mm/mmu_notifier: use structure for invalidate_range_start/end calls v2
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                                 flush_dcache_page(new);
252                         }
253                 } else
254                         flush_dcache_page(new);
255
256 #ifdef CONFIG_HUGETLB_PAGE
257                 if (PageHuge(new)) {
258                         pte = pte_mkhuge(pte);
259                         pte = arch_make_huge_pte(pte, vma, new, 0);
260                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261                         if (PageAnon(new))
262                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
263                         else
264                                 page_dup_rmap(new, true);
265                 } else
266 #endif
267                 {
268                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270                         if (PageAnon(new))
271                                 page_add_anon_rmap(new, vma, pvmw.address, false);
272                         else
273                                 page_add_file_rmap(new, false);
274                 }
275                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276                         mlock_vma_page(new);
277
278                 if (PageTransHuge(page) && PageMlocked(page))
279                         clear_page_mlock(page);
280
281                 /* No need to invalidate - it was non-present before */
282                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283         }
284
285         return true;
286 }
287
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294         struct rmap_walk_control rwc = {
295                 .rmap_one = remove_migration_pte,
296                 .arg = old,
297         };
298
299         if (locked)
300                 rmap_walk_locked(new, &rwc);
301         else
302                 rmap_walk(new, &rwc);
303 }
304
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311                                 spinlock_t *ptl)
312 {
313         pte_t pte;
314         swp_entry_t entry;
315         struct page *page;
316
317         spin_lock(ptl);
318         pte = *ptep;
319         if (!is_swap_pte(pte))
320                 goto out;
321
322         entry = pte_to_swp_entry(pte);
323         if (!is_migration_entry(entry))
324                 goto out;
325
326         page = migration_entry_to_page(entry);
327
328         /*
329          * Once page cache replacement of page migration started, page_count
330          * is zero; but we must not call put_and_wait_on_page_locked() without
331          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
332          */
333         if (!get_page_unless_zero(page))
334                 goto out;
335         pte_unmap_unlock(ptep, ptl);
336         put_and_wait_on_page_locked(page);
337         return;
338 out:
339         pte_unmap_unlock(ptep, ptl);
340 }
341
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343                                 unsigned long address)
344 {
345         spinlock_t *ptl = pte_lockptr(mm, pmd);
346         pte_t *ptep = pte_offset_map(pmd, address);
347         __migration_entry_wait(mm, ptep, ptl);
348 }
349
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351                 struct mm_struct *mm, pte_t *pte)
352 {
353         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354         __migration_entry_wait(mm, pte, ptl);
355 }
356
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360         spinlock_t *ptl;
361         struct page *page;
362
363         ptl = pmd_lock(mm, pmd);
364         if (!is_pmd_migration_entry(*pmd))
365                 goto unlock;
366         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367         if (!get_page_unless_zero(page))
368                 goto unlock;
369         spin_unlock(ptl);
370         put_and_wait_on_page_locked(page);
371         return;
372 unlock:
373         spin_unlock(ptl);
374 }
375 #endif
376
377 #ifdef CONFIG_BLOCK
378 /* Returns true if all buffers are successfully locked */
379 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
380                                                         enum migrate_mode mode)
381 {
382         struct buffer_head *bh = head;
383
384         /* Simple case, sync compaction */
385         if (mode != MIGRATE_ASYNC) {
386                 do {
387                         get_bh(bh);
388                         lock_buffer(bh);
389                         bh = bh->b_this_page;
390
391                 } while (bh != head);
392
393                 return true;
394         }
395
396         /* async case, we cannot block on lock_buffer so use trylock_buffer */
397         do {
398                 get_bh(bh);
399                 if (!trylock_buffer(bh)) {
400                         /*
401                          * We failed to lock the buffer and cannot stall in
402                          * async migration. Release the taken locks
403                          */
404                         struct buffer_head *failed_bh = bh;
405                         put_bh(failed_bh);
406                         bh = head;
407                         while (bh != failed_bh) {
408                                 unlock_buffer(bh);
409                                 put_bh(bh);
410                                 bh = bh->b_this_page;
411                         }
412                         return false;
413                 }
414
415                 bh = bh->b_this_page;
416         } while (bh != head);
417         return true;
418 }
419 #else
420 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
421                                                         enum migrate_mode mode)
422 {
423         return true;
424 }
425 #endif /* CONFIG_BLOCK */
426
427 /*
428  * Replace the page in the mapping.
429  *
430  * The number of remaining references must be:
431  * 1 for anonymous pages without a mapping
432  * 2 for pages with a mapping
433  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
434  */
435 int migrate_page_move_mapping(struct address_space *mapping,
436                 struct page *newpage, struct page *page,
437                 struct buffer_head *head, enum migrate_mode mode,
438                 int extra_count)
439 {
440         XA_STATE(xas, &mapping->i_pages, page_index(page));
441         struct zone *oldzone, *newzone;
442         int dirty;
443         int expected_count = 1 + extra_count;
444
445         /*
446          * Device public or private pages have an extra refcount as they are
447          * ZONE_DEVICE pages.
448          */
449         expected_count += is_device_private_page(page);
450         expected_count += is_device_public_page(page);
451
452         if (!mapping) {
453                 /* Anonymous page without mapping */
454                 if (page_count(page) != expected_count)
455                         return -EAGAIN;
456
457                 /* No turning back from here */
458                 newpage->index = page->index;
459                 newpage->mapping = page->mapping;
460                 if (PageSwapBacked(page))
461                         __SetPageSwapBacked(newpage);
462
463                 return MIGRATEPAGE_SUCCESS;
464         }
465
466         oldzone = page_zone(page);
467         newzone = page_zone(newpage);
468
469         xas_lock_irq(&xas);
470
471         expected_count += hpage_nr_pages(page) + page_has_private(page);
472         if (page_count(page) != expected_count || xas_load(&xas) != page) {
473                 xas_unlock_irq(&xas);
474                 return -EAGAIN;
475         }
476
477         if (!page_ref_freeze(page, expected_count)) {
478                 xas_unlock_irq(&xas);
479                 return -EAGAIN;
480         }
481
482         /*
483          * In the async migration case of moving a page with buffers, lock the
484          * buffers using trylock before the mapping is moved. If the mapping
485          * was moved, we later failed to lock the buffers and could not move
486          * the mapping back due to an elevated page count, we would have to
487          * block waiting on other references to be dropped.
488          */
489         if (mode == MIGRATE_ASYNC && head &&
490                         !buffer_migrate_lock_buffers(head, mode)) {
491                 page_ref_unfreeze(page, expected_count);
492                 xas_unlock_irq(&xas);
493                 return -EAGAIN;
494         }
495
496         /*
497          * Now we know that no one else is looking at the page:
498          * no turning back from here.
499          */
500         newpage->index = page->index;
501         newpage->mapping = page->mapping;
502         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
503         if (PageSwapBacked(page)) {
504                 __SetPageSwapBacked(newpage);
505                 if (PageSwapCache(page)) {
506                         SetPageSwapCache(newpage);
507                         set_page_private(newpage, page_private(page));
508                 }
509         } else {
510                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
511         }
512
513         /* Move dirty while page refs frozen and newpage not yet exposed */
514         dirty = PageDirty(page);
515         if (dirty) {
516                 ClearPageDirty(page);
517                 SetPageDirty(newpage);
518         }
519
520         xas_store(&xas, newpage);
521         if (PageTransHuge(page)) {
522                 int i;
523
524                 for (i = 1; i < HPAGE_PMD_NR; i++) {
525                         xas_next(&xas);
526                         xas_store(&xas, newpage + i);
527                 }
528         }
529
530         /*
531          * Drop cache reference from old page by unfreezing
532          * to one less reference.
533          * We know this isn't the last reference.
534          */
535         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
536
537         xas_unlock(&xas);
538         /* Leave irq disabled to prevent preemption while updating stats */
539
540         /*
541          * If moved to a different zone then also account
542          * the page for that zone. Other VM counters will be
543          * taken care of when we establish references to the
544          * new page and drop references to the old page.
545          *
546          * Note that anonymous pages are accounted for
547          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
548          * are mapped to swap space.
549          */
550         if (newzone != oldzone) {
551                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
552                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
553                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
554                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
555                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
556                 }
557                 if (dirty && mapping_cap_account_dirty(mapping)) {
558                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
559                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
560                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
561                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
562                 }
563         }
564         local_irq_enable();
565
566         return MIGRATEPAGE_SUCCESS;
567 }
568 EXPORT_SYMBOL(migrate_page_move_mapping);
569
570 /*
571  * The expected number of remaining references is the same as that
572  * of migrate_page_move_mapping().
573  */
574 int migrate_huge_page_move_mapping(struct address_space *mapping,
575                                    struct page *newpage, struct page *page)
576 {
577         XA_STATE(xas, &mapping->i_pages, page_index(page));
578         int expected_count;
579
580         xas_lock_irq(&xas);
581         expected_count = 2 + page_has_private(page);
582         if (page_count(page) != expected_count || xas_load(&xas) != page) {
583                 xas_unlock_irq(&xas);
584                 return -EAGAIN;
585         }
586
587         if (!page_ref_freeze(page, expected_count)) {
588                 xas_unlock_irq(&xas);
589                 return -EAGAIN;
590         }
591
592         newpage->index = page->index;
593         newpage->mapping = page->mapping;
594
595         get_page(newpage);
596
597         xas_store(&xas, newpage);
598
599         page_ref_unfreeze(page, expected_count - 1);
600
601         xas_unlock_irq(&xas);
602
603         return MIGRATEPAGE_SUCCESS;
604 }
605
606 /*
607  * Gigantic pages are so large that we do not guarantee that page++ pointer
608  * arithmetic will work across the entire page.  We need something more
609  * specialized.
