Merge tag 'for-5.18/fbdev-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[linux-2.6-microblaze.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59
60 #include "internal.h"
61
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags)       (0)
64 #endif
65
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79
80 static void unmap_region(struct mm_struct *mm,
81                 struct vm_area_struct *vma, struct vm_area_struct *prev,
82                 unsigned long start, unsigned long end);
83
84 /* description of effects of mapping type and prot in current implementation.
85  * this is due to the limited x86 page protection hardware.  The expected
86  * behavior is in parens:
87  *
88  * map_type     prot
89  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
90  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
91  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
92  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
93  *
94  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
95  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
96  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
97  *
98  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
99  * MAP_PRIVATE (with Enhanced PAN supported):
100  *                                                              r: (no) no
101  *                                                              w: (no) no
102  *                                                              x: (yes) yes
103  */
104 pgprot_t protection_map[16] __ro_after_init = {
105         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
106         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
107 };
108
109 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
110 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
111 {
112         return prot;
113 }
114 #endif
115
116 pgprot_t vm_get_page_prot(unsigned long vm_flags)
117 {
118         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
119                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
120                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
121
122         return arch_filter_pgprot(ret);
123 }
124 EXPORT_SYMBOL(vm_get_page_prot);
125
126 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
127 {
128         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
129 }
130
131 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
132 void vma_set_page_prot(struct vm_area_struct *vma)
133 {
134         unsigned long vm_flags = vma->vm_flags;
135         pgprot_t vm_page_prot;
136
137         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
138         if (vma_wants_writenotify(vma, vm_page_prot)) {
139                 vm_flags &= ~VM_SHARED;
140                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
141         }
142         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
143         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
144 }
145
146 /*
147  * Requires inode->i_mapping->i_mmap_rwsem
148  */
149 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
150                 struct file *file, struct address_space *mapping)
151 {
152         if (vma->vm_flags & VM_SHARED)
153                 mapping_unmap_writable(mapping);
154
155         flush_dcache_mmap_lock(mapping);
156         vma_interval_tree_remove(vma, &mapping->i_mmap);
157         flush_dcache_mmap_unlock(mapping);
158 }
159
160 /*
161  * Unlink a file-based vm structure from its interval tree, to hide
162  * vma from rmap and vmtruncate before freeing its page tables.
163  */
164 void unlink_file_vma(struct vm_area_struct *vma)
165 {
166         struct file *file = vma->vm_file;
167
168         if (file) {
169                 struct address_space *mapping = file->f_mapping;
170                 i_mmap_lock_write(mapping);
171                 __remove_shared_vm_struct(vma, file, mapping);
172                 i_mmap_unlock_write(mapping);
173         }
174 }
175
176 /*
177  * Close a vm structure and free it, returning the next.
178  */
179 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
180 {
181         struct vm_area_struct *next = vma->vm_next;
182
183         might_sleep();
184         if (vma->vm_ops && vma->vm_ops->close)
185                 vma->vm_ops->close(vma);
186         if (vma->vm_file)
187                 fput(vma->vm_file);
188         mpol_put(vma_policy(vma));
189         vm_area_free(vma);
190         return next;
191 }
192
193 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
194                 struct list_head *uf);
195 SYSCALL_DEFINE1(brk, unsigned long, brk)
196 {
197         unsigned long newbrk, oldbrk, origbrk;
198         struct mm_struct *mm = current->mm;
199         struct vm_area_struct *next;
200         unsigned long min_brk;
201         bool populate;
202         bool downgraded = false;
203         LIST_HEAD(uf);
204
205         if (mmap_write_lock_killable(mm))
206                 return -EINTR;
207
208         origbrk = mm->brk;
209
210 #ifdef CONFIG_COMPAT_BRK
211         /*
212          * CONFIG_COMPAT_BRK can still be overridden by setting
213          * randomize_va_space to 2, which will still cause mm->start_brk
214          * to be arbitrarily shifted
215          */
216         if (current->brk_randomized)
217                 min_brk = mm->start_brk;
218         else
219                 min_brk = mm->end_data;
220 #else
221         min_brk = mm->start_brk;
222 #endif
223         if (brk < min_brk)
224                 goto out;
225
226         /*
227          * Check against rlimit here. If this check is done later after the test
228          * of oldbrk with newbrk then it can escape the test and let the data
229          * segment grow beyond its set limit the in case where the limit is
230          * not page aligned -Ram Gupta
231          */
232         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
233                               mm->end_data, mm->start_data))
234                 goto out;
235
236         newbrk = PAGE_ALIGN(brk);
237         oldbrk = PAGE_ALIGN(mm->brk);
238         if (oldbrk == newbrk) {
239                 mm->brk = brk;
240                 goto success;
241         }
242
243         /*
244          * Always allow shrinking brk.
245          * __do_munmap() may downgrade mmap_lock to read.
246          */
247         if (brk <= mm->brk) {
248                 int ret;
249
250                 /*
251                  * mm->brk must to be protected by write mmap_lock so update it
252                  * before downgrading mmap_lock. When __do_munmap() fails,
253                  * mm->brk will be restored from origbrk.
254                  */
255                 mm->brk = brk;
256                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
257                 if (ret < 0) {
258                         mm->brk = origbrk;
259                         goto out;
260                 } else if (ret == 1) {
261                         downgraded = true;
262                 }
263                 goto success;
264         }
265
266         /* Check against existing mmap mappings. */
267         next = find_vma(mm, oldbrk);
268         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
269                 goto out;
270
271         /* Ok, looks good - let it rip. */
272         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
273                 goto out;
274         mm->brk = brk;
275
276 success:
277         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
278         if (downgraded)
279                 mmap_read_unlock(mm);
280         else
281                 mmap_write_unlock(mm);
282         userfaultfd_unmap_complete(mm, &uf);
283         if (populate)
284                 mm_populate(oldbrk, newbrk - oldbrk);
285         return brk;
286
287 out:
288         mmap_write_unlock(mm);
289         return origbrk;
290 }
291
292 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
293 {
294         unsigned long gap, prev_end;
295
296         /*
297          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
298          * allow two stack_guard_gaps between them here, and when choosing
299          * an unmapped area; whereas when expanding we only require one.
300          * That's a little inconsistent, but keeps the code here simpler.
301          */
302         gap = vm_start_gap(vma);
303         if (vma->vm_prev) {
304                 prev_end = vm_end_gap(vma->vm_prev);
305                 if (gap > prev_end)
306                         gap -= prev_end;
307                 else
308                         gap = 0;
309         }
310         return gap;
311 }
312
313 #ifdef CONFIG_DEBUG_VM_RB
314 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
315 {
316         unsigned long max = vma_compute_gap(vma), subtree_gap;
317         if (vma->vm_rb.rb_left) {
318                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
319                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
320                 if (subtree_gap > max)
321                         max = subtree_gap;
322         }
323         if (vma->vm_rb.rb_right) {
324                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
325                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
326                 if (subtree_gap > max)
327                         max = subtree_gap;
328         }
329         return max;
330 }
331
332 static int browse_rb(struct mm_struct *mm)
333 {
334         struct rb_root *root = &mm->mm_rb;
335         int i = 0, j, bug = 0;
336         struct rb_node *nd, *pn = NULL;
337         unsigned long prev = 0, pend = 0;
338
339         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
340                 struct vm_area_struct *vma;
341                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
342                 if (vma->vm_start < prev) {
343                         pr_emerg("vm_start %lx < prev %lx\n",
344                                   vma->vm_start, prev);
345                         bug = 1;
346                 }
347                 if (vma->vm_start < pend) {
348                         pr_emerg("vm_start %lx < pend %lx\n",
349                                   vma->vm_start, pend);
350                         bug = 1;
351                 }
352                 if (vma->vm_start > vma->vm_end) {
353                         pr_emerg("vm_start %lx > vm_end %lx\n",
354                                   vma->vm_start, vma->vm_end);
355                         bug = 1;
356                 }
357                 spin_lock(&mm->page_table_lock);
358                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
359                         pr_emerg("free gap %lx, correct %lx\n",
360                                vma->rb_subtree_gap,
361                                vma_compute_subtree_gap(vma));
362                         bug = 1;
363                 }
364                 spin_unlock(&mm->page_table_lock);
365                 i++;
366                 pn = nd;
367                 prev = vma->vm_start;
368                 pend = vma->vm_end;
369         }
370         j = 0;
371         for (nd = pn; nd; nd = rb_prev(nd))
372                 j++;
373         if (i != j) {
374                 pr_emerg("backwards %d, forwards %d\n", j, i);
375                 bug = 1;
376         }
377         return bug ? -1 : i;
378 }
379
380 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
381 {
382         struct rb_node *nd;
383
384         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385                 struct vm_area_struct *vma;
386                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387                 VM_BUG_ON_VMA(vma != ignore &&
388                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
389                         vma);
390         }
391 }
392
393 static void validate_mm(struct mm_struct *mm)
394 {
395         int bug = 0;
396         int i = 0;
397         unsigned long highest_address = 0;
398         struct vm_area_struct *vma = mm->mmap;
399
400         while (vma) {
401                 struct anon_vma *anon_vma = vma->anon_vma;
402                 struct anon_vma_chain *avc;
403
404                 if (anon_vma) {
405                         anon_vma_lock_read(anon_vma);
406                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
407                                 anon_vma_interval_tree_verify(avc);
408                         anon_vma_unlock_read(anon_vma);
409                 }
410
411                 highest_address = vm_end_gap(vma);
412                 vma = vma->vm_next;
413                 i++;
414         }
415         if (i != mm->map_count) {
416                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
417                 bug = 1;
418         }
419         if (highest_address != mm->highest_vm_end) {
420                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
421                           mm->highest_vm_end, highest_address);
422                 bug = 1;
423         }
424         i = browse_rb(mm);
425         if (i != mm->map_count) {
426                 if (i != -1)
427                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
428                 bug = 1;
429         }
430         VM_BUG_ON_MM(bug, mm);
431 }
432 #else
433 #define validate_mm_rb(root, ignore) do { } while (0)
434 #define validate_mm(mm) do { } while (0)
435 #endif
436
437 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
438                          struct vm_area_struct, vm_rb,
439                          unsigned long, rb_subtree_gap, vma_compute_gap)
440
441 /*
442  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
443  * vma->vm_prev->vm_end values changed, without modifying the vma's position
444  * in the rbtree.
445  */
446 static void vma_gap_update(struct vm_area_struct *vma)
447 {
448         /*
449          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
450          * a callback function that does exactly what we want.
451          */
452         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
453 }
454
455 static inline void vma_rb_insert(struct vm_area_struct *vma,
456                                  struct rb_root *root)
457 {
458         /* All rb_subtree_gap values must be consistent prior to insertion */
459         validate_mm_rb(root, NULL);
460
461         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
462 }
463
464 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
465 {
466         /*
467          * Note rb_erase_augmented is a fairly large inline function,
468          * so make sure we instantiate it only once with our desired
469          * augmented rbtree callbacks.
470          */
471         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
472 }
473
474 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
475                                                 struct rb_root *root,
476                                                 struct vm_area_struct *ignore)
477 {
478         /*
479          * All rb_subtree_gap values must be consistent prior to erase,
480          * with the possible exception of
481          *
482          * a. the "next" vma being erased if next->vm_start was reduced in
483          *    __vma_adjust() -> __vma_unlink()
484          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
485          *    vma_rb_erase()
486          */
487         validate_mm_rb(root, ignore);
488
489         __vma_rb_erase(vma, root);
490 }
491
492 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
493                                          struct rb_root *root)
494 {
495         vma_rb_erase_ignore(vma, root, vma);
496 }
497
498 /*
499  * vma has some anon_vma assigned, and is already inserted on that
500  * anon_vma's interval trees.
501  *
502  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
503  * vma must be removed from the anon_vma's interval trees using
504  * anon_vma_interval_tree_pre_update_vma().
505  *
506  * After the update, the vma will be reinserted using
507  * anon_vma_interval_tree_post_update_vma().
508  *
509  * The entire update must be protected by exclusive mmap_lock and by
510  * the root anon_vma's mutex.
511  */
512 static inline void
513 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
514 {
515         struct anon_vma_chain *avc;
516
517         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
518                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
519 }
520
521 static inline void
522 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
523 {
524         struct anon_vma_chain *avc;
525
526         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
527                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
528 }
529
530 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
531                 unsigned long end, struct vm_area_struct **pprev,
532                 struct rb_node ***rb_link, struct rb_node **rb_parent)
533 {
534         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
535
536         mmap_assert_locked(mm);
537         __rb_link = &mm->mm_rb.rb_node;
538         rb_prev = __rb_parent = NULL;
539
540         while (*__rb_link) {
541                 struct vm_area_struct *vma_tmp;
542
543                 __rb_parent = *__rb_link;
544                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
545
546                 if (vma_tmp->vm_end > addr) {
547                         /* Fail if an existing vma overlaps the area */
548                         if (vma_tmp->vm_start < end)
549                                 return -ENOMEM;
550                         __rb_link = &__rb_parent->rb_left;
551                 } else {
552                         rb_prev = __rb_parent;
553                         __rb_link = &__rb_parent->rb_right;
554                 }
555         }
556
557         *pprev = NULL;
558         if (rb_prev)
559                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
560         *rb_link = __rb_link;
561         *rb_parent = __rb_parent;
562         return 0;
563 }
564
565 /*
566  * vma_next() - Get the next VMA.
567  * @mm: The mm_struct.
568  * @vma: The current vma.
569  *
570  * If @vma is NULL, return the first vma in the mm.
571  *
572  * Returns: The next VMA after @vma.
573  */
574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
575                                          struct vm_area_struct *vma)
576 {
577         if (!vma)
578                 return mm->mmap;
579
580         return vma->vm_next;
581 }
582
583 /*
584  * munmap_vma_range() - munmap VMAs that overlap a range.
585  * @mm: The mm struct
586  * @start: The start of the range.
587  * @len: The length of the range.
588  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
589  * @rb_link: the rb_node
590  * @rb_parent: the parent rb_node
591  *
592  * Find all the vm_area_struct that overlap from @start to
593  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
594  *
595  * Returns: -ENOMEM on munmap failure or 0 on success.
