Merge branch 'irq/irqchip-fixes' into irq/irqchip-next
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_lru(page), -thp_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #endif
234
235                 get_page(new);
236                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237                 if (pte_swp_soft_dirty(*pvmw.pte))
238                         pte = pte_mksoft_dirty(pte);
239
240                 /*
241                  * Recheck VMA as permissions can change since migration started
242                  */
243                 entry = pte_to_swp_entry(*pvmw.pte);
244                 if (is_write_migration_entry(entry))
245                         pte = maybe_mkwrite(pte, vma);
246                 else if (pte_swp_uffd_wp(*pvmw.pte))
247                         pte = pte_mkuffd_wp(pte);
248
249                 if (unlikely(is_device_private_page(new))) {
250                         entry = make_device_private_entry(new, pte_write(pte));
251                         pte = swp_entry_to_pte(entry);
252                         if (pte_swp_soft_dirty(*pvmw.pte))
253                                 pte = pte_swp_mksoft_dirty(pte);
254                         if (pte_swp_uffd_wp(*pvmw.pte))
255                                 pte = pte_swp_mkuffd_wp(pte);
256                 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259                 if (PageHuge(new)) {
260                         pte = pte_mkhuge(pte);
261                         pte = arch_make_huge_pte(pte, vma, new, 0);
262                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263                         if (PageAnon(new))
264                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
265                         else
266                                 page_dup_rmap(new, true);
267                 } else
268 #endif
269                 {
270                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272                         if (PageAnon(new))
273                                 page_add_anon_rmap(new, vma, pvmw.address, false);
274                         else
275                                 page_add_file_rmap(new, false);
276                 }
277                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278                         mlock_vma_page(new);
279
280                 if (PageTransHuge(page) && PageMlocked(page))
281                         clear_page_mlock(page);
282
283                 /* No need to invalidate - it was non-present before */
284                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285         }
286
287         return true;
288 }
289
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296         struct rmap_walk_control rwc = {
297                 .rmap_one = remove_migration_pte,
298                 .arg = old,
299         };
300
301         if (locked)
302                 rmap_walk_locked(new, &rwc);
303         else
304                 rmap_walk(new, &rwc);
305 }
306
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313                                 spinlock_t *ptl)
314 {
315         pte_t pte;
316         swp_entry_t entry;
317         struct page *page;
318
319         spin_lock(ptl);
320         pte = *ptep;
321         if (!is_swap_pte(pte))
322                 goto out;
323
324         entry = pte_to_swp_entry(pte);
325         if (!is_migration_entry(entry))
326                 goto out;
327
328         page = migration_entry_to_page(entry);
329
330         /*
331          * Once page cache replacement of page migration started, page_count
332          * is zero; but we must not call put_and_wait_on_page_locked() without
333          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334          */
335         if (!get_page_unless_zero(page))
336                 goto out;
337         pte_unmap_unlock(ptep, ptl);
338         put_and_wait_on_page_locked(page);
339         return;
340 out:
341         pte_unmap_unlock(ptep, ptl);
342 }
343
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345                                 unsigned long address)
346 {
347         spinlock_t *ptl = pte_lockptr(mm, pmd);
348         pte_t *ptep = pte_offset_map(pmd, address);
349         __migration_entry_wait(mm, ptep, ptl);
350 }
351
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353                 struct mm_struct *mm, pte_t *pte)
354 {
355         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356         __migration_entry_wait(mm, pte, ptl);
357 }
358
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362         spinlock_t *ptl;
363         struct page *page;
364
365         ptl = pmd_lock(mm, pmd);
366         if (!is_pmd_migration_entry(*pmd))
367                 goto unlock;
368         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369         if (!get_page_unless_zero(page))
370                 goto unlock;
371         spin_unlock(ptl);
372         put_and_wait_on_page_locked(page);
373         return;
374 unlock:
375         spin_unlock(ptl);
376 }
377 #endif
378
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381         int expected_count = 1;
382
383         /*
384          * Device public or private pages have an extra refcount as they are
385          * ZONE_DEVICE pages.
386          */
387         expected_count += is_device_private_page(page);
388         if (mapping)
389                 expected_count += thp_nr_pages(page) + page_has_private(page);
390
391         return expected_count;
392 }
393
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403                 struct page *newpage, struct page *page, int extra_count)
404 {
405         XA_STATE(xas, &mapping->i_pages, page_index(page));
406         struct zone *oldzone, *newzone;
407         int dirty;
408         int expected_count = expected_page_refs(mapping, page) + extra_count;
409
410         if (!mapping) {
411                 /* Anonymous page without mapping */
412                 if (page_count(page) != expected_count)
413                         return -EAGAIN;
414
415                 /* No turning back from here */
416                 newpage->index = page->index;
417                 newpage->mapping = page->mapping;
418                 if (PageSwapBacked(page))
419                         __SetPageSwapBacked(newpage);
420
421                 return MIGRATEPAGE_SUCCESS;
422         }
423
424         oldzone = page_zone(page);
425         newzone = page_zone(newpage);
426
427         xas_lock_irq(&xas);
428         if (page_count(page) != expected_count || xas_load(&xas) != page) {
429                 xas_unlock_irq(&xas);
430                 return -EAGAIN;
431         }
432
433         if (!page_ref_freeze(page, expected_count)) {
434                 xas_unlock_irq(&xas);
435                 return -EAGAIN;
436         }
437
438         /*
439          * Now we know that no one else is looking at the page:
440          * no turning back from here.
441          */
442         newpage->index = page->index;
443         newpage->mapping = page->mapping;
444         page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
445         if (PageSwapBacked(page)) {
446                 __SetPageSwapBacked(newpage);
447                 if (PageSwapCache(page)) {
448                         SetPageSwapCache(newpage);
449                         set_page_private(newpage, page_private(page));
450                 }
451         } else {
452                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
453         }
454
455         /* Move dirty while page refs frozen and newpage not yet exposed */
456         dirty = PageDirty(page);
457         if (dirty) {
458                 ClearPageDirty(page);
459                 SetPageDirty(newpage);
460         }
461
462         xas_store(&xas, newpage);
463         if (PageTransHuge(page)) {
464                 int i;
465
466                 for (i = 1; i < HPAGE_PMD_NR; i++) {
467                         xas_next(&xas);
468                         xas_store(&xas, newpage);
469                 }
470         }
471
472         /*
473          * Drop cache reference from old page by unfreezing
474          * to one less reference.
475          * We know this isn't the last reference.
476          */
477         page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
478
479         xas_unlock(&xas);
480         /* Leave irq disabled to prevent preemption while updating stats */
481
482         /*
483          * If moved to a different zone then also account
484          * the page for that zone. Other VM counters will be
485          * taken care of when we establish references to the
486          * new page and drop references to the old page.
487          *
488          * Note that anonymous pages are accounted for
489          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490          * are mapped to swap space.
491          */
492         if (newzone != oldzone) {
493                 struct lruvec *old_lruvec, *new_lruvec;
494                 struct mem_cgroup *memcg;
495
496                 memcg = page_memcg(page);
497                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499
500                 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501                 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
502                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
503                         __dec_lruvec_state(old_lruvec, NR_SHMEM);
504                         __inc_lruvec_state(new_lruvec, NR_SHMEM);
505                 }
506                 if (dirty && mapping_cap_account_dirty(mapping)) {
507                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
508                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
509                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
510                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
511                 }
512         }
513         local_irq_enable();
514
515         return MIGRATEPAGE_SUCCESS;
516 }
517 EXPORT_SYMBOL(migrate_page_move_mapping);
518
519 /*
520  * The expected number of remaining references is the same as that
521  * of migrate_page_move_mapping().
522  */
523 int migrate_huge_page_move_mapping(struct address_space *mapping,
524                                    struct page *newpage, struct page *page)
525 {
526         XA_STATE(xas, &mapping->i_pages, page_index(page));
527         int expected_count;
528
529         xas_lock_irq(&xas);
530         expected_count = 2 + page_has_private(page);
531         if (page_count(page) != expected_count || xas_load(&xas) != page) {
532                 xas_unlock_irq(&xas);
533                 return -EAGAIN;
534         }
535
536         if (!page_ref_freeze(page, expected_count)) {
537                 xas_unlock_irq(&xas);
538                 return -EAGAIN;
539         }
540
541         newpage->index = page->index;
542         newpage->mapping = page->mapping;
543
544         get_page(newpage);
545
546         xas_store(&xas, newpage);
547
548         page_ref_unfreeze(page, expected_count - 1);
549
550         xas_unlock_irq(&xas);
551
552         return MIGRATEPAGE_SUCCESS;
553 }
554
555 /*
556  * Gigantic pages are so large that we do not guarantee that page++ pointer
557  * arithmetic will work across the entire page.  We need something more
558  * specialized.
559  */
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561                                 int nr_pages)
562 {
563         int i;
564         struct page *dst_base = dst;
565         struct page *src_base = src;
566
567         for (i = 0; i < nr_pages; ) {
568                 cond_resched();
569                 copy_highpage(dst, src);
570
571                 i++;
572                 dst = mem_map_next(dst, dst_base, i);
573                 src = mem_map_next(src, src_base, i);
574         }
575 }
576
577 static void copy_huge_page(struct page *dst, struct page *src)
578 {
579         int i;
580         int nr_pages;
581
582         if (PageHuge(src)) {
583                 /* hugetlbfs page */
584                 struct hstate *h = page_hstate(src);
585                 nr_pages = pages_per_huge_page(h);
586
587                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588                         __copy_gigantic_page(dst, src, nr_pages);
589                         return;
590                 }
591         } else {
592                 /* thp page */
593                 BUG_ON(!PageTransHuge(src));
594                 nr_pages = thp_nr_pages(src);
595         }
596
597         for (i = 0; i < nr_pages; i++) {
598                 cond_resched();
599                 copy_highpage(dst + i, src + i);
600         }
601 }
602
603 /*
604  * Copy the page to its new location
605  */
606 void migrate_page_states(struct page *newpage, struct page *page)
607 {
608         int cpupid;
609
610         if (PageError(page))
611                 SetPageError(newpage);
612         if (PageReferenced(page))
613                 SetPageReferenced(newpage);
614         if (PageUptodate(page))
615                 SetPageUptodate(newpage);
616         if (TestClearPageActive(page)) {
617                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
618                 SetPageActive(newpage);
619         } else if (TestClearPageUnevictable(page))
620                 SetPageUnevictable(newpage);
621         if (PageWorkingset(page))
622                 SetPageWorkingset(newpage);
623         if (PageChecked(page))
624                 SetPageChecked(newpage);
625         if (PageMappedToDisk(page))
626                 SetPageMappedToDisk(newpage);
627
628         /* Move dirty on pages not done by migrate_page_move_mapping() */
629         if (PageDirty(page))
630                 SetPageDirty(newpage);
631
632         if (page_is_young(page))
633                 set_page_young(newpage);
634         if (page_is_idle(page))
635                 set_page_idle(newpage);
636
637         /*
638          * Copy NUMA information to the new page, to prevent over-eager
639          * future migrations of this same page.