610  */
611 static void __copy_gigantic_page(struct page *dst, struct page *src,
612                                 int nr_pages)
613 {
614         int i;
615         struct page *dst_base = dst;
616         struct page *src_base = src;
617
618         for (i = 0; i < nr_pages; ) {
619                 cond_resched();
620                 copy_highpage(dst, src);
621
622                 i++;
623                 dst = mem_map_next(dst, dst_base, i);
624                 src = mem_map_next(src, src_base, i);
625         }
626 }
627
628 static void copy_huge_page(struct page *dst, struct page *src)
629 {
630         int i;
631         int nr_pages;
632
633         if (PageHuge(src)) {
634                 /* hugetlbfs page */
635                 struct hstate *h = page_hstate(src);
636                 nr_pages = pages_per_huge_page(h);
637
638                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
639                         __copy_gigantic_page(dst, src, nr_pages);
640                         return;
641                 }
642         } else {
643                 /* thp page */
644                 BUG_ON(!PageTransHuge(src));
645                 nr_pages = hpage_nr_pages(src);
646         }
647
648         for (i = 0; i < nr_pages; i++) {
649                 cond_resched();
650                 copy_highpage(dst + i, src + i);
651         }
652 }
653
654 /*
655  * Copy the page to its new location
656  */
657 void migrate_page_states(struct page *newpage, struct page *page)
658 {
659         int cpupid;
660
661         if (PageError(page))
662                 SetPageError(newpage);
663         if (PageReferenced(page))
664                 SetPageReferenced(newpage);
665         if (PageUptodate(page))
666                 SetPageUptodate(newpage);
667         if (TestClearPageActive(page)) {
668                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
669                 SetPageActive(newpage);
670         } else if (TestClearPageUnevictable(page))
671                 SetPageUnevictable(newpage);
672         if (PageWorkingset(page))
673                 SetPageWorkingset(newpage);
674         if (PageChecked(page))
675                 SetPageChecked(newpage);
676         if (PageMappedToDisk(page))
677                 SetPageMappedToDisk(newpage);
678
679         /* Move dirty on pages not done by migrate_page_move_mapping() */
680         if (PageDirty(page))
681                 SetPageDirty(newpage);
682
683         if (page_is_young(page))
684                 set_page_young(newpage);
685         if (page_is_idle(page))
686                 set_page_idle(newpage);
687
688         /*
689          * Copy NUMA information to the new page, to prevent over-eager
690          * future migrations of this same page.
691          */
692         cpupid = page_cpupid_xchg_last(page, -1);
693         page_cpupid_xchg_last(newpage, cpupid);
694
695         ksm_migrate_page(newpage, page);
696         /*
697          * Please do not reorder this without considering how mm/ksm.c's
698          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699          */
700         if (PageSwapCache(page))
701                 ClearPageSwapCache(page);
702         ClearPagePrivate(page);
703         set_page_private(page, 0);
704
705         /*
706          * If any waiters have accumulated on the new page then
707          * wake them up.
708          */
709         if (PageWriteback(newpage))
710                 end_page_writeback(newpage);
711
712         copy_page_owner(page, newpage);
713
714         mem_cgroup_migrate(page, newpage);
715 }
716 EXPORT_SYMBOL(migrate_page_states);
717
718 void migrate_page_copy(struct page *newpage, struct page *page)
719 {
720         if (PageHuge(page) || PageTransHuge(page))
721                 copy_huge_page(newpage, page);
722         else
723                 copy_highpage(newpage, page);
724
725         migrate_page_states(newpage, page);
726 }
727 EXPORT_SYMBOL(migrate_page_copy);
728
729 /************************************************************
730  *                    Migration functions
731  ***********************************************************/
732
733 /*
734  * Common logic to directly migrate a single LRU page suitable for
735  * pages that do not use PagePrivate/PagePrivate2.
736  *
737  * Pages are locked upon entry and exit.
738  */
739 int migrate_page(struct address_space *mapping,
740                 struct page *newpage, struct page *page,
741                 enum migrate_mode mode)
742 {
743         int rc;
744
745         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
746
747         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
748
749         if (rc != MIGRATEPAGE_SUCCESS)
750                 return rc;
751
752         if (mode != MIGRATE_SYNC_NO_COPY)
753                 migrate_page_copy(newpage, page);
754         else
755                 migrate_page_states(newpage, page);
756         return MIGRATEPAGE_SUCCESS;
757 }
758 EXPORT_SYMBOL(migrate_page);
759
760 #ifdef CONFIG_BLOCK
761 /*
762  * Migration function for pages with buffers. This function can only be used
763  * if the underlying filesystem guarantees that no other references to "page"
764  * exist.
765  */
766 int buffer_migrate_page(struct address_space *mapping,
767                 struct page *newpage, struct page *page, enum migrate_mode mode)
768 {
769         struct buffer_head *bh, *head;
770         int rc;
771
772         if (!page_has_buffers(page))
773                 return migrate_page(mapping, newpage, page, mode);
774
775         head = page_buffers(page);
776
777         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
778
779         if (rc != MIGRATEPAGE_SUCCESS)
780                 return rc;
781
782         /*
783          * In the async case, migrate_page_move_mapping locked the buffers
784          * with an IRQ-safe spinlock held. In the sync case, the buffers
785          * need to be locked now
786          */
787         if (mode != MIGRATE_ASYNC)
788                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
789
790         ClearPagePrivate(page);
791         set_page_private(newpage, page_private(page));
792         set_page_private(page, 0);
793         put_page(page);
794         get_page(newpage);
795
796         bh = head;
797         do {
798                 set_bh_page(bh, newpage, bh_offset(bh));
799                 bh = bh->b_this_page;
800
801         } while (bh != head);
802
803         SetPagePrivate(newpage);
804
805         if (mode != MIGRATE_SYNC_NO_COPY)
806                 migrate_page_copy(newpage, page);
807         else
808                 migrate_page_states(newpage, page);
809
810         bh = head;
811         do {
812                 unlock_buffer(bh);
813                 put_bh(bh);
814                 bh = bh->b_this_page;
815
816         } while (bh != head);
817
818         return MIGRATEPAGE_SUCCESS;
819 }
820 EXPORT_SYMBOL(buffer_migrate_page);
821 #endif
822
823 /*
824  * Writeback a page to clean the dirty state
825  */
826 static int writeout(struct address_space *mapping, struct page *page)
827 {
828         struct writeback_control wbc = {
829                 .sync_mode = WB_SYNC_NONE,
830                 .nr_to_write = 1,
831                 .range_start = 0,
832                 .range_end = LLONG_MAX,
833                 .for_reclaim = 1
834         };
835         int rc;
836
837         if (!mapping->a_ops->writepage)
838                 /* No write method for the address space */
839                 return -EINVAL;
840
841         if (!clear_page_dirty_for_io(page))
842                 /* Someone else already triggered a write */
843                 return -EAGAIN;
844
845         /*
846          * A dirty page may imply that the underlying filesystem has
847          * the page on some queue. So the page must be clean for
848          * migration. Writeout may mean we loose the lock and the
849          * page state is no longer what we checked for earlier.
850          * At this point we know that the migration attempt cannot
851          * be successful.
852          */
853         remove_migration_ptes(page, page, false);
854
855         rc = mapping->a_ops->writepage(page, &wbc);
856
857         if (rc != AOP_WRITEPAGE_ACTIVATE)
858                 /* unlocked. Relock */
859                 lock_page(page);
860
861         return (rc < 0) ? -EIO : -EAGAIN;
862 }
863
864 /*
865  * Default handling if a filesystem does not provide a migration function.
866  */
867 static int fallback_migrate_page(struct address_space *mapping,
868         struct page *newpage, struct page *page, enum migrate_mode mode)
869 {
870         if (PageDirty(page)) {
871                 /* Only writeback pages in full synchronous migration */
872                 switch (mode) {
873                 case MIGRATE_SYNC:
874                 case MIGRATE_SYNC_NO_COPY:
875                         break;
876                 default:
877                         return -EBUSY;
878                 }
879                 return writeout(mapping, page);
880         }
881
882         /*
883          * Buffers may be managed in a filesystem specific way.
884          * We must have no buffers or drop them.
885          */
886         if (page_has_private(page) &&
887             !try_to_release_page(page, GFP_KERNEL))
888                 return -EAGAIN;
889
890         return migrate_page(mapping, newpage, page, mode);
891 }
892
893 /*
894  * Move a page to a newly allocated page
895  * The page is locked and all ptes have been successfully removed.
896  *
897  * The new page will have replaced the old page if this function
898  * is successful.
899  *
900  * Return value:
901  *   < 0 - error code
902  *  MIGRATEPAGE_SUCCESS - success
903  */
904 static int move_to_new_page(struct page *newpage, struct page *page,
905                                 enum migrate_mode mode)
906 {
907         struct address_space *mapping;
908         int rc = -EAGAIN;
909         bool is_lru = !__PageMovable(page);
910
911         VM_BUG_ON_PAGE(!PageLocked(page), page);
912         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
913
914         mapping = page_mapping(page);
915
916         if (likely(is_lru)) {
917                 if (!mapping)
918                         rc = migrate_page(mapping, newpage, page, mode);
919                 else if (mapping->a_ops->migratepage)
920                         /*
921                          * Most pages have a mapping and most filesystems
922                          * provide a migratepage callback. Anonymous pages
923                          * are part of swap space which also has its own
924                          * migratepage callback. This is the most common path
925                          * for page migration.
926                          */
927                         rc = mapping->a_ops->migratepage(mapping, newpage,
928                                                         page, mode);
929                 else
930                         rc = fallback_migrate_page(mapping, newpage,
931                                                         page, mode);
932         } else {
933                 /*
934                  * In case of non-lru page, it could be released after
935                  * isolation step. In that case, we shouldn't try migration.
936                  */
937                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
938                 if (!PageMovable(page)) {
939                         rc = MIGRATEPAGE_SUCCESS;
940                         __ClearPageIsolated(page);
941                         goto out;
942                 }
943
944                 rc = mapping->a_ops->migratepage(mapping, newpage,
945                                                 page, mode);
946                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947                         !PageIsolated(page));
948         }
949
950         /*
951          * When successful, old pagecache page->mapping must be cleared before
952          * page is freed; but stats require that PageAnon be left as PageAnon.
953          */
954         if (rc == MIGRATEPAGE_SUCCESS) {
955                 if (__PageMovable(page)) {
956                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
957
958                         /*
959                          * We clear PG_movable under page_lock so any compactor
960                          * cannot try to migrate this page.
961                          */
962                         __ClearPageIsolated(page);
963                 }
964
965                 /*
966                  * Anonymous and movable page->mapping will be cleard by
967                  * free_pages_prepare so don't reset it here for keeping
968                  * the type to work PageAnon, for example.
