mm/migrate.c: use helper migrate_vma_collect_skip() in migrate_vma_collect_hole()
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62         struct address_space *mapping;
63
64         /*
65          * Avoid burning cycles with pages that are yet under __free_pages(),
66          * or just got freed under us.
67          *
68          * In case we 'win' a race for a movable page being freed under us and
69          * raise its refcount preventing __free_pages() from doing its job
70          * the put_page() at the end of this block will take care of
71          * release this page, thus avoiding a nasty leakage.
72          */
73         if (unlikely(!get_page_unless_zero(page)))
74                 goto out;
75
76         /*
77          * Check PageMovable before holding a PG_lock because page's owner
78          * assumes anybody doesn't touch PG_lock of newly allocated page
79          * so unconditionally grabbing the lock ruins page's owner side.
80          */
81         if (unlikely(!__PageMovable(page)))
82                 goto out_putpage;
83         /*
84          * As movable pages are not isolated from LRU lists, concurrent
85          * compaction threads can race against page migration functions
86          * as well as race against the releasing a page.
87          *
88          * In order to avoid having an already isolated movable page
89          * being (wrongly) re-isolated while it is under migration,
90          * or to avoid attempting to isolate pages being released,
91          * lets be sure we have the page lock
92          * before proceeding with the movable page isolation steps.
93          */
94         if (unlikely(!trylock_page(page)))
95                 goto out_putpage;
96
97         if (!PageMovable(page) || PageIsolated(page))
98                 goto out_no_isolated;
99
100         mapping = page_mapping(page);
101         VM_BUG_ON_PAGE(!mapping, page);
102
103         if (!mapping->a_ops->isolate_page(page, mode))
104                 goto out_no_isolated;
105
106         /* Driver shouldn't use PG_isolated bit of page->flags */
107         WARN_ON_ONCE(PageIsolated(page));
108         __SetPageIsolated(page);
109         unlock_page(page);
110
111         return 0;
112
113 out_no_isolated:
114         unlock_page(page);
115 out_putpage:
116         put_page(page);
117 out:
118         return -EBUSY;
119 }
120
121 static void putback_movable_page(struct page *page)
122 {
123         struct address_space *mapping;
124
125         mapping = page_mapping(page);
126         mapping->a_ops->putback_page(page);
127         __ClearPageIsolated(page);
128 }
129
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140         struct page *page;
141         struct page *page2;
142
143         list_for_each_entry_safe(page, page2, l, lru) {
144                 if (unlikely(PageHuge(page))) {
145                         putback_active_hugepage(page);
146                         continue;
147                 }
148                 list_del(&page->lru);
149                 /*
150                  * We isolated non-lru movable page so here we can use
151                  * __PageMovable because LRU page's mapping cannot have
152                  * PAGE_MAPPING_MOVABLE.
153                  */
154                 if (unlikely(__PageMovable(page))) {
155                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
156                         lock_page(page);
157                         if (PageMovable(page))
158                                 putback_movable_page(page);
159                         else
160                                 __ClearPageIsolated(page);
161                         unlock_page(page);
162                         put_page(page);
163                 } else {
164                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165                                         page_is_file_lru(page), -thp_nr_pages(page));
166                         putback_lru_page(page);
167                 }
168         }
169 }
170
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175                                  unsigned long addr, void *old)
176 {
177         struct page_vma_mapped_walk pvmw = {
178                 .page = old,
179                 .vma = vma,
180                 .address = addr,
181                 .flags = PVMW_SYNC | PVMW_MIGRATION,
182         };
183         struct page *new;
184         pte_t pte;
185         swp_entry_t entry;
186
187         VM_BUG_ON_PAGE(PageTail(page), page);
188         while (page_vma_mapped_walk(&pvmw)) {
189                 if (PageKsm(page))
190                         new = page;
191                 else
192                         new = page - pvmw.page->index +
193                                 linear_page_index(vma, pvmw.address);
194
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196                 /* PMD-mapped THP migration entry */
197                 if (!pvmw.pte) {
198                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199                         remove_migration_pmd(&pvmw, new);
200                         continue;
201                 }
202 #endif
203
204                 get_page(new);
205                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206                 if (pte_swp_soft_dirty(*pvmw.pte))
207                         pte = pte_mksoft_dirty(pte);
208
209                 /*
210                  * Recheck VMA as permissions can change since migration started
211                  */
212                 entry = pte_to_swp_entry(*pvmw.pte);
213                 if (is_write_migration_entry(entry))
214                         pte = maybe_mkwrite(pte, vma);
215                 else if (pte_swp_uffd_wp(*pvmw.pte))
216                         pte = pte_mkuffd_wp(pte);
217
218                 if (unlikely(is_device_private_page(new))) {
219                         entry = make_device_private_entry(new, pte_write(pte));
220                         pte = swp_entry_to_pte(entry);
221                         if (pte_swp_soft_dirty(*pvmw.pte))
222                                 pte = pte_swp_mksoft_dirty(pte);
223                         if (pte_swp_uffd_wp(*pvmw.pte))
224                                 pte = pte_swp_mkuffd_wp(pte);
225                 }
226
227 #ifdef CONFIG_HUGETLB_PAGE
228                 if (PageHuge(new)) {
229                         pte = pte_mkhuge(pte);
230                         pte = arch_make_huge_pte(pte, vma, new, 0);
231                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
232                         if (PageAnon(new))
233                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
234                         else
235                                 page_dup_rmap(new, true);
236                 } else
237 #endif
238                 {
239                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240
241                         if (PageAnon(new))
242                                 page_add_anon_rmap(new, vma, pvmw.address, false);
243                         else
244                                 page_add_file_rmap(new, false);
245                 }
246                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247                         mlock_vma_page(new);
248
249                 if (PageTransHuge(page) && PageMlocked(page))
250                         clear_page_mlock(page);
251
252                 /* No need to invalidate - it was non-present before */
253                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
254         }
255
256         return true;
257 }
258
259 /*
260  * Get rid of all migration entries and replace them by
261  * references to the indicated page.
262  */
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
264 {
265         struct rmap_walk_control rwc = {
266                 .rmap_one = remove_migration_pte,
267                 .arg = old,
268         };
269
270         if (locked)
271                 rmap_walk_locked(new, &rwc);
272         else
273                 rmap_walk(new, &rwc);
274 }
275
276 /*
277  * Something used the pte of a page under migration. We need to
278  * get to the page and wait until migration is finished.
279  * When we return from this function the fault will be retried.
280  */
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282                                 spinlock_t *ptl)
283 {
284         pte_t pte;
285         swp_entry_t entry;
286         struct page *page;
287
288         spin_lock(ptl);
289         pte = *ptep;
290         if (!is_swap_pte(pte))
291                 goto out;
292
293         entry = pte_to_swp_entry(pte);
294         if (!is_migration_entry(entry))
295                 goto out;
296
297         page = migration_entry_to_page(entry);
298
299         /*
300          * Once page cache replacement of page migration started, page_count
301          * is zero; but we must not call put_and_wait_on_page_locked() without
302          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
303          */
304         if (!get_page_unless_zero(page))
305                 goto out;
306         pte_unmap_unlock(ptep, ptl);
307         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
308         return;
309 out:
310         pte_unmap_unlock(ptep, ptl);
311 }
312
313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
314                                 unsigned long address)
315 {
316         spinlock_t *ptl = pte_lockptr(mm, pmd);
317         pte_t *ptep = pte_offset_map(pmd, address);
318         __migration_entry_wait(mm, ptep, ptl);
319 }
320
321 void migration_entry_wait_huge(struct vm_area_struct *vma,
322                 struct mm_struct *mm, pte_t *pte)
323 {
324         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
325         __migration_entry_wait(mm, pte, ptl);
326 }
327
328 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
329 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
330 {
331         spinlock_t *ptl;
332         struct page *page;
333
334         ptl = pmd_lock(mm, pmd);
335         if (!is_pmd_migration_entry(*pmd))
336                 goto unlock;
337         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
338         if (!get_page_unless_zero(page))
339                 goto unlock;
340         spin_unlock(ptl);
341         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
342         return;
343 unlock:
344         spin_unlock(ptl);
345 }
346 #endif
347
348 static int expected_page_refs(struct address_space *mapping, struct page *page)
349 {
350         int expected_count = 1;
351
352         /*
353          * Device private pages have an extra refcount as they are
354          * ZONE_DEVICE pages.
355          */
356         expected_count += is_device_private_page(page);
357         if (mapping)
358                 expected_count += thp_nr_pages(page) + page_has_private(page);
359
360         return expected_count;
361 }
362
363 /*
364  * Replace the page in the mapping.
365  *
366  * The number of remaining references must be:
367  * 1 for anonymous pages without a mapping
368  * 2 for pages with a mapping
369  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
370  */
371 int migrate_page_move_mapping(struct address_space *mapping,
372                 struct page *newpage, struct page *page, int extra_count)
373 {
374         XA_STATE(xas, &mapping->i_pages, page_index(page));
375         struct zone *oldzone, *newzone;
376         int dirty;
377         int expected_count = expected_page_refs(mapping, page) + extra_count;
378         int nr = thp_nr_pages(page);
379
380         if (!mapping) {
381                 /* Anonymous page without mapping */
382                 if (page_count(page) != expected_count)
383                         return -EAGAIN;
384
385                 /* No turning back from here */
386                 newpage->index = page->index;
387                 newpage->mapping = page->mapping;
388                 if (PageSwapBacked(page))
389                         __SetPageSwapBacked(newpage);
390
391                 return MIGRATEPAGE_SUCCESS;
392         }
393
394         oldzone = page_zone(page);
395         newzone = page_zone(newpage);
396
397         xas_lock_irq(&xas);
398         if (page_count(page) != expected_count || xas_load(&xas) != page) {
399                 xas_unlock_irq(&xas);
400                 return -EAGAIN;
401         }
402
403         if (!page_ref_freeze(page, expected_count)) {
404                 xas_unlock_irq(&xas);
405                 return -EAGAIN;
406         }
407
408         /*
409          * Now we know that no one else is looking at the page:
410          * no turning back from here.
411          */
412         newpage->index = page->index;
413         newpage->mapping = page->mapping;
414         page_ref_add(newpage, nr); /* add cache reference */
415         if (PageSwapBacked(page)) {
416                 __SetPageSwapBacked(newpage);
417                 if (PageSwapCache(page)) {
418                         SetPageSwapCache(newpage);
419                         set_page_private(newpage, page_private(page));
420                 }
421         } else {
422                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
423         }
424
425         /* Move dirty while page refs frozen and newpage not yet exposed */
426         dirty = PageDirty(page);
427         if (dirty) {
428                 ClearPageDirty(page);
429                 SetPageDirty(newpage);
430         }
431
432         xas_store(&xas, newpage);
433         if (PageTransHuge(page)) {
434                 int i;
435
436                 for (i = 1; i < nr; i++) {
437                         xas_next(&xas);
438                         xas_store(&xas, newpage);
439                 }
440         }
441
442         /*
443          * Drop cache reference from old page by unfreezing
444          * to one less reference.
445          * We know this isn't the last reference.
446          */
447         page_ref_unfreeze(page, expected_count - nr);
448
449         xas_unlock(&xas);
450         /* Leave irq disabled to prevent preemption while updating stats */
451
452         /*
453          * If moved to a different zone then also account
454          * the page for that zone. Other VM counters will be
455          * taken care of when we establish references to the
456          * new page and drop references to the old page.
457          *
458          * Note that anonymous pages are accounted for
459          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
460          * are mapped to swap space.
461          */
462         if (newzone != oldzone) {
463                 struct lruvec *old_lruvec, *new_lruvec;
464                 struct mem_cgroup *memcg;
465
466                 memcg = page_memcg(page);
467                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
468                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
469
470                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
471                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
472                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
473                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
474                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
475                 }
476 #ifdef CONFIG_SWAP
477                 if (PageSwapCache(page)) {
478                         __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
479                         __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
480                 }
481 #endif
482                 if (dirty && mapping_can_writeback(mapping)) {
483                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
484                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
485                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
486                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
487                 }
488         }
489         local_irq_enable();
490
491         return MIGRATEPAGE_SUCCESS;
492 }
493 EXPORT_SYMBOL(migrate_page_move_mapping);
494
495 /*
496  * The expected number of remaining references is the same as that
497  * of migrate_page_move_mapping().
