1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
9 #include <linux/capability.h>
10 #include <linux/mman.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/secretmem.h>
30 bool can_do_mlock(void)
32 if (rlimit(RLIMIT_MEMLOCK) != 0)
34 if (capable(CAP_IPC_LOCK))
38 EXPORT_SYMBOL(can_do_mlock);
41 * Mlocked pages are marked with PageMlocked() flag for efficient testing
42 * in vmscan and, possibly, the fault path; and to support semi-accurate
45 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
46 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
47 * The unevictable list is an LRU sibling list to the [in]active lists.
48 * PageUnevictable is set to indicate the unevictable state.
50 * When lazy mlocking via vmscan, it is important to ensure that the
51 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
52 * may have mlocked a page that is being munlocked. So lazy mlock must take
53 * the mmap_lock for read, and verify that the vma really is locked
58 * LRU accounting for clear_page_mlock()
60 void clear_page_mlock(struct page *page)
64 if (!TestClearPageMlocked(page))
67 nr_pages = thp_nr_pages(page);
68 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
69 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
71 * The previous TestClearPageMlocked() corresponds to the smp_mb()
72 * in __pagevec_lru_add_fn().
74 * See __pagevec_lru_add_fn for more explanation.
76 if (!isolate_lru_page(page)) {
77 putback_lru_page(page);
80 * We lost the race. the page already moved to evictable list.
82 if (PageUnevictable(page))
83 count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
88 * Mark page as mlocked if not already.
89 * If page on LRU, isolate and putback to move to unevictable list.
91 void mlock_vma_page(struct page *page)
93 /* Serialize with page migration */
94 BUG_ON(!PageLocked(page));
96 VM_BUG_ON_PAGE(PageTail(page), page);
97 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
99 if (!TestSetPageMlocked(page)) {
100 int nr_pages = thp_nr_pages(page);
102 mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
103 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
104 if (!isolate_lru_page(page))
105 putback_lru_page(page);
110 * Finish munlock after successful page isolation
112 * Page must be locked. This is a wrapper for page_mlock()
113 * and putback_lru_page() with munlock accounting.
115 static void __munlock_isolated_page(struct page *page)
118 * Optimization: if the page was mapped just once, that's our mapping
119 * and we don't need to check all the other vmas.
121 if (page_mapcount(page) > 1)
124 /* Did try_to_unlock() succeed or punt? */
125 if (!PageMlocked(page))
126 count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
128 putback_lru_page(page);
132 * Accounting for page isolation fail during munlock
134 * Performs accounting when page isolation fails in munlock. There is nothing
135 * else to do because it means some other task has already removed the page
136 * from the LRU. putback_lru_page() will take care of removing the page from
137 * the unevictable list, if necessary. vmscan [page_referenced()] will move
138 * the page back to the unevictable list if some other vma has it mlocked.
140 static void __munlock_isolation_failed(struct page *page)
142 int nr_pages = thp_nr_pages(page);
144 if (PageUnevictable(page))
145 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
147 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
151 * munlock_vma_page - munlock a vma page
152 * @page: page to be unlocked, either a normal page or THP page head
154 * returns the size of the page as a page mask (0 for normal page,
155 * HPAGE_PMD_NR - 1 for THP head page)
157 * called from munlock()/munmap() path with page supposedly on the LRU.
158 * When we munlock a page, because the vma where we found the page is being
159 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
160 * page locked so that we can leave it on the unevictable lru list and not
161 * bother vmscan with it. However, to walk the page's rmap list in
162 * page_mlock() we must isolate the page from the LRU. If some other
163 * task has removed the page from the LRU, we won't be able to do that.
164 * So we clear the PageMlocked as we might not get another chance. If we
165 * can't isolate the page, we leave it for putback_lru_page() and vmscan
166 * [page_referenced()/try_to_unmap()] to deal with.
168 unsigned int munlock_vma_page(struct page *page)
172 /* For page_mlock() and to serialize with page migration */
173 BUG_ON(!PageLocked(page));
174 VM_BUG_ON_PAGE(PageTail(page), page);
176 if (!TestClearPageMlocked(page)) {
177 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
181 nr_pages = thp_nr_pages(page);
182 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
184 if (!isolate_lru_page(page))
185 __munlock_isolated_page(page);
187 __munlock_isolation_failed(page);
193 * convert get_user_pages() return value to posix mlock() error
195 static int __mlock_posix_error_return(long retval)
197 if (retval == -EFAULT)
199 else if (retval == -ENOMEM)
205 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
207 * The fast path is available only for evictable pages with single mapping.
208 * Then we can bypass the per-cpu pvec and get better performance.
209 * when mapcount > 1 we need page_mlock() which can fail.
