Merge tag 'nand/for-5.19' into mtd/next
[linux-2.6-microblaze.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59
60 #include "internal.h"
61
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags)       (0)
64 #endif
65
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79
80 static void unmap_region(struct mm_struct *mm,
81                 struct vm_area_struct *vma, struct vm_area_struct *prev,
82                 unsigned long start, unsigned long end);
83
84 /* description of effects of mapping type and prot in current implementation.
85  * this is due to the limited x86 page protection hardware.  The expected
86  * behavior is in parens:
87  *
88  * map_type     prot
89  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
90  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
91  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
92  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
93  *
94  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
95  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
96  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
97  *
98  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
99  * MAP_PRIVATE (with Enhanced PAN supported):
100  *                                                              r: (no) no
101  *                                                              w: (no) no
102  *                                                              x: (yes) yes
103  */
104 pgprot_t protection_map[16] __ro_after_init = {
105         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
106         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
107 };
108
109 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
110 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
111 {
112         return prot;
113 }
114 #endif
115
116 pgprot_t vm_get_page_prot(unsigned long vm_flags)
117 {
118         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
119                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
120                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
121
122         return arch_filter_pgprot(ret);
123 }
124 EXPORT_SYMBOL(vm_get_page_prot);
125
126 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
127 {
128         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
129 }
130
131 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
132 void vma_set_page_prot(struct vm_area_struct *vma)
133 {
134         unsigned long vm_flags = vma->vm_flags;
135         pgprot_t vm_page_prot;
136
137         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
138         if (vma_wants_writenotify(vma, vm_page_prot)) {
139                 vm_flags &= ~VM_SHARED;
140                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
141         }
142         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
143         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
144 }
145
146 /*
147  * Requires inode->i_mapping->i_mmap_rwsem
148  */
149 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
150                 struct file *file, struct address_space *mapping)
151 {
152         if (vma->vm_flags & VM_SHARED)
153                 mapping_unmap_writable(mapping);
154
155         flush_dcache_mmap_lock(mapping);
156         vma_interval_tree_remove(vma, &mapping->i_mmap);
157         flush_dcache_mmap_unlock(mapping);
158 }
159
160 /*
161  * Unlink a file-based vm structure from its interval tree, to hide
162  * vma from rmap and vmtruncate before freeing its page tables.
163  */
164 void unlink_file_vma(struct vm_area_struct *vma)
165 {
166         struct file *file = vma->vm_file;
167
168         if (file) {
169                 struct address_space *mapping = file->f_mapping;
170                 i_mmap_lock_write(mapping);
171                 __remove_shared_vm_struct(vma, file, mapping);
172                 i_mmap_unlock_write(mapping);
173         }
174 }
175
176 /*
177  * Close a vm structure and free it, returning the next.
178  */
179 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
180 {
181         struct vm_area_struct *next = vma->vm_next;
182
183         might_sleep();
184         if (vma->vm_ops && vma->vm_ops->close)
185                 vma->vm_ops->close(vma);
186         if (vma->vm_file)
187                 fput(vma->vm_file);
188         mpol_put(vma_policy(vma));
189         vm_area_free(vma);
190         return next;
191 }
192
193 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
194                 struct list_head *uf);
195 SYSCALL_DEFINE1(brk, unsigned long, brk)
196 {
197         unsigned long newbrk, oldbrk, origbrk;
198         struct mm_struct *mm = current->mm;
199         struct vm_area_struct *next;
200         unsigned long min_brk;
201         bool populate;
202         bool downgraded = false;
203         LIST_HEAD(uf);
204
205         if (mmap_write_lock_killable(mm))
206                 return -EINTR;
207
208         origbrk = mm->brk;
209
210 #ifdef CONFIG_COMPAT_BRK
211         /*
212          * CONFIG_COMPAT_BRK can still be overridden by setting
213          * randomize_va_space to 2, which will still cause mm->start_brk
214          * to be arbitrarily shifted
215          */
216         if (current->brk_randomized)
217                 min_brk = mm->start_brk;
218         else
219                 min_brk = mm->end_data;
220 #else
221         min_brk = mm->start_brk;
222 #endif
223         if (brk < min_brk)
224                 goto out;
225
226         /*
227          * Check against rlimit here. If this check is done later after the test
228          * of oldbrk with newbrk then it can escape the test and let the data
229          * segment grow beyond its set limit the in case where the limit is
230          * not page aligned -Ram Gupta
231          */
232         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
233                               mm->end_data, mm->start_data))
234                 goto out;
235
236         newbrk = PAGE_ALIGN(brk);
237         oldbrk = PAGE_ALIGN(mm->brk);
238         if (oldbrk == newbrk) {
239                 mm->brk = brk;
240                 goto success;
241         }
242
243         /*
244          * Always allow shrinking brk.
245          * __do_munmap() may downgrade mmap_lock to read.
246          */
247         if (brk <= mm->brk) {
248                 int ret;
249
250                 /*
251                  * mm->brk must to be protected by write mmap_lock so update it
252                  * before downgrading mmap_lock. When __do_munmap() fails,
253                  * mm->brk will be restored from origbrk.
254                  */
255                 mm->brk = brk;
256                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
257                 if (ret < 0) {
258                         mm->brk = origbrk;
259                         goto out;
260                 } else if (ret == 1) {
261                         downgraded = true;
262                 }
263                 goto success;
264         }
265
266         /* Check against existing mmap mappings. */
267         next = find_vma(mm, oldbrk);
268         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
269                 goto out;
270
271         /* Ok, looks good - let it rip. */
272         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
273                 goto out;
274         mm->brk = brk;
275
276 success:
277         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
278         if (downgraded)
279                 mmap_read_unlock(mm);
280         else
281                 mmap_write_unlock(mm);
282         userfaultfd_unmap_complete(mm, &uf);
283         if (populate)
284                 mm_populate(oldbrk, newbrk - oldbrk);
285         return brk;
286
287 out:
288         mmap_write_unlock(mm);
289         return origbrk;
290 }
291
292 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
293 {
294         unsigned long gap, prev_end;
295
296         /*
297          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
298          * allow two stack_guard_gaps between them here, and when choosing
299          * an unmapped area; whereas when expanding we only require one.
300          * That's a little inconsistent, but keeps the code here simpler.
301          */
302         gap = vm_start_gap(vma);
303         if (vma->vm_prev) {
304                 prev_end = vm_end_gap(vma->vm_prev);
305                 if (gap > prev_end)
306                         gap -= prev_end;
307                 else
308                         gap = 0;
309         }
310         return gap;
311 }
312
313 #ifdef CONFIG_DEBUG_VM_RB
314 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
315 {
316         unsigned long max = vma_compute_gap(vma), subtree_gap;
317         if (vma->vm_rb.rb_left) {
318                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
319                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
320                 if (subtree_gap > max)
321                         max = subtree_gap;
322         }
323         if (vma->vm_rb.rb_right) {
324                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
325                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
326                 if (subtree_gap > max)
327                         max = subtree_gap;
328         }
329         return max;
330 }
331
332 static int browse_rb(struct mm_struct *mm)
333 {
334         struct rb_root *root = &mm->mm_rb;
335         int i = 0, j, bug = 0;
336         struct rb_node *nd, *pn = NULL;
337         unsigned long prev = 0, pend = 0;
338
339         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
340                 struct vm_area_struct *vma;
341                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
342                 if (vma->vm_start < prev) {
343                         pr_emerg("vm_start %lx < prev %lx\n",
344                                   vma->vm_start, prev);
345                         bug = 1;
346                 }
347                 if (vma->vm_start < pend) {
348                         pr_emerg("vm_start %lx < pend %lx\n",
349                                   vma->vm_start, pend);
350                         bug = 1;
351                 }
352                 if (vma->vm_start > vma->vm_end) {
353                         pr_emerg("vm_start %lx > vm_end %lx\n",
354                                   vma->vm_start, vma->vm_end);
355                         bug = 1;
356                 }
357                 spin_lock(&mm->page_table_lock);
358                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
359                         pr_emerg("free gap %lx, correct %lx\n",
360                                vma->rb_subtree_gap,
361                                vma_compute_subtree_gap(vma));
362                         bug = 1;
363                 }
364                 spin_unlock(&mm->page_table_lock);
365                 i++;
366                 pn = nd;
367                 prev = vma->vm_start;
368                 pend = vma->vm_end;
369         }
370         j = 0;
371         for (nd = pn; nd; nd = rb_prev(nd))
372                 j++;
373         if (i != j) {
374                 pr_emerg("backwards %d, forwards %d\n", j, i);
375                 bug = 1;
376         }
377         return bug ? -1 : i;
378 }
379
380 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
381 {
382         struct rb_node *nd;
383
384         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385                 struct vm_area_struct *vma;
386                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387                 VM_BUG_ON_VMA(vma != ignore &&
388                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
389                         vma);
390         }
391 }
392
393 static void validate_mm(struct mm_struct *mm)
394 {
395         int bug = 0;
396         int i = 0;
397         unsigned long highest_address = 0;
398         struct vm_area_struct *vma = mm->mmap;
399
400         while (vma) {
401                 struct anon_vma *anon_vma = vma->anon_vma;
402                 struct anon_vma_chain *avc;
403
404                 if (anon_vma) {
405                         anon_vma_lock_read(anon_vma);
406                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
407                                 anon_vma_interval_tree_verify(avc);
408                         anon_vma_unlock_read(anon_vma);
409                 }
410
411                 highest_address = vm_end_gap(vma);
412                 vma = vma->vm_next;
413                 i++;
414         }
415         if (i != mm->map_count) {
416                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
417                 bug = 1;
418         }
419         if (highest_address != mm->highest_vm_end) {
420                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
421                           mm->highest_vm_end, highest_address);
422                 bug = 1;
423         }
424         i = browse_rb(mm);
425         if (i != mm->map_count) {
426                 if (i != -1)
427                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
428                 bug = 1;
429         }
430         VM_BUG_ON_MM(bug, mm);
431 }
432 #else
433 #define validate_mm_rb(root, ignore) do { } while (0)
434 #define validate_mm(mm) do { } while (0)
435 #endif
436
437 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
438                          struct vm_area_struct, vm_rb,
439                          unsigned long, rb_subtree_gap, vma_compute_gap)
440
441 /*
442  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
443  * vma->vm_prev->vm_end values changed, without modifying the vma's position
444  * in the rbtree.
445  */
446 static void vma_gap_update(struct vm_area_struct *vma)
447 {
448         /*
449          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
450          * a callback function that does exactly what we want.
451          */
452         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
453 }
454
455 static inline void vma_rb_insert(struct vm_area_struct *vma,
456                                  struct rb_root *root)
457 {
458         /* All rb_subtree_gap values must be consistent prior to insertion */
459         validate_mm_rb(root, NULL);
460
461         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
462 }
463
464 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
465 {
466         /*
467          * Note rb_erase_augmented is a fairly large inline function,
468          * so make sure we instantiate it only once with our desired
469          * augmented rbtree callbacks.
470          */
471         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
472 }
473
474 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
475                                                 struct rb_root *root,
476                                                 struct vm_area_struct *ignore)
477 {
478         /*
479          * All rb_subtree_gap values must be consistent prior to erase,
480          * with the possible exception of
481          *
482          * a. the "next" vma being erased if next->vm_start was reduced in
483          *    __vma_adjust() -> __vma_unlink()
484          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
485          *    vma_rb_erase()
486          */
487         validate_mm_rb(root, ignore);
488
489         __vma_rb_erase(vma, root);
490 }
491
492 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
493                                          struct rb_root *root)
494 {
495         vma_rb_erase_ignore(vma, root, vma);
496 }
497
498 /*
499  * vma has some anon_vma assigned, and is already inserted on that
500  * anon_vma's interval trees.
501  *
502  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
503  * vma must be removed from the anon_vma's interval trees using
504  * anon_vma_interval_tree_pre_update_vma().
505  *
506  * After the update, the vma will be reinserted using
507  * anon_vma_interval_tree_post_update_vma().
508  *
509  * The entire update must be protected by exclusive mmap_lock and by
510  * the root anon_vma's mutex.
511  */
512 static inline void
513 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
514 {
515         struct anon_vma_chain *avc;
516
517         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
518                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
519 }
520
521 static inline void
522 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
523 {
524         struct anon_vma_chain *avc;
525
526         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
527                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
528 }
529
530 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
531                 unsigned long end, struct vm_area_struct **pprev,
532                 struct rb_node ***rb_link, struct rb_node **rb_parent)
533 {
534         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
535
536         mmap_assert_locked(mm);
537         __rb_link = &mm->mm_rb.rb_node;
538         rb_prev = __rb_parent = NULL;
539
540         while (*__rb_link) {
541                 struct vm_area_struct *vma_tmp;
542
543                 __rb_parent = *__rb_link;
544                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
545
546                 if (vma_tmp->vm_end > addr) {
547                         /* Fail if an existing vma overlaps the area */
548                         if (vma_tmp->vm_start < end)
549                                 return -ENOMEM;
550                         __rb_link = &__rb_parent->rb_left;
551                 } else {
552                         rb_prev = __rb_parent;
553                         __rb_link = &__rb_parent->rb_right;
554                 }
555         }
556
557         *pprev = NULL;
558         if (rb_prev)
559                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
560         *rb_link = __rb_link;
561         *rb_parent = __rb_parent;
562         return 0;
563 }
564
565 /*
566  * vma_next() - Get the next VMA.
567  * @mm: The mm_struct.
568  * @vma: The current vma.
569  *
570  * If @vma is NULL, return the first vma in the mm.
571  *
572  * Returns: The next VMA after @vma.
573  */
574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
575                                          struct vm_area_struct *vma)
576 {
577         if (!vma)
578                 return mm->mmap;
579
580         return vma->vm_next;
581 }
582
583 /*
584  * munmap_vma_range() - munmap VMAs that overlap a range.
585  * @mm: The mm struct
586  * @start: The start of the range.
587  * @len: The length of the range.
588  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
589  * @rb_link: the rb_node
590  * @rb_parent: the parent rb_node
591  *
592  * Find all the vm_area_struct that overlap from @start to
593  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
594  *
595  * Returns: -ENOMEM on munmap failure or 0 on success.