596  */
597 static inline int
598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
599                  struct vm_area_struct **pprev, struct rb_node ***link,
600                  struct rb_node **parent, struct list_head *uf)
601 {
602
603         while (find_vma_links(mm, start, start + len, pprev, link, parent))
604                 if (do_munmap(mm, start, len, uf))
605                         return -ENOMEM;
606
607         return 0;
608 }
609 static unsigned long count_vma_pages_range(struct mm_struct *mm,
610                 unsigned long addr, unsigned long end)
611 {
612         unsigned long nr_pages = 0;
613         struct vm_area_struct *vma;
614
615         /* Find first overlapping mapping */
616         vma = find_vma_intersection(mm, addr, end);
617         if (!vma)
618                 return 0;
619
620         nr_pages = (min(end, vma->vm_end) -
621                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
622
623         /* Iterate over the rest of the overlaps */
624         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
625                 unsigned long overlap_len;
626
627                 if (vma->vm_start > end)
628                         break;
629
630                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
631                 nr_pages += overlap_len >> PAGE_SHIFT;
632         }
633
634         return nr_pages;
635 }
636
637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
638                 struct rb_node **rb_link, struct rb_node *rb_parent)
639 {
640         /* Update tracking information for the gap following the new vma. */
641         if (vma->vm_next)
642                 vma_gap_update(vma->vm_next);
643         else
644                 mm->highest_vm_end = vm_end_gap(vma);
645
646         /*
647          * vma->vm_prev wasn't known when we followed the rbtree to find the
648          * correct insertion point for that vma. As a result, we could not
649          * update the vma vm_rb parents rb_subtree_gap values on the way down.
650          * So, we first insert the vma with a zero rb_subtree_gap value
651          * (to be consistent with what we did on the way down), and then
652          * immediately update the gap to the correct value. Finally we
653          * rebalance the rbtree after all augmented values have been set.
654          */
655         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
656         vma->rb_subtree_gap = 0;
657         vma_gap_update(vma);
658         vma_rb_insert(vma, &mm->mm_rb);
659 }
660
661 static void __vma_link_file(struct vm_area_struct *vma)
662 {
663         struct file *file;
664
665         file = vma->vm_file;
666         if (file) {
667                 struct address_space *mapping = file->f_mapping;
668
669                 if (vma->vm_flags & VM_SHARED)
670                         mapping_allow_writable(mapping);
671
672                 flush_dcache_mmap_lock(mapping);
673                 vma_interval_tree_insert(vma, &mapping->i_mmap);
674                 flush_dcache_mmap_unlock(mapping);
675         }
676 }
677
678 static void
679 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
680         struct vm_area_struct *prev, struct rb_node **rb_link,
681         struct rb_node *rb_parent)
682 {
683         __vma_link_list(mm, vma, prev);
684         __vma_link_rb(mm, vma, rb_link, rb_parent);
685 }
686
687 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
688                         struct vm_area_struct *prev, struct rb_node **rb_link,
689                         struct rb_node *rb_parent)
690 {
691         struct address_space *mapping = NULL;
692
693         if (vma->vm_file) {
694                 mapping = vma->vm_file->f_mapping;
695                 i_mmap_lock_write(mapping);
696         }
697
698         __vma_link(mm, vma, prev, rb_link, rb_parent);
699         __vma_link_file(vma);
700
701         if (mapping)
702                 i_mmap_unlock_write(mapping);
703
704         mm->map_count++;
705         validate_mm(mm);
706 }
707
708 /*
709  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
710  * mm's list and rbtree.  It has already been inserted into the interval tree.
711  */
712 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
713 {
714         struct vm_area_struct *prev;
715         struct rb_node **rb_link, *rb_parent;
716
717         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
718                            &prev, &rb_link, &rb_parent))
719                 BUG();
720         __vma_link(mm, vma, prev, rb_link, rb_parent);
721         mm->map_count++;
722 }
723
724 static __always_inline void __vma_unlink(struct mm_struct *mm,
725                                                 struct vm_area_struct *vma,
726                                                 struct vm_area_struct *ignore)
727 {
728         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
729         __vma_unlink_list(mm, vma);
730         /* Kill the cache */
731         vmacache_invalidate(mm);
732 }
733
734 /*
735  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
736  * is already present in an i_mmap tree without adjusting the tree.
737  * The following helper function should be used when such adjustments
738  * are necessary.  The "insert" vma (if any) is to be inserted
739  * before we drop the necessary locks.
740  */
741 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
742         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
743         struct vm_area_struct *expand)
744 {
745         struct mm_struct *mm = vma->vm_mm;
746         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
747         struct address_space *mapping = NULL;
748         struct rb_root_cached *root = NULL;
749         struct anon_vma *anon_vma = NULL;
750         struct file *file = vma->vm_file;
751         bool start_changed = false, end_changed = false;
752         long adjust_next = 0;
753         int remove_next = 0;
754
755         if (next && !insert) {
756                 struct vm_area_struct *exporter = NULL, *importer = NULL;
757
758                 if (end >= next->vm_end) {
759                         /*
760                          * vma expands, overlapping all the next, and
761                          * perhaps the one after too (mprotect case 6).
762                          * The only other cases that gets here are
763                          * case 1, case 7 and case 8.
764                          */
765                         if (next == expand) {
766                                 /*
767                                  * The only case where we don't expand "vma"
768                                  * and we expand "next" instead is case 8.
769                                  */
770                                 VM_WARN_ON(end != next->vm_end);
771                                 /*
772                                  * remove_next == 3 means we're
773                                  * removing "vma" and that to do so we
774                                  * swapped "vma" and "next".
775                                  */
776                                 remove_next = 3;
777                                 VM_WARN_ON(file != next->vm_file);
778                                 swap(vma, next);
779                         } else {
780                                 VM_WARN_ON(expand != vma);
781                                 /*
782                                  * case 1, 6, 7, remove_next == 2 is case 6,
783                                  * remove_next == 1 is case 1 or 7.
784                                  */
785                                 remove_next = 1 + (end > next->vm_end);
786                                 VM_WARN_ON(remove_next == 2 &&
787                                            end != next->vm_next->vm_end);
788                                 /* trim end to next, for case 6 first pass */
789                                 end = next->vm_end;
790                         }
791
792                         exporter = next;
793                         importer = vma;
794
795                         /*
796                          * If next doesn't have anon_vma, import from vma after
797                          * next, if the vma overlaps with it.
798                          */
799                         if (remove_next == 2 && !next->anon_vma)
800                                 exporter = next->vm_next;
801
802                 } else if (end > next->vm_start) {
803                         /*
804                          * vma expands, overlapping part of the next:
805                          * mprotect case 5 shifting the boundary up.
806                          */
807                         adjust_next = (end - next->vm_start);
808                         exporter = next;
809                         importer = vma;
810                         VM_WARN_ON(expand != importer);
811                 } else if (end < vma->vm_end) {
812                         /*
813                          * vma shrinks, and !insert tells it's not
814                          * split_vma inserting another: so it must be
815                          * mprotect case 4 shifting the boundary down.
816                          */
817                         adjust_next = -(vma->vm_end - end);
818                         exporter = vma;
819                         importer = next;
820                         VM_WARN_ON(expand != importer);
821                 }
822
823                 /*
824                  * Easily overlooked: when mprotect shifts the boundary,
825                  * make sure the expanding vma has anon_vma set if the
826                  * shrinking vma had, to cover any anon pages imported.
827                  */
828                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
829                         int error;
830
831                         importer->anon_vma = exporter->anon_vma;
832                         error = anon_vma_clone(importer, exporter);
833                         if (error)
834                                 return error;
835                 }
836         }
837 again:
838         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
839
840         if (file) {
841                 mapping = file->f_mapping;
842                 root = &mapping->i_mmap;
843                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
844
845                 if (adjust_next)
846                         uprobe_munmap(next, next->vm_start, next->vm_end);
847
848                 i_mmap_lock_write(mapping);
849                 if (insert) {
850                         /*
851                          * Put into interval tree now, so instantiated pages
852                          * are visible to arm/parisc __flush_dcache_page
853                          * throughout; but we cannot insert into address
854                          * space until vma start or end is updated.
855                          */
856                         __vma_link_file(insert);
857                 }
858         }
859
860         anon_vma = vma->anon_vma;
861         if (!anon_vma && adjust_next)
862                 anon_vma = next->anon_vma;
863         if (anon_vma) {
864                 VM_WARN_ON(adjust_next && next->anon_vma &&
865                            anon_vma != next->anon_vma);
866                 anon_vma_lock_write(anon_vma);
867                 anon_vma_interval_tree_pre_update_vma(vma);
868                 if (adjust_next)
869                         anon_vma_interval_tree_pre_update_vma(next);
870         }
871
872         if (file) {
873                 flush_dcache_mmap_lock(mapping);
874                 vma_interval_tree_remove(vma, root);
875                 if (adjust_next)
876                         vma_interval_tree_remove(next, root);
877         }
878
879         if (start != vma->vm_start) {
880                 vma->vm_start = start;
881                 start_changed = true;
882         }
883         if (end != vma->vm_end) {
884                 vma->vm_end = end;
885                 end_changed = true;
886         }
887         vma->vm_pgoff = pgoff;
888         if (adjust_next) {
889                 next->vm_start += adjust_next;
890                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
891         }
892
893         if (file) {
894                 if (adjust_next)
895                         vma_interval_tree_insert(next, root);
896                 vma_interval_tree_insert(vma, root);
897                 flush_dcache_mmap_unlock(mapping);
898         }
899
900         if (remove_next) {
901                 /*
902                  * vma_merge has merged next into vma, and needs
903                  * us to remove next before dropping the locks.
904                  */
905                 if (remove_next != 3)
906                         __vma_unlink(mm, next, next);
907                 else
908                         /*
909                          * vma is not before next if they've been
910                          * swapped.
911                          *
912                          * pre-swap() next->vm_start was reduced so
913                          * tell validate_mm_rb to ignore pre-swap()
914                          * "next" (which is stored in post-swap()
915                          * "vma").
916                          */
917                         __vma_unlink(mm, next, vma);
918                 if (file)
919                         __remove_shared_vm_struct(next, file, mapping);
920         } else if (insert) {
921                 /*
922                  * split_vma has split insert from vma, and needs
923                  * us to insert it before dropping the locks
924                  * (it may either follow vma or precede it).
925                  */
926                 __insert_vm_struct(mm, insert);
927         } else {
928                 if (start_changed)
929                         vma_gap_update(vma);
930                 if (end_changed) {
931                         if (!next)
932                                 mm->highest_vm_end = vm_end_gap(vma);
933                         else if (!adjust_next)
934                                 vma_gap_update(next);
935                 }
936         }
937
938         if (anon_vma) {
939                 anon_vma_interval_tree_post_update_vma(vma);
940                 if (adjust_next)
941                         anon_vma_interval_tree_post_update_vma(next);
942                 anon_vma_unlock_write(anon_vma);
943         }
944
945         if (file) {
946                 i_mmap_unlock_write(mapping);
947                 uprobe_mmap(vma);
948
949                 if (adjust_next)
950                         uprobe_mmap(next);
951         }
952
953         if (remove_next) {
954                 if (file) {
955                         uprobe_munmap(next, next->vm_start, next->vm_end);
956                         fput(file);
957                 }
958                 if (next->anon_vma)
959                         anon_vma_merge(vma, next);
960                 mm->map_count--;
961                 mpol_put(vma_policy(next));
962                 vm_area_free(next);
963                 /*
964                  * In mprotect's case 6 (see comments on vma_merge),
965                  * we must remove another next too. It would clutter
966                  * up the code too much to do both in one go.
967                  */
968                 if (remove_next != 3) {
969                         /*
970                          * If "next" was removed and vma->vm_end was
971                          * expanded (up) over it, in turn
972                          * "next->vm_prev->vm_end" changed and the
973                          * "vma->vm_next" gap must be updated.
974                          */
975                         next = vma->vm_next;
976                 } else {
977                         /*
978                          * For the scope of the comment "next" and
979                          * "vma" considered pre-swap(): if "vma" was
980                          * removed, next->vm_start was expanded (down)
981                          * over it and the "next" gap must be updated.
982                          * Because of the swap() the post-swap() "vma"
983                          * actually points to pre-swap() "next"
984                          * (post-swap() "next" as opposed is now a
985                          * dangling pointer).
986                          */
987                         next = vma;
988                 }
989                 if (remove_next == 2) {
990                         remove_next = 1;
991                         end = next->vm_end;
992                         goto again;
993                 }
994                 else if (next)
995                         vma_gap_update(next);
996                 else {
997                         /*
998                          * If remove_next == 2 we obviously can't
999                          * reach this path.
1000                          *
1001                          * If remove_next == 3 we can't reach this
1002                          * path because pre-swap() next is always not
1003                          * NULL. pre-swap() "next" is not being
1004                          * removed and its next->vm_end is not altered
1005                          * (and furthermore "end" already matches
1006                          * next->vm_end in remove_next == 3).
1007                          *
1008                          * We reach this only in the remove_next == 1
1009                          * case if the "next" vma that was removed was
1010                          * the highest vma of the mm. However in such
1011                          * case next->vm_end == "end" and the extended
1012                          * "vma" has vma->vm_end == next->vm_end so
1013                          * mm->highest_vm_end doesn't need any update
1014                          * in remove_next == 1 case.
1015                          */
1016                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1017                 }
1018         }
1019         if (insert && file)
1020                 uprobe_mmap(insert);
1021
1022         validate_mm(mm);
1023
1024         return 0;
1025 }
1026
1027 /*
1028  * If the vma has a ->close operation then the driver probably needs to release
1029  * per-vma resources, so we don't attempt to merge those.
1030  */
1031 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1032                                 struct file *file, unsigned long vm_flags,
1033                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1034                                 struct anon_vma_name *anon_name)
1035 {
1036         /*
1037          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1038          * match the flags but dirty bit -- the caller should mark
1039          * merged VMA as dirty. If dirty bit won't be excluded from
1040          * comparison, we increase pressure on the memory system forcing
1041          * the kernel to generate new VMAs when old one could be
1042          * extended instead.