210 * when !page_evictable(), we need the full redo logic of putback_lru_page to
211 * avoid leaving evictable page in unevictable list.
213 * In case of success, @page is added to @pvec and @pgrescued is incremented
214 * in case that the page was previously unevictable. @page is also unlocked.
216 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
219 VM_BUG_ON_PAGE(PageLRU(page), page);
220 VM_BUG_ON_PAGE(!PageLocked(page), page);
222 if (page_mapcount(page) <= 1 && page_evictable(page)) {
223 pagevec_add(pvec, page);
224 if (TestClearPageUnevictable(page))
234 * Putback multiple evictable pages to the LRU
236 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
237 * the pages might have meanwhile become unevictable but that is OK.
239 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
241 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
243 *__pagevec_lru_add() calls release_pages() so we don't call
244 * put_page() explicitly
246 __pagevec_lru_add(pvec);
247 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
251 * Munlock a batch of pages from the same zone
253 * The work is split to two main phases. First phase clears the Mlocked flag
254 * and attempts to isolate the pages, all under a single zone lru lock.
255 * The second phase finishes the munlock only for pages where isolation
258 * Note that the pagevec may be modified during the process.
260 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
263 int nr = pagevec_count(pvec);
264 int delta_munlocked = -nr;
265 struct pagevec pvec_putback;
266 struct lruvec *lruvec = NULL;
269 pagevec_init(&pvec_putback);
271 /* Phase 1: page isolation */
272 for (i = 0; i < nr; i++) {
273 struct page *page = pvec->pages[i];
274 struct folio *folio = page_folio(page);
276 if (TestClearPageMlocked(page)) {
278 * We already have pin from follow_page_mask()
279 * so we can spare the get_page() here.
281 if (TestClearPageLRU(page)) {
282 lruvec = folio_lruvec_relock_irq(folio, lruvec);
283 del_page_from_lru_list(page, lruvec);
286 __munlock_isolation_failed(page);
292 * We won't be munlocking this page in the next phase
293 * but we still need to release the follow_page_mask()
294 * pin. We cannot do it under lru_lock however. If it's
295 * the last pin, __page_cache_release() would deadlock.
297 pagevec_add(&pvec_putback, pvec->pages[i]);
298 pvec->pages[i] = NULL;
301 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
302 unlock_page_lruvec_irq(lruvec);
303 } else if (delta_munlocked) {
304 mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
307 /* Now we can release pins of pages that we are not munlocking */
308 pagevec_release(&pvec_putback);
310 /* Phase 2: page munlock */
311 for (i = 0; i < nr; i++) {
312 struct page *page = pvec->pages[i];
316 if (!__putback_lru_fast_prepare(page, &pvec_putback,
319 * Slow path. We don't want to lose the last
320 * pin before unlock_page()
322 get_page(page); /* for putback_lru_page() */
323 __munlock_isolated_page(page);
325 put_page(page); /* from follow_page_mask() */
331 * Phase 3: page putback for pages that qualified for the fast path
332 * This will also call put_page() to return pin from follow_page_mask()
334 if (pagevec_count(&pvec_putback))
335 __putback_lru_fast(&pvec_putback, pgrescued);
339 * Fill up pagevec for __munlock_pagevec using pte walk
341 * The function expects that the struct page corresponding to @start address is
342 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
344 * The rest of @pvec is filled by subsequent pages within the same pmd and same
345 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
346 * pages also get pinned.
348 * Returns the address of the next page that should be scanned. This equals
349 * @start + PAGE_SIZE when no page could be added by the pte walk.
351 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
352 struct vm_area_struct *vma, struct zone *zone,
353 unsigned long start, unsigned long end)
359 * Initialize pte walk starting at the already pinned page where we
360 * are sure that there is a pte, as it was pinned under the same
361 * mmap_lock write op.
363 pte = get_locked_pte(vma->vm_mm, start, &ptl);
364 /* Make sure we do not cross the page table boundary */
365 end = pgd_addr_end(start, end);
366 end = p4d_addr_end(start, end);
367 end = pud_addr_end(start, end);
368 end = pmd_addr_end(start, end);
370 /* The page next to the pinned page is the first we will try to get */
372 while (start < end) {
373 struct page *page = NULL;
375 if (pte_present(*pte))
376 page = vm_normal_page(vma, start, *pte);
378 * Break if page could not be obtained or the page's node+zone does not
381 if (!page || page_zone(page) != zone)
385 * Do not use pagevec for PTE-mapped THP,
386 * munlock_vma_pages_range() will handle them.