969                  */
970                 if (!PageMappingFlags(page))
971                         page->mapping = NULL;
972         }
973 out:
974         return rc;
975 }
976
977 static int __unmap_and_move(struct page *page, struct page *newpage,
978                                 int force, enum migrate_mode mode)
979 {
980         int rc = -EAGAIN;
981         int page_was_mapped = 0;
982         struct anon_vma *anon_vma = NULL;
983         bool is_lru = !__PageMovable(page);
984
985         if (!trylock_page(page)) {
986                 if (!force || mode == MIGRATE_ASYNC)
987                         goto out;
988
989                 /*
990                  * It's not safe for direct compaction to call lock_page.
991                  * For example, during page readahead pages are added locked
992                  * to the LRU. Later, when the IO completes the pages are
993                  * marked uptodate and unlocked. However, the queueing
994                  * could be merging multiple pages for one bio (e.g.
995                  * mpage_readpages). If an allocation happens for the
996                  * second or third page, the process can end up locking
997                  * the same page twice and deadlocking. Rather than
998                  * trying to be clever about what pages can be locked,
999                  * avoid the use of lock_page for direct compaction
1000                  * altogether.
1001                  */
1002                 if (current->flags & PF_MEMALLOC)
1003                         goto out;
1004
1005                 lock_page(page);
1006         }
1007
1008         if (PageWriteback(page)) {
1009                 /*
1010                  * Only in the case of a full synchronous migration is it
1011                  * necessary to wait for PageWriteback. In the async case,
1012                  * the retry loop is too short and in the sync-light case,
1013                  * the overhead of stalling is too much
1014                  */
1015                 switch (mode) {
1016                 case MIGRATE_SYNC:
1017                 case MIGRATE_SYNC_NO_COPY:
1018                         break;
1019                 default:
1020                         rc = -EBUSY;
1021                         goto out_unlock;
1022                 }
1023                 if (!force)
1024                         goto out_unlock;
1025                 wait_on_page_writeback(page);
1026         }
1027
1028         /*
1029          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1030          * we cannot notice that anon_vma is freed while we migrates a page.
1031          * This get_anon_vma() delays freeing anon_vma pointer until the end
1032          * of migration. File cache pages are no problem because of page_lock()
1033          * File Caches may use write_page() or lock_page() in migration, then,
1034          * just care Anon page here.
1035          *
1036          * Only page_get_anon_vma() understands the subtleties of
1037          * getting a hold on an anon_vma from outside one of its mms.
1038          * But if we cannot get anon_vma, then we won't need it anyway,
1039          * because that implies that the anon page is no longer mapped
1040          * (and cannot be remapped so long as we hold the page lock).
1041          */
1042         if (PageAnon(page) && !PageKsm(page))
1043                 anon_vma = page_get_anon_vma(page);
1044
1045         /*
1046          * Block others from accessing the new page when we get around to
1047          * establishing additional references. We are usually the only one
1048          * holding a reference to newpage at this point. We used to have a BUG
1049          * here if trylock_page(newpage) fails, but would like to allow for
1050          * cases where there might be a race with the previous use of newpage.
1051          * This is much like races on refcount of oldpage: just don't BUG().
1052          */
1053         if (unlikely(!trylock_page(newpage)))
1054                 goto out_unlock;
1055
1056         if (unlikely(!is_lru)) {
1057                 rc = move_to_new_page(newpage, page, mode);
1058                 goto out_unlock_both;
1059         }
1060
1061         /*
1062          * Corner case handling:
1063          * 1. When a new swap-cache page is read into, it is added to the LRU
1064          * and treated as swapcache but it has no rmap yet.
1065          * Calling try_to_unmap() against a page->mapping==NULL page will
1066          * trigger a BUG.  So handle it here.
1067          * 2. An orphaned page (see truncate_complete_page) might have
1068          * fs-private metadata. The page can be picked up due to memory
1069          * offlining.  Everywhere else except page reclaim, the page is
1070          * invisible to the vm, so the page can not be migrated.  So try to
1071          * free the metadata, so the page can be freed.
1072          */
1073         if (!page->mapping) {
1074                 VM_BUG_ON_PAGE(PageAnon(page), page);
1075                 if (page_has_private(page)) {
1076                         try_to_free_buffers(page);
1077                         goto out_unlock_both;
1078                 }
1079         } else if (page_mapped(page)) {
1080                 /* Establish migration ptes */
1081                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1082                                 page);
1083                 try_to_unmap(page,
1084                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1085                 page_was_mapped = 1;
1086         }
1087
1088         if (!page_mapped(page))
1089                 rc = move_to_new_page(newpage, page, mode);
1090
1091         if (page_was_mapped)
1092                 remove_migration_ptes(page,
1093                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1094
1095 out_unlock_both:
1096         unlock_page(newpage);
1097 out_unlock:
1098         /* Drop an anon_vma reference if we took one */
1099         if (anon_vma)
1100                 put_anon_vma(anon_vma);
1101         unlock_page(page);
1102 out:
1103         /*
1104          * If migration is successful, decrease refcount of the newpage
1105          * which will not free the page because new page owner increased
1106          * refcounter. As well, if it is LRU page, add the page to LRU
1107          * list in here.
1108          */
1109         if (rc == MIGRATEPAGE_SUCCESS) {
1110                 if (unlikely(__PageMovable(newpage)))
1111                         put_page(newpage);
1112                 else
1113                         putback_lru_page(newpage);
1114         }
1115
1116         return rc;
1117 }
1118
1119 /*
1120  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1121  * around it.
1122  */
1123 #if defined(CONFIG_ARM) && \
1124         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1125 #define ICE_noinline noinline
1126 #else
1127 #define ICE_noinline
1128 #endif
1129
1130 /*
1131  * Obtain the lock on page, remove all ptes and migrate the page
1132  * to the newly allocated page in newpage.
1133  */
1134 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1135                                    free_page_t put_new_page,
1136                                    unsigned long private, struct page *page,
1137                                    int force, enum migrate_mode mode,
1138                                    enum migrate_reason reason)
1139 {
1140         int rc = MIGRATEPAGE_SUCCESS;
1141         struct page *newpage;
1142
1143         if (!thp_migration_supported() && PageTransHuge(page))
1144                 return -ENOMEM;
1145
1146         newpage = get_new_page(page, private);
1147         if (!newpage)
1148                 return -ENOMEM;
1149
1150         if (page_count(page) == 1) {
1151                 /* page was freed from under us. So we are done. */
1152                 ClearPageActive(page);
1153                 ClearPageUnevictable(page);
1154                 if (unlikely(__PageMovable(page))) {
1155                         lock_page(page);
1156                         if (!PageMovable(page))
1157                                 __ClearPageIsolated(page);
1158                         unlock_page(page);
1159                 }
1160                 if (put_new_page)
1161                         put_new_page(newpage, private);
1162                 else
1163                         put_page(newpage);
1164                 goto out;
1165         }
1166
1167         rc = __unmap_and_move(page, newpage, force, mode);
1168         if (rc == MIGRATEPAGE_SUCCESS)
1169                 set_page_owner_migrate_reason(newpage, reason);
1170
1171 out:
1172         if (rc != -EAGAIN) {
1173                 /*
1174                  * A page that has been migrated has all references
1175                  * removed and will be freed. A page that has not been
1176                  * migrated will have kepts its references and be
1177                  * restored.
1178                  */
1179                 list_del(&page->lru);
1180
1181                 /*
1182                  * Compaction can migrate also non-LRU pages which are
1183                  * not accounted to NR_ISOLATED_*. They can be recognized
1184                  * as __PageMovable
1185                  */
1186                 if (likely(!__PageMovable(page)))
1187                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1188                                         page_is_file_cache(page), -hpage_nr_pages(page));
1189         }
1190
1191         /*
1192          * If migration is successful, releases reference grabbed during
1193          * isolation. Otherwise, restore the page to right list unless
1194          * we want to retry.
1195          */
1196         if (rc == MIGRATEPAGE_SUCCESS) {
1197                 put_page(page);
1198                 if (reason == MR_MEMORY_FAILURE) {
1199                         /*
1200                          * Set PG_HWPoison on just freed page
1201                          * intentionally. Although it's rather weird,
1202                          * it's how HWPoison flag works at the moment.
1203                          */
1204                         if (set_hwpoison_free_buddy_page(page))
1205                                 num_poisoned_pages_inc();
1206                 }
1207         } else {
1208                 if (rc != -EAGAIN) {
1209                         if (likely(!__PageMovable(page))) {
1210                                 putback_lru_page(page);
1211                                 goto put_new;
1212                         }
1213
1214                         lock_page(page);
1215                         if (PageMovable(page))
1216                                 putback_movable_page(page);
1217                         else
1218                                 __ClearPageIsolated(page);
1219                         unlock_page(page);
1220                         put_page(page);
1221                 }
1222 put_new:
1223                 if (put_new_page)
1224                         put_new_page(newpage, private);
1225                 else
1226                         put_page(newpage);
1227         }
1228
1229         return rc;
1230 }
1231
1232 /*
1233  * Counterpart of unmap_and_move_page() for hugepage migration.
1234  *
1235  * This function doesn't wait the completion of hugepage I/O
1236  * because there is no race between I/O and migration for hugepage.
1237  * Note that currently hugepage I/O occurs only in direct I/O
1238  * where no lock is held and PG_writeback is irrelevant,
1239  * and writeback status of all subpages are counted in the reference
1240  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1241  * under direct I/O, the reference of the head page is 512 and a bit more.)
1242  * This means that when we try to migrate hugepage whose subpages are
1243  * doing direct I/O, some references remain after try_to_unmap() and
1244  * hugepage migration fails without data corruption.
1245  *
1246  * There is also no race when direct I/O is issued on the page under migration,
1247  * because then pte is replaced with migration swap entry and direct I/O code
1248  * will wait in the page fault for migration to complete.
1249  */
1250 static int unmap_and_move_huge_page(new_page_t get_new_page,
1251                                 free_page_t put_new_page, unsigned long private,
1252                                 struct page *hpage, int force,
1253                                 enum migrate_mode mode, int reason)
1254 {
1255         int rc = -EAGAIN;
1256         int page_was_mapped = 0;
1257         struct page *new_hpage;
1258         struct anon_vma *anon_vma = NULL;
1259
1260         /*
1261          * Movability of hugepages depends on architectures and hugepage size.
1262          * This check is necessary because some callers of hugepage migration
1263          * like soft offline and memory hotremove don't walk through page
1264          * tables or check whether the hugepage is pmd-based or not before
1265          * kicking migration.
