2743         }
2744
2745         err = vma_dup_policy(vma, new);
2746         if (err)
2747                 goto out_free_vma;
2748
2749         err = anon_vma_clone(new, vma);
2750         if (err)
2751                 goto out_free_mpol;
2752
2753         if (new->vm_file)
2754                 get_file(new->vm_file);
2755
2756         if (new->vm_ops && new->vm_ops->open)
2757                 new->vm_ops->open(new);
2758
2759         if (new_below)
2760                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2761                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2762         else
2763                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2764
2765         /* Success. */
2766         if (!err)
2767                 return 0;
2768
2769         /* Clean everything up if vma_adjust failed. */
2770         if (new->vm_ops && new->vm_ops->close)
2771                 new->vm_ops->close(new);
2772         if (new->vm_file)
2773                 fput(new->vm_file);
2774         unlink_anon_vmas(new);
2775  out_free_mpol:
2776         mpol_put(vma_policy(new));
2777  out_free_vma:
2778         vm_area_free(new);
2779         return err;
2780 }
2781
2782 /*
2783  * Split a vma into two pieces at address 'addr', a new vma is allocated
2784  * either for the first part or the tail.
2785  */
2786 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2787               unsigned long addr, int new_below)
2788 {
2789         if (mm->map_count >= sysctl_max_map_count)
2790                 return -ENOMEM;
2791
2792         return __split_vma(mm, vma, addr, new_below);
2793 }
2794
2795 /* Munmap is split into 2 main parts -- this part which finds
2796  * what needs doing, and the areas themselves, which do the
2797  * work.  This now handles partial unmappings.
2798  * Jeremy Fitzhardinge <jeremy@goop.org>
2799  */
2800 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2801                 struct list_head *uf, bool downgrade)
2802 {
2803         unsigned long end;
2804         struct vm_area_struct *vma, *prev, *last;
2805
2806         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2807                 return -EINVAL;
2808
2809         len = PAGE_ALIGN(len);
2810         end = start + len;
2811         if (len == 0)
2812                 return -EINVAL;
2813
2814         /*
2815          * arch_unmap() might do unmaps itself.  It must be called
2816          * and finish any rbtree manipulation before this code
2817          * runs and also starts to manipulate the rbtree.
2818          */
2819         arch_unmap(mm, start, end);
2820
2821         /* Find the first overlapping VMA where start < vma->vm_end */
2822         vma = find_vma_intersection(mm, start, end);
2823         if (!vma)
2824                 return 0;
2825         prev = vma->vm_prev;
2826
2827         /*
2828          * If we need to split any vma, do it now to save pain later.
2829          *
2830          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2831          * unmapped vm_area_struct will remain in use: so lower split_vma
2832          * places tmp vma above, and higher split_vma places tmp vma below.
2833          */
2834         if (start > vma->vm_start) {
2835                 int error;
2836
2837                 /*
2838                  * Make sure that map_count on return from munmap() will
2839                  * not exceed its limit; but let map_count go just above
2840                  * its limit temporarily, to help free resources as expected.
2841                  */
2842                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2843                         return -ENOMEM;
2844
2845                 error = __split_vma(mm, vma, start, 0);
2846                 if (error)
2847                         return error;
2848                 prev = vma;
2849         }
2850
2851         /* Does it split the last one? */
2852         last = find_vma(mm, end);
2853         if (last && end > last->vm_start) {
2854                 int error = __split_vma(mm, last, end, 1);
2855                 if (error)
2856                         return error;
2857         }
2858         vma = vma_next(mm, prev);
2859
2860         if (unlikely(uf)) {
2861                 /*
2862                  * If userfaultfd_unmap_prep returns an error the vmas
2863                  * will remain split, but userland will get a
2864                  * highly unexpected error anyway. This is no
2865                  * different than the case where the first of the two
2866                  * __split_vma fails, but we don't undo the first
2867                  * split, despite we could. This is unlikely enough
2868                  * failure that it's not worth optimizing it for.