388 if (PageTransCompound(page))
393 * Increase the address that will be returned *before* the
394 * eventual break due to pvec becoming full by adding the page
397 if (pagevec_add(pvec, page) == 0)
400 pte_unmap_unlock(pte, ptl);
405 * munlock_vma_pages_range() - munlock all pages in the vma range.'
406 * @vma - vma containing range to be munlock()ed.
407 * @start - start address in @vma of the range
408 * @end - end of range in @vma.
410 * For mremap(), munmap() and exit().
412 * Called with @vma VM_LOCKED.
414 * Returns with VM_LOCKED cleared. Callers must be prepared to
417 * We don't save and restore VM_LOCKED here because pages are
418 * still on lru. In unmap path, pages might be scanned by reclaim
419 * and re-mlocked by page_mlock/try_to_unmap before we unmap and
420 * free them. This will result in freeing mlocked pages.
422 void munlock_vma_pages_range(struct vm_area_struct *vma,
423 unsigned long start, unsigned long end)
425 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
427 while (start < end) {
429 unsigned int page_mask = 0;
430 unsigned long page_increm;
436 * Although FOLL_DUMP is intended for get_dump_page(),
437 * it just so happens that its special treatment of the
438 * ZERO_PAGE (returning an error instead of doing get_page)
439 * suits munlock very well (and if somehow an abnormal page
440 * has sneaked into the range, we won't oops here: great).
442 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
444 if (page && !IS_ERR(page)) {
445 if (PageTransTail(page)) {
446 VM_BUG_ON_PAGE(PageMlocked(page), page);
447 put_page(page); /* follow_page_mask() */
448 } else if (PageTransHuge(page)) {
451 * Any THP page found by follow_page_mask() may
452 * have gotten split before reaching
453 * munlock_vma_page(), so we need to compute
454 * the page_mask here instead.
456 page_mask = munlock_vma_page(page);
458 put_page(page); /* follow_page_mask() */
461 * Non-huge pages are handled in batches via
462 * pagevec. The pin from follow_page_mask()
463 * prevents them from collapsing by THP.
465 pagevec_add(&pvec, page);
466 zone = page_zone(page);
469 * Try to fill the rest of pagevec using fast
470 * pte walk. This will also update start to
471 * the next page to process. Then munlock the
474 start = __munlock_pagevec_fill(&pvec, vma,
476 __munlock_pagevec(&pvec, zone);
480 page_increm = 1 + page_mask;
481 start += page_increm * PAGE_SIZE;
488 * mlock_fixup - handle mlock[all]/munlock[all] requests.
490 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
491 * munlock is a no-op. However, for some special vmas, we go ahead and
494 * For vmas that pass the filters, merge/split as appropriate.
496 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
497 unsigned long start, unsigned long end, vm_flags_t newflags)
499 struct mm_struct *mm = vma->vm_mm;
503 int lock = !!(newflags & VM_LOCKED);
504 vm_flags_t old_flags = vma->vm_flags;
506 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
507 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
508 vma_is_dax(vma) || vma_is_secretmem(vma))
509 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
512 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
513 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
514 vma->vm_file, pgoff, vma_policy(vma),
515 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
521 if (start != vma->vm_start) {
522 ret = split_vma(mm, vma, start, 1);
527 if (end != vma->vm_end) {
528 ret = split_vma(mm, vma, end, 0);
535 * Keep track of amount of locked VM.
537 nr_pages = (end - start) >> PAGE_SHIFT;
539 nr_pages = -nr_pages;
540 else if (old_flags & VM_LOCKED)
542 mm->locked_vm += nr_pages;
545 * vm_flags is protected by the mmap_lock held in write mode.
546 * It's okay if try_to_unmap_one unmaps a page just after we
547 * set VM_LOCKED, populate_vma_page_range will bring it back.
551 vma->vm_flags = newflags;
553 munlock_vma_pages_range(vma, start, end);
560 static int apply_vma_lock_flags(unsigned long start, size_t len,
563 unsigned long nstart, end, tmp;
564 struct vm_area_struct *vma, *prev;
567 VM_BUG_ON(offset_in_page(start));
568 VM_BUG_ON(len != PAGE_ALIGN(len));
574 vma = find_vma(current->mm, start);
575 if (!vma || vma->vm_start > start)
579 if (start > vma->vm_start)
582 for (nstart = start ; ; ) {
583 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
587 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
591 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
595 if (nstart < prev->vm_end)
596 nstart = prev->vm_end;
601 if (!vma || vma->vm_start != nstart) {
610 * Go through vma areas and sum size of mlocked
611 * vma pages, as return value.