1266          */
1267         if (!hugepage_migration_supported(page_hstate(hpage))) {
1268                 putback_active_hugepage(hpage);
1269                 return -ENOSYS;
1270         }
1271
1272         new_hpage = get_new_page(hpage, private);
1273         if (!new_hpage)
1274                 return -ENOMEM;
1275
1276         if (!trylock_page(hpage)) {
1277                 if (!force)
1278                         goto out;
1279                 switch (mode) {
1280                 case MIGRATE_SYNC:
1281                 case MIGRATE_SYNC_NO_COPY:
1282                         break;
1283                 default:
1284                         goto out;
1285                 }
1286                 lock_page(hpage);
1287         }
1288
1289         if (PageAnon(hpage))
1290                 anon_vma = page_get_anon_vma(hpage);
1291
1292         if (unlikely(!trylock_page(new_hpage)))
1293                 goto put_anon;
1294
1295         if (page_mapped(hpage)) {
1296                 try_to_unmap(hpage,
1297                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1298                 page_was_mapped = 1;
1299         }
1300
1301         if (!page_mapped(hpage))
1302                 rc = move_to_new_page(new_hpage, hpage, mode);
1303
1304         if (page_was_mapped)
1305                 remove_migration_ptes(hpage,
1306                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1307
1308         unlock_page(new_hpage);
1309
1310 put_anon:
1311         if (anon_vma)
1312                 put_anon_vma(anon_vma);
1313
1314         if (rc == MIGRATEPAGE_SUCCESS) {
1315                 move_hugetlb_state(hpage, new_hpage, reason);
1316                 put_new_page = NULL;
1317         }
1318
1319         unlock_page(hpage);
1320 out:
1321         if (rc != -EAGAIN)
1322                 putback_active_hugepage(hpage);
1323
1324         /*
1325          * If migration was not successful and there's a freeing callback, use
1326          * it.  Otherwise, put_page() will drop the reference grabbed during
1327          * isolation.
1328          */
1329         if (put_new_page)
1330                 put_new_page(new_hpage, private);
1331         else
1332                 putback_active_hugepage(new_hpage);
1333
1334         return rc;
1335 }
1336
1337 /*
1338  * migrate_pages - migrate the pages specified in a list, to the free pages
1339  *                 supplied as the target for the page migration
1340  *
1341  * @from:               The list of pages to be migrated.
1342  * @get_new_page:       The function used to allocate free pages to be used
1343  *                      as the target of the page migration.
1344  * @put_new_page:       The function used to free target pages if migration
1345  *                      fails, or NULL if no special handling is necessary.
1346  * @private:            Private data to be passed on to get_new_page()
1347  * @mode:               The migration mode that specifies the constraints for
1348  *                      page migration, if any.
1349  * @reason:             The reason for page migration.
1350  *
1351  * The function returns after 10 attempts or if no pages are movable any more
1352  * because the list has become empty or no retryable pages exist any more.
1353  * The caller should call putback_movable_pages() to return pages to the LRU
1354  * or free list only if ret != 0.
1355  *
1356  * Returns the number of pages that were not migrated, or an error code.
1357  */
1358 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1359                 free_page_t put_new_page, unsigned long private,
1360                 enum migrate_mode mode, int reason)
1361 {
1362         int retry = 1;
1363         int nr_failed = 0;
1364         int nr_succeeded = 0;
1365         int pass = 0;
1366         struct page *page;
1367         struct page *page2;
1368         int swapwrite = current->flags & PF_SWAPWRITE;
1369         int rc;
1370
1371         if (!swapwrite)
1372                 current->flags |= PF_SWAPWRITE;
1373
1374         for(pass = 0; pass < 10 && retry; pass++) {
1375                 retry = 0;
1376
1377                 list_for_each_entry_safe(page, page2, from, lru) {
1378 retry:
1379                         cond_resched();
1380
1381                         if (PageHuge(page))
1382                                 rc = unmap_and_move_huge_page(get_new_page,
1383                                                 put_new_page, private, page,
1384                                                 pass > 2, mode, reason);
1385                         else
1386                                 rc = unmap_and_move(get_new_page, put_new_page,
1387                                                 private, page, pass > 2, mode,
1388                                                 reason);
1389
1390                         switch(rc) {
1391                         case -ENOMEM:
1392                                 /*
1393                                  * THP migration might be unsupported or the
1394                                  * allocation could've failed so we should
1395                                  * retry on the same page with the THP split
1396                                  * to base pages.
1397                                  *
1398                                  * Head page is retried immediately and tail
1399                                  * pages are added to the tail of the list so
1400                                  * we encounter them after the rest of the list
1401                                  * is processed.
1402                                  */
1403                                 if (PageTransHuge(page) && !PageHuge(page)) {
1404                                         lock_page(page);
1405                                         rc = split_huge_page_to_list(page, from);
1406                                         unlock_page(page);
1407                                         if (!rc) {
1408                                                 list_safe_reset_next(page, page2, lru);
1409                                                 goto retry;
1410                                         }
1411                                 }
1412                                 nr_failed++;
1413                                 goto out;
1414                         case -EAGAIN:
1415                                 retry++;
1416                                 break;
1417                         case MIGRATEPAGE_SUCCESS:
1418                                 nr_succeeded++;
1419                                 break;
1420                         default:
1421                                 /*
1422                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1423                                  * unlike -EAGAIN case, the failed page is
1424                                  * removed from migration page list and not
1425                                  * retried in the next outer loop.
1426                                  */
1427                                 nr_failed++;
1428                                 break;
1429                         }
1430                 }
1431         }
1432         nr_failed += retry;
1433         rc = nr_failed;
1434 out:
1435         if (nr_succeeded)
1436                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1437         if (nr_failed)
1438                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1439         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1440
1441         if (!swapwrite)
1442                 current->flags &= ~PF_SWAPWRITE;
1443
1444         return rc;
1445 }
1446
1447 #ifdef CONFIG_NUMA
1448
1449 static int store_status(int __user *status, int start, int value, int nr)
1450 {
1451         while (nr-- > 0) {
1452                 if (put_user(value, status + start))
1453                         return -EFAULT;
1454                 start++;
1455         }
1456
1457         return 0;
1458 }
1459
1460 static int do_move_pages_to_node(struct mm_struct *mm,
1461                 struct list_head *pagelist, int node)
1462 {
1463         int err;
1464
1465         if (list_empty(pagelist))
1466                 return 0;
1467
1468         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1469                         MIGRATE_SYNC, MR_SYSCALL);
1470         if (err)
1471                 putback_movable_pages(pagelist);
1472         return err;
1473 }
1474
1475 /*
1476  * Resolves the given address to a struct page, isolates it from the LRU and
1477  * puts it to the given pagelist.
1478  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1479  * queued or the page doesn't need to be migrated because it is already on
1480  * the target node
1481  */
1482 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1483                 int node, struct list_head *pagelist, bool migrate_all)
1484 {
1485         struct vm_area_struct *vma;
1486         struct page *page;
1487         unsigned int follflags;
1488         int err;
1489
1490         down_read(&mm->mmap_sem);
1491         err = -EFAULT;
1492         vma = find_vma(mm, addr);
1493         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1494                 goto out;
1495
1496         /* FOLL_DUMP to ignore special (like zero) pages */
1497         follflags = FOLL_GET | FOLL_DUMP;
1498         page = follow_page(vma, addr, follflags);
1499
1500         err = PTR_ERR(page);
1501         if (IS_ERR(page))
1502                 goto out;
1503
1504         err = -ENOENT;
1505         if (!page)
1506                 goto out;
1507
1508         err = 0;
1509         if (page_to_nid(page) == node)
1510                 goto out_putpage;
1511
1512         err = -EACCES;
1513         if (page_mapcount(page) > 1 && !migrate_all)
1514                 goto out_putpage;
1515
1516         if (PageHuge(page)) {
1517                 if (PageHead(page)) {
1518                         isolate_huge_page(page, pagelist);
1519                         err = 0;
1520                 }
1521         } else {
1522                 struct page *head;
1523
1524                 head = compound_head(page);
1525                 err = isolate_lru_page(head);
1526                 if (err)
1527                         goto out_putpage;
1528
1529                 err = 0;
1530                 list_add_tail(&head->lru, pagelist);
1531                 mod_node_page_state(page_pgdat(head),
1532                         NR_ISOLATED_ANON + page_is_file_cache(head),
1533                         hpage_nr_pages(head));
1534         }
1535 out_putpage:
1536         /*
1537          * Either remove the duplicate refcount from
1538          * isolate_lru_page() or drop the page ref if it was
1539          * not isolated.
1540          */
1541         put_page(page);
1542 out:
1543         up_read(&mm->mmap_sem);
1544         return err;
1545 }
1546
1547 /*
1548  * Migrate an array of page address onto an array of nodes and fill
1549  * the corresponding array of status.
1550  */
1551 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1552                          unsigned long nr_pages,
1553                          const void __user * __user *pages,
1554                          const int __user *nodes,
1555                          int __user *status, int flags)
1556 {
1557         int current_node = NUMA_NO_NODE;
1558         LIST_HEAD(pagelist);
1559         int start, i;
1560         int err = 0, err1;
1561
1562         migrate_prep();
1563
1564         for (i = start = 0; i < nr_pages; i++) {
1565                 const void __user *p;
1566                 unsigned long addr;
1567                 int node;
1568
1569                 err = -EFAULT;
1570                 if (get_user(p, pages + i))
1571                         goto out_flush;
1572                 if (get_user(node, nodes + i))
1573                         goto out_flush;
1574                 addr = (unsigned long)p;
1575
1576                 err = -ENODEV;
1577                 if (node < 0 || node >= MAX_NUMNODES)
1578                         goto out_flush;
1579                 if (!node_state(node, N_MEMORY))
1580                         goto out_flush;
1581
1582                 err = -EACCES;
1583                 if (!node_isset(node, task_nodes))
1584                         goto out_flush;
1585
1586                 if (current_node == NUMA_NO_NODE) {
1587                         current_node = node;
1588                         start = i;
1589                 } else if (node != current_node) {
1590                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1591                         if (err)
1592                                 goto out;
1593                         err = store_status(status, start, current_node, i - start);
1594                         if (err)
1595                                 goto out;
1596                         start = i;
1597                         current_node = node;
1598                 }
1599
1600                 /*
1601                  * Errors in the page lookup or isolation are not fatal and we simply
1602                  * report them via status
1603                  */
1604                 err = add_page_for_migration(mm, addr, current_node,
1605                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1606                 if (!err)
1607                         continue;
1608
1609                 err = store_status(status, i, err, 1);
1610                 if (err)
1611                         goto out_flush;
1612
1613                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1614                 if (err)
1615                         goto out;
1616                 if (i > start) {
1617                         err = store_status(status, start, current_node, i - start);
1618                         if (err)
1619                                 goto out;
1620                 }
1621                 current_node = NUMA_NO_NODE;
1622         }
1623 out_flush:
1624         if (list_empty(&pagelist))
1625                 return err;
1626
1627         /* Make sure we do not overwrite the existing error */
1628         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1629         if (!err1)
1630                 err1 = store_status(status, start, current_node, i - start);
1631         if (!err)
1632                 err = err1;
1633 out:
1634         return err;
1635 }
1636
1637 /*
1638  * Determine the nodes of an array of pages and store it in an array of status.