640          */
641         cpupid = page_cpupid_xchg_last(page, -1);
642         page_cpupid_xchg_last(newpage, cpupid);
643
644         ksm_migrate_page(newpage, page);
645         /*
646          * Please do not reorder this without considering how mm/ksm.c's
647          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648          */
649         if (PageSwapCache(page))
650                 ClearPageSwapCache(page);
651         ClearPagePrivate(page);
652         set_page_private(page, 0);
653
654         /*
655          * If any waiters have accumulated on the new page then
656          * wake them up.
657          */
658         if (PageWriteback(newpage))
659                 end_page_writeback(newpage);
660
661         /*
662          * PG_readahead shares the same bit with PG_reclaim.  The above
663          * end_page_writeback() may clear PG_readahead mistakenly, so set the
664          * bit after that.
665          */
666         if (PageReadahead(page))
667                 SetPageReadahead(newpage);
668
669         copy_page_owner(page, newpage);
670
671         mem_cgroup_migrate(page, newpage);
672 }
673 EXPORT_SYMBOL(migrate_page_states);
674
675 void migrate_page_copy(struct page *newpage, struct page *page)
676 {
677         if (PageHuge(page) || PageTransHuge(page))
678                 copy_huge_page(newpage, page);
679         else
680                 copy_highpage(newpage, page);
681
682         migrate_page_states(newpage, page);
683 }
684 EXPORT_SYMBOL(migrate_page_copy);
685
686 /************************************************************
687  *                    Migration functions
688  ***********************************************************/
689
690 /*
691  * Common logic to directly migrate a single LRU page suitable for
692  * pages that do not use PagePrivate/PagePrivate2.
693  *
694  * Pages are locked upon entry and exit.
695  */
696 int migrate_page(struct address_space *mapping,
697                 struct page *newpage, struct page *page,
698                 enum migrate_mode mode)
699 {
700         int rc;
701
702         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
703
704         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
705
706         if (rc != MIGRATEPAGE_SUCCESS)
707                 return rc;
708
709         if (mode != MIGRATE_SYNC_NO_COPY)
710                 migrate_page_copy(newpage, page);
711         else
712                 migrate_page_states(newpage, page);
713         return MIGRATEPAGE_SUCCESS;
714 }
715 EXPORT_SYMBOL(migrate_page);
716
717 #ifdef CONFIG_BLOCK
718 /* Returns true if all buffers are successfully locked */
719 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
720                                                         enum migrate_mode mode)
721 {
722         struct buffer_head *bh = head;
723
724         /* Simple case, sync compaction */
725         if (mode != MIGRATE_ASYNC) {
726                 do {
727                         lock_buffer(bh);
728                         bh = bh->b_this_page;
729
730                 } while (bh != head);
731
732                 return true;
733         }
734
735         /* async case, we cannot block on lock_buffer so use trylock_buffer */
736         do {
737                 if (!trylock_buffer(bh)) {
738                         /*
739                          * We failed to lock the buffer and cannot stall in
740                          * async migration. Release the taken locks
741                          */
742                         struct buffer_head *failed_bh = bh;
743                         bh = head;
744                         while (bh != failed_bh) {
745                                 unlock_buffer(bh);
746                                 bh = bh->b_this_page;
747                         }
748                         return false;
749                 }
750
751                 bh = bh->b_this_page;
752         } while (bh != head);
753         return true;
754 }
755
756 static int __buffer_migrate_page(struct address_space *mapping,
757                 struct page *newpage, struct page *page, enum migrate_mode mode,
758                 bool check_refs)
759 {
760         struct buffer_head *bh, *head;
761         int rc;
762         int expected_count;
763
764         if (!page_has_buffers(page))
765                 return migrate_page(mapping, newpage, page, mode);
766
767         /* Check whether page does not have extra refs before we do more work */
768         expected_count = expected_page_refs(mapping, page);
769         if (page_count(page) != expected_count)
770                 return -EAGAIN;
771
772         head = page_buffers(page);
773         if (!buffer_migrate_lock_buffers(head, mode))
774                 return -EAGAIN;
775
776         if (check_refs) {
777                 bool busy;
778                 bool invalidated = false;
779
780 recheck_buffers:
781                 busy = false;
782                 spin_lock(&mapping->private_lock);
783                 bh = head;
784                 do {
785                         if (atomic_read(&bh->b_count)) {
786                                 busy = true;
787                                 break;
788                         }
789                         bh = bh->b_this_page;
790                 } while (bh != head);
791                 if (busy) {
792                         if (invalidated) {
793                                 rc = -EAGAIN;
794                                 goto unlock_buffers;
795                         }
796                         spin_unlock(&mapping->private_lock);
797                         invalidate_bh_lrus();
798                         invalidated = true;
799                         goto recheck_buffers;
800                 }
801         }
802
803         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
804         if (rc != MIGRATEPAGE_SUCCESS)
805                 goto unlock_buffers;
806
807         attach_page_private(newpage, detach_page_private(page));
808
809         bh = head;
810         do {
811                 set_bh_page(bh, newpage, bh_offset(bh));
812                 bh = bh->b_this_page;
813
814         } while (bh != head);
815
816         if (mode != MIGRATE_SYNC_NO_COPY)
817                 migrate_page_copy(newpage, page);
818         else
819                 migrate_page_states(newpage, page);
820
821         rc = MIGRATEPAGE_SUCCESS;
822 unlock_buffers:
823         if (check_refs)
824                 spin_unlock(&mapping->private_lock);
825         bh = head;
826         do {
827                 unlock_buffer(bh);
828                 bh = bh->b_this_page;
829
830         } while (bh != head);
831
832         return rc;
833 }
834
835 /*
836  * Migration function for pages with buffers. This function can only be used
837  * if the underlying filesystem guarantees that no other references to "page"
838  * exist. For example attached buffer heads are accessed only under page lock.
839  */
840 int buffer_migrate_page(struct address_space *mapping,
841                 struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843         return __buffer_migrate_page(mapping, newpage, page, mode, false);
844 }
845 EXPORT_SYMBOL(buffer_migrate_page);
846
847 /*
848  * Same as above except that this variant is more careful and checks that there
849  * are also no buffer head references. This function is the right one for
850  * mappings where buffer heads are directly looked up and referenced (such as
851  * block device mappings).
852  */
853 int buffer_migrate_page_norefs(struct address_space *mapping,
854                 struct page *newpage, struct page *page, enum migrate_mode mode)
855 {
856         return __buffer_migrate_page(mapping, newpage, page, mode, true);
857 }
858 #endif
859
860 /*
861  * Writeback a page to clean the dirty state
862  */
863 static int writeout(struct address_space *mapping, struct page *page)
864 {
865         struct writeback_control wbc = {
866                 .sync_mode = WB_SYNC_NONE,
867                 .nr_to_write = 1,
868                 .range_start = 0,
869                 .range_end = LLONG_MAX,
870                 .for_reclaim = 1
871         };
872         int rc;
873
874         if (!mapping->a_ops->writepage)
875                 /* No write method for the address space */
876                 return -EINVAL;
877
878         if (!clear_page_dirty_for_io(page))
879                 /* Someone else already triggered a write */
880                 return -EAGAIN;
881
882         /*
883          * A dirty page may imply that the underlying filesystem has
884          * the page on some queue. So the page must be clean for
885          * migration. Writeout may mean we loose the lock and the
886          * page state is no longer what we checked for earlier.
887          * At this point we know that the migration attempt cannot
888          * be successful.
889          */
890         remove_migration_ptes(page, page, false);
891
892         rc = mapping->a_ops->writepage(page, &wbc);
893
894         if (rc != AOP_WRITEPAGE_ACTIVATE)
895                 /* unlocked. Relock */
896                 lock_page(page);
897
898         return (rc < 0) ? -EIO : -EAGAIN;
899 }
900
901 /*
902  * Default handling if a filesystem does not provide a migration function.
903  */
904 static int fallback_migrate_page(struct address_space *mapping,
905         struct page *newpage, struct page *page, enum migrate_mode mode)
906 {
907         if (PageDirty(page)) {
908                 /* Only writeback pages in full synchronous migration */
909                 switch (mode) {
910                 case MIGRATE_SYNC:
911                 case MIGRATE_SYNC_NO_COPY:
912                         break;
913                 default:
914                         return -EBUSY;
915                 }
916                 return writeout(mapping, page);
917         }
918
919         /*
920          * Buffers may be managed in a filesystem specific way.
921          * We must have no buffers or drop them.
922          */
923         if (page_has_private(page) &&
924             !try_to_release_page(page, GFP_KERNEL))
925                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
926
927         return migrate_page(mapping, newpage, page, mode);
928 }
929
930 /*
931  * Move a page to a newly allocated page
932  * The page is locked and all ptes have been successfully removed.
933  *
934  * The new page will have replaced the old page if this function
935  * is successful.
936  *
937  * Return value:
938  *   < 0 - error code
939  *  MIGRATEPAGE_SUCCESS - success
940  */
941 static int move_to_new_page(struct page *newpage, struct page *page,
942                                 enum migrate_mode mode)
943 {
944         struct address_space *mapping;
945         int rc = -EAGAIN;
946         bool is_lru = !__PageMovable(page);
947
948         VM_BUG_ON_PAGE(!PageLocked(page), page);
949         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
950
951         mapping = page_mapping(page);
952
953         if (likely(is_lru)) {
954                 if (!mapping)
955                         rc = migrate_page(mapping, newpage, page, mode);
956                 else if (mapping->a_ops->migratepage)
957                         /*
958                          * Most pages have a mapping and most filesystems
959                          * provide a migratepage callback. Anonymous pages
960                          * are part of swap space which also has its own
961                          * migratepage callback. This is the most common path
962                          * for page migration.
963                          */
964                         rc = mapping->a_ops->migratepage(mapping, newpage,
965                                                         page, mode);
966                 else
967                         rc = fallback_migrate_page(mapping, newpage,
968                                                         page, mode);
969         } else {
970                 /*
971                  * In case of non-lru page, it could be released after
972                  * isolation step. In that case, we shouldn't try migration.
973                  */
974                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
975                 if (!PageMovable(page)) {
976                         rc = MIGRATEPAGE_SUCCESS;
977                         __ClearPageIsolated(page);
978                         goto out;
979                 }
980
981                 rc = mapping->a_ops->migratepage(mapping, newpage,
982                                                 page, mode);
983                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
984                         !PageIsolated(page));
985         }
986
987         /*
988          * When successful, old pagecache page->mapping must be cleared before
989          * page is freed; but stats require that PageAnon be left as PageAnon.
990          */
991         if (rc == MIGRATEPAGE_SUCCESS) {
992                 if (__PageMovable(page)) {
993                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
994
995                         /*
996                          * We clear PG_movable under page_lock so any compactor
997                          * cannot try to migrate this page.
998                          */
999                         __ClearPageIsolated(page);
1000                 }
1001
1002                 /*
1003                  * Anonymous and movable page->mapping will be cleared by
1004                  * free_pages_prepare so don't reset it here for keeping
1005                  * the type to work PageAnon, for example.