596  */
597 static inline int
598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
599                  struct vm_area_struct **pprev, struct rb_node ***link,
600                  struct rb_node **parent, struct list_head *uf)
601 {
602
603         while (find_vma_links(mm, start, start + len, pprev, link, parent))
604                 if (do_munmap(mm, start, len, uf))
605                         return -ENOMEM;
606
607         return 0;
608 }
609 static unsigned long count_vma_pages_range(struct mm_struct *mm,
610                 unsigned long addr, unsigned long end)
611 {
612         unsigned long nr_pages = 0;
613         struct vm_area_struct *vma;
614
615         /* Find first overlapping mapping */
616         vma = find_vma_intersection(mm, addr, end);
617         if (!vma)
618                 return 0;
619
620         nr_pages = (min(end, vma->vm_end) -
621                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
622
623         /* Iterate over the rest of the overlaps */
624         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
625                 unsigned long overlap_len;
626
627                 if (vma->vm_start > end)
628                         break;
629
630                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
631                 nr_pages += overlap_len >> PAGE_SHIFT;
632         }
633
634         return nr_pages;
635 }
636
637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
638                 struct rb_node **rb_link, struct rb_node *rb_parent)
639 {
640         /* Update tracking information for the gap following the new vma. */
641         if (vma->vm_next)
642                 vma_gap_update(vma->vm_next);
643         else
644                 mm->highest_vm_end = vm_end_gap(vma);
645
646         /*
647          * vma->vm_prev wasn't known when we followed the rbtree to find the
648          * correct insertion point for that vma. As a result, we could not
649          * update the vma vm_rb parents rb_subtree_gap values on the way down.
650          * So, we first insert the vma with a zero rb_subtree_gap value
651          * (to be consistent with what we did on the way down), and then
652          * immediately update the gap to the correct value. Finally we
653          * rebalance the rbtree after all augmented values have been set.
654          */
655         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
656         vma->rb_subtree_gap = 0;
657         vma_gap_update(vma);
658         vma_rb_insert(vma, &mm->mm_rb);
659 }
660
661 static void __vma_link_file(struct vm_area_struct *vma)
662 {
663         struct file *file;
664
665         file = vma->vm_file;
666         if (file) {
667                 struct address_space *mapping = file->f_mapping;
668
669                 if (vma->vm_flags & VM_SHARED)
670                         mapping_allow_writable(mapping);
671
672                 flush_dcache_mmap_lock(mapping);
673                 vma_interval_tree_insert(vma, &mapping->i_mmap);
674                 flush_dcache_mmap_unlock(mapping);
675         }
676 }
677
678 static void
679 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
680         struct vm_area_struct *prev, struct rb_node **rb_link,
681         struct rb_node *rb_parent)
682 {
683         __vma_link_list(mm, vma, prev);
684         __vma_link_rb(mm, vma, rb_link, rb_parent);
685 }
686
687 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
688                         struct vm_area_struct *prev, struct rb_node **rb_link,
689                         struct rb_node *rb_parent)
690 {
691         struct address_space *mapping = NULL;
692
693         if (vma->vm_file) {
694                 mapping = vma->vm_file->f_mapping;
695                 i_mmap_lock_write(mapping);
696         }
697
698         __vma_link(mm, vma, prev, rb_link, rb_parent);
699         __vma_link_file(vma);
700
701         if (mapping)
702                 i_mmap_unlock_write(mapping);
703
704         mm->map_count++;
705         validate_mm(mm);
706 }
707
708 /*
709  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
710  * mm's list and rbtree.  It has already been inserted into the interval tree.
711  */
712 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
713 {
714         struct vm_area_struct *prev;
715         struct rb_node **rb_link, *rb_parent;
716
717         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
718                            &prev, &rb_link, &rb_parent))
719                 BUG();
720         __vma_link(mm, vma, prev, rb_link, rb_parent);
721         mm->map_count++;
722 }
723
724 static __always_inline void __vma_unlink(struct mm_struct *mm,
725                                                 struct vm_area_struct *vma,
726                                                 struct vm_area_struct *ignore)
727 {
728         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
729         __vma_unlink_list(mm, vma);
730         /* Kill the cache */
731         vmacache_invalidate(mm);
732 }
733
734 /*
735  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
736  * is already present in an i_mmap tree without adjusting the tree.
737  * The following helper function should be used when such adjustments
738  * are necessary.  The "insert" vma (if any) is to be inserted
739  * before we drop the necessary locks.
740  */
741 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
742         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
743         struct vm_area_struct *expand)
744 {
745         struct mm_struct *mm = vma->vm_mm;
746         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
747         struct address_space *mapping = NULL;
748         struct rb_root_cached *root = NULL;
749         struct anon_vma *anon_vma = NULL;
750         struct file *file = vma->vm_file;
751         bool start_changed = false, end_changed = false;
752         long adjust_next = 0;
753         int remove_next = 0;
754
755         if (next && !insert) {
756                 struct vm_area_struct *exporter = NULL, *importer = NULL;
757
758                 if (end >= next->vm_end) {
759                         /*
760                          * vma expands, overlapping all the next, and
761                          * perhaps the one after too (mprotect case 6).
762                          * The only other cases that gets here are
763                          * case 1, case 7 and case 8.
764                          */
765                         if (next == expand) {
766                                 /*
767                                  * The only case where we don't expand "vma"
768                                  * and we expand "next" instead is case 8.
769                                  */
770                                 VM_WARN_ON(end != next->vm_end);
771                                 /*
772                                  * remove_next == 3 means we're
773                                  * removing "vma" and that to do so we
774                                  * swapped "vma" and "next".
775                                  */
776                                 remove_next = 3;
777                                 VM_WARN_ON(file != next->vm_file);
778                                 swap(vma, next);
779                         } else {
780                                 VM_WARN_ON(expand != vma);
781                                 /*
782                                  * case 1, 6, 7, remove_next == 2 is case 6,
783                                  * remove_next == 1 is case 1 or 7.
784                                  */
785                                 remove_next = 1 + (end > next->vm_end);
786                                 VM_WARN_ON(remove_next == 2 &&
787                                            end != next->vm_next->vm_end);
788                                 /* trim end to next, for case 6 first pass */
789                                 end = next->vm_end;
790                         }
791
792                         exporter = next;
793                         importer = vma;
794
795                         /*
796                          * If next doesn't have anon_vma, import from vma after
797                          * next, if the vma overlaps with it.
798                          */
799                         if (remove_next == 2 && !next->anon_vma)
800                                 exporter = next->vm_next;
801
802                 } else if (end > next->vm_start) {
803                         /*
804                          * vma expands, overlapping part of the next:
805                          * mprotect case 5 shifting the boundary up.
806                          */
807                         adjust_next = (end - next->vm_start);
808                         exporter = next;
809                         importer = vma;
810                         VM_WARN_ON(expand != importer);
811                 } else if (end < vma->vm_end) {
812                         /*
813                          * vma shrinks, and !insert tells it's not
814                          * split_vma inserting another: so it must be
815                          * mprotect case 4 shifting the boundary down.
816                          */
817                         adjust_next = -(vma->vm_end - end);
818                         exporter = vma;
819                         importer = next;
820                         VM_WARN_ON(expand != importer);
821                 }
822
823                 /*
824                  * Easily overlooked: when mprotect shifts the boundary,
825                  * make sure the expanding vma has anon_vma set if the
826                  * shrinking vma had, to cover any anon pages imported.
827                  */
828                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
829                         int error;
830
831                         importer->anon_vma = exporter->anon_vma;
832                         error = anon_vma_clone(importer, exporter);
833                         if (error)
834                                 return error;
835                 }
836         }
837 again:
838         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
839
840         if (file) {
841                 mapping = file->f_mapping;
842                 root = &mapping->i_mmap;
843                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
844
845                 if (adjust_next)
846                         uprobe_munmap(next, next->vm_start, next->vm_end);
847
848                 i_mmap_lock_write(mapping);
849                 if (insert) {
850                         /*
851                          * Put into interval tree now, so instantiated pages
852                          * are visible to arm/parisc __flush_dcache_page
853                          * throughout; but we cannot insert into address
854                          * space until vma start or end is updated.
855                          */
856                         __vma_link_file(insert);
857                 }
858         }
859
860         anon_vma = vma->anon_vma;
861         if (!anon_vma && adjust_next)
862                 anon_vma = next->anon_vma;
863         if (anon_vma) {
864                 VM_WARN_ON(adjust_next && next->anon_vma &&
865                            anon_vma != next->anon_vma);
866                 anon_vma_lock_write(anon_vma);
867                 anon_vma_interval_tree_pre_update_vma(vma);
868                 if (adjust_next)
869                         anon_vma_interval_tree_pre_update_vma(next);
870         }
871
872         if (file) {
873                 flush_dcache_mmap_lock(mapping);
874                 vma_interval_tree_remove(vma, root);
875                 if (adjust_next)
876                         vma_interval_tree_remove(next, root);
877         }
878
879         if (start != vma->vm_start) {
880                 vma->vm_start = start;
881                 start_changed = true;
882         }
883         if (end != vma->vm_end) {
884                 vma->vm_end = end;
885                 end_changed = true;
886         }
887         vma->vm_pgoff = pgoff;
888         if (adjust_next) {
889                 next->vm_start += adjust_next;
890                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
891         }
892
893         if (file) {
894                 if (adjust_next)
895                         vma_interval_tree_insert(next, root);
896                 vma_interval_tree_insert(vma, root);
897                 flush_dcache_mmap_unlock(mapping);
898         }
899
900         if (remove_next) {
901                 /*
902                  * vma_merge has merged next into vma, and needs
903                  * us to remove next before dropping the locks.
904                  */
905                 if (remove_next != 3)
906                         __vma_unlink(mm, next, next);
907                 else
908                         /*
909                          * vma is not before next if they've been
910                          * swapped.
911                          *
912                          * pre-swap() next->vm_start was reduced so
913                          * tell validate_mm_rb to ignore pre-swap()
914                          * "next" (which is stored in post-swap()
915                          * "vma").
916                          */
917                         __vma_unlink(mm, next, vma);
918                 if (file)
919                         __remove_shared_vm_struct(next, file, mapping);
920         } else if (insert) {
921                 /*
922                  * split_vma has split insert from vma, and needs
923                  * us to insert it before dropping the locks
924                  * (it may either follow vma or precede it).
925                  */
926                 __insert_vm_struct(mm, insert);
927         } else {
928                 if (start_changed)
929                         vma_gap_update(vma);
930                 if (end_changed) {
931                         if (!next)
932                                 mm->highest_vm_end = vm_end_gap(vma);
933                         else if (!adjust_next)
934                                 vma_gap_update(next);
935                 }
936         }
937
938         if (anon_vma) {
939                 anon_vma_interval_tree_post_update_vma(vma);
940                 if (adjust_next)
941                         anon_vma_interval_tree_post_update_vma(next);
942                 anon_vma_unlock_write(anon_vma);
943         }
944
945         if (file) {
946                 i_mmap_unlock_write(mapping);
947                 uprobe_mmap(vma);
948
949                 if (adjust_next)
950                         uprobe_mmap(next);
951         }
952
953         if (remove_next) {
954                 if (file) {
955                         uprobe_munmap(next, next->vm_start, next->vm_end);
956                         fput(file);
957                 }
958                 if (next->anon_vma)
959                         anon_vma_merge(vma, next);
960                 mm->map_count--;
961                 mpol_put(vma_policy(next));
962                 vm_area_free(next);
963                 /*
964                  * In mprotect's case 6 (see comments on vma_merge),
965                  * we must remove another next too. It would clutter
966                  * up the code too much to do both in one go.
967                  */
968                 if (remove_next != 3) {
969                         /*
970                          * If "next" was removed and vma->vm_end was
971                          * expanded (up) over it, in turn
972                          * "next->vm_prev->vm_end" changed and the
973                          * "vma->vm_next" gap must be updated.
974                          */
975                         next = vma->vm_next;
976                 } else {
977                         /*
978                          * For the scope of the comment "next" and
979                          * "vma" considered pre-swap(): if "vma" was
980                          * removed, next->vm_start was expanded (down)
981                          * over it and the "next" gap must be updated.
982                          * Because of the swap() the post-swap() "vma"
983                          * actually points to pre-swap() "next"
984                          * (post-swap() "next" as opposed is now a
985                          * dangling pointer).
986                          */
987                         next = vma;
988                 }
989                 if (remove_next == 2) {
990                         remove_next = 1;
991                         end = next->vm_end;
992                         goto again;
993                 }
994                 else if (next)
995                         vma_gap_update(next);
996                 else {
997                         /*
998                          * If remove_next == 2 we obviously can't
999                          * reach this path.
1000                          *
1001                          * If remove_next == 3 we can't reach this
1002                          * path because pre-swap() next is always not
1003                          * NULL. pre-swap() "next" is not being
1004                          * removed and its next->vm_end is not altered
1005                          * (and furthermore "end" already matches
1006                          * next->vm_end in remove_next == 3).
1007                          *
1008                          * We reach this only in the remove_next == 1
1009                          * case if the "next" vma that was removed was
1010                          * the highest vma of the mm. However in such
1011                          * case next->vm_end == "end" and the extended
1012                          * "vma" has vma->vm_end == next->vm_end so
1013                          * mm->highest_vm_end doesn't need any update
1014                          * in remove_next == 1 case.
1015                          */
1016                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1017                 }
1018         }
1019         if (insert && file)
1020                 uprobe_mmap(insert);
1021
1022         validate_mm(mm);
1023
1024         return 0;
1025 }
1026
1027 /*
1028  * If the vma has a ->close operation then the driver probably needs to release
1029  * per-vma resources, so we don't attempt to merge those.
1030  */
1031 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1032                                 struct file *file, unsigned long vm_flags,
1033                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1034                                 struct anon_vma_name *anon_name)
1035 {
1036         /*
1037          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1038          * match the flags but dirty bit -- the caller should mark
1039          * merged VMA as dirty. If dirty bit won't be excluded from
1040          * comparison, we increase pressure on the memory system forcing
1041          * the kernel to generate new VMAs when old one could be
1042          * extended instead.