1043          */
1044         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1045                 return 0;
1046         if (vma->vm_file != file)
1047                 return 0;
1048         if (vma->vm_ops && vma->vm_ops->close)
1049                 return 0;
1050         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1051                 return 0;
1052         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1053                 return 0;
1054         return 1;
1055 }
1056
1057 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1058                                         struct anon_vma *anon_vma2,
1059                                         struct vm_area_struct *vma)
1060 {
1061         /*
1062          * The list_is_singular() test is to avoid merging VMA cloned from
1063          * parents. This can improve scalability caused by anon_vma lock.
1064          */
1065         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1066                 list_is_singular(&vma->anon_vma_chain)))
1067                 return 1;
1068         return anon_vma1 == anon_vma2;
1069 }
1070
1071 /*
1072  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1073  * in front of (at a lower virtual address and file offset than) the vma.
1074  *
1075  * We cannot merge two vmas if they have differently assigned (non-NULL)
1076  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1077  *
1078  * We don't check here for the merged mmap wrapping around the end of pagecache
1079  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1080  * wrap, nor mmaps which cover the final page at index -1UL.
1081  */
1082 static int
1083 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1084                      struct anon_vma *anon_vma, struct file *file,
1085                      pgoff_t vm_pgoff,
1086                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1087                      struct anon_vma_name *anon_name)
1088 {
1089         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1090             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1091                 if (vma->vm_pgoff == vm_pgoff)
1092                         return 1;
1093         }
1094         return 0;
1095 }
1096
1097 /*
1098  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1099  * beyond (at a higher virtual address and file offset than) the vma.
1100  *
1101  * We cannot merge two vmas if they have differently assigned (non-NULL)
1102  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1103  */
1104 static int
1105 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1106                     struct anon_vma *anon_vma, struct file *file,
1107                     pgoff_t vm_pgoff,
1108                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1109                     struct anon_vma_name *anon_name)
1110 {
1111         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1112             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1113                 pgoff_t vm_pglen;
1114                 vm_pglen = vma_pages(vma);
1115                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1116                         return 1;
1117         }
1118         return 0;
1119 }
1120
1121 /*
1122  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1123  * figure out whether that can be merged with its predecessor or its
1124  * successor.  Or both (it neatly fills a hole).
1125  *
1126  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1127  * certain not to be mapped by the time vma_merge is called; but when
1128  * called for mprotect, it is certain to be already mapped (either at
1129  * an offset within prev, or at the start of next), and the flags of
1130  * this area are about to be changed to vm_flags - and the no-change
1131  * case has already been eliminated.
1132  *
1133  * The following mprotect cases have to be considered, where AAAA is
1134  * the area passed down from mprotect_fixup, never extending beyond one
1135  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1136  *
1137  *     AAAA             AAAA                   AAAA
1138  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1139  *    cannot merge    might become       might become
1140  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1141  *    mmap, brk or    case 4 below       case 5 below
1142  *    mremap move:
1143  *                        AAAA               AAAA
1144  *                    PPPP    NNNN       PPPPNNNNXXXX
1145  *                    might become       might become
1146  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1147  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1148  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1149  *
1150  * It is important for case 8 that the vma NNNN overlapping the
1151  * region AAAA is never going to extended over XXXX. Instead XXXX must
1152  * be extended in region AAAA and NNNN must be removed. This way in
1153  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1154  * rmap_locks, the properties of the merged vma will be already
1155  * correct for the whole merged range. Some of those properties like
1156  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1157  * be correct for the whole merged range immediately after the
1158  * rmap_locks are released. Otherwise if XXXX would be removed and
1159  * NNNN would be extended over the XXXX range, remove_migration_ptes
1160  * or other rmap walkers (if working on addresses beyond the "end"
1161  * parameter) may establish ptes with the wrong permissions of NNNN
1162  * instead of the right permissions of XXXX.
1163  */
1164 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1165                         struct vm_area_struct *prev, unsigned long addr,
1166                         unsigned long end, unsigned long vm_flags,
1167                         struct anon_vma *anon_vma, struct file *file,
1168                         pgoff_t pgoff, struct mempolicy *policy,
1169                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1170                         struct anon_vma_name *anon_name)
1171 {
1172         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1173         struct vm_area_struct *area, *next;
1174         int err;
1175
1176         /*
1177          * We later require that vma->vm_flags == vm_flags,
1178          * so this tests vma->vm_flags & VM_SPECIAL, too.
1179          */
1180         if (vm_flags & VM_SPECIAL)
1181                 return NULL;
1182
1183         next = vma_next(mm, prev);
1184         area = next;
1185         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1186                 next = next->vm_next;
1187
1188         /* verify some invariant that must be enforced by the caller */
1189         VM_WARN_ON(prev && addr <= prev->vm_start);
1190         VM_WARN_ON(area && end > area->vm_end);
1191         VM_WARN_ON(addr >= end);
1192
1193         /*
1194          * Can it merge with the predecessor?
1195          */
1196         if (prev && prev->vm_end == addr &&
1197                         mpol_equal(vma_policy(prev), policy) &&
1198                         can_vma_merge_after(prev, vm_flags,
1199                                             anon_vma, file, pgoff,
1200                                             vm_userfaultfd_ctx, anon_name)) {
1201                 /*
1202                  * OK, it can.  Can we now merge in the successor as well?
1203                  */
1204                 if (next && end == next->vm_start &&
1205                                 mpol_equal(policy, vma_policy(next)) &&
1206                                 can_vma_merge_before(next, vm_flags,
1207                                                      anon_vma, file,
1208                                                      pgoff+pglen,
1209                                                      vm_userfaultfd_ctx, anon_name) &&
1210                                 is_mergeable_anon_vma(prev->anon_vma,
1211                                                       next->anon_vma, NULL)) {
1212                                                         /* cases 1, 6 */
1213                         err = __vma_adjust(prev, prev->vm_start,
1214                                          next->vm_end, prev->vm_pgoff, NULL,
1215                                          prev);
1216                 } else                                  /* cases 2, 5, 7 */
1217                         err = __vma_adjust(prev, prev->vm_start,
1218                                          end, prev->vm_pgoff, NULL, prev);
1219                 if (err)
1220                         return NULL;
1221                 khugepaged_enter_vma_merge(prev, vm_flags);
1222                 return prev;
1223         }
1224
1225         /*
1226          * Can this new request be merged in front of next?
1227          */
1228         if (next && end == next->vm_start &&
1229                         mpol_equal(policy, vma_policy(next)) &&
1230                         can_vma_merge_before(next, vm_flags,
1231                                              anon_vma, file, pgoff+pglen,
1232                                              vm_userfaultfd_ctx, anon_name)) {
1233                 if (prev && addr < prev->vm_end)        /* case 4 */
1234                         err = __vma_adjust(prev, prev->vm_start,
1235                                          addr, prev->vm_pgoff, NULL, next);
1236                 else {                                  /* cases 3, 8 */
1237                         err = __vma_adjust(area, addr, next->vm_end,
1238                                          next->vm_pgoff - pglen, NULL, next);
1239                         /*
1240                          * In case 3 area is already equal to next and
1241                          * this is a noop, but in case 8 "area" has
1242                          * been removed and next was expanded over it.
1243                          */
1244                         area = next;
1245                 }
1246                 if (err)
1247                         return NULL;
1248                 khugepaged_enter_vma_merge(area, vm_flags);
1249                 return area;
1250         }
1251
1252         return NULL;
1253 }
1254
1255 /*
1256  * Rough compatibility check to quickly see if it's even worth looking
1257  * at sharing an anon_vma.
1258  *
1259  * They need to have the same vm_file, and the flags can only differ
1260  * in things that mprotect may change.
1261  *
1262  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1263  * we can merge the two vma's. For example, we refuse to merge a vma if
1264  * there is a vm_ops->close() function, because that indicates that the
1265  * driver is doing some kind of reference counting. But that doesn't
1266  * really matter for the anon_vma sharing case.
1267  */
1268 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1269 {
1270         return a->vm_end == b->vm_start &&
1271                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1272                 a->vm_file == b->vm_file &&
1273                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1274                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1275 }
1276
1277 /*
1278  * Do some basic sanity checking to see if we can re-use the anon_vma
1279  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1280  * the same as 'old', the other will be the new one that is trying
1281  * to share the anon_vma.
1282  *
1283  * NOTE! This runs with mm_sem held for reading, so it is possible that
1284  * the anon_vma of 'old' is concurrently in the process of being set up
1285  * by another page fault trying to merge _that_. But that's ok: if it
1286  * is being set up, that automatically means that it will be a singleton
1287  * acceptable for merging, so we can do all of this optimistically. But
1288  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1289  *
1290  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1291  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1292  * is to return an anon_vma that is "complex" due to having gone through
1293  * a fork).
1294  *
1295  * We also make sure that the two vma's are compatible (adjacent,
1296  * and with the same memory policies). That's all stable, even with just
1297  * a read lock on the mm_sem.
1298  */
1299 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1300 {
1301         if (anon_vma_compatible(a, b)) {
1302                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1303
1304                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1305                         return anon_vma;
1306         }
1307         return NULL;
1308 }
1309
1310 /*
1311  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1312  * neighbouring vmas for a suitable anon_vma, before it goes off
1313  * to allocate a new anon_vma.  It checks because a repetitive
1314  * sequence of mprotects and faults may otherwise lead to distinct
1315  * anon_vmas being allocated, preventing vma merge in subsequent
1316  * mprotect.
1317  */
1318 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1319 {
1320         struct anon_vma *anon_vma = NULL;
1321
1322         /* Try next first. */
1323         if (vma->vm_next) {
1324                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1325                 if (anon_vma)
1326                         return anon_vma;
1327         }
1328
1329         /* Try prev next. */
1330         if (vma->vm_prev)
1331                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1332
1333         /*
1334          * We might reach here with anon_vma == NULL if we can't find
1335          * any reusable anon_vma.
1336          * There's no absolute need to look only at touching neighbours:
1337          * we could search further afield for "compatible" anon_vmas.
1338          * But it would probably just be a waste of time searching,
1339          * or lead to too many vmas hanging off the same anon_vma.
1340          * We're trying to allow mprotect remerging later on,
1341          * not trying to minimize memory used for anon_vmas.
1342          */
1343         return anon_vma;
1344 }
1345
1346 /*
1347  * If a hint addr is less than mmap_min_addr change hint to be as
1348  * low as possible but still greater than mmap_min_addr
1349  */
1350 static inline unsigned long round_hint_to_min(unsigned long hint)
1351 {
1352         hint &= PAGE_MASK;
1353         if (((void *)hint != NULL) &&
1354             (hint < mmap_min_addr))
1355                 return PAGE_ALIGN(mmap_min_addr);
1356         return hint;
1357 }
1358
1359 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1360                        unsigned long len)
1361 {
1362         unsigned long locked, lock_limit;
1363
1364         /*  mlock MCL_FUTURE? */
1365         if (flags & VM_LOCKED) {
1366                 locked = len >> PAGE_SHIFT;
1367                 locked += mm->locked_vm;
1368                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1369                 lock_limit >>= PAGE_SHIFT;
1370                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1371                         return -EAGAIN;
1372         }
1373         return 0;
1374 }
1375
1376 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1377 {
1378         if (S_ISREG(inode->i_mode))
1379                 return MAX_LFS_FILESIZE;
1380
1381         if (S_ISBLK(inode->i_mode))
1382                 return MAX_LFS_FILESIZE;
1383
1384         if (S_ISSOCK(inode->i_mode))
1385                 return MAX_LFS_FILESIZE;
1386
1387         /* Special "we do even unsigned file positions" case */
1388         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1389                 return 0;
1390
1391         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1392         return ULONG_MAX;
1393 }
1394
1395 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1396                                 unsigned long pgoff, unsigned long len)
1397 {
1398         u64 maxsize = file_mmap_size_max(file, inode);
1399
1400         if (maxsize && len > maxsize)
1401                 return false;
1402         maxsize -= len;
1403         if (pgoff > maxsize >> PAGE_SHIFT)
1404                 return false;
1405         return true;
1406 }
1407
1408 /*
1409  * The caller must write-lock current->mm->mmap_lock.
1410  */
1411 unsigned long do_mmap(struct file *file, unsigned long addr,
1412                         unsigned long len, unsigned long prot,
1413                         unsigned long flags, unsigned long pgoff,
1414                         unsigned long *populate, struct list_head *uf)
1415 {
1416         struct mm_struct *mm = current->mm;
1417         vm_flags_t vm_flags;
1418         int pkey = 0;
1419
1420         *populate = 0;
1421
1422         if (!len)
1423                 return -EINVAL;
1424
1425         /*
1426          * Does the application expect PROT_READ to imply PROT_EXEC?
1427          *
1428          * (the exception is when the underlying filesystem is noexec
1429          *  mounted, in which case we dont add PROT_EXEC.)
1430          */
1431         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1432                 if (!(file && path_noexec(&file->f_path)))
1433                         prot |= PROT_EXEC;
1434
1435         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1436         if (flags & MAP_FIXED_NOREPLACE)
1437                 flags |= MAP_FIXED;
1438
1439         if (!(flags & MAP_FIXED))
1440                 addr = round_hint_to_min(addr);
1441
1442         /* Careful about overflows.. */
1443         len = PAGE_ALIGN(len);
1444         if (!len)
1445                 return -ENOMEM;
1446
1447         /* offset overflow? */
1448         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1449                 return -EOVERFLOW;
1450
1451         /* Too many mappings? */
1452         if (mm->map_count > sysctl_max_map_count)
1453                 return -ENOMEM;
1454
1455         /* Obtain the address to map to. we verify (or select) it and ensure
1456          * that it represents a valid section of the address space.
1457          */
1458         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1459         if (IS_ERR_VALUE(addr))
1460                 return addr;
1461
1462         if (flags & MAP_FIXED_NOREPLACE) {
1463                 if (find_vma_intersection(mm, addr, addr + len))
1464                         return -EEXIST;
1465         }
1466
1467         if (prot == PROT_EXEC) {
1468                 pkey = execute_only_pkey(mm);
1469                 if (pkey < 0)
1470                         pkey = 0;
1471         }
1472
1473         /* Do simple checking here so the lower-level routines won't have
1474          * to. we assume access permissions have been handled by the open
1475          * of the memory object, so we don't do any here.
