Merge tag 'riscv-for-linus-5.14-mw0' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62         struct address_space *mapping;
63
64         /*
65          * Avoid burning cycles with pages that are yet under __free_pages(),
66          * or just got freed under us.
67          *
68          * In case we 'win' a race for a movable page being freed under us and
69          * raise its refcount preventing __free_pages() from doing its job
70          * the put_page() at the end of this block will take care of
71          * release this page, thus avoiding a nasty leakage.
72          */
73         if (unlikely(!get_page_unless_zero(page)))
74                 goto out;
75
76         /*
77          * Check PageMovable before holding a PG_lock because page's owner
78          * assumes anybody doesn't touch PG_lock of newly allocated page
79          * so unconditionally grabbing the lock ruins page's owner side.
80          */
81         if (unlikely(!__PageMovable(page)))
82                 goto out_putpage;
83         /*
84          * As movable pages are not isolated from LRU lists, concurrent
85          * compaction threads can race against page migration functions
86          * as well as race against the releasing a page.
87          *
88          * In order to avoid having an already isolated movable page
89          * being (wrongly) re-isolated while it is under migration,
90          * or to avoid attempting to isolate pages being released,
91          * lets be sure we have the page lock
92          * before proceeding with the movable page isolation steps.
93          */
94         if (unlikely(!trylock_page(page)))
95                 goto out_putpage;
96
97         if (!PageMovable(page) || PageIsolated(page))
98                 goto out_no_isolated;
99
100         mapping = page_mapping(page);
101         VM_BUG_ON_PAGE(!mapping, page);
102
103         if (!mapping->a_ops->isolate_page(page, mode))
104                 goto out_no_isolated;
105
106         /* Driver shouldn't use PG_isolated bit of page->flags */
107         WARN_ON_ONCE(PageIsolated(page));
108         __SetPageIsolated(page);
109         unlock_page(page);
110
111         return 0;
112
113 out_no_isolated:
114         unlock_page(page);
115 out_putpage:
116         put_page(page);
117 out:
118         return -EBUSY;
119 }
120
121 static void putback_movable_page(struct page *page)
122 {
123         struct address_space *mapping;
124
125         mapping = page_mapping(page);
126         mapping->a_ops->putback_page(page);
127         __ClearPageIsolated(page);
128 }
129
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140         struct page *page;
141         struct page *page2;
142
143         list_for_each_entry_safe(page, page2, l, lru) {
144                 if (unlikely(PageHuge(page))) {
145                         putback_active_hugepage(page);
146                         continue;
147                 }
148                 list_del(&page->lru);
149                 /*
150                  * We isolated non-lru movable page so here we can use
151                  * __PageMovable because LRU page's mapping cannot have
152                  * PAGE_MAPPING_MOVABLE.
153                  */
154                 if (unlikely(__PageMovable(page))) {
155                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
156                         lock_page(page);
157                         if (PageMovable(page))
158                                 putback_movable_page(page);
159                         else
160                                 __ClearPageIsolated(page);
161                         unlock_page(page);
162                         put_page(page);
163                 } else {
164                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165                                         page_is_file_lru(page), -thp_nr_pages(page));
166                         putback_lru_page(page);
167                 }
168         }
169 }
170
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175                                  unsigned long addr, void *old)
176 {
177         struct page_vma_mapped_walk pvmw = {
178                 .page = old,
179                 .vma = vma,
180                 .address = addr,
181                 .flags = PVMW_SYNC | PVMW_MIGRATION,
182         };
183         struct page *new;
184         pte_t pte;
185         swp_entry_t entry;
186
187         VM_BUG_ON_PAGE(PageTail(page), page);
188         while (page_vma_mapped_walk(&pvmw)) {
189                 if (PageKsm(page))
190                         new = page;
191                 else
192                         new = page - pvmw.page->index +
193                                 linear_page_index(vma, pvmw.address);
194
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196                 /* PMD-mapped THP migration entry */
197                 if (!pvmw.pte) {
198                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199                         remove_migration_pmd(&pvmw, new);
200                         continue;
201                 }
202 #endif
203
204                 get_page(new);
205                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206                 if (pte_swp_soft_dirty(*pvmw.pte))
207                         pte = pte_mksoft_dirty(pte);
208
209                 /*
210                  * Recheck VMA as permissions can change since migration started
211                  */
212                 entry = pte_to_swp_entry(*pvmw.pte);
213                 if (is_writable_migration_entry(entry))
214                         pte = maybe_mkwrite(pte, vma);
215                 else if (pte_swp_uffd_wp(*pvmw.pte))
216                         pte = pte_mkuffd_wp(pte);
217
218                 if (unlikely(is_device_private_page(new))) {
219                         if (pte_write(pte))
220                                 entry = make_writable_device_private_entry(
221                                                         page_to_pfn(new));
222                         else
223                                 entry = make_readable_device_private_entry(
224                                                         page_to_pfn(new));
225                         pte = swp_entry_to_pte(entry);
226                         if (pte_swp_soft_dirty(*pvmw.pte))
227                                 pte = pte_swp_mksoft_dirty(pte);
228                         if (pte_swp_uffd_wp(*pvmw.pte))
229                                 pte = pte_swp_mkuffd_wp(pte);
230                 }
231
232 #ifdef CONFIG_HUGETLB_PAGE
233                 if (PageHuge(new)) {
234                         unsigned int shift = huge_page_shift(hstate_vma(vma));
235
236                         pte = pte_mkhuge(pte);
237                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
238                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
239                         if (PageAnon(new))
240                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
241                         else
242                                 page_dup_rmap(new, true);
243                 } else
244 #endif
245                 {
246                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
247
248                         if (PageAnon(new))
249                                 page_add_anon_rmap(new, vma, pvmw.address, false);
250                         else
251                                 page_add_file_rmap(new, false);
252                 }
253                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
254                         mlock_vma_page(new);
255
256                 if (PageTransHuge(page) && PageMlocked(page))
257                         clear_page_mlock(page);
258
259                 /* No need to invalidate - it was non-present before */
260                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
261         }
262
263         return true;
264 }
265
266 /*
267  * Get rid of all migration entries and replace them by
268  * references to the indicated page.
269  */
270 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
271 {
272         struct rmap_walk_control rwc = {
273                 .rmap_one = remove_migration_pte,
274                 .arg = old,
275         };
276
277         if (locked)
278                 rmap_walk_locked(new, &rwc);
279         else
280                 rmap_walk(new, &rwc);
281 }
282
283 /*
284  * Something used the pte of a page under migration. We need to
285  * get to the page and wait until migration is finished.
286  * When we return from this function the fault will be retried.
287  */
288 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
289                                 spinlock_t *ptl)
290 {
291         pte_t pte;
292         swp_entry_t entry;
293         struct page *page;
294
295         spin_lock(ptl);
296         pte = *ptep;
297         if (!is_swap_pte(pte))
298                 goto out;
299
300         entry = pte_to_swp_entry(pte);
301         if (!is_migration_entry(entry))
302                 goto out;
303
304         page = pfn_swap_entry_to_page(entry);
305         page = compound_head(page);
306
307         /*
308          * Once page cache replacement of page migration started, page_count
309          * is zero; but we must not call put_and_wait_on_page_locked() without
310          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
311          */
312         if (!get_page_unless_zero(page))
313                 goto out;
314         pte_unmap_unlock(ptep, ptl);
315         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
316         return;
317 out:
318         pte_unmap_unlock(ptep, ptl);
319 }
320
321 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
322                                 unsigned long address)
323 {
324         spinlock_t *ptl = pte_lockptr(mm, pmd);
325         pte_t *ptep = pte_offset_map(pmd, address);
326         __migration_entry_wait(mm, ptep, ptl);
327 }
328
329 void migration_entry_wait_huge(struct vm_area_struct *vma,
330                 struct mm_struct *mm, pte_t *pte)
331 {
332         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
333         __migration_entry_wait(mm, pte, ptl);
334 }
335
336 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
337 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
338 {
339         spinlock_t *ptl;
340         struct page *page;
341
342         ptl = pmd_lock(mm, pmd);
343         if (!is_pmd_migration_entry(*pmd))
344                 goto unlock;
345         page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
346         if (!get_page_unless_zero(page))
347                 goto unlock;
348         spin_unlock(ptl);
349         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
350         return;
351 unlock:
352         spin_unlock(ptl);
353 }
354 #endif
355
356 static int expected_page_refs(struct address_space *mapping, struct page *page)
357 {
358         int expected_count = 1;
359
360         /*
361          * Device private pages have an extra refcount as they are
362          * ZONE_DEVICE pages.
363          */
364         expected_count += is_device_private_page(page);
365         if (mapping)
366                 expected_count += thp_nr_pages(page) + page_has_private(page);
367
368         return expected_count;
369 }
370
371 /*
372  * Replace the page in the mapping.
373  *
374  * The number of remaining references must be:
375  * 1 for anonymous pages without a mapping
376  * 2 for pages with a mapping
377  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
378  */
379 int migrate_page_move_mapping(struct address_space *mapping,
380                 struct page *newpage, struct page *page, int extra_count)
381 {
382         XA_STATE(xas, &mapping->i_pages, page_index(page));
383         struct zone *oldzone, *newzone;
384         int dirty;
385         int expected_count = expected_page_refs(mapping, page) + extra_count;
386         int nr = thp_nr_pages(page);
387
388         if (!mapping) {
389                 /* Anonymous page without mapping */
390                 if (page_count(page) != expected_count)
391                         return -EAGAIN;
392
393                 /* No turning back from here */
394                 newpage->index = page->index;
395                 newpage->mapping = page->mapping;
396                 if (PageSwapBacked(page))
397                         __SetPageSwapBacked(newpage);
398
399                 return MIGRATEPAGE_SUCCESS;
400         }
401
402         oldzone = page_zone(page);
403         newzone = page_zone(newpage);
404
405         xas_lock_irq(&xas);
406         if (page_count(page) != expected_count || xas_load(&xas) != page) {
407                 xas_unlock_irq(&xas);
408                 return -EAGAIN;
409         }
410
411         if (!page_ref_freeze(page, expected_count)) {
412                 xas_unlock_irq(&xas);
413                 return -EAGAIN;
414         }
415
416         /*
417          * Now we know that no one else is looking at the page:
418          * no turning back from here.
419          */
420         newpage->index = page->index;
421         newpage->mapping = page->mapping;
422         page_ref_add(newpage, nr); /* add cache reference */
423         if (PageSwapBacked(page)) {
424                 __SetPageSwapBacked(newpage);
425                 if (PageSwapCache(page)) {
426                         SetPageSwapCache(newpage);
427                         set_page_private(newpage, page_private(page));
428                 }
429         } else {
430                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
431         }
432
433         /* Move dirty while page refs frozen and newpage not yet exposed */
434         dirty = PageDirty(page);
435         if (dirty) {
436                 ClearPageDirty(page);
437                 SetPageDirty(newpage);
438         }
439
440         xas_store(&xas, newpage);
441         if (PageTransHuge(page)) {
442                 int i;
443
444                 for (i = 1; i < nr; i++) {
445                         xas_next(&xas);
446                         xas_store(&xas, newpage);
447                 }
448         }
449
450         /*
451          * Drop cache reference from old page by unfreezing
452          * to one less reference.
453          * We know this isn't the last reference.
454          */
455         page_ref_unfreeze(page, expected_count - nr);
456
457         xas_unlock(&xas);
458         /* Leave irq disabled to prevent preemption while updating stats */
459
460         /*
461          * If moved to a different zone then also account
462          * the page for that zone. Other VM counters will be
463          * taken care of when we establish references to the
464          * new page and drop references to the old page.