498  */
499 int migrate_huge_page_move_mapping(struct address_space *mapping,
500                                    struct page *newpage, struct page *page)
501 {
502         XA_STATE(xas, &mapping->i_pages, page_index(page));
503         int expected_count;
504
505         xas_lock_irq(&xas);
506         expected_count = 2 + page_has_private(page);
507         if (page_count(page) != expected_count || xas_load(&xas) != page) {
508                 xas_unlock_irq(&xas);
509                 return -EAGAIN;
510         }
511
512         if (!page_ref_freeze(page, expected_count)) {
513                 xas_unlock_irq(&xas);
514                 return -EAGAIN;
515         }
516
517         newpage->index = page->index;
518         newpage->mapping = page->mapping;
519
520         get_page(newpage);
521
522         xas_store(&xas, newpage);
523
524         page_ref_unfreeze(page, expected_count - 1);
525
526         xas_unlock_irq(&xas);
527
528         return MIGRATEPAGE_SUCCESS;
529 }
530
531 /*
532  * Gigantic pages are so large that we do not guarantee that page++ pointer
533  * arithmetic will work across the entire page.  We need something more
534  * specialized.
535  */
536 static void __copy_gigantic_page(struct page *dst, struct page *src,
537                                 int nr_pages)
538 {
539         int i;
540         struct page *dst_base = dst;
541         struct page *src_base = src;
542
543         for (i = 0; i < nr_pages; ) {
544                 cond_resched();
545                 copy_highpage(dst, src);
546
547                 i++;
548                 dst = mem_map_next(dst, dst_base, i);
549                 src = mem_map_next(src, src_base, i);
550         }
551 }
552
553 static void copy_huge_page(struct page *dst, struct page *src)
554 {
555         int i;
556         int nr_pages;
557
558         if (PageHuge(src)) {
559                 /* hugetlbfs page */
560                 struct hstate *h = page_hstate(src);
561                 nr_pages = pages_per_huge_page(h);
562
563                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
564                         __copy_gigantic_page(dst, src, nr_pages);
565                         return;
566                 }
567         } else {
568                 /* thp page */
569                 BUG_ON(!PageTransHuge(src));
570                 nr_pages = thp_nr_pages(src);
571         }
572
573         for (i = 0; i < nr_pages; i++) {
574                 cond_resched();
575                 copy_highpage(dst + i, src + i);
576         }
577 }
578
579 /*
580  * Copy the page to its new location
581  */
582 void migrate_page_states(struct page *newpage, struct page *page)
583 {
584         int cpupid;
585
586         if (PageError(page))
587                 SetPageError(newpage);
588         if (PageReferenced(page))
589                 SetPageReferenced(newpage);
590         if (PageUptodate(page))
591                 SetPageUptodate(newpage);
592         if (TestClearPageActive(page)) {
593                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
594                 SetPageActive(newpage);
595         } else if (TestClearPageUnevictable(page))
596                 SetPageUnevictable(newpage);
597         if (PageWorkingset(page))
598                 SetPageWorkingset(newpage);
599         if (PageChecked(page))
600                 SetPageChecked(newpage);
601         if (PageMappedToDisk(page))
602                 SetPageMappedToDisk(newpage);
603
604         /* Move dirty on pages not done by migrate_page_move_mapping() */
605         if (PageDirty(page))
606                 SetPageDirty(newpage);
607
608         if (page_is_young(page))
609                 set_page_young(newpage);
610         if (page_is_idle(page))
611                 set_page_idle(newpage);
612
613         /*
614          * Copy NUMA information to the new page, to prevent over-eager
615          * future migrations of this same page.
616          */
617         cpupid = page_cpupid_xchg_last(page, -1);
618         page_cpupid_xchg_last(newpage, cpupid);
619
620         ksm_migrate_page(newpage, page);
621         /*
622          * Please do not reorder this without considering how mm/ksm.c's
623          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
624          */
625         if (PageSwapCache(page))
626                 ClearPageSwapCache(page);
627         ClearPagePrivate(page);
628         set_page_private(page, 0);
629
630         /*
631          * If any waiters have accumulated on the new page then
632          * wake them up.
633          */
634         if (PageWriteback(newpage))
635                 end_page_writeback(newpage);
636
637         /*
638          * PG_readahead shares the same bit with PG_reclaim.  The above
639          * end_page_writeback() may clear PG_readahead mistakenly, so set the
640          * bit after that.
641          */
642         if (PageReadahead(page))
643                 SetPageReadahead(newpage);
644
645         copy_page_owner(page, newpage);
646
647         if (!PageHuge(page))
648                 mem_cgroup_migrate(page, newpage);
649 }
650 EXPORT_SYMBOL(migrate_page_states);
651
652 void migrate_page_copy(struct page *newpage, struct page *page)
653 {
654         if (PageHuge(page) || PageTransHuge(page))
655                 copy_huge_page(newpage, page);
656         else
657                 copy_highpage(newpage, page);
658
659         migrate_page_states(newpage, page);
660 }
661 EXPORT_SYMBOL(migrate_page_copy);
662
663 /************************************************************
664  *                    Migration functions
665  ***********************************************************/
666
667 /*
668  * Common logic to directly migrate a single LRU page suitable for
669  * pages that do not use PagePrivate/PagePrivate2.
670  *
671  * Pages are locked upon entry and exit.
672  */
673 int migrate_page(struct address_space *mapping,
674                 struct page *newpage, struct page *page,
675                 enum migrate_mode mode)
676 {
677         int rc;
678
679         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
680
681         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
682
683         if (rc != MIGRATEPAGE_SUCCESS)
684                 return rc;
685
686         if (mode != MIGRATE_SYNC_NO_COPY)
687                 migrate_page_copy(newpage, page);
688         else
689                 migrate_page_states(newpage, page);
690         return MIGRATEPAGE_SUCCESS;
691 }
692 EXPORT_SYMBOL(migrate_page);
693
694 #ifdef CONFIG_BLOCK
695 /* Returns true if all buffers are successfully locked */
696 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
697                                                         enum migrate_mode mode)
698 {
699         struct buffer_head *bh = head;
700
701         /* Simple case, sync compaction */
702         if (mode != MIGRATE_ASYNC) {
703                 do {
704                         lock_buffer(bh);
705                         bh = bh->b_this_page;
706
707                 } while (bh != head);
708
709                 return true;
710         }
711
712         /* async case, we cannot block on lock_buffer so use trylock_buffer */
713         do {
714                 if (!trylock_buffer(bh)) {
715                         /*
716                          * We failed to lock the buffer and cannot stall in
717                          * async migration. Release the taken locks
718                          */
719                         struct buffer_head *failed_bh = bh;
720                         bh = head;
721                         while (bh != failed_bh) {
722                                 unlock_buffer(bh);
723                                 bh = bh->b_this_page;
724                         }
725                         return false;
726                 }
727
728                 bh = bh->b_this_page;
729         } while (bh != head);
730         return true;
731 }
732
733 static int __buffer_migrate_page(struct address_space *mapping,
734                 struct page *newpage, struct page *page, enum migrate_mode mode,
735                 bool check_refs)
736 {
737         struct buffer_head *bh, *head;
738         int rc;
739         int expected_count;
740
741         if (!page_has_buffers(page))
742                 return migrate_page(mapping, newpage, page, mode);
743
744         /* Check whether page does not have extra refs before we do more work */
745         expected_count = expected_page_refs(mapping, page);
746         if (page_count(page) != expected_count)
747                 return -EAGAIN;
748
749         head = page_buffers(page);
750         if (!buffer_migrate_lock_buffers(head, mode))
751                 return -EAGAIN;
752
753         if (check_refs) {
754                 bool busy;
755                 bool invalidated = false;
756
757 recheck_buffers:
758                 busy = false;
759                 spin_lock(&mapping->private_lock);
760                 bh = head;
761                 do {
762                         if (atomic_read(&bh->b_count)) {
763                                 busy = true;
764                                 break;
765                         }
766                         bh = bh->b_this_page;
767                 } while (bh != head);
768                 if (busy) {
769                         if (invalidated) {
770                                 rc = -EAGAIN;
771                                 goto unlock_buffers;
772                         }
773                         spin_unlock(&mapping->private_lock);
774                         invalidate_bh_lrus();
775                         invalidated = true;
776                         goto recheck_buffers;
777                 }
778         }
779
780         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
781         if (rc != MIGRATEPAGE_SUCCESS)
782                 goto unlock_buffers;
783
784         attach_page_private(newpage, detach_page_private(page));
785
786         bh = head;
787         do {
788                 set_bh_page(bh, newpage, bh_offset(bh));
789                 bh = bh->b_this_page;
790
791         } while (bh != head);
792
793         if (mode != MIGRATE_SYNC_NO_COPY)
794                 migrate_page_copy(newpage, page);
795         else
796                 migrate_page_states(newpage, page);
797
798         rc = MIGRATEPAGE_SUCCESS;
799 unlock_buffers:
800         if (check_refs)
801                 spin_unlock(&mapping->private_lock);
802         bh = head;
803         do {
804                 unlock_buffer(bh);
805                 bh = bh->b_this_page;
806
807         } while (bh != head);
808
809         return rc;
810 }
811
812 /*
813  * Migration function for pages with buffers. This function can only be used
814  * if the underlying filesystem guarantees that no other references to "page"
815  * exist. For example attached buffer heads are accessed only under page lock.
816  */
817 int buffer_migrate_page(struct address_space *mapping,
818                 struct page *newpage, struct page *page, enum migrate_mode mode)
819 {
820         return __buffer_migrate_page(mapping, newpage, page, mode, false);
821 }
822 EXPORT_SYMBOL(buffer_migrate_page);
823
824 /*
825  * Same as above except that this variant is more careful and checks that there
826  * are also no buffer head references. This function is the right one for
827  * mappings where buffer heads are directly looked up and referenced (such as
828  * block device mappings).
829  */
830 int buffer_migrate_page_norefs(struct address_space *mapping,
831                 struct page *newpage, struct page *page, enum migrate_mode mode)
832 {
833         return __buffer_migrate_page(mapping, newpage, page, mode, true);
834 }
835 #endif
836
837 /*
838  * Writeback a page to clean the dirty state
839  */
840 static int writeout(struct address_space *mapping, struct page *page)
841 {
842         struct writeback_control wbc = {
843                 .sync_mode = WB_SYNC_NONE,
844                 .nr_to_write = 1,
845                 .range_start = 0,
846                 .range_end = LLONG_MAX,
847                 .for_reclaim = 1
848         };
849         int rc;
850
851         if (!mapping->a_ops->writepage)
852                 /* No write method for the address space */
853                 return -EINVAL;
854
855         if (!clear_page_dirty_for_io(page))
856                 /* Someone else already triggered a write */
857                 return -EAGAIN;
858
859         /*
860          * A dirty page may imply that the underlying filesystem has
861          * the page on some queue. So the page must be clean for
862          * migration. Writeout may mean we loose the lock and the
863          * page state is no longer what we checked for earlier.
864          * At this point we know that the migration attempt cannot
865          * be successful.
866          */
867         remove_migration_ptes(page, page, false);
868
869         rc = mapping->a_ops->writepage(page, &wbc);
870
871         if (rc != AOP_WRITEPAGE_ACTIVATE)
872                 /* unlocked. Relock */
873                 lock_page(page);
874
875         return (rc < 0) ? -EIO : -EAGAIN;
876 }
877
878 /*
879  * Default handling if a filesystem does not provide a migration function.