1043          */
1044         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1045                 return 0;
1046         if (vma->vm_file != file)
1047                 return 0;
1048         if (vma->vm_ops && vma->vm_ops->close)
1049                 return 0;
1050         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1051                 return 0;
1052         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1053                 return 0;
1054         return 1;
1055 }
1056
1057 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1058                                         struct anon_vma *anon_vma2,
1059                                         struct vm_area_struct *vma)
1060 {
1061         /*
1062          * The list_is_singular() test is to avoid merging VMA cloned from
1063          * parents. This can improve scalability caused by anon_vma lock.
1064          */
1065         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1066                 list_is_singular(&vma->anon_vma_chain)))
1067                 return 1;
1068         return anon_vma1 == anon_vma2;
1069 }
1070
1071 /*
1072  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1073  * in front of (at a lower virtual address and file offset than) the vma.
1074  *
1075  * We cannot merge two vmas if they have differently assigned (non-NULL)
1076  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1077  *
1078  * We don't check here for the merged mmap wrapping around the end of pagecache
1079  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1080  * wrap, nor mmaps which cover the final page at index -1UL.
1081  */
1082 static int
1083 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1084                      struct anon_vma *anon_vma, struct file *file,
1085                      pgoff_t vm_pgoff,
1086                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1087                      struct anon_vma_name *anon_name)
1088 {
1089         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1090             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1091                 if (vma->vm_pgoff == vm_pgoff)
1092                         return 1;
1093         }
1094         return 0;
1095 }
1096
1097 /*
1098  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1099  * beyond (at a higher virtual address and file offset than) the vma.
1100  *
1101  * We cannot merge two vmas if they have differently assigned (non-NULL)
1102  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1103  */
1104 static int
1105 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1106                     struct anon_vma *anon_vma, struct file *file,
1107                     pgoff_t vm_pgoff,
1108                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1109                     struct anon_vma_name *anon_name)
1110 {
1111         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1112             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1113                 pgoff_t vm_pglen;
1114                 vm_pglen = vma_pages(vma);
1115                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1116                         return 1;
1117         }
1118         return 0;
1119 }
1120
1121 /*
1122  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1123  * figure out whether that can be merged with its predecessor or its
1124  * successor.  Or both (it neatly fills a hole).
1125  *
1126  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1127  * certain not to be mapped by the time vma_merge is called; but when
1128  * called for mprotect, it is certain to be already mapped (either at
1129  * an offset within prev, or at the start of next), and the flags of
1130  * this area are about to be changed to vm_flags - and the no-change
1131  * case has already been eliminated.
1132  *
1133  * The following mprotect cases have to be considered, where AAAA is
1134  * the area passed down from mprotect_fixup, never extending beyond one
1135  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1136  *
1137  *     AAAA             AAAA                   AAAA
1138  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1139  *    cannot merge    might become       might become
1140  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1141  *    mmap, brk or    case 4 below       case 5 below
1142  *    mremap move:
1143  *                        AAAA               AAAA
1144  *                    PPPP    NNNN       PPPPNNNNXXXX
1145  *                    might become       might become
1146  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1147  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1148  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1149  *
1150  * It is important for case 8 that the vma NNNN overlapping the
1151  * region AAAA is never going to extended over XXXX. Instead XXXX must
1152  * be extended in region AAAA and NNNN must be removed. This way in
1153  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1154  * rmap_locks, the properties of the merged vma will be already
1155  * correct for the whole merged range. Some of those properties like
1156  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1157  * be correct for the whole merged range immediately after the
1158  * rmap_locks are released. Otherwise if XXXX would be removed and
1159  * NNNN would be extended over the XXXX range, remove_migration_ptes
1160  * or other rmap walkers (if working on addresses beyond the "end"
1161  * parameter) may establish ptes with the wrong permissions of NNNN
1162  * instead of the right permissions of XXXX.
1163  */
1164 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1165                         struct vm_area_struct *prev, unsigned long addr,
1166                         unsigned long end, unsigned long vm_flags,
1167                         struct anon_vma *anon_vma, struct file *file,
1168                         pgoff_t pgoff, struct mempolicy *policy,
1169                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1170                         struct anon_vma_name *anon_name)
1171 {
1172         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1173         struct vm_area_struct *area, *next;
1174         int err;
1175
1176         /*
1177          * We later require that vma->vm_flags == vm_flags,
1178          * so this tests vma->vm_flags & VM_SPECIAL, too.
1179          */
1180         if (vm_flags & VM_SPECIAL)
1181                 return NULL;
1182
1183         next = vma_next(mm, prev);
1184         area = next;
1185         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1186                 next = next->vm_next;
1187
1188         /* verify some invariant that must be enforced by the caller */
1189         VM_WARN_ON(prev && addr <= prev->vm_start);
1190         VM_WARN_ON(area && end > area->vm_end);
1191         VM_WARN_ON(addr >= end);
1192
1193         /*
1194          * Can it merge with the predecessor?
1195          */
1196         if (prev && prev->vm_end == addr &&
1197                         mpol_equal(vma_policy(prev), policy) &&
1198                         can_vma_merge_after(prev, vm_flags,
1199                                             anon_vma, file, pgoff,
1200                                             vm_userfaultfd_ctx, anon_name)) {
1201                 /*
1202                  * OK, it can.  Can we now merge in the successor as well?
1203                  */
1204                 if (next && end == next->vm_start &&
1205                                 mpol_equal(policy, vma_policy(next)) &&
1206                                 can_vma_merge_before(next, vm_flags,
1207                                                      anon_vma, file,
1208                                                      pgoff+pglen,
1209                                                      vm_userfaultfd_ctx, anon_name) &&
1210                                 is_mergeable_anon_vma(prev->anon_vma,
1211                                                       next->anon_vma, NULL)) {
1212                                                         /* cases 1, 6 */
1213                         err = __vma_adjust(prev, prev->vm_start,
1214                                          next->vm_end, prev->vm_pgoff, NULL,
1215                                          prev);
1216                 } else                                  /* cases 2, 5, 7 */
1217                         err = __vma_adjust(prev, prev->vm_start,
1218                                          end, prev->vm_pgoff, NULL, prev);
1219                 if (err)
1220                         return NULL;
1221                 khugepaged_enter_vma_merge(prev, vm_flags);
1222                 return prev;
1223         }
1224
1225         /*
1226          * Can this new request be merged in front of next?
1227          */
1228         if (next && end == next->vm_start &&
1229                         mpol_equal(policy, vma_policy(next)) &&
1230                         can_vma_merge_before(next, vm_flags,
1231                                              anon_vma, file, pgoff+pglen,
1232                                              vm_userfaultfd_ctx, anon_name)) {
1233                 if (prev && addr < prev->vm_end)        /* case 4 */
1234                         err = __vma_adjust(prev, prev->vm_start,
1235                                          addr, prev->vm_pgoff, NULL, next);
1236                 else {                                  /* cases 3, 8 */
1237                         err = __vma_adjust(area, addr, next->vm_end,
1238                                          next->vm_pgoff - pglen, NULL, next);
1239                         /*
1240                          * In case 3 area is already equal to next and
1241                          * this is a noop, but in case 8 "area" has
1242                          * been removed and next was expanded over it.
1243                          */
1244                         area = next;
1245                 }
1246                 if (err)
1247                         return NULL;
1248                 khugepaged_enter_vma_merge(area, vm_flags);
1249                 return area;
1250         }
1251
1252         return NULL;
1253 }
1254
1255 /*
1256  * Rough compatibility check to quickly see if it's even worth looking
1257  * at sharing an anon_vma.
1258  *
1259  * They need to have the same vm_file, and the flags can only differ
1260  * in things that mprotect may change.
1261  *
1262  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1263  * we can merge the two vma's. For example, we refuse to merge a vma if
1264  * there is a vm_ops->close() function, because that indicates that the
1265  * driver is doing some kind of reference counting. But that doesn't
1266  * really matter for the anon_vma sharing case.
1267  */
1268 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1269 {
1270         return a->vm_end == b->vm_start &&
1271                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1272                 a->vm_file == b->vm_file &&
1273                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1274                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1275 }
1276
1277 /*
1278  * Do some basic sanity checking to see if we can re-use the anon_vma
1279  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1280  * the same as 'old', the other will be the new one that is trying
1281  * to share the anon_vma.
1282  *
1283  * NOTE! This runs with mm_sem held for reading, so it is possible that
1284  * the anon_vma of 'old' is concurrently in the process of being set up
1285  * by another page fault trying to merge _that_. But that's ok: if it
1286  * is being set up, that automatically means that it will be a singleton
1287  * acceptable for merging, so we can do all of this optimistically. But
1288  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1289  *
1290  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1291  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1292  * is to return an anon_vma that is "complex" due to having gone through
1293  * a fork).
1294  *
1295  * We also make sure that the two vma's are compatible (adjacent,
1296  * and with the same memory policies). That's all stable, even with just
1297  * a read lock on the mm_sem.
1298  */
1299 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1300 {
1301         if (anon_vma_compatible(a, b)) {
1302                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1303
1304                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1305                         return anon_vma;
1306         }
1307         return NULL;
1308 }
1309
1310 /*
1311  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1312  * neighbouring vmas for a suitable anon_vma, before it goes off
1313  * to allocate a new anon_vma.  It checks because a repetitive
1314  * sequence of mprotects and faults may otherwise lead to distinct
1315  * anon_vmas being allocated, preventing vma merge in subsequent
1316  * mprotect.
1317  */
1318 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1319 {
1320         struct anon_vma *anon_vma = NULL;
1321
1322         /* Try next first. */
1323         if (vma->vm_next) {
1324                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1325                 if (anon_vma)
1326                         return anon_vma;
1327         }
1328
1329         /* Try prev next. */
1330         if (vma->vm_prev)
1331                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1332
1333         /*
1334          * We might reach here with anon_vma == NULL if we can't find
1335          * any reusable anon_vma.
1336          * There's no absolute need to look only at touching neighbours:
1337          * we could search further afield for "compatible" anon_vmas.
1338          * But it would probably just be a waste of time searching,
1339          * or lead to too many vmas hanging off the same anon_vma.
1340          * We're trying to allow mprotect remerging later on,
1341          * not trying to minimize memory used for anon_vmas.
1342          */
1343         return anon_vma;
1344 }
1345
1346 /*
1347  * If a hint addr is less than mmap_min_addr change hint to be as
1348  * low as possible but still greater than mmap_min_addr
1349  */
1350 static inline unsigned long round_hint_to_min(unsigned long hint)
1351 {
1352         hint &= PAGE_MASK;
1353         if (((void *)hint != NULL) &&
1354             (hint < mmap_min_addr))
1355                 return PAGE_ALIGN(mmap_min_addr);
1356         return hint;
1357 }
1358
1359 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1360                        unsigned long len)
1361 {
1362         unsigned long locked, lock_limit;
1363
1364         /*  mlock MCL_FUTURE? */
1365         if (flags & VM_LOCKED) {
1366                 locked = len >> PAGE_SHIFT;
1367                 locked += mm->locked_vm;
1368                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1369                 lock_limit >>= PAGE_SHIFT;
1370                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1371                         return -EAGAIN;
1372         }
1373         return 0;
1374 }
1375
1376 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1377 {
1378         if (S_ISREG(inode->i_mode))
1379                 return MAX_LFS_FILESIZE;
1380
1381         if (S_ISBLK(inode->i_mode))
1382                 return MAX_LFS_FILESIZE;
1383
1384         if (S_ISSOCK(inode->i_mode))
1385                 return MAX_LFS_FILESIZE;
1386
1387         /* Special "we do even unsigned file positions" case */
1388         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1389                 return 0;
1390
1391         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1392         return ULONG_MAX;
1393 }
1394
1395 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1396                                 unsigned long pgoff, unsigned long len)
1397 {
1398         u64 maxsize = file_mmap_size_max(file, inode);
1399
1400         if (maxsize && len > maxsize)
1401                 return false;
1402         maxsize -= len;
1403         if (pgoff > maxsize >> PAGE_SHIFT)
1404                 return false;
1405         return true;
1406 }
1407
1408 /*
1409  * The caller must write-lock current->mm->mmap_lock.
1410  */
1411 unsigned long do_mmap(struct file *file, unsigned long addr,
1412                         unsigned long len, unsigned long prot,
1413                         unsigned long flags, unsigned long pgoff,
1414                         unsigned long *populate, struct list_head *uf)
1415 {
1416         struct mm_struct *mm = current->mm;
1417         vm_flags_t vm_flags;
1418         int pkey = 0;
1419
1420         *populate = 0;
1421
1422         if (!len)
1423                 return -EINVAL;
1424
1425         /*
1426          * Does the application expect PROT_READ to imply PROT_EXEC?
1427          *
1428          * (the exception is when the underlying filesystem is noexec
1429          *  mounted, in which case we dont add PROT_EXEC.)
1430          */
1431         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1432                 if (!(file && path_noexec(&file->f_path)))
1433                         prot |= PROT_EXEC;
1434
1435         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1436         if (flags & MAP_FIXED_NOREPLACE)
1437                 flags |= MAP_FIXED;
1438
1439         if (!(flags & MAP_FIXED))
1440                 addr = round_hint_to_min(addr);
1441
1442         /* Careful about overflows.. */
1443         len = PAGE_ALIGN(len);
1444         if (!len)
1445                 return -ENOMEM;
1446
1447         /* offset overflow? */
1448         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1449                 return -EOVERFLOW;
1450
1451         /* Too many mappings? */
1452         if (mm->map_count > sysctl_max_map_count)
1453                 return -ENOMEM;
1454
1455         /* Obtain the address to map to. we verify (or select) it and ensure
1456          * that it represents a valid section of the address space.
1457          */
1458         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1459         if (IS_ERR_VALUE(addr))
1460                 return addr;
1461
1462         if (flags & MAP_FIXED_NOREPLACE) {
1463                 if (find_vma_intersection(mm, addr, addr + len))
1464                         return -EEXIST;
1465         }
1466
1467         if (prot == PROT_EXEC) {
1468                 pkey = execute_only_pkey(mm);
1469                 if (pkey < 0)
1470                         pkey = 0;
1471         }
1472
1473         /* Do simple checking here so the lower-level routines won't have
1474          * to. we assume access permissions have been handled by the open
1475          * of the memory object, so we don't do any here.