465          *
466          * Note that anonymous pages are accounted for
467          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
468          * are mapped to swap space.
469          */
470         if (newzone != oldzone) {
471                 struct lruvec *old_lruvec, *new_lruvec;
472                 struct mem_cgroup *memcg;
473
474                 memcg = page_memcg(page);
475                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
476                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
477
478                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
479                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
480                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
481                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
482                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
483                 }
484 #ifdef CONFIG_SWAP
485                 if (PageSwapCache(page)) {
486                         __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
487                         __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
488                 }
489 #endif
490                 if (dirty && mapping_can_writeback(mapping)) {
491                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
492                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
493                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
494                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
495                 }
496         }
497         local_irq_enable();
498
499         return MIGRATEPAGE_SUCCESS;
500 }
501 EXPORT_SYMBOL(migrate_page_move_mapping);
502
503 /*
504  * The expected number of remaining references is the same as that
505  * of migrate_page_move_mapping().
506  */
507 int migrate_huge_page_move_mapping(struct address_space *mapping,
508                                    struct page *newpage, struct page *page)
509 {
510         XA_STATE(xas, &mapping->i_pages, page_index(page));
511         int expected_count;
512
513         xas_lock_irq(&xas);
514         expected_count = 2 + page_has_private(page);
515         if (page_count(page) != expected_count || xas_load(&xas) != page) {
516                 xas_unlock_irq(&xas);
517                 return -EAGAIN;
518         }
519
520         if (!page_ref_freeze(page, expected_count)) {
521                 xas_unlock_irq(&xas);
522                 return -EAGAIN;
523         }
524
525         newpage->index = page->index;
526         newpage->mapping = page->mapping;
527
528         get_page(newpage);
529
530         xas_store(&xas, newpage);
531
532         page_ref_unfreeze(page, expected_count - 1);
533
534         xas_unlock_irq(&xas);
535
536         return MIGRATEPAGE_SUCCESS;
537 }
538
539 /*
540  * Gigantic pages are so large that we do not guarantee that page++ pointer
541  * arithmetic will work across the entire page.  We need something more
542  * specialized.
543  */
544 static void __copy_gigantic_page(struct page *dst, struct page *src,
545                                 int nr_pages)
546 {
547         int i;
548         struct page *dst_base = dst;
549         struct page *src_base = src;
550
551         for (i = 0; i < nr_pages; ) {
552                 cond_resched();
553                 copy_highpage(dst, src);
554
555                 i++;
556                 dst = mem_map_next(dst, dst_base, i);
557                 src = mem_map_next(src, src_base, i);
558         }
559 }
560
561 void copy_huge_page(struct page *dst, struct page *src)
562 {
563         int i;
564         int nr_pages;
565
566         if (PageHuge(src)) {
567                 /* hugetlbfs page */
568                 struct hstate *h = page_hstate(src);
569                 nr_pages = pages_per_huge_page(h);
570
571                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
572                         __copy_gigantic_page(dst, src, nr_pages);
573                         return;
574                 }
575         } else {
576                 /* thp page */
577                 BUG_ON(!PageTransHuge(src));
578                 nr_pages = thp_nr_pages(src);
579         }
580
581         for (i = 0; i < nr_pages; i++) {
582                 cond_resched();
583                 copy_highpage(dst + i, src + i);
584         }
585 }
586
587 /*
588  * Copy the page to its new location
589  */
590 void migrate_page_states(struct page *newpage, struct page *page)
591 {
592         int cpupid;
593
594         if (PageError(page))
595                 SetPageError(newpage);
596         if (PageReferenced(page))
597                 SetPageReferenced(newpage);
598         if (PageUptodate(page))
599                 SetPageUptodate(newpage);
600         if (TestClearPageActive(page)) {
601                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
602                 SetPageActive(newpage);
603         } else if (TestClearPageUnevictable(page))
604                 SetPageUnevictable(newpage);
605         if (PageWorkingset(page))
606                 SetPageWorkingset(newpage);
607         if (PageChecked(page))
608                 SetPageChecked(newpage);
609         if (PageMappedToDisk(page))
610                 SetPageMappedToDisk(newpage);
611
612         /* Move dirty on pages not done by migrate_page_move_mapping() */
613         if (PageDirty(page))
614                 SetPageDirty(newpage);
615
616         if (page_is_young(page))
617                 set_page_young(newpage);
618         if (page_is_idle(page))
619                 set_page_idle(newpage);
620
621         /*
622          * Copy NUMA information to the new page, to prevent over-eager
623          * future migrations of this same page.
624          */
625         cpupid = page_cpupid_xchg_last(page, -1);
626         page_cpupid_xchg_last(newpage, cpupid);
627
628         ksm_migrate_page(newpage, page);
629         /*
630          * Please do not reorder this without considering how mm/ksm.c's
631          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
632          */
633         if (PageSwapCache(page))
634                 ClearPageSwapCache(page);
635         ClearPagePrivate(page);
636
637         /* page->private contains hugetlb specific flags */
638         if (!PageHuge(page))
639                 set_page_private(page, 0);
640
641         /*
642          * If any waiters have accumulated on the new page then
643          * wake them up.
644          */
645         if (PageWriteback(newpage))
646                 end_page_writeback(newpage);
647
648         /*
649          * PG_readahead shares the same bit with PG_reclaim.  The above
650          * end_page_writeback() may clear PG_readahead mistakenly, so set the
651          * bit after that.
652          */
653         if (PageReadahead(page))
654                 SetPageReadahead(newpage);
655
656         copy_page_owner(page, newpage);
657
658         if (!PageHuge(page))
659                 mem_cgroup_migrate(page, newpage);
660 }
661 EXPORT_SYMBOL(migrate_page_states);
662
663 void migrate_page_copy(struct page *newpage, struct page *page)
664 {
665         if (PageHuge(page) || PageTransHuge(page))
666                 copy_huge_page(newpage, page);
667         else
668                 copy_highpage(newpage, page);
669
670         migrate_page_states(newpage, page);
671 }
672 EXPORT_SYMBOL(migrate_page_copy);
673
674 /************************************************************
675  *                    Migration functions
676  ***********************************************************/
677
678 /*
679  * Common logic to directly migrate a single LRU page suitable for
680  * pages that do not use PagePrivate/PagePrivate2.
681  *
682  * Pages are locked upon entry and exit.
683  */
684 int migrate_page(struct address_space *mapping,
685                 struct page *newpage, struct page *page,
686                 enum migrate_mode mode)
687 {
688         int rc;
689
690         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
691
692         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
693
694         if (rc != MIGRATEPAGE_SUCCESS)
695                 return rc;
696
697         if (mode != MIGRATE_SYNC_NO_COPY)
698                 migrate_page_copy(newpage, page);
699         else
700                 migrate_page_states(newpage, page);
701         return MIGRATEPAGE_SUCCESS;
702 }
703 EXPORT_SYMBOL(migrate_page);
704
705 #ifdef CONFIG_BLOCK
706 /* Returns true if all buffers are successfully locked */
707 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
708                                                         enum migrate_mode mode)
709 {
710         struct buffer_head *bh = head;
711
712         /* Simple case, sync compaction */
713         if (mode != MIGRATE_ASYNC) {
714                 do {
715                         lock_buffer(bh);
716                         bh = bh->b_this_page;
717
718                 } while (bh != head);
719
720                 return true;
721         }
722
723         /* async case, we cannot block on lock_buffer so use trylock_buffer */
724         do {
725                 if (!trylock_buffer(bh)) {
726                         /*
727                          * We failed to lock the buffer and cannot stall in
728                          * async migration. Release the taken locks
729                          */
730                         struct buffer_head *failed_bh = bh;
731                         bh = head;
732                         while (bh != failed_bh) {
733                                 unlock_buffer(bh);
734                                 bh = bh->b_this_page;
735                         }
736                         return false;
737                 }
738
739                 bh = bh->b_this_page;
740         } while (bh != head);
741         return true;
742 }
743
744 static int __buffer_migrate_page(struct address_space *mapping,
745                 struct page *newpage, struct page *page, enum migrate_mode mode,
746                 bool check_refs)
747 {
748         struct buffer_head *bh, *head;
749         int rc;
750         int expected_count;
751
752         if (!page_has_buffers(page))
753                 return migrate_page(mapping, newpage, page, mode);
754
755         /* Check whether page does not have extra refs before we do more work */
756         expected_count = expected_page_refs(mapping, page);
757         if (page_count(page) != expected_count)
758                 return -EAGAIN;
759
760         head = page_buffers(page);
761         if (!buffer_migrate_lock_buffers(head, mode))
762                 return -EAGAIN;
763
764         if (check_refs) {
765                 bool busy;
766                 bool invalidated = false;
767
768 recheck_buffers:
769                 busy = false;
770                 spin_lock(&mapping->private_lock);
771                 bh = head;
772                 do {
773                         if (atomic_read(&bh->b_count)) {
774                                 busy = true;
775                                 break;
776                         }
777                         bh = bh->b_this_page;
778                 } while (bh != head);
779                 if (busy) {
780                         if (invalidated) {
781                                 rc = -EAGAIN;
782                                 goto unlock_buffers;
783                         }
784                         spin_unlock(&mapping->private_lock);
785                         invalidate_bh_lrus();
786                         invalidated = true;
787                         goto recheck_buffers;
788                 }
789         }
790
791         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
792         if (rc != MIGRATEPAGE_SUCCESS)
793                 goto unlock_buffers;
794
795         attach_page_private(newpage, detach_page_private(page));
796
797         bh = head;
798         do {
799                 set_bh_page(bh, newpage, bh_offset(bh));
800                 bh = bh->b_this_page;
801
802         } while (bh != head);
803
804         if (mode != MIGRATE_SYNC_NO_COPY)
805                 migrate_page_copy(newpage, page);
806         else
807                 migrate_page_states(newpage, page);
808
809         rc = MIGRATEPAGE_SUCCESS;
810 unlock_buffers:
811         if (check_refs)
812                 spin_unlock(&mapping->private_lock);
813         bh = head;
814         do {
815                 unlock_buffer(bh);
816                 bh = bh->b_this_page;
817
818         } while (bh != head);
819
820         return rc;
821 }
822
823 /*
824  * Migration function for pages with buffers. This function can only be used
825  * if the underlying filesystem guarantees that no other references to "page"
826  * exist. For example attached buffer heads are accessed only under page lock.
827  */
828 int buffer_migrate_page(struct address_space *mapping,
829                 struct page *newpage, struct page *page, enum migrate_mode mode)
830 {
831         return __buffer_migrate_page(mapping, newpage, page, mode, false);
832 }
833 EXPORT_SYMBOL(buffer_migrate_page);
834
835 /*
836  * Same as above except that this variant is more careful and checks that there
837  * are also no buffer head references. This function is the right one for
838  * mappings where buffer heads are directly looked up and referenced (such as
839  * block device mappings).