880  */
881 static int fallback_migrate_page(struct address_space *mapping,
882         struct page *newpage, struct page *page, enum migrate_mode mode)
883 {
884         if (PageDirty(page)) {
885                 /* Only writeback pages in full synchronous migration */
886                 switch (mode) {
887                 case MIGRATE_SYNC:
888                 case MIGRATE_SYNC_NO_COPY:
889                         break;
890                 default:
891                         return -EBUSY;
892                 }
893                 return writeout(mapping, page);
894         }
895
896         /*
897          * Buffers may be managed in a filesystem specific way.
898          * We must have no buffers or drop them.
899          */
900         if (page_has_private(page) &&
901             !try_to_release_page(page, GFP_KERNEL))
902                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
903
904         return migrate_page(mapping, newpage, page, mode);
905 }
906
907 /*
908  * Move a page to a newly allocated page
909  * The page is locked and all ptes have been successfully removed.
910  *
911  * The new page will have replaced the old page if this function
912  * is successful.
913  *
914  * Return value:
915  *   < 0 - error code
916  *  MIGRATEPAGE_SUCCESS - success
917  */
918 static int move_to_new_page(struct page *newpage, struct page *page,
919                                 enum migrate_mode mode)
920 {
921         struct address_space *mapping;
922         int rc = -EAGAIN;
923         bool is_lru = !__PageMovable(page);
924
925         VM_BUG_ON_PAGE(!PageLocked(page), page);
926         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
927
928         mapping = page_mapping(page);
929
930         if (likely(is_lru)) {
931                 if (!mapping)
932                         rc = migrate_page(mapping, newpage, page, mode);
933                 else if (mapping->a_ops->migratepage)
934                         /*
935                          * Most pages have a mapping and most filesystems
936                          * provide a migratepage callback. Anonymous pages
937                          * are part of swap space which also has its own
938                          * migratepage callback. This is the most common path
939                          * for page migration.
940                          */
941                         rc = mapping->a_ops->migratepage(mapping, newpage,
942                                                         page, mode);
943                 else
944                         rc = fallback_migrate_page(mapping, newpage,
945                                                         page, mode);
946         } else {
947                 /*
948                  * In case of non-lru page, it could be released after
949                  * isolation step. In that case, we shouldn't try migration.
950                  */
951                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
952                 if (!PageMovable(page)) {
953                         rc = MIGRATEPAGE_SUCCESS;
954                         __ClearPageIsolated(page);
955                         goto out;
956                 }
957
958                 rc = mapping->a_ops->migratepage(mapping, newpage,
959                                                 page, mode);
960                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
961                         !PageIsolated(page));
962         }
963
964         /*
965          * When successful, old pagecache page->mapping must be cleared before
966          * page is freed; but stats require that PageAnon be left as PageAnon.
967          */
968         if (rc == MIGRATEPAGE_SUCCESS) {
969                 if (__PageMovable(page)) {
970                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
971
972                         /*
973                          * We clear PG_movable under page_lock so any compactor
974                          * cannot try to migrate this page.
975                          */
976                         __ClearPageIsolated(page);
977                 }
978
979                 /*
980                  * Anonymous and movable page->mapping will be cleared by
981                  * free_pages_prepare so don't reset it here for keeping
982                  * the type to work PageAnon, for example.
983                  */
984                 if (!PageMappingFlags(page))
985                         page->mapping = NULL;
986
987                 if (likely(!is_zone_device_page(newpage)))
988                         flush_dcache_page(newpage);
989
990         }
991 out:
992         return rc;
993 }
994
995 static int __unmap_and_move(struct page *page, struct page *newpage,
996                                 int force, enum migrate_mode mode)
997 {
998         int rc = -EAGAIN;
999         int page_was_mapped = 0;
1000         struct anon_vma *anon_vma = NULL;
1001         bool is_lru = !__PageMovable(page);
1002
1003         if (!trylock_page(page)) {
1004                 if (!force || mode == MIGRATE_ASYNC)
1005                         goto out;
1006
1007                 /*
1008                  * It's not safe for direct compaction to call lock_page.
1009                  * For example, during page readahead pages are added locked
1010                  * to the LRU. Later, when the IO completes the pages are
1011                  * marked uptodate and unlocked. However, the queueing
1012                  * could be merging multiple pages for one bio (e.g.
1013                  * mpage_readahead). If an allocation happens for the
1014                  * second or third page, the process can end up locking
1015                  * the same page twice and deadlocking. Rather than
1016                  * trying to be clever about what pages can be locked,
1017                  * avoid the use of lock_page for direct compaction
1018                  * altogether.
1019                  */
1020                 if (current->flags & PF_MEMALLOC)
1021                         goto out;
1022
1023                 lock_page(page);
1024         }
1025
1026         if (PageWriteback(page)) {
1027                 /*
1028                  * Only in the case of a full synchronous migration is it
1029                  * necessary to wait for PageWriteback. In the async case,
1030                  * the retry loop is too short and in the sync-light case,
1031                  * the overhead of stalling is too much
1032                  */
1033                 switch (mode) {
1034                 case MIGRATE_SYNC:
1035                 case MIGRATE_SYNC_NO_COPY:
1036                         break;
1037                 default:
1038                         rc = -EBUSY;
1039                         goto out_unlock;
1040                 }
1041                 if (!force)
1042                         goto out_unlock;
1043                 wait_on_page_writeback(page);
1044         }
1045
1046         /*
1047          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1048          * we cannot notice that anon_vma is freed while we migrates a page.
1049          * This get_anon_vma() delays freeing anon_vma pointer until the end
1050          * of migration. File cache pages are no problem because of page_lock()
1051          * File Caches may use write_page() or lock_page() in migration, then,
1052          * just care Anon page here.
1053          *
1054          * Only page_get_anon_vma() understands the subtleties of
1055          * getting a hold on an anon_vma from outside one of its mms.
1056          * But if we cannot get anon_vma, then we won't need it anyway,
1057          * because that implies that the anon page is no longer mapped
1058          * (and cannot be remapped so long as we hold the page lock).
1059          */
1060         if (PageAnon(page) && !PageKsm(page))
1061                 anon_vma = page_get_anon_vma(page);
1062
1063         /*
1064          * Block others from accessing the new page when we get around to
1065          * establishing additional references. We are usually the only one
1066          * holding a reference to newpage at this point. We used to have a BUG
1067          * here if trylock_page(newpage) fails, but would like to allow for
1068          * cases where there might be a race with the previous use of newpage.
1069          * This is much like races on refcount of oldpage: just don't BUG().
1070          */
1071         if (unlikely(!trylock_page(newpage)))
1072                 goto out_unlock;
1073
1074         if (unlikely(!is_lru)) {
1075                 rc = move_to_new_page(newpage, page, mode);
1076                 goto out_unlock_both;
1077         }
1078
1079         /*
1080          * Corner case handling:
1081          * 1. When a new swap-cache page is read into, it is added to the LRU
1082          * and treated as swapcache but it has no rmap yet.
1083          * Calling try_to_unmap() against a page->mapping==NULL page will
1084          * trigger a BUG.  So handle it here.
1085          * 2. An orphaned page (see truncate_cleanup_page) might have
1086          * fs-private metadata. The page can be picked up due to memory
1087          * offlining.  Everywhere else except page reclaim, the page is
1088          * invisible to the vm, so the page can not be migrated.  So try to
1089          * free the metadata, so the page can be freed.
1090          */
1091         if (!page->mapping) {
1092                 VM_BUG_ON_PAGE(PageAnon(page), page);
1093                 if (page_has_private(page)) {
1094                         try_to_free_buffers(page);
1095                         goto out_unlock_both;
1096                 }
1097         } else if (page_mapped(page)) {
1098                 /* Establish migration ptes */
1099                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1100                                 page);
1101                 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1102                 page_was_mapped = 1;
1103         }
1104
1105         if (!page_mapped(page))
1106                 rc = move_to_new_page(newpage, page, mode);
1107
1108         if (page_was_mapped)
1109                 remove_migration_ptes(page,
1110                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1111
1112 out_unlock_both:
1113         unlock_page(newpage);
1114 out_unlock:
1115         /* Drop an anon_vma reference if we took one */
1116         if (anon_vma)
1117                 put_anon_vma(anon_vma);
1118         unlock_page(page);
1119 out:
1120         /*
1121          * If migration is successful, decrease refcount of the newpage
1122          * which will not free the page because new page owner increased
1123          * refcounter. As well, if it is LRU page, add the page to LRU
1124          * list in here. Use the old state of the isolated source page to
1125          * determine if we migrated a LRU page. newpage was already unlocked
1126          * and possibly modified by its owner - don't rely on the page
1127          * state.
1128          */
1129         if (rc == MIGRATEPAGE_SUCCESS) {
1130                 if (unlikely(!is_lru))
1131                         put_page(newpage);
1132                 else
1133                         putback_lru_page(newpage);
1134         }
1135
1136         return rc;
1137 }
1138
1139 /*
1140  * Obtain the lock on page, remove all ptes and migrate the page
1141  * to the newly allocated page in newpage.
1142  */
1143 static int unmap_and_move(new_page_t get_new_page,
1144                                    free_page_t put_new_page,
1145                                    unsigned long private, struct page *page,
1146                                    int force, enum migrate_mode mode,
1147                                    enum migrate_reason reason,
1148                                    struct list_head *ret)
1149 {
1150         int rc = MIGRATEPAGE_SUCCESS;
1151         struct page *newpage = NULL;
1152
1153         if (!thp_migration_supported() && PageTransHuge(page))
1154                 return -ENOSYS;
1155
1156         if (page_count(page) == 1) {
1157                 /* page was freed from under us. So we are done. */
1158                 ClearPageActive(page);
1159                 ClearPageUnevictable(page);
1160                 if (unlikely(__PageMovable(page))) {
1161                         lock_page(page);
1162                         if (!PageMovable(page))
1163                                 __ClearPageIsolated(page);
1164                         unlock_page(page);
1165                 }
1166                 goto out;
1167         }
1168
1169         newpage = get_new_page(page, private);
1170         if (!newpage)
1171                 return -ENOMEM;
1172
1173         rc = __unmap_and_move(page, newpage, force, mode);
1174         if (rc == MIGRATEPAGE_SUCCESS)
1175                 set_page_owner_migrate_reason(newpage, reason);
1176
1177 out:
1178         if (rc != -EAGAIN) {
1179                 /*
1180                  * A page that has been migrated has all references
1181                  * removed and will be freed. A page that has not been
1182                  * migrated will have kept its references and be restored.
1183                  */
1184                 list_del(&page->lru);
1185         }
1186
1187         /*
1188          * If migration is successful, releases reference grabbed during
1189          * isolation. Otherwise, restore the page to right list unless
1190          * we want to retry.
1191          */
1192         if (rc == MIGRATEPAGE_SUCCESS) {
1193                 /*
1194                  * Compaction can migrate also non-LRU pages which are
1195                  * not accounted to NR_ISOLATED_*. They can be recognized
1196                  * as __PageMovable
1197                  */
1198                 if (likely(!__PageMovable(page)))
1199                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1200                                         page_is_file_lru(page), -thp_nr_pages(page));
1201
1202                 if (reason != MR_MEMORY_FAILURE)
1203                         /*
1204                          * We release the page in page_handle_poison.
1205                          */
1206                         put_page(page);
1207         } else {
1208                 if (rc != -EAGAIN)
1209                         list_add_tail(&page->lru, ret);
1210
1211                 if (put_new_page)
1212                         put_new_page(newpage, private);
1213                 else
1214                         put_page(newpage);
1215         }
1216
1217         return rc;
1218 }
1219
1220 /*
1221  * Counterpart of unmap_and_move_page() for hugepage migration.
1222  *
1223  * This function doesn't wait the completion of hugepage I/O
1224  * because there is no race between I/O and migration for hugepage.
1225  * Note that currently hugepage I/O occurs only in direct I/O
1226  * where no lock is held and PG_writeback is irrelevant,
1227  * and writeback status of all subpages are counted in the reference
1228  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1229  * under direct I/O, the reference of the head page is 512 and a bit more.)