2869                  */
2870                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2871                 if (error)
2872                         return error;
2873         }
2874
2875         /* Detach vmas from rbtree */
2876         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2877                 downgrade = false;
2878
2879         if (downgrade)
2880                 mmap_write_downgrade(mm);
2881
2882         unmap_region(mm, vma, prev, start, end);
2883
2884         /* Fix up all other VM information */
2885         remove_vma_list(mm, vma);
2886
2887         return downgrade ? 1 : 0;
2888 }
2889
2890 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2891               struct list_head *uf)
2892 {
2893         return __do_munmap(mm, start, len, uf, false);
2894 }
2895
2896 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2897 {
2898         int ret;
2899         struct mm_struct *mm = current->mm;
2900         LIST_HEAD(uf);
2901
2902         if (mmap_write_lock_killable(mm))
2903                 return -EINTR;
2904
2905         ret = __do_munmap(mm, start, len, &uf, downgrade);
2906         /*
2907          * Returning 1 indicates mmap_lock is downgraded.
2908          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2909          * it to 0 before return.
2910          */
2911         if (ret == 1) {
2912                 mmap_read_unlock(mm);
2913                 ret = 0;
2914         } else
2915                 mmap_write_unlock(mm);
2916
2917         userfaultfd_unmap_complete(mm, &uf);
2918         return ret;
2919 }
2920
2921 int vm_munmap(unsigned long start, size_t len)
2922 {
2923         return __vm_munmap(start, len, false);
2924 }
2925 EXPORT_SYMBOL(vm_munmap);
2926
2927 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2928 {
2929         addr = untagged_addr(addr);
2930         return __vm_munmap(addr, len, true);
2931 }
2932
2933
2934 /*
2935  * Emulation of deprecated remap_file_pages() syscall.
2936  */
2937 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2938                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2939 {
2940
2941         struct mm_struct *mm = current->mm;
2942         struct vm_area_struct *vma;
2943         unsigned long populate = 0;
2944         unsigned long ret = -EINVAL;
2945         struct file *file;
2946
2947         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2948                      current->comm, current->pid);
2949
2950         if (prot)
2951                 return ret;
2952         start = start & PAGE_MASK;
2953         size = size & PAGE_MASK;
2954
2955         if (start + size <= start)
2956                 return ret;
2957
2958         /* Does pgoff wrap? */
2959         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2960                 return ret;
2961
2962         if (mmap_write_lock_killable(mm))
2963                 return -EINTR;
2964
2965         vma = vma_lookup(mm, start);
2966
2967         if (!vma || !(vma->vm_flags & VM_SHARED))
2968                 goto out;
2969
2970         if (start + size > vma->vm_end) {
2971                 struct vm_area_struct *next;
2972
2973                 for (next = vma->vm_next; next; next = next->vm_next) {
2974                         /* hole between vmas ? */
2975                         if (next->vm_start != next->vm_prev->vm_end)
2976                                 goto out;
2977
2978                         if (next->vm_file != vma->vm_file)
2979                                 goto out;
2980
2981                         if (next->vm_flags != vma->vm_flags)
2982                                 goto out;
2983
2984                         if (start + size <= next->vm_end)
2985                                 break;
2986                 }
2987
2988                 if (!next)
2989                         goto out;
2990         }
2991
2992         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2993         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2994         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2995
2996         flags &= MAP_NONBLOCK;
2997         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2998         if (vma->vm_flags & VM_LOCKED)
2999                 flags |= MAP_LOCKED;
3000
3001         file = get_file(vma->vm_file);
3002         ret = do_mmap(vma->vm_file, start, size,
3003                         prot, flags, pgoff, &populate, NULL);
3004         fput(file);
3005 out:
3006         mmap_write_unlock(mm);
3007         if (populate)
3008                 mm_populate(ret, populate);
3009         if (!IS_ERR_VALUE(ret))
3010                 ret = 0;
3011         return ret;
3012 }
3013
3014 /*
3015  *  this is really a simplified "do_mmap".  it only handles
3016  *  anonymous maps.  eventually we may be able to do some
3017  *  brk-specific accounting here.