1476          */
1477         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1478                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1479
1480         if (flags & MAP_LOCKED)
1481                 if (!can_do_mlock())
1482                         return -EPERM;
1483
1484         if (mlock_future_check(mm, vm_flags, len))
1485                 return -EAGAIN;
1486
1487         if (file) {
1488                 struct inode *inode = file_inode(file);
1489                 unsigned long flags_mask;
1490
1491                 if (!file_mmap_ok(file, inode, pgoff, len))
1492                         return -EOVERFLOW;
1493
1494                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1495
1496                 switch (flags & MAP_TYPE) {
1497                 case MAP_SHARED:
1498                         /*
1499                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1500                          * flags. E.g. MAP_SYNC is dangerous to use with
1501                          * MAP_SHARED as you don't know which consistency model
1502                          * you will get. We silently ignore unsupported flags
1503                          * with MAP_SHARED to preserve backward compatibility.
1504                          */
1505                         flags &= LEGACY_MAP_MASK;
1506                         fallthrough;
1507                 case MAP_SHARED_VALIDATE:
1508                         if (flags & ~flags_mask)
1509                                 return -EOPNOTSUPP;
1510                         if (prot & PROT_WRITE) {
1511                                 if (!(file->f_mode & FMODE_WRITE))
1512                                         return -EACCES;
1513                                 if (IS_SWAPFILE(file->f_mapping->host))
1514                                         return -ETXTBSY;
1515                         }
1516
1517                         /*
1518                          * Make sure we don't allow writing to an append-only
1519                          * file..
1520                          */
1521                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1522                                 return -EACCES;
1523
1524                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1525                         if (!(file->f_mode & FMODE_WRITE))
1526                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1527                         fallthrough;
1528                 case MAP_PRIVATE:
1529                         if (!(file->f_mode & FMODE_READ))
1530                                 return -EACCES;
1531                         if (path_noexec(&file->f_path)) {
1532                                 if (vm_flags & VM_EXEC)
1533                                         return -EPERM;
1534                                 vm_flags &= ~VM_MAYEXEC;
1535                         }
1536
1537                         if (!file->f_op->mmap)
1538                                 return -ENODEV;
1539                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1540                                 return -EINVAL;
1541                         break;
1542
1543                 default:
1544                         return -EINVAL;
1545                 }
1546         } else {
1547                 switch (flags & MAP_TYPE) {
1548                 case MAP_SHARED:
1549                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1550                                 return -EINVAL;
1551                         /*
1552                          * Ignore pgoff.
1553                          */
1554                         pgoff = 0;
1555                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1556                         break;
1557                 case MAP_PRIVATE:
1558                         /*
1559                          * Set pgoff according to addr for anon_vma.
1560                          */
1561                         pgoff = addr >> PAGE_SHIFT;
1562                         break;
1563                 default:
1564                         return -EINVAL;
1565                 }
1566         }
1567
1568         /*
1569          * Set 'VM_NORESERVE' if we should not account for the
1570          * memory use of this mapping.
1571          */
1572         if (flags & MAP_NORESERVE) {
1573                 /* We honor MAP_NORESERVE if allowed to overcommit */
1574                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1575                         vm_flags |= VM_NORESERVE;
1576
1577                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1578                 if (file && is_file_hugepages(file))
1579                         vm_flags |= VM_NORESERVE;
1580         }
1581
1582         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1583         if (!IS_ERR_VALUE(addr) &&
1584             ((vm_flags & VM_LOCKED) ||
1585              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1586                 *populate = len;
1587         return addr;
1588 }
1589
1590 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1591                               unsigned long prot, unsigned long flags,
1592                               unsigned long fd, unsigned long pgoff)
1593 {
1594         struct file *file = NULL;
1595         unsigned long retval;
1596
1597         if (!(flags & MAP_ANONYMOUS)) {
1598                 audit_mmap_fd(fd, flags);
1599                 file = fget(fd);
1600                 if (!file)
1601                         return -EBADF;
1602                 if (is_file_hugepages(file)) {
1603                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1604                 } else if (unlikely(flags & MAP_HUGETLB)) {
1605                         retval = -EINVAL;
1606                         goto out_fput;
1607                 }
1608         } else if (flags & MAP_HUGETLB) {
1609                 struct hstate *hs;
1610
1611                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1612                 if (!hs)
1613                         return -EINVAL;
1614
1615                 len = ALIGN(len, huge_page_size(hs));
1616                 /*
1617                  * VM_NORESERVE is used because the reservations will be
1618                  * taken when vm_ops->mmap() is called
1619                  */
1620                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1621                                 VM_NORESERVE,
1622                                 HUGETLB_ANONHUGE_INODE,
1623                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1624                 if (IS_ERR(file))
1625                         return PTR_ERR(file);
1626         }
1627
1628         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1629 out_fput:
1630         if (file)
1631                 fput(file);
1632         return retval;
1633 }
1634
1635 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1636                 unsigned long, prot, unsigned long, flags,
1637                 unsigned long, fd, unsigned long, pgoff)
1638 {
1639         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1640 }
1641
1642 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1643 struct mmap_arg_struct {
1644         unsigned long addr;
1645         unsigned long len;
1646         unsigned long prot;
1647         unsigned long flags;
1648         unsigned long fd;
1649         unsigned long offset;
1650 };
1651
1652 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1653 {
1654         struct mmap_arg_struct a;
1655
1656         if (copy_from_user(&a, arg, sizeof(a)))
1657                 return -EFAULT;
1658         if (offset_in_page(a.offset))
1659                 return -EINVAL;
1660
1661         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1662                                a.offset >> PAGE_SHIFT);
1663 }
1664 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1665
1666 /*
1667  * Some shared mappings will want the pages marked read-only
1668  * to track write events. If so, we'll downgrade vm_page_prot
1669  * to the private version (using protection_map[] without the
1670  * VM_SHARED bit).
1671  */
1672 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1673 {
1674         vm_flags_t vm_flags = vma->vm_flags;
1675         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1676
1677         /* If it was private or non-writable, the write bit is already clear */
1678         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1679                 return 0;
1680
1681         /* The backer wishes to know when pages are first written to? */
1682         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1683                 return 1;
1684
1685         /* The open routine did something to the protections that pgprot_modify
1686          * won't preserve? */
1687         if (pgprot_val(vm_page_prot) !=
1688             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1689                 return 0;
1690
1691         /* Do we need to track softdirty? */
1692         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1693                 return 1;
1694
1695         /* Specialty mapping? */
1696         if (vm_flags & VM_PFNMAP)
1697                 return 0;
1698
1699         /* Can the mapping track the dirty pages? */
1700         return vma->vm_file && vma->vm_file->f_mapping &&
1701                 mapping_can_writeback(vma->vm_file->f_mapping);
1702 }
1703
1704 /*
1705  * We account for memory if it's a private writeable mapping,
1706  * not hugepages and VM_NORESERVE wasn't set.
1707  */
1708 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1709 {
1710         /*
1711          * hugetlb has its own accounting separate from the core VM
1712          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1713          */
1714         if (file && is_file_hugepages(file))
1715                 return 0;
1716
1717         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1718 }
1719
1720 unsigned long mmap_region(struct file *file, unsigned long addr,
1721                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1722                 struct list_head *uf)
1723 {
1724         struct mm_struct *mm = current->mm;
1725         struct vm_area_struct *vma, *prev, *merge;
1726         int error;
1727         struct rb_node **rb_link, *rb_parent;
1728         unsigned long charged = 0;
1729
1730         /* Check against address space limit. */
1731         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1732                 unsigned long nr_pages;
1733
1734                 /*
1735                  * MAP_FIXED may remove pages of mappings that intersects with
1736                  * requested mapping. Account for the pages it would unmap.
1737                  */
1738                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1739
1740                 if (!may_expand_vm(mm, vm_flags,
1741                                         (len >> PAGE_SHIFT) - nr_pages))
1742                         return -ENOMEM;
1743         }
1744
1745         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1746         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1747                 return -ENOMEM;
1748         /*
1749          * Private writable mapping: check memory availability
1750          */
1751         if (accountable_mapping(file, vm_flags)) {
1752                 charged = len >> PAGE_SHIFT;
1753                 if (security_vm_enough_memory_mm(mm, charged))
1754                         return -ENOMEM;
1755                 vm_flags |= VM_ACCOUNT;
1756         }
1757
1758         /*
1759          * Can we just expand an old mapping?
1760          */
1761         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1762                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1763         if (vma)
1764                 goto out;
1765
1766         /*
1767          * Determine the object being mapped and call the appropriate
1768          * specific mapper. the address has already been validated, but
1769          * not unmapped, but the maps are removed from the list.
1770          */
1771         vma = vm_area_alloc(mm);
1772         if (!vma) {
1773                 error = -ENOMEM;
1774                 goto unacct_error;
1775         }
1776
1777         vma->vm_start = addr;
1778         vma->vm_end = addr + len;
1779         vma->vm_flags = vm_flags;
1780         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1781         vma->vm_pgoff = pgoff;
1782
1783         if (file) {
1784                 if (vm_flags & VM_SHARED) {
1785                         error = mapping_map_writable(file->f_mapping);
1786                         if (error)
1787                                 goto free_vma;
1788                 }
1789
1790                 vma->vm_file = get_file(file);
1791                 error = call_mmap(file, vma);
1792                 if (error)
1793                         goto unmap_and_free_vma;
1794
1795                 /* Can addr have changed??
1796                  *
1797                  * Answer: Yes, several device drivers can do it in their
1798                  *         f_op->mmap method. -DaveM
1799                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1800                  *      be updated for vma_link()
1801                  */
1802                 WARN_ON_ONCE(addr != vma->vm_start);
1803
1804                 addr = vma->vm_start;
1805
1806                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1807                  * as we may succeed this time.
1808                  */
1809                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1810                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1811                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1812                         if (merge) {
1813                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1814                                  * fput the vma->vm_file here or we would add an extra fput for file
1815                                  * and cause general protection fault ultimately.
1816                                  */
1817                                 fput(vma->vm_file);
1818                                 vm_area_free(vma);
1819                                 vma = merge;
1820                                 /* Update vm_flags to pick up the change. */
1821                                 vm_flags = vma->vm_flags;
1822                                 goto unmap_writable;
1823                         }
1824                 }
1825
1826                 vm_flags = vma->vm_flags;
1827         } else if (vm_flags & VM_SHARED) {
1828                 error = shmem_zero_setup(vma);
1829                 if (error)
1830                         goto free_vma;
1831         } else {
1832                 vma_set_anonymous(vma);
1833         }
1834
1835         /* Allow architectures to sanity-check the vm_flags */
1836         if (!arch_validate_flags(vma->vm_flags)) {
1837                 error = -EINVAL;
1838                 if (file)
1839                         goto unmap_and_free_vma;
1840                 else
1841                         goto free_vma;
1842         }
1843
1844         vma_link(mm, vma, prev, rb_link, rb_parent);
1845         /* Once vma denies write, undo our temporary denial count */
1846 unmap_writable:
1847         if (file && vm_flags & VM_SHARED)
1848                 mapping_unmap_writable(file->f_mapping);
1849         file = vma->vm_file;
1850 out:
1851         perf_event_mmap(vma);
1852
1853         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1854         if (vm_flags & VM_LOCKED) {
1855                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1856                                         is_vm_hugetlb_page(vma) ||
1857                                         vma == get_gate_vma(current->mm))
1858                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1859                 else
1860                         mm->locked_vm += (len >> PAGE_SHIFT);
1861         }
1862
1863         if (file)
1864                 uprobe_mmap(vma);
1865
1866         /*
1867          * New (or expanded) vma always get soft dirty status.
1868          * Otherwise user-space soft-dirty page tracker won't
1869          * be able to distinguish situation when vma area unmapped,
1870          * then new mapped in-place (which must be aimed as
1871          * a completely new data area).
1872          */
1873         vma->vm_flags |= VM_SOFTDIRTY;
1874
1875         vma_set_page_prot(vma);
1876
1877         return addr;
1878
1879 unmap_and_free_vma:
1880         fput(vma->vm_file);
1881         vma->vm_file = NULL;
1882
1883         /* Undo any partial mapping done by a device driver. */
1884         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1885         charged = 0;
1886         if (vm_flags & VM_SHARED)
1887                 mapping_unmap_writable(file->f_mapping);
1888 free_vma:
1889         vm_area_free(vma);
1890 unacct_error:
1891         if (charged)
1892                 vm_unacct_memory(charged);
1893         return error;
1894 }
1895
1896 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1897 {
1898         /*
1899          * We implement the search by looking for an rbtree node that
1900          * immediately follows a suitable gap. That is,
1901          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1902          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1903          * - gap_end - gap_start >= length
1904          */
1905
1906         struct mm_struct *mm = current->mm;
1907         struct vm_area_struct *vma;
1908         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1909
1910         /* Adjust search length to account for worst case alignment overhead */
1911         length = info->length + info->align_mask;
1912         if (length < info->length)
1913                 return -ENOMEM;
1914
1915         /* Adjust search limits by the desired length */
1916         if (info->high_limit < length)
1917                 return -ENOMEM;
1918         high_limit = info->high_limit - length;
1919
1920         if (info->low_limit > high_limit)
1921                 return -ENOMEM;
1922         low_limit = info->low_limit + length;
1923
1924         /* Check if rbtree root looks promising */
1925         if (RB_EMPTY_ROOT(&mm->mm_rb))
1926                 goto check_highest;
1927         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1928         if (vma->rb_subtree_gap < length)
1929                 goto check_highest;
1930
1931         while (true) {
1932                 /* Visit left subtree if it looks promising */
1933                 gap_end = vm_start_gap(vma);
1934                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1935                         struct vm_area_struct *left =
1936                                 rb_entry(vma->vm_rb.rb_left,
1937                                          struct vm_area_struct, vm_rb);
1938                         if (left->rb_subtree_gap >= length) {
1939                                 vma = left;
1940                                 continue;
1941                         }
1942                 }
1943
1944                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1945 check_current:
1946                 /* Check if current node has a suitable gap */
1947                 if (gap_start > high_limit)
1948                         return -ENOMEM;
1949                 if (gap_end >= low_limit &&
1950                     gap_end > gap_start && gap_end - gap_start >= length)
1951                         goto found;
1952
1953                 /* Visit right subtree if it looks promising */
1954                 if (vma->vm_rb.rb_right) {
1955                         struct vm_area_struct *right =
1956                                 rb_entry(vma->vm_rb.rb_right,
1957                                          struct vm_area_struct, vm_rb);
1958                         if (right->rb_subtree_gap >= length) {
1959                                 vma = right;
1960                                 continue;
1961                         }
1962                 }
1963
1964                 /* Go back up the rbtree to find next candidate node */
1965                 while (true) {
1966                         struct rb_node *prev = &vma->vm_rb;
1967                         if (!rb_parent(prev))
1968                                 goto check_highest;
1969                         vma = rb_entry(rb_parent(prev),
1970                                        struct vm_area_struct, vm_rb);
1971                         if (prev == vma->vm_rb.rb_left) {
1972                                 gap_start = vm_end_gap(vma->vm_prev);
1973                                 gap_end = vm_start_gap(vma);
1974                                 goto check_current;
1975                         }
1976                 }
1977         }
1978
1979 check_highest:
1980         /* Check highest gap, which does not precede any rbtree node */
1981         gap_start = mm->highest_vm_end;
1982         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1983         if (gap_start > high_limit)
1984                 return -ENOMEM;
1985
1986 found:
1987         /* We found a suitable gap. Clip it with the original low_limit. */
1988         if (gap_start < info->low_limit)
1989                 gap_start = info->low_limit;
1990
1991         /* Adjust gap address to the desired alignment */
1992         gap_start += (info->align_offset - gap_start) & info->align_mask;
1993
1994         VM_BUG_ON(gap_start + info->length > info->high_limit);
1995         VM_BUG_ON(gap_start + info->length > gap_end);
1996         return gap_start;
1997 }
1998
1999 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2000 {
2001         struct mm_struct *mm = current->mm;
2002         struct vm_area_struct *vma;
2003         unsigned long length, low_limit, high_limit, gap_start, gap_end;
2004
2005         /* Adjust search length to account for worst case alignment overhead */
2006         length = info->length + info->align_mask;
2007         if (length < info->length)
2008                 return -ENOMEM;
2009
2010         /*
2011          * Adjust search limits by the desired length.