1230  * This means that when we try to migrate hugepage whose subpages are
1231  * doing direct I/O, some references remain after try_to_unmap() and
1232  * hugepage migration fails without data corruption.
1233  *
1234  * There is also no race when direct I/O is issued on the page under migration,
1235  * because then pte is replaced with migration swap entry and direct I/O code
1236  * will wait in the page fault for migration to complete.
1237  */
1238 static int unmap_and_move_huge_page(new_page_t get_new_page,
1239                                 free_page_t put_new_page, unsigned long private,
1240                                 struct page *hpage, int force,
1241                                 enum migrate_mode mode, int reason,
1242                                 struct list_head *ret)
1243 {
1244         int rc = -EAGAIN;
1245         int page_was_mapped = 0;
1246         struct page *new_hpage;
1247         struct anon_vma *anon_vma = NULL;
1248         struct address_space *mapping = NULL;
1249
1250         /*
1251          * Migratability of hugepages depends on architectures and their size.
1252          * This check is necessary because some callers of hugepage migration
1253          * like soft offline and memory hotremove don't walk through page
1254          * tables or check whether the hugepage is pmd-based or not before
1255          * kicking migration.
1256          */
1257         if (!hugepage_migration_supported(page_hstate(hpage))) {
1258                 list_move_tail(&hpage->lru, ret);
1259                 return -ENOSYS;
1260         }
1261
1262         if (page_count(hpage) == 1) {
1263                 /* page was freed from under us. So we are done. */
1264                 putback_active_hugepage(hpage);
1265                 return MIGRATEPAGE_SUCCESS;
1266         }
1267
1268         new_hpage = get_new_page(hpage, private);
1269         if (!new_hpage)
1270                 return -ENOMEM;
1271
1272         if (!trylock_page(hpage)) {
1273                 if (!force)
1274                         goto out;
1275                 switch (mode) {
1276                 case MIGRATE_SYNC:
1277                 case MIGRATE_SYNC_NO_COPY:
1278                         break;
1279                 default:
1280                         goto out;
1281                 }
1282                 lock_page(hpage);
1283         }
1284
1285         /*
1286          * Check for pages which are in the process of being freed.  Without
1287          * page_mapping() set, hugetlbfs specific move page routine will not
1288          * be called and we could leak usage counts for subpools.
1289          */
1290         if (page_private(hpage) && !page_mapping(hpage)) {
1291                 rc = -EBUSY;
1292                 goto out_unlock;
1293         }
1294
1295         if (PageAnon(hpage))
1296                 anon_vma = page_get_anon_vma(hpage);
1297
1298         if (unlikely(!trylock_page(new_hpage)))
1299                 goto put_anon;
1300
1301         if (page_mapped(hpage)) {
1302                 bool mapping_locked = false;
1303                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1304
1305                 if (!PageAnon(hpage)) {
1306                         /*
1307                          * In shared mappings, try_to_unmap could potentially
1308                          * call huge_pmd_unshare.  Because of this, take
1309                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1310                          * to let lower levels know we have taken the lock.
1311                          */
1312                         mapping = hugetlb_page_mapping_lock_write(hpage);
1313                         if (unlikely(!mapping))
1314                                 goto unlock_put_anon;
1315
1316                         mapping_locked = true;
1317                         ttu |= TTU_RMAP_LOCKED;
1318                 }
1319
1320                 try_to_unmap(hpage, ttu);
1321                 page_was_mapped = 1;
1322
1323                 if (mapping_locked)
1324                         i_mmap_unlock_write(mapping);
1325         }
1326
1327         if (!page_mapped(hpage))
1328                 rc = move_to_new_page(new_hpage, hpage, mode);
1329
1330         if (page_was_mapped)
1331                 remove_migration_ptes(hpage,
1332                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1333
1334 unlock_put_anon:
1335         unlock_page(new_hpage);
1336
1337 put_anon:
1338         if (anon_vma)
1339                 put_anon_vma(anon_vma);
1340
1341         if (rc == MIGRATEPAGE_SUCCESS) {
1342                 move_hugetlb_state(hpage, new_hpage, reason);
1343                 put_new_page = NULL;
1344         }
1345
1346 out_unlock:
1347         unlock_page(hpage);
1348 out:
1349         if (rc == MIGRATEPAGE_SUCCESS)
1350                 putback_active_hugepage(hpage);
1351         else if (rc != -EAGAIN)
1352                 list_move_tail(&hpage->lru, ret);
1353
1354         /*
1355          * If migration was not successful and there's a freeing callback, use
1356          * it.  Otherwise, put_page() will drop the reference grabbed during
1357          * isolation.
1358          */
1359         if (put_new_page)
1360                 put_new_page(new_hpage, private);
1361         else
1362                 putback_active_hugepage(new_hpage);
1363
1364         return rc;
1365 }
1366
1367 static inline int try_split_thp(struct page *page, struct page **page2,
1368                                 struct list_head *from)
1369 {
1370         int rc = 0;
1371
1372         lock_page(page);
1373         rc = split_huge_page_to_list(page, from);
1374         unlock_page(page);
1375         if (!rc)
1376                 list_safe_reset_next(page, *page2, lru);
1377
1378         return rc;
1379 }
1380
1381 /*
1382  * migrate_pages - migrate the pages specified in a list, to the free pages
1383  *                 supplied as the target for the page migration
1384  *
1385  * @from:               The list of pages to be migrated.
1386  * @get_new_page:       The function used to allocate free pages to be used
1387  *                      as the target of the page migration.
1388  * @put_new_page:       The function used to free target pages if migration
1389  *                      fails, or NULL if no special handling is necessary.
1390  * @private:            Private data to be passed on to get_new_page()
1391  * @mode:               The migration mode that specifies the constraints for
1392  *                      page migration, if any.
1393  * @reason:             The reason for page migration.
1394  *
1395  * The function returns after 10 attempts or if no pages are movable any more
1396  * because the list has become empty or no retryable pages exist any more.
1397  * It is caller's responsibility to call putback_movable_pages() to return pages
1398  * to the LRU or free list only if ret != 0.
1399  *
1400  * Returns the number of pages that were not migrated, or an error code.
1401  */
1402 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1403                 free_page_t put_new_page, unsigned long private,
1404                 enum migrate_mode mode, int reason)
1405 {
1406         int retry = 1;
1407         int thp_retry = 1;
1408         int nr_failed = 0;
1409         int nr_succeeded = 0;
1410         int nr_thp_succeeded = 0;
1411         int nr_thp_failed = 0;
1412         int nr_thp_split = 0;
1413         int pass = 0;
1414         bool is_thp = false;
1415         struct page *page;
1416         struct page *page2;
1417         int swapwrite = current->flags & PF_SWAPWRITE;
1418         int rc, nr_subpages;
1419         LIST_HEAD(ret_pages);
1420
1421         if (!swapwrite)
1422                 current->flags |= PF_SWAPWRITE;
1423
1424         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1425                 retry = 0;
1426                 thp_retry = 0;
1427
1428                 list_for_each_entry_safe(page, page2, from, lru) {
1429 retry:
1430                         /*
1431                          * THP statistics is based on the source huge page.
1432                          * Capture required information that might get lost
1433                          * during migration.
1434                          */
1435                         is_thp = PageTransHuge(page) && !PageHuge(page);
1436                         nr_subpages = thp_nr_pages(page);
1437                         cond_resched();
1438
1439                         if (PageHuge(page))
1440                                 rc = unmap_and_move_huge_page(get_new_page,
1441                                                 put_new_page, private, page,
1442                                                 pass > 2, mode, reason,
1443                                                 &ret_pages);
1444                         else
1445                                 rc = unmap_and_move(get_new_page, put_new_page,
1446                                                 private, page, pass > 2, mode,
1447                                                 reason, &ret_pages);
1448                         /*
1449                          * The rules are:
1450                          *      Success: non hugetlb page will be freed, hugetlb
1451                          *               page will be put back
1452                          *      -EAGAIN: stay on the from list
1453                          *      -ENOMEM: stay on the from list
1454                          *      Other errno: put on ret_pages list then splice to
1455                          *                   from list
1456                          */
1457                         switch(rc) {
1458                         /*
1459                          * THP migration might be unsupported or the
1460                          * allocation could've failed so we should
1461                          * retry on the same page with the THP split
1462                          * to base pages.
1463                          *
1464                          * Head page is retried immediately and tail
1465                          * pages are added to the tail of the list so
1466                          * we encounter them after the rest of the list
1467                          * is processed.
1468                          */
1469                         case -ENOSYS:
1470                                 /* THP migration is unsupported */
1471                                 if (is_thp) {
1472                                         if (!try_split_thp(page, &page2, from)) {
1473                                                 nr_thp_split++;
1474                                                 goto retry;
1475                                         }
1476
1477                                         nr_thp_failed++;
1478                                         nr_failed += nr_subpages;
1479                                         break;
1480                                 }
1481
1482                                 /* Hugetlb migration is unsupported */
1483                                 nr_failed++;
1484                                 break;
1485                         case -ENOMEM:
1486                                 /*
1487                                  * When memory is low, don't bother to try to migrate
1488                                  * other pages, just exit.
1489                                  */
1490                                 if (is_thp) {
1491                                         if (!try_split_thp(page, &page2, from)) {
1492                                                 nr_thp_split++;
1493                                                 goto retry;
1494                                         }
1495
1496                                         nr_thp_failed++;
1497                                         nr_failed += nr_subpages;
1498                                         goto out;
1499                                 }
1500                                 nr_failed++;
1501                                 goto out;
1502                         case -EAGAIN:
1503                                 if (is_thp) {
1504                                         thp_retry++;
1505                                         break;
1506                                 }
1507                                 retry++;
1508                                 break;
1509                         case MIGRATEPAGE_SUCCESS:
1510                                 if (is_thp) {
1511                                         nr_thp_succeeded++;
1512                                         nr_succeeded += nr_subpages;
1513                                         break;
1514                                 }
1515                                 nr_succeeded++;
1516                                 break;
1517                         default:
1518                                 /*
1519                                  * Permanent failure (-EBUSY, etc.):
1520                                  * unlike -EAGAIN case, the failed page is
1521                                  * removed from migration page list and not
1522                                  * retried in the next outer loop.
1523                                  */
1524                                 if (is_thp) {
1525                                         nr_thp_failed++;
1526                                         nr_failed += nr_subpages;
1527                                         break;
1528                                 }
1529                                 nr_failed++;
1530                                 break;
1531                         }
1532                 }
1533         }
1534         nr_failed += retry + thp_retry;
1535         nr_thp_failed += thp_retry;
1536         rc = nr_failed;
1537 out:
1538         /*
1539          * Put the permanent failure page back to migration list, they
1540          * will be put back to the right list by the caller.
1541          */
1542         list_splice(&ret_pages, from);
1543
1544         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1545         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1546         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1547         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1548         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1549         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1550                                nr_thp_failed, nr_thp_split, mode, reason);
1551
1552         if (!swapwrite)
1553                 current->flags &= ~PF_SWAPWRITE;
1554
1555         return rc;
1556 }
1557
1558 struct page *alloc_migration_target(struct page *page, unsigned long private)
1559 {
1560         struct migration_target_control *mtc;
1561         gfp_t gfp_mask;
1562         unsigned int order = 0;
1563         struct page *new_page = NULL;
1564         int nid;
1565         int zidx;
1566
1567         mtc = (struct migration_target_control *)private;
1568         gfp_mask = mtc->gfp_mask;
1569         nid = mtc->nid;
1570         if (nid == NUMA_NO_NODE)
1571                 nid = page_to_nid(page);
1572
1573         if (PageHuge(page)) {
1574                 struct hstate *h = page_hstate(compound_head(page));
1575
1576                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1577                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1578         }
1579
1580         if (PageTransHuge(page)) {
1581                 /*
1582                  * clear __GFP_RECLAIM to make the migration callback
1583                  * consistent with regular THP allocations.