1006                  */
1007                 if (!PageMappingFlags(page))
1008                         page->mapping = NULL;
1009
1010                 if (likely(!is_zone_device_page(newpage)))
1011                         flush_dcache_page(newpage);
1012
1013         }
1014 out:
1015         return rc;
1016 }
1017
1018 static int __unmap_and_move(struct page *page, struct page *newpage,
1019                                 int force, enum migrate_mode mode)
1020 {
1021         int rc = -EAGAIN;
1022         int page_was_mapped = 0;
1023         struct anon_vma *anon_vma = NULL;
1024         bool is_lru = !__PageMovable(page);
1025
1026         if (!trylock_page(page)) {
1027                 if (!force || mode == MIGRATE_ASYNC)
1028                         goto out;
1029
1030                 /*
1031                  * It's not safe for direct compaction to call lock_page.
1032                  * For example, during page readahead pages are added locked
1033                  * to the LRU. Later, when the IO completes the pages are
1034                  * marked uptodate and unlocked. However, the queueing
1035                  * could be merging multiple pages for one bio (e.g.
1036                  * mpage_readahead). If an allocation happens for the
1037                  * second or third page, the process can end up locking
1038                  * the same page twice and deadlocking. Rather than
1039                  * trying to be clever about what pages can be locked,
1040                  * avoid the use of lock_page for direct compaction
1041                  * altogether.
1042                  */
1043                 if (current->flags & PF_MEMALLOC)
1044                         goto out;
1045
1046                 lock_page(page);
1047         }
1048
1049         if (PageWriteback(page)) {
1050                 /*
1051                  * Only in the case of a full synchronous migration is it
1052                  * necessary to wait for PageWriteback. In the async case,
1053                  * the retry loop is too short and in the sync-light case,
1054                  * the overhead of stalling is too much
1055                  */
1056                 switch (mode) {
1057                 case MIGRATE_SYNC:
1058                 case MIGRATE_SYNC_NO_COPY:
1059                         break;
1060                 default:
1061                         rc = -EBUSY;
1062                         goto out_unlock;
1063                 }
1064                 if (!force)
1065                         goto out_unlock;
1066                 wait_on_page_writeback(page);
1067         }
1068
1069         /*
1070          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1071          * we cannot notice that anon_vma is freed while we migrates a page.
1072          * This get_anon_vma() delays freeing anon_vma pointer until the end
1073          * of migration. File cache pages are no problem because of page_lock()
1074          * File Caches may use write_page() or lock_page() in migration, then,
1075          * just care Anon page here.
1076          *
1077          * Only page_get_anon_vma() understands the subtleties of
1078          * getting a hold on an anon_vma from outside one of its mms.
1079          * But if we cannot get anon_vma, then we won't need it anyway,
1080          * because that implies that the anon page is no longer mapped
1081          * (and cannot be remapped so long as we hold the page lock).
1082          */
1083         if (PageAnon(page) && !PageKsm(page))
1084                 anon_vma = page_get_anon_vma(page);
1085
1086         /*
1087          * Block others from accessing the new page when we get around to
1088          * establishing additional references. We are usually the only one
1089          * holding a reference to newpage at this point. We used to have a BUG
1090          * here if trylock_page(newpage) fails, but would like to allow for
1091          * cases where there might be a race with the previous use of newpage.
1092          * This is much like races on refcount of oldpage: just don't BUG().
1093          */
1094         if (unlikely(!trylock_page(newpage)))
1095                 goto out_unlock;
1096
1097         if (unlikely(!is_lru)) {
1098                 rc = move_to_new_page(newpage, page, mode);
1099                 goto out_unlock_both;
1100         }
1101
1102         /*
1103          * Corner case handling:
1104          * 1. When a new swap-cache page is read into, it is added to the LRU
1105          * and treated as swapcache but it has no rmap yet.
1106          * Calling try_to_unmap() against a page->mapping==NULL page will
1107          * trigger a BUG.  So handle it here.
1108          * 2. An orphaned page (see truncate_complete_page) might have
1109          * fs-private metadata. The page can be picked up due to memory
1110          * offlining.  Everywhere else except page reclaim, the page is
1111          * invisible to the vm, so the page can not be migrated.  So try to
1112          * free the metadata, so the page can be freed.
1113          */
1114         if (!page->mapping) {
1115                 VM_BUG_ON_PAGE(PageAnon(page), page);
1116                 if (page_has_private(page)) {
1117                         try_to_free_buffers(page);
1118                         goto out_unlock_both;
1119                 }
1120         } else if (page_mapped(page)) {
1121                 /* Establish migration ptes */
1122                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1123                                 page);
1124                 try_to_unmap(page,
1125                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1126                 page_was_mapped = 1;
1127         }
1128
1129         if (!page_mapped(page))
1130                 rc = move_to_new_page(newpage, page, mode);
1131
1132         if (page_was_mapped)
1133                 remove_migration_ptes(page,
1134                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1135
1136 out_unlock_both:
1137         unlock_page(newpage);
1138 out_unlock:
1139         /* Drop an anon_vma reference if we took one */
1140         if (anon_vma)
1141                 put_anon_vma(anon_vma);
1142         unlock_page(page);
1143 out:
1144         /*
1145          * If migration is successful, decrease refcount of the newpage
1146          * which will not free the page because new page owner increased
1147          * refcounter. As well, if it is LRU page, add the page to LRU
1148          * list in here. Use the old state of the isolated source page to
1149          * determine if we migrated a LRU page. newpage was already unlocked
1150          * and possibly modified by its owner - don't rely on the page
1151          * state.
1152          */
1153         if (rc == MIGRATEPAGE_SUCCESS) {
1154                 if (unlikely(!is_lru))
1155                         put_page(newpage);
1156                 else
1157                         putback_lru_page(newpage);
1158         }
1159
1160         return rc;
1161 }
1162
1163 /*
1164  * Obtain the lock on page, remove all ptes and migrate the page
1165  * to the newly allocated page in newpage.
1166  */
1167 static int unmap_and_move(new_page_t get_new_page,
1168                                    free_page_t put_new_page,
1169                                    unsigned long private, struct page *page,
1170                                    int force, enum migrate_mode mode,
1171                                    enum migrate_reason reason)
1172 {
1173         int rc = MIGRATEPAGE_SUCCESS;
1174         struct page *newpage = NULL;
1175
1176         if (!thp_migration_supported() && PageTransHuge(page))
1177                 return -ENOMEM;
1178
1179         if (page_count(page) == 1) {
1180                 /* page was freed from under us. So we are done. */
1181                 ClearPageActive(page);
1182                 ClearPageUnevictable(page);
1183                 if (unlikely(__PageMovable(page))) {
1184                         lock_page(page);
1185                         if (!PageMovable(page))
1186                                 __ClearPageIsolated(page);
1187                         unlock_page(page);
1188                 }
1189                 goto out;
1190         }
1191
1192         newpage = get_new_page(page, private);
1193         if (!newpage)
1194                 return -ENOMEM;
1195
1196         rc = __unmap_and_move(page, newpage, force, mode);
1197         if (rc == MIGRATEPAGE_SUCCESS)
1198                 set_page_owner_migrate_reason(newpage, reason);
1199
1200 out:
1201         if (rc != -EAGAIN) {
1202                 /*
1203                  * A page that has been migrated has all references
1204                  * removed and will be freed. A page that has not been
1205                  * migrated will have kept its references and be restored.
1206                  */
1207                 list_del(&page->lru);
1208
1209                 /*
1210                  * Compaction can migrate also non-LRU pages which are
1211                  * not accounted to NR_ISOLATED_*. They can be recognized
1212                  * as __PageMovable
1213                  */
1214                 if (likely(!__PageMovable(page)))
1215                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1216                                         page_is_file_lru(page), -thp_nr_pages(page));
1217         }
1218
1219         /*
1220          * If migration is successful, releases reference grabbed during
1221          * isolation. Otherwise, restore the page to right list unless
1222          * we want to retry.
1223          */
1224         if (rc == MIGRATEPAGE_SUCCESS) {
1225                 put_page(page);
1226                 if (reason == MR_MEMORY_FAILURE) {
1227                         /*
1228                          * Set PG_HWPoison on just freed page
1229                          * intentionally. Although it's rather weird,
1230                          * it's how HWPoison flag works at the moment.
1231                          */
1232                         if (set_hwpoison_free_buddy_page(page))
1233                                 num_poisoned_pages_inc();
1234                 }
1235         } else {
1236                 if (rc != -EAGAIN) {
1237                         if (likely(!__PageMovable(page))) {
1238                                 putback_lru_page(page);
1239                                 goto put_new;
1240                         }
1241
1242                         lock_page(page);
1243                         if (PageMovable(page))
1244                                 putback_movable_page(page);
1245                         else
1246                                 __ClearPageIsolated(page);
1247                         unlock_page(page);
1248                         put_page(page);
1249                 }
1250 put_new:
1251                 if (put_new_page)
1252                         put_new_page(newpage, private);
1253                 else
1254                         put_page(newpage);
1255         }
1256
1257         return rc;
1258 }
1259
1260 /*
1261  * Counterpart of unmap_and_move_page() for hugepage migration.
1262  *
1263  * This function doesn't wait the completion of hugepage I/O
1264  * because there is no race between I/O and migration for hugepage.
1265  * Note that currently hugepage I/O occurs only in direct I/O
1266  * where no lock is held and PG_writeback is irrelevant,
1267  * and writeback status of all subpages are counted in the reference
1268  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1269  * under direct I/O, the reference of the head page is 512 and a bit more.)
1270  * This means that when we try to migrate hugepage whose subpages are
1271  * doing direct I/O, some references remain after try_to_unmap() and
1272  * hugepage migration fails without data corruption.
1273  *
1274  * There is also no race when direct I/O is issued on the page under migration,
1275  * because then pte is replaced with migration swap entry and direct I/O code
1276  * will wait in the page fault for migration to complete.
1277  */
1278 static int unmap_and_move_huge_page(new_page_t get_new_page,
1279                                 free_page_t put_new_page, unsigned long private,
1280                                 struct page *hpage, int force,
1281                                 enum migrate_mode mode, int reason)
1282 {
1283         int rc = -EAGAIN;
1284         int page_was_mapped = 0;
1285         struct page *new_hpage;
1286         struct anon_vma *anon_vma = NULL;
1287         struct address_space *mapping = NULL;
1288
1289         /*
1290          * Migratability of hugepages depends on architectures and their size.
1291          * This check is necessary because some callers of hugepage migration
1292          * like soft offline and memory hotremove don't walk through page
1293          * tables or check whether the hugepage is pmd-based or not before
1294          * kicking migration.
1295          */
1296         if (!hugepage_migration_supported(page_hstate(hpage))) {
1297                 putback_active_hugepage(hpage);
1298                 return -ENOSYS;
1299         }
1300
1301         new_hpage = get_new_page(hpage, private);
1302         if (!new_hpage)
1303                 return -ENOMEM;
1304
1305         if (!trylock_page(hpage)) {
1306                 if (!force)
1307                         goto out;
1308                 switch (mode) {
1309                 case MIGRATE_SYNC:
1310                 case MIGRATE_SYNC_NO_COPY:
1311                         break;
1312                 default:
1313                         goto out;
1314                 }
1315                 lock_page(hpage);
1316         }
1317
1318         /*
1319          * Check for pages which are in the process of being freed.  Without
1320          * page_mapping() set, hugetlbfs specific move page routine will not
1321          * be called and we could leak usage counts for subpools.