1476          */
1477         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1478                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1479
1480         if (flags & MAP_LOCKED)
1481                 if (!can_do_mlock())
1482                         return -EPERM;
1483
1484         if (mlock_future_check(mm, vm_flags, len))
1485                 return -EAGAIN;
1486
1487         if (file) {
1488                 struct inode *inode = file_inode(file);
1489                 unsigned long flags_mask;
1490
1491                 if (!file_mmap_ok(file, inode, pgoff, len))
1492                         return -EOVERFLOW;
1493
1494                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1495
1496                 switch (flags & MAP_TYPE) {
1497                 case MAP_SHARED:
1498                         /*
1499                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1500                          * flags. E.g. MAP_SYNC is dangerous to use with
1501                          * MAP_SHARED as you don't know which consistency model
1502                          * you will get. We silently ignore unsupported flags
1503                          * with MAP_SHARED to preserve backward compatibility.
1504                          */
1505                         flags &= LEGACY_MAP_MASK;
1506                         fallthrough;
1507                 case MAP_SHARED_VALIDATE:
1508                         if (flags & ~flags_mask)
1509                                 return -EOPNOTSUPP;
1510                         if (prot & PROT_WRITE) {
1511                                 if (!(file->f_mode & FMODE_WRITE))
1512                                         return -EACCES;
1513                                 if (IS_SWAPFILE(file->f_mapping->host))
1514                                         return -ETXTBSY;
1515                         }
1516
1517                         /*
1518                          * Make sure we don't allow writing to an append-only
1519                          * file..
1520                          */
1521                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1522                                 return -EACCES;
1523
1524                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1525                         if (!(file->f_mode & FMODE_WRITE))
1526                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1527                         fallthrough;
1528                 case MAP_PRIVATE:
1529                         if (!(file->f_mode & FMODE_READ))
1530                                 return -EACCES;
1531                         if (path_noexec(&file->f_path)) {
1532                                 if (vm_flags & VM_EXEC)
1533                                         return -EPERM;
1534                                 vm_flags &= ~VM_MAYEXEC;
1535                         }
1536
1537                         if (!file->f_op->mmap)
1538                                 return -ENODEV;
1539                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1540                                 return -EINVAL;
1541                         break;
1542
1543                 default:
1544                         return -EINVAL;
1545                 }
1546         } else {
1547                 switch (flags & MAP_TYPE) {
1548                 case MAP_SHARED:
1549                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1550                                 return -EINVAL;
1551                         /*
1552                          * Ignore pgoff.
1553                          */
1554                         pgoff = 0;
1555                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1556                         break;
1557                 case MAP_PRIVATE:
1558                         /*
1559                          * Set pgoff according to addr for anon_vma.
1560                          */
1561                         pgoff = addr >> PAGE_SHIFT;
1562                         break;
1563                 default:
1564                         return -EINVAL;
1565                 }
1566         }
1567
1568         /*
1569          * Set 'VM_NORESERVE' if we should not account for the
1570          * memory use of this mapping.
1571          */
1572         if (flags & MAP_NORESERVE) {
1573                 /* We honor MAP_NORESERVE if allowed to overcommit */
1574                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1575                         vm_flags |= VM_NORESERVE;
1576
1577                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1578                 if (file && is_file_hugepages(file))
1579                         vm_flags |= VM_NORESERVE;
1580         }
1581
1582         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1583         if (!IS_ERR_VALUE(addr) &&
1584             ((vm_flags & VM_LOCKED) ||
1585              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1586                 *populate = len;
1587         return addr;
1588 }
1589
1590 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1591                               unsigned long prot, unsigned long flags,
1592                               unsigned long fd, unsigned long pgoff)
1593 {
1594         struct file *file = NULL;
1595         unsigned long retval;
1596
1597         if (!(flags & MAP_ANONYMOUS)) {
1598                 audit_mmap_fd(fd, flags);
1599                 file = fget(fd);
1600                 if (!file)
1601                         return -EBADF;
1602                 if (is_file_hugepages(file)) {
1603                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1604                 } else if (unlikely(flags & MAP_HUGETLB)) {
1605                         retval = -EINVAL;
1606                         goto out_fput;
1607                 }
1608         } else if (flags & MAP_HUGETLB) {
1609                 struct hstate *hs;
1610
1611                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1612                 if (!hs)
1613                         return -EINVAL;
1614
1615                 len = ALIGN(len, huge_page_size(hs));
1616                 /*
1617                  * VM_NORESERVE is used because the reservations will be
1618                  * taken when vm_ops->mmap() is called
1619                  */
1620                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1621                                 VM_NORESERVE,
1622                                 HUGETLB_ANONHUGE_INODE,
1623                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1624                 if (IS_ERR(file))
1625                         return PTR_ERR(file);
1626         }
1627
1628         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1629 out_fput:
1630         if (file)
1631                 fput(file);
1632         return retval;
1633 }
1634
1635 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1636                 unsigned long, prot, unsigned long, flags,
1637                 unsigned long, fd, unsigned long, pgoff)
1638 {
1639         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1640 }
1641
1642 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1643 struct mmap_arg_struct {
1644         unsigned long addr;
1645         unsigned long len;
1646         unsigned long prot;
1647         unsigned long flags;
1648         unsigned long fd;
1649         unsigned long offset;
1650 };
1651
1652 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1653 {
1654         struct mmap_arg_struct a;
1655
1656         if (copy_from_user(&a, arg, sizeof(a)))
1657                 return -EFAULT;
1658         if (offset_in_page(a.offset))
1659                 return -EINVAL;
1660
1661         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1662                                a.offset >> PAGE_SHIFT);
1663 }
1664 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1665
1666 /*
1667  * Some shared mappings will want the pages marked read-only
1668  * to track write events. If so, we'll downgrade vm_page_prot
1669  * to the private version (using protection_map[] without the
1670  * VM_SHARED bit).
1671  */
1672 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1673 {
1674         vm_flags_t vm_flags = vma->vm_flags;
1675         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1676
1677         /* If it was private or non-writable, the write bit is already clear */
1678         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1679                 return 0;
1680
1681         /* The backer wishes to know when pages are first written to? */
1682         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1683                 return 1;
1684
1685         /* The open routine did something to the protections that pgprot_modify
1686          * won't preserve? */
1687         if (pgprot_val(vm_page_prot) !=
1688             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1689                 return 0;
1690
1691         /* Do we need to track softdirty? */
1692         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1693                 return 1;
1694
1695         /* Specialty mapping? */
1696         if (vm_flags & VM_PFNMAP)
1697                 return 0;
1698
1699         /* Can the mapping track the dirty pages? */
1700         return vma->vm_file && vma->vm_file->f_mapping &&
1701                 mapping_can_writeback(vma->vm_file->f_mapping);
1702 }
1703
1704 /*
1705  * We account for memory if it's a private writeable mapping,
1706  * not hugepages and VM_NORESERVE wasn't set.
1707  */
1708 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1709 {
1710         /*
1711          * hugetlb has its own accounting separate from the core VM
1712          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1713          */
1714         if (file && is_file_hugepages(file))
1715                 return 0;
1716
1717         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1718 }
1719
1720 unsigned long mmap_region(struct file *file, unsigned long addr,
1721                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1722                 struct list_head *uf)
1723 {
1724         struct mm_struct *mm = current->mm;
1725         struct vm_area_struct *vma, *prev, *merge;
1726         int error;
1727         struct rb_node **rb_link, *rb_parent;
1728         unsigned long charged = 0;
1729
1730         /* Check against address space limit. */
1731         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1732                 unsigned long nr_pages;
1733
1734                 /*
1735                  * MAP_FIXED may remove pages of mappings that intersects with
1736                  * requested mapping. Account for the pages it would unmap.
1737                  */
1738                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1739
1740                 if (!may_expand_vm(mm, vm_flags,
1741                                         (len >> PAGE_SHIFT) - nr_pages))
1742                         return -ENOMEM;
1743         }
1744
1745         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1746         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1747                 return -ENOMEM;
1748         /*
1749          * Private writable mapping: check memory availability
1750          */
1751         if (accountable_mapping(file, vm_flags)) {
1752                 charged = len >> PAGE_SHIFT;
1753                 if (security_vm_enough_memory_mm(mm, charged))
1754                         return -ENOMEM;
1755                 vm_flags |= VM_ACCOUNT;
1756         }
1757
1758         /*
1759          * Can we just expand an old mapping?
1760          */
1761         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1762                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1763         if (vma)
1764                 goto out;
1765
1766         /*
1767          * Determine the object being mapped and call the appropriate
1768          * specific mapper. the address has already been validated, but
1769          * not unmapped, but the maps are removed from the list.
1770          */
1771         vma = vm_area_alloc(mm);
1772         if (!vma) {
1773                 error = -ENOMEM;
1774                 goto unacct_error;
1775         }
1776
1777         vma->vm_start = addr;
1778         vma->vm_end = addr + len;
1779         vma->vm_flags = vm_flags;
1780         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1781         vma->vm_pgoff = pgoff;
1782
1783         if (file) {
1784                 if (vm_flags & VM_SHARED) {
1785                         error = mapping_map_writable(file->f_mapping);
1786                         if (error)
1787                                 goto free_vma;
1788                 }
1789
1790                 vma->vm_file = get_file(file);
1791                 error = call_mmap(file, vma);
1792                 if (error)
1793                         goto unmap_and_free_vma;
1794
1795                 /* Can addr have changed??
1796                  *
1797                  * Answer: Yes, several device drivers can do it in their
1798                  *         f_op->mmap method. -DaveM
1799                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1800                  *      be updated for vma_link()
1801                  */
1802                 WARN_ON_ONCE(addr != vma->vm_start);
1803
1804                 addr = vma->vm_start;
1805
1806                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1807                  * as we may succeed this time.
1808                  */
1809                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1810                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1811                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1812                         if (merge) {
1813                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1814                                  * fput the vma->vm_file here or we would add an extra fput for file
1815                                  * and cause general protection fault ultimately.
1816                                  */
1817                                 fput(vma->vm_file);
1818                                 vm_area_free(vma);
1819                                 vma = merge;
1820                                 /* Update vm_flags to pick up the change. */
1821                                 vm_flags = vma->vm_flags;
1822                                 goto unmap_writable;
1823                         }
1824                 }
1825
1826                 vm_flags = vma->vm_flags;
1827         } else if (vm_flags & VM_SHARED) {
1828                 error = shmem_zero_setup(vma);
1829                 if (error)
1830                         goto free_vma;
1831         } else {
1832                 vma_set_anonymous(vma);
1833         }
1834
1835         /* Allow architectures to sanity-check the vm_flags */
1836         if (!arch_validate_flags(vma->vm_flags)) {
1837                 error = -EINVAL;
1838                 if (file)
1839                         goto unmap_and_free_vma;
1840                 else
1841                         goto free_vma;
1842         }
1843
1844         vma_link(mm, vma, prev, rb_link, rb_parent);
1845         /* Once vma denies write, undo our temporary denial count */
1846 unmap_writable:
1847         if (file && vm_flags & VM_SHARED)
1848                 mapping_unmap_writable(file->f_mapping);
1849         file = vma->vm_file;
1850 out:
1851         perf_event_mmap(vma);
1852
1853         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1854         if (vm_flags & VM_LOCKED) {
1855                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1856                                         is_vm_hugetlb_page(vma) ||
1857                                         vma == get_gate_vma(current->mm))
1858                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1859                 else
1860                         mm->locked_vm += (len >> PAGE_SHIFT);
1861         }
1862
1863         if (file)
1864                 uprobe_mmap(vma);
1865
1866         /*
1867          * New (or expanded) vma always get soft dirty status.
1868          * Otherwise user-space soft-dirty page tracker won't
1869          * be able to distinguish situation when vma area unmapped,
1870          * then new mapped in-place (which must be aimed as
1871          * a completely new data area).
1872          */
1873         vma->vm_flags |= VM_SOFTDIRTY;
1874
1875         vma_set_page_prot(vma);
1876
1877         return addr;
1878
1879 unmap_and_free_vma:
1880         fput(vma->vm_file);
1881         vma->vm_file = NULL;
1882
1883         /* Undo any partial mapping done by a device driver. */
1884         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1885         charged = 0;
1886         if (vm_flags & VM_SHARED)
1887                 mapping_unmap_writable(file->f_mapping);
1888 free_vma:
1889         vm_area_free(vma);
1890 unacct_error:
1891         if (charged)
1892                 vm_unacct_memory(charged);
1893         return error;
1894 }
1895
1896 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1897 {
1898         /*
1899          * We implement the search by looking for an rbtree node that
1900          * immediately follows a suitable gap. That is,
1901          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1902          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1903          * - gap_end - gap_start >= length
1904          */
1905
1906         struct mm_struct *mm = current->mm;
1907         struct vm_area_struct *vma;
1908         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1909
1910         /* Adjust search length to account for worst case alignment overhead */
1911         length = info->length + info->align_mask;
1912         if (length < info->length)
1913                 return -ENOMEM;
1914
1915         /* Adjust search limits by the desired length */
1916         if (info->high_limit < length)
1917                 return -ENOMEM;
1918         high_limit = info->high_limit - length;
1919
1920         if (info->low_limit > high_limit)
1921                 return -ENOMEM;
1922         low_limit = info->low_limit + length;
1923
1924         /* Check if rbtree root looks promising */
1925         if (RB_EMPTY_ROOT(&mm->mm_rb))
1926                 goto check_highest;
1927         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1928         if (vma->rb_subtree_gap < length)
1929                 goto check_highest;
1930
1931         while (true) {
1932                 /* Visit left subtree if it looks promising */
1933                 gap_end = vm_start_gap(vma);
1934                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1935                         struct vm_area_struct *left =
1936                                 rb_entry(vma->vm_rb.rb_left,
1937                                          struct vm_area_struct, vm_rb);
1938                         if (left->rb_subtree_gap >= length) {
1939                                 vma = left;
1940                                 continue;
1941                         }
1942                 }
1943
1944                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1945 check_current:
1946                 /* Check if current node has a suitable gap */
1947                 if (gap_start > high_limit)
1948                         return -ENOMEM;
1949                 if (gap_end >= low_limit &&
1950                     gap_end > gap_start && gap_end - gap_start >= length)
1951                         goto found;
1952
1953                 /* Visit right subtree if it looks promising */
1954                 if (vma->vm_rb.rb_right) {
1955                         struct vm_area_struct *right =
1956                                 rb_entry(vma->vm_rb.rb_right,
1957                                          struct vm_area_struct, vm_rb);
1958                         if (right->rb_subtree_gap >= length) {
1959                                 vma = right;
1960                                 continue;
1961                         }
1962                 }
1963
1964                 /* Go back up the rbtree to find next candidate node */
1965                 while (true) {
1966                         struct rb_node *prev = &vma->vm_rb;
1967                         if (!rb_parent(prev))
1968                                 goto check_highest;
1969                         vma = rb_entry(rb_parent(prev),
1970                                        struct vm_area_struct, vm_rb);
1971                         if (prev == vma->vm_rb.rb_left) {
1972                                 gap_start = vm_end_gap(vma->vm_prev);
1973                                 gap_end = vm_start_gap(vma);
1974                                 goto check_current;
1975                         }
1976                 }
1977         }
1978
1979 check_highest:
1980         /* Check highest gap, which does not precede any rbtree node */
1981         gap_start = mm->highest_vm_end;
1982         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1983         if (gap_start > high_limit)
1984                 return -ENOMEM;
1985
1986 found:
1987         /* We found a suitable gap. Clip it with the original low_limit. */
1988         if (gap_start < info->low_limit)
1989                 gap_start = info->low_limit;
1990
1991         /* Adjust gap address to the desired alignment */
1992         gap_start += (info->align_offset - gap_start) & info->align_mask;
1993
1994         VM_BUG_ON(gap_start + info->length > info->high_limit);
1995         VM_BUG_ON(gap_start + info->length > gap_end);
1996         return gap_start;
1997 }
1998
1999 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2000 {
2001         struct mm_struct *mm = current->mm;
2002         struct vm_area_struct *vma;
2003         unsigned long length, low_limit, high_limit, gap_start, gap_end;
2004
2005         /* Adjust search length to account for worst case alignment overhead */
2006         length = info->length + info->align_mask;
2007         if (length < info->length)
2008                 return -ENOMEM;
2009
2010         /*
2011          * Adjust search limits by the desired length.