1584                  */
1585                 gfp_mask &= ~__GFP_RECLAIM;
1586                 gfp_mask |= GFP_TRANSHUGE;
1587                 order = HPAGE_PMD_ORDER;
1588         }
1589         zidx = zone_idx(page_zone(page));
1590         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1591                 gfp_mask |= __GFP_HIGHMEM;
1592
1593         new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1594
1595         if (new_page && PageTransHuge(new_page))
1596                 prep_transhuge_page(new_page);
1597
1598         return new_page;
1599 }
1600
1601 #ifdef CONFIG_NUMA
1602
1603 static int store_status(int __user *status, int start, int value, int nr)
1604 {
1605         while (nr-- > 0) {
1606                 if (put_user(value, status + start))
1607                         return -EFAULT;
1608                 start++;
1609         }
1610
1611         return 0;
1612 }
1613
1614 static int do_move_pages_to_node(struct mm_struct *mm,
1615                 struct list_head *pagelist, int node)
1616 {
1617         int err;
1618         struct migration_target_control mtc = {
1619                 .nid = node,
1620                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1621         };
1622
1623         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1624                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1625         if (err)
1626                 putback_movable_pages(pagelist);
1627         return err;
1628 }
1629
1630 /*
1631  * Resolves the given address to a struct page, isolates it from the LRU and
1632  * puts it to the given pagelist.
1633  * Returns:
1634  *     errno - if the page cannot be found/isolated
1635  *     0 - when it doesn't have to be migrated because it is already on the
1636  *         target node
1637  *     1 - when it has been queued
1638  */
1639 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1640                 int node, struct list_head *pagelist, bool migrate_all)
1641 {
1642         struct vm_area_struct *vma;
1643         struct page *page;
1644         unsigned int follflags;
1645         int err;
1646
1647         mmap_read_lock(mm);
1648         err = -EFAULT;
1649         vma = find_vma(mm, addr);
1650         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1651                 goto out;
1652
1653         /* FOLL_DUMP to ignore special (like zero) pages */
1654         follflags = FOLL_GET | FOLL_DUMP;
1655         page = follow_page(vma, addr, follflags);
1656
1657         err = PTR_ERR(page);
1658         if (IS_ERR(page))
1659                 goto out;
1660
1661         err = -ENOENT;
1662         if (!page)
1663                 goto out;
1664
1665         err = 0;
1666         if (page_to_nid(page) == node)
1667                 goto out_putpage;
1668
1669         err = -EACCES;
1670         if (page_mapcount(page) > 1 && !migrate_all)
1671                 goto out_putpage;
1672
1673         if (PageHuge(page)) {
1674                 if (PageHead(page)) {
1675                         isolate_huge_page(page, pagelist);
1676                         err = 1;
1677                 }
1678         } else {
1679                 struct page *head;
1680
1681                 head = compound_head(page);
1682                 err = isolate_lru_page(head);
1683                 if (err)
1684                         goto out_putpage;
1685
1686                 err = 1;
1687                 list_add_tail(&head->lru, pagelist);
1688                 mod_node_page_state(page_pgdat(head),
1689                         NR_ISOLATED_ANON + page_is_file_lru(head),
1690                         thp_nr_pages(head));
1691         }
1692 out_putpage:
1693         /*
1694          * Either remove the duplicate refcount from
1695          * isolate_lru_page() or drop the page ref if it was
1696          * not isolated.
1697          */
1698         put_page(page);
1699 out:
1700         mmap_read_unlock(mm);
1701         return err;
1702 }
1703
1704 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1705                 struct list_head *pagelist, int __user *status,
1706                 int start, int i, unsigned long nr_pages)
1707 {
1708         int err;
1709
1710         if (list_empty(pagelist))
1711                 return 0;
1712
1713         err = do_move_pages_to_node(mm, pagelist, node);
1714         if (err) {
1715                 /*
1716                  * Positive err means the number of failed
1717                  * pages to migrate.  Since we are going to
1718                  * abort and return the number of non-migrated
1719                  * pages, so need to include the rest of the
1720                  * nr_pages that have not been attempted as
1721                  * well.
1722                  */
1723                 if (err > 0)
1724                         err += nr_pages - i - 1;
1725                 return err;
1726         }
1727         return store_status(status, start, node, i - start);
1728 }
1729
1730 /*
1731  * Migrate an array of page address onto an array of nodes and fill
1732  * the corresponding array of status.
1733  */
1734 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1735                          unsigned long nr_pages,
1736                          const void __user * __user *pages,
1737                          const int __user *nodes,
1738                          int __user *status, int flags)
1739 {
1740         int current_node = NUMA_NO_NODE;
1741         LIST_HEAD(pagelist);
1742         int start, i;
1743         int err = 0, err1;
1744
1745         lru_cache_disable();
1746
1747         for (i = start = 0; i < nr_pages; i++) {
1748                 const void __user *p;
1749                 unsigned long addr;
1750                 int node;
1751
1752                 err = -EFAULT;
1753                 if (get_user(p, pages + i))
1754                         goto out_flush;
1755                 if (get_user(node, nodes + i))
1756                         goto out_flush;
1757                 addr = (unsigned long)untagged_addr(p);
1758
1759                 err = -ENODEV;
1760                 if (node < 0 || node >= MAX_NUMNODES)
1761                         goto out_flush;
1762                 if (!node_state(node, N_MEMORY))
1763                         goto out_flush;
1764
1765                 err = -EACCES;
1766                 if (!node_isset(node, task_nodes))
1767                         goto out_flush;
1768
1769                 if (current_node == NUMA_NO_NODE) {
1770                         current_node = node;
1771                         start = i;
1772                 } else if (node != current_node) {
1773                         err = move_pages_and_store_status(mm, current_node,
1774                                         &pagelist, status, start, i, nr_pages);
1775                         if (err)
1776                                 goto out;
1777                         start = i;
1778                         current_node = node;
1779                 }
1780
1781                 /*
1782                  * Errors in the page lookup or isolation are not fatal and we simply
1783                  * report them via status
1784                  */
1785                 err = add_page_for_migration(mm, addr, current_node,
1786                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1787
1788                 if (err > 0) {
1789                         /* The page is successfully queued for migration */
1790                         continue;
1791                 }
1792
1793                 /*
1794                  * If the page is already on the target node (!err), store the
1795                  * node, otherwise, store the err.
1796                  */
1797                 err = store_status(status, i, err ? : current_node, 1);
1798                 if (err)
1799                         goto out_flush;
1800
1801                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1802                                 status, start, i, nr_pages);
1803                 if (err)
1804                         goto out;
1805                 current_node = NUMA_NO_NODE;
1806         }
1807 out_flush:
1808         /* Make sure we do not overwrite the existing error */
1809         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1810                                 status, start, i, nr_pages);
1811         if (err >= 0)
1812                 err = err1;
1813 out:
1814         lru_cache_enable();
1815         return err;
1816 }
1817
1818 /*
1819  * Determine the nodes of an array of pages and store it in an array of status.
1820  */
1821 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1822                                 const void __user **pages, int *status)
1823 {
1824         unsigned long i;
1825
1826         mmap_read_lock(mm);
1827
1828         for (i = 0; i < nr_pages; i++) {
1829                 unsigned long addr = (unsigned long)(*pages);
1830                 struct vm_area_struct *vma;
1831                 struct page *page;
1832                 int err = -EFAULT;
1833
1834                 vma = find_vma(mm, addr);
1835                 if (!vma || addr < vma->vm_start)
1836                         goto set_status;
1837
1838                 /* FOLL_DUMP to ignore special (like zero) pages */
1839                 page = follow_page(vma, addr, FOLL_DUMP);
1840
1841                 err = PTR_ERR(page);
1842                 if (IS_ERR(page))
1843                         goto set_status;
1844
1845                 err = page ? page_to_nid(page) : -ENOENT;
1846 set_status:
1847                 *status = err;
1848
1849                 pages++;
1850                 status++;
1851         }
1852
1853         mmap_read_unlock(mm);
1854 }
1855
1856 /*
1857  * Determine the nodes of a user array of pages and store it in
1858  * a user array of status.
1859  */
1860 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1861                          const void __user * __user *pages,
1862                          int __user *status)
1863 {
1864 #define DO_PAGES_STAT_CHUNK_NR 16
1865         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1866         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1867
1868         while (nr_pages) {
1869                 unsigned long chunk_nr;
1870
1871                 chunk_nr = nr_pages;
1872                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1873                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1874
1875                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1876                         break;
1877
1878                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1879
1880                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1881                         break;
1882
1883                 pages += chunk_nr;
1884                 status += chunk_nr;
1885                 nr_pages -= chunk_nr;
1886         }
1887         return nr_pages ? -EFAULT : 0;
1888 }
1889
1890 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1891 {
1892         struct task_struct *task;
1893         struct mm_struct *mm;
1894
1895         /*
1896          * There is no need to check if current process has the right to modify
1897          * the specified process when they are same.
1898          */
1899         if (!pid) {
1900                 mmget(current->mm);
1901                 *mem_nodes = cpuset_mems_allowed(current);
1902                 return current->mm;
1903         }
1904
1905         /* Find the mm_struct */
1906         rcu_read_lock();
1907         task = find_task_by_vpid(pid);
1908         if (!task) {
1909                 rcu_read_unlock();
1910                 return ERR_PTR(-ESRCH);
1911         }
1912         get_task_struct(task);
1913
1914         /*
1915          * Check if this process has the right to modify the specified
1916          * process. Use the regular "ptrace_may_access()" checks.
1917          */
1918         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1919                 rcu_read_unlock();
1920                 mm = ERR_PTR(-EPERM);
1921                 goto out;
1922         }
1923         rcu_read_unlock();
1924
1925         mm = ERR_PTR(security_task_movememory(task));
1926         if (IS_ERR(mm))
1927                 goto out;
1928         *mem_nodes = cpuset_mems_allowed(task);
1929         mm = get_task_mm(task);
1930 out:
1931         put_task_struct(task);
1932         if (!mm)
1933                 mm = ERR_PTR(-EINVAL);
1934         return mm;
1935 }
1936
1937 /*
1938  * Move a list of pages in the address space of the currently executing
1939  * process.
1940  */
1941 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1942                              const void __user * __user *pages,
1943                              const int __user *nodes,
1944                              int __user *status, int flags)
1945 {
1946         struct mm_struct *mm;
1947         int err;
1948         nodemask_t task_nodes;
1949
1950         /* Check flags */
1951         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1952                 return -EINVAL;
1953
1954         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1955                 return -EPERM;
1956
1957         mm = find_mm_struct(pid, &task_nodes);
1958         if (IS_ERR(mm))
1959                 return PTR_ERR(mm);
1960
1961         if (nodes)
1962                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1963                                     nodes, status, flags);
1964         else
1965                 err = do_pages_stat(mm, nr_pages, pages, status);
1966
1967         mmput(mm);
1968         return err;
1969 }
1970
1971 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1972                 const void __user * __user *, pages,
1973                 const int __user *, nodes,
1974                 int __user *, status, int, flags)
1975 {
1976         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1977 }
1978
1979 #ifdef CONFIG_COMPAT
1980 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1981                        compat_uptr_t __user *, pages32,
1982                        const int __user *, nodes,
1983                        int __user *, status,
1984                        int, flags)
1985 {
1986         const void __user * __user *pages;
1987         int i;
1988
1989         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1990         for (i = 0; i < nr_pages; i++) {
1991                 compat_uptr_t p;
1992
1993                 if (get_user(p, pages32 + i) ||
1994                         put_user(compat_ptr(p), pages + i))
1995                         return -EFAULT;
1996         }
1997         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1998 }
1999 #endif /* CONFIG_COMPAT */
2000
2001 #ifdef CONFIG_NUMA_BALANCING
2002 /*
2003  * Returns true if this is a safe migration target node for misplaced NUMA
2004  * pages. Currently it only checks the watermarks which crude
2005  */
2006 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2007                                    unsigned long nr_migrate_pages)
2008 {
2009         int z;
2010
2011         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2012                 struct zone *zone = pgdat->node_zones + z;
2013
2014                 if (!populated_zone(zone))
2015                         continue;
2016
2017                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2018                 if (!zone_watermark_ok(zone, 0,
2019                                        high_wmark_pages(zone) +
2020                                        nr_migrate_pages,
2021                                        ZONE_MOVABLE, 0))
2022                         continue;
2023                 return true;
2024         }
2025         return false;
2026 }
2027
2028 static struct page *alloc_misplaced_dst_page(struct page *page,
2029                                            unsigned long data)
2030 {
2031         int nid = (int) data;
2032         struct page *newpage;
2033
2034         newpage = __alloc_pages_node(nid,
2035                                          (GFP_HIGHUSER_MOVABLE |
2036                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2037                                           __GFP_NORETRY | __GFP_NOWARN) &
2038                                          ~__GFP_RECLAIM, 0);
2039
2040         return newpage;
2041 }
2042
2043 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2044 {
2045         int page_lru;
2046
2047         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2048
2049         /* Avoid migrating to a node that is nearly full */
2050         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2051                 return 0;
2052
2053         if (isolate_lru_page(page))
2054                 return 0;
2055
2056         /*
2057          * migrate_misplaced_transhuge_page() skips page migration's usual
2058          * check on page_count(), so we must do it here, now that the page
2059          * has been isolated: a GUP pin, or any other pin, prevents migration.