1322          */
1323         if (page_private(hpage) && !page_mapping(hpage)) {
1324                 rc = -EBUSY;
1325                 goto out_unlock;
1326         }
1327
1328         if (PageAnon(hpage))
1329                 anon_vma = page_get_anon_vma(hpage);
1330
1331         if (unlikely(!trylock_page(new_hpage)))
1332                 goto put_anon;
1333
1334         if (page_mapped(hpage)) {
1335                 /*
1336                  * try_to_unmap could potentially call huge_pmd_unshare.
1337                  * Because of this, take semaphore in write mode here and
1338                  * set TTU_RMAP_LOCKED to let lower levels know we have
1339                  * taken the lock.
1340                  */
1341                 mapping = hugetlb_page_mapping_lock_write(hpage);
1342                 if (unlikely(!mapping))
1343                         goto unlock_put_anon;
1344
1345                 try_to_unmap(hpage,
1346                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1347                         TTU_RMAP_LOCKED);
1348                 page_was_mapped = 1;
1349                 /*
1350                  * Leave mapping locked until after subsequent call to
1351                  * remove_migration_ptes()
1352                  */
1353         }
1354
1355         if (!page_mapped(hpage))
1356                 rc = move_to_new_page(new_hpage, hpage, mode);
1357
1358         if (page_was_mapped) {
1359                 remove_migration_ptes(hpage,
1360                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1361                 i_mmap_unlock_write(mapping);
1362         }
1363
1364 unlock_put_anon:
1365         unlock_page(new_hpage);
1366
1367 put_anon:
1368         if (anon_vma)
1369                 put_anon_vma(anon_vma);
1370
1371         if (rc == MIGRATEPAGE_SUCCESS) {
1372                 move_hugetlb_state(hpage, new_hpage, reason);
1373                 put_new_page = NULL;
1374         }
1375
1376 out_unlock:
1377         unlock_page(hpage);
1378 out:
1379         if (rc != -EAGAIN)
1380                 putback_active_hugepage(hpage);
1381
1382         /*
1383          * If migration was not successful and there's a freeing callback, use
1384          * it.  Otherwise, put_page() will drop the reference grabbed during
1385          * isolation.
1386          */
1387         if (put_new_page)
1388                 put_new_page(new_hpage, private);
1389         else
1390                 putback_active_hugepage(new_hpage);
1391
1392         return rc;
1393 }
1394
1395 /*
1396  * migrate_pages - migrate the pages specified in a list, to the free pages
1397  *                 supplied as the target for the page migration
1398  *
1399  * @from:               The list of pages to be migrated.
1400  * @get_new_page:       The function used to allocate free pages to be used
1401  *                      as the target of the page migration.
1402  * @put_new_page:       The function used to free target pages if migration
1403  *                      fails, or NULL if no special handling is necessary.
1404  * @private:            Private data to be passed on to get_new_page()
1405  * @mode:               The migration mode that specifies the constraints for
1406  *                      page migration, if any.
1407  * @reason:             The reason for page migration.
1408  *
1409  * The function returns after 10 attempts or if no pages are movable any more
1410  * because the list has become empty or no retryable pages exist any more.
1411  * The caller should call putback_movable_pages() to return pages to the LRU
1412  * or free list only if ret != 0.
1413  *
1414  * Returns the number of pages that were not migrated, or an error code.
1415  */
1416 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417                 free_page_t put_new_page, unsigned long private,
1418                 enum migrate_mode mode, int reason)
1419 {
1420         int retry = 1;
1421         int thp_retry = 1;
1422         int nr_failed = 0;
1423         int nr_succeeded = 0;
1424         int nr_thp_succeeded = 0;
1425         int nr_thp_failed = 0;
1426         int nr_thp_split = 0;
1427         int pass = 0;
1428         bool is_thp = false;
1429         struct page *page;
1430         struct page *page2;
1431         int swapwrite = current->flags & PF_SWAPWRITE;
1432         int rc, nr_subpages;
1433
1434         if (!swapwrite)
1435                 current->flags |= PF_SWAPWRITE;
1436
1437         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1438                 retry = 0;
1439                 thp_retry = 0;
1440
1441                 list_for_each_entry_safe(page, page2, from, lru) {
1442 retry:
1443                         /*
1444                          * THP statistics is based on the source huge page.
1445                          * Capture required information that might get lost
1446                          * during migration.
1447                          */
1448                         is_thp = PageTransHuge(page);
1449                         nr_subpages = thp_nr_pages(page);
1450                         cond_resched();
1451
1452                         if (PageHuge(page))
1453                                 rc = unmap_and_move_huge_page(get_new_page,
1454                                                 put_new_page, private, page,
1455                                                 pass > 2, mode, reason);
1456                         else
1457                                 rc = unmap_and_move(get_new_page, put_new_page,
1458                                                 private, page, pass > 2, mode,
1459                                                 reason);
1460
1461                         switch(rc) {
1462                         case -ENOMEM:
1463                                 /*
1464                                  * THP migration might be unsupported or the
1465                                  * allocation could've failed so we should
1466                                  * retry on the same page with the THP split
1467                                  * to base pages.
1468                                  *
1469                                  * Head page is retried immediately and tail
1470                                  * pages are added to the tail of the list so
1471                                  * we encounter them after the rest of the list
1472                                  * is processed.
1473                                  */
1474                                 if (PageTransHuge(page) && !PageHuge(page)) {
1475                                         lock_page(page);
1476                                         rc = split_huge_page_to_list(page, from);
1477                                         unlock_page(page);
1478                                         if (!rc) {
1479                                                 list_safe_reset_next(page, page2, lru);
1480                                                 nr_thp_split++;
1481                                                 goto retry;
1482                                         }
1483                                 }
1484                                 if (is_thp) {
1485                                         nr_thp_failed++;
1486                                         nr_failed += nr_subpages;
1487                                         goto out;
1488                                 }
1489                                 nr_failed++;
1490                                 goto out;
1491                         case -EAGAIN:
1492                                 if (is_thp) {
1493                                         thp_retry++;
1494                                         break;
1495                                 }
1496                                 retry++;
1497                                 break;
1498                         case MIGRATEPAGE_SUCCESS:
1499                                 if (is_thp) {
1500                                         nr_thp_succeeded++;
1501                                         nr_succeeded += nr_subpages;
1502                                         break;
1503                                 }
1504                                 nr_succeeded++;
1505                                 break;
1506                         default:
1507                                 /*
1508                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1509                                  * unlike -EAGAIN case, the failed page is
1510                                  * removed from migration page list and not
1511                                  * retried in the next outer loop.
1512                                  */
1513                                 if (is_thp) {
1514                                         nr_thp_failed++;
1515                                         nr_failed += nr_subpages;
1516                                         break;
1517                                 }
1518                                 nr_failed++;
1519                                 break;
1520                         }
1521                 }
1522         }
1523         nr_failed += retry + thp_retry;
1524         nr_thp_failed += thp_retry;
1525         rc = nr_failed;
1526 out:
1527         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1528         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1529         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1530         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1531         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1532         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1533                                nr_thp_failed, nr_thp_split, mode, reason);
1534
1535         if (!swapwrite)
1536                 current->flags &= ~PF_SWAPWRITE;
1537
1538         return rc;
1539 }
1540
1541 struct page *alloc_migration_target(struct page *page, unsigned long private)
1542 {
1543         struct migration_target_control *mtc;
1544         gfp_t gfp_mask;
1545         unsigned int order = 0;
1546         struct page *new_page = NULL;
1547         int nid;
1548         int zidx;
1549
1550         mtc = (struct migration_target_control *)private;
1551         gfp_mask = mtc->gfp_mask;
1552         nid = mtc->nid;
1553         if (nid == NUMA_NO_NODE)
1554                 nid = page_to_nid(page);
1555
1556         if (PageHuge(page)) {
1557                 struct hstate *h = page_hstate(compound_head(page));
1558
1559                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1560                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1561         }
1562
1563         if (PageTransHuge(page)) {
1564                 /*
1565                  * clear __GFP_RECLAIM to make the migration callback
1566                  * consistent with regular THP allocations.
1567                  */
1568                 gfp_mask &= ~__GFP_RECLAIM;
1569                 gfp_mask |= GFP_TRANSHUGE;
1570                 order = HPAGE_PMD_ORDER;
1571         }
1572         zidx = zone_idx(page_zone(page));
1573         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1574                 gfp_mask |= __GFP_HIGHMEM;
1575
1576         new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1577
1578         if (new_page && PageTransHuge(new_page))
1579                 prep_transhuge_page(new_page);
1580
1581         return new_page;
1582 }
1583
1584 #ifdef CONFIG_NUMA
1585
1586 static int store_status(int __user *status, int start, int value, int nr)
1587 {
1588         while (nr-- > 0) {
1589                 if (put_user(value, status + start))
1590                         return -EFAULT;
1591                 start++;
1592         }
1593
1594         return 0;
1595 }
1596
1597 static int do_move_pages_to_node(struct mm_struct *mm,
1598                 struct list_head *pagelist, int node)
1599 {
1600         int err;
1601         struct migration_target_control mtc = {
1602                 .nid = node,
1603                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1604         };
1605
1606         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1607                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1608         if (err)
1609                 putback_movable_pages(pagelist);
1610         return err;
1611 }
1612
1613 /*
1614  * Resolves the given address to a struct page, isolates it from the LRU and
1615  * puts it to the given pagelist.
1616  * Returns:
1617  *     errno - if the page cannot be found/isolated
1618  *     0 - when it doesn't have to be migrated because it is already on the
1619  *         target node
1620  *     1 - when it has been queued
1621  */
1622 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1623                 int node, struct list_head *pagelist, bool migrate_all)
1624 {
1625         struct vm_area_struct *vma;
1626         struct page *page;
1627         unsigned int follflags;
1628         int err;
1629
1630         mmap_read_lock(mm);
1631         err = -EFAULT;
1632         vma = find_vma(mm, addr);
1633         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1634                 goto out;
1635
1636         /* FOLL_DUMP to ignore special (like zero) pages */
1637         follflags = FOLL_GET | FOLL_DUMP;
1638         page = follow_page(vma, addr, follflags);
1639
1640         err = PTR_ERR(page);
1641         if (IS_ERR(page))
1642                 goto out;
1643
1644         err = -ENOENT;
1645         if (!page)
1646                 goto out;
1647
1648         err = 0;
1649         if (page_to_nid(page) == node)
1650                 goto out_putpage;
1651
1652         err = -EACCES;
1653         if (page_mapcount(page) > 1 && !migrate_all)
1654                 goto out_putpage;
1655
1656         if (PageHuge(page)) {
1657                 if (PageHead(page)) {
1658                         isolate_huge_page(page, pagelist);
1659                         err = 1;
1660                 }
1661         } else {
1662                 struct page *head;
1663
1664                 head = compound_head(page);
1665                 err = isolate_lru_page(head);
1666                 if (err)
1667                         goto out_putpage;
1668
1669                 err = 1;
1670                 list_add_tail(&head->lru, pagelist);
1671                 mod_node_page_state(page_pgdat(head),
1672                         NR_ISOLATED_ANON + page_is_file_lru(head),
1673                         thp_nr_pages(head));
1674         }
1675 out_putpage:
1676         /*
1677          * Either remove the duplicate refcount from
1678          * isolate_lru_page() or drop the page ref if it was
1679          * not isolated.