840  */
841 int buffer_migrate_page_norefs(struct address_space *mapping,
842                 struct page *newpage, struct page *page, enum migrate_mode mode)
843 {
844         return __buffer_migrate_page(mapping, newpage, page, mode, true);
845 }
846 #endif
847
848 /*
849  * Writeback a page to clean the dirty state
850  */
851 static int writeout(struct address_space *mapping, struct page *page)
852 {
853         struct writeback_control wbc = {
854                 .sync_mode = WB_SYNC_NONE,
855                 .nr_to_write = 1,
856                 .range_start = 0,
857                 .range_end = LLONG_MAX,
858                 .for_reclaim = 1
859         };
860         int rc;
861
862         if (!mapping->a_ops->writepage)
863                 /* No write method for the address space */
864                 return -EINVAL;
865
866         if (!clear_page_dirty_for_io(page))
867                 /* Someone else already triggered a write */
868                 return -EAGAIN;
869
870         /*
871          * A dirty page may imply that the underlying filesystem has
872          * the page on some queue. So the page must be clean for
873          * migration. Writeout may mean we loose the lock and the
874          * page state is no longer what we checked for earlier.
875          * At this point we know that the migration attempt cannot
876          * be successful.
877          */
878         remove_migration_ptes(page, page, false);
879
880         rc = mapping->a_ops->writepage(page, &wbc);
881
882         if (rc != AOP_WRITEPAGE_ACTIVATE)
883                 /* unlocked. Relock */
884                 lock_page(page);
885
886         return (rc < 0) ? -EIO : -EAGAIN;
887 }
888
889 /*
890  * Default handling if a filesystem does not provide a migration function.
891  */
892 static int fallback_migrate_page(struct address_space *mapping,
893         struct page *newpage, struct page *page, enum migrate_mode mode)
894 {
895         if (PageDirty(page)) {
896                 /* Only writeback pages in full synchronous migration */
897                 switch (mode) {
898                 case MIGRATE_SYNC:
899                 case MIGRATE_SYNC_NO_COPY:
900                         break;
901                 default:
902                         return -EBUSY;
903                 }
904                 return writeout(mapping, page);
905         }
906
907         /*
908          * Buffers may be managed in a filesystem specific way.
909          * We must have no buffers or drop them.
910          */
911         if (page_has_private(page) &&
912             !try_to_release_page(page, GFP_KERNEL))
913                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
914
915         return migrate_page(mapping, newpage, page, mode);
916 }
917
918 /*
919  * Move a page to a newly allocated page
920  * The page is locked and all ptes have been successfully removed.
921  *
922  * The new page will have replaced the old page if this function
923  * is successful.
924  *
925  * Return value:
926  *   < 0 - error code
927  *  MIGRATEPAGE_SUCCESS - success
928  */
929 static int move_to_new_page(struct page *newpage, struct page *page,
930                                 enum migrate_mode mode)
931 {
932         struct address_space *mapping;
933         int rc = -EAGAIN;
934         bool is_lru = !__PageMovable(page);
935
936         VM_BUG_ON_PAGE(!PageLocked(page), page);
937         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
938
939         mapping = page_mapping(page);
940
941         if (likely(is_lru)) {
942                 if (!mapping)
943                         rc = migrate_page(mapping, newpage, page, mode);
944                 else if (mapping->a_ops->migratepage)
945                         /*
946                          * Most pages have a mapping and most filesystems
947                          * provide a migratepage callback. Anonymous pages
948                          * are part of swap space which also has its own
949                          * migratepage callback. This is the most common path
950                          * for page migration.
951                          */
952                         rc = mapping->a_ops->migratepage(mapping, newpage,
953                                                         page, mode);
954                 else
955                         rc = fallback_migrate_page(mapping, newpage,
956                                                         page, mode);
957         } else {
958                 /*
959                  * In case of non-lru page, it could be released after
960                  * isolation step. In that case, we shouldn't try migration.
961                  */
962                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
963                 if (!PageMovable(page)) {
964                         rc = MIGRATEPAGE_SUCCESS;
965                         __ClearPageIsolated(page);
966                         goto out;
967                 }
968
969                 rc = mapping->a_ops->migratepage(mapping, newpage,
970                                                 page, mode);
971                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
972                         !PageIsolated(page));
973         }
974
975         /*
976          * When successful, old pagecache page->mapping must be cleared before
977          * page is freed; but stats require that PageAnon be left as PageAnon.
978          */
979         if (rc == MIGRATEPAGE_SUCCESS) {
980                 if (__PageMovable(page)) {
981                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
982
983                         /*
984                          * We clear PG_movable under page_lock so any compactor
985                          * cannot try to migrate this page.
986                          */
987                         __ClearPageIsolated(page);
988                 }
989
990                 /*
991                  * Anonymous and movable page->mapping will be cleared by
992                  * free_pages_prepare so don't reset it here for keeping
993                  * the type to work PageAnon, for example.
994                  */
995                 if (!PageMappingFlags(page))
996                         page->mapping = NULL;
997
998                 if (likely(!is_zone_device_page(newpage)))
999                         flush_dcache_page(newpage);
1000
1001         }
1002 out:
1003         return rc;
1004 }
1005
1006 static int __unmap_and_move(struct page *page, struct page *newpage,
1007                                 int force, enum migrate_mode mode)
1008 {
1009         int rc = -EAGAIN;
1010         int page_was_mapped = 0;
1011         struct anon_vma *anon_vma = NULL;
1012         bool is_lru = !__PageMovable(page);
1013
1014         if (!trylock_page(page)) {
1015                 if (!force || mode == MIGRATE_ASYNC)
1016                         goto out;
1017
1018                 /*
1019                  * It's not safe for direct compaction to call lock_page.
1020                  * For example, during page readahead pages are added locked
1021                  * to the LRU. Later, when the IO completes the pages are
1022                  * marked uptodate and unlocked. However, the queueing
1023                  * could be merging multiple pages for one bio (e.g.
1024                  * mpage_readahead). If an allocation happens for the
1025                  * second or third page, the process can end up locking
1026                  * the same page twice and deadlocking. Rather than
1027                  * trying to be clever about what pages can be locked,
1028                  * avoid the use of lock_page for direct compaction
1029                  * altogether.
1030                  */
1031                 if (current->flags & PF_MEMALLOC)
1032                         goto out;
1033
1034                 lock_page(page);
1035         }
1036
1037         if (PageWriteback(page)) {
1038                 /*
1039                  * Only in the case of a full synchronous migration is it
1040                  * necessary to wait for PageWriteback. In the async case,
1041                  * the retry loop is too short and in the sync-light case,
1042                  * the overhead of stalling is too much
1043                  */
1044                 switch (mode) {
1045                 case MIGRATE_SYNC:
1046                 case MIGRATE_SYNC_NO_COPY:
1047                         break;
1048                 default:
1049                         rc = -EBUSY;
1050                         goto out_unlock;
1051                 }
1052                 if (!force)
1053                         goto out_unlock;
1054                 wait_on_page_writeback(page);
1055         }
1056
1057         /*
1058          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1059          * we cannot notice that anon_vma is freed while we migrates a page.
1060          * This get_anon_vma() delays freeing anon_vma pointer until the end
1061          * of migration. File cache pages are no problem because of page_lock()
1062          * File Caches may use write_page() or lock_page() in migration, then,
1063          * just care Anon page here.
1064          *
1065          * Only page_get_anon_vma() understands the subtleties of
1066          * getting a hold on an anon_vma from outside one of its mms.
1067          * But if we cannot get anon_vma, then we won't need it anyway,
1068          * because that implies that the anon page is no longer mapped
1069          * (and cannot be remapped so long as we hold the page lock).
1070          */
1071         if (PageAnon(page) && !PageKsm(page))
1072                 anon_vma = page_get_anon_vma(page);
1073
1074         /*
1075          * Block others from accessing the new page when we get around to
1076          * establishing additional references. We are usually the only one
1077          * holding a reference to newpage at this point. We used to have a BUG
1078          * here if trylock_page(newpage) fails, but would like to allow for
1079          * cases where there might be a race with the previous use of newpage.
1080          * This is much like races on refcount of oldpage: just don't BUG().
1081          */
1082         if (unlikely(!trylock_page(newpage)))
1083                 goto out_unlock;
1084
1085         if (unlikely(!is_lru)) {
1086                 rc = move_to_new_page(newpage, page, mode);
1087                 goto out_unlock_both;
1088         }
1089
1090         /*
1091          * Corner case handling:
1092          * 1. When a new swap-cache page is read into, it is added to the LRU
1093          * and treated as swapcache but it has no rmap yet.
1094          * Calling try_to_unmap() against a page->mapping==NULL page will
1095          * trigger a BUG.  So handle it here.
1096          * 2. An orphaned page (see truncate_cleanup_page) might have
1097          * fs-private metadata. The page can be picked up due to memory
1098          * offlining.  Everywhere else except page reclaim, the page is
1099          * invisible to the vm, so the page can not be migrated.  So try to
1100          * free the metadata, so the page can be freed.
1101          */
1102         if (!page->mapping) {
1103                 VM_BUG_ON_PAGE(PageAnon(page), page);
1104                 if (page_has_private(page)) {
1105                         try_to_free_buffers(page);
1106                         goto out_unlock_both;
1107                 }
1108         } else if (page_mapped(page)) {
1109                 /* Establish migration ptes */
1110                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1111                                 page);
1112                 try_to_migrate(page, 0);
1113                 page_was_mapped = 1;
1114         }
1115
1116         if (!page_mapped(page))
1117                 rc = move_to_new_page(newpage, page, mode);
1118
1119         if (page_was_mapped)
1120                 remove_migration_ptes(page,
1121                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1122
1123 out_unlock_both:
1124         unlock_page(newpage);
1125 out_unlock:
1126         /* Drop an anon_vma reference if we took one */
1127         if (anon_vma)
1128                 put_anon_vma(anon_vma);
1129         unlock_page(page);
1130 out:
1131         /*
1132          * If migration is successful, decrease refcount of the newpage
1133          * which will not free the page because new page owner increased
1134          * refcounter. As well, if it is LRU page, add the page to LRU
1135          * list in here. Use the old state of the isolated source page to
1136          * determine if we migrated a LRU page. newpage was already unlocked
1137          * and possibly modified by its owner - don't rely on the page
1138          * state.
1139          */
1140         if (rc == MIGRATEPAGE_SUCCESS) {
1141                 if (unlikely(!is_lru))
1142                         put_page(newpage);
1143                 else
1144                         putback_lru_page(newpage);
1145         }
1146
1147         return rc;
1148 }
1149
1150 /*
1151  * Obtain the lock on page, remove all ptes and migrate the page
1152  * to the newly allocated page in newpage.
1153  */
1154 static int unmap_and_move(new_page_t get_new_page,
1155                                    free_page_t put_new_page,
1156                                    unsigned long private, struct page *page,
1157                                    int force, enum migrate_mode mode,
1158                                    enum migrate_reason reason,
1159                                    struct list_head *ret)
1160 {
1161         int rc = MIGRATEPAGE_SUCCESS;
1162         struct page *newpage = NULL;
1163
1164         if (!thp_migration_supported() && PageTransHuge(page))
1165                 return -ENOSYS;
1166
1167         if (page_count(page) == 1) {
1168                 /* page was freed from under us. So we are done. */
1169                 ClearPageActive(page);
1170                 ClearPageUnevictable(page);
1171                 if (unlikely(__PageMovable(page))) {
1172                         lock_page(page);
1173                         if (!PageMovable(page))
1174                                 __ClearPageIsolated(page);
1175                         unlock_page(page);
1176                 }
1177                 goto out;
1178         }
1179
1180         newpage = get_new_page(page, private);
1181         if (!newpage)
1182                 return -ENOMEM;
1183
1184         rc = __unmap_and_move(page, newpage, force, mode);
1185         if (rc == MIGRATEPAGE_SUCCESS)
1186                 set_page_owner_migrate_reason(newpage, reason);
1187
1188 out:
1189         if (rc != -EAGAIN) {
1190                 /*
1191                  * A page that has been migrated has all references
1192                  * removed and will be freed. A page that has not been
1193                  * migrated will have kept its references and be restored.