1639  */
1640 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1641                                 const void __user **pages, int *status)
1642 {
1643         unsigned long i;
1644
1645         down_read(&mm->mmap_sem);
1646
1647         for (i = 0; i < nr_pages; i++) {
1648                 unsigned long addr = (unsigned long)(*pages);
1649                 struct vm_area_struct *vma;
1650                 struct page *page;
1651                 int err = -EFAULT;
1652
1653                 vma = find_vma(mm, addr);
1654                 if (!vma || addr < vma->vm_start)
1655                         goto set_status;
1656
1657                 /* FOLL_DUMP to ignore special (like zero) pages */
1658                 page = follow_page(vma, addr, FOLL_DUMP);
1659
1660                 err = PTR_ERR(page);
1661                 if (IS_ERR(page))
1662                         goto set_status;
1663
1664                 err = page ? page_to_nid(page) : -ENOENT;
1665 set_status:
1666                 *status = err;
1667
1668                 pages++;
1669                 status++;
1670         }
1671
1672         up_read(&mm->mmap_sem);
1673 }
1674
1675 /*
1676  * Determine the nodes of a user array of pages and store it in
1677  * a user array of status.
1678  */
1679 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1680                          const void __user * __user *pages,
1681                          int __user *status)
1682 {
1683 #define DO_PAGES_STAT_CHUNK_NR 16
1684         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1685         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1686
1687         while (nr_pages) {
1688                 unsigned long chunk_nr;
1689
1690                 chunk_nr = nr_pages;
1691                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1692                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1693
1694                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1695                         break;
1696
1697                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1698
1699                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1700                         break;
1701
1702                 pages += chunk_nr;
1703                 status += chunk_nr;
1704                 nr_pages -= chunk_nr;
1705         }
1706         return nr_pages ? -EFAULT : 0;
1707 }
1708
1709 /*
1710  * Move a list of pages in the address space of the currently executing
1711  * process.
1712  */
1713 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1714                              const void __user * __user *pages,
1715                              const int __user *nodes,
1716                              int __user *status, int flags)
1717 {
1718         struct task_struct *task;
1719         struct mm_struct *mm;
1720         int err;
1721         nodemask_t task_nodes;
1722
1723         /* Check flags */
1724         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1725                 return -EINVAL;
1726
1727         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1728                 return -EPERM;
1729
1730         /* Find the mm_struct */
1731         rcu_read_lock();
1732         task = pid ? find_task_by_vpid(pid) : current;
1733         if (!task) {
1734                 rcu_read_unlock();
1735                 return -ESRCH;
1736         }
1737         get_task_struct(task);
1738
1739         /*
1740          * Check if this process has the right to modify the specified
1741          * process. Use the regular "ptrace_may_access()" checks.
1742          */
1743         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1744                 rcu_read_unlock();
1745                 err = -EPERM;
1746                 goto out;
1747         }
1748         rcu_read_unlock();
1749
1750         err = security_task_movememory(task);
1751         if (err)
1752                 goto out;
1753
1754         task_nodes = cpuset_mems_allowed(task);
1755         mm = get_task_mm(task);
1756         put_task_struct(task);
1757
1758         if (!mm)
1759                 return -EINVAL;
1760
1761         if (nodes)
1762                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1763                                     nodes, status, flags);
1764         else
1765                 err = do_pages_stat(mm, nr_pages, pages, status);
1766
1767         mmput(mm);
1768         return err;
1769
1770 out:
1771         put_task_struct(task);
1772         return err;
1773 }
1774
1775 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1776                 const void __user * __user *, pages,
1777                 const int __user *, nodes,
1778                 int __user *, status, int, flags)
1779 {
1780         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1781 }
1782
1783 #ifdef CONFIG_COMPAT
1784 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1785                        compat_uptr_t __user *, pages32,
1786                        const int __user *, nodes,
1787                        int __user *, status,
1788                        int, flags)
1789 {
1790         const void __user * __user *pages;
1791         int i;
1792
1793         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1794         for (i = 0; i < nr_pages; i++) {
1795                 compat_uptr_t p;
1796
1797                 if (get_user(p, pages32 + i) ||
1798                         put_user(compat_ptr(p), pages + i))
1799                         return -EFAULT;
1800         }
1801         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1802 }
1803 #endif /* CONFIG_COMPAT */
1804
1805 #ifdef CONFIG_NUMA_BALANCING
1806 /*
1807  * Returns true if this is a safe migration target node for misplaced NUMA
1808  * pages. Currently it only checks the watermarks which crude
1809  */
1810 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1811                                    unsigned long nr_migrate_pages)
1812 {
1813         int z;
1814
1815         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1816                 struct zone *zone = pgdat->node_zones + z;
1817
1818                 if (!populated_zone(zone))
1819                         continue;
1820
1821                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1822                 if (!zone_watermark_ok(zone, 0,
1823                                        high_wmark_pages(zone) +
1824                                        nr_migrate_pages,
1825                                        0, 0))
1826                         continue;
1827                 return true;
1828         }
1829         return false;
1830 }
1831
1832 static struct page *alloc_misplaced_dst_page(struct page *page,
1833                                            unsigned long data)
1834 {
1835         int nid = (int) data;
1836         struct page *newpage;
1837
1838         newpage = __alloc_pages_node(nid,
1839                                          (GFP_HIGHUSER_MOVABLE |
1840                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1841                                           __GFP_NORETRY | __GFP_NOWARN) &
1842                                          ~__GFP_RECLAIM, 0);
1843
1844         return newpage;
1845 }
1846
1847 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1848 {
1849         int page_lru;
1850
1851         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1852
1853         /* Avoid migrating to a node that is nearly full */
1854         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1855                 return 0;
1856
1857         if (isolate_lru_page(page))
1858                 return 0;
1859
1860         /*
1861          * migrate_misplaced_transhuge_page() skips page migration's usual
1862          * check on page_count(), so we must do it here, now that the page
1863          * has been isolated: a GUP pin, or any other pin, prevents migration.
1864          * The expected page count is 3: 1 for page's mapcount and 1 for the
1865          * caller's pin and 1 for the reference taken by isolate_lru_page().
1866          */
1867         if (PageTransHuge(page) && page_count(page) != 3) {
1868                 putback_lru_page(page);
1869                 return 0;
1870         }
1871
1872         page_lru = page_is_file_cache(page);
1873         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1874                                 hpage_nr_pages(page));
1875
1876         /*
1877          * Isolating the page has taken another reference, so the
1878          * caller's reference can be safely dropped without the page
1879          * disappearing underneath us during migration.
1880          */
1881         put_page(page);
1882         return 1;
1883 }
1884
1885 bool pmd_trans_migrating(pmd_t pmd)
1886 {
1887         struct page *page = pmd_page(pmd);
1888         return PageLocked(page);
1889 }
1890
1891 /*
1892  * Attempt to migrate a misplaced page to the specified destination
1893  * node. Caller is expected to have an elevated reference count on
1894  * the page that will be dropped by this function before returning.
1895  */
1896 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1897                            int node)
1898 {
1899         pg_data_t *pgdat = NODE_DATA(node);
1900         int isolated;
1901         int nr_remaining;
1902         LIST_HEAD(migratepages);
1903
1904         /*
1905          * Don't migrate file pages that are mapped in multiple processes
1906          * with execute permissions as they are probably shared libraries.
1907          */
1908         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1909             (vma->vm_flags & VM_EXEC))
1910                 goto out;
1911
1912         /*
1913          * Also do not migrate dirty pages as not all filesystems can move
1914          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1915          */
1916         if (page_is_file_cache(page) && PageDirty(page))
1917                 goto out;
1918
1919         isolated = numamigrate_isolate_page(pgdat, page);
1920         if (!isolated)
1921                 goto out;
1922
1923         list_add(&page->lru, &migratepages);
1924         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1925                                      NULL, node, MIGRATE_ASYNC,
1926                                      MR_NUMA_MISPLACED);
1927         if (nr_remaining) {
1928                 if (!list_empty(&migratepages)) {
1929                         list_del(&page->lru);
1930                         dec_node_page_state(page, NR_ISOLATED_ANON +
1931                                         page_is_file_cache(page));
1932                         putback_lru_page(page);
1933                 }
1934                 isolated = 0;
1935         } else
1936                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1937         BUG_ON(!list_empty(&migratepages));
1938         return isolated;
1939
1940 out:
1941         put_page(page);
1942         return 0;
1943 }
1944 #endif /* CONFIG_NUMA_BALANCING */
1945
1946 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1947 /*
1948  * Migrates a THP to a given target node. page must be locked and is unlocked
1949  * before returning.