3018  */
3019 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3020 {
3021         struct mm_struct *mm = current->mm;
3022         struct vm_area_struct *vma, *prev;
3023         struct rb_node **rb_link, *rb_parent;
3024         pgoff_t pgoff = addr >> PAGE_SHIFT;
3025         int error;
3026         unsigned long mapped_addr;
3027
3028         /* Until we need other flags, refuse anything except VM_EXEC. */
3029         if ((flags & (~VM_EXEC)) != 0)
3030                 return -EINVAL;
3031         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3032
3033         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3034         if (IS_ERR_VALUE(mapped_addr))
3035                 return mapped_addr;
3036
3037         error = mlock_future_check(mm, mm->def_flags, len);
3038         if (error)
3039                 return error;
3040
3041         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3042         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3043                 return -ENOMEM;
3044
3045         /* Check against address space limits *after* clearing old maps... */
3046         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3047                 return -ENOMEM;
3048
3049         if (mm->map_count > sysctl_max_map_count)
3050                 return -ENOMEM;
3051
3052         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3053                 return -ENOMEM;
3054
3055         /* Can we just expand an old private anonymous mapping? */
3056         vma = vma_merge(mm, prev, addr, addr + len, flags,
3057                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3058         if (vma)
3059                 goto out;
3060
3061         /*
3062          * create a vma struct for an anonymous mapping
3063          */
3064         vma = vm_area_alloc(mm);
3065         if (!vma) {
3066                 vm_unacct_memory(len >> PAGE_SHIFT);
3067                 return -ENOMEM;
3068         }
3069
3070         vma_set_anonymous(vma);
3071         vma->vm_start = addr;
3072         vma->vm_end = addr + len;
3073         vma->vm_pgoff = pgoff;
3074         vma->vm_flags = flags;
3075         vma->vm_page_prot = vm_get_page_prot(flags);
3076         vma_link(mm, vma, prev, rb_link, rb_parent);
3077 out:
3078         perf_event_mmap(vma);
3079         mm->total_vm += len >> PAGE_SHIFT;
3080         mm->data_vm += len >> PAGE_SHIFT;
3081         if (flags & VM_LOCKED)
3082                 mm->locked_vm += (len >> PAGE_SHIFT);
3083         vma->vm_flags |= VM_SOFTDIRTY;
3084         return 0;
3085 }
3086
3087 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3088 {
3089         struct mm_struct *mm = current->mm;
3090         unsigned long len;
3091         int ret;
3092         bool populate;
3093         LIST_HEAD(uf);
3094
3095         len = PAGE_ALIGN(request);
3096         if (len < request)
3097                 return -ENOMEM;
3098         if (!len)
3099                 return 0;
3100
3101         if (mmap_write_lock_killable(mm))
3102                 return -EINTR;
3103
3104         ret = do_brk_flags(addr, len, flags, &uf);
3105         populate = ((mm->def_flags & VM_LOCKED) != 0);
3106         mmap_write_unlock(mm);
3107         userfaultfd_unmap_complete(mm, &uf);
3108         if (populate && !ret)
3109                 mm_populate(addr, len);
3110         return ret;
3111 }
3112 EXPORT_SYMBOL(vm_brk_flags);
3113
3114 int vm_brk(unsigned long addr, unsigned long len)
3115 {
3116         return vm_brk_flags(addr, len, 0);
3117 }
3118 EXPORT_SYMBOL(vm_brk);
3119
3120 /* Release all mmaps. */
3121 void exit_mmap(struct mm_struct *mm)
3122 {
3123         struct mmu_gather tlb;
3124         struct vm_area_struct *vma;
3125         unsigned long nr_accounted = 0;
3126
3127         /* mm's last user has gone, and its about to be pulled down */
3128         mmu_notifier_release(mm);
3129
3130         if (unlikely(mm_is_oom_victim(mm))) {
3131                 /*
3132                  * Manually reap the mm to free as much memory as possible.
3133                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3134                  * this mm from further consideration.  Taking mm->mmap_lock for
3135                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3136                  * reaper will not run on this mm again after mmap_lock is
3137                  * dropped.
3138                  *
3139                  * Nothing can be holding mm->mmap_lock here and the above call
3140                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3141                  * __oom_reap_task_mm() will not block.