2012          * See implementation comment at top of unmapped_area().
2013          */
2014         gap_end = info->high_limit;
2015         if (gap_end < length)
2016                 return -ENOMEM;
2017         high_limit = gap_end - length;
2018
2019         if (info->low_limit > high_limit)
2020                 return -ENOMEM;
2021         low_limit = info->low_limit + length;
2022
2023         /* Check highest gap, which does not precede any rbtree node */
2024         gap_start = mm->highest_vm_end;
2025         if (gap_start <= high_limit)
2026                 goto found_highest;
2027
2028         /* Check if rbtree root looks promising */
2029         if (RB_EMPTY_ROOT(&mm->mm_rb))
2030                 return -ENOMEM;
2031         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2032         if (vma->rb_subtree_gap < length)
2033                 return -ENOMEM;
2034
2035         while (true) {
2036                 /* Visit right subtree if it looks promising */
2037                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2038                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2039                         struct vm_area_struct *right =
2040                                 rb_entry(vma->vm_rb.rb_right,
2041                                          struct vm_area_struct, vm_rb);
2042                         if (right->rb_subtree_gap >= length) {
2043                                 vma = right;
2044                                 continue;
2045                         }
2046                 }
2047
2048 check_current:
2049                 /* Check if current node has a suitable gap */
2050                 gap_end = vm_start_gap(vma);
2051                 if (gap_end < low_limit)
2052                         return -ENOMEM;
2053                 if (gap_start <= high_limit &&
2054                     gap_end > gap_start && gap_end - gap_start >= length)
2055                         goto found;
2056
2057                 /* Visit left subtree if it looks promising */
2058                 if (vma->vm_rb.rb_left) {
2059                         struct vm_area_struct *left =
2060                                 rb_entry(vma->vm_rb.rb_left,
2061                                          struct vm_area_struct, vm_rb);
2062                         if (left->rb_subtree_gap >= length) {
2063                                 vma = left;
2064                                 continue;
2065                         }
2066                 }
2067
2068                 /* Go back up the rbtree to find next candidate node */
2069                 while (true) {
2070                         struct rb_node *prev = &vma->vm_rb;
2071                         if (!rb_parent(prev))
2072                                 return -ENOMEM;
2073                         vma = rb_entry(rb_parent(prev),
2074                                        struct vm_area_struct, vm_rb);
2075                         if (prev == vma->vm_rb.rb_right) {
2076                                 gap_start = vma->vm_prev ?
2077                                         vm_end_gap(vma->vm_prev) : 0;
2078                                 goto check_current;
2079                         }
2080                 }
2081         }
2082
2083 found:
2084         /* We found a suitable gap. Clip it with the original high_limit. */
2085         if (gap_end > info->high_limit)
2086                 gap_end = info->high_limit;
2087
2088 found_highest:
2089         /* Compute highest gap address at the desired alignment */
2090         gap_end -= info->length;
2091         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2092
2093         VM_BUG_ON(gap_end < info->low_limit);
2094         VM_BUG_ON(gap_end < gap_start);
2095         return gap_end;
2096 }
2097
2098 /*
2099  * Search for an unmapped address range.
2100  *
2101  * We are looking for a range that:
2102  * - does not intersect with any VMA;
2103  * - is contained within the [low_limit, high_limit) interval;
2104  * - is at least the desired size.
2105  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2106  */
2107 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2108 {
2109         unsigned long addr;
2110
2111         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2112                 addr = unmapped_area_topdown(info);
2113         else
2114                 addr = unmapped_area(info);
2115
2116         trace_vm_unmapped_area(addr, info);
2117         return addr;
2118 }
2119
2120 #ifndef arch_get_mmap_end
2121 #define arch_get_mmap_end(addr) (TASK_SIZE)
2122 #endif
2123
2124 #ifndef arch_get_mmap_base
2125 #define arch_get_mmap_base(addr, base) (base)
2126 #endif
2127
2128 /* Get an address range which is currently unmapped.
2129  * For shmat() with addr=0.
2130  *
2131  * Ugly calling convention alert:
2132  * Return value with the low bits set means error value,
2133  * ie
2134  *      if (ret & ~PAGE_MASK)
2135  *              error = ret;
2136  *
2137  * This function "knows" that -ENOMEM has the bits set.
2138  */
2139 #ifndef HAVE_ARCH_UNMAPPED_AREA
2140 unsigned long
2141 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2142                 unsigned long len, unsigned long pgoff, unsigned long flags)
2143 {
2144         struct mm_struct *mm = current->mm;
2145         struct vm_area_struct *vma, *prev;
2146         struct vm_unmapped_area_info info;
2147         const unsigned long mmap_end = arch_get_mmap_end(addr);
2148
2149         if (len > mmap_end - mmap_min_addr)
2150                 return -ENOMEM;
2151
2152         if (flags & MAP_FIXED)
2153                 return addr;
2154
2155         if (addr) {
2156                 addr = PAGE_ALIGN(addr);
2157                 vma = find_vma_prev(mm, addr, &prev);
2158                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2159                     (!vma || addr + len <= vm_start_gap(vma)) &&
2160                     (!prev || addr >= vm_end_gap(prev)))
2161                         return addr;
2162         }
2163
2164         info.flags = 0;
2165         info.length = len;
2166         info.low_limit = mm->mmap_base;
2167         info.high_limit = mmap_end;
2168         info.align_mask = 0;
2169         info.align_offset = 0;
2170         return vm_unmapped_area(&info);
2171 }
2172 #endif
2173
2174 /*
2175  * This mmap-allocator allocates new areas top-down from below the
2176  * stack's low limit (the base):
2177  */
2178 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2179 unsigned long
2180 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2181                           unsigned long len, unsigned long pgoff,
2182                           unsigned long flags)
2183 {
2184         struct vm_area_struct *vma, *prev;
2185         struct mm_struct *mm = current->mm;
2186         struct vm_unmapped_area_info info;
2187         const unsigned long mmap_end = arch_get_mmap_end(addr);
2188
2189         /* requested length too big for entire address space */
2190         if (len > mmap_end - mmap_min_addr)
2191                 return -ENOMEM;
2192
2193         if (flags & MAP_FIXED)
2194                 return addr;
2195
2196         /* requesting a specific address */
2197         if (addr) {
2198                 addr = PAGE_ALIGN(addr);
2199                 vma = find_vma_prev(mm, addr, &prev);
2200                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2201                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2202                                 (!prev || addr >= vm_end_gap(prev)))
2203                         return addr;
2204         }
2205
2206         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2207         info.length = len;
2208         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2209         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2210         info.align_mask = 0;
2211         info.align_offset = 0;
2212         addr = vm_unmapped_area(&info);
2213
2214         /*
2215          * A failed mmap() very likely causes application failure,
2216          * so fall back to the bottom-up function here. This scenario
2217          * can happen with large stack limits and large mmap()
2218          * allocations.
2219          */
2220         if (offset_in_page(addr)) {
2221                 VM_BUG_ON(addr != -ENOMEM);
2222                 info.flags = 0;
2223                 info.low_limit = TASK_UNMAPPED_BASE;
2224                 info.high_limit = mmap_end;
2225                 addr = vm_unmapped_area(&info);
2226         }
2227
2228         return addr;
2229 }
2230 #endif
2231
2232 unsigned long
2233 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2234                 unsigned long pgoff, unsigned long flags)
2235 {
2236         unsigned long (*get_area)(struct file *, unsigned long,
2237                                   unsigned long, unsigned long, unsigned long);
2238
2239         unsigned long error = arch_mmap_check(addr, len, flags);
2240         if (error)
2241                 return error;
2242
2243         /* Careful about overflows.. */
2244         if (len > TASK_SIZE)
2245                 return -ENOMEM;
2246
2247         get_area = current->mm->get_unmapped_area;
2248         if (file) {
2249                 if (file->f_op->get_unmapped_area)
2250                         get_area = file->f_op->get_unmapped_area;
2251         } else if (flags & MAP_SHARED) {
2252                 /*
2253                  * mmap_region() will call shmem_zero_setup() to create a file,
2254                  * so use shmem's get_unmapped_area in case it can be huge.
2255                  * do_mmap() will clear pgoff, so match alignment.
2256                  */
2257                 pgoff = 0;
2258                 get_area = shmem_get_unmapped_area;
2259         }
2260
2261         addr = get_area(file, addr, len, pgoff, flags);
2262         if (IS_ERR_VALUE(addr))
2263                 return addr;
2264
2265         if (addr > TASK_SIZE - len)
2266                 return -ENOMEM;
2267         if (offset_in_page(addr))
2268                 return -EINVAL;
2269
2270         error = security_mmap_addr(addr);
2271         return error ? error : addr;
2272 }
2273
2274 EXPORT_SYMBOL(get_unmapped_area);
2275
2276 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2277 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2278 {
2279         struct rb_node *rb_node;
2280         struct vm_area_struct *vma;
2281
2282         mmap_assert_locked(mm);
2283         /* Check the cache first. */
2284         vma = vmacache_find(mm, addr);
2285         if (likely(vma))
2286                 return vma;
2287
2288         rb_node = mm->mm_rb.rb_node;
2289
2290         while (rb_node) {
2291                 struct vm_area_struct *tmp;
2292
2293                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2294
2295                 if (tmp->vm_end > addr) {
2296                         vma = tmp;
2297                         if (tmp->vm_start <= addr)
2298                                 break;
2299                         rb_node = rb_node->rb_left;
2300                 } else
2301                         rb_node = rb_node->rb_right;
2302         }
2303
2304         if (vma)
2305                 vmacache_update(addr, vma);
2306         return vma;
2307 }
2308
2309 EXPORT_SYMBOL(find_vma);
2310
2311 /*
2312  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2313  */
2314 struct vm_area_struct *
2315 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2316                         struct vm_area_struct **pprev)
2317 {
2318         struct vm_area_struct *vma;
2319
2320         vma = find_vma(mm, addr);
2321         if (vma) {
2322                 *pprev = vma->vm_prev;
2323         } else {
2324                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2325
2326                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2327         }
2328         return vma;
2329 }
2330
2331 /*
2332  * Verify that the stack growth is acceptable and
2333  * update accounting. This is shared with both the
2334  * grow-up and grow-down cases.
2335  */
2336 static int acct_stack_growth(struct vm_area_struct *vma,
2337                              unsigned long size, unsigned long grow)
2338 {
2339         struct mm_struct *mm = vma->vm_mm;
2340         unsigned long new_start;
2341
2342         /* address space limit tests */
2343         if (!may_expand_vm(mm, vma->vm_flags, grow))
2344                 return -ENOMEM;
2345
2346         /* Stack limit test */
2347         if (size > rlimit(RLIMIT_STACK))
2348                 return -ENOMEM;
2349
2350         /* mlock limit tests */
2351         if (vma->vm_flags & VM_LOCKED) {
2352                 unsigned long locked;
2353                 unsigned long limit;
2354                 locked = mm->locked_vm + grow;
2355                 limit = rlimit(RLIMIT_MEMLOCK);
2356                 limit >>= PAGE_SHIFT;
2357                 if (locked > limit && !capable(CAP_IPC_LOCK))
2358                         return -ENOMEM;
2359         }
2360
2361         /* Check to ensure the stack will not grow into a hugetlb-only region */
2362         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2363                         vma->vm_end - size;
2364         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2365                 return -EFAULT;
2366
2367         /*
2368          * Overcommit..  This must be the final test, as it will
2369          * update security statistics.
2370          */
2371         if (security_vm_enough_memory_mm(mm, grow))
2372                 return -ENOMEM;
2373
2374         return 0;
2375 }
2376
2377 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2378 /*
2379  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2380  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2381  */
2382 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2383 {
2384         struct mm_struct *mm = vma->vm_mm;
2385         struct vm_area_struct *next;
2386         unsigned long gap_addr;
2387         int error = 0;
2388
2389         if (!(vma->vm_flags & VM_GROWSUP))
2390                 return -EFAULT;
2391
2392         /* Guard against exceeding limits of the address space. */
2393         address &= PAGE_MASK;
2394         if (address >= (TASK_SIZE & PAGE_MASK))
2395                 return -ENOMEM;
2396         address += PAGE_SIZE;
2397
2398         /* Enforce stack_guard_gap */
2399         gap_addr = address + stack_guard_gap;
2400
2401         /* Guard against overflow */
2402         if (gap_addr < address || gap_addr > TASK_SIZE)
2403                 gap_addr = TASK_SIZE;
2404
2405         next = vma->vm_next;
2406         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2407                 if (!(next->vm_flags & VM_GROWSUP))
2408                         return -ENOMEM;
2409                 /* Check that both stack segments have the same anon_vma? */
2410         }
2411
2412         /* We must make sure the anon_vma is allocated. */
2413         if (unlikely(anon_vma_prepare(vma)))
2414                 return -ENOMEM;
2415
2416         /*
2417          * vma->vm_start/vm_end cannot change under us because the caller
2418          * is required to hold the mmap_lock in read mode.  We need the
2419          * anon_vma lock to serialize against concurrent expand_stacks.