2012          * See implementation comment at top of unmapped_area().
2013          */
2014         gap_end = info->high_limit;
2015         if (gap_end < length)
2016                 return -ENOMEM;
2017         high_limit = gap_end - length;
2018
2019         if (info->low_limit > high_limit)
2020                 return -ENOMEM;
2021         low_limit = info->low_limit + length;
2022
2023         /* Check highest gap, which does not precede any rbtree node */
2024         gap_start = mm->highest_vm_end;
2025         if (gap_start <= high_limit)
2026                 goto found_highest;
2027
2028         /* Check if rbtree root looks promising */
2029         if (RB_EMPTY_ROOT(&mm->mm_rb))
2030                 return -ENOMEM;
2031         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2032         if (vma->rb_subtree_gap < length)
2033                 return -ENOMEM;
2034
2035         while (true) {
2036                 /* Visit right subtree if it looks promising */
2037                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2038                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2039                         struct vm_area_struct *right =
2040                                 rb_entry(vma->vm_rb.rb_right,
2041                                          struct vm_area_struct, vm_rb);
2042                         if (right->rb_subtree_gap >= length) {
2043                                 vma = right;
2044                                 continue;
2045                         }
2046                 }
2047
2048 check_current:
2049                 /* Check if current node has a suitable gap */
2050                 gap_end = vm_start_gap(vma);
2051                 if (gap_end < low_limit)
2052                         return -ENOMEM;
2053                 if (gap_start <= high_limit &&
2054                     gap_end > gap_start && gap_end - gap_start >= length)
2055                         goto found;
2056
2057                 /* Visit left subtree if it looks promising */
2058                 if (vma->vm_rb.rb_left) {
2059                         struct vm_area_struct *left =
2060                                 rb_entry(vma->vm_rb.rb_left,
2061                                          struct vm_area_struct, vm_rb);
2062                         if (left->rb_subtree_gap >= length) {
2063                                 vma = left;
2064                                 continue;
2065                         }
2066                 }
2067
2068                 /* Go back up the rbtree to find next candidate node */
2069                 while (true) {
2070                         struct rb_node *prev = &vma->vm_rb;
2071                         if (!rb_parent(prev))
2072                                 return -ENOMEM;
2073                         vma = rb_entry(rb_parent(prev),
2074                                        struct vm_area_struct, vm_rb);
2075                         if (prev == vma->vm_rb.rb_right) {
2076                                 gap_start = vma->vm_prev ?
2077                                         vm_end_gap(vma->vm_prev) : 0;
2078                                 goto check_current;
2079                         }
2080                 }
2081         }
2082
2083 found:
2084         /* We found a suitable gap. Clip it with the original high_limit. */
2085         if (gap_end > info->high_limit)
2086                 gap_end = info->high_limit;
2087
2088 found_highest:
2089         /* Compute highest gap address at the desired alignment */
2090         gap_end -= info->length;
2091         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2092
2093         VM_BUG_ON(gap_end < info->low_limit);
2094         VM_BUG_ON(gap_end < gap_start);
2095         return gap_end;
2096 }
2097
2098 /*
2099  * Search for an unmapped address range.
2100  *
2101  * We are looking for a range that:
2102  * - does not intersect with any VMA;
2103  * - is contained within the [low_limit, high_limit) interval;
2104  * - is at least the desired size.
2105  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2106  */
2107 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2108 {
2109         unsigned long addr;
2110
2111         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2112                 addr = unmapped_area_topdown(info);
2113         else
2114                 addr = unmapped_area(info);
2115
2116         trace_vm_unmapped_area(addr, info);
2117         return addr;
2118 }
2119
2120 /* Get an address range which is currently unmapped.
2121  * For shmat() with addr=0.
2122  *
2123  * Ugly calling convention alert:
2124  * Return value with the low bits set means error value,
2125  * ie
2126  *      if (ret & ~PAGE_MASK)
2127  *              error = ret;
2128  *
2129  * This function "knows" that -ENOMEM has the bits set.
2130  */
2131 #ifndef HAVE_ARCH_UNMAPPED_AREA
2132 unsigned long
2133 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2134                 unsigned long len, unsigned long pgoff, unsigned long flags)
2135 {
2136         struct mm_struct *mm = current->mm;
2137         struct vm_area_struct *vma, *prev;
2138         struct vm_unmapped_area_info info;
2139         const unsigned long mmap_end = arch_get_mmap_end(addr);
2140
2141         if (len > mmap_end - mmap_min_addr)
2142                 return -ENOMEM;
2143
2144         if (flags & MAP_FIXED)
2145                 return addr;
2146
2147         if (addr) {
2148                 addr = PAGE_ALIGN(addr);
2149                 vma = find_vma_prev(mm, addr, &prev);
2150                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2151                     (!vma || addr + len <= vm_start_gap(vma)) &&
2152                     (!prev || addr >= vm_end_gap(prev)))
2153                         return addr;
2154         }
2155
2156         info.flags = 0;
2157         info.length = len;
2158         info.low_limit = mm->mmap_base;
2159         info.high_limit = mmap_end;
2160         info.align_mask = 0;
2161         info.align_offset = 0;
2162         return vm_unmapped_area(&info);
2163 }
2164 #endif
2165
2166 /*
2167  * This mmap-allocator allocates new areas top-down from below the
2168  * stack's low limit (the base):
2169  */
2170 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2171 unsigned long
2172 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2173                           unsigned long len, unsigned long pgoff,
2174                           unsigned long flags)
2175 {
2176         struct vm_area_struct *vma, *prev;
2177         struct mm_struct *mm = current->mm;
2178         struct vm_unmapped_area_info info;
2179         const unsigned long mmap_end = arch_get_mmap_end(addr);
2180
2181         /* requested length too big for entire address space */
2182         if (len > mmap_end - mmap_min_addr)
2183                 return -ENOMEM;
2184
2185         if (flags & MAP_FIXED)
2186                 return addr;
2187
2188         /* requesting a specific address */
2189         if (addr) {
2190                 addr = PAGE_ALIGN(addr);
2191                 vma = find_vma_prev(mm, addr, &prev);
2192                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2193                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2194                                 (!prev || addr >= vm_end_gap(prev)))
2195                         return addr;
2196         }
2197
2198         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2199         info.length = len;
2200         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2201         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2202         info.align_mask = 0;
2203         info.align_offset = 0;
2204         addr = vm_unmapped_area(&info);
2205
2206         /*
2207          * A failed mmap() very likely causes application failure,
2208          * so fall back to the bottom-up function here. This scenario
2209          * can happen with large stack limits and large mmap()
2210          * allocations.
2211          */
2212         if (offset_in_page(addr)) {
2213                 VM_BUG_ON(addr != -ENOMEM);
2214                 info.flags = 0;
2215                 info.low_limit = TASK_UNMAPPED_BASE;
2216                 info.high_limit = mmap_end;
2217                 addr = vm_unmapped_area(&info);
2218         }
2219
2220         return addr;
2221 }
2222 #endif
2223
2224 unsigned long
2225 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2226                 unsigned long pgoff, unsigned long flags)
2227 {
2228         unsigned long (*get_area)(struct file *, unsigned long,
2229                                   unsigned long, unsigned long, unsigned long);
2230
2231         unsigned long error = arch_mmap_check(addr, len, flags);
2232         if (error)
2233                 return error;
2234
2235         /* Careful about overflows.. */
2236         if (len > TASK_SIZE)
2237                 return -ENOMEM;
2238
2239         get_area = current->mm->get_unmapped_area;
2240         if (file) {
2241                 if (file->f_op->get_unmapped_area)
2242                         get_area = file->f_op->get_unmapped_area;
2243         } else if (flags & MAP_SHARED) {
2244                 /*
2245                  * mmap_region() will call shmem_zero_setup() to create a file,
2246                  * so use shmem's get_unmapped_area in case it can be huge.
2247                  * do_mmap() will clear pgoff, so match alignment.
2248                  */
2249                 pgoff = 0;
2250                 get_area = shmem_get_unmapped_area;
2251         }
2252
2253         addr = get_area(file, addr, len, pgoff, flags);
2254         if (IS_ERR_VALUE(addr))
2255                 return addr;
2256
2257         if (addr > TASK_SIZE - len)
2258                 return -ENOMEM;
2259         if (offset_in_page(addr))
2260                 return -EINVAL;
2261
2262         error = security_mmap_addr(addr);
2263         return error ? error : addr;
2264 }
2265
2266 EXPORT_SYMBOL(get_unmapped_area);
2267
2268 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2269 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2270 {
2271         struct rb_node *rb_node;
2272         struct vm_area_struct *vma;
2273
2274         mmap_assert_locked(mm);
2275         /* Check the cache first. */
2276         vma = vmacache_find(mm, addr);
2277         if (likely(vma))
2278                 return vma;
2279
2280         rb_node = mm->mm_rb.rb_node;
2281
2282         while (rb_node) {
2283                 struct vm_area_struct *tmp;
2284
2285                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2286
2287                 if (tmp->vm_end > addr) {
2288                         vma = tmp;
2289                         if (tmp->vm_start <= addr)
2290                                 break;
2291                         rb_node = rb_node->rb_left;
2292                 } else
2293                         rb_node = rb_node->rb_right;
2294         }
2295
2296         if (vma)
2297                 vmacache_update(addr, vma);
2298         return vma;
2299 }
2300
2301 EXPORT_SYMBOL(find_vma);
2302
2303 /*
2304  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2305  */
2306 struct vm_area_struct *
2307 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2308                         struct vm_area_struct **pprev)
2309 {
2310         struct vm_area_struct *vma;
2311
2312         vma = find_vma(mm, addr);
2313         if (vma) {
2314                 *pprev = vma->vm_prev;
2315         } else {
2316                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2317
2318                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2319         }
2320         return vma;
2321 }
2322
2323 /*
2324  * Verify that the stack growth is acceptable and
2325  * update accounting. This is shared with both the
2326  * grow-up and grow-down cases.
2327  */
2328 static int acct_stack_growth(struct vm_area_struct *vma,
2329                              unsigned long size, unsigned long grow)
2330 {
2331         struct mm_struct *mm = vma->vm_mm;
2332         unsigned long new_start;
2333
2334         /* address space limit tests */
2335         if (!may_expand_vm(mm, vma->vm_flags, grow))
2336                 return -ENOMEM;
2337
2338         /* Stack limit test */
2339         if (size > rlimit(RLIMIT_STACK))
2340                 return -ENOMEM;
2341
2342         /* mlock limit tests */
2343         if (vma->vm_flags & VM_LOCKED) {
2344                 unsigned long locked;
2345                 unsigned long limit;
2346                 locked = mm->locked_vm + grow;
2347                 limit = rlimit(RLIMIT_MEMLOCK);
2348                 limit >>= PAGE_SHIFT;
2349                 if (locked > limit && !capable(CAP_IPC_LOCK))
2350                         return -ENOMEM;
2351         }
2352
2353         /* Check to ensure the stack will not grow into a hugetlb-only region */
2354         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2355                         vma->vm_end - size;
2356         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2357                 return -EFAULT;
2358
2359         /*
2360          * Overcommit..  This must be the final test, as it will
2361          * update security statistics.
2362          */
2363         if (security_vm_enough_memory_mm(mm, grow))
2364                 return -ENOMEM;
2365
2366         return 0;
2367 }
2368
2369 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2370 /*
2371  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2372  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2373  */
2374 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2375 {
2376         struct mm_struct *mm = vma->vm_mm;
2377         struct vm_area_struct *next;
2378         unsigned long gap_addr;
2379         int error = 0;
2380
2381         if (!(vma->vm_flags & VM_GROWSUP))
2382                 return -EFAULT;
2383
2384         /* Guard against exceeding limits of the address space. */
2385         address &= PAGE_MASK;
2386         if (address >= (TASK_SIZE & PAGE_MASK))
2387                 return -ENOMEM;
2388         address += PAGE_SIZE;
2389
2390         /* Enforce stack_guard_gap */
2391         gap_addr = address + stack_guard_gap;
2392
2393         /* Guard against overflow */
2394         if (gap_addr < address || gap_addr > TASK_SIZE)
2395                 gap_addr = TASK_SIZE;
2396
2397         next = vma->vm_next;
2398         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2399                 if (!(next->vm_flags & VM_GROWSUP))
2400                         return -ENOMEM;
2401                 /* Check that both stack segments have the same anon_vma? */
2402         }
2403
2404         /* We must make sure the anon_vma is allocated. */
2405         if (unlikely(anon_vma_prepare(vma)))
2406                 return -ENOMEM;
2407
2408         /*
2409          * vma->vm_start/vm_end cannot change under us because the caller
2410          * is required to hold the mmap_lock in read mode.  We need the
2411          * anon_vma lock to serialize against concurrent expand_stacks.