1950  */
1951 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1952                                 struct vm_area_struct *vma,
1953                                 pmd_t *pmd, pmd_t entry,
1954                                 unsigned long address,
1955                                 struct page *page, int node)
1956 {
1957         spinlock_t *ptl;
1958         pg_data_t *pgdat = NODE_DATA(node);
1959         int isolated = 0;
1960         struct page *new_page = NULL;
1961         int page_lru = page_is_file_cache(page);
1962         unsigned long start = address & HPAGE_PMD_MASK;
1963
1964         new_page = alloc_pages_node(node,
1965                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1966                 HPAGE_PMD_ORDER);
1967         if (!new_page)
1968                 goto out_fail;
1969         prep_transhuge_page(new_page);
1970
1971         isolated = numamigrate_isolate_page(pgdat, page);
1972         if (!isolated) {
1973                 put_page(new_page);
1974                 goto out_fail;
1975         }
1976
1977         /* Prepare a page as a migration target */
1978         __SetPageLocked(new_page);
1979         if (PageSwapBacked(page))
1980                 __SetPageSwapBacked(new_page);
1981
1982         /* anon mapping, we can simply copy page->mapping to the new page: */
1983         new_page->mapping = page->mapping;
1984         new_page->index = page->index;
1985         /* flush the cache before copying using the kernel virtual address */
1986         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
1987         migrate_page_copy(new_page, page);
1988         WARN_ON(PageLRU(new_page));
1989
1990         /* Recheck the target PMD */
1991         ptl = pmd_lock(mm, pmd);
1992         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
1993                 spin_unlock(ptl);
1994
1995                 /* Reverse changes made by migrate_page_copy() */
1996                 if (TestClearPageActive(new_page))
1997                         SetPageActive(page);
1998                 if (TestClearPageUnevictable(new_page))
1999                         SetPageUnevictable(page);
2000
2001                 unlock_page(new_page);
2002                 put_page(new_page);             /* Free it */
2003
2004                 /* Retake the callers reference and putback on LRU */
2005                 get_page(page);
2006                 putback_lru_page(page);
2007                 mod_node_page_state(page_pgdat(page),
2008                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2009
2010                 goto out_unlock;
2011         }
2012
2013         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2014         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2015
2016         /*
2017          * Overwrite the old entry under pagetable lock and establish
2018          * the new PTE. Any parallel GUP will either observe the old
2019          * page blocking on the page lock, block on the page table
2020          * lock or observe the new page. The SetPageUptodate on the
2021          * new page and page_add_new_anon_rmap guarantee the copy is
2022          * visible before the pagetable update.
2023          */
2024         page_add_anon_rmap(new_page, vma, start, true);
2025         /*
2026          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2027          * has already been flushed globally.  So no TLB can be currently
2028          * caching this non present pmd mapping.  There's no need to clear the
2029          * pmd before doing set_pmd_at(), nor to flush the TLB after
2030          * set_pmd_at().  Clearing the pmd here would introduce a race
2031          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2032          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2033          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2034          * pmd.
2035          */
2036         set_pmd_at(mm, start, pmd, entry);
2037         update_mmu_cache_pmd(vma, address, &entry);
2038
2039         page_ref_unfreeze(page, 2);
2040         mlock_migrate_page(new_page, page);
2041         page_remove_rmap(page, true);
2042         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2043
2044         spin_unlock(ptl);
2045
2046         /* Take an "isolate" reference and put new page on the LRU. */
2047         get_page(new_page);
2048         putback_lru_page(new_page);
2049
2050         unlock_page(new_page);
2051         unlock_page(page);
2052         put_page(page);                 /* Drop the rmap reference */
2053         put_page(page);                 /* Drop the LRU isolation reference */
2054
2055         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2056         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2057
2058         mod_node_page_state(page_pgdat(page),
2059                         NR_ISOLATED_ANON + page_lru,
2060                         -HPAGE_PMD_NR);
2061         return isolated;
2062
2063 out_fail:
2064         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2065         ptl = pmd_lock(mm, pmd);
2066         if (pmd_same(*pmd, entry)) {
2067                 entry = pmd_modify(entry, vma->vm_page_prot);
2068                 set_pmd_at(mm, start, pmd, entry);
2069                 update_mmu_cache_pmd(vma, address, &entry);
2070         }
2071         spin_unlock(ptl);
2072
2073 out_unlock:
2074         unlock_page(page);
2075         put_page(page);
2076         return 0;
2077 }
2078 #endif /* CONFIG_NUMA_BALANCING */
2079
2080 #endif /* CONFIG_NUMA */
2081
2082 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2083 struct migrate_vma {
2084         struct vm_area_struct   *vma;
2085         unsigned long           *dst;
2086         unsigned long           *src;
2087         unsigned long           cpages;
2088         unsigned long           npages;
2089         unsigned long           start;
2090         unsigned long           end;
2091 };
2092
2093 static int migrate_vma_collect_hole(unsigned long start,
2094                                     unsigned long end,
2095                                     struct mm_walk *walk)
2096 {
2097         struct migrate_vma *migrate = walk->private;
2098         unsigned long addr;
2099
2100         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2101                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2102                 migrate->dst[migrate->npages] = 0;
2103                 migrate->npages++;
2104                 migrate->cpages++;
2105         }
2106
2107         return 0;
2108 }
2109
2110 static int migrate_vma_collect_skip(unsigned long start,
2111                                     unsigned long end,
2112                                     struct mm_walk *walk)
2113 {
2114         struct migrate_vma *migrate = walk->private;
2115         unsigned long addr;
2116
2117         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2118                 migrate->dst[migrate->npages] = 0;
2119                 migrate->src[migrate->npages++] = 0;
2120         }
2121
2122         return 0;
2123 }
2124
2125 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2126                                    unsigned long start,
2127                                    unsigned long end,
2128                                    struct mm_walk *walk)
2129 {
2130         struct migrate_vma *migrate = walk->private;
2131         struct vm_area_struct *vma = walk->vma;
2132         struct mm_struct *mm = vma->vm_mm;
2133         unsigned long addr = start, unmapped = 0;
2134         spinlock_t *ptl;
2135         pte_t *ptep;
2136
2137 again:
2138         if (pmd_none(*pmdp))
2139                 return migrate_vma_collect_hole(start, end, walk);
2140
2141         if (pmd_trans_huge(*pmdp)) {
2142                 struct page *page;
2143
2144                 ptl = pmd_lock(mm, pmdp);
2145                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2146                         spin_unlock(ptl);
2147                         goto again;
2148                 }
2149
2150                 page = pmd_page(*pmdp);
2151                 if (is_huge_zero_page(page)) {
2152                         spin_unlock(ptl);
2153                         split_huge_pmd(vma, pmdp, addr);
2154                         if (pmd_trans_unstable(pmdp))
2155                                 return migrate_vma_collect_skip(start, end,
2156                                                                 walk);
2157                 } else {
2158                         int ret;
2159
2160                         get_page(page);
2161                         spin_unlock(ptl);
2162                         if (unlikely(!trylock_page(page)))
2163                                 return migrate_vma_collect_skip(start, end,
2164                                                                 walk);
2165                         ret = split_huge_page(page);
2166                         unlock_page(page);
2167                         put_page(page);
2168                         if (ret)
2169                                 return migrate_vma_collect_skip(start, end,
2170                                                                 walk);
2171                         if (pmd_none(*pmdp))
2172                                 return migrate_vma_collect_hole(start, end,
2173                                                                 walk);
2174                 }
2175         }
2176
2177         if (unlikely(pmd_bad(*pmdp)))
2178                 return migrate_vma_collect_skip(start, end, walk);
2179
2180         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2181         arch_enter_lazy_mmu_mode();
2182
2183         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2184                 unsigned long mpfn, pfn;
2185                 struct page *page;
2186                 swp_entry_t entry;
2187                 pte_t pte;
2188
2189                 pte = *ptep;
2190                 pfn = pte_pfn(pte);
2191
2192                 if (pte_none(pte)) {
2193                         mpfn = MIGRATE_PFN_MIGRATE;
2194                         migrate->cpages++;
2195                         pfn = 0;
2196                         goto next;
2197                 }
2198
2199                 if (!pte_present(pte)) {
2200                         mpfn = pfn = 0;
2201
2202                         /*
2203                          * Only care about unaddressable device page special
2204                          * page table entry. Other special swap entries are not
2205                          * migratable, and we ignore regular swapped page.
2206                          */
2207                         entry = pte_to_swp_entry(pte);
2208                         if (!is_device_private_entry(entry))
2209                                 goto next;
2210
2211                         page = device_private_entry_to_page(entry);
2212                         mpfn = migrate_pfn(page_to_pfn(page))|
2213                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2214                         if (is_write_device_private_entry(entry))
2215                                 mpfn |= MIGRATE_PFN_WRITE;
2216                 } else {
2217                         if (is_zero_pfn(pfn)) {
2218                                 mpfn = MIGRATE_PFN_MIGRATE;
2219                                 migrate->cpages++;
2220                                 pfn = 0;
2221                                 goto next;
2222                         }
2223                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2224                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2225                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2226                 }
2227
2228                 /* FIXME support THP */
2229                 if (!page || !page->mapping || PageTransCompound(page)) {
2230                         mpfn = pfn = 0;
2231                         goto next;
2232                 }
2233                 pfn = page_to_pfn(page);
2234
2235                 /*
2236                  * By getting a reference on the page we pin it and that blocks
2237                  * any kind of migration. Side effect is that it "freezes" the
2238                  * pte.
2239                  *
2240                  * We drop this reference after isolating the page from the lru
2241                  * for non device page (device page are not on the lru and thus
2242                  * can't be dropped from it).
2243                  */
2244                 get_page(page);
2245                 migrate->cpages++;
2246
2247                 /*
2248                  * Optimize for the common case where page is only mapped once
2249                  * in one process. If we can lock the page, then we can safely
2250                  * set up a special migration page table entry now.
2251                  */
2252                 if (trylock_page(page)) {
2253                         pte_t swp_pte;
2254
2255                         mpfn |= MIGRATE_PFN_LOCKED;
2256                         ptep_get_and_clear(mm, addr, ptep);
2257
2258                         /* Setup special migration page table entry */
2259                         entry = make_migration_entry(page, mpfn &
2260                                                      MIGRATE_PFN_WRITE);
2261                         swp_pte = swp_entry_to_pte(entry);
2262                         if (pte_soft_dirty(pte))
2263                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2264                         set_pte_at(mm, addr, ptep, swp_pte);
2265
2266                         /*
2267                          * This is like regular unmap: we remove the rmap and
2268                          * drop page refcount. Page won't be freed, as we took
2269                          * a reference just above.
2270                          */
2271                         page_remove_rmap(page, false);
2272                         put_page(page);
2273
2274                         if (pte_present(pte))
2275                                 unmapped++;
2276                 }
2277
2278 next:
2279                 migrate->dst[migrate->npages] = 0;
2280                 migrate->src[migrate->npages++] = mpfn;
2281         }
2282         arch_leave_lazy_mmu_mode();
2283         pte_unmap_unlock(ptep - 1, ptl);
2284
2285         /* Only flush the TLB if we actually modified any entries */
2286         if (unmapped)
2287                 flush_tlb_range(walk->vma, start, end);
2288
2289         return 0;
2290 }
2291
2292 /*
2293  * migrate_vma_collect() - collect pages over a range of virtual addresses
2294  * @migrate: migrate struct containing all migration information
2295  *
2296  * This will walk the CPU page table. For each virtual address backed by a
2297  * valid page, it updates the src array and takes a reference on the page, in
2298  * order to pin the page until we lock it and unmap it.