2060          * The expected page count is 3: 1 for page's mapcount and 1 for the
2061          * caller's pin and 1 for the reference taken by isolate_lru_page().
2062          */
2063         if (PageTransHuge(page) && page_count(page) != 3) {
2064                 putback_lru_page(page);
2065                 return 0;
2066         }
2067
2068         page_lru = page_is_file_lru(page);
2069         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2070                                 thp_nr_pages(page));
2071
2072         /*
2073          * Isolating the page has taken another reference, so the
2074          * caller's reference can be safely dropped without the page
2075          * disappearing underneath us during migration.
2076          */
2077         put_page(page);
2078         return 1;
2079 }
2080
2081 bool pmd_trans_migrating(pmd_t pmd)
2082 {
2083         struct page *page = pmd_page(pmd);
2084         return PageLocked(page);
2085 }
2086
2087 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2088                                        struct page *page)
2089 {
2090         if (page_mapcount(page) != 1 &&
2091             (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2092             (vma->vm_flags & VM_EXEC))
2093                 return true;
2094
2095         return false;
2096 }
2097
2098 /*
2099  * Attempt to migrate a misplaced page to the specified destination
2100  * node. Caller is expected to have an elevated reference count on
2101  * the page that will be dropped by this function before returning.
2102  */
2103 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2104                            int node)
2105 {
2106         pg_data_t *pgdat = NODE_DATA(node);
2107         int isolated;
2108         int nr_remaining;
2109         LIST_HEAD(migratepages);
2110
2111         /*
2112          * Don't migrate file pages that are mapped in multiple processes
2113          * with execute permissions as they are probably shared libraries.
2114          */
2115         if (is_shared_exec_page(vma, page))
2116                 goto out;
2117
2118         /*
2119          * Also do not migrate dirty pages as not all filesystems can move
2120          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2121          */
2122         if (page_is_file_lru(page) && PageDirty(page))
2123                 goto out;
2124
2125         isolated = numamigrate_isolate_page(pgdat, page);
2126         if (!isolated)
2127                 goto out;
2128
2129         list_add(&page->lru, &migratepages);
2130         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2131                                      NULL, node, MIGRATE_ASYNC,
2132                                      MR_NUMA_MISPLACED);
2133         if (nr_remaining) {
2134                 if (!list_empty(&migratepages)) {
2135                         list_del(&page->lru);
2136                         dec_node_page_state(page, NR_ISOLATED_ANON +
2137                                         page_is_file_lru(page));
2138                         putback_lru_page(page);
2139                 }
2140                 isolated = 0;
2141         } else
2142                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2143         BUG_ON(!list_empty(&migratepages));
2144         return isolated;
2145
2146 out:
2147         put_page(page);
2148         return 0;
2149 }
2150 #endif /* CONFIG_NUMA_BALANCING */
2151
2152 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2153 /*
2154  * Migrates a THP to a given target node. page must be locked and is unlocked
2155  * before returning.
2156  */
2157 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2158                                 struct vm_area_struct *vma,
2159                                 pmd_t *pmd, pmd_t entry,
2160                                 unsigned long address,
2161                                 struct page *page, int node)
2162 {
2163         spinlock_t *ptl;
2164         pg_data_t *pgdat = NODE_DATA(node);
2165         int isolated = 0;
2166         struct page *new_page = NULL;
2167         int page_lru = page_is_file_lru(page);
2168         unsigned long start = address & HPAGE_PMD_MASK;
2169
2170         if (is_shared_exec_page(vma, page))
2171                 goto out;
2172
2173         new_page = alloc_pages_node(node,
2174                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2175                 HPAGE_PMD_ORDER);
2176         if (!new_page)
2177                 goto out_fail;
2178         prep_transhuge_page(new_page);
2179
2180         isolated = numamigrate_isolate_page(pgdat, page);
2181         if (!isolated) {
2182                 put_page(new_page);
2183                 goto out_fail;
2184         }
2185
2186         /* Prepare a page as a migration target */
2187         __SetPageLocked(new_page);
2188         if (PageSwapBacked(page))
2189                 __SetPageSwapBacked(new_page);
2190
2191         /* anon mapping, we can simply copy page->mapping to the new page: */
2192         new_page->mapping = page->mapping;
2193         new_page->index = page->index;
2194         /* flush the cache before copying using the kernel virtual address */
2195         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2196         migrate_page_copy(new_page, page);
2197         WARN_ON(PageLRU(new_page));
2198
2199         /* Recheck the target PMD */
2200         ptl = pmd_lock(mm, pmd);
2201         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2202                 spin_unlock(ptl);
2203
2204                 /* Reverse changes made by migrate_page_copy() */
2205                 if (TestClearPageActive(new_page))
2206                         SetPageActive(page);
2207                 if (TestClearPageUnevictable(new_page))
2208                         SetPageUnevictable(page);
2209
2210                 unlock_page(new_page);
2211                 put_page(new_page);             /* Free it */
2212
2213                 /* Retake the callers reference and putback on LRU */
2214                 get_page(page);
2215                 putback_lru_page(page);
2216                 mod_node_page_state(page_pgdat(page),
2217                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2218
2219                 goto out_unlock;
2220         }
2221
2222         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2223         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2224
2225         /*
2226          * Overwrite the old entry under pagetable lock and establish
2227          * the new PTE. Any parallel GUP will either observe the old
2228          * page blocking on the page lock, block on the page table
2229          * lock or observe the new page. The SetPageUptodate on the
2230          * new page and page_add_new_anon_rmap guarantee the copy is
2231          * visible before the pagetable update.
2232          */
2233         page_add_anon_rmap(new_page, vma, start, true);
2234         /*
2235          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2236          * has already been flushed globally.  So no TLB can be currently
2237          * caching this non present pmd mapping.  There's no need to clear the
2238          * pmd before doing set_pmd_at(), nor to flush the TLB after
2239          * set_pmd_at().  Clearing the pmd here would introduce a race
2240          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2241          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2242          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2243          * pmd.
2244          */
2245         set_pmd_at(mm, start, pmd, entry);
2246         update_mmu_cache_pmd(vma, address, &entry);
2247
2248         page_ref_unfreeze(page, 2);
2249         mlock_migrate_page(new_page, page);
2250         page_remove_rmap(page, true);
2251         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2252
2253         spin_unlock(ptl);
2254
2255         /* Take an "isolate" reference and put new page on the LRU. */
2256         get_page(new_page);
2257         putback_lru_page(new_page);
2258
2259         unlock_page(new_page);
2260         unlock_page(page);
2261         put_page(page);                 /* Drop the rmap reference */
2262         put_page(page);                 /* Drop the LRU isolation reference */
2263
2264         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2265         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2266
2267         mod_node_page_state(page_pgdat(page),
2268                         NR_ISOLATED_ANON + page_lru,
2269                         -HPAGE_PMD_NR);
2270         return isolated;
2271
2272 out_fail:
2273         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2274         ptl = pmd_lock(mm, pmd);
2275         if (pmd_same(*pmd, entry)) {
2276                 entry = pmd_modify(entry, vma->vm_page_prot);
2277                 set_pmd_at(mm, start, pmd, entry);
2278                 update_mmu_cache_pmd(vma, address, &entry);
2279         }
2280         spin_unlock(ptl);
2281
2282 out_unlock:
2283         unlock_page(page);
2284 out:
2285         put_page(page);
2286         return 0;
2287 }
2288 #endif /* CONFIG_NUMA_BALANCING */
2289
2290 #endif /* CONFIG_NUMA */
2291
2292 #ifdef CONFIG_DEVICE_PRIVATE
2293 static int migrate_vma_collect_skip(unsigned long start,
2294                                     unsigned long end,
2295                                     struct mm_walk *walk)
2296 {
2297         struct migrate_vma *migrate = walk->private;
2298         unsigned long addr;
2299
2300         for (addr = start; addr < end; addr += PAGE_SIZE) {
2301                 migrate->dst[migrate->npages] = 0;
2302                 migrate->src[migrate->npages++] = 0;
2303         }
2304
2305         return 0;
2306 }
2307
2308 static int migrate_vma_collect_hole(unsigned long start,
2309                                     unsigned long end,
2310                                     __always_unused int depth,
2311                                     struct mm_walk *walk)
2312 {
2313         struct migrate_vma *migrate = walk->private;
2314         unsigned long addr;
2315
2316         /* Only allow populating anonymous memory. */
2317         if (!vma_is_anonymous(walk->vma))
2318                 return migrate_vma_collect_skip(start, end, walk);
2319
2320         for (addr = start; addr < end; addr += PAGE_SIZE) {
2321                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2322                 migrate->dst[migrate->npages] = 0;
2323                 migrate->npages++;
2324                 migrate->cpages++;
2325         }
2326
2327         return 0;
2328 }
2329
2330 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2331                                    unsigned long start,
2332                                    unsigned long end,
2333                                    struct mm_walk *walk)
2334 {
2335         struct migrate_vma *migrate = walk->private;
2336         struct vm_area_struct *vma = walk->vma;
2337         struct mm_struct *mm = vma->vm_mm;
2338         unsigned long addr = start, unmapped = 0;
2339         spinlock_t *ptl;
2340         pte_t *ptep;
2341
2342 again:
2343         if (pmd_none(*pmdp))
2344                 return migrate_vma_collect_hole(start, end, -1, walk);
2345
2346         if (pmd_trans_huge(*pmdp)) {
2347                 struct page *page;
2348
2349                 ptl = pmd_lock(mm, pmdp);
2350                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2351                         spin_unlock(ptl);
2352                         goto again;
2353                 }
2354
2355                 page = pmd_page(*pmdp);
2356                 if (is_huge_zero_page(page)) {
2357                         spin_unlock(ptl);
2358                         split_huge_pmd(vma, pmdp, addr);
2359                         if (pmd_trans_unstable(pmdp))
2360                                 return migrate_vma_collect_skip(start, end,
2361                                                                 walk);
2362                 } else {
2363                         int ret;
2364
2365                         get_page(page);
2366                         spin_unlock(ptl);
2367                         if (unlikely(!trylock_page(page)))
2368                                 return migrate_vma_collect_skip(start, end,
2369                                                                 walk);
2370                         ret = split_huge_page(page);
2371                         unlock_page(page);
2372                         put_page(page);
2373                         if (ret)
2374                                 return migrate_vma_collect_skip(start, end,
2375                                                                 walk);
2376                         if (pmd_none(*pmdp))
2377                                 return migrate_vma_collect_hole(start, end, -1,
2378                                                                 walk);
2379                 }
2380         }
2381
2382         if (unlikely(pmd_bad(*pmdp)))
2383                 return migrate_vma_collect_skip(start, end, walk);
2384
2385         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2386         arch_enter_lazy_mmu_mode();
2387
2388         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2389                 unsigned long mpfn = 0, pfn;
2390                 struct page *page;
2391                 swp_entry_t entry;
2392                 pte_t pte;
2393
2394                 pte = *ptep;
2395
2396                 if (pte_none(pte)) {
2397                         if (vma_is_anonymous(vma)) {
2398                                 mpfn = MIGRATE_PFN_MIGRATE;
2399                                 migrate->cpages++;
2400                         }
2401                         goto next;
2402                 }
2403
2404                 if (!pte_present(pte)) {
2405                         /*
2406                          * Only care about unaddressable device page special
2407                          * page table entry. Other special swap entries are not
2408                          * migratable, and we ignore regular swapped page.