2420          */
2421         anon_vma_lock_write(vma->anon_vma);
2422
2423         /* Somebody else might have raced and expanded it already */
2424         if (address > vma->vm_end) {
2425                 unsigned long size, grow;
2426
2427                 size = address - vma->vm_start;
2428                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2429
2430                 error = -ENOMEM;
2431                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2432                         error = acct_stack_growth(vma, size, grow);
2433                         if (!error) {
2434                                 /*
2435                                  * vma_gap_update() doesn't support concurrent
2436                                  * updates, but we only hold a shared mmap_lock
2437                                  * lock here, so we need to protect against
2438                                  * concurrent vma expansions.
2439                                  * anon_vma_lock_write() doesn't help here, as
2440                                  * we don't guarantee that all growable vmas
2441                                  * in a mm share the same root anon vma.
2442                                  * So, we reuse mm->page_table_lock to guard
2443                                  * against concurrent vma expansions.
2444                                  */
2445                                 spin_lock(&mm->page_table_lock);
2446                                 if (vma->vm_flags & VM_LOCKED)
2447                                         mm->locked_vm += grow;
2448                                 vm_stat_account(mm, vma->vm_flags, grow);
2449                                 anon_vma_interval_tree_pre_update_vma(vma);
2450                                 vma->vm_end = address;
2451                                 anon_vma_interval_tree_post_update_vma(vma);
2452                                 if (vma->vm_next)
2453                                         vma_gap_update(vma->vm_next);
2454                                 else
2455                                         mm->highest_vm_end = vm_end_gap(vma);
2456                                 spin_unlock(&mm->page_table_lock);
2457
2458                                 perf_event_mmap(vma);
2459                         }
2460                 }
2461         }
2462         anon_vma_unlock_write(vma->anon_vma);
2463         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2464         validate_mm(mm);
2465         return error;
2466 }
2467 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2468
2469 /*
2470  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2471  */
2472 int expand_downwards(struct vm_area_struct *vma,
2473                                    unsigned long address)
2474 {
2475         struct mm_struct *mm = vma->vm_mm;
2476         struct vm_area_struct *prev;
2477         int error = 0;
2478
2479         address &= PAGE_MASK;
2480         if (address < mmap_min_addr)
2481                 return -EPERM;
2482
2483         /* Enforce stack_guard_gap */
2484         prev = vma->vm_prev;
2485         /* Check that both stack segments have the same anon_vma? */
2486         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2487                         vma_is_accessible(prev)) {
2488                 if (address - prev->vm_end < stack_guard_gap)
2489                         return -ENOMEM;
2490         }
2491
2492         /* We must make sure the anon_vma is allocated. */
2493         if (unlikely(anon_vma_prepare(vma)))
2494                 return -ENOMEM;
2495
2496         /*
2497          * vma->vm_start/vm_end cannot change under us because the caller
2498          * is required to hold the mmap_lock in read mode.  We need the
2499          * anon_vma lock to serialize against concurrent expand_stacks.
2500          */
2501         anon_vma_lock_write(vma->anon_vma);
2502
2503         /* Somebody else might have raced and expanded it already */
2504         if (address < vma->vm_start) {
2505                 unsigned long size, grow;
2506
2507                 size = vma->vm_end - address;
2508                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2509
2510                 error = -ENOMEM;
2511                 if (grow <= vma->vm_pgoff) {
2512                         error = acct_stack_growth(vma, size, grow);
2513                         if (!error) {
2514                                 /*
2515                                  * vma_gap_update() doesn't support concurrent
2516                                  * updates, but we only hold a shared mmap_lock
2517                                  * lock here, so we need to protect against
2518                                  * concurrent vma expansions.
2519                                  * anon_vma_lock_write() doesn't help here, as
2520                                  * we don't guarantee that all growable vmas
2521                                  * in a mm share the same root anon vma.
2522                                  * So, we reuse mm->page_table_lock to guard
2523                                  * against concurrent vma expansions.
2524                                  */
2525                                 spin_lock(&mm->page_table_lock);
2526                                 if (vma->vm_flags & VM_LOCKED)
2527                                         mm->locked_vm += grow;
2528                                 vm_stat_account(mm, vma->vm_flags, grow);
2529                                 anon_vma_interval_tree_pre_update_vma(vma);
2530                                 vma->vm_start = address;
2531                                 vma->vm_pgoff -= grow;
2532                                 anon_vma_interval_tree_post_update_vma(vma);
2533                                 vma_gap_update(vma);
2534                                 spin_unlock(&mm->page_table_lock);
2535
2536                                 perf_event_mmap(vma);
2537                         }
2538                 }
2539         }
2540         anon_vma_unlock_write(vma->anon_vma);
2541         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2542         validate_mm(mm);
2543         return error;
2544 }
2545
2546 /* enforced gap between the expanding stack and other mappings. */
2547 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2548
2549 static int __init cmdline_parse_stack_guard_gap(char *p)
2550 {
2551         unsigned long val;
2552         char *endptr;
2553
2554         val = simple_strtoul(p, &endptr, 10);
2555         if (!*endptr)
2556                 stack_guard_gap = val << PAGE_SHIFT;
2557
2558         return 1;
2559 }
2560 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2561
2562 #ifdef CONFIG_STACK_GROWSUP
2563 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2564 {
2565         return expand_upwards(vma, address);
2566 }
2567
2568 struct vm_area_struct *
2569 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2570 {
2571         struct vm_area_struct *vma, *prev;
2572
2573         addr &= PAGE_MASK;
2574         vma = find_vma_prev(mm, addr, &prev);
2575         if (vma && (vma->vm_start <= addr))
2576                 return vma;
2577         /* don't alter vm_end if the coredump is running */
2578         if (!prev || expand_stack(prev, addr))
2579                 return NULL;
2580         if (prev->vm_flags & VM_LOCKED)
2581                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2582         return prev;
2583 }
2584 #else
2585 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2586 {
2587         return expand_downwards(vma, address);
2588 }
2589
2590 struct vm_area_struct *
2591 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2592 {
2593         struct vm_area_struct *vma;
2594         unsigned long start;
2595
2596         addr &= PAGE_MASK;
2597         vma = find_vma(mm, addr);
2598         if (!vma)
2599                 return NULL;
2600         if (vma->vm_start <= addr)
2601                 return vma;
2602         if (!(vma->vm_flags & VM_GROWSDOWN))
2603                 return NULL;
2604         start = vma->vm_start;
2605         if (expand_stack(vma, addr))
2606                 return NULL;
2607         if (vma->vm_flags & VM_LOCKED)
2608                 populate_vma_page_range(vma, addr, start, NULL);
2609         return vma;
2610 }
2611 #endif
2612
2613 EXPORT_SYMBOL_GPL(find_extend_vma);
2614
2615 /*
2616  * Ok - we have the memory areas we should free on the vma list,
2617  * so release them, and do the vma updates.
2618  *
2619  * Called with the mm semaphore held.
2620  */
2621 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2622 {
2623         unsigned long nr_accounted = 0;
2624
2625         /* Update high watermark before we lower total_vm */
2626         update_hiwater_vm(mm);
2627         do {
2628                 long nrpages = vma_pages(vma);
2629
2630                 if (vma->vm_flags & VM_ACCOUNT)
2631                         nr_accounted += nrpages;
2632                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2633                 vma = remove_vma(vma);
2634         } while (vma);
2635         vm_unacct_memory(nr_accounted);
2636         validate_mm(mm);
2637 }
2638
2639 /*
2640  * Get rid of page table information in the indicated region.
2641  *
2642  * Called with the mm semaphore held.
2643  */
2644 static void unmap_region(struct mm_struct *mm,
2645                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2646                 unsigned long start, unsigned long end)
2647 {
2648         struct vm_area_struct *next = vma_next(mm, prev);
2649         struct mmu_gather tlb;
2650
2651         lru_add_drain();
2652         tlb_gather_mmu(&tlb, mm);
2653         update_hiwater_rss(mm);
2654         unmap_vmas(&tlb, vma, start, end);
2655         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2656                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2657         tlb_finish_mmu(&tlb);
2658 }
2659
2660 /*
2661  * Create a list of vma's touched by the unmap, removing them from the mm's
2662  * vma list as we go..
2663  */
2664 static bool
2665 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2666         struct vm_area_struct *prev, unsigned long end)
2667 {
2668         struct vm_area_struct **insertion_point;
2669         struct vm_area_struct *tail_vma = NULL;
2670
2671         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2672         vma->vm_prev = NULL;
2673         do {
2674                 vma_rb_erase(vma, &mm->mm_rb);
2675                 if (vma->vm_flags & VM_LOCKED)
2676                         mm->locked_vm -= vma_pages(vma);
2677                 mm->map_count--;
2678                 tail_vma = vma;
2679                 vma = vma->vm_next;
2680         } while (vma && vma->vm_start < end);
2681         *insertion_point = vma;
2682         if (vma) {
2683                 vma->vm_prev = prev;
2684                 vma_gap_update(vma);
2685         } else
2686                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2687         tail_vma->vm_next = NULL;
2688
2689         /* Kill the cache */
2690         vmacache_invalidate(mm);
2691
2692         /*
2693          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2694          * VM_GROWSUP VMA. Such VMAs can change their size under
2695          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2696          */
2697         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2698                 return false;
2699         if (prev && (prev->vm_flags & VM_GROWSUP))
2700                 return false;
2701         return true;
2702 }
2703
2704 /*
2705  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2706  * has already been checked or doesn't make sense to fail.
2707  */
2708 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2709                 unsigned long addr, int new_below)
2710 {
2711         struct vm_area_struct *new;
2712         int err;
2713
2714         if (vma->vm_ops && vma->vm_ops->may_split) {
2715                 err = vma->vm_ops->may_split(vma, addr);
2716                 if (err)
2717                         return err;
2718         }
2719
2720         new = vm_area_dup(vma);
2721         if (!new)
2722                 return -ENOMEM;
2723
2724         if (new_below)
2725                 new->vm_end = addr;
2726         else {
2727                 new->vm_start = addr;
2728                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2729         }
2730
2731         err = vma_dup_policy(vma, new);
2732         if (err)
2733                 goto out_free_vma;
2734
2735         err = anon_vma_clone(new, vma);
2736         if (err)
2737                 goto out_free_mpol;
2738
2739         if (new->vm_file)
2740                 get_file(new->vm_file);
2741
2742         if (new->vm_ops && new->vm_ops->open)
2743                 new->vm_ops->open(new);
2744
2745         if (new_below)
2746                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2747                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2748         else
2749                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2750
2751         /* Success. */
2752         if (!err)
2753                 return 0;
2754
2755         /* Clean everything up if vma_adjust failed. */
2756         if (new->vm_ops && new->vm_ops->close)
2757                 new->vm_ops->close(new);
2758         if (new->vm_file)
2759                 fput(new->vm_file);
2760         unlink_anon_vmas(new);
2761  out_free_mpol:
2762         mpol_put(vma_policy(new));
2763  out_free_vma:
2764         vm_area_free(new);
2765         return err;
2766 }
2767
2768 /*
2769  * Split a vma into two pieces at address 'addr', a new vma is allocated
2770  * either for the first part or the tail.
2771  */
2772 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2773               unsigned long addr, int new_below)
2774 {
2775         if (mm->map_count >= sysctl_max_map_count)
2776                 return -ENOMEM;
2777
2778         return __split_vma(mm, vma, addr, new_below);
2779 }
2780
2781 /* Munmap is split into 2 main parts -- this part which finds
2782  * what needs doing, and the areas themselves, which do the
2783  * work.  This now handles partial unmappings.
2784  * Jeremy Fitzhardinge <jeremy@goop.org>
2785  */
2786 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2787                 struct list_head *uf, bool downgrade)
2788 {
2789         unsigned long end;
2790         struct vm_area_struct *vma, *prev, *last;
2791
2792         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2793                 return -EINVAL;
2794
2795         len = PAGE_ALIGN(len);
2796         end = start + len;
2797         if (len == 0)
2798                 return -EINVAL;
2799
2800         /*
2801          * arch_unmap() might do unmaps itself.  It must be called
2802          * and finish any rbtree manipulation before this code
2803          * runs and also starts to manipulate the rbtree.
2804          */
2805         arch_unmap(mm, start, end);
2806
2807         /* Find the first overlapping VMA where start < vma->vm_end */
2808         vma = find_vma_intersection(mm, start, end);
2809         if (!vma)
2810                 return 0;
2811         prev = vma->vm_prev;
2812
2813         /*
2814          * If we need to split any vma, do it now to save pain later.
2815          *
2816          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2817          * unmapped vm_area_struct will remain in use: so lower split_vma
2818          * places tmp vma above, and higher split_vma places tmp vma below.
2819          */
2820         if (start > vma->vm_start) {
2821                 int error;
2822
2823                 /*
2824                  * Make sure that map_count on return from munmap() will
2825                  * not exceed its limit; but let map_count go just above
2826                  * its limit temporarily, to help free resources as expected.
2827                  */
2828                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2829                         return -ENOMEM;
2830
2831                 error = __split_vma(mm, vma, start, 0);
2832                 if (error)
2833                         return error;
2834                 prev = vma;
2835         }
2836
2837         /* Does it split the last one? */
2838         last = find_vma(mm, end);
2839         if (last && end > last->vm_start) {
2840                 int error = __split_vma(mm, last, end, 1);
2841                 if (error)
2842                         return error;
2843         }
2844         vma = vma_next(mm, prev);
2845
2846         if (unlikely(uf)) {
2847                 /*
2848                  * If userfaultfd_unmap_prep returns an error the vmas
2849                  * will remain split, but userland will get a
2850                  * highly unexpected error anyway. This is no
2851                  * different than the case where the first of the two
2852                  * __split_vma fails, but we don't undo the first
2853                  * split, despite we could. This is unlikely enough
2854                  * failure that it's not worth optimizing it for.