1194                  */
1195                 list_del(&page->lru);
1196         }
1197
1198         /*
1199          * If migration is successful, releases reference grabbed during
1200          * isolation. Otherwise, restore the page to right list unless
1201          * we want to retry.
1202          */
1203         if (rc == MIGRATEPAGE_SUCCESS) {
1204                 /*
1205                  * Compaction can migrate also non-LRU pages which are
1206                  * not accounted to NR_ISOLATED_*. They can be recognized
1207                  * as __PageMovable
1208                  */
1209                 if (likely(!__PageMovable(page)))
1210                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1211                                         page_is_file_lru(page), -thp_nr_pages(page));
1212
1213                 if (reason != MR_MEMORY_FAILURE)
1214                         /*
1215                          * We release the page in page_handle_poison.
1216                          */
1217                         put_page(page);
1218         } else {
1219                 if (rc != -EAGAIN)
1220                         list_add_tail(&page->lru, ret);
1221
1222                 if (put_new_page)
1223                         put_new_page(newpage, private);
1224                 else
1225                         put_page(newpage);
1226         }
1227
1228         return rc;
1229 }
1230
1231 /*
1232  * Counterpart of unmap_and_move_page() for hugepage migration.
1233  *
1234  * This function doesn't wait the completion of hugepage I/O
1235  * because there is no race between I/O and migration for hugepage.
1236  * Note that currently hugepage I/O occurs only in direct I/O
1237  * where no lock is held and PG_writeback is irrelevant,
1238  * and writeback status of all subpages are counted in the reference
1239  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1240  * under direct I/O, the reference of the head page is 512 and a bit more.)
1241  * This means that when we try to migrate hugepage whose subpages are
1242  * doing direct I/O, some references remain after try_to_unmap() and
1243  * hugepage migration fails without data corruption.
1244  *
1245  * There is also no race when direct I/O is issued on the page under migration,
1246  * because then pte is replaced with migration swap entry and direct I/O code
1247  * will wait in the page fault for migration to complete.
1248  */
1249 static int unmap_and_move_huge_page(new_page_t get_new_page,
1250                                 free_page_t put_new_page, unsigned long private,
1251                                 struct page *hpage, int force,
1252                                 enum migrate_mode mode, int reason,
1253                                 struct list_head *ret)
1254 {
1255         int rc = -EAGAIN;
1256         int page_was_mapped = 0;
1257         struct page *new_hpage;
1258         struct anon_vma *anon_vma = NULL;
1259         struct address_space *mapping = NULL;
1260
1261         /*
1262          * Migratability of hugepages depends on architectures and their size.
1263          * This check is necessary because some callers of hugepage migration
1264          * like soft offline and memory hotremove don't walk through page
1265          * tables or check whether the hugepage is pmd-based or not before
1266          * kicking migration.
1267          */
1268         if (!hugepage_migration_supported(page_hstate(hpage))) {
1269                 list_move_tail(&hpage->lru, ret);
1270                 return -ENOSYS;
1271         }
1272
1273         if (page_count(hpage) == 1) {
1274                 /* page was freed from under us. So we are done. */
1275                 putback_active_hugepage(hpage);
1276                 return MIGRATEPAGE_SUCCESS;
1277         }
1278
1279         new_hpage = get_new_page(hpage, private);
1280         if (!new_hpage)
1281                 return -ENOMEM;
1282
1283         if (!trylock_page(hpage)) {
1284                 if (!force)
1285                         goto out;
1286                 switch (mode) {
1287                 case MIGRATE_SYNC:
1288                 case MIGRATE_SYNC_NO_COPY:
1289                         break;
1290                 default:
1291                         goto out;
1292                 }
1293                 lock_page(hpage);
1294         }
1295
1296         /*
1297          * Check for pages which are in the process of being freed.  Without
1298          * page_mapping() set, hugetlbfs specific move page routine will not
1299          * be called and we could leak usage counts for subpools.
1300          */
1301         if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1302                 rc = -EBUSY;
1303                 goto out_unlock;
1304         }
1305
1306         if (PageAnon(hpage))
1307                 anon_vma = page_get_anon_vma(hpage);
1308
1309         if (unlikely(!trylock_page(new_hpage)))
1310                 goto put_anon;
1311
1312         if (page_mapped(hpage)) {
1313                 bool mapping_locked = false;
1314                 enum ttu_flags ttu = 0;
1315
1316                 if (!PageAnon(hpage)) {
1317                         /*
1318                          * In shared mappings, try_to_unmap could potentially
1319                          * call huge_pmd_unshare.  Because of this, take
1320                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1321                          * to let lower levels know we have taken the lock.
1322                          */
1323                         mapping = hugetlb_page_mapping_lock_write(hpage);
1324                         if (unlikely(!mapping))
1325                                 goto unlock_put_anon;
1326
1327                         mapping_locked = true;
1328                         ttu |= TTU_RMAP_LOCKED;
1329                 }
1330
1331                 try_to_migrate(hpage, ttu);
1332                 page_was_mapped = 1;
1333
1334                 if (mapping_locked)
1335                         i_mmap_unlock_write(mapping);
1336         }
1337
1338         if (!page_mapped(hpage))
1339                 rc = move_to_new_page(new_hpage, hpage, mode);
1340
1341         if (page_was_mapped)
1342                 remove_migration_ptes(hpage,
1343                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1344
1345 unlock_put_anon:
1346         unlock_page(new_hpage);
1347
1348 put_anon:
1349         if (anon_vma)
1350                 put_anon_vma(anon_vma);
1351
1352         if (rc == MIGRATEPAGE_SUCCESS) {
1353                 move_hugetlb_state(hpage, new_hpage, reason);
1354                 put_new_page = NULL;
1355         }
1356
1357 out_unlock:
1358         unlock_page(hpage);
1359 out:
1360         if (rc == MIGRATEPAGE_SUCCESS)
1361                 putback_active_hugepage(hpage);
1362         else if (rc != -EAGAIN)
1363                 list_move_tail(&hpage->lru, ret);
1364
1365         /*
1366          * If migration was not successful and there's a freeing callback, use
1367          * it.  Otherwise, put_page() will drop the reference grabbed during
1368          * isolation.
1369          */
1370         if (put_new_page)
1371                 put_new_page(new_hpage, private);
1372         else
1373                 putback_active_hugepage(new_hpage);
1374
1375         return rc;
1376 }
1377
1378 static inline int try_split_thp(struct page *page, struct page **page2,
1379                                 struct list_head *from)
1380 {
1381         int rc = 0;
1382
1383         lock_page(page);
1384         rc = split_huge_page_to_list(page, from);
1385         unlock_page(page);
1386         if (!rc)
1387                 list_safe_reset_next(page, *page2, lru);
1388
1389         return rc;
1390 }
1391
1392 /*
1393  * migrate_pages - migrate the pages specified in a list, to the free pages
1394  *                 supplied as the target for the page migration
1395  *
1396  * @from:               The list of pages to be migrated.
1397  * @get_new_page:       The function used to allocate free pages to be used
1398  *                      as the target of the page migration.
1399  * @put_new_page:       The function used to free target pages if migration
1400  *                      fails, or NULL if no special handling is necessary.
1401  * @private:            Private data to be passed on to get_new_page()
1402  * @mode:               The migration mode that specifies the constraints for
1403  *                      page migration, if any.
1404  * @reason:             The reason for page migration.
1405  *
1406  * The function returns after 10 attempts or if no pages are movable any more
1407  * because the list has become empty or no retryable pages exist any more.
1408  * It is caller's responsibility to call putback_movable_pages() to return pages
1409  * to the LRU or free list only if ret != 0.
1410  *
1411  * Returns the number of pages that were not migrated, or an error code.
1412  */
1413 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1414                 free_page_t put_new_page, unsigned long private,
1415                 enum migrate_mode mode, int reason)
1416 {
1417         int retry = 1;
1418         int thp_retry = 1;
1419         int nr_failed = 0;
1420         int nr_succeeded = 0;
1421         int nr_thp_succeeded = 0;
1422         int nr_thp_failed = 0;
1423         int nr_thp_split = 0;
1424         int pass = 0;
1425         bool is_thp = false;
1426         struct page *page;
1427         struct page *page2;
1428         int swapwrite = current->flags & PF_SWAPWRITE;
1429         int rc, nr_subpages;
1430         LIST_HEAD(ret_pages);
1431         bool nosplit = (reason == MR_NUMA_MISPLACED);
1432
1433         trace_mm_migrate_pages_start(mode, reason);
1434
1435         if (!swapwrite)
1436                 current->flags |= PF_SWAPWRITE;
1437
1438         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1439                 retry = 0;
1440                 thp_retry = 0;
1441
1442                 list_for_each_entry_safe(page, page2, from, lru) {
1443 retry:
1444                         /*
1445                          * THP statistics is based on the source huge page.
1446                          * Capture required information that might get lost
1447                          * during migration.
1448                          */
1449                         is_thp = PageTransHuge(page) && !PageHuge(page);
1450                         nr_subpages = thp_nr_pages(page);
1451                         cond_resched();
1452
1453                         if (PageHuge(page))
1454                                 rc = unmap_and_move_huge_page(get_new_page,
1455                                                 put_new_page, private, page,
1456                                                 pass > 2, mode, reason,
1457                                                 &ret_pages);
1458                         else
1459                                 rc = unmap_and_move(get_new_page, put_new_page,
1460                                                 private, page, pass > 2, mode,
1461                                                 reason, &ret_pages);
1462                         /*
1463                          * The rules are:
1464                          *      Success: non hugetlb page will be freed, hugetlb
1465                          *               page will be put back
1466                          *      -EAGAIN: stay on the from list
1467                          *      -ENOMEM: stay on the from list
1468                          *      Other errno: put on ret_pages list then splice to
1469                          *                   from list
1470                          */
1471                         switch(rc) {
1472                         /*
1473                          * THP migration might be unsupported or the
1474                          * allocation could've failed so we should
1475                          * retry on the same page with the THP split
1476                          * to base pages.
1477                          *
1478                          * Head page is retried immediately and tail
1479                          * pages are added to the tail of the list so
1480                          * we encounter them after the rest of the list
1481                          * is processed.
1482                          */
1483                         case -ENOSYS:
1484                                 /* THP migration is unsupported */
1485                                 if (is_thp) {
1486                                         if (!try_split_thp(page, &page2, from)) {
1487                                                 nr_thp_split++;
1488                                                 goto retry;
1489                                         }
1490
1491                                         nr_thp_failed++;
1492                                         nr_failed += nr_subpages;
1493                                         break;
1494                                 }
1495
1496                                 /* Hugetlb migration is unsupported */
1497                                 nr_failed++;
1498                                 break;
1499                         case -ENOMEM:
1500                                 /*
1501                                  * When memory is low, don't bother to try to migrate
1502                                  * other pages, just exit.
1503                                  * THP NUMA faulting doesn't split THP to retry.