2409                          */
2410                         entry = pte_to_swp_entry(pte);
2411                         if (!is_device_private_entry(entry))
2412                                 goto next;
2413
2414                         page = device_private_entry_to_page(entry);
2415                         if (!(migrate->flags &
2416                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2417                             page->pgmap->owner != migrate->pgmap_owner)
2418                                 goto next;
2419
2420                         mpfn = migrate_pfn(page_to_pfn(page)) |
2421                                         MIGRATE_PFN_MIGRATE;
2422                         if (is_write_device_private_entry(entry))
2423                                 mpfn |= MIGRATE_PFN_WRITE;
2424                 } else {
2425                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2426                                 goto next;
2427                         pfn = pte_pfn(pte);
2428                         if (is_zero_pfn(pfn)) {
2429                                 mpfn = MIGRATE_PFN_MIGRATE;
2430                                 migrate->cpages++;
2431                                 goto next;
2432                         }
2433                         page = vm_normal_page(migrate->vma, addr, pte);
2434                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2435                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2436                 }
2437
2438                 /* FIXME support THP */
2439                 if (!page || !page->mapping || PageTransCompound(page)) {
2440                         mpfn = 0;
2441                         goto next;
2442                 }
2443
2444                 /*
2445                  * By getting a reference on the page we pin it and that blocks
2446                  * any kind of migration. Side effect is that it "freezes" the
2447                  * pte.
2448                  *
2449                  * We drop this reference after isolating the page from the lru
2450                  * for non device page (device page are not on the lru and thus
2451                  * can't be dropped from it).
2452                  */
2453                 get_page(page);
2454                 migrate->cpages++;
2455
2456                 /*
2457                  * Optimize for the common case where page is only mapped once
2458                  * in one process. If we can lock the page, then we can safely
2459                  * set up a special migration page table entry now.
2460                  */
2461                 if (trylock_page(page)) {
2462                         pte_t swp_pte;
2463
2464                         mpfn |= MIGRATE_PFN_LOCKED;
2465                         ptep_get_and_clear(mm, addr, ptep);
2466
2467                         /* Setup special migration page table entry */
2468                         entry = make_migration_entry(page, mpfn &
2469                                                      MIGRATE_PFN_WRITE);
2470                         swp_pte = swp_entry_to_pte(entry);
2471                         if (pte_present(pte)) {
2472                                 if (pte_soft_dirty(pte))
2473                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2474                                 if (pte_uffd_wp(pte))
2475                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2476                         } else {
2477                                 if (pte_swp_soft_dirty(pte))
2478                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2479                                 if (pte_swp_uffd_wp(pte))
2480                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2481                         }
2482                         set_pte_at(mm, addr, ptep, swp_pte);
2483
2484                         /*
2485                          * This is like regular unmap: we remove the rmap and
2486                          * drop page refcount. Page won't be freed, as we took
2487                          * a reference just above.
2488                          */
2489                         page_remove_rmap(page, false);
2490                         put_page(page);
2491
2492                         if (pte_present(pte))
2493                                 unmapped++;
2494                 }
2495
2496 next:
2497                 migrate->dst[migrate->npages] = 0;
2498                 migrate->src[migrate->npages++] = mpfn;
2499         }
2500         arch_leave_lazy_mmu_mode();
2501         pte_unmap_unlock(ptep - 1, ptl);
2502
2503         /* Only flush the TLB if we actually modified any entries */
2504         if (unmapped)
2505                 flush_tlb_range(walk->vma, start, end);
2506
2507         return 0;
2508 }
2509
2510 static const struct mm_walk_ops migrate_vma_walk_ops = {
2511         .pmd_entry              = migrate_vma_collect_pmd,
2512         .pte_hole               = migrate_vma_collect_hole,
2513 };
2514
2515 /*
2516  * migrate_vma_collect() - collect pages over a range of virtual addresses
2517  * @migrate: migrate struct containing all migration information
2518  *
2519  * This will walk the CPU page table. For each virtual address backed by a
2520  * valid page, it updates the src array and takes a reference on the page, in
2521  * order to pin the page until we lock it and unmap it.
2522  */
2523 static void migrate_vma_collect(struct migrate_vma *migrate)
2524 {
2525         struct mmu_notifier_range range;
2526
2527         /*
2528          * Note that the pgmap_owner is passed to the mmu notifier callback so
2529          * that the registered device driver can skip invalidating device
2530          * private page mappings that won't be migrated.
2531          */
2532         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2533                 migrate->vma->vm_mm, migrate->start, migrate->end,
2534                 migrate->pgmap_owner);
2535         mmu_notifier_invalidate_range_start(&range);
2536
2537         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2538                         &migrate_vma_walk_ops, migrate);
2539
2540         mmu_notifier_invalidate_range_end(&range);
2541         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2542 }
2543
2544 /*
2545  * migrate_vma_check_page() - check if page is pinned or not
2546  * @page: struct page to check
2547  *
2548  * Pinned pages cannot be migrated. This is the same test as in
2549  * migrate_page_move_mapping(), except that here we allow migration of a
2550  * ZONE_DEVICE page.
2551  */
2552 static bool migrate_vma_check_page(struct page *page)
2553 {
2554         /*
2555          * One extra ref because caller holds an extra reference, either from
2556          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2557          * a device page.
2558          */
2559         int extra = 1;
2560
2561         /*
2562          * FIXME support THP (transparent huge page), it is bit more complex to
2563          * check them than regular pages, because they can be mapped with a pmd
2564          * or with a pte (split pte mapping).
2565          */
2566         if (PageCompound(page))
2567                 return false;
2568
2569         /* Page from ZONE_DEVICE have one extra reference */
2570         if (is_zone_device_page(page)) {
2571                 /*
2572                  * Private page can never be pin as they have no valid pte and
2573                  * GUP will fail for those. Yet if there is a pending migration
2574                  * a thread might try to wait on the pte migration entry and
2575                  * will bump the page reference count. Sadly there is no way to
2576                  * differentiate a regular pin from migration wait. Hence to
2577                  * avoid 2 racing thread trying to migrate back to CPU to enter
2578                  * infinite loop (one stopping migration because the other is
2579                  * waiting on pte migration entry). We always return true here.
2580                  *
2581                  * FIXME proper solution is to rework migration_entry_wait() so
2582                  * it does not need to take a reference on page.
2583                  */
2584                 return is_device_private_page(page);
2585         }
2586
2587         /* For file back page */
2588         if (page_mapping(page))
2589                 extra += 1 + page_has_private(page);
2590
2591         if ((page_count(page) - extra) > page_mapcount(page))
2592                 return false;
2593
2594         return true;
2595 }
2596
2597 /*
2598  * migrate_vma_prepare() - lock pages and isolate them from the lru
2599  * @migrate: migrate struct containing all migration information
2600  *
2601  * This locks pages that have been collected by migrate_vma_collect(). Once each
2602  * page is locked it is isolated from the lru (for non-device pages). Finally,
2603  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2604  * migrated by concurrent kernel threads.
2605  */
2606 static void migrate_vma_prepare(struct migrate_vma *migrate)
2607 {
2608         const unsigned long npages = migrate->npages;
2609         const unsigned long start = migrate->start;
2610         unsigned long addr, i, restore = 0;
2611         bool allow_drain = true;
2612
2613         lru_add_drain();
2614
2615         for (i = 0; (i < npages) && migrate->cpages; i++) {
2616                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2617                 bool remap = true;
2618
2619                 if (!page)
2620                         continue;
2621
2622                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2623                         /*
2624                          * Because we are migrating several pages there can be
2625                          * a deadlock between 2 concurrent migration where each
2626                          * are waiting on each other page lock.
2627                          *
2628                          * Make migrate_vma() a best effort thing and backoff
2629                          * for any page we can not lock right away.
2630                          */
2631                         if (!trylock_page(page)) {
2632                                 migrate->src[i] = 0;
2633                                 migrate->cpages--;
2634                                 put_page(page);
2635                                 continue;
2636                         }
2637                         remap = false;
2638                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2639                 }
2640
2641                 /* ZONE_DEVICE pages are not on LRU */
2642                 if (!is_zone_device_page(page)) {
2643                         if (!PageLRU(page) && allow_drain) {
2644                                 /* Drain CPU's pagevec */
2645                                 lru_add_drain_all();
2646                                 allow_drain = false;
2647                         }
2648
2649                         if (isolate_lru_page(page)) {
2650                                 if (remap) {
2651                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2652                                         migrate->cpages--;
2653                                         restore++;
2654                                 } else {
2655                                         migrate->src[i] = 0;
2656                                         unlock_page(page);
2657                                         migrate->cpages--;
2658                                         put_page(page);
2659                                 }
2660                                 continue;
2661                         }
2662
2663                         /* Drop the reference we took in collect */
2664                         put_page(page);
2665                 }
2666
2667                 if (!migrate_vma_check_page(page)) {
2668                         if (remap) {
2669                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2670                                 migrate->cpages--;
2671                                 restore++;
2672
2673                                 if (!is_zone_device_page(page)) {
2674                                         get_page(page);
2675                                         putback_lru_page(page);
2676                                 }
2677                         } else {
2678                                 migrate->src[i] = 0;
2679                                 unlock_page(page);
2680                                 migrate->cpages--;
2681
2682                                 if (!is_zone_device_page(page))
2683                                         putback_lru_page(page);
2684                                 else
2685                                         put_page(page);
2686                         }
2687                 }
2688         }
2689
2690         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2691                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2692
2693                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2694                         continue;
2695
2696                 remove_migration_pte(page, migrate->vma, addr, page);
2697
2698                 migrate->src[i] = 0;
2699                 unlock_page(page);
2700                 put_page(page);
2701                 restore--;
2702         }
2703 }
2704
2705 /*
2706  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2707  * @migrate: migrate struct containing all migration information
2708  *
2709  * Replace page mapping (CPU page table pte) with a special migration pte entry
2710  * and check again if it has been pinned. Pinned pages are restored because we
2711  * cannot migrate them.
2712  *
2713  * This is the last step before we call the device driver callback to allocate
2714  * destination memory and copy contents of original page over to new page.
2715  */
2716 static void migrate_vma_unmap(struct migrate_vma *migrate)
2717 {
2718         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2719         const unsigned long npages = migrate->npages;
2720         const unsigned long start = migrate->start;
2721         unsigned long addr, i, restore = 0;
2722
2723         for (i = 0; i < npages; i++) {
2724                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2725
2726                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2727                         continue;
2728
2729                 if (page_mapped(page)) {
2730                         try_to_unmap(page, flags);
2731                         if (page_mapped(page))
2732                                 goto restore;
2733                 }
2734
2735                 if (migrate_vma_check_page(page))
2736                         continue;
2737
2738 restore:
2739                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2740                 migrate->cpages--;
2741                 restore++;
2742         }
2743
2744         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2745                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2746
2747                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2748                         continue;
2749
2750                 remove_migration_ptes(page, page, false);
2751
2752                 migrate->src[i] = 0;
2753                 unlock_page(page);
2754                 restore--;
2755
2756                 if (is_zone_device_page(page))
2757                         put_page(page);
2758                 else
2759                         putback_lru_page(page);
2760         }
2761 }
2762
2763 /**
2764  * migrate_vma_setup() - prepare to migrate a range of memory
2765  * @args: contains the vma, start, and pfns arrays for the migration
2766  *
2767  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2768  * without an error.