1680          */
1681         put_page(page);
1682 out:
1683         mmap_read_unlock(mm);
1684         return err;
1685 }
1686
1687 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1688                 struct list_head *pagelist, int __user *status,
1689                 int start, int i, unsigned long nr_pages)
1690 {
1691         int err;
1692
1693         if (list_empty(pagelist))
1694                 return 0;
1695
1696         err = do_move_pages_to_node(mm, pagelist, node);
1697         if (err) {
1698                 /*
1699                  * Positive err means the number of failed
1700                  * pages to migrate.  Since we are going to
1701                  * abort and return the number of non-migrated
1702                  * pages, so need to incude the rest of the
1703                  * nr_pages that have not been attempted as
1704                  * well.
1705                  */
1706                 if (err > 0)
1707                         err += nr_pages - i - 1;
1708                 return err;
1709         }
1710         return store_status(status, start, node, i - start);
1711 }
1712
1713 /*
1714  * Migrate an array of page address onto an array of nodes and fill
1715  * the corresponding array of status.
1716  */
1717 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1718                          unsigned long nr_pages,
1719                          const void __user * __user *pages,
1720                          const int __user *nodes,
1721                          int __user *status, int flags)
1722 {
1723         int current_node = NUMA_NO_NODE;
1724         LIST_HEAD(pagelist);
1725         int start, i;
1726         int err = 0, err1;
1727
1728         migrate_prep();
1729
1730         for (i = start = 0; i < nr_pages; i++) {
1731                 const void __user *p;
1732                 unsigned long addr;
1733                 int node;
1734
1735                 err = -EFAULT;
1736                 if (get_user(p, pages + i))
1737                         goto out_flush;
1738                 if (get_user(node, nodes + i))
1739                         goto out_flush;
1740                 addr = (unsigned long)untagged_addr(p);
1741
1742                 err = -ENODEV;
1743                 if (node < 0 || node >= MAX_NUMNODES)
1744                         goto out_flush;
1745                 if (!node_state(node, N_MEMORY))
1746                         goto out_flush;
1747
1748                 err = -EACCES;
1749                 if (!node_isset(node, task_nodes))
1750                         goto out_flush;
1751
1752                 if (current_node == NUMA_NO_NODE) {
1753                         current_node = node;
1754                         start = i;
1755                 } else if (node != current_node) {
1756                         err = move_pages_and_store_status(mm, current_node,
1757                                         &pagelist, status, start, i, nr_pages);
1758                         if (err)
1759                                 goto out;
1760                         start = i;
1761                         current_node = node;
1762                 }
1763
1764                 /*
1765                  * Errors in the page lookup or isolation are not fatal and we simply
1766                  * report them via status
1767                  */
1768                 err = add_page_for_migration(mm, addr, current_node,
1769                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1770
1771                 if (err > 0) {
1772                         /* The page is successfully queued for migration */
1773                         continue;
1774                 }
1775
1776                 /*
1777                  * If the page is already on the target node (!err), store the
1778                  * node, otherwise, store the err.
1779                  */
1780                 err = store_status(status, i, err ? : current_node, 1);
1781                 if (err)
1782                         goto out_flush;
1783
1784                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1785                                 status, start, i, nr_pages);
1786                 if (err)
1787                         goto out;
1788                 current_node = NUMA_NO_NODE;
1789         }
1790 out_flush:
1791         /* Make sure we do not overwrite the existing error */
1792         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1793                                 status, start, i, nr_pages);
1794         if (err >= 0)
1795                 err = err1;
1796 out:
1797         return err;
1798 }
1799
1800 /*
1801  * Determine the nodes of an array of pages and store it in an array of status.
1802  */
1803 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1804                                 const void __user **pages, int *status)
1805 {
1806         unsigned long i;
1807
1808         mmap_read_lock(mm);
1809
1810         for (i = 0; i < nr_pages; i++) {
1811                 unsigned long addr = (unsigned long)(*pages);
1812                 struct vm_area_struct *vma;
1813                 struct page *page;
1814                 int err = -EFAULT;
1815
1816                 vma = find_vma(mm, addr);
1817                 if (!vma || addr < vma->vm_start)
1818                         goto set_status;
1819
1820                 /* FOLL_DUMP to ignore special (like zero) pages */
1821                 page = follow_page(vma, addr, FOLL_DUMP);
1822
1823                 err = PTR_ERR(page);
1824                 if (IS_ERR(page))
1825                         goto set_status;
1826
1827                 err = page ? page_to_nid(page) : -ENOENT;
1828 set_status:
1829                 *status = err;
1830
1831                 pages++;
1832                 status++;
1833         }
1834
1835         mmap_read_unlock(mm);
1836 }
1837
1838 /*
1839  * Determine the nodes of a user array of pages and store it in
1840  * a user array of status.
1841  */
1842 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1843                          const void __user * __user *pages,
1844                          int __user *status)
1845 {
1846 #define DO_PAGES_STAT_CHUNK_NR 16
1847         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1848         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1849
1850         while (nr_pages) {
1851                 unsigned long chunk_nr;
1852
1853                 chunk_nr = nr_pages;
1854                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1855                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1856
1857                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1858                         break;
1859
1860                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1861
1862                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1863                         break;
1864
1865                 pages += chunk_nr;
1866                 status += chunk_nr;
1867                 nr_pages -= chunk_nr;
1868         }
1869         return nr_pages ? -EFAULT : 0;
1870 }
1871
1872 /*
1873  * Move a list of pages in the address space of the currently executing
1874  * process.
1875  */
1876 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1877                              const void __user * __user *pages,
1878                              const int __user *nodes,
1879                              int __user *status, int flags)
1880 {
1881         struct task_struct *task;
1882         struct mm_struct *mm;
1883         int err;
1884         nodemask_t task_nodes;
1885
1886         /* Check flags */
1887         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1888                 return -EINVAL;
1889
1890         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1891                 return -EPERM;
1892
1893         /* Find the mm_struct */
1894         rcu_read_lock();
1895         task = pid ? find_task_by_vpid(pid) : current;
1896         if (!task) {
1897                 rcu_read_unlock();
1898                 return -ESRCH;
1899         }
1900         get_task_struct(task);
1901
1902         /*
1903          * Check if this process has the right to modify the specified
1904          * process. Use the regular "ptrace_may_access()" checks.
1905          */
1906         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1907                 rcu_read_unlock();
1908                 err = -EPERM;
1909                 goto out;
1910         }
1911         rcu_read_unlock();
1912
1913         err = security_task_movememory(task);
1914         if (err)
1915                 goto out;
1916
1917         task_nodes = cpuset_mems_allowed(task);
1918         mm = get_task_mm(task);
1919         put_task_struct(task);
1920
1921         if (!mm)
1922                 return -EINVAL;
1923
1924         if (nodes)
1925                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1926                                     nodes, status, flags);
1927         else
1928                 err = do_pages_stat(mm, nr_pages, pages, status);
1929
1930         mmput(mm);
1931         return err;
1932
1933 out:
1934         put_task_struct(task);
1935         return err;
1936 }
1937
1938 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1939                 const void __user * __user *, pages,
1940                 const int __user *, nodes,
1941                 int __user *, status, int, flags)
1942 {
1943         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1944 }
1945
1946 #ifdef CONFIG_COMPAT
1947 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1948                        compat_uptr_t __user *, pages32,
1949                        const int __user *, nodes,
1950                        int __user *, status,
1951                        int, flags)
1952 {
1953         const void __user * __user *pages;
1954         int i;
1955
1956         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1957         for (i = 0; i < nr_pages; i++) {
1958                 compat_uptr_t p;
1959
1960                 if (get_user(p, pages32 + i) ||
1961                         put_user(compat_ptr(p), pages + i))
1962                         return -EFAULT;
1963         }
1964         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1965 }
1966 #endif /* CONFIG_COMPAT */
1967
1968 #ifdef CONFIG_NUMA_BALANCING
1969 /*
1970  * Returns true if this is a safe migration target node for misplaced NUMA
1971  * pages. Currently it only checks the watermarks which crude
1972  */
1973 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1974                                    unsigned long nr_migrate_pages)
1975 {
1976         int z;
1977
1978         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1979                 struct zone *zone = pgdat->node_zones + z;
1980
1981                 if (!populated_zone(zone))
1982                         continue;
1983
1984                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1985                 if (!zone_watermark_ok(zone, 0,
1986                                        high_wmark_pages(zone) +
1987                                        nr_migrate_pages,
1988                                        ZONE_MOVABLE, 0))
1989                         continue;
1990                 return true;
1991         }
1992         return false;
1993 }
1994
1995 static struct page *alloc_misplaced_dst_page(struct page *page,
1996                                            unsigned long data)
1997 {
1998         int nid = (int) data;
1999         struct page *newpage;
2000
2001         newpage = __alloc_pages_node(nid,
2002                                          (GFP_HIGHUSER_MOVABLE |
2003                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2004                                           __GFP_NORETRY | __GFP_NOWARN) &
2005                                          ~__GFP_RECLAIM, 0);
2006
2007         return newpage;
2008 }
2009
2010 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2011 {
2012         int page_lru;
2013
2014         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2015
2016         /* Avoid migrating to a node that is nearly full */
2017         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2018                 return 0;
2019
2020         if (isolate_lru_page(page))
2021                 return 0;
2022
2023         /*
2024          * migrate_misplaced_transhuge_page() skips page migration's usual
2025          * check on page_count(), so we must do it here, now that the page
2026          * has been isolated: a GUP pin, or any other pin, prevents migration.
2027          * The expected page count is 3: 1 for page's mapcount and 1 for the
2028          * caller's pin and 1 for the reference taken by isolate_lru_page().
2029          */
2030         if (PageTransHuge(page) && page_count(page) != 3) {
2031                 putback_lru_page(page);
2032                 return 0;
2033         }
2034
2035         page_lru = page_is_file_lru(page);
2036         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2037                                 thp_nr_pages(page));
2038
2039         /*
2040          * Isolating the page has taken another reference, so the
2041          * caller's reference can be safely dropped without the page
2042          * disappearing underneath us during migration.
2043          */
2044         put_page(page);
2045         return 1;
2046 }
2047
2048 bool pmd_trans_migrating(pmd_t pmd)
2049 {
2050         struct page *page = pmd_page(pmd);
2051         return PageLocked(page);
2052 }
2053
2054 /*
2055  * Attempt to migrate a misplaced page to the specified destination
2056  * node. Caller is expected to have an elevated reference count on
2057  * the page that will be dropped by this function before returning.