3142                  */
3143                 (void)__oom_reap_task_mm(mm);
3144                 set_bit(MMF_OOM_SKIP, &mm->flags);
3145         }
3146
3147         mmap_write_lock(mm);
3148         arch_exit_mmap(mm);
3149
3150         vma = mm->mmap;
3151         if (!vma) {
3152                 /* Can happen if dup_mmap() received an OOM */
3153                 mmap_write_unlock(mm);
3154                 return;
3155         }
3156
3157         lru_add_drain();
3158         flush_cache_mm(mm);
3159         tlb_gather_mmu_fullmm(&tlb, mm);
3160         /* update_hiwater_rss(mm) here? but nobody should be looking */
3161         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3162         unmap_vmas(&tlb, vma, 0, -1);
3163         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3164         tlb_finish_mmu(&tlb);
3165
3166         /* Walk the list again, actually closing and freeing it. */
3167         while (vma) {
3168                 if (vma->vm_flags & VM_ACCOUNT)
3169                         nr_accounted += vma_pages(vma);
3170                 vma = remove_vma(vma);
3171                 cond_resched();
3172         }
3173         mm->mmap = NULL;
3174         mmap_write_unlock(mm);
3175         vm_unacct_memory(nr_accounted);
3176 }
3177
3178 /* Insert vm structure into process list sorted by address
3179  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3180  * then i_mmap_rwsem is taken here.
3181  */
3182 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3183 {
3184         struct vm_area_struct *prev;
3185         struct rb_node **rb_link, *rb_parent;
3186
3187         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3188                            &prev, &rb_link, &rb_parent))
3189                 return -ENOMEM;
3190         if ((vma->vm_flags & VM_ACCOUNT) &&
3191              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3192                 return -ENOMEM;
3193
3194         /*
3195          * The vm_pgoff of a purely anonymous vma should be irrelevant
3196          * until its first write fault, when page's anon_vma and index
3197          * are set.  But now set the vm_pgoff it will almost certainly
3198          * end up with (unless mremap moves it elsewhere before that
3199          * first wfault), so /proc/pid/maps tells a consistent story.
3200          *
3201          * By setting it to reflect the virtual start address of the
3202          * vma, merges and splits can happen in a seamless way, just
3203          * using the existing file pgoff checks and manipulations.
3204          * Similarly in do_mmap and in do_brk_flags.
3205          */
3206         if (vma_is_anonymous(vma)) {
3207                 BUG_ON(vma->anon_vma);
3208                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3209         }
3210
3211         vma_link(mm, vma, prev, rb_link, rb_parent);
3212         return 0;
3213 }
3214
3215 /*
3216  * Copy the vma structure to a new location in the same mm,
3217  * prior to moving page table entries, to effect an mremap move.
3218  */
3219 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3220         unsigned long addr, unsigned long len, pgoff_t pgoff,
3221         bool *need_rmap_locks)
3222 {
3223         struct vm_area_struct *vma = *vmap;
3224         unsigned long vma_start = vma->vm_start;
3225         struct mm_struct *mm = vma->vm_mm;
3226         struct vm_area_struct *new_vma, *prev;
3227         struct rb_node **rb_link, *rb_parent;
3228         bool faulted_in_anon_vma = true;
3229
3230         /*
3231          * If anonymous vma has not yet been faulted, update new pgoff
3232          * to match new location, to increase its chance of merging.
3233          */
3234         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3235                 pgoff = addr >> PAGE_SHIFT;
3236                 faulted_in_anon_vma = false;
3237         }
3238
3239         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3240                 return NULL;    /* should never get here */
3241         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3242                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3243                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3244         if (new_vma) {
3245                 /*
3246                  * Source vma may have been merged into new_vma
3247                  */
3248                 if (unlikely(vma_start >= new_vma->vm_start &&
3249                              vma_start < new_vma->vm_end)) {
3250                         /*
3251                          * The only way we can get a vma_merge with
3252                          * self during an mremap is if the vma hasn't
3253                          * been faulted in yet and we were allowed to
3254                          * reset the dst vma->vm_pgoff to the
3255                          * destination address of the mremap to allow
3256                          * the merge to happen. mremap must change the
3257                          * vm_pgoff linearity between src and dst vmas
3258                          * (in turn preventing a vma_merge) to be
3259                          * safe. It is only safe to keep the vm_pgoff
3260                          * linear if there are no pages mapped yet.