2412          */
2413         anon_vma_lock_write(vma->anon_vma);
2414
2415         /* Somebody else might have raced and expanded it already */
2416         if (address > vma->vm_end) {
2417                 unsigned long size, grow;
2418
2419                 size = address - vma->vm_start;
2420                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2421
2422                 error = -ENOMEM;
2423                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2424                         error = acct_stack_growth(vma, size, grow);
2425                         if (!error) {
2426                                 /*
2427                                  * vma_gap_update() doesn't support concurrent
2428                                  * updates, but we only hold a shared mmap_lock
2429                                  * lock here, so we need to protect against
2430                                  * concurrent vma expansions.
2431                                  * anon_vma_lock_write() doesn't help here, as
2432                                  * we don't guarantee that all growable vmas
2433                                  * in a mm share the same root anon vma.
2434                                  * So, we reuse mm->page_table_lock to guard
2435                                  * against concurrent vma expansions.
2436                                  */
2437                                 spin_lock(&mm->page_table_lock);
2438                                 if (vma->vm_flags & VM_LOCKED)
2439                                         mm->locked_vm += grow;
2440                                 vm_stat_account(mm, vma->vm_flags, grow);
2441                                 anon_vma_interval_tree_pre_update_vma(vma);
2442                                 vma->vm_end = address;
2443                                 anon_vma_interval_tree_post_update_vma(vma);
2444                                 if (vma->vm_next)
2445                                         vma_gap_update(vma->vm_next);
2446                                 else
2447                                         mm->highest_vm_end = vm_end_gap(vma);
2448                                 spin_unlock(&mm->page_table_lock);
2449
2450                                 perf_event_mmap(vma);
2451                         }
2452                 }
2453         }
2454         anon_vma_unlock_write(vma->anon_vma);
2455         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2456         validate_mm(mm);
2457         return error;
2458 }
2459 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2460
2461 /*
2462  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2463  */
2464 int expand_downwards(struct vm_area_struct *vma,
2465                                    unsigned long address)
2466 {
2467         struct mm_struct *mm = vma->vm_mm;
2468         struct vm_area_struct *prev;
2469         int error = 0;
2470
2471         address &= PAGE_MASK;
2472         if (address < mmap_min_addr)
2473                 return -EPERM;
2474
2475         /* Enforce stack_guard_gap */
2476         prev = vma->vm_prev;
2477         /* Check that both stack segments have the same anon_vma? */
2478         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2479                         vma_is_accessible(prev)) {
2480                 if (address - prev->vm_end < stack_guard_gap)
2481                         return -ENOMEM;
2482         }
2483
2484         /* We must make sure the anon_vma is allocated. */
2485         if (unlikely(anon_vma_prepare(vma)))
2486                 return -ENOMEM;
2487
2488         /*
2489          * vma->vm_start/vm_end cannot change under us because the caller
2490          * is required to hold the mmap_lock in read mode.  We need the
2491          * anon_vma lock to serialize against concurrent expand_stacks.
2492          */
2493         anon_vma_lock_write(vma->anon_vma);
2494
2495         /* Somebody else might have raced and expanded it already */
2496         if (address < vma->vm_start) {
2497                 unsigned long size, grow;
2498
2499                 size = vma->vm_end - address;
2500                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2501
2502                 error = -ENOMEM;
2503                 if (grow <= vma->vm_pgoff) {
2504                         error = acct_stack_growth(vma, size, grow);
2505                         if (!error) {
2506                                 /*
2507                                  * vma_gap_update() doesn't support concurrent
2508                                  * updates, but we only hold a shared mmap_lock
2509                                  * lock here, so we need to protect against
2510                                  * concurrent vma expansions.
2511                                  * anon_vma_lock_write() doesn't help here, as
2512                                  * we don't guarantee that all growable vmas
2513                                  * in a mm share the same root anon vma.
2514                                  * So, we reuse mm->page_table_lock to guard
2515                                  * against concurrent vma expansions.
2516                                  */
2517                                 spin_lock(&mm->page_table_lock);
2518                                 if (vma->vm_flags & VM_LOCKED)
2519                                         mm->locked_vm += grow;
2520                                 vm_stat_account(mm, vma->vm_flags, grow);
2521                                 anon_vma_interval_tree_pre_update_vma(vma);
2522                                 vma->vm_start = address;
2523                                 vma->vm_pgoff -= grow;
2524                                 anon_vma_interval_tree_post_update_vma(vma);
2525                                 vma_gap_update(vma);
2526                                 spin_unlock(&mm->page_table_lock);
2527
2528                                 perf_event_mmap(vma);
2529                         }
2530                 }
2531         }
2532         anon_vma_unlock_write(vma->anon_vma);
2533         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2534         validate_mm(mm);
2535         return error;
2536 }
2537
2538 /* enforced gap between the expanding stack and other mappings. */
2539 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2540
2541 static int __init cmdline_parse_stack_guard_gap(char *p)
2542 {
2543         unsigned long val;
2544         char *endptr;
2545
2546         val = simple_strtoul(p, &endptr, 10);
2547         if (!*endptr)
2548                 stack_guard_gap = val << PAGE_SHIFT;
2549
2550         return 1;
2551 }
2552 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2553
2554 #ifdef CONFIG_STACK_GROWSUP
2555 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2556 {
2557         return expand_upwards(vma, address);
2558 }
2559
2560 struct vm_area_struct *
2561 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2562 {
2563         struct vm_area_struct *vma, *prev;
2564
2565         addr &= PAGE_MASK;
2566         vma = find_vma_prev(mm, addr, &prev);
2567         if (vma && (vma->vm_start <= addr))
2568                 return vma;
2569         /* don't alter vm_end if the coredump is running */
2570         if (!prev || expand_stack(prev, addr))
2571                 return NULL;
2572         if (prev->vm_flags & VM_LOCKED)
2573                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2574         return prev;
2575 }
2576 #else
2577 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2578 {
2579         return expand_downwards(vma, address);
2580 }
2581
2582 struct vm_area_struct *
2583 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2584 {
2585         struct vm_area_struct *vma;
2586         unsigned long start;
2587
2588         addr &= PAGE_MASK;
2589         vma = find_vma(mm, addr);
2590         if (!vma)
2591                 return NULL;
2592         if (vma->vm_start <= addr)
2593                 return vma;
2594         if (!(vma->vm_flags & VM_GROWSDOWN))
2595                 return NULL;
2596         start = vma->vm_start;
2597         if (expand_stack(vma, addr))
2598                 return NULL;
2599         if (vma->vm_flags & VM_LOCKED)
2600                 populate_vma_page_range(vma, addr, start, NULL);
2601         return vma;
2602 }
2603 #endif
2604
2605 EXPORT_SYMBOL_GPL(find_extend_vma);
2606
2607 /*
2608  * Ok - we have the memory areas we should free on the vma list,
2609  * so release them, and do the vma updates.
2610  *
2611  * Called with the mm semaphore held.
2612  */
2613 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2614 {
2615         unsigned long nr_accounted = 0;
2616
2617         /* Update high watermark before we lower total_vm */
2618         update_hiwater_vm(mm);
2619         do {
2620                 long nrpages = vma_pages(vma);
2621
2622                 if (vma->vm_flags & VM_ACCOUNT)
2623                         nr_accounted += nrpages;
2624                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2625                 vma = remove_vma(vma);
2626         } while (vma);
2627         vm_unacct_memory(nr_accounted);
2628         validate_mm(mm);
2629 }
2630
2631 /*
2632  * Get rid of page table information in the indicated region.
2633  *
2634  * Called with the mm semaphore held.
2635  */
2636 static void unmap_region(struct mm_struct *mm,
2637                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2638                 unsigned long start, unsigned long end)
2639 {
2640         struct vm_area_struct *next = vma_next(mm, prev);
2641         struct mmu_gather tlb;
2642
2643         lru_add_drain();
2644         tlb_gather_mmu(&tlb, mm);
2645         update_hiwater_rss(mm);
2646         unmap_vmas(&tlb, vma, start, end);
2647         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2648                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2649         tlb_finish_mmu(&tlb);
2650 }
2651
2652 /*
2653  * Create a list of vma's touched by the unmap, removing them from the mm's
2654  * vma list as we go..
2655  */
2656 static bool
2657 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2658         struct vm_area_struct *prev, unsigned long end)
2659 {
2660         struct vm_area_struct **insertion_point;
2661         struct vm_area_struct *tail_vma = NULL;
2662
2663         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2664         vma->vm_prev = NULL;
2665         do {
2666                 vma_rb_erase(vma, &mm->mm_rb);
2667                 if (vma->vm_flags & VM_LOCKED)
2668                         mm->locked_vm -= vma_pages(vma);
2669                 mm->map_count--;
2670                 tail_vma = vma;
2671                 vma = vma->vm_next;
2672         } while (vma && vma->vm_start < end);
2673         *insertion_point = vma;
2674         if (vma) {
2675                 vma->vm_prev = prev;
2676                 vma_gap_update(vma);
2677         } else
2678                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2679         tail_vma->vm_next = NULL;
2680
2681         /* Kill the cache */
2682         vmacache_invalidate(mm);
2683
2684         /*
2685          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2686          * VM_GROWSUP VMA. Such VMAs can change their size under
2687          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2688          */
2689         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2690                 return false;
2691         if (prev && (prev->vm_flags & VM_GROWSUP))
2692                 return false;
2693         return true;
2694 }
2695
2696 /*
2697  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2698  * has already been checked or doesn't make sense to fail.
2699  */
2700 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2701                 unsigned long addr, int new_below)
2702 {
2703         struct vm_area_struct *new;
2704         int err;
2705
2706         if (vma->vm_ops && vma->vm_ops->may_split) {
2707                 err = vma->vm_ops->may_split(vma, addr);
2708                 if (err)
2709                         return err;
2710         }
2711
2712         new = vm_area_dup(vma);
2713         if (!new)
2714                 return -ENOMEM;
2715
2716         if (new_below)
2717                 new->vm_end = addr;
2718         else {
2719                 new->vm_start = addr;
2720                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2721         }
2722
2723         err = vma_dup_policy(vma, new);
2724         if (err)
2725                 goto out_free_vma;
2726
2727         err = anon_vma_clone(new, vma);
2728         if (err)
2729                 goto out_free_mpol;
2730
2731         if (new->vm_file)
2732                 get_file(new->vm_file);
2733
2734         if (new->vm_ops && new->vm_ops->open)
2735                 new->vm_ops->open(new);
2736
2737         if (new_below)
2738                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2739                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2740         else
2741                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2742
2743         /* Success. */
2744         if (!err)
2745                 return 0;
2746
2747         /* Clean everything up if vma_adjust failed. */
2748         if (new->vm_ops && new->vm_ops->close)
2749                 new->vm_ops->close(new);
2750         if (new->vm_file)
2751                 fput(new->vm_file);
2752         unlink_anon_vmas(new);
2753  out_free_mpol:
2754         mpol_put(vma_policy(new));
2755  out_free_vma:
2756         vm_area_free(new);
2757         return err;
2758 }
2759
2760 /*
2761  * Split a vma into two pieces at address 'addr', a new vma is allocated
2762  * either for the first part or the tail.
2763  */
2764 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2765               unsigned long addr, int new_below)
2766 {
2767         if (mm->map_count >= sysctl_max_map_count)
2768                 return -ENOMEM;
2769
2770         return __split_vma(mm, vma, addr, new_below);
2771 }
2772
2773 /* Munmap is split into 2 main parts -- this part which finds
2774  * what needs doing, and the areas themselves, which do the
2775  * work.  This now handles partial unmappings.
2776  * Jeremy Fitzhardinge <jeremy@goop.org>
2777  */
2778 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2779                 struct list_head *uf, bool downgrade)
2780 {
2781         unsigned long end;
2782         struct vm_area_struct *vma, *prev, *last;
2783
2784         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2785                 return -EINVAL;
2786
2787         len = PAGE_ALIGN(len);
2788         end = start + len;
2789         if (len == 0)
2790                 return -EINVAL;
2791
2792         /*
2793          * arch_unmap() might do unmaps itself.  It must be called
2794          * and finish any rbtree manipulation before this code
2795          * runs and also starts to manipulate the rbtree.
2796          */
2797         arch_unmap(mm, start, end);
2798
2799         /* Find the first overlapping VMA where start < vma->vm_end */
2800         vma = find_vma_intersection(mm, start, end);
2801         if (!vma)
2802                 return 0;
2803         prev = vma->vm_prev;
2804
2805         /*
2806          * If we need to split any vma, do it now to save pain later.
2807          *
2808          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2809          * unmapped vm_area_struct will remain in use: so lower split_vma
2810          * places tmp vma above, and higher split_vma places tmp vma below.
2811          */
2812         if (start > vma->vm_start) {
2813                 int error;
2814
2815                 /*
2816                  * Make sure that map_count on return from munmap() will
2817                  * not exceed its limit; but let map_count go just above
2818                  * its limit temporarily, to help free resources as expected.
2819                  */
2820                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2821                         return -ENOMEM;
2822
2823                 error = __split_vma(mm, vma, start, 0);
2824                 if (error)
2825                         return error;
2826                 prev = vma;
2827         }
2828
2829         /* Does it split the last one? */
2830         last = find_vma(mm, end);
2831         if (last && end > last->vm_start) {
2832                 int error = __split_vma(mm, last, end, 1);
2833                 if (error)
2834                         return error;
2835         }
2836         vma = vma_next(mm, prev);
2837
2838         if (unlikely(uf)) {
2839                 /*
2840                  * If userfaultfd_unmap_prep returns an error the vmas
2841                  * will remain split, but userland will get a
2842                  * highly unexpected error anyway. This is no
2843                  * different than the case where the first of the two
2844                  * __split_vma fails, but we don't undo the first
2845                  * split, despite we could. This is unlikely enough
2846                  * failure that it's not worth optimizing it for.