2299  */
2300 static void migrate_vma_collect(struct migrate_vma *migrate)
2301 {
2302         struct mmu_notifier_range range;
2303         struct mm_walk mm_walk;
2304
2305         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2306         mm_walk.pte_entry = NULL;
2307         mm_walk.pte_hole = migrate_vma_collect_hole;
2308         mm_walk.hugetlb_entry = NULL;
2309         mm_walk.test_walk = NULL;
2310         mm_walk.vma = migrate->vma;
2311         mm_walk.mm = migrate->vma->vm_mm;
2312         mm_walk.private = migrate;
2313
2314         mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2315                                 migrate->end);
2316         mmu_notifier_invalidate_range_start(&range);
2317         walk_page_range(migrate->start, migrate->end, &mm_walk);
2318         mmu_notifier_invalidate_range_end(&range);
2319
2320         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2321 }
2322
2323 /*
2324  * migrate_vma_check_page() - check if page is pinned or not
2325  * @page: struct page to check
2326  *
2327  * Pinned pages cannot be migrated. This is the same test as in
2328  * migrate_page_move_mapping(), except that here we allow migration of a
2329  * ZONE_DEVICE page.
2330  */
2331 static bool migrate_vma_check_page(struct page *page)
2332 {
2333         /*
2334          * One extra ref because caller holds an extra reference, either from
2335          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2336          * a device page.
2337          */
2338         int extra = 1;
2339
2340         /*
2341          * FIXME support THP (transparent huge page), it is bit more complex to
2342          * check them than regular pages, because they can be mapped with a pmd
2343          * or with a pte (split pte mapping).
2344          */
2345         if (PageCompound(page))
2346                 return false;
2347
2348         /* Page from ZONE_DEVICE have one extra reference */
2349         if (is_zone_device_page(page)) {
2350                 /*
2351                  * Private page can never be pin as they have no valid pte and
2352                  * GUP will fail for those. Yet if there is a pending migration
2353                  * a thread might try to wait on the pte migration entry and
2354                  * will bump the page reference count. Sadly there is no way to
2355                  * differentiate a regular pin from migration wait. Hence to
2356                  * avoid 2 racing thread trying to migrate back to CPU to enter
2357                  * infinite loop (one stoping migration because the other is
2358                  * waiting on pte migration entry). We always return true here.
2359                  *
2360                  * FIXME proper solution is to rework migration_entry_wait() so
2361                  * it does not need to take a reference on page.
2362                  */
2363                 if (is_device_private_page(page))
2364                         return true;
2365
2366                 /*
2367                  * Only allow device public page to be migrated and account for
2368                  * the extra reference count imply by ZONE_DEVICE pages.
2369                  */
2370                 if (!is_device_public_page(page))
2371                         return false;
2372                 extra++;
2373         }
2374
2375         /* For file back page */
2376         if (page_mapping(page))
2377                 extra += 1 + page_has_private(page);
2378
2379         if ((page_count(page) - extra) > page_mapcount(page))
2380                 return false;
2381
2382         return true;
2383 }
2384
2385 /*
2386  * migrate_vma_prepare() - lock pages and isolate them from the lru
2387  * @migrate: migrate struct containing all migration information
2388  *
2389  * This locks pages that have been collected by migrate_vma_collect(). Once each
2390  * page is locked it is isolated from the lru (for non-device pages). Finally,
2391  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2392  * migrated by concurrent kernel threads.
2393  */
2394 static void migrate_vma_prepare(struct migrate_vma *migrate)
2395 {
2396         const unsigned long npages = migrate->npages;
2397         const unsigned long start = migrate->start;
2398         unsigned long addr, i, restore = 0;
2399         bool allow_drain = true;
2400
2401         lru_add_drain();
2402
2403         for (i = 0; (i < npages) && migrate->cpages; i++) {
2404                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2405                 bool remap = true;
2406
2407                 if (!page)
2408                         continue;
2409
2410                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2411                         /*
2412                          * Because we are migrating several pages there can be
2413                          * a deadlock between 2 concurrent migration where each
2414                          * are waiting on each other page lock.
2415                          *
2416                          * Make migrate_vma() a best effort thing and backoff
2417                          * for any page we can not lock right away.
2418                          */
2419                         if (!trylock_page(page)) {
2420                                 migrate->src[i] = 0;
2421                                 migrate->cpages--;
2422                                 put_page(page);
2423                                 continue;
2424                         }
2425                         remap = false;
2426                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2427                 }
2428
2429                 /* ZONE_DEVICE pages are not on LRU */
2430                 if (!is_zone_device_page(page)) {
2431                         if (!PageLRU(page) && allow_drain) {
2432                                 /* Drain CPU's pagevec */
2433                                 lru_add_drain_all();
2434                                 allow_drain = false;
2435                         }
2436
2437                         if (isolate_lru_page(page)) {
2438                                 if (remap) {
2439                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2440                                         migrate->cpages--;
2441                                         restore++;
2442                                 } else {
2443                                         migrate->src[i] = 0;
2444                                         unlock_page(page);
2445                                         migrate->cpages--;
2446                                         put_page(page);
2447                                 }
2448                                 continue;
2449                         }
2450
2451                         /* Drop the reference we took in collect */
2452                         put_page(page);
2453                 }
2454
2455                 if (!migrate_vma_check_page(page)) {
2456                         if (remap) {
2457                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2458                                 migrate->cpages--;
2459                                 restore++;
2460
2461                                 if (!is_zone_device_page(page)) {
2462                                         get_page(page);
2463                                         putback_lru_page(page);
2464                                 }
2465                         } else {
2466                                 migrate->src[i] = 0;
2467                                 unlock_page(page);
2468                                 migrate->cpages--;
2469
2470                                 if (!is_zone_device_page(page))
2471                                         putback_lru_page(page);
2472                                 else
2473                                         put_page(page);
2474                         }
2475                 }
2476         }
2477
2478         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2479                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2480
2481                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2482                         continue;
2483
2484                 remove_migration_pte(page, migrate->vma, addr, page);
2485
2486                 migrate->src[i] = 0;
2487                 unlock_page(page);
2488                 put_page(page);
2489                 restore--;
2490         }
2491 }
2492
2493 /*
2494  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2495  * @migrate: migrate struct containing all migration information
2496  *
2497  * Replace page mapping (CPU page table pte) with a special migration pte entry
2498  * and check again if it has been pinned. Pinned pages are restored because we
2499  * cannot migrate them.
2500  *
2501  * This is the last step before we call the device driver callback to allocate
2502  * destination memory and copy contents of original page over to new page.
2503  */
2504 static void migrate_vma_unmap(struct migrate_vma *migrate)
2505 {
2506         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2507         const unsigned long npages = migrate->npages;
2508         const unsigned long start = migrate->start;
2509         unsigned long addr, i, restore = 0;
2510
2511         for (i = 0; i < npages; i++) {
2512                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2513
2514                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2515                         continue;
2516
2517                 if (page_mapped(page)) {
2518                         try_to_unmap(page, flags);
2519                         if (page_mapped(page))
2520                                 goto restore;
2521                 }
2522
2523                 if (migrate_vma_check_page(page))
2524                         continue;
2525
2526 restore:
2527                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2528                 migrate->cpages--;
2529                 restore++;
2530         }
2531
2532         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2533                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2534
2535                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2536                         continue;
2537
2538                 remove_migration_ptes(page, page, false);
2539
2540                 migrate->src[i] = 0;
2541                 unlock_page(page);
2542                 restore--;
2543
2544                 if (is_zone_device_page(page))
2545                         put_page(page);
2546                 else
2547                         putback_lru_page(page);
2548         }
2549 }
2550
2551 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2552                                     unsigned long addr,
2553                                     struct page *page,
2554                                     unsigned long *src,
2555                                     unsigned long *dst)
2556 {
2557         struct vm_area_struct *vma = migrate->vma;
2558         struct mm_struct *mm = vma->vm_mm;
2559         struct mem_cgroup *memcg;
2560         bool flush = false;
2561         spinlock_t *ptl;
2562         pte_t entry;
2563         pgd_t *pgdp;
2564         p4d_t *p4dp;
2565         pud_t *pudp;
2566         pmd_t *pmdp;
2567         pte_t *ptep;
2568
2569         /* Only allow populating anonymous memory */
2570         if (!vma_is_anonymous(vma))
2571                 goto abort;
2572
2573         pgdp = pgd_offset(mm, addr);
2574         p4dp = p4d_alloc(mm, pgdp, addr);
2575         if (!p4dp)
2576                 goto abort;
2577         pudp = pud_alloc(mm, p4dp, addr);
2578         if (!pudp)
2579                 goto abort;
2580         pmdp = pmd_alloc(mm, pudp, addr);
2581         if (!pmdp)
2582                 goto abort;
2583
2584         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2585                 goto abort;
2586
2587         /*
2588          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2589          * pte_offset_map() on pmds where a huge pmd might be created
2590          * from a different thread.
2591          *
2592          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2593          * parallel threads are excluded by other means.
2594          *
2595          * Here we only have down_read(mmap_sem).
2596          */
2597         if (pte_alloc(mm, pmdp, addr))
2598                 goto abort;
2599
2600         /* See the comment in pte_alloc_one_map() */
2601         if (unlikely(pmd_trans_unstable(pmdp)))
2602                 goto abort;
2603
2604         if (unlikely(anon_vma_prepare(vma)))
2605                 goto abort;
2606         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2607                 goto abort;
2608
2609         /*
2610          * The memory barrier inside __SetPageUptodate makes sure that
2611          * preceding stores to the page contents become visible before
2612          * the set_pte_at() write.