3261                          */
3262                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3263                         *vmap = vma = new_vma;
3264                 }
3265                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3266         } else {
3267                 new_vma = vm_area_dup(vma);
3268                 if (!new_vma)
3269                         goto out;
3270                 new_vma->vm_start = addr;
3271                 new_vma->vm_end = addr + len;
3272                 new_vma->vm_pgoff = pgoff;
3273                 if (vma_dup_policy(vma, new_vma))
3274                         goto out_free_vma;
3275                 if (anon_vma_clone(new_vma, vma))
3276                         goto out_free_mempol;
3277                 if (new_vma->vm_file)
3278                         get_file(new_vma->vm_file);
3279                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3280                         new_vma->vm_ops->open(new_vma);
3281                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3282                 *need_rmap_locks = false;
3283         }
3284         return new_vma;
3285
3286 out_free_mempol:
3287         mpol_put(vma_policy(new_vma));
3288 out_free_vma:
3289         vm_area_free(new_vma);
3290 out:
3291         return NULL;
3292 }
3293
3294 /*
3295  * Return true if the calling process may expand its vm space by the passed
3296  * number of pages
3297  */
3298 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3299 {
3300         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3301                 return false;
3302
3303         if (is_data_mapping(flags) &&
3304             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3305                 /* Workaround for Valgrind */
3306                 if (rlimit(RLIMIT_DATA) == 0 &&
3307                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3308                         return true;
3309
3310                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3311                              current->comm, current->pid,
3312                              (mm->data_vm + npages) << PAGE_SHIFT,
3313                              rlimit(RLIMIT_DATA),
3314                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3315
3316                 if (!ignore_rlimit_data)
3317                         return false;
3318         }
3319
3320         return true;
3321 }
3322
3323 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3324 {
3325         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3326
3327         if (is_exec_mapping(flags))
3328                 mm->exec_vm += npages;
3329         else if (is_stack_mapping(flags))
3330                 mm->stack_vm += npages;
3331         else if (is_data_mapping(flags))
3332                 mm->data_vm += npages;
3333 }
3334
3335 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3336
3337 /*
3338  * Having a close hook prevents vma merging regardless of flags.
3339  */
3340 static void special_mapping_close(struct vm_area_struct *vma)
3341 {
3342 }
3343
3344 static const char *special_mapping_name(struct vm_area_struct *vma)
3345 {
3346         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3347 }
3348
3349 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3350 {
3351         struct vm_special_mapping *sm = new_vma->vm_private_data;
3352
3353         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3354                 return -EFAULT;
3355
3356         if (sm->mremap)
3357                 return sm->mremap(sm, new_vma);
3358
3359         return 0;
3360 }
3361
3362 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3363 {
3364         /*
3365          * Forbid splitting special mappings - kernel has expectations over
3366          * the number of pages in mapping. Together with VM_DONTEXPAND
3367          * the size of vma should stay the same over the special mapping's
3368          * lifetime.