2855                  */
2856                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2857                 if (error)
2858                         return error;
2859         }
2860
2861         /* Detach vmas from rbtree */
2862         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2863                 downgrade = false;
2864
2865         if (downgrade)
2866                 mmap_write_downgrade(mm);
2867
2868         unmap_region(mm, vma, prev, start, end);
2869
2870         /* Fix up all other VM information */
2871         remove_vma_list(mm, vma);
2872
2873         return downgrade ? 1 : 0;
2874 }
2875
2876 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2877               struct list_head *uf)
2878 {
2879         return __do_munmap(mm, start, len, uf, false);
2880 }
2881
2882 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2883 {
2884         int ret;
2885         struct mm_struct *mm = current->mm;
2886         LIST_HEAD(uf);
2887
2888         if (mmap_write_lock_killable(mm))
2889                 return -EINTR;
2890
2891         ret = __do_munmap(mm, start, len, &uf, downgrade);
2892         /*
2893          * Returning 1 indicates mmap_lock is downgraded.
2894          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2895          * it to 0 before return.
2896          */
2897         if (ret == 1) {
2898                 mmap_read_unlock(mm);
2899                 ret = 0;
2900         } else
2901                 mmap_write_unlock(mm);
2902
2903         userfaultfd_unmap_complete(mm, &uf);
2904         return ret;
2905 }
2906
2907 int vm_munmap(unsigned long start, size_t len)
2908 {
2909         return __vm_munmap(start, len, false);
2910 }
2911 EXPORT_SYMBOL(vm_munmap);
2912
2913 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2914 {
2915         addr = untagged_addr(addr);
2916         return __vm_munmap(addr, len, true);
2917 }
2918
2919
2920 /*
2921  * Emulation of deprecated remap_file_pages() syscall.
2922  */
2923 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2924                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2925 {
2926
2927         struct mm_struct *mm = current->mm;
2928         struct vm_area_struct *vma;
2929         unsigned long populate = 0;
2930         unsigned long ret = -EINVAL;
2931         struct file *file;
2932
2933         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2934                      current->comm, current->pid);
2935
2936         if (prot)
2937                 return ret;
2938         start = start & PAGE_MASK;
2939         size = size & PAGE_MASK;
2940
2941         if (start + size <= start)
2942                 return ret;
2943
2944         /* Does pgoff wrap? */
2945         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2946                 return ret;
2947
2948         if (mmap_write_lock_killable(mm))
2949                 return -EINTR;
2950
2951         vma = vma_lookup(mm, start);
2952
2953         if (!vma || !(vma->vm_flags & VM_SHARED))
2954                 goto out;
2955
2956         if (start + size > vma->vm_end) {
2957                 struct vm_area_struct *next;
2958
2959                 for (next = vma->vm_next; next; next = next->vm_next) {
2960                         /* hole between vmas ? */
2961                         if (next->vm_start != next->vm_prev->vm_end)
2962                                 goto out;
2963
2964                         if (next->vm_file != vma->vm_file)
2965                                 goto out;
2966
2967                         if (next->vm_flags != vma->vm_flags)
2968                                 goto out;
2969
2970                         if (start + size <= next->vm_end)
2971                                 break;
2972                 }
2973
2974                 if (!next)
2975                         goto out;
2976         }
2977
2978         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2979         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2980         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2981
2982         flags &= MAP_NONBLOCK;
2983         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2984         if (vma->vm_flags & VM_LOCKED)
2985                 flags |= MAP_LOCKED;
2986
2987         file = get_file(vma->vm_file);
2988         ret = do_mmap(vma->vm_file, start, size,
2989                         prot, flags, pgoff, &populate, NULL);
2990         fput(file);
2991 out:
2992         mmap_write_unlock(mm);
2993         if (populate)
2994                 mm_populate(ret, populate);
2995         if (!IS_ERR_VALUE(ret))
2996                 ret = 0;
2997         return ret;
2998 }
2999
3000 /*
3001  *  this is really a simplified "do_mmap".  it only handles
3002  *  anonymous maps.  eventually we may be able to do some
3003  *  brk-specific accounting here.
3004  */
3005 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3006 {
3007         struct mm_struct *mm = current->mm;
3008         struct vm_area_struct *vma, *prev;
3009         struct rb_node **rb_link, *rb_parent;
3010         pgoff_t pgoff = addr >> PAGE_SHIFT;
3011         int error;
3012         unsigned long mapped_addr;
3013
3014         /* Until we need other flags, refuse anything except VM_EXEC. */
3015         if ((flags & (~VM_EXEC)) != 0)
3016                 return -EINVAL;
3017         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3018
3019         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3020         if (IS_ERR_VALUE(mapped_addr))
3021                 return mapped_addr;
3022
3023         error = mlock_future_check(mm, mm->def_flags, len);
3024         if (error)
3025                 return error;
3026
3027         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3028         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3029                 return -ENOMEM;
3030
3031         /* Check against address space limits *after* clearing old maps... */
3032         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3033                 return -ENOMEM;
3034
3035         if (mm->map_count > sysctl_max_map_count)
3036                 return -ENOMEM;
3037
3038         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3039                 return -ENOMEM;
3040
3041         /* Can we just expand an old private anonymous mapping? */
3042         vma = vma_merge(mm, prev, addr, addr + len, flags,
3043                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3044         if (vma)
3045                 goto out;
3046
3047         /*
3048          * create a vma struct for an anonymous mapping
3049          */
3050         vma = vm_area_alloc(mm);
3051         if (!vma) {
3052                 vm_unacct_memory(len >> PAGE_SHIFT);
3053                 return -ENOMEM;
3054         }
3055
3056         vma_set_anonymous(vma);
3057         vma->vm_start = addr;
3058         vma->vm_end = addr + len;
3059         vma->vm_pgoff = pgoff;
3060         vma->vm_flags = flags;
3061         vma->vm_page_prot = vm_get_page_prot(flags);
3062         vma_link(mm, vma, prev, rb_link, rb_parent);
3063 out:
3064         perf_event_mmap(vma);
3065         mm->total_vm += len >> PAGE_SHIFT;
3066         mm->data_vm += len >> PAGE_SHIFT;
3067         if (flags & VM_LOCKED)
3068                 mm->locked_vm += (len >> PAGE_SHIFT);
3069         vma->vm_flags |= VM_SOFTDIRTY;
3070         return 0;
3071 }
3072
3073 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3074 {
3075         struct mm_struct *mm = current->mm;
3076         unsigned long len;
3077         int ret;
3078         bool populate;
3079         LIST_HEAD(uf);
3080
3081         len = PAGE_ALIGN(request);
3082         if (len < request)
3083                 return -ENOMEM;
3084         if (!len)
3085                 return 0;
3086
3087         if (mmap_write_lock_killable(mm))
3088                 return -EINTR;
3089
3090         ret = do_brk_flags(addr, len, flags, &uf);
3091         populate = ((mm->def_flags & VM_LOCKED) != 0);
3092         mmap_write_unlock(mm);
3093         userfaultfd_unmap_complete(mm, &uf);
3094         if (populate && !ret)
3095                 mm_populate(addr, len);
3096         return ret;
3097 }
3098 EXPORT_SYMBOL(vm_brk_flags);
3099
3100 int vm_brk(unsigned long addr, unsigned long len)
3101 {
3102         return vm_brk_flags(addr, len, 0);
3103 }
3104 EXPORT_SYMBOL(vm_brk);
3105
3106 /* Release all mmaps. */
3107 void exit_mmap(struct mm_struct *mm)
3108 {
3109         struct mmu_gather tlb;
3110         struct vm_area_struct *vma;
3111         unsigned long nr_accounted = 0;
3112
3113         /* mm's last user has gone, and its about to be pulled down */
3114         mmu_notifier_release(mm);
3115
3116         if (unlikely(mm_is_oom_victim(mm))) {
3117                 /*
3118                  * Manually reap the mm to free as much memory as possible.
3119                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3120                  * this mm from further consideration.  Taking mm->mmap_lock for
3121                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3122                  * reaper will not run on this mm again after mmap_lock is
3123                  * dropped.
3124                  *
3125                  * Nothing can be holding mm->mmap_lock here and the above call
3126                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3127                  * __oom_reap_task_mm() will not block.
3128                  */
3129                 (void)__oom_reap_task_mm(mm);
3130                 set_bit(MMF_OOM_SKIP, &mm->flags);
3131         }
3132
3133         mmap_write_lock(mm);
3134         arch_exit_mmap(mm);
3135
3136         vma = mm->mmap;
3137         if (!vma) {
3138                 /* Can happen if dup_mmap() received an OOM */
3139                 mmap_write_unlock(mm);
3140                 return;
3141         }
3142
3143         lru_add_drain();
3144         flush_cache_mm(mm);
3145         tlb_gather_mmu_fullmm(&tlb, mm);
3146         /* update_hiwater_rss(mm) here? but nobody should be looking */
3147         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3148         unmap_vmas(&tlb, vma, 0, -1);
3149         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3150         tlb_finish_mmu(&tlb);
3151
3152         /* Walk the list again, actually closing and freeing it. */
3153         while (vma) {
3154                 if (vma->vm_flags & VM_ACCOUNT)
3155                         nr_accounted += vma_pages(vma);
3156                 vma = remove_vma(vma);
3157                 cond_resched();
3158         }
3159         mm->mmap = NULL;
3160         mmap_write_unlock(mm);
3161         vm_unacct_memory(nr_accounted);
3162 }
3163
3164 /* Insert vm structure into process list sorted by address
3165  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3166  * then i_mmap_rwsem is taken here.
3167  */
3168 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3169 {
3170         struct vm_area_struct *prev;
3171         struct rb_node **rb_link, *rb_parent;
3172
3173         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3174                            &prev, &rb_link, &rb_parent))
3175                 return -ENOMEM;
3176         if ((vma->vm_flags & VM_ACCOUNT) &&
3177              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3178                 return -ENOMEM;
3179
3180         /*
3181          * The vm_pgoff of a purely anonymous vma should be irrelevant
3182          * until its first write fault, when page's anon_vma and index
3183          * are set.  But now set the vm_pgoff it will almost certainly
3184          * end up with (unless mremap moves it elsewhere before that
3185          * first wfault), so /proc/pid/maps tells a consistent story.
3186          *
3187          * By setting it to reflect the virtual start address of the
3188          * vma, merges and splits can happen in a seamless way, just
3189          * using the existing file pgoff checks and manipulations.
3190          * Similarly in do_mmap and in do_brk_flags.
3191          */
3192         if (vma_is_anonymous(vma)) {
3193                 BUG_ON(vma->anon_vma);
3194                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3195         }
3196
3197         vma_link(mm, vma, prev, rb_link, rb_parent);
3198         return 0;
3199 }
3200
3201 /*
3202  * Copy the vma structure to a new location in the same mm,
3203  * prior to moving page table entries, to effect an mremap move.
3204  */
3205 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3206         unsigned long addr, unsigned long len, pgoff_t pgoff,
3207         bool *need_rmap_locks)
3208 {
3209         struct vm_area_struct *vma = *vmap;
3210         unsigned long vma_start = vma->vm_start;
3211         struct mm_struct *mm = vma->vm_mm;
3212         struct vm_area_struct *new_vma, *prev;
3213         struct rb_node **rb_link, *rb_parent;
3214         bool faulted_in_anon_vma = true;
3215
3216         /*
3217          * If anonymous vma has not yet been faulted, update new pgoff
3218          * to match new location, to increase its chance of merging.
3219          */
3220         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3221                 pgoff = addr >> PAGE_SHIFT;
3222                 faulted_in_anon_vma = false;
3223         }
3224
3225         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3226                 return NULL;    /* should never get here */
3227         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3228                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3229                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3230         if (new_vma) {
3231                 /*
3232                  * Source vma may have been merged into new_vma
3233                  */
3234                 if (unlikely(vma_start >= new_vma->vm_start &&
3235                              vma_start < new_vma->vm_end)) {
3236                         /*
3237                          * The only way we can get a vma_merge with
3238                          * self during an mremap is if the vma hasn't
3239                          * been faulted in yet and we were allowed to
3240                          * reset the dst vma->vm_pgoff to the
3241                          * destination address of the mremap to allow
3242                          * the merge to happen. mremap must change the
3243                          * vm_pgoff linearity between src and dst vmas
3244                          * (in turn preventing a vma_merge) to be
3245                          * safe. It is only safe to keep the vm_pgoff
3246                          * linear if there are no pages mapped yet.
3247                          */
3248                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3249                         *vmap = vma = new_vma;
3250                 }
3251                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3252         } else {
3253                 new_vma = vm_area_dup(vma);
3254                 if (!new_vma)
3255                         goto out;
3256                 new_vma->vm_start = addr;
3257                 new_vma->vm_end = addr + len;
3258                 new_vma->vm_pgoff = pgoff;
3259                 if (vma_dup_policy(vma, new_vma))
3260                         goto out_free_vma;
3261                 if (anon_vma_clone(new_vma, vma))
3262                         goto out_free_mempol;
3263                 if (new_vma->vm_file)
3264                         get_file(new_vma->vm_file);
3265                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3266                         new_vma->vm_ops->open(new_vma);
3267                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3268                 *need_rmap_locks = false;
3269         }
3270         return new_vma;
3271
3272 out_free_mempol:
3273         mpol_put(vma_policy(new_vma));
3274 out_free_vma:
3275         vm_area_free(new_vma);
3276 out:
3277         return NULL;
3278 }
3279
3280 /*
3281  * Return true if the calling process may expand its vm space by the passed
3282  * number of pages
3283  */
3284 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3285 {
3286         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3287                 return false;
3288
3289         if (is_data_mapping(flags) &&
3290             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3291                 /* Workaround for Valgrind */
3292                 if (rlimit(RLIMIT_DATA) == 0 &&
3293                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3294                         return true;
3295
3296                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3297                              current->comm, current->pid,
3298                              (mm->data_vm + npages) << PAGE_SHIFT,
3299                              rlimit(RLIMIT_DATA),
3300                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3301
3302                 if (!ignore_rlimit_data)
3303                         return false;
3304         }
3305
3306         return true;
3307 }
3308
3309 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3310 {
3311         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3312
3313         if (is_exec_mapping(flags))
3314                 mm->exec_vm += npages;
3315         else if (is_stack_mapping(flags))
3316                 mm->stack_vm += npages;
3317         else if (is_data_mapping(flags))
3318                 mm->data_vm += npages;
3319 }
3320
3321 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3322
3323 /*
3324  * Having a close hook prevents vma merging regardless of flags.