1504                                  */
1505                                 if (is_thp && !nosplit) {
1506                                         if (!try_split_thp(page, &page2, from)) {
1507                                                 nr_thp_split++;
1508                                                 goto retry;
1509                                         }
1510
1511                                         nr_thp_failed++;
1512                                         nr_failed += nr_subpages;
1513                                         goto out;
1514                                 }
1515                                 nr_failed++;
1516                                 goto out;
1517                         case -EAGAIN:
1518                                 if (is_thp) {
1519                                         thp_retry++;
1520                                         break;
1521                                 }
1522                                 retry++;
1523                                 break;
1524                         case MIGRATEPAGE_SUCCESS:
1525                                 if (is_thp) {
1526                                         nr_thp_succeeded++;
1527                                         nr_succeeded += nr_subpages;
1528                                         break;
1529                                 }
1530                                 nr_succeeded++;
1531                                 break;
1532                         default:
1533                                 /*
1534                                  * Permanent failure (-EBUSY, etc.):
1535                                  * unlike -EAGAIN case, the failed page is
1536                                  * removed from migration page list and not
1537                                  * retried in the next outer loop.
1538                                  */
1539                                 if (is_thp) {
1540                                         nr_thp_failed++;
1541                                         nr_failed += nr_subpages;
1542                                         break;
1543                                 }
1544                                 nr_failed++;
1545                                 break;
1546                         }
1547                 }
1548         }
1549         nr_failed += retry + thp_retry;
1550         nr_thp_failed += thp_retry;
1551         rc = nr_failed;
1552 out:
1553         /*
1554          * Put the permanent failure page back to migration list, they
1555          * will be put back to the right list by the caller.
1556          */
1557         list_splice(&ret_pages, from);
1558
1559         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1560         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1561         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1562         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1563         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1564         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1565                                nr_thp_failed, nr_thp_split, mode, reason);
1566
1567         if (!swapwrite)
1568                 current->flags &= ~PF_SWAPWRITE;
1569
1570         return rc;
1571 }
1572
1573 struct page *alloc_migration_target(struct page *page, unsigned long private)
1574 {
1575         struct migration_target_control *mtc;
1576         gfp_t gfp_mask;
1577         unsigned int order = 0;
1578         struct page *new_page = NULL;
1579         int nid;
1580         int zidx;
1581
1582         mtc = (struct migration_target_control *)private;
1583         gfp_mask = mtc->gfp_mask;
1584         nid = mtc->nid;
1585         if (nid == NUMA_NO_NODE)
1586                 nid = page_to_nid(page);
1587
1588         if (PageHuge(page)) {
1589                 struct hstate *h = page_hstate(compound_head(page));
1590
1591                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1592                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1593         }
1594
1595         if (PageTransHuge(page)) {
1596                 /*
1597                  * clear __GFP_RECLAIM to make the migration callback
1598                  * consistent with regular THP allocations.
1599                  */
1600                 gfp_mask &= ~__GFP_RECLAIM;
1601                 gfp_mask |= GFP_TRANSHUGE;
1602                 order = HPAGE_PMD_ORDER;
1603         }
1604         zidx = zone_idx(page_zone(page));
1605         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1606                 gfp_mask |= __GFP_HIGHMEM;
1607
1608         new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1609
1610         if (new_page && PageTransHuge(new_page))
1611                 prep_transhuge_page(new_page);
1612
1613         return new_page;
1614 }
1615
1616 #ifdef CONFIG_NUMA
1617
1618 static int store_status(int __user *status, int start, int value, int nr)
1619 {
1620         while (nr-- > 0) {
1621                 if (put_user(value, status + start))
1622                         return -EFAULT;
1623                 start++;
1624         }
1625
1626         return 0;
1627 }
1628
1629 static int do_move_pages_to_node(struct mm_struct *mm,
1630                 struct list_head *pagelist, int node)
1631 {
1632         int err;
1633         struct migration_target_control mtc = {
1634                 .nid = node,
1635                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1636         };
1637
1638         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1639                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1640         if (err)
1641                 putback_movable_pages(pagelist);
1642         return err;
1643 }
1644
1645 /*
1646  * Resolves the given address to a struct page, isolates it from the LRU and
1647  * puts it to the given pagelist.
1648  * Returns:
1649  *     errno - if the page cannot be found/isolated
1650  *     0 - when it doesn't have to be migrated because it is already on the
1651  *         target node
1652  *     1 - when it has been queued
1653  */
1654 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1655                 int node, struct list_head *pagelist, bool migrate_all)
1656 {
1657         struct vm_area_struct *vma;
1658         struct page *page;
1659         unsigned int follflags;
1660         int err;
1661
1662         mmap_read_lock(mm);
1663         err = -EFAULT;
1664         vma = find_vma(mm, addr);
1665         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1666                 goto out;
1667
1668         /* FOLL_DUMP to ignore special (like zero) pages */
1669         follflags = FOLL_GET | FOLL_DUMP;
1670         page = follow_page(vma, addr, follflags);
1671
1672         err = PTR_ERR(page);
1673         if (IS_ERR(page))
1674                 goto out;
1675
1676         err = -ENOENT;
1677         if (!page)
1678                 goto out;
1679
1680         err = 0;
1681         if (page_to_nid(page) == node)
1682                 goto out_putpage;
1683
1684         err = -EACCES;
1685         if (page_mapcount(page) > 1 && !migrate_all)
1686                 goto out_putpage;
1687
1688         if (PageHuge(page)) {
1689                 if (PageHead(page)) {
1690                         isolate_huge_page(page, pagelist);
1691                         err = 1;
1692                 }
1693         } else {
1694                 struct page *head;
1695
1696                 head = compound_head(page);
1697                 err = isolate_lru_page(head);
1698                 if (err)
1699                         goto out_putpage;
1700
1701                 err = 1;
1702                 list_add_tail(&head->lru, pagelist);
1703                 mod_node_page_state(page_pgdat(head),
1704                         NR_ISOLATED_ANON + page_is_file_lru(head),
1705                         thp_nr_pages(head));
1706         }
1707 out_putpage:
1708         /*
1709          * Either remove the duplicate refcount from
1710          * isolate_lru_page() or drop the page ref if it was
1711          * not isolated.
1712          */
1713         put_page(page);
1714 out:
1715         mmap_read_unlock(mm);
1716         return err;
1717 }
1718
1719 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1720                 struct list_head *pagelist, int __user *status,
1721                 int start, int i, unsigned long nr_pages)
1722 {
1723         int err;
1724
1725         if (list_empty(pagelist))
1726                 return 0;
1727
1728         err = do_move_pages_to_node(mm, pagelist, node);
1729         if (err) {
1730                 /*
1731                  * Positive err means the number of failed
1732                  * pages to migrate.  Since we are going to
1733                  * abort and return the number of non-migrated
1734                  * pages, so need to include the rest of the
1735                  * nr_pages that have not been attempted as
1736                  * well.
1737                  */
1738                 if (err > 0)
1739                         err += nr_pages - i - 1;
1740                 return err;
1741         }
1742         return store_status(status, start, node, i - start);
1743 }
1744
1745 /*
1746  * Migrate an array of page address onto an array of nodes and fill
1747  * the corresponding array of status.
1748  */
1749 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1750                          unsigned long nr_pages,
1751                          const void __user * __user *pages,
1752                          const int __user *nodes,
1753                          int __user *status, int flags)
1754 {
1755         int current_node = NUMA_NO_NODE;
1756         LIST_HEAD(pagelist);
1757         int start, i;
1758         int err = 0, err1;
1759
1760         lru_cache_disable();
1761
1762         for (i = start = 0; i < nr_pages; i++) {
1763                 const void __user *p;
1764                 unsigned long addr;
1765                 int node;
1766
1767                 err = -EFAULT;
1768                 if (get_user(p, pages + i))
1769                         goto out_flush;
1770                 if (get_user(node, nodes + i))
1771                         goto out_flush;
1772                 addr = (unsigned long)untagged_addr(p);
1773
1774                 err = -ENODEV;
1775                 if (node < 0 || node >= MAX_NUMNODES)
1776                         goto out_flush;
1777                 if (!node_state(node, N_MEMORY))
1778                         goto out_flush;
1779
1780                 err = -EACCES;
1781                 if (!node_isset(node, task_nodes))
1782                         goto out_flush;
1783
1784                 if (current_node == NUMA_NO_NODE) {
1785                         current_node = node;
1786                         start = i;
1787                 } else if (node != current_node) {
1788                         err = move_pages_and_store_status(mm, current_node,
1789                                         &pagelist, status, start, i, nr_pages);
1790                         if (err)
1791                                 goto out;
1792                         start = i;
1793                         current_node = node;
1794                 }
1795
1796                 /*
1797                  * Errors in the page lookup or isolation are not fatal and we simply
1798                  * report them via status
1799                  */
1800                 err = add_page_for_migration(mm, addr, current_node,
1801                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1802
1803                 if (err > 0) {
1804                         /* The page is successfully queued for migration */
1805                         continue;
1806                 }
1807
1808                 /*
1809                  * If the page is already on the target node (!err), store the
1810                  * node, otherwise, store the err.
1811                  */
1812                 err = store_status(status, i, err ? : current_node, 1);
1813                 if (err)
1814                         goto out_flush;
1815
1816                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1817                                 status, start, i, nr_pages);
1818                 if (err)
1819                         goto out;
1820                 current_node = NUMA_NO_NODE;
1821         }
1822 out_flush:
1823         /* Make sure we do not overwrite the existing error */
1824         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1825                                 status, start, i, nr_pages);
1826         if (err >= 0)
1827                 err = err1;
1828 out:
1829         lru_cache_enable();
1830         return err;
1831 }
1832
1833 /*
1834  * Determine the nodes of an array of pages and store it in an array of status.
1835  */
1836 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1837                                 const void __user **pages, int *status)
1838 {
1839         unsigned long i;
1840
1841         mmap_read_lock(mm);
1842
1843         for (i = 0; i < nr_pages; i++) {
1844                 unsigned long addr = (unsigned long)(*pages);
1845                 struct vm_area_struct *vma;
1846                 struct page *page;
1847                 int err = -EFAULT;
1848
1849                 vma = vma_lookup(mm, addr);
1850                 if (!vma)
1851                         goto set_status;
1852
1853                 /* FOLL_DUMP to ignore special (like zero) pages */
1854                 page = follow_page(vma, addr, FOLL_DUMP);
1855
1856                 err = PTR_ERR(page);
1857                 if (IS_ERR(page))
1858                         goto set_status;
1859
1860                 err = page ? page_to_nid(page) : -ENOENT;
1861 set_status:
1862                 *status = err;
1863
1864                 pages++;
1865                 status++;
1866         }
1867
1868         mmap_read_unlock(mm);
1869 }
1870
1871 /*
1872  * Determine the nodes of a user array of pages and store it in
1873  * a user array of status.
1874  */
1875 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1876                          const void __user * __user *pages,
1877                          int __user *status)
1878 {
1879 #define DO_PAGES_STAT_CHUNK_NR 16
1880         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1881         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1882
1883         while (nr_pages) {
1884                 unsigned long chunk_nr;
1885
1886                 chunk_nr = nr_pages;
1887                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1888                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1889
1890                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1891                         break;
1892
1893                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1894
1895                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1896                         break;
1897
1898                 pages += chunk_nr;
1899                 status += chunk_nr;
1900                 nr_pages -= chunk_nr;
1901         }
1902         return nr_pages ? -EFAULT : 0;
1903 }
1904
1905 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1906 {
1907         struct task_struct *task;
1908         struct mm_struct *mm;
1909
1910         /*
1911          * There is no need to check if current process has the right to modify
1912          * the specified process when they are same.
1913          */
1914         if (!pid) {
1915                 mmget(current->mm);
1916                 *mem_nodes = cpuset_mems_allowed(current);
1917                 return current->mm;
1918         }
1919
1920         /* Find the mm_struct */
1921         rcu_read_lock();
1922         task = find_task_by_vpid(pid);
1923         if (!task) {
1924                 rcu_read_unlock();
1925                 return ERR_PTR(-ESRCH);
1926         }
1927         get_task_struct(task);
1928
1929         /*
1930          * Check if this process has the right to modify the specified
1931          * process. Use the regular "ptrace_may_access()" checks.