3369          */
3370         return -EINVAL;
3371 }
3372
3373 static const struct vm_operations_struct special_mapping_vmops = {
3374         .close = special_mapping_close,
3375         .fault = special_mapping_fault,
3376         .mremap = special_mapping_mremap,
3377         .name = special_mapping_name,
3378         /* vDSO code relies that VVAR can't be accessed remotely */
3379         .access = NULL,
3380         .may_split = special_mapping_split,
3381 };
3382
3383 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3384         .close = special_mapping_close,
3385         .fault = special_mapping_fault,
3386 };
3387
3388 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3389 {
3390         struct vm_area_struct *vma = vmf->vma;
3391         pgoff_t pgoff;
3392         struct page **pages;
3393
3394         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3395                 pages = vma->vm_private_data;
3396         } else {
3397                 struct vm_special_mapping *sm = vma->vm_private_data;
3398
3399                 if (sm->fault)
3400                         return sm->fault(sm, vmf->vma, vmf);
3401
3402                 pages = sm->pages;
3403         }
3404
3405         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3406                 pgoff--;
3407
3408         if (*pages) {
3409                 struct page *page = *pages;
3410                 get_page(page);
3411                 vmf->page = page;
3412                 return 0;
3413         }
3414
3415         return VM_FAULT_SIGBUS;
3416 }
3417
3418 static struct vm_area_struct *__install_special_mapping(
3419         struct mm_struct *mm,
3420         unsigned long addr, unsigned long len,
3421         unsigned long vm_flags, void *priv,
3422         const struct vm_operations_struct *ops)
3423 {
3424         int ret;
3425         struct vm_area_struct *vma;
3426
3427         vma = vm_area_alloc(mm);
3428         if (unlikely(vma == NULL))
3429                 return ERR_PTR(-ENOMEM);
3430
3431         vma->vm_start = addr;
3432         vma->vm_end = addr + len;
3433
3434         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3435         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3436         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3437
3438         vma->vm_ops = ops;
3439         vma->vm_private_data = priv;
3440
3441         ret = insert_vm_struct(mm, vma);
3442         if (ret)
3443                 goto out;
3444
3445         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3446
3447         perf_event_mmap(vma);
3448
3449         return vma;
3450
3451 out:
3452         vm_area_free(vma);
3453         return ERR_PTR(ret);
3454 }
3455
3456 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3457         const struct vm_special_mapping *sm)
3458 {
3459         return vma->vm_private_data == sm &&
3460                 (vma->vm_ops == &special_mapping_vmops ||
3461                  vma->vm_ops == &legacy_special_mapping_vmops);
3462 }
3463
3464 /*
3465  * Called with mm->mmap_lock held for writing.
3466  * Insert a new vma covering the given region, with the given flags.
3467  * Its pages are supplied by the given array of struct page *.
3468  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3469  * The region past the last page supplied will always produce SIGBUS.
3470  * The array pointer and the pages it points to are assumed to stay alive
3471  * for as long as this mapping might exist.
3472  */
3473 struct vm_area_struct *_install_special_mapping(
3474         struct mm_struct *mm,
3475         unsigned long addr, unsigned long len,
3476         unsigned long vm_flags, const struct vm_special_mapping *spec)
3477 {
3478         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3479                                         &special_mapping_vmops);
3480 }
3481
3482 int install_special_mapping(struct mm_struct *mm,
3483                             unsigned long addr, unsigned long len,
3484                             unsigned long vm_flags, struct page **pages)
3485 {
3486         struct vm_area_struct *vma = __install_special_mapping(
3487                 mm, addr, len, vm_flags, (void *)pages,
3488                 &legacy_special_mapping_vmops);
3489
3490         return PTR_ERR_OR_ZERO(vma);
3491 }
3492
3493 static DEFINE_MUTEX(mm_all_locks_mutex);
3494
3495 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3496 {
3497         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3498                 /*
3499                  * The LSB of head.next can't change from under us
3500                  * because we hold the mm_all_locks_mutex.
3501                  */
3502                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3503                 /*
3504                  * We can safely modify head.next after taking the
3505                  * anon_vma->root->rwsem. If some other vma in this mm shares
3506                  * the same anon_vma we won't take it again.
3507                  *
3508                  * No need of atomic instructions here, head.next
3509                  * can't change from under us thanks to the
3510                  * anon_vma->root->rwsem.
3511                  */
3512                 if (__test_and_set_bit(0, (unsigned long *)
3513                                        &anon_vma->root->rb_root.rb_root.rb_node))
3514                         BUG();
3515         }
3516 }
3517
3518 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3519 {
3520         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3521                 /*
3522                  * AS_MM_ALL_LOCKS can't change from under us because
3523                  * we hold the mm_all_locks_mutex.
3524                  *
3525                  * Operations on ->flags have to be atomic because
3526                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3527                  * mm_all_locks_mutex, there may be other cpus
3528                  * changing other bitflags in parallel to us.