2058  */
2059 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2060                            int node)
2061 {
2062         pg_data_t *pgdat = NODE_DATA(node);
2063         int isolated;
2064         int nr_remaining;
2065         LIST_HEAD(migratepages);
2066
2067         /*
2068          * Don't migrate file pages that are mapped in multiple processes
2069          * with execute permissions as they are probably shared libraries.
2070          */
2071         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2072             (vma->vm_flags & VM_EXEC))
2073                 goto out;
2074
2075         /*
2076          * Also do not migrate dirty pages as not all filesystems can move
2077          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2078          */
2079         if (page_is_file_lru(page) && PageDirty(page))
2080                 goto out;
2081
2082         isolated = numamigrate_isolate_page(pgdat, page);
2083         if (!isolated)
2084                 goto out;
2085
2086         list_add(&page->lru, &migratepages);
2087         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2088                                      NULL, node, MIGRATE_ASYNC,
2089                                      MR_NUMA_MISPLACED);
2090         if (nr_remaining) {
2091                 if (!list_empty(&migratepages)) {
2092                         list_del(&page->lru);
2093                         dec_node_page_state(page, NR_ISOLATED_ANON +
2094                                         page_is_file_lru(page));
2095                         putback_lru_page(page);
2096                 }
2097                 isolated = 0;
2098         } else
2099                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2100         BUG_ON(!list_empty(&migratepages));
2101         return isolated;
2102
2103 out:
2104         put_page(page);
2105         return 0;
2106 }
2107 #endif /* CONFIG_NUMA_BALANCING */
2108
2109 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2110 /*
2111  * Migrates a THP to a given target node. page must be locked and is unlocked
2112  * before returning.
2113  */
2114 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2115                                 struct vm_area_struct *vma,
2116                                 pmd_t *pmd, pmd_t entry,
2117                                 unsigned long address,
2118                                 struct page *page, int node)
2119 {
2120         spinlock_t *ptl;
2121         pg_data_t *pgdat = NODE_DATA(node);
2122         int isolated = 0;
2123         struct page *new_page = NULL;
2124         int page_lru = page_is_file_lru(page);
2125         unsigned long start = address & HPAGE_PMD_MASK;
2126
2127         new_page = alloc_pages_node(node,
2128                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2129                 HPAGE_PMD_ORDER);
2130         if (!new_page)
2131                 goto out_fail;
2132         prep_transhuge_page(new_page);
2133
2134         isolated = numamigrate_isolate_page(pgdat, page);
2135         if (!isolated) {
2136                 put_page(new_page);
2137                 goto out_fail;
2138         }
2139
2140         /* Prepare a page as a migration target */
2141         __SetPageLocked(new_page);
2142         if (PageSwapBacked(page))
2143                 __SetPageSwapBacked(new_page);
2144
2145         /* anon mapping, we can simply copy page->mapping to the new page: */
2146         new_page->mapping = page->mapping;
2147         new_page->index = page->index;
2148         /* flush the cache before copying using the kernel virtual address */
2149         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2150         migrate_page_copy(new_page, page);
2151         WARN_ON(PageLRU(new_page));
2152
2153         /* Recheck the target PMD */
2154         ptl = pmd_lock(mm, pmd);
2155         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2156                 spin_unlock(ptl);
2157
2158                 /* Reverse changes made by migrate_page_copy() */
2159                 if (TestClearPageActive(new_page))
2160                         SetPageActive(page);
2161                 if (TestClearPageUnevictable(new_page))
2162                         SetPageUnevictable(page);
2163
2164                 unlock_page(new_page);
2165                 put_page(new_page);             /* Free it */
2166
2167                 /* Retake the callers reference and putback on LRU */
2168                 get_page(page);
2169                 putback_lru_page(page);
2170                 mod_node_page_state(page_pgdat(page),
2171                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2172
2173                 goto out_unlock;
2174         }
2175
2176         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2177         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2178
2179         /*
2180          * Overwrite the old entry under pagetable lock and establish
2181          * the new PTE. Any parallel GUP will either observe the old
2182          * page blocking on the page lock, block on the page table
2183          * lock or observe the new page. The SetPageUptodate on the
2184          * new page and page_add_new_anon_rmap guarantee the copy is
2185          * visible before the pagetable update.
2186          */
2187         page_add_anon_rmap(new_page, vma, start, true);
2188         /*
2189          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2190          * has already been flushed globally.  So no TLB can be currently
2191          * caching this non present pmd mapping.  There's no need to clear the
2192          * pmd before doing set_pmd_at(), nor to flush the TLB after
2193          * set_pmd_at().  Clearing the pmd here would introduce a race
2194          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2195          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2196          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2197          * pmd.
2198          */
2199         set_pmd_at(mm, start, pmd, entry);
2200         update_mmu_cache_pmd(vma, address, &entry);
2201
2202         page_ref_unfreeze(page, 2);
2203         mlock_migrate_page(new_page, page);
2204         page_remove_rmap(page, true);
2205         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2206
2207         spin_unlock(ptl);
2208
2209         /* Take an "isolate" reference and put new page on the LRU. */
2210         get_page(new_page);
2211         putback_lru_page(new_page);
2212
2213         unlock_page(new_page);
2214         unlock_page(page);
2215         put_page(page);                 /* Drop the rmap reference */
2216         put_page(page);                 /* Drop the LRU isolation reference */
2217
2218         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2219         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2220
2221         mod_node_page_state(page_pgdat(page),
2222                         NR_ISOLATED_ANON + page_lru,
2223                         -HPAGE_PMD_NR);
2224         return isolated;
2225
2226 out_fail:
2227         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2228         ptl = pmd_lock(mm, pmd);
2229         if (pmd_same(*pmd, entry)) {
2230                 entry = pmd_modify(entry, vma->vm_page_prot);
2231                 set_pmd_at(mm, start, pmd, entry);
2232                 update_mmu_cache_pmd(vma, address, &entry);
2233         }
2234         spin_unlock(ptl);
2235
2236 out_unlock:
2237         unlock_page(page);
2238         put_page(page);
2239         return 0;
2240 }
2241 #endif /* CONFIG_NUMA_BALANCING */
2242
2243 #endif /* CONFIG_NUMA */
2244
2245 #ifdef CONFIG_DEVICE_PRIVATE
2246 static int migrate_vma_collect_hole(unsigned long start,
2247                                     unsigned long end,
2248                                     __always_unused int depth,
2249                                     struct mm_walk *walk)
2250 {
2251         struct migrate_vma *migrate = walk->private;
2252         unsigned long addr;
2253
2254         /* Only allow populating anonymous memory. */
2255         if (!vma_is_anonymous(walk->vma)) {
2256                 for (addr = start; addr < end; addr += PAGE_SIZE) {
2257                         migrate->src[migrate->npages] = 0;
2258                         migrate->dst[migrate->npages] = 0;
2259                         migrate->npages++;
2260                 }
2261                 return 0;
2262         }
2263
2264         for (addr = start; addr < end; addr += PAGE_SIZE) {
2265                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2266                 migrate->dst[migrate->npages] = 0;
2267                 migrate->npages++;
2268                 migrate->cpages++;
2269         }
2270
2271         return 0;
2272 }
2273
2274 static int migrate_vma_collect_skip(unsigned long start,
2275                                     unsigned long end,
2276                                     struct mm_walk *walk)
2277 {
2278         struct migrate_vma *migrate = walk->private;
2279         unsigned long addr;
2280
2281         for (addr = start; addr < end; addr += PAGE_SIZE) {
2282                 migrate->dst[migrate->npages] = 0;
2283                 migrate->src[migrate->npages++] = 0;
2284         }
2285
2286         return 0;
2287 }
2288
2289 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2290                                    unsigned long start,
2291                                    unsigned long end,
2292                                    struct mm_walk *walk)
2293 {
2294         struct migrate_vma *migrate = walk->private;
2295         struct vm_area_struct *vma = walk->vma;
2296         struct mm_struct *mm = vma->vm_mm;
2297         unsigned long addr = start, unmapped = 0;
2298         spinlock_t *ptl;
2299         pte_t *ptep;
2300
2301 again:
2302         if (pmd_none(*pmdp))
2303                 return migrate_vma_collect_hole(start, end, -1, walk);
2304
2305         if (pmd_trans_huge(*pmdp)) {
2306                 struct page *page;
2307
2308                 ptl = pmd_lock(mm, pmdp);
2309                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2310                         spin_unlock(ptl);
2311                         goto again;
2312                 }
2313
2314                 page = pmd_page(*pmdp);
2315                 if (is_huge_zero_page(page)) {
2316                         spin_unlock(ptl);
2317                         split_huge_pmd(vma, pmdp, addr);
2318                         if (pmd_trans_unstable(pmdp))
2319                                 return migrate_vma_collect_skip(start, end,
2320                                                                 walk);
2321                 } else {
2322                         int ret;
2323
2324                         get_page(page);
2325                         spin_unlock(ptl);
2326                         if (unlikely(!trylock_page(page)))
2327                                 return migrate_vma_collect_skip(start, end,
2328                                                                 walk);
2329                         ret = split_huge_page(page);
2330                         unlock_page(page);
2331                         put_page(page);
2332                         if (ret)
2333                                 return migrate_vma_collect_skip(start, end,
2334                                                                 walk);
2335                         if (pmd_none(*pmdp))
2336                                 return migrate_vma_collect_hole(start, end, -1,
2337                                                                 walk);
2338                 }
2339         }
2340
2341         if (unlikely(pmd_bad(*pmdp)))
2342                 return migrate_vma_collect_skip(start, end, walk);
2343
2344         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2345         arch_enter_lazy_mmu_mode();
2346
2347         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2348                 unsigned long mpfn = 0, pfn;
2349                 struct page *page;
2350                 swp_entry_t entry;
2351                 pte_t pte;
2352
2353                 pte = *ptep;
2354
2355                 if (pte_none(pte)) {
2356                         if (vma_is_anonymous(vma)) {
2357                                 mpfn = MIGRATE_PFN_MIGRATE;
2358                                 migrate->cpages++;
2359                         }
2360                         goto next;
2361                 }
2362
2363                 if (!pte_present(pte)) {
2364                         /*
2365                          * Only care about unaddressable device page special
2366                          * page table entry. Other special swap entries are not
2367                          * migratable, and we ignore regular swapped page.
2368                          */
2369                         entry = pte_to_swp_entry(pte);
2370                         if (!is_device_private_entry(entry))
2371                                 goto next;
2372
2373                         page = device_private_entry_to_page(entry);
2374                         if (!(migrate->flags &
2375                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2376                             page->pgmap->owner != migrate->pgmap_owner)
2377                                 goto next;
2378
2379                         mpfn = migrate_pfn(page_to_pfn(page)) |
2380                                         MIGRATE_PFN_MIGRATE;
2381                         if (is_write_device_private_entry(entry))
2382                                 mpfn |= MIGRATE_PFN_WRITE;
2383                 } else {
2384                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2385                                 goto next;
2386                         pfn = pte_pfn(pte);
2387                         if (is_zero_pfn(pfn)) {
2388                                 mpfn = MIGRATE_PFN_MIGRATE;
2389                                 migrate->cpages++;
2390                                 goto next;
2391                         }
2392                         page = vm_normal_page(migrate->vma, addr, pte);
2393                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2394                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2395                 }
2396
2397                 /* FIXME support THP */
2398                 if (!page || !page->mapping || PageTransCompound(page)) {
2399                         mpfn = 0;
2400                         goto next;
2401                 }
2402
2403                 /*
2404                  * By getting a reference on the page we pin it and that blocks
2405                  * any kind of migration. Side effect is that it "freezes" the
2406                  * pte.