1932          */
1933         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1934                 rcu_read_unlock();
1935                 mm = ERR_PTR(-EPERM);
1936                 goto out;
1937         }
1938         rcu_read_unlock();
1939
1940         mm = ERR_PTR(security_task_movememory(task));
1941         if (IS_ERR(mm))
1942                 goto out;
1943         *mem_nodes = cpuset_mems_allowed(task);
1944         mm = get_task_mm(task);
1945 out:
1946         put_task_struct(task);
1947         if (!mm)
1948                 mm = ERR_PTR(-EINVAL);
1949         return mm;
1950 }
1951
1952 /*
1953  * Move a list of pages in the address space of the currently executing
1954  * process.
1955  */
1956 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1957                              const void __user * __user *pages,
1958                              const int __user *nodes,
1959                              int __user *status, int flags)
1960 {
1961         struct mm_struct *mm;
1962         int err;
1963         nodemask_t task_nodes;
1964
1965         /* Check flags */
1966         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1967                 return -EINVAL;
1968
1969         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1970                 return -EPERM;
1971
1972         mm = find_mm_struct(pid, &task_nodes);
1973         if (IS_ERR(mm))
1974                 return PTR_ERR(mm);
1975
1976         if (nodes)
1977                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1978                                     nodes, status, flags);
1979         else
1980                 err = do_pages_stat(mm, nr_pages, pages, status);
1981
1982         mmput(mm);
1983         return err;
1984 }
1985
1986 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1987                 const void __user * __user *, pages,
1988                 const int __user *, nodes,
1989                 int __user *, status, int, flags)
1990 {
1991         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1992 }
1993
1994 #ifdef CONFIG_COMPAT
1995 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1996                        compat_uptr_t __user *, pages32,
1997                        const int __user *, nodes,
1998                        int __user *, status,
1999                        int, flags)
2000 {
2001         const void __user * __user *pages;
2002         int i;
2003
2004         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2005         for (i = 0; i < nr_pages; i++) {
2006                 compat_uptr_t p;
2007
2008                 if (get_user(p, pages32 + i) ||
2009                         put_user(compat_ptr(p), pages + i))
2010                         return -EFAULT;
2011         }
2012         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2013 }
2014 #endif /* CONFIG_COMPAT */
2015
2016 #ifdef CONFIG_NUMA_BALANCING
2017 /*
2018  * Returns true if this is a safe migration target node for misplaced NUMA
2019  * pages. Currently it only checks the watermarks which crude
2020  */
2021 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2022                                    unsigned long nr_migrate_pages)
2023 {
2024         int z;
2025
2026         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2027                 struct zone *zone = pgdat->node_zones + z;
2028
2029                 if (!populated_zone(zone))
2030                         continue;
2031
2032                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2033                 if (!zone_watermark_ok(zone, 0,
2034                                        high_wmark_pages(zone) +
2035                                        nr_migrate_pages,
2036                                        ZONE_MOVABLE, 0))
2037                         continue;
2038                 return true;
2039         }
2040         return false;
2041 }
2042
2043 static struct page *alloc_misplaced_dst_page(struct page *page,
2044                                            unsigned long data)
2045 {
2046         int nid = (int) data;
2047         struct page *newpage;
2048
2049         newpage = __alloc_pages_node(nid,
2050                                          (GFP_HIGHUSER_MOVABLE |
2051                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2052                                           __GFP_NORETRY | __GFP_NOWARN) &
2053                                          ~__GFP_RECLAIM, 0);
2054
2055         return newpage;
2056 }
2057
2058 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2059                                                  unsigned long data)
2060 {
2061         int nid = (int) data;
2062         struct page *newpage;
2063
2064         newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2065                                    HPAGE_PMD_ORDER);
2066         if (!newpage)
2067                 goto out;
2068
2069         prep_transhuge_page(newpage);
2070
2071 out:
2072         return newpage;
2073 }
2074
2075 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2076 {
2077         int page_lru;
2078
2079         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2080
2081         /* Do not migrate THP mapped by multiple processes */
2082         if (PageTransHuge(page) && total_mapcount(page) > 1)
2083                 return 0;
2084
2085         /* Avoid migrating to a node that is nearly full */
2086         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2087                 return 0;
2088
2089         if (isolate_lru_page(page))
2090                 return 0;
2091
2092         page_lru = page_is_file_lru(page);
2093         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2094                                 thp_nr_pages(page));
2095
2096         /*
2097          * Isolating the page has taken another reference, so the
2098          * caller's reference can be safely dropped without the page
2099          * disappearing underneath us during migration.
2100          */
2101         put_page(page);
2102         return 1;
2103 }
2104
2105 /*
2106  * Attempt to migrate a misplaced page to the specified destination
2107  * node. Caller is expected to have an elevated reference count on
2108  * the page that will be dropped by this function before returning.
2109  */
2110 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2111                            int node)
2112 {
2113         pg_data_t *pgdat = NODE_DATA(node);
2114         int isolated;
2115         int nr_remaining;
2116         LIST_HEAD(migratepages);
2117         new_page_t *new;
2118         bool compound;
2119         unsigned int nr_pages = thp_nr_pages(page);
2120
2121         /*
2122          * PTE mapped THP or HugeTLB page can't reach here so the page could
2123          * be either base page or THP.  And it must be head page if it is
2124          * THP.
2125          */
2126         compound = PageTransHuge(page);
2127
2128         if (compound)
2129                 new = alloc_misplaced_dst_page_thp;
2130         else
2131                 new = alloc_misplaced_dst_page;
2132
2133         /*
2134          * Don't migrate file pages that are mapped in multiple processes
2135          * with execute permissions as they are probably shared libraries.
2136          */
2137         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2138             (vma->vm_flags & VM_EXEC))
2139                 goto out;
2140
2141         /*
2142          * Also do not migrate dirty pages as not all filesystems can move
2143          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2144          */
2145         if (page_is_file_lru(page) && PageDirty(page))
2146                 goto out;
2147
2148         isolated = numamigrate_isolate_page(pgdat, page);
2149         if (!isolated)
2150                 goto out;
2151
2152         list_add(&page->lru, &migratepages);
2153         nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2154                                      MIGRATE_ASYNC, MR_NUMA_MISPLACED);
2155         if (nr_remaining) {
2156                 if (!list_empty(&migratepages)) {
2157                         list_del(&page->lru);
2158                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2159                                         page_is_file_lru(page), -nr_pages);
2160                         putback_lru_page(page);
2161                 }
2162                 isolated = 0;
2163         } else
2164                 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2165         BUG_ON(!list_empty(&migratepages));
2166         return isolated;
2167
2168 out:
2169         put_page(page);
2170         return 0;
2171 }
2172 #endif /* CONFIG_NUMA_BALANCING */
2173 #endif /* CONFIG_NUMA */
2174
2175 #ifdef CONFIG_DEVICE_PRIVATE
2176 static int migrate_vma_collect_skip(unsigned long start,
2177                                     unsigned long end,
2178                                     struct mm_walk *walk)
2179 {
2180         struct migrate_vma *migrate = walk->private;
2181         unsigned long addr;
2182
2183         for (addr = start; addr < end; addr += PAGE_SIZE) {
2184                 migrate->dst[migrate->npages] = 0;
2185                 migrate->src[migrate->npages++] = 0;
2186         }
2187
2188         return 0;
2189 }
2190
2191 static int migrate_vma_collect_hole(unsigned long start,
2192                                     unsigned long end,
2193                                     __always_unused int depth,
2194                                     struct mm_walk *walk)
2195 {
2196         struct migrate_vma *migrate = walk->private;
2197         unsigned long addr;
2198
2199         /* Only allow populating anonymous memory. */
2200         if (!vma_is_anonymous(walk->vma))
2201                 return migrate_vma_collect_skip(start, end, walk);
2202
2203         for (addr = start; addr < end; addr += PAGE_SIZE) {
2204                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2205                 migrate->dst[migrate->npages] = 0;
2206                 migrate->npages++;
2207                 migrate->cpages++;
2208         }
2209
2210         return 0;
2211 }
2212
2213 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2214                                    unsigned long start,
2215                                    unsigned long end,
2216                                    struct mm_walk *walk)
2217 {
2218         struct migrate_vma *migrate = walk->private;
2219         struct vm_area_struct *vma = walk->vma;
2220         struct mm_struct *mm = vma->vm_mm;
2221         unsigned long addr = start, unmapped = 0;
2222         spinlock_t *ptl;
2223         pte_t *ptep;
2224
2225 again:
2226         if (pmd_none(*pmdp))
2227                 return migrate_vma_collect_hole(start, end, -1, walk);
2228
2229         if (pmd_trans_huge(*pmdp)) {
2230                 struct page *page;
2231
2232                 ptl = pmd_lock(mm, pmdp);
2233                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2234                         spin_unlock(ptl);
2235                         goto again;
2236                 }
2237
2238                 page = pmd_page(*pmdp);
2239                 if (is_huge_zero_page(page)) {
2240                         spin_unlock(ptl);
2241                         split_huge_pmd(vma, pmdp, addr);
2242                         if (pmd_trans_unstable(pmdp))
2243                                 return migrate_vma_collect_skip(start, end,
2244                                                                 walk);
2245                 } else {
2246                         int ret;
2247
2248                         get_page(page);
2249                         spin_unlock(ptl);
2250                         if (unlikely(!trylock_page(page)))
2251                                 return migrate_vma_collect_skip(start, end,
2252                                                                 walk);
2253                         ret = split_huge_page(page);
2254                         unlock_page(page);
2255                         put_page(page);
2256                         if (ret)
2257                                 return migrate_vma_collect_skip(start, end,
2258                                                                 walk);
2259                         if (pmd_none(*pmdp))
2260                                 return migrate_vma_collect_hole(start, end, -1,
2261                                                                 walk);
2262                 }
2263         }
2264
2265         if (unlikely(pmd_bad(*pmdp)))
2266                 return migrate_vma_collect_skip(start, end, walk);
2267
2268         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2269         arch_enter_lazy_mmu_mode();
2270
2271         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2272                 unsigned long mpfn = 0, pfn;
2273                 struct page *page;
2274                 swp_entry_t entry;
2275                 pte_t pte;
2276
2277                 pte = *ptep;
2278
2279                 if (pte_none(pte)) {
2280                         if (vma_is_anonymous(vma)) {
2281                                 mpfn = MIGRATE_PFN_MIGRATE;
2282                                 migrate->cpages++;
2283                         }
2284                         goto next;
2285                 }
2286
2287                 if (!pte_present(pte)) {
2288                         /*
2289                          * Only care about unaddressable device page special
2290                          * page table entry. Other special swap entries are not
2291                          * migratable, and we ignore regular swapped page.