2847                  */
2848                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2849                 if (error)
2850                         return error;
2851         }
2852
2853         /* Detach vmas from rbtree */
2854         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2855                 downgrade = false;
2856
2857         if (downgrade)
2858                 mmap_write_downgrade(mm);
2859
2860         unmap_region(mm, vma, prev, start, end);
2861
2862         /* Fix up all other VM information */
2863         remove_vma_list(mm, vma);
2864
2865         return downgrade ? 1 : 0;
2866 }
2867
2868 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2869               struct list_head *uf)
2870 {
2871         return __do_munmap(mm, start, len, uf, false);
2872 }
2873
2874 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2875 {
2876         int ret;
2877         struct mm_struct *mm = current->mm;
2878         LIST_HEAD(uf);
2879
2880         if (mmap_write_lock_killable(mm))
2881                 return -EINTR;
2882
2883         ret = __do_munmap(mm, start, len, &uf, downgrade);
2884         /*
2885          * Returning 1 indicates mmap_lock is downgraded.
2886          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2887          * it to 0 before return.
2888          */
2889         if (ret == 1) {
2890                 mmap_read_unlock(mm);
2891                 ret = 0;
2892         } else
2893                 mmap_write_unlock(mm);
2894
2895         userfaultfd_unmap_complete(mm, &uf);
2896         return ret;
2897 }
2898
2899 int vm_munmap(unsigned long start, size_t len)
2900 {
2901         return __vm_munmap(start, len, false);
2902 }
2903 EXPORT_SYMBOL(vm_munmap);
2904
2905 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2906 {
2907         addr = untagged_addr(addr);
2908         return __vm_munmap(addr, len, true);
2909 }
2910
2911
2912 /*
2913  * Emulation of deprecated remap_file_pages() syscall.
2914  */
2915 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2916                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2917 {
2918
2919         struct mm_struct *mm = current->mm;
2920         struct vm_area_struct *vma;
2921         unsigned long populate = 0;
2922         unsigned long ret = -EINVAL;
2923         struct file *file;
2924
2925         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2926                      current->comm, current->pid);
2927
2928         if (prot)
2929                 return ret;
2930         start = start & PAGE_MASK;
2931         size = size & PAGE_MASK;
2932
2933         if (start + size <= start)
2934                 return ret;
2935
2936         /* Does pgoff wrap? */
2937         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2938                 return ret;
2939
2940         if (mmap_write_lock_killable(mm))
2941                 return -EINTR;
2942
2943         vma = vma_lookup(mm, start);
2944
2945         if (!vma || !(vma->vm_flags & VM_SHARED))
2946                 goto out;
2947
2948         if (start + size > vma->vm_end) {
2949                 struct vm_area_struct *next;
2950
2951                 for (next = vma->vm_next; next; next = next->vm_next) {
2952                         /* hole between vmas ? */
2953                         if (next->vm_start != next->vm_prev->vm_end)
2954                                 goto out;
2955
2956                         if (next->vm_file != vma->vm_file)
2957                                 goto out;
2958
2959                         if (next->vm_flags != vma->vm_flags)
2960                                 goto out;
2961
2962                         if (start + size <= next->vm_end)
2963                                 break;
2964                 }
2965
2966                 if (!next)
2967                         goto out;
2968         }
2969
2970         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2971         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2972         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2973
2974         flags &= MAP_NONBLOCK;
2975         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2976         if (vma->vm_flags & VM_LOCKED)
2977                 flags |= MAP_LOCKED;
2978
2979         file = get_file(vma->vm_file);
2980         ret = do_mmap(vma->vm_file, start, size,
2981                         prot, flags, pgoff, &populate, NULL);
2982         fput(file);
2983 out:
2984         mmap_write_unlock(mm);
2985         if (populate)
2986                 mm_populate(ret, populate);
2987         if (!IS_ERR_VALUE(ret))
2988                 ret = 0;
2989         return ret;
2990 }
2991
2992 /*
2993  *  this is really a simplified "do_mmap".  it only handles
2994  *  anonymous maps.  eventually we may be able to do some
2995  *  brk-specific accounting here.
2996  */
2997 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2998 {
2999         struct mm_struct *mm = current->mm;
3000         struct vm_area_struct *vma, *prev;
3001         struct rb_node **rb_link, *rb_parent;
3002         pgoff_t pgoff = addr >> PAGE_SHIFT;
3003         int error;
3004         unsigned long mapped_addr;
3005
3006         /* Until we need other flags, refuse anything except VM_EXEC. */
3007         if ((flags & (~VM_EXEC)) != 0)
3008                 return -EINVAL;
3009         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3010
3011         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3012         if (IS_ERR_VALUE(mapped_addr))
3013                 return mapped_addr;
3014
3015         error = mlock_future_check(mm, mm->def_flags, len);
3016         if (error)
3017                 return error;
3018
3019         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3020         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3021                 return -ENOMEM;
3022
3023         /* Check against address space limits *after* clearing old maps... */
3024         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3025                 return -ENOMEM;
3026
3027         if (mm->map_count > sysctl_max_map_count)
3028                 return -ENOMEM;
3029
3030         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3031                 return -ENOMEM;
3032
3033         /* Can we just expand an old private anonymous mapping? */
3034         vma = vma_merge(mm, prev, addr, addr + len, flags,
3035                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3036         if (vma)
3037                 goto out;
3038
3039         /*
3040          * create a vma struct for an anonymous mapping
3041          */
3042         vma = vm_area_alloc(mm);
3043         if (!vma) {
3044                 vm_unacct_memory(len >> PAGE_SHIFT);
3045                 return -ENOMEM;
3046         }
3047
3048         vma_set_anonymous(vma);
3049         vma->vm_start = addr;
3050         vma->vm_end = addr + len;
3051         vma->vm_pgoff = pgoff;
3052         vma->vm_flags = flags;
3053         vma->vm_page_prot = vm_get_page_prot(flags);
3054         vma_link(mm, vma, prev, rb_link, rb_parent);
3055 out:
3056         perf_event_mmap(vma);
3057         mm->total_vm += len >> PAGE_SHIFT;
3058         mm->data_vm += len >> PAGE_SHIFT;
3059         if (flags & VM_LOCKED)
3060                 mm->locked_vm += (len >> PAGE_SHIFT);
3061         vma->vm_flags |= VM_SOFTDIRTY;
3062         return 0;
3063 }
3064
3065 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3066 {
3067         struct mm_struct *mm = current->mm;
3068         unsigned long len;
3069         int ret;
3070         bool populate;
3071         LIST_HEAD(uf);
3072
3073         len = PAGE_ALIGN(request);
3074         if (len < request)
3075                 return -ENOMEM;
3076         if (!len)
3077                 return 0;
3078
3079         if (mmap_write_lock_killable(mm))
3080                 return -EINTR;
3081
3082         ret = do_brk_flags(addr, len, flags, &uf);
3083         populate = ((mm->def_flags & VM_LOCKED) != 0);
3084         mmap_write_unlock(mm);
3085         userfaultfd_unmap_complete(mm, &uf);
3086         if (populate && !ret)
3087                 mm_populate(addr, len);
3088         return ret;
3089 }
3090 EXPORT_SYMBOL(vm_brk_flags);
3091
3092 int vm_brk(unsigned long addr, unsigned long len)
3093 {
3094         return vm_brk_flags(addr, len, 0);
3095 }
3096 EXPORT_SYMBOL(vm_brk);
3097
3098 /* Release all mmaps. */
3099 void exit_mmap(struct mm_struct *mm)
3100 {
3101         struct mmu_gather tlb;
3102         struct vm_area_struct *vma;
3103         unsigned long nr_accounted = 0;
3104
3105         /* mm's last user has gone, and its about to be pulled down */
3106         mmu_notifier_release(mm);
3107
3108         if (unlikely(mm_is_oom_victim(mm))) {
3109                 /*
3110                  * Manually reap the mm to free as much memory as possible.
3111                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3112                  * this mm from further consideration.  Taking mm->mmap_lock for
3113                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3114                  * reaper will not run on this mm again after mmap_lock is
3115                  * dropped.
3116                  *
3117                  * Nothing can be holding mm->mmap_lock here and the above call
3118                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3119                  * __oom_reap_task_mm() will not block.
3120                  */
3121                 (void)__oom_reap_task_mm(mm);
3122                 set_bit(MMF_OOM_SKIP, &mm->flags);
3123         }
3124
3125         mmap_write_lock(mm);
3126         arch_exit_mmap(mm);
3127
3128         vma = mm->mmap;
3129         if (!vma) {
3130                 /* Can happen if dup_mmap() received an OOM */
3131                 mmap_write_unlock(mm);
3132                 return;
3133         }
3134
3135         lru_add_drain();
3136         flush_cache_mm(mm);
3137         tlb_gather_mmu_fullmm(&tlb, mm);
3138         /* update_hiwater_rss(mm) here? but nobody should be looking */
3139         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3140         unmap_vmas(&tlb, vma, 0, -1);
3141         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3142         tlb_finish_mmu(&tlb);
3143
3144         /* Walk the list again, actually closing and freeing it. */
3145         while (vma) {
3146                 if (vma->vm_flags & VM_ACCOUNT)
3147                         nr_accounted += vma_pages(vma);
3148                 vma = remove_vma(vma);
3149                 cond_resched();
3150         }
3151         mm->mmap = NULL;
3152         mmap_write_unlock(mm);
3153         vm_unacct_memory(nr_accounted);
3154 }
3155
3156 /* Insert vm structure into process list sorted by address
3157  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3158  * then i_mmap_rwsem is taken here.
3159  */
3160 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3161 {
3162         struct vm_area_struct *prev;
3163         struct rb_node **rb_link, *rb_parent;
3164
3165         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3166                            &prev, &rb_link, &rb_parent))
3167                 return -ENOMEM;
3168         if ((vma->vm_flags & VM_ACCOUNT) &&
3169              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3170                 return -ENOMEM;
3171
3172         /*
3173          * The vm_pgoff of a purely anonymous vma should be irrelevant
3174          * until its first write fault, when page's anon_vma and index
3175          * are set.  But now set the vm_pgoff it will almost certainly
3176          * end up with (unless mremap moves it elsewhere before that
3177          * first wfault), so /proc/pid/maps tells a consistent story.
3178          *
3179          * By setting it to reflect the virtual start address of the
3180          * vma, merges and splits can happen in a seamless way, just
3181          * using the existing file pgoff checks and manipulations.
3182          * Similarly in do_mmap and in do_brk_flags.
3183          */
3184         if (vma_is_anonymous(vma)) {
3185                 BUG_ON(vma->anon_vma);
3186                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3187         }
3188
3189         vma_link(mm, vma, prev, rb_link, rb_parent);
3190         return 0;
3191 }
3192
3193 /*
3194  * Copy the vma structure to a new location in the same mm,
3195  * prior to moving page table entries, to effect an mremap move.
3196  */
3197 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3198         unsigned long addr, unsigned long len, pgoff_t pgoff,
3199         bool *need_rmap_locks)
3200 {
3201         struct vm_area_struct *vma = *vmap;
3202         unsigned long vma_start = vma->vm_start;
3203         struct mm_struct *mm = vma->vm_mm;
3204         struct vm_area_struct *new_vma, *prev;
3205         struct rb_node **rb_link, *rb_parent;
3206         bool faulted_in_anon_vma = true;
3207
3208         /*
3209          * If anonymous vma has not yet been faulted, update new pgoff
3210          * to match new location, to increase its chance of merging.
3211          */
3212         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3213                 pgoff = addr >> PAGE_SHIFT;
3214                 faulted_in_anon_vma = false;
3215         }
3216
3217         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3218                 return NULL;    /* should never get here */
3219         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3220                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3221                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3222         if (new_vma) {
3223                 /*
3224                  * Source vma may have been merged into new_vma
3225                  */
3226                 if (unlikely(vma_start >= new_vma->vm_start &&
3227                              vma_start < new_vma->vm_end)) {
3228                         /*
3229                          * The only way we can get a vma_merge with
3230                          * self during an mremap is if the vma hasn't
3231                          * been faulted in yet and we were allowed to
3232                          * reset the dst vma->vm_pgoff to the
3233                          * destination address of the mremap to allow
3234                          * the merge to happen. mremap must change the
3235                          * vm_pgoff linearity between src and dst vmas
3236                          * (in turn preventing a vma_merge) to be
3237                          * safe. It is only safe to keep the vm_pgoff
3238                          * linear if there are no pages mapped yet.
3239                          */
3240                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3241                         *vmap = vma = new_vma;
3242                 }
3243                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3244         } else {
3245                 new_vma = vm_area_dup(vma);
3246                 if (!new_vma)
3247                         goto out;
3248                 new_vma->vm_start = addr;
3249                 new_vma->vm_end = addr + len;
3250                 new_vma->vm_pgoff = pgoff;
3251                 if (vma_dup_policy(vma, new_vma))
3252                         goto out_free_vma;
3253                 if (anon_vma_clone(new_vma, vma))
3254                         goto out_free_mempol;
3255                 if (new_vma->vm_file)
3256                         get_file(new_vma->vm_file);
3257                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3258                         new_vma->vm_ops->open(new_vma);
3259                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3260                 *need_rmap_locks = false;
3261         }
3262         return new_vma;
3263
3264 out_free_mempol:
3265         mpol_put(vma_policy(new_vma));
3266 out_free_vma:
3267         vm_area_free(new_vma);
3268 out:
3269         return NULL;
3270 }
3271
3272 /*
3273  * Return true if the calling process may expand its vm space by the passed
3274  * number of pages
3275  */
3276 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3277 {
3278         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3279                 return false;
3280
3281         if (is_data_mapping(flags) &&
3282             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3283                 /* Workaround for Valgrind */
3284                 if (rlimit(RLIMIT_DATA) == 0 &&
3285                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3286                         return true;
3287
3288                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3289                              current->comm, current->pid,
3290                              (mm->data_vm + npages) << PAGE_SHIFT,
3291                              rlimit(RLIMIT_DATA),
3292                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3293
3294                 if (!ignore_rlimit_data)
3295                         return false;
3296         }
3297
3298         return true;
3299 }
3300
3301 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3302 {
3303         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3304
3305         if (is_exec_mapping(flags))
3306                 mm->exec_vm += npages;
3307         else if (is_stack_mapping(flags))
3308                 mm->stack_vm += npages;
3309         else if (is_data_mapping(flags))
3310                 mm->data_vm += npages;
3311 }
3312
3313 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3314
3315 /*
3316  * Having a close hook prevents vma merging regardless of flags.