2407                  *
2408                  * We drop this reference after isolating the page from the lru
2409                  * for non device page (device page are not on the lru and thus
2410                  * can't be dropped from it).
2411                  */
2412                 get_page(page);
2413                 migrate->cpages++;
2414
2415                 /*
2416                  * Optimize for the common case where page is only mapped once
2417                  * in one process. If we can lock the page, then we can safely
2418                  * set up a special migration page table entry now.
2419                  */
2420                 if (trylock_page(page)) {
2421                         pte_t swp_pte;
2422
2423                         mpfn |= MIGRATE_PFN_LOCKED;
2424                         ptep_get_and_clear(mm, addr, ptep);
2425
2426                         /* Setup special migration page table entry */
2427                         entry = make_migration_entry(page, mpfn &
2428                                                      MIGRATE_PFN_WRITE);
2429                         swp_pte = swp_entry_to_pte(entry);
2430                         if (pte_present(pte)) {
2431                                 if (pte_soft_dirty(pte))
2432                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2433                                 if (pte_uffd_wp(pte))
2434                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2435                         } else {
2436                                 if (pte_swp_soft_dirty(pte))
2437                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2438                                 if (pte_swp_uffd_wp(pte))
2439                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2440                         }
2441                         set_pte_at(mm, addr, ptep, swp_pte);
2442
2443                         /*
2444                          * This is like regular unmap: we remove the rmap and
2445                          * drop page refcount. Page won't be freed, as we took
2446                          * a reference just above.
2447                          */
2448                         page_remove_rmap(page, false);
2449                         put_page(page);
2450
2451                         if (pte_present(pte))
2452                                 unmapped++;
2453                 }
2454
2455 next:
2456                 migrate->dst[migrate->npages] = 0;
2457                 migrate->src[migrate->npages++] = mpfn;
2458         }
2459         arch_leave_lazy_mmu_mode();
2460         pte_unmap_unlock(ptep - 1, ptl);
2461
2462         /* Only flush the TLB if we actually modified any entries */
2463         if (unmapped)
2464                 flush_tlb_range(walk->vma, start, end);
2465
2466         return 0;
2467 }
2468
2469 static const struct mm_walk_ops migrate_vma_walk_ops = {
2470         .pmd_entry              = migrate_vma_collect_pmd,
2471         .pte_hole               = migrate_vma_collect_hole,
2472 };
2473
2474 /*
2475  * migrate_vma_collect() - collect pages over a range of virtual addresses
2476  * @migrate: migrate struct containing all migration information
2477  *
2478  * This will walk the CPU page table. For each virtual address backed by a
2479  * valid page, it updates the src array and takes a reference on the page, in
2480  * order to pin the page until we lock it and unmap it.
2481  */
2482 static void migrate_vma_collect(struct migrate_vma *migrate)
2483 {
2484         struct mmu_notifier_range range;
2485
2486         /*
2487          * Note that the pgmap_owner is passed to the mmu notifier callback so
2488          * that the registered device driver can skip invalidating device
2489          * private page mappings that won't be migrated.
2490          */
2491         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2492                 migrate->vma->vm_mm, migrate->start, migrate->end,
2493                 migrate->pgmap_owner);
2494         mmu_notifier_invalidate_range_start(&range);
2495
2496         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2497                         &migrate_vma_walk_ops, migrate);
2498
2499         mmu_notifier_invalidate_range_end(&range);
2500         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2501 }
2502
2503 /*
2504  * migrate_vma_check_page() - check if page is pinned or not
2505  * @page: struct page to check
2506  *
2507  * Pinned pages cannot be migrated. This is the same test as in
2508  * migrate_page_move_mapping(), except that here we allow migration of a
2509  * ZONE_DEVICE page.
2510  */
2511 static bool migrate_vma_check_page(struct page *page)
2512 {
2513         /*
2514          * One extra ref because caller holds an extra reference, either from
2515          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2516          * a device page.
2517          */
2518         int extra = 1;
2519
2520         /*
2521          * FIXME support THP (transparent huge page), it is bit more complex to
2522          * check them than regular pages, because they can be mapped with a pmd
2523          * or with a pte (split pte mapping).
2524          */
2525         if (PageCompound(page))
2526                 return false;
2527
2528         /* Page from ZONE_DEVICE have one extra reference */
2529         if (is_zone_device_page(page)) {
2530                 /*
2531                  * Private page can never be pin as they have no valid pte and
2532                  * GUP will fail for those. Yet if there is a pending migration
2533                  * a thread might try to wait on the pte migration entry and
2534                  * will bump the page reference count. Sadly there is no way to
2535                  * differentiate a regular pin from migration wait. Hence to
2536                  * avoid 2 racing thread trying to migrate back to CPU to enter
2537                  * infinite loop (one stoping migration because the other is
2538                  * waiting on pte migration entry). We always return true here.
2539                  *
2540                  * FIXME proper solution is to rework migration_entry_wait() so
2541                  * it does not need to take a reference on page.
2542                  */
2543                 return is_device_private_page(page);
2544         }
2545
2546         /* For file back page */
2547         if (page_mapping(page))
2548                 extra += 1 + page_has_private(page);
2549
2550         if ((page_count(page) - extra) > page_mapcount(page))
2551                 return false;
2552
2553         return true;
2554 }
2555
2556 /*
2557  * migrate_vma_prepare() - lock pages and isolate them from the lru
2558  * @migrate: migrate struct containing all migration information
2559  *
2560  * This locks pages that have been collected by migrate_vma_collect(). Once each
2561  * page is locked it is isolated from the lru (for non-device pages). Finally,
2562  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2563  * migrated by concurrent kernel threads.
2564  */
2565 static void migrate_vma_prepare(struct migrate_vma *migrate)
2566 {
2567         const unsigned long npages = migrate->npages;
2568         const unsigned long start = migrate->start;
2569         unsigned long addr, i, restore = 0;
2570         bool allow_drain = true;
2571
2572         lru_add_drain();
2573
2574         for (i = 0; (i < npages) && migrate->cpages; i++) {
2575                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2576                 bool remap = true;
2577
2578                 if (!page)
2579                         continue;
2580
2581                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2582                         /*
2583                          * Because we are migrating several pages there can be
2584                          * a deadlock between 2 concurrent migration where each
2585                          * are waiting on each other page lock.
2586                          *
2587                          * Make migrate_vma() a best effort thing and backoff
2588                          * for any page we can not lock right away.
2589                          */
2590                         if (!trylock_page(page)) {
2591                                 migrate->src[i] = 0;
2592                                 migrate->cpages--;
2593                                 put_page(page);
2594                                 continue;
2595                         }
2596                         remap = false;
2597                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2598                 }
2599
2600                 /* ZONE_DEVICE pages are not on LRU */
2601                 if (!is_zone_device_page(page)) {
2602                         if (!PageLRU(page) && allow_drain) {
2603                                 /* Drain CPU's pagevec */
2604                                 lru_add_drain_all();
2605                                 allow_drain = false;
2606                         }
2607
2608                         if (isolate_lru_page(page)) {
2609                                 if (remap) {
2610                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2611                                         migrate->cpages--;
2612                                         restore++;
2613                                 } else {
2614                                         migrate->src[i] = 0;
2615                                         unlock_page(page);
2616                                         migrate->cpages--;
2617                                         put_page(page);
2618                                 }
2619                                 continue;
2620                         }
2621
2622                         /* Drop the reference we took in collect */
2623                         put_page(page);
2624                 }
2625
2626                 if (!migrate_vma_check_page(page)) {
2627                         if (remap) {
2628                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2629                                 migrate->cpages--;
2630                                 restore++;
2631
2632                                 if (!is_zone_device_page(page)) {
2633                                         get_page(page);
2634                                         putback_lru_page(page);
2635                                 }
2636                         } else {
2637                                 migrate->src[i] = 0;
2638                                 unlock_page(page);
2639                                 migrate->cpages--;
2640
2641                                 if (!is_zone_device_page(page))
2642                                         putback_lru_page(page);
2643                                 else
2644                                         put_page(page);
2645                         }
2646                 }
2647         }
2648
2649         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2650                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2651
2652                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2653                         continue;
2654
2655                 remove_migration_pte(page, migrate->vma, addr, page);
2656
2657                 migrate->src[i] = 0;
2658                 unlock_page(page);
2659                 put_page(page);
2660                 restore--;
2661         }
2662 }
2663
2664 /*
2665  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2666  * @migrate: migrate struct containing all migration information
2667  *
2668  * Replace page mapping (CPU page table pte) with a special migration pte entry
2669  * and check again if it has been pinned. Pinned pages are restored because we
2670  * cannot migrate them.
2671  *
2672  * This is the last step before we call the device driver callback to allocate
2673  * destination memory and copy contents of original page over to new page.
2674  */
2675 static void migrate_vma_unmap(struct migrate_vma *migrate)
2676 {
2677         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2678         const unsigned long npages = migrate->npages;
2679         const unsigned long start = migrate->start;
2680         unsigned long addr, i, restore = 0;
2681
2682         for (i = 0; i < npages; i++) {
2683                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2684
2685                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2686                         continue;
2687
2688                 if (page_mapped(page)) {
2689                         try_to_unmap(page, flags);
2690                         if (page_mapped(page))
2691                                 goto restore;
2692                 }
2693
2694                 if (migrate_vma_check_page(page))
2695                         continue;
2696
2697 restore:
2698                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2699                 migrate->cpages--;
2700                 restore++;
2701         }
2702
2703         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2704                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2705
2706                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2707                         continue;
2708
2709                 remove_migration_ptes(page, page, false);
2710
2711                 migrate->src[i] = 0;
2712                 unlock_page(page);
2713                 restore--;
2714
2715                 if (is_zone_device_page(page))
2716                         put_page(page);
2717                 else
2718                         putback_lru_page(page);
2719         }
2720 }
2721
2722 /**
2723  * migrate_vma_setup() - prepare to migrate a range of memory
2724  * @args: contains the vma, start, and pfns arrays for the migration
2725  *
2726  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2727  * without an error.
2728  *
2729  * Prepare to migrate a range of memory virtual address range by collecting all
2730  * the pages backing each virtual address in the range, saving them inside the
2731  * src array.  Then lock those pages and unmap them. Once the pages are locked
2732  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2733  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2734  * corresponding src array entry.  Then restores any pages that are pinned, by
2735  * remapping and unlocking those pages.
2736  *
2737  * The caller should then allocate destination memory and copy source memory to
2738  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2739  * flag set).  Once these are allocated and copied, the caller must update each
2740  * corresponding entry in the dst array with the pfn value of the destination
2741  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2742  * (destination pages must have their struct pages locked, via lock_page()).
2743  *
2744  * Note that the caller does not have to migrate all the pages that are marked
2745  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2746  * device memory to system memory.  If the caller cannot migrate a device page
2747  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2748  * consequences for the userspace process, so it must be avoided if at all
2749  * possible.