2292                          */
2293                         entry = pte_to_swp_entry(pte);
2294                         if (!is_device_private_entry(entry))
2295                                 goto next;
2296
2297                         page = pfn_swap_entry_to_page(entry);
2298                         if (!(migrate->flags &
2299                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2300                             page->pgmap->owner != migrate->pgmap_owner)
2301                                 goto next;
2302
2303                         mpfn = migrate_pfn(page_to_pfn(page)) |
2304                                         MIGRATE_PFN_MIGRATE;
2305                         if (is_writable_device_private_entry(entry))
2306                                 mpfn |= MIGRATE_PFN_WRITE;
2307                 } else {
2308                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2309                                 goto next;
2310                         pfn = pte_pfn(pte);
2311                         if (is_zero_pfn(pfn)) {
2312                                 mpfn = MIGRATE_PFN_MIGRATE;
2313                                 migrate->cpages++;
2314                                 goto next;
2315                         }
2316                         page = vm_normal_page(migrate->vma, addr, pte);
2317                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2318                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2319                 }
2320
2321                 /* FIXME support THP */
2322                 if (!page || !page->mapping || PageTransCompound(page)) {
2323                         mpfn = 0;
2324                         goto next;
2325                 }
2326
2327                 /*
2328                  * By getting a reference on the page we pin it and that blocks
2329                  * any kind of migration. Side effect is that it "freezes" the
2330                  * pte.
2331                  *
2332                  * We drop this reference after isolating the page from the lru
2333                  * for non device page (device page are not on the lru and thus
2334                  * can't be dropped from it).
2335                  */
2336                 get_page(page);
2337                 migrate->cpages++;
2338
2339                 /*
2340                  * Optimize for the common case where page is only mapped once
2341                  * in one process. If we can lock the page, then we can safely
2342                  * set up a special migration page table entry now.
2343                  */
2344                 if (trylock_page(page)) {
2345                         pte_t swp_pte;
2346
2347                         mpfn |= MIGRATE_PFN_LOCKED;
2348                         ptep_get_and_clear(mm, addr, ptep);
2349
2350                         /* Setup special migration page table entry */
2351                         if (mpfn & MIGRATE_PFN_WRITE)
2352                                 entry = make_writable_migration_entry(
2353                                                         page_to_pfn(page));
2354                         else
2355                                 entry = make_readable_migration_entry(
2356                                                         page_to_pfn(page));
2357                         swp_pte = swp_entry_to_pte(entry);
2358                         if (pte_present(pte)) {
2359                                 if (pte_soft_dirty(pte))
2360                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2361                                 if (pte_uffd_wp(pte))
2362                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2363                         } else {
2364                                 if (pte_swp_soft_dirty(pte))
2365                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2366                                 if (pte_swp_uffd_wp(pte))
2367                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2368                         }
2369                         set_pte_at(mm, addr, ptep, swp_pte);
2370
2371                         /*
2372                          * This is like regular unmap: we remove the rmap and
2373                          * drop page refcount. Page won't be freed, as we took
2374                          * a reference just above.
2375                          */
2376                         page_remove_rmap(page, false);
2377                         put_page(page);
2378
2379                         if (pte_present(pte))
2380                                 unmapped++;
2381                 }
2382
2383 next:
2384                 migrate->dst[migrate->npages] = 0;
2385                 migrate->src[migrate->npages++] = mpfn;
2386         }
2387         arch_leave_lazy_mmu_mode();
2388         pte_unmap_unlock(ptep - 1, ptl);
2389
2390         /* Only flush the TLB if we actually modified any entries */
2391         if (unmapped)
2392                 flush_tlb_range(walk->vma, start, end);
2393
2394         return 0;
2395 }
2396
2397 static const struct mm_walk_ops migrate_vma_walk_ops = {
2398         .pmd_entry              = migrate_vma_collect_pmd,
2399         .pte_hole               = migrate_vma_collect_hole,
2400 };
2401
2402 /*
2403  * migrate_vma_collect() - collect pages over a range of virtual addresses
2404  * @migrate: migrate struct containing all migration information
2405  *
2406  * This will walk the CPU page table. For each virtual address backed by a
2407  * valid page, it updates the src array and takes a reference on the page, in
2408  * order to pin the page until we lock it and unmap it.
2409  */
2410 static void migrate_vma_collect(struct migrate_vma *migrate)
2411 {
2412         struct mmu_notifier_range range;
2413
2414         /*
2415          * Note that the pgmap_owner is passed to the mmu notifier callback so
2416          * that the registered device driver can skip invalidating device
2417          * private page mappings that won't be migrated.
2418          */
2419         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2420                 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2421                 migrate->pgmap_owner);
2422         mmu_notifier_invalidate_range_start(&range);
2423
2424         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2425                         &migrate_vma_walk_ops, migrate);
2426
2427         mmu_notifier_invalidate_range_end(&range);
2428         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2429 }
2430
2431 /*
2432  * migrate_vma_check_page() - check if page is pinned or not
2433  * @page: struct page to check
2434  *
2435  * Pinned pages cannot be migrated. This is the same test as in
2436  * migrate_page_move_mapping(), except that here we allow migration of a
2437  * ZONE_DEVICE page.
2438  */
2439 static bool migrate_vma_check_page(struct page *page)
2440 {
2441         /*
2442          * One extra ref because caller holds an extra reference, either from
2443          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2444          * a device page.
2445          */
2446         int extra = 1;
2447
2448         /*
2449          * FIXME support THP (transparent huge page), it is bit more complex to
2450          * check them than regular pages, because they can be mapped with a pmd
2451          * or with a pte (split pte mapping).
2452          */
2453         if (PageCompound(page))
2454                 return false;
2455
2456         /* Page from ZONE_DEVICE have one extra reference */
2457         if (is_zone_device_page(page)) {
2458                 /*
2459                  * Private page can never be pin as they have no valid pte and
2460                  * GUP will fail for those. Yet if there is a pending migration
2461                  * a thread might try to wait on the pte migration entry and
2462                  * will bump the page reference count. Sadly there is no way to
2463                  * differentiate a regular pin from migration wait. Hence to
2464                  * avoid 2 racing thread trying to migrate back to CPU to enter
2465                  * infinite loop (one stopping migration because the other is
2466                  * waiting on pte migration entry). We always return true here.
2467                  *
2468                  * FIXME proper solution is to rework migration_entry_wait() so
2469                  * it does not need to take a reference on page.
2470                  */
2471                 return is_device_private_page(page);
2472         }
2473
2474         /* For file back page */
2475         if (page_mapping(page))
2476                 extra += 1 + page_has_private(page);
2477
2478         if ((page_count(page) - extra) > page_mapcount(page))
2479                 return false;
2480
2481         return true;
2482 }
2483
2484 /*
2485  * migrate_vma_prepare() - lock pages and isolate them from the lru
2486  * @migrate: migrate struct containing all migration information
2487  *
2488  * This locks pages that have been collected by migrate_vma_collect(). Once each
2489  * page is locked it is isolated from the lru (for non-device pages). Finally,
2490  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2491  * migrated by concurrent kernel threads.
2492  */
2493 static void migrate_vma_prepare(struct migrate_vma *migrate)
2494 {
2495         const unsigned long npages = migrate->npages;
2496         const unsigned long start = migrate->start;
2497         unsigned long addr, i, restore = 0;
2498         bool allow_drain = true;
2499
2500         lru_add_drain();
2501
2502         for (i = 0; (i < npages) && migrate->cpages; i++) {
2503                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2504                 bool remap = true;
2505
2506                 if (!page)
2507                         continue;
2508
2509                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2510                         /*
2511                          * Because we are migrating several pages there can be
2512                          * a deadlock between 2 concurrent migration where each
2513                          * are waiting on each other page lock.
2514                          *
2515                          * Make migrate_vma() a best effort thing and backoff
2516                          * for any page we can not lock right away.
2517                          */
2518                         if (!trylock_page(page)) {
2519                                 migrate->src[i] = 0;
2520                                 migrate->cpages--;
2521                                 put_page(page);
2522                                 continue;
2523                         }
2524                         remap = false;
2525                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2526                 }
2527
2528                 /* ZONE_DEVICE pages are not on LRU */
2529                 if (!is_zone_device_page(page)) {
2530                         if (!PageLRU(page) && allow_drain) {
2531                                 /* Drain CPU's pagevec */
2532                                 lru_add_drain_all();
2533                                 allow_drain = false;
2534                         }
2535
2536                         if (isolate_lru_page(page)) {
2537                                 if (remap) {
2538                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2539                                         migrate->cpages--;
2540                                         restore++;
2541                                 } else {
2542                                         migrate->src[i] = 0;
2543                                         unlock_page(page);
2544                                         migrate->cpages--;
2545                                         put_page(page);
2546                                 }
2547                                 continue;
2548                         }
2549
2550                         /* Drop the reference we took in collect */
2551                         put_page(page);
2552                 }
2553
2554                 if (!migrate_vma_check_page(page)) {
2555                         if (remap) {
2556                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2557                                 migrate->cpages--;
2558                                 restore++;
2559
2560                                 if (!is_zone_device_page(page)) {
2561                                         get_page(page);
2562                                         putback_lru_page(page);
2563                                 }
2564                         } else {
2565                                 migrate->src[i] = 0;
2566                                 unlock_page(page);
2567                                 migrate->cpages--;
2568
2569                                 if (!is_zone_device_page(page))
2570                                         putback_lru_page(page);
2571                                 else
2572                                         put_page(page);
2573                         }
2574                 }
2575         }
2576
2577         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2578                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2579
2580                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2581                         continue;
2582
2583                 remove_migration_pte(page, migrate->vma, addr, page);
2584
2585                 migrate->src[i] = 0;
2586                 unlock_page(page);
2587                 put_page(page);
2588                 restore--;
2589         }
2590 }
2591
2592 /*
2593  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2594  * @migrate: migrate struct containing all migration information
2595  *
2596  * Replace page mapping (CPU page table pte) with a special migration pte entry
2597  * and check again if it has been pinned. Pinned pages are restored because we
2598  * cannot migrate them.
2599  *
2600  * This is the last step before we call the device driver callback to allocate
2601  * destination memory and copy contents of original page over to new page.
2602  */
2603 static void migrate_vma_unmap(struct migrate_vma *migrate)
2604 {
2605         const unsigned long npages = migrate->npages;
2606         const unsigned long start = migrate->start;
2607         unsigned long addr, i, restore = 0;
2608
2609         for (i = 0; i < npages; i++) {
2610                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2611
2612                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2613                         continue;
2614
2615                 if (page_mapped(page)) {
2616                         try_to_migrate(page, 0);
2617                         if (page_mapped(page))
2618                                 goto restore;
2619                 }
2620
2621                 if (migrate_vma_check_page(page))
2622                         continue;
2623
2624 restore:
2625                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2626                 migrate->cpages--;
2627                 restore++;
2628         }
2629
2630         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2631                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2632
2633                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2634                         continue;
2635
2636                 remove_migration_ptes(page, page, false);
2637
2638                 migrate->src[i] = 0;
2639                 unlock_page(page);
2640                 restore--;
2641
2642                 if (is_zone_device_page(page))
2643                         put_page(page);
2644                 else
2645                         putback_lru_page(page);
2646         }
2647 }
2648
2649 /**
2650  * migrate_vma_setup() - prepare to migrate a range of memory
2651  * @args: contains the vma, start, and pfns arrays for the migration
2652  *
2653  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2654  * without an error.
2655  *
2656  * Prepare to migrate a range of memory virtual address range by collecting all
2657  * the pages backing each virtual address in the range, saving them inside the
2658  * src array.  Then lock those pages and unmap them. Once the pages are locked
2659  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2660  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2661  * corresponding src array entry.  Then restores any pages that are pinned, by
2662  * remapping and unlocking those pages.
2663  *
2664  * The caller should then allocate destination memory and copy source memory to
2665  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2666  * flag set).  Once these are allocated and copied, the caller must update each
2667  * corresponding entry in the dst array with the pfn value of the destination
2668  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2669  * (destination pages must have their struct pages locked, via lock_page()).