3317  */
3318 static void special_mapping_close(struct vm_area_struct *vma)
3319 {
3320 }
3321
3322 static const char *special_mapping_name(struct vm_area_struct *vma)
3323 {
3324         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3325 }
3326
3327 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3328 {
3329         struct vm_special_mapping *sm = new_vma->vm_private_data;
3330
3331         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3332                 return -EFAULT;
3333
3334         if (sm->mremap)
3335                 return sm->mremap(sm, new_vma);
3336
3337         return 0;
3338 }
3339
3340 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3341 {
3342         /*
3343          * Forbid splitting special mappings - kernel has expectations over
3344          * the number of pages in mapping. Together with VM_DONTEXPAND
3345          * the size of vma should stay the same over the special mapping's
3346          * lifetime.
3347          */
3348         return -EINVAL;
3349 }
3350
3351 static const struct vm_operations_struct special_mapping_vmops = {
3352         .close = special_mapping_close,
3353         .fault = special_mapping_fault,
3354         .mremap = special_mapping_mremap,
3355         .name = special_mapping_name,
3356         /* vDSO code relies that VVAR can't be accessed remotely */
3357         .access = NULL,
3358         .may_split = special_mapping_split,
3359 };
3360
3361 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3362         .close = special_mapping_close,
3363         .fault = special_mapping_fault,
3364 };
3365
3366 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3367 {
3368         struct vm_area_struct *vma = vmf->vma;
3369         pgoff_t pgoff;
3370         struct page **pages;
3371
3372         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3373                 pages = vma->vm_private_data;
3374         } else {
3375                 struct vm_special_mapping *sm = vma->vm_private_data;
3376
3377                 if (sm->fault)
3378                         return sm->fault(sm, vmf->vma, vmf);
3379
3380                 pages = sm->pages;
3381         }
3382
3383         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3384                 pgoff--;
3385
3386         if (*pages) {
3387                 struct page *page = *pages;
3388                 get_page(page);
3389                 vmf->page = page;
3390                 return 0;
3391         }
3392
3393         return VM_FAULT_SIGBUS;
3394 }
3395
3396 static struct vm_area_struct *__install_special_mapping(
3397         struct mm_struct *mm,
3398         unsigned long addr, unsigned long len,
3399         unsigned long vm_flags, void *priv,
3400         const struct vm_operations_struct *ops)
3401 {
3402         int ret;
3403         struct vm_area_struct *vma;
3404
3405         vma = vm_area_alloc(mm);
3406         if (unlikely(vma == NULL))
3407                 return ERR_PTR(-ENOMEM);
3408
3409         vma->vm_start = addr;
3410         vma->vm_end = addr + len;
3411
3412         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3413         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3414         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3415
3416         vma->vm_ops = ops;
3417         vma->vm_private_data = priv;
3418
3419         ret = insert_vm_struct(mm, vma);
3420         if (ret)
3421                 goto out;
3422
3423         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3424
3425         perf_event_mmap(vma);
3426
3427         return vma;
3428
3429 out:
3430         vm_area_free(vma);
3431         return ERR_PTR(ret);
3432 }
3433
3434 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3435         const struct vm_special_mapping *sm)
3436 {
3437         return vma->vm_private_data == sm &&
3438                 (vma->vm_ops == &special_mapping_vmops ||
3439                  vma->vm_ops == &legacy_special_mapping_vmops);
3440 }
3441
3442 /*
3443  * Called with mm->mmap_lock held for writing.
3444  * Insert a new vma covering the given region, with the given flags.
3445  * Its pages are supplied by the given array of struct page *.
3446  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3447  * The region past the last page supplied will always produce SIGBUS.
3448  * The array pointer and the pages it points to are assumed to stay alive
3449  * for as long as this mapping might exist.
3450  */
3451 struct vm_area_struct *_install_special_mapping(
3452         struct mm_struct *mm,
3453         unsigned long addr, unsigned long len,
3454         unsigned long vm_flags, const struct vm_special_mapping *spec)
3455 {
3456         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3457                                         &special_mapping_vmops);
3458 }
3459
3460 int install_special_mapping(struct mm_struct *mm,
3461                             unsigned long addr, unsigned long len,
3462                             unsigned long vm_flags, struct page **pages)
3463 {
3464         struct vm_area_struct *vma = __install_special_mapping(
3465                 mm, addr, len, vm_flags, (void *)pages,
3466                 &legacy_special_mapping_vmops);
3467
3468         return PTR_ERR_OR_ZERO(vma);
3469 }
3470
3471 static DEFINE_MUTEX(mm_all_locks_mutex);
3472
3473 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3474 {
3475         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3476                 /*
3477                  * The LSB of head.next can't change from under us
3478                  * because we hold the mm_all_locks_mutex.
3479                  */
3480                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3481                 /*
3482                  * We can safely modify head.next after taking the
3483                  * anon_vma->root->rwsem. If some other vma in this mm shares
3484                  * the same anon_vma we won't take it again.
3485                  *
3486                  * No need of atomic instructions here, head.next
3487                  * can't change from under us thanks to the
3488                  * anon_vma->root->rwsem.
3489                  */
3490                 if (__test_and_set_bit(0, (unsigned long *)
3491                                        &anon_vma->root->rb_root.rb_root.rb_node))
3492                         BUG();
3493         }
3494 }
3495
3496 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3497 {
3498         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3499                 /*
3500                  * AS_MM_ALL_LOCKS can't change from under us because
3501                  * we hold the mm_all_locks_mutex.
3502                  *
3503                  * Operations on ->flags have to be atomic because
3504                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3505                  * mm_all_locks_mutex, there may be other cpus
3506                  * changing other bitflags in parallel to us.
3507                  */
3508                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3509                         BUG();
3510                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3511         }
3512 }
3513
3514 /*
3515  * This operation locks against the VM for all pte/vma/mm related
3516  * operations that could ever happen on a certain mm. This includes
3517  * vmtruncate, try_to_unmap, and all page faults.
3518  *
3519  * The caller must take the mmap_lock in write mode before calling
3520  * mm_take_all_locks(). The caller isn't allowed to release the
3521  * mmap_lock until mm_drop_all_locks() returns.
3522  *
3523  * mmap_lock in write mode is required in order to block all operations
3524  * that could modify pagetables and free pages without need of
3525  * altering the vma layout. It's also needed in write mode to avoid new
3526  * anon_vmas to be associated with existing vmas.
3527  *
3528  * A single task can't take more than one mm_take_all_locks() in a row
3529  * or it would deadlock.
3530  *
3531  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3532  * mapping->flags avoid to take the same lock twice, if more than one
3533  * vma in this mm is backed by the same anon_vma or address_space.
3534  *
3535  * We take locks in following order, accordingly to comment at beginning
3536  * of mm/rmap.c:
3537  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3538  *     hugetlb mapping);
3539  *   - all i_mmap_rwsem locks;
3540  *   - all anon_vma->rwseml
3541  *
3542  * We can take all locks within these types randomly because the VM code
3543  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3544  * mm_all_locks_mutex.
3545  *
3546  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3547  * that may have to take thousand of locks.
3548  *
3549  * mm_take_all_locks() can fail if it's interrupted by signals.
3550  */
3551 int mm_take_all_locks(struct mm_struct *mm)
3552 {
3553         struct vm_area_struct *vma;
3554         struct anon_vma_chain *avc;
3555
3556         BUG_ON(mmap_read_trylock(mm));
3557
3558         mutex_lock(&mm_all_locks_mutex);
3559
3560         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3561                 if (signal_pending(current))
3562                         goto out_unlock;
3563                 if (vma->vm_file && vma->vm_file->f_mapping &&
3564                                 is_vm_hugetlb_page(vma))
3565                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3566         }
3567
3568         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3569                 if (signal_pending(current))
3570                         goto out_unlock;
3571                 if (vma->vm_file && vma->vm_file->f_mapping &&
3572                                 !is_vm_hugetlb_page(vma))
3573                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3574         }
3575
3576         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3577                 if (signal_pending(current))
3578                         goto out_unlock;
3579                 if (vma->anon_vma)
3580                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3581                                 vm_lock_anon_vma(mm, avc->anon_vma);
3582         }
3583
3584         return 0;
3585
3586 out_unlock:
3587         mm_drop_all_locks(mm);
3588         return -EINTR;
3589 }
3590
3591 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3592 {
3593         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3594                 /*
3595                  * The LSB of head.next can't change to 0 from under
3596                  * us because we hold the mm_all_locks_mutex.
3597                  *
3598                  * We must however clear the bitflag before unlocking
3599                  * the vma so the users using the anon_vma->rb_root will
3600                  * never see our bitflag.
3601                  *
3602                  * No need of atomic instructions here, head.next
3603                  * can't change from under us until we release the
3604                  * anon_vma->root->rwsem.
3605                  */
3606                 if (!__test_and_clear_bit(0, (unsigned long *)
3607                                           &anon_vma->root->rb_root.rb_root.rb_node))
3608                         BUG();
3609                 anon_vma_unlock_write(anon_vma);
3610         }
3611 }
3612
3613 static void vm_unlock_mapping(struct address_space *mapping)
3614 {
3615         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3616                 /*
3617                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3618                  * because we hold the mm_all_locks_mutex.
3619                  */
3620                 i_mmap_unlock_write(mapping);
3621                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3622                                         &mapping->flags))
3623                         BUG();
3624         }
3625 }
3626
3627 /*
3628  * The mmap_lock cannot be released by the caller until
3629  * mm_drop_all_locks() returns.
3630  */
3631 void mm_drop_all_locks(struct mm_struct *mm)
3632 {
3633         struct vm_area_struct *vma;
3634         struct anon_vma_chain *avc;
3635
3636         BUG_ON(mmap_read_trylock(mm));
3637         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3638
3639         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3640                 if (vma->anon_vma)
3641                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3642                                 vm_unlock_anon_vma(avc->anon_vma);
3643                 if (vma->vm_file && vma->vm_file->f_mapping)
3644                         vm_unlock_mapping(vma->vm_file->f_mapping);
3645         }
3646
3647         mutex_unlock(&mm_all_locks_mutex);
3648 }
3649
3650 /*
3651  * initialise the percpu counter for VM
3652  */
3653 void __init mmap_init(void)
3654 {
3655         int ret;
3656
3657         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3658         VM_BUG_ON(ret);
3659 }
3660
3661 /*
3662  * Initialise sysctl_user_reserve_kbytes.
3663  *
3664  * This is intended to prevent a user from starting a single memory hogging
3665  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3666  * mode.
3667  *
3668  * The default value is min(3% of free memory, 128MB)
3669  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3670  */
3671 static int init_user_reserve(void)
3672 {
3673         unsigned long free_kbytes;
3674
3675         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3676
3677         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3678         return 0;
3679 }
3680 subsys_initcall(init_user_reserve);
3681
3682 /*
3683  * Initialise sysctl_admin_reserve_kbytes.
3684  *
3685  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3686  * to log in and kill a memory hogging process.
3687  *
3688  * Systems with more than 256MB will reserve 8MB, enough to recover
3689  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3690  * only reserve 3% of free pages by default.
3691  */
3692 static int init_admin_reserve(void)
3693 {
3694         unsigned long free_kbytes;
3695
3696         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3697
3698         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3699         return 0;
3700 }
3701 subsys_initcall(init_admin_reserve);
3702
3703 /*
3704  * Reinititalise user and admin reserves if memory is added or removed.
3705  *
3706  * The default user reserve max is 128MB, and the default max for the
3707  * admin reserve is 8MB. These are usually, but not always, enough to
3708  * enable recovery from a memory hogging process using login/sshd, a shell,
3709  * and tools like top. It may make sense to increase or even disable the
3710  * reserve depending on the existence of swap or variations in the recovery
3711  * tools. So, the admin may have changed them.
3712  *
3713  * If memory is added and the reserves have been eliminated or increased above
3714  * the default max, then we'll trust the admin.
3715  *
3716  * If memory is removed and there isn't enough free memory, then we
3717  * need to reset the reserves.
3718  *
3719  * Otherwise keep the reserve set by the admin.
3720  */
3721 static int reserve_mem_notifier(struct notifier_block *nb,
3722                              unsigned long action, void *data)
3723 {
3724         unsigned long tmp, free_kbytes;
3725
3726         switch (action) {
3727         case MEM_ONLINE:
3728                 /* Default max is 128MB. Leave alone if modified by operator. */
3729                 tmp = sysctl_user_reserve_kbytes;
3730                 if (0 < tmp && tmp < (1UL << 17))
3731                         init_user_reserve();
3732
3733                 /* Default max is 8MB.  Leave alone if modified by operator. */
3734                 tmp = sysctl_admin_reserve_kbytes;
3735                 if (0 < tmp && tmp < (1UL << 13))
3736                         init_admin_reserve();
3737
3738                 break;
3739         case MEM_OFFLINE:
3740                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3741
3742                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3743                         init_user_reserve();
3744                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3745                                 sysctl_user_reserve_kbytes);
3746                 }
3747
3748                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3749                         init_admin_reserve();
3750                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3751                                 sysctl_admin_reserve_kbytes);
3752                 }
3753                 break;
3754         default:
3755                 break;
3756         }
3757         return NOTIFY_OK;
3758 }
3759
3760 static struct notifier_block reserve_mem_nb = {
3761         .notifier_call = reserve_mem_notifier,
3762 };
3763
3764 static int __meminit init_reserve_notifier(void)
3765 {
3766         if (register_hotmemory_notifier(&reserve_mem_nb))
3767                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3768
3769         return 0;
3770 }
3771 subsys_initcall(init_reserve_notifier);