2750  *
2751  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2752  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2753  * allowing the caller to allocate device memory for those unback virtual
2754  * address.  For this the caller simply has to allocate device memory and
2755  * properly set the destination entry like for regular migration.  Note that
2756  * this can still fails and thus inside the device driver must check if the
2757  * migration was successful for those entries after calling migrate_vma_pages()
2758  * just like for regular migration.
2759  *
2760  * After that, the callers must call migrate_vma_pages() to go over each entry
2761  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2762  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2763  * then migrate_vma_pages() to migrate struct page information from the source
2764  * struct page to the destination struct page.  If it fails to migrate the
2765  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2766  * src array.
2767  *
2768  * At this point all successfully migrated pages have an entry in the src
2769  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2770  * array entry with MIGRATE_PFN_VALID flag set.
2771  *
2772  * Once migrate_vma_pages() returns the caller may inspect which pages were
2773  * successfully migrated, and which were not.  Successfully migrated pages will
2774  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2775  *
2776  * It is safe to update device page table after migrate_vma_pages() because
2777  * both destination and source page are still locked, and the mmap_lock is held
2778  * in read mode (hence no one can unmap the range being migrated).
2779  *
2780  * Once the caller is done cleaning up things and updating its page table (if it
2781  * chose to do so, this is not an obligation) it finally calls
2782  * migrate_vma_finalize() to update the CPU page table to point to new pages
2783  * for successfully migrated pages or otherwise restore the CPU page table to
2784  * point to the original source pages.
2785  */
2786 int migrate_vma_setup(struct migrate_vma *args)
2787 {
2788         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2789
2790         args->start &= PAGE_MASK;
2791         args->end &= PAGE_MASK;
2792         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2793             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2794                 return -EINVAL;
2795         if (nr_pages <= 0)
2796                 return -EINVAL;
2797         if (args->start < args->vma->vm_start ||
2798             args->start >= args->vma->vm_end)
2799                 return -EINVAL;
2800         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2801                 return -EINVAL;
2802         if (!args->src || !args->dst)
2803                 return -EINVAL;
2804
2805         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2806         args->cpages = 0;
2807         args->npages = 0;
2808
2809         migrate_vma_collect(args);
2810
2811         if (args->cpages)
2812                 migrate_vma_prepare(args);
2813         if (args->cpages)
2814                 migrate_vma_unmap(args);
2815
2816         /*
2817          * At this point pages are locked and unmapped, and thus they have
2818          * stable content and can safely be copied to destination memory that
2819          * is allocated by the drivers.
2820          */
2821         return 0;
2822
2823 }
2824 EXPORT_SYMBOL(migrate_vma_setup);
2825
2826 /*
2827  * This code closely matches the code in:
2828  *   __handle_mm_fault()
2829  *     handle_pte_fault()
2830  *       do_anonymous_page()
2831  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2832  * private page.
2833  */
2834 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2835                                     unsigned long addr,
2836                                     struct page *page,
2837                                     unsigned long *src,
2838                                     unsigned long *dst)
2839 {
2840         struct vm_area_struct *vma = migrate->vma;
2841         struct mm_struct *mm = vma->vm_mm;
2842         bool flush = false;
2843         spinlock_t *ptl;
2844         pte_t entry;
2845         pgd_t *pgdp;
2846         p4d_t *p4dp;
2847         pud_t *pudp;
2848         pmd_t *pmdp;
2849         pte_t *ptep;
2850
2851         /* Only allow populating anonymous memory */
2852         if (!vma_is_anonymous(vma))
2853                 goto abort;
2854
2855         pgdp = pgd_offset(mm, addr);
2856         p4dp = p4d_alloc(mm, pgdp, addr);
2857         if (!p4dp)
2858                 goto abort;
2859         pudp = pud_alloc(mm, p4dp, addr);
2860         if (!pudp)
2861                 goto abort;
2862         pmdp = pmd_alloc(mm, pudp, addr);
2863         if (!pmdp)
2864                 goto abort;
2865
2866         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2867                 goto abort;
2868
2869         /*
2870          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2871          * pte_offset_map() on pmds where a huge pmd might be created
2872          * from a different thread.
2873          *
2874          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2875          * parallel threads are excluded by other means.
2876          *
2877          * Here we only have mmap_read_lock(mm).
2878          */
2879         if (pte_alloc(mm, pmdp))
2880                 goto abort;
2881
2882         /* See the comment in pte_alloc_one_map() */
2883         if (unlikely(pmd_trans_unstable(pmdp)))
2884                 goto abort;
2885
2886         if (unlikely(anon_vma_prepare(vma)))
2887                 goto abort;
2888         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2889                 goto abort;
2890
2891         /*
2892          * The memory barrier inside __SetPageUptodate makes sure that
2893          * preceding stores to the page contents become visible before
2894          * the set_pte_at() write.
2895          */
2896         __SetPageUptodate(page);
2897
2898         if (is_zone_device_page(page)) {
2899                 if (is_device_private_page(page)) {
2900                         swp_entry_t swp_entry;
2901
2902                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2903                         entry = swp_entry_to_pte(swp_entry);
2904                 }
2905         } else {
2906                 entry = mk_pte(page, vma->vm_page_prot);
2907                 if (vma->vm_flags & VM_WRITE)
2908                         entry = pte_mkwrite(pte_mkdirty(entry));
2909         }
2910
2911         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2912
2913         if (check_stable_address_space(mm))
2914                 goto unlock_abort;
2915
2916         if (pte_present(*ptep)) {
2917                 unsigned long pfn = pte_pfn(*ptep);
2918
2919                 if (!is_zero_pfn(pfn))
2920                         goto unlock_abort;
2921                 flush = true;
2922         } else if (!pte_none(*ptep))
2923                 goto unlock_abort;
2924
2925         /*
2926          * Check for userfaultfd but do not deliver the fault. Instead,
2927          * just back off.
2928          */
2929         if (userfaultfd_missing(vma))
2930                 goto unlock_abort;
2931
2932         inc_mm_counter(mm, MM_ANONPAGES);
2933         page_add_new_anon_rmap(page, vma, addr, false);
2934         if (!is_zone_device_page(page))
2935                 lru_cache_add_inactive_or_unevictable(page, vma);
2936         get_page(page);
2937
2938         if (flush) {
2939                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2940                 ptep_clear_flush_notify(vma, addr, ptep);
2941                 set_pte_at_notify(mm, addr, ptep, entry);
2942                 update_mmu_cache(vma, addr, ptep);
2943         } else {
2944                 /* No need to invalidate - it was non-present before */
2945                 set_pte_at(mm, addr, ptep, entry);
2946                 update_mmu_cache(vma, addr, ptep);
2947         }
2948
2949         pte_unmap_unlock(ptep, ptl);
2950         *src = MIGRATE_PFN_MIGRATE;
2951         return;
2952
2953 unlock_abort:
2954         pte_unmap_unlock(ptep, ptl);
2955 abort:
2956         *src &= ~MIGRATE_PFN_MIGRATE;
2957 }
2958
2959 /**
2960  * migrate_vma_pages() - migrate meta-data from src page to dst page
2961  * @migrate: migrate struct containing all migration information
2962  *
2963  * This migrates struct page meta-data from source struct page to destination
2964  * struct page. This effectively finishes the migration from source page to the
2965  * destination page.
2966  */
2967 void migrate_vma_pages(struct migrate_vma *migrate)
2968 {
2969         const unsigned long npages = migrate->npages;
2970         const unsigned long start = migrate->start;
2971         struct mmu_notifier_range range;
2972         unsigned long addr, i;
2973         bool notified = false;
2974
2975         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2976                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2977                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2978                 struct address_space *mapping;
2979                 int r;
2980
2981                 if (!newpage) {
2982                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2983                         continue;
2984                 }
2985
2986                 if (!page) {
2987                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2988                                 continue;
2989                         if (!notified) {
2990                                 notified = true;
2991
2992                                 mmu_notifier_range_init(&range,
2993                                                         MMU_NOTIFY_CLEAR, 0,
2994                                                         NULL,
2995                                                         migrate->vma->vm_mm,
2996                                                         addr, migrate->end);
2997                                 mmu_notifier_invalidate_range_start(&range);
2998                         }
2999                         migrate_vma_insert_page(migrate, addr, newpage,
3000                                                 &migrate->src[i],
3001                                                 &migrate->dst[i]);
3002                         continue;
3003                 }
3004
3005                 mapping = page_mapping(page);
3006
3007                 if (is_zone_device_page(newpage)) {
3008                         if (is_device_private_page(newpage)) {
3009                                 /*
3010                                  * For now only support private anonymous when
3011                                  * migrating to un-addressable device memory.
3012                                  */
3013                                 if (mapping) {
3014                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3015                                         continue;
3016                                 }
3017                         } else {
3018                                 /*
3019                                  * Other types of ZONE_DEVICE page are not
3020                                  * supported.
3021                                  */
3022                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3023                                 continue;
3024                         }
3025                 }
3026
3027                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3028                 if (r != MIGRATEPAGE_SUCCESS)
3029                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3030         }
3031
3032         /*
3033          * No need to double call mmu_notifier->invalidate_range() callback as
3034          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3035          * did already call it.
3036          */
3037         if (notified)
3038                 mmu_notifier_invalidate_range_only_end(&range);
3039 }
3040 EXPORT_SYMBOL(migrate_vma_pages);
3041
3042 /**
3043  * migrate_vma_finalize() - restore CPU page table entry
3044  * @migrate: migrate struct containing all migration information
3045  *
3046  * This replaces the special migration pte entry with either a mapping to the
3047  * new page if migration was successful for that page, or to the original page
3048  * otherwise.
3049  *
3050  * This also unlocks the pages and puts them back on the lru, or drops the extra
3051  * refcount, for device pages.
3052  */
3053 void migrate_vma_finalize(struct migrate_vma *migrate)
3054 {
3055         const unsigned long npages = migrate->npages;
3056         unsigned long i;
3057
3058         for (i = 0; i < npages; i++) {
3059                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3060                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3061
3062                 if (!page) {
3063                         if (newpage) {
3064                                 unlock_page(newpage);
3065                                 put_page(newpage);
3066                         }
3067                         continue;
3068                 }
3069
3070                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3071                         if (newpage) {
3072                                 unlock_page(newpage);
3073                                 put_page(newpage);
3074                         }
3075                         newpage = page;
3076                 }
3077
3078                 remove_migration_ptes(page, newpage, false);
3079                 unlock_page(page);
3080                 migrate->cpages--;
3081
3082                 if (is_zone_device_page(page))
3083                         put_page(page);
3084                 else
3085                         putback_lru_page(page);
3086
3087                 if (newpage != page) {
3088                         unlock_page(newpage);
3089                         if (is_zone_device_page(newpage))
3090                                 put_page(newpage);
3091                         else
3092                                 putback_lru_page(newpage);
3093                 }
3094         }
3095 }
3096 EXPORT_SYMBOL(migrate_vma_finalize);
3097 #endif /* CONFIG_DEVICE_PRIVATE */