2613          */
2614         __SetPageUptodate(page);
2615
2616         if (is_zone_device_page(page)) {
2617                 if (is_device_private_page(page)) {
2618                         swp_entry_t swp_entry;
2619
2620                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2621                         entry = swp_entry_to_pte(swp_entry);
2622                 } else if (is_device_public_page(page)) {
2623                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2624                         if (vma->vm_flags & VM_WRITE)
2625                                 entry = pte_mkwrite(pte_mkdirty(entry));
2626                         entry = pte_mkdevmap(entry);
2627                 }
2628         } else {
2629                 entry = mk_pte(page, vma->vm_page_prot);
2630                 if (vma->vm_flags & VM_WRITE)
2631                         entry = pte_mkwrite(pte_mkdirty(entry));
2632         }
2633
2634         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2635
2636         if (pte_present(*ptep)) {
2637                 unsigned long pfn = pte_pfn(*ptep);
2638
2639                 if (!is_zero_pfn(pfn)) {
2640                         pte_unmap_unlock(ptep, ptl);
2641                         mem_cgroup_cancel_charge(page, memcg, false);
2642                         goto abort;
2643                 }
2644                 flush = true;
2645         } else if (!pte_none(*ptep)) {
2646                 pte_unmap_unlock(ptep, ptl);
2647                 mem_cgroup_cancel_charge(page, memcg, false);
2648                 goto abort;
2649         }
2650
2651         /*
2652          * Check for usefaultfd but do not deliver the fault. Instead,
2653          * just back off.
2654          */
2655         if (userfaultfd_missing(vma)) {
2656                 pte_unmap_unlock(ptep, ptl);
2657                 mem_cgroup_cancel_charge(page, memcg, false);
2658                 goto abort;
2659         }
2660
2661         inc_mm_counter(mm, MM_ANONPAGES);
2662         page_add_new_anon_rmap(page, vma, addr, false);
2663         mem_cgroup_commit_charge(page, memcg, false, false);
2664         if (!is_zone_device_page(page))
2665                 lru_cache_add_active_or_unevictable(page, vma);
2666         get_page(page);
2667
2668         if (flush) {
2669                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2670                 ptep_clear_flush_notify(vma, addr, ptep);
2671                 set_pte_at_notify(mm, addr, ptep, entry);
2672                 update_mmu_cache(vma, addr, ptep);
2673         } else {
2674                 /* No need to invalidate - it was non-present before */
2675                 set_pte_at(mm, addr, ptep, entry);
2676                 update_mmu_cache(vma, addr, ptep);
2677         }
2678
2679         pte_unmap_unlock(ptep, ptl);
2680         *src = MIGRATE_PFN_MIGRATE;
2681         return;
2682
2683 abort:
2684         *src &= ~MIGRATE_PFN_MIGRATE;
2685 }
2686
2687 /*
2688  * migrate_vma_pages() - migrate meta-data from src page to dst page
2689  * @migrate: migrate struct containing all migration information
2690  *
2691  * This migrates struct page meta-data from source struct page to destination
2692  * struct page. This effectively finishes the migration from source page to the
2693  * destination page.
2694  */
2695 static void migrate_vma_pages(struct migrate_vma *migrate)
2696 {
2697         const unsigned long npages = migrate->npages;
2698         const unsigned long start = migrate->start;
2699         struct mmu_notifier_range range;
2700         unsigned long addr, i;
2701         bool notified = false;
2702
2703         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2704                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2705                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2706                 struct address_space *mapping;
2707                 int r;
2708
2709                 if (!newpage) {
2710                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2711                         continue;
2712                 }
2713
2714                 if (!page) {
2715                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2716                                 continue;
2717                         }
2718                         if (!notified) {
2719                                 notified = true;
2720
2721                                 mmu_notifier_range_init(&range,
2722                                                         migrate->vma->vm_mm,
2723                                                         addr, migrate->end);
2724                                 mmu_notifier_invalidate_range_start(&range);
2725                         }
2726                         migrate_vma_insert_page(migrate, addr, newpage,
2727                                                 &migrate->src[i],
2728                                                 &migrate->dst[i]);
2729                         continue;
2730                 }
2731
2732                 mapping = page_mapping(page);
2733
2734                 if (is_zone_device_page(newpage)) {
2735                         if (is_device_private_page(newpage)) {
2736                                 /*
2737                                  * For now only support private anonymous when
2738                                  * migrating to un-addressable device memory.
2739                                  */
2740                                 if (mapping) {
2741                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2742                                         continue;
2743                                 }
2744                         } else if (!is_device_public_page(newpage)) {
2745                                 /*
2746                                  * Other types of ZONE_DEVICE page are not
2747                                  * supported.
2748                                  */
2749                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2750                                 continue;
2751                         }
2752                 }
2753
2754                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2755                 if (r != MIGRATEPAGE_SUCCESS)
2756                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2757         }
2758
2759         /*
2760          * No need to double call mmu_notifier->invalidate_range() callback as
2761          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2762          * did already call it.
2763          */
2764         if (notified)
2765                 mmu_notifier_invalidate_range_only_end(&range);
2766 }
2767
2768 /*
2769  * migrate_vma_finalize() - restore CPU page table entry
2770  * @migrate: migrate struct containing all migration information
2771  *
2772  * This replaces the special migration pte entry with either a mapping to the
2773  * new page if migration was successful for that page, or to the original page
2774  * otherwise.
2775  *
2776  * This also unlocks the pages and puts them back on the lru, or drops the extra
2777  * refcount, for device pages.
2778  */
2779 static void migrate_vma_finalize(struct migrate_vma *migrate)
2780 {
2781         const unsigned long npages = migrate->npages;
2782         unsigned long i;
2783
2784         for (i = 0; i < npages; i++) {
2785                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2786                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2787
2788                 if (!page) {
2789                         if (newpage) {
2790                                 unlock_page(newpage);
2791                                 put_page(newpage);
2792                         }
2793                         continue;
2794                 }
2795
2796                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2797                         if (newpage) {
2798                                 unlock_page(newpage);
2799                                 put_page(newpage);
2800                         }
2801                         newpage = page;
2802                 }
2803
2804                 remove_migration_ptes(page, newpage, false);
2805                 unlock_page(page);
2806                 migrate->cpages--;
2807
2808                 if (is_zone_device_page(page))
2809                         put_page(page);
2810                 else
2811                         putback_lru_page(page);
2812
2813                 if (newpage != page) {
2814                         unlock_page(newpage);
2815                         if (is_zone_device_page(newpage))
2816                                 put_page(newpage);
2817                         else
2818                                 putback_lru_page(newpage);
2819                 }
2820         }
2821 }
2822
2823 /*
2824  * migrate_vma() - migrate a range of memory inside vma
2825  *
2826  * @ops: migration callback for allocating destination memory and copying
2827  * @vma: virtual memory area containing the range to be migrated
2828  * @start: start address of the range to migrate (inclusive)
2829  * @end: end address of the range to migrate (exclusive)
2830  * @src: array of hmm_pfn_t containing source pfns
2831  * @dst: array of hmm_pfn_t containing destination pfns
2832  * @private: pointer passed back to each of the callback
2833  * Returns: 0 on success, error code otherwise
2834  *
2835  * This function tries to migrate a range of memory virtual address range, using
2836  * callbacks to allocate and copy memory from source to destination. First it
2837  * collects all the pages backing each virtual address in the range, saving this
2838  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2839  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2840  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2841  * in the corresponding src array entry. It then restores any pages that are
2842  * pinned, by remapping and unlocking those pages.
2843  *
2844  * At this point it calls the alloc_and_copy() callback. For documentation on
2845  * what is expected from that callback, see struct migrate_vma_ops comments in
2846  * include/linux/migrate.h
2847  *
2848  * After the alloc_and_copy() callback, this function goes over each entry in
2849  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2850  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2851  * then the function tries to migrate struct page information from the source
2852  * struct page to the destination struct page. If it fails to migrate the struct
2853  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2854  * array.
2855  *
2856  * At this point all successfully migrated pages have an entry in the src
2857  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2858  * array entry with MIGRATE_PFN_VALID flag set.
2859  *
2860  * It then calls the finalize_and_map() callback. See comments for "struct
2861  * migrate_vma_ops", in include/linux/migrate.h for details about
2862  * finalize_and_map() behavior.
2863  *
2864  * After the finalize_and_map() callback, for successfully migrated pages, this
2865  * function updates the CPU page table to point to new pages, otherwise it
2866  * restores the CPU page table to point to the original source pages.
2867  *
2868  * Function returns 0 after the above steps, even if no pages were migrated
2869  * (The function only returns an error if any of the arguments are invalid.)
2870  *
2871  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2872  * unsigned long entries.
2873  */
2874 int migrate_vma(const struct migrate_vma_ops *ops,
2875                 struct vm_area_struct *vma,
2876                 unsigned long start,
2877                 unsigned long end,
2878                 unsigned long *src,
2879                 unsigned long *dst,
2880                 void *private)
2881 {
2882         struct migrate_vma migrate;
2883
2884         /* Sanity check the arguments */
2885         start &= PAGE_MASK;
2886         end &= PAGE_MASK;
2887         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2888                         vma_is_dax(vma))
2889                 return -EINVAL;
2890         if (start < vma->vm_start || start >= vma->vm_end)
2891                 return -EINVAL;
2892         if (end <= vma->vm_start || end > vma->vm_end)
2893                 return -EINVAL;
2894         if (!ops || !src || !dst || start >= end)
2895                 return -EINVAL;
2896
2897         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2898         migrate.src = src;
2899         migrate.dst = dst;
2900         migrate.start = start;
2901         migrate.npages = 0;
2902         migrate.cpages = 0;
2903         migrate.end = end;
2904         migrate.vma = vma;
2905
2906         /* Collect, and try to unmap source pages */
2907         migrate_vma_collect(&migrate);
2908         if (!migrate.cpages)
2909                 return 0;
2910
2911         /* Lock and isolate page */
2912         migrate_vma_prepare(&migrate);
2913         if (!migrate.cpages)
2914                 return 0;
2915
2916         /* Unmap pages */
2917         migrate_vma_unmap(&migrate);
2918         if (!migrate.cpages)
2919                 return 0;
2920
2921         /*
2922          * At this point pages are locked and unmapped, and thus they have
2923          * stable content and can safely be copied to destination memory that
2924          * is allocated by the callback.
2925          *
2926          * Note that migration can fail in migrate_vma_struct_page() for each
2927          * individual page.
2928          */
2929         ops->alloc_and_copy(vma, src, dst, start, end, private);
2930
2931         /* This does the real migration of struct page */
2932         migrate_vma_pages(&migrate);
2933
2934         ops->finalize_and_map(vma, src, dst, start, end, private);
2935
2936         /* Unlock and remap pages */
2937         migrate_vma_finalize(&migrate);
2938
2939         return 0;
2940 }
2941 EXPORT_SYMBOL(migrate_vma);
2942 #endif /* defined(MIGRATE_VMA_HELPER) */