612 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
614 * Return value: previously mlocked page counts
616 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
617 unsigned long start, size_t len)
619 struct vm_area_struct *vma;
620 unsigned long count = 0;
625 vma = find_vma(mm, start);
629 for (; vma ; vma = vma->vm_next) {
630 if (start >= vma->vm_end)
632 if (start + len <= vma->vm_start)
634 if (vma->vm_flags & VM_LOCKED) {
635 if (start > vma->vm_start)
636 count -= (start - vma->vm_start);
637 if (start + len < vma->vm_end) {
638 count += start + len - vma->vm_start;
641 count += vma->vm_end - vma->vm_start;
645 return count >> PAGE_SHIFT;
648 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
650 unsigned long locked;
651 unsigned long lock_limit;
654 start = untagged_addr(start);
659 len = PAGE_ALIGN(len + (offset_in_page(start)));
662 lock_limit = rlimit(RLIMIT_MEMLOCK);
663 lock_limit >>= PAGE_SHIFT;
664 locked = len >> PAGE_SHIFT;
666 if (mmap_write_lock_killable(current->mm))
669 locked += current->mm->locked_vm;
670 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
672 * It is possible that the regions requested intersect with
673 * previously mlocked areas, that part area in "mm->locked_vm"
674 * should not be counted to new mlock increment count. So check
675 * and adjust locked count if necessary.
677 locked -= count_mm_mlocked_page_nr(current->mm,
681 /* check against resource limits */
682 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
683 error = apply_vma_lock_flags(start, len, flags);
685 mmap_write_unlock(current->mm);
689 error = __mm_populate(start, len, 0);
691 return __mlock_posix_error_return(error);
695 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
697 return do_mlock(start, len, VM_LOCKED);
700 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
702 vm_flags_t vm_flags = VM_LOCKED;
704 if (flags & ~MLOCK_ONFAULT)
707 if (flags & MLOCK_ONFAULT)
708 vm_flags |= VM_LOCKONFAULT;
710 return do_mlock(start, len, vm_flags);
713 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
717 start = untagged_addr(start);
719 len = PAGE_ALIGN(len + (offset_in_page(start)));
722 if (mmap_write_lock_killable(current->mm))
724 ret = apply_vma_lock_flags(start, len, 0);
725 mmap_write_unlock(current->mm);
731 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
732 * and translate into the appropriate modifications to mm->def_flags and/or the
733 * flags for all current VMAs.
735 * There are a couple of subtleties with this. If mlockall() is called multiple
736 * times with different flags, the values do not necessarily stack. If mlockall
737 * is called once including the MCL_FUTURE flag and then a second time without
738 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
740 static int apply_mlockall_flags(int flags)
742 struct vm_area_struct *vma, *prev = NULL;
743 vm_flags_t to_add = 0;
745 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
746 if (flags & MCL_FUTURE) {
747 current->mm->def_flags |= VM_LOCKED;
749 if (flags & MCL_ONFAULT)
750 current->mm->def_flags |= VM_LOCKONFAULT;
752 if (!(flags & MCL_CURRENT))
756 if (flags & MCL_CURRENT) {
758 if (flags & MCL_ONFAULT)
759 to_add |= VM_LOCKONFAULT;
762 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
765 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
769 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
776 SYSCALL_DEFINE1(mlockall, int, flags)
778 unsigned long lock_limit;
781 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
782 flags == MCL_ONFAULT)
788 lock_limit = rlimit(RLIMIT_MEMLOCK);
789 lock_limit >>= PAGE_SHIFT;
791 if (mmap_write_lock_killable(current->mm))
795 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
796 capable(CAP_IPC_LOCK))
797 ret = apply_mlockall_flags(flags);
798 mmap_write_unlock(current->mm);
799 if (!ret && (flags & MCL_CURRENT))
800 mm_populate(0, TASK_SIZE);
805 SYSCALL_DEFINE0(munlockall)
809 if (mmap_write_lock_killable(current->mm))
811 ret = apply_mlockall_flags(0);
812 mmap_write_unlock(current->mm);
817 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
818 * shm segments) get accounted against the user_struct instead.
820 static DEFINE_SPINLOCK(shmlock_user_lock);
822 int user_shm_lock(size_t size, struct ucounts *ucounts)
824 unsigned long lock_limit, locked;
828 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
829 lock_limit = rlimit(RLIMIT_MEMLOCK);
830 if (lock_limit == RLIM_INFINITY)
832 lock_limit >>= PAGE_SHIFT;
833 spin_lock(&shmlock_user_lock);
834 memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
836 if (!allowed && (memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
837 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
840 if (!get_ucounts(ucounts)) {
841 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
846 spin_unlock(&shmlock_user_lock);
850 void user_shm_unlock(size_t size, struct ucounts *ucounts)
852 spin_lock(&shmlock_user_lock);
853 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
854 spin_unlock(&shmlock_user_lock);
855 put_ucounts(ucounts);