3529                  */
3530                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3531                         BUG();
3532                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3533         }
3534 }
3535
3536 /*
3537  * This operation locks against the VM for all pte/vma/mm related
3538  * operations that could ever happen on a certain mm. This includes
3539  * vmtruncate, try_to_unmap, and all page faults.
3540  *
3541  * The caller must take the mmap_lock in write mode before calling
3542  * mm_take_all_locks(). The caller isn't allowed to release the
3543  * mmap_lock until mm_drop_all_locks() returns.
3544  *
3545  * mmap_lock in write mode is required in order to block all operations
3546  * that could modify pagetables and free pages without need of
3547  * altering the vma layout. It's also needed in write mode to avoid new
3548  * anon_vmas to be associated with existing vmas.
3549  *
3550  * A single task can't take more than one mm_take_all_locks() in a row
3551  * or it would deadlock.
3552  *
3553  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3554  * mapping->flags avoid to take the same lock twice, if more than one
3555  * vma in this mm is backed by the same anon_vma or address_space.
3556  *
3557  * We take locks in following order, accordingly to comment at beginning
3558  * of mm/rmap.c:
3559  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3560  *     hugetlb mapping);
3561  *   - all i_mmap_rwsem locks;
3562  *   - all anon_vma->rwseml
3563  *
3564  * We can take all locks within these types randomly because the VM code
3565  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3566  * mm_all_locks_mutex.
3567  *
3568  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3569  * that may have to take thousand of locks.
3570  *
3571  * mm_take_all_locks() can fail if it's interrupted by signals.
3572  */
3573 int mm_take_all_locks(struct mm_struct *mm)
3574 {
3575         struct vm_area_struct *vma;
3576         struct anon_vma_chain *avc;
3577
3578         mmap_assert_write_locked(mm);
3579
3580         mutex_lock(&mm_all_locks_mutex);
3581
3582         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3583                 if (signal_pending(current))
3584                         goto out_unlock;
3585                 if (vma->vm_file && vma->vm_file->f_mapping &&
3586                                 is_vm_hugetlb_page(vma))
3587                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3588         }
3589
3590         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3591                 if (signal_pending(current))
3592                         goto out_unlock;
3593                 if (vma->vm_file && vma->vm_file->f_mapping &&
3594                                 !is_vm_hugetlb_page(vma))
3595                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3596         }
3597
3598         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3599                 if (signal_pending(current))
3600                         goto out_unlock;
3601                 if (vma->anon_vma)
3602                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3603                                 vm_lock_anon_vma(mm, avc->anon_vma);
3604         }
3605
3606         return 0;
3607
3608 out_unlock:
3609         mm_drop_all_locks(mm);
3610         return -EINTR;
3611 }
3612
3613 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3614 {
3615         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3616                 /*
3617                  * The LSB of head.next can't change to 0 from under
3618                  * us because we hold the mm_all_locks_mutex.
3619                  *
3620                  * We must however clear the bitflag before unlocking
3621                  * the vma so the users using the anon_vma->rb_root will
3622                  * never see our bitflag.
3623                  *
3624                  * No need of atomic instructions here, head.next
3625                  * can't change from under us until we release the
3626                  * anon_vma->root->rwsem.
3627                  */
3628                 if (!__test_and_clear_bit(0, (unsigned long *)
3629                                           &anon_vma->root->rb_root.rb_root.rb_node))
3630                         BUG();
3631                 anon_vma_unlock_write(anon_vma);
3632         }
3633 }
3634
3635 static void vm_unlock_mapping(struct address_space *mapping)
3636 {
3637         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3638                 /*
3639                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3640                  * because we hold the mm_all_locks_mutex.
3641                  */
3642                 i_mmap_unlock_write(mapping);
3643                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3644                                         &mapping->flags))
3645                         BUG();
3646         }
3647 }
3648
3649 /*
3650  * The mmap_lock cannot be released by the caller until
3651  * mm_drop_all_locks() returns.