2670  *
2671  * Note that the caller does not have to migrate all the pages that are marked
2672  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2673  * device memory to system memory.  If the caller cannot migrate a device page
2674  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2675  * consequences for the userspace process, so it must be avoided if at all
2676  * possible.
2677  *
2678  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2679  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2680  * allowing the caller to allocate device memory for those unbacked virtual
2681  * addresses.  For this the caller simply has to allocate device memory and
2682  * properly set the destination entry like for regular migration.  Note that
2683  * this can still fail, and thus inside the device driver you must check if the
2684  * migration was successful for those entries after calling migrate_vma_pages(),
2685  * just like for regular migration.
2686  *
2687  * After that, the callers must call migrate_vma_pages() to go over each entry
2688  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2689  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2690  * then migrate_vma_pages() to migrate struct page information from the source
2691  * struct page to the destination struct page.  If it fails to migrate the
2692  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2693  * src array.
2694  *
2695  * At this point all successfully migrated pages have an entry in the src
2696  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2697  * array entry with MIGRATE_PFN_VALID flag set.
2698  *
2699  * Once migrate_vma_pages() returns the caller may inspect which pages were
2700  * successfully migrated, and which were not.  Successfully migrated pages will
2701  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2702  *
2703  * It is safe to update device page table after migrate_vma_pages() because
2704  * both destination and source page are still locked, and the mmap_lock is held
2705  * in read mode (hence no one can unmap the range being migrated).
2706  *
2707  * Once the caller is done cleaning up things and updating its page table (if it
2708  * chose to do so, this is not an obligation) it finally calls
2709  * migrate_vma_finalize() to update the CPU page table to point to new pages
2710  * for successfully migrated pages or otherwise restore the CPU page table to
2711  * point to the original source pages.
2712  */
2713 int migrate_vma_setup(struct migrate_vma *args)
2714 {
2715         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2716
2717         args->start &= PAGE_MASK;
2718         args->end &= PAGE_MASK;
2719         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2720             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2721                 return -EINVAL;
2722         if (nr_pages <= 0)
2723                 return -EINVAL;
2724         if (args->start < args->vma->vm_start ||
2725             args->start >= args->vma->vm_end)
2726                 return -EINVAL;
2727         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2728                 return -EINVAL;
2729         if (!args->src || !args->dst)
2730                 return -EINVAL;
2731
2732         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2733         args->cpages = 0;
2734         args->npages = 0;
2735
2736         migrate_vma_collect(args);
2737
2738         if (args->cpages)
2739                 migrate_vma_prepare(args);
2740         if (args->cpages)
2741                 migrate_vma_unmap(args);
2742
2743         /*
2744          * At this point pages are locked and unmapped, and thus they have
2745          * stable content and can safely be copied to destination memory that
2746          * is allocated by the drivers.
2747          */
2748         return 0;
2749
2750 }
2751 EXPORT_SYMBOL(migrate_vma_setup);
2752
2753 /*
2754  * This code closely matches the code in:
2755  *   __handle_mm_fault()
2756  *     handle_pte_fault()
2757  *       do_anonymous_page()
2758  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2759  * private page.
2760  */
2761 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2762                                     unsigned long addr,
2763                                     struct page *page,
2764                                     unsigned long *src)
2765 {
2766         struct vm_area_struct *vma = migrate->vma;
2767         struct mm_struct *mm = vma->vm_mm;
2768         bool flush = false;
2769         spinlock_t *ptl;
2770         pte_t entry;
2771         pgd_t *pgdp;
2772         p4d_t *p4dp;
2773         pud_t *pudp;
2774         pmd_t *pmdp;
2775         pte_t *ptep;
2776
2777         /* Only allow populating anonymous memory */
2778         if (!vma_is_anonymous(vma))
2779                 goto abort;
2780
2781         pgdp = pgd_offset(mm, addr);
2782         p4dp = p4d_alloc(mm, pgdp, addr);
2783         if (!p4dp)
2784                 goto abort;
2785         pudp = pud_alloc(mm, p4dp, addr);
2786         if (!pudp)
2787                 goto abort;
2788         pmdp = pmd_alloc(mm, pudp, addr);
2789         if (!pmdp)
2790                 goto abort;
2791
2792         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2793                 goto abort;
2794
2795         /*
2796          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2797          * pte_offset_map() on pmds where a huge pmd might be created
2798          * from a different thread.
2799          *
2800          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2801          * parallel threads are excluded by other means.
2802          *
2803          * Here we only have mmap_read_lock(mm).
2804          */
2805         if (pte_alloc(mm, pmdp))
2806                 goto abort;
2807
2808         /* See the comment in pte_alloc_one_map() */
2809         if (unlikely(pmd_trans_unstable(pmdp)))
2810                 goto abort;
2811
2812         if (unlikely(anon_vma_prepare(vma)))
2813                 goto abort;
2814         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2815                 goto abort;
2816
2817         /*
2818          * The memory barrier inside __SetPageUptodate makes sure that
2819          * preceding stores to the page contents become visible before
2820          * the set_pte_at() write.
2821          */
2822         __SetPageUptodate(page);
2823
2824         if (is_zone_device_page(page)) {
2825                 if (is_device_private_page(page)) {
2826                         swp_entry_t swp_entry;
2827
2828                         if (vma->vm_flags & VM_WRITE)
2829                                 swp_entry = make_writable_device_private_entry(
2830                                                         page_to_pfn(page));
2831                         else
2832                                 swp_entry = make_readable_device_private_entry(
2833                                                         page_to_pfn(page));
2834                         entry = swp_entry_to_pte(swp_entry);
2835                 } else {
2836                         /*
2837                          * For now we only support migrating to un-addressable
2838                          * device memory.
2839                          */
2840                         pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2841                         goto abort;
2842                 }
2843         } else {
2844                 entry = mk_pte(page, vma->vm_page_prot);
2845                 if (vma->vm_flags & VM_WRITE)
2846                         entry = pte_mkwrite(pte_mkdirty(entry));
2847         }
2848
2849         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2850
2851         if (check_stable_address_space(mm))
2852                 goto unlock_abort;
2853
2854         if (pte_present(*ptep)) {
2855                 unsigned long pfn = pte_pfn(*ptep);
2856
2857                 if (!is_zero_pfn(pfn))
2858                         goto unlock_abort;
2859                 flush = true;
2860         } else if (!pte_none(*ptep))
2861                 goto unlock_abort;
2862
2863         /*
2864          * Check for userfaultfd but do not deliver the fault. Instead,
2865          * just back off.
2866          */
2867         if (userfaultfd_missing(vma))
2868                 goto unlock_abort;
2869
2870         inc_mm_counter(mm, MM_ANONPAGES);
2871         page_add_new_anon_rmap(page, vma, addr, false);
2872         if (!is_zone_device_page(page))
2873                 lru_cache_add_inactive_or_unevictable(page, vma);
2874         get_page(page);
2875
2876         if (flush) {
2877                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2878                 ptep_clear_flush_notify(vma, addr, ptep);
2879                 set_pte_at_notify(mm, addr, ptep, entry);
2880                 update_mmu_cache(vma, addr, ptep);
2881         } else {
2882                 /* No need to invalidate - it was non-present before */
2883                 set_pte_at(mm, addr, ptep, entry);
2884                 update_mmu_cache(vma, addr, ptep);
2885         }
2886
2887         pte_unmap_unlock(ptep, ptl);
2888         *src = MIGRATE_PFN_MIGRATE;
2889         return;
2890
2891 unlock_abort:
2892         pte_unmap_unlock(ptep, ptl);
2893 abort:
2894         *src &= ~MIGRATE_PFN_MIGRATE;
2895 }
2896
2897 /**
2898  * migrate_vma_pages() - migrate meta-data from src page to dst page
2899  * @migrate: migrate struct containing all migration information
2900  *
2901  * This migrates struct page meta-data from source struct page to destination
2902  * struct page. This effectively finishes the migration from source page to the
2903  * destination page.
2904  */
2905 void migrate_vma_pages(struct migrate_vma *migrate)
2906 {
2907         const unsigned long npages = migrate->npages;
2908         const unsigned long start = migrate->start;
2909         struct mmu_notifier_range range;
2910         unsigned long addr, i;
2911         bool notified = false;
2912
2913         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2914                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2915                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2916                 struct address_space *mapping;
2917                 int r;
2918
2919                 if (!newpage) {
2920                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2921                         continue;
2922                 }
2923
2924                 if (!page) {
2925                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2926                                 continue;
2927                         if (!notified) {
2928                                 notified = true;
2929
2930                                 mmu_notifier_range_init_owner(&range,
2931                                         MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2932                                         migrate->vma->vm_mm, addr, migrate->end,
2933                                         migrate->pgmap_owner);
2934                                 mmu_notifier_invalidate_range_start(&range);
2935                         }
2936                         migrate_vma_insert_page(migrate, addr, newpage,
2937                                                 &migrate->src[i]);
2938                         continue;
2939                 }
2940
2941                 mapping = page_mapping(page);
2942
2943                 if (is_zone_device_page(newpage)) {
2944                         if (is_device_private_page(newpage)) {
2945                                 /*
2946                                  * For now only support private anonymous when
2947                                  * migrating to un-addressable device memory.
2948                                  */
2949                                 if (mapping) {
2950                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2951                                         continue;
2952                                 }
2953                         } else {
2954                                 /*
2955                                  * Other types of ZONE_DEVICE page are not
2956                                  * supported.
2957                                  */
2958                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2959                                 continue;
2960                         }
2961                 }
2962
2963                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2964                 if (r != MIGRATEPAGE_SUCCESS)
2965                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2966         }
2967
2968         /*
2969          * No need to double call mmu_notifier->invalidate_range() callback as
2970          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2971          * did already call it.
2972          */
2973         if (notified)
2974                 mmu_notifier_invalidate_range_only_end(&range);
2975 }
2976 EXPORT_SYMBOL(migrate_vma_pages);
2977
2978 /**
2979  * migrate_vma_finalize() - restore CPU page table entry
2980  * @migrate: migrate struct containing all migration information
2981  *
2982  * This replaces the special migration pte entry with either a mapping to the
2983  * new page if migration was successful for that page, or to the original page
2984  * otherwise.
2985  *
2986  * This also unlocks the pages and puts them back on the lru, or drops the extra
2987  * refcount, for device pages.
2988  */
2989 void migrate_vma_finalize(struct migrate_vma *migrate)
2990 {
2991         const unsigned long npages = migrate->npages;
2992         unsigned long i;
2993
2994         for (i = 0; i < npages; i++) {
2995                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2996                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2997
2998                 if (!page) {
2999                         if (newpage) {
3000                                 unlock_page(newpage);
3001                                 put_page(newpage);
3002                         }
3003                         continue;
3004                 }
3005
3006                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3007                         if (newpage) {
3008                                 unlock_page(newpage);
3009                                 put_page(newpage);
3010                         }
3011                         newpage = page;
3012                 }
3013
3014                 remove_migration_ptes(page, newpage, false);
3015                 unlock_page(page);
3016
3017                 if (is_zone_device_page(page))
3018                         put_page(page);
3019                 else
3020                         putback_lru_page(page);
3021
3022                 if (newpage != page) {
3023                         unlock_page(newpage);
3024                         if (is_zone_device_page(newpage))
3025                                 put_page(newpage);
3026                         else
3027                                 putback_lru_page(newpage);
3028                 }
3029         }
3030 }
3031 EXPORT_SYMBOL(migrate_vma_finalize);
3032 #endif /* CONFIG_DEVICE_PRIVATE */