3325  */
3326 static void special_mapping_close(struct vm_area_struct *vma)
3327 {
3328 }
3329
3330 static const char *special_mapping_name(struct vm_area_struct *vma)
3331 {
3332         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3333 }
3334
3335 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3336 {
3337         struct vm_special_mapping *sm = new_vma->vm_private_data;
3338
3339         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3340                 return -EFAULT;
3341
3342         if (sm->mremap)
3343                 return sm->mremap(sm, new_vma);
3344
3345         return 0;
3346 }
3347
3348 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3349 {
3350         /*
3351          * Forbid splitting special mappings - kernel has expectations over
3352          * the number of pages in mapping. Together with VM_DONTEXPAND
3353          * the size of vma should stay the same over the special mapping's
3354          * lifetime.
3355          */
3356         return -EINVAL;
3357 }
3358
3359 static const struct vm_operations_struct special_mapping_vmops = {
3360         .close = special_mapping_close,
3361         .fault = special_mapping_fault,
3362         .mremap = special_mapping_mremap,
3363         .name = special_mapping_name,
3364         /* vDSO code relies that VVAR can't be accessed remotely */
3365         .access = NULL,
3366         .may_split = special_mapping_split,
3367 };
3368
3369 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3370         .close = special_mapping_close,
3371         .fault = special_mapping_fault,
3372 };
3373
3374 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3375 {
3376         struct vm_area_struct *vma = vmf->vma;
3377         pgoff_t pgoff;
3378         struct page **pages;
3379
3380         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3381                 pages = vma->vm_private_data;
3382         } else {
3383                 struct vm_special_mapping *sm = vma->vm_private_data;
3384
3385                 if (sm->fault)
3386                         return sm->fault(sm, vmf->vma, vmf);
3387
3388                 pages = sm->pages;
3389         }
3390
3391         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3392                 pgoff--;
3393
3394         if (*pages) {
3395                 struct page *page = *pages;
3396                 get_page(page);
3397                 vmf->page = page;
3398                 return 0;
3399         }
3400
3401         return VM_FAULT_SIGBUS;
3402 }
3403
3404 static struct vm_area_struct *__install_special_mapping(
3405         struct mm_struct *mm,
3406         unsigned long addr, unsigned long len,
3407         unsigned long vm_flags, void *priv,
3408         const struct vm_operations_struct *ops)
3409 {
3410         int ret;
3411         struct vm_area_struct *vma;
3412
3413         vma = vm_area_alloc(mm);
3414         if (unlikely(vma == NULL))
3415                 return ERR_PTR(-ENOMEM);
3416
3417         vma->vm_start = addr;
3418         vma->vm_end = addr + len;
3419
3420         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3421         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3422         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3423
3424         vma->vm_ops = ops;
3425         vma->vm_private_data = priv;
3426
3427         ret = insert_vm_struct(mm, vma);
3428         if (ret)
3429                 goto out;
3430
3431         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3432
3433         perf_event_mmap(vma);
3434
3435         return vma;
3436
3437 out:
3438         vm_area_free(vma);
3439         return ERR_PTR(ret);
3440 }
3441
3442 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3443         const struct vm_special_mapping *sm)
3444 {
3445         return vma->vm_private_data == sm &&
3446                 (vma->vm_ops == &special_mapping_vmops ||
3447                  vma->vm_ops == &legacy_special_mapping_vmops);
3448 }
3449
3450 /*
3451  * Called with mm->mmap_lock held for writing.
3452  * Insert a new vma covering the given region, with the given flags.
3453  * Its pages are supplied by the given array of struct page *.
3454  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3455  * The region past the last page supplied will always produce SIGBUS.
3456  * The array pointer and the pages it points to are assumed to stay alive
3457  * for as long as this mapping might exist.
3458  */
3459 struct vm_area_struct *_install_special_mapping(
3460         struct mm_struct *mm,
3461         unsigned long addr, unsigned long len,
3462         unsigned long vm_flags, const struct vm_special_mapping *spec)
3463 {
3464         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3465                                         &special_mapping_vmops);
3466 }
3467
3468 int install_special_mapping(struct mm_struct *mm,
3469                             unsigned long addr, unsigned long len,
3470                             unsigned long vm_flags, struct page **pages)
3471 {
3472         struct vm_area_struct *vma = __install_special_mapping(
3473                 mm, addr, len, vm_flags, (void *)pages,
3474                 &legacy_special_mapping_vmops);
3475
3476         return PTR_ERR_OR_ZERO(vma);
3477 }
3478
3479 static DEFINE_MUTEX(mm_all_locks_mutex);
3480
3481 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3482 {
3483         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3484                 /*
3485                  * The LSB of head.next can't change from under us
3486                  * because we hold the mm_all_locks_mutex.
3487                  */
3488                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3489                 /*
3490                  * We can safely modify head.next after taking the
3491                  * anon_vma->root->rwsem. If some other vma in this mm shares
3492                  * the same anon_vma we won't take it again.
3493                  *
3494                  * No need of atomic instructions here, head.next
3495                  * can't change from under us thanks to the
3496                  * anon_vma->root->rwsem.
3497                  */
3498                 if (__test_and_set_bit(0, (unsigned long *)
3499                                        &anon_vma->root->rb_root.rb_root.rb_node))
3500                         BUG();
3501         }
3502 }
3503
3504 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3505 {
3506         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3507                 /*
3508                  * AS_MM_ALL_LOCKS can't change from under us because
3509                  * we hold the mm_all_locks_mutex.
3510                  *
3511                  * Operations on ->flags have to be atomic because
3512                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3513                  * mm_all_locks_mutex, there may be other cpus
3514                  * changing other bitflags in parallel to us.
3515                  */
3516                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3517                         BUG();
3518                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3519         }
3520 }
3521
3522 /*
3523  * This operation locks against the VM for all pte/vma/mm related
3524  * operations that could ever happen on a certain mm. This includes
3525  * vmtruncate, try_to_unmap, and all page faults.
3526  *
3527  * The caller must take the mmap_lock in write mode before calling
3528  * mm_take_all_locks(). The caller isn't allowed to release the
3529  * mmap_lock until mm_drop_all_locks() returns.
3530  *
3531  * mmap_lock in write mode is required in order to block all operations
3532  * that could modify pagetables and free pages without need of
3533  * altering the vma layout. It's also needed in write mode to avoid new
3534  * anon_vmas to be associated with existing vmas.
3535  *
3536  * A single task can't take more than one mm_take_all_locks() in a row
3537  * or it would deadlock.
3538  *
3539  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3540  * mapping->flags avoid to take the same lock twice, if more than one
3541  * vma in this mm is backed by the same anon_vma or address_space.
3542  *
3543  * We take locks in following order, accordingly to comment at beginning
3544  * of mm/rmap.c:
3545  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3546  *     hugetlb mapping);
3547  *   - all i_mmap_rwsem locks;
3548  *   - all anon_vma->rwseml
3549  *
3550  * We can take all locks within these types randomly because the VM code
3551  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3552  * mm_all_locks_mutex.
3553  *
3554  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3555  * that may have to take thousand of locks.
3556  *
3557  * mm_take_all_locks() can fail if it's interrupted by signals.
3558  */
3559 int mm_take_all_locks(struct mm_struct *mm)
3560 {
3561         struct vm_area_struct *vma;
3562         struct anon_vma_chain *avc;
3563
3564         BUG_ON(mmap_read_trylock(mm));
3565
3566         mutex_lock(&mm_all_locks_mutex);
3567
3568         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3569                 if (signal_pending(current))
3570                         goto out_unlock;
3571                 if (vma->vm_file && vma->vm_file->f_mapping &&
3572                                 is_vm_hugetlb_page(vma))
3573                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3574         }
3575
3576         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3577                 if (signal_pending(current))
3578                         goto out_unlock;
3579                 if (vma->vm_file && vma->vm_file->f_mapping &&
3580                                 !is_vm_hugetlb_page(vma))
3581                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3582         }
3583
3584         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3585                 if (signal_pending(current))
3586                         goto out_unlock;
3587                 if (vma->anon_vma)
3588                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3589                                 vm_lock_anon_vma(mm, avc->anon_vma);
3590         }
3591
3592         return 0;
3593
3594 out_unlock:
3595         mm_drop_all_locks(mm);
3596         return -EINTR;
3597 }
3598
3599 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3600 {
3601         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3602                 /*
3603                  * The LSB of head.next can't change to 0 from under
3604                  * us because we hold the mm_all_locks_mutex.
3605                  *
3606                  * We must however clear the bitflag before unlocking
3607                  * the vma so the users using the anon_vma->rb_root will
3608                  * never see our bitflag.
3609                  *
3610                  * No need of atomic instructions here, head.next
3611                  * can't change from under us until we release the
3612                  * anon_vma->root->rwsem.
3613                  */
3614                 if (!__test_and_clear_bit(0, (unsigned long *)
3615                                           &anon_vma->root->rb_root.rb_root.rb_node))
3616                         BUG();
3617                 anon_vma_unlock_write(anon_vma);
3618         }
3619 }
3620
3621 static void vm_unlock_mapping(struct address_space *mapping)
3622 {
3623         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3624                 /*
3625                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3626                  * because we hold the mm_all_locks_mutex.
3627                  */
3628                 i_mmap_unlock_write(mapping);
3629                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3630                                         &mapping->flags))
3631                         BUG();
3632         }
3633 }
3634
3635 /*
3636  * The mmap_lock cannot be released by the caller until
3637  * mm_drop_all_locks() returns.
3638  */
3639 void mm_drop_all_locks(struct mm_struct *mm)
3640 {
3641         struct vm_area_struct *vma;
3642         struct anon_vma_chain *avc;
3643
3644         BUG_ON(mmap_read_trylock(mm));
3645         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3646
3647         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3648                 if (vma->anon_vma)
3649                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3650                                 vm_unlock_anon_vma(avc->anon_vma);
3651                 if (vma->vm_file && vma->vm_file->f_mapping)
3652                         vm_unlock_mapping(vma->vm_file->f_mapping);
3653         }
3654
3655         mutex_unlock(&mm_all_locks_mutex);
3656 }
3657
3658 /*
3659  * initialise the percpu counter for VM
3660  */
3661 void __init mmap_init(void)
3662 {
3663         int ret;
3664
3665         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3666         VM_BUG_ON(ret);
3667 }
3668
3669 /*
3670  * Initialise sysctl_user_reserve_kbytes.
3671  *
3672  * This is intended to prevent a user from starting a single memory hogging
3673  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3674  * mode.
3675  *
3676  * The default value is min(3% of free memory, 128MB)
3677  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3678  */
3679 static int init_user_reserve(void)
3680 {
3681         unsigned long free_kbytes;
3682
3683         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3684
3685         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3686         return 0;
3687 }
3688 subsys_initcall(init_user_reserve);
3689
3690 /*
3691  * Initialise sysctl_admin_reserve_kbytes.
3692  *
3693  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3694  * to log in and kill a memory hogging process.
3695  *
3696  * Systems with more than 256MB will reserve 8MB, enough to recover
3697  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3698  * only reserve 3% of free pages by default.
3699  */
3700 static int init_admin_reserve(void)
3701 {
3702         unsigned long free_kbytes;
3703
3704         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3705
3706         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3707         return 0;
3708 }
3709 subsys_initcall(init_admin_reserve);
3710
3711 /*
3712  * Reinititalise user and admin reserves if memory is added or removed.
3713  *
3714  * The default user reserve max is 128MB, and the default max for the
3715  * admin reserve is 8MB. These are usually, but not always, enough to
3716  * enable recovery from a memory hogging process using login/sshd, a shell,
3717  * and tools like top. It may make sense to increase or even disable the
3718  * reserve depending on the existence of swap or variations in the recovery
3719  * tools. So, the admin may have changed them.
3720  *
3721  * If memory is added and the reserves have been eliminated or increased above
3722  * the default max, then we'll trust the admin.
3723  *
3724  * If memory is removed and there isn't enough free memory, then we
3725  * need to reset the reserves.
3726  *
3727  * Otherwise keep the reserve set by the admin.
3728  */
3729 static int reserve_mem_notifier(struct notifier_block *nb,
3730                              unsigned long action, void *data)
3731 {
3732         unsigned long tmp, free_kbytes;
3733
3734         switch (action) {
3735         case MEM_ONLINE:
3736                 /* Default max is 128MB. Leave alone if modified by operator. */
3737                 tmp = sysctl_user_reserve_kbytes;
3738                 if (0 < tmp && tmp < (1UL << 17))
3739                         init_user_reserve();
3740
3741                 /* Default max is 8MB.  Leave alone if modified by operator. */
3742                 tmp = sysctl_admin_reserve_kbytes;
3743                 if (0 < tmp && tmp < (1UL << 13))
3744                         init_admin_reserve();
3745
3746                 break;
3747         case MEM_OFFLINE:
3748                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3749
3750                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3751                         init_user_reserve();
3752                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3753                                 sysctl_user_reserve_kbytes);
3754                 }
3755
3756                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3757                         init_admin_reserve();
3758                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3759                                 sysctl_admin_reserve_kbytes);
3760                 }
3761                 break;
3762         default:
3763                 break;
3764         }
3765         return NOTIFY_OK;
3766 }
3767
3768 static struct notifier_block reserve_mem_nb = {
3769         .notifier_call = reserve_mem_notifier,
3770 };
3771
3772 static int __meminit init_reserve_notifier(void)
3773 {
3774         if (register_hotmemory_notifier(&reserve_mem_nb))
3775                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3776
3777         return 0;
3778 }
3779 subsys_initcall(init_reserve_notifier);