3652  */
3653 void mm_drop_all_locks(struct mm_struct *mm)
3654 {
3655         struct vm_area_struct *vma;
3656         struct anon_vma_chain *avc;
3657
3658         mmap_assert_write_locked(mm);
3659         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3660
3661         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3662                 if (vma->anon_vma)
3663                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3664                                 vm_unlock_anon_vma(avc->anon_vma);
3665                 if (vma->vm_file && vma->vm_file->f_mapping)
3666                         vm_unlock_mapping(vma->vm_file->f_mapping);
3667         }
3668
3669         mutex_unlock(&mm_all_locks_mutex);
3670 }
3671
3672 /*
3673  * initialise the percpu counter for VM
3674  */
3675 void __init mmap_init(void)
3676 {
3677         int ret;
3678
3679         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3680         VM_BUG_ON(ret);
3681 }
3682
3683 /*
3684  * Initialise sysctl_user_reserve_kbytes.
3685  *
3686  * This is intended to prevent a user from starting a single memory hogging
3687  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3688  * mode.
3689  *
3690  * The default value is min(3% of free memory, 128MB)
3691  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3692  */
3693 static int init_user_reserve(void)
3694 {
3695         unsigned long free_kbytes;
3696
3697         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3698
3699         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3700         return 0;
3701 }
3702 subsys_initcall(init_user_reserve);
3703
3704 /*
3705  * Initialise sysctl_admin_reserve_kbytes.
3706  *
3707  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3708  * to log in and kill a memory hogging process.
3709  *
3710  * Systems with more than 256MB will reserve 8MB, enough to recover
3711  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3712  * only reserve 3% of free pages by default.
3713  */
3714 static int init_admin_reserve(void)
3715 {
3716         unsigned long free_kbytes;
3717
3718         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3719
3720         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3721         return 0;
3722 }
3723 subsys_initcall(init_admin_reserve);
3724
3725 /*
3726  * Reinititalise user and admin reserves if memory is added or removed.
3727  *
3728  * The default user reserve max is 128MB, and the default max for the
3729  * admin reserve is 8MB. These are usually, but not always, enough to
3730  * enable recovery from a memory hogging process using login/sshd, a shell,
3731  * and tools like top. It may make sense to increase or even disable the
3732  * reserve depending on the existence of swap or variations in the recovery
3733  * tools. So, the admin may have changed them.
3734  *
3735  * If memory is added and the reserves have been eliminated or increased above
3736  * the default max, then we'll trust the admin.
3737  *
3738  * If memory is removed and there isn't enough free memory, then we
3739  * need to reset the reserves.
3740  *
3741  * Otherwise keep the reserve set by the admin.
3742  */
3743 static int reserve_mem_notifier(struct notifier_block *nb,
3744                              unsigned long action, void *data)
3745 {
3746         unsigned long tmp, free_kbytes;
3747
3748         switch (action) {
3749         case MEM_ONLINE:
3750                 /* Default max is 128MB. Leave alone if modified by operator. */
3751                 tmp = sysctl_user_reserve_kbytes;
3752                 if (0 < tmp && tmp < (1UL << 17))
3753                         init_user_reserve();
3754
3755                 /* Default max is 8MB.  Leave alone if modified by operator. */
3756                 tmp = sysctl_admin_reserve_kbytes;
3757                 if (0 < tmp && tmp < (1UL << 13))
3758                         init_admin_reserve();
3759
3760                 break;
3761         case MEM_OFFLINE:
3762                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3763
3764                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3765                         init_user_reserve();
3766                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3767                                 sysctl_user_reserve_kbytes);
3768                 }
3769
3770                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3771                         init_admin_reserve();
3772                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3773                                 sysctl_admin_reserve_kbytes);
3774                 }
3775                 break;
3776         default:
3777                 break;
3778         }
3779         return NOTIFY_OK;
3780 }
3781
3782 static struct notifier_block reserve_mem_nb = {
3783         .notifier_call = reserve_mem_notifier,
3784 };
3785
3786 static int __meminit init_reserve_notifier(void)
3787 {
3788         if (register_hotmemory_notifier(&reserve_mem_nb))
3789                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3790
3791         return 0;
3792 }
3793 subsys_initcall(init_reserve_notifier);