2769  *
2770  * Prepare to migrate a range of memory virtual address range by collecting all
2771  * the pages backing each virtual address in the range, saving them inside the
2772  * src array.  Then lock those pages and unmap them. Once the pages are locked
2773  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2774  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2775  * corresponding src array entry.  Then restores any pages that are pinned, by
2776  * remapping and unlocking those pages.
2777  *
2778  * The caller should then allocate destination memory and copy source memory to
2779  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2780  * flag set).  Once these are allocated and copied, the caller must update each
2781  * corresponding entry in the dst array with the pfn value of the destination
2782  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2783  * (destination pages must have their struct pages locked, via lock_page()).
2784  *
2785  * Note that the caller does not have to migrate all the pages that are marked
2786  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2787  * device memory to system memory.  If the caller cannot migrate a device page
2788  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2789  * consequences for the userspace process, so it must be avoided if at all
2790  * possible.
2791  *
2792  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2793  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2794  * allowing the caller to allocate device memory for those unback virtual
2795  * address.  For this the caller simply has to allocate device memory and
2796  * properly set the destination entry like for regular migration.  Note that
2797  * this can still fails and thus inside the device driver must check if the
2798  * migration was successful for those entries after calling migrate_vma_pages()
2799  * just like for regular migration.
2800  *
2801  * After that, the callers must call migrate_vma_pages() to go over each entry
2802  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2803  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2804  * then migrate_vma_pages() to migrate struct page information from the source
2805  * struct page to the destination struct page.  If it fails to migrate the
2806  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2807  * src array.
2808  *
2809  * At this point all successfully migrated pages have an entry in the src
2810  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2811  * array entry with MIGRATE_PFN_VALID flag set.
2812  *
2813  * Once migrate_vma_pages() returns the caller may inspect which pages were
2814  * successfully migrated, and which were not.  Successfully migrated pages will
2815  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2816  *
2817  * It is safe to update device page table after migrate_vma_pages() because
2818  * both destination and source page are still locked, and the mmap_lock is held
2819  * in read mode (hence no one can unmap the range being migrated).
2820  *
2821  * Once the caller is done cleaning up things and updating its page table (if it
2822  * chose to do so, this is not an obligation) it finally calls
2823  * migrate_vma_finalize() to update the CPU page table to point to new pages
2824  * for successfully migrated pages or otherwise restore the CPU page table to
2825  * point to the original source pages.
2826  */
2827 int migrate_vma_setup(struct migrate_vma *args)
2828 {
2829         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2830
2831         args->start &= PAGE_MASK;
2832         args->end &= PAGE_MASK;
2833         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2834             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2835                 return -EINVAL;
2836         if (nr_pages <= 0)
2837                 return -EINVAL;
2838         if (args->start < args->vma->vm_start ||
2839             args->start >= args->vma->vm_end)
2840                 return -EINVAL;
2841         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2842                 return -EINVAL;
2843         if (!args->src || !args->dst)
2844                 return -EINVAL;
2845
2846         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2847         args->cpages = 0;
2848         args->npages = 0;
2849
2850         migrate_vma_collect(args);
2851
2852         if (args->cpages)
2853                 migrate_vma_prepare(args);
2854         if (args->cpages)
2855                 migrate_vma_unmap(args);
2856
2857         /*
2858          * At this point pages are locked and unmapped, and thus they have
2859          * stable content and can safely be copied to destination memory that
2860          * is allocated by the drivers.
2861          */
2862         return 0;
2863
2864 }
2865 EXPORT_SYMBOL(migrate_vma_setup);
2866
2867 /*
2868  * This code closely matches the code in:
2869  *   __handle_mm_fault()
2870  *     handle_pte_fault()
2871  *       do_anonymous_page()
2872  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2873  * private page.
2874  */
2875 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2876                                     unsigned long addr,
2877                                     struct page *page,
2878                                     unsigned long *src)
2879 {
2880         struct vm_area_struct *vma = migrate->vma;
2881         struct mm_struct *mm = vma->vm_mm;
2882         bool flush = false;
2883         spinlock_t *ptl;
2884         pte_t entry;
2885         pgd_t *pgdp;
2886         p4d_t *p4dp;
2887         pud_t *pudp;
2888         pmd_t *pmdp;
2889         pte_t *ptep;
2890
2891         /* Only allow populating anonymous memory */
2892         if (!vma_is_anonymous(vma))
2893                 goto abort;
2894
2895         pgdp = pgd_offset(mm, addr);
2896         p4dp = p4d_alloc(mm, pgdp, addr);
2897         if (!p4dp)
2898                 goto abort;
2899         pudp = pud_alloc(mm, p4dp, addr);
2900         if (!pudp)
2901                 goto abort;
2902         pmdp = pmd_alloc(mm, pudp, addr);
2903         if (!pmdp)
2904                 goto abort;
2905
2906         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2907                 goto abort;
2908
2909         /*
2910          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2911          * pte_offset_map() on pmds where a huge pmd might be created
2912          * from a different thread.
2913          *
2914          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2915          * parallel threads are excluded by other means.
2916          *
2917          * Here we only have mmap_read_lock(mm).
2918          */
2919         if (pte_alloc(mm, pmdp))
2920                 goto abort;
2921
2922         /* See the comment in pte_alloc_one_map() */
2923         if (unlikely(pmd_trans_unstable(pmdp)))
2924                 goto abort;
2925
2926         if (unlikely(anon_vma_prepare(vma)))
2927                 goto abort;
2928         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2929                 goto abort;
2930
2931         /*
2932          * The memory barrier inside __SetPageUptodate makes sure that
2933          * preceding stores to the page contents become visible before
2934          * the set_pte_at() write.
2935          */
2936         __SetPageUptodate(page);
2937
2938         if (is_zone_device_page(page)) {
2939                 if (is_device_private_page(page)) {
2940                         swp_entry_t swp_entry;
2941
2942                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2943                         entry = swp_entry_to_pte(swp_entry);
2944                 } else {
2945                         /*
2946                          * For now we only support migrating to un-addressable
2947                          * device memory.
2948                          */
2949                         pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2950                         goto abort;
2951                 }
2952         } else {
2953                 entry = mk_pte(page, vma->vm_page_prot);
2954                 if (vma->vm_flags & VM_WRITE)
2955                         entry = pte_mkwrite(pte_mkdirty(entry));
2956         }
2957
2958         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2959
2960         if (check_stable_address_space(mm))
2961                 goto unlock_abort;
2962
2963         if (pte_present(*ptep)) {
2964                 unsigned long pfn = pte_pfn(*ptep);
2965
2966                 if (!is_zero_pfn(pfn))
2967                         goto unlock_abort;
2968                 flush = true;
2969         } else if (!pte_none(*ptep))
2970                 goto unlock_abort;
2971
2972         /*
2973          * Check for userfaultfd but do not deliver the fault. Instead,
2974          * just back off.
2975          */
2976         if (userfaultfd_missing(vma))
2977                 goto unlock_abort;
2978
2979         inc_mm_counter(mm, MM_ANONPAGES);
2980         page_add_new_anon_rmap(page, vma, addr, false);
2981         if (!is_zone_device_page(page))
2982                 lru_cache_add_inactive_or_unevictable(page, vma);
2983         get_page(page);
2984
2985         if (flush) {
2986                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2987                 ptep_clear_flush_notify(vma, addr, ptep);
2988                 set_pte_at_notify(mm, addr, ptep, entry);
2989                 update_mmu_cache(vma, addr, ptep);
2990         } else {
2991                 /* No need to invalidate - it was non-present before */
2992                 set_pte_at(mm, addr, ptep, entry);
2993                 update_mmu_cache(vma, addr, ptep);
2994         }
2995
2996         pte_unmap_unlock(ptep, ptl);
2997         *src = MIGRATE_PFN_MIGRATE;
2998         return;
2999
3000 unlock_abort:
3001         pte_unmap_unlock(ptep, ptl);
3002 abort:
3003         *src &= ~MIGRATE_PFN_MIGRATE;
3004 }
3005
3006 /**
3007  * migrate_vma_pages() - migrate meta-data from src page to dst page
3008  * @migrate: migrate struct containing all migration information
3009  *
3010  * This migrates struct page meta-data from source struct page to destination
3011  * struct page. This effectively finishes the migration from source page to the
3012  * destination page.
3013  */
3014 void migrate_vma_pages(struct migrate_vma *migrate)
3015 {
3016         const unsigned long npages = migrate->npages;
3017         const unsigned long start = migrate->start;
3018         struct mmu_notifier_range range;
3019         unsigned long addr, i;
3020         bool notified = false;
3021
3022         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3023                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3024                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3025                 struct address_space *mapping;
3026                 int r;
3027
3028                 if (!newpage) {
3029                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3030                         continue;
3031                 }
3032
3033                 if (!page) {
3034                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3035                                 continue;
3036                         if (!notified) {
3037                                 notified = true;
3038
3039                                 mmu_notifier_range_init_migrate(&range, 0,
3040                                         migrate->vma, migrate->vma->vm_mm,
3041                                         addr, migrate->end,
3042                                         migrate->pgmap_owner);
3043                                 mmu_notifier_invalidate_range_start(&range);
3044                         }
3045                         migrate_vma_insert_page(migrate, addr, newpage,
3046                                                 &migrate->src[i]);
3047                         continue;
3048                 }
3049
3050                 mapping = page_mapping(page);
3051
3052                 if (is_zone_device_page(newpage)) {
3053                         if (is_device_private_page(newpage)) {
3054                                 /*
3055                                  * For now only support private anonymous when
3056                                  * migrating to un-addressable device memory.
3057                                  */
3058                                 if (mapping) {
3059                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3060                                         continue;
3061                                 }
3062                         } else {
3063                                 /*
3064                                  * Other types of ZONE_DEVICE page are not
3065                                  * supported.
3066                                  */
3067                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3068                                 continue;
3069                         }
3070                 }
3071
3072                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3073                 if (r != MIGRATEPAGE_SUCCESS)
3074                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3075         }
3076
3077         /*
3078          * No need to double call mmu_notifier->invalidate_range() callback as
3079          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3080          * did already call it.
3081          */
3082         if (notified)
3083                 mmu_notifier_invalidate_range_only_end(&range);
3084 }
3085 EXPORT_SYMBOL(migrate_vma_pages);
3086
3087 /**
3088  * migrate_vma_finalize() - restore CPU page table entry
3089  * @migrate: migrate struct containing all migration information
3090  *
3091  * This replaces the special migration pte entry with either a mapping to the
3092  * new page if migration was successful for that page, or to the original page
3093  * otherwise.
3094  *
3095  * This also unlocks the pages and puts them back on the lru, or drops the extra
3096  * refcount, for device pages.
3097  */
3098 void migrate_vma_finalize(struct migrate_vma *migrate)
3099 {
3100         const unsigned long npages = migrate->npages;
3101         unsigned long i;
3102
3103         for (i = 0; i < npages; i++) {
3104                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3105                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3106
3107                 if (!page) {
3108                         if (newpage) {
3109                                 unlock_page(newpage);
3110                                 put_page(newpage);
3111                         }
3112                         continue;
3113                 }
3114
3115                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3116                         if (newpage) {
3117                                 unlock_page(newpage);
3118                                 put_page(newpage);
3119                         }
3120                         newpage = page;
3121                 }
3122
3123                 remove_migration_ptes(page, newpage, false);
3124                 unlock_page(page);
3125
3126                 if (is_zone_device_page(page))
3127                         put_page(page);
3128                 else
3129                         putback_lru_page(page);
3130
3131                 if (newpage != page) {
3132                         unlock_page(newpage);
3133                         if (is_zone_device_page(newpage))
3134                                 put_page(newpage);
3135                         else
3136                                 putback_lru_page(newpage);
3137                 }
3138         }
3139 }
3140 EXPORT_SYMBOL(migrate_vma_finalize);
3141 #endif /* CONFIG_DEVICE_PRIVATE */