mm/hugetlb: change parameters of arch_make_huge_pte()
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62         struct address_space *mapping;
63
64         /*
65          * Avoid burning cycles with pages that are yet under __free_pages(),
66          * or just got freed under us.
67          *
68          * In case we 'win' a race for a movable page being freed under us and
69          * raise its refcount preventing __free_pages() from doing its job
70          * the put_page() at the end of this block will take care of
71          * release this page, thus avoiding a nasty leakage.
72          */
73         if (unlikely(!get_page_unless_zero(page)))
74                 goto out;
75
76         /*
77          * Check PageMovable before holding a PG_lock because page's owner
78          * assumes anybody doesn't touch PG_lock of newly allocated page
79          * so unconditionally grabbing the lock ruins page's owner side.
80          */
81         if (unlikely(!__PageMovable(page)))
82                 goto out_putpage;
83         /*
84          * As movable pages are not isolated from LRU lists, concurrent
85          * compaction threads can race against page migration functions
86          * as well as race against the releasing a page.
87          *
88          * In order to avoid having an already isolated movable page
89          * being (wrongly) re-isolated while it is under migration,
90          * or to avoid attempting to isolate pages being released,
91          * lets be sure we have the page lock
92          * before proceeding with the movable page isolation steps.
93          */
94         if (unlikely(!trylock_page(page)))
95                 goto out_putpage;
96
97         if (!PageMovable(page) || PageIsolated(page))
98                 goto out_no_isolated;
99
100         mapping = page_mapping(page);
101         VM_BUG_ON_PAGE(!mapping, page);
102
103         if (!mapping->a_ops->isolate_page(page, mode))
104                 goto out_no_isolated;
105
106         /* Driver shouldn't use PG_isolated bit of page->flags */
107         WARN_ON_ONCE(PageIsolated(page));
108         __SetPageIsolated(page);
109         unlock_page(page);
110
111         return 0;
112
113 out_no_isolated:
114         unlock_page(page);
115 out_putpage:
116         put_page(page);
117 out:
118         return -EBUSY;
119 }
120
121 static void putback_movable_page(struct page *page)
122 {
123         struct address_space *mapping;
124
125         mapping = page_mapping(page);
126         mapping->a_ops->putback_page(page);
127         __ClearPageIsolated(page);
128 }
129
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140         struct page *page;
141         struct page *page2;
142
143         list_for_each_entry_safe(page, page2, l, lru) {
144                 if (unlikely(PageHuge(page))) {
145                         putback_active_hugepage(page);
146                         continue;
147                 }
148                 list_del(&page->lru);
149                 /*
150                  * We isolated non-lru movable page so here we can use
151                  * __PageMovable because LRU page's mapping cannot have
152                  * PAGE_MAPPING_MOVABLE.
153                  */
154                 if (unlikely(__PageMovable(page))) {
155                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
156                         lock_page(page);
157                         if (PageMovable(page))
158                                 putback_movable_page(page);
159                         else
160                                 __ClearPageIsolated(page);
161                         unlock_page(page);
162                         put_page(page);
163                 } else {
164                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165                                         page_is_file_lru(page), -thp_nr_pages(page));
166                         putback_lru_page(page);
167                 }
168         }
169 }
170
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175                                  unsigned long addr, void *old)
176 {
177         struct page_vma_mapped_walk pvmw = {
178                 .page = old,
179                 .vma = vma,
180                 .address = addr,
181                 .flags = PVMW_SYNC | PVMW_MIGRATION,
182         };
183         struct page *new;
184         pte_t pte;
185         swp_entry_t entry;
186
187         VM_BUG_ON_PAGE(PageTail(page), page);
188         while (page_vma_mapped_walk(&pvmw)) {
189                 if (PageKsm(page))
190                         new = page;
191                 else
192                         new = page - pvmw.page->index +
193                                 linear_page_index(vma, pvmw.address);
194
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196                 /* PMD-mapped THP migration entry */
197                 if (!pvmw.pte) {
198                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199                         remove_migration_pmd(&pvmw, new);
200                         continue;
201                 }
202 #endif
203
204                 get_page(new);
205                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206                 if (pte_swp_soft_dirty(*pvmw.pte))
207                         pte = pte_mksoft_dirty(pte);
208
209                 /*
210                  * Recheck VMA as permissions can change since migration started
211                  */
212                 entry = pte_to_swp_entry(*pvmw.pte);
213                 if (is_write_migration_entry(entry))
214                         pte = maybe_mkwrite(pte, vma);
215                 else if (pte_swp_uffd_wp(*pvmw.pte))
216                         pte = pte_mkuffd_wp(pte);
217
218                 if (unlikely(is_device_private_page(new))) {
219                         entry = make_device_private_entry(new, pte_write(pte));
220                         pte = swp_entry_to_pte(entry);
221                         if (pte_swp_soft_dirty(*pvmw.pte))
222                                 pte = pte_swp_mksoft_dirty(pte);
223                         if (pte_swp_uffd_wp(*pvmw.pte))
224                                 pte = pte_swp_mkuffd_wp(pte);
225                 }
226
227 #ifdef CONFIG_HUGETLB_PAGE
228                 if (PageHuge(new)) {
229                         unsigned int shift = huge_page_shift(hstate_vma(vma));
230
231                         pte = pte_mkhuge(pte);
232                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
233                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
234                         if (PageAnon(new))
235                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
236                         else
237                                 page_dup_rmap(new, true);
238                 } else
239 #endif
240                 {
241                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
242
243                         if (PageAnon(new))
244                                 page_add_anon_rmap(new, vma, pvmw.address, false);
245                         else
246                                 page_add_file_rmap(new, false);
247                 }
248                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
249                         mlock_vma_page(new);
250
251                 if (PageTransHuge(page) && PageMlocked(page))
252                         clear_page_mlock(page);
253
254                 /* No need to invalidate - it was non-present before */
255                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
256         }
257
258         return true;
259 }
260
261 /*
262  * Get rid of all migration entries and replace them by
263  * references to the indicated page.
264  */
265 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
266 {
267         struct rmap_walk_control rwc = {
268                 .rmap_one = remove_migration_pte,
269                 .arg = old,
270         };
271
272         if (locked)
273                 rmap_walk_locked(new, &rwc);
274         else
275                 rmap_walk(new, &rwc);
276 }
277
278 /*
279  * Something used the pte of a page under migration. We need to
280  * get to the page and wait until migration is finished.
281  * When we return from this function the fault will be retried.
282  */
283 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
284                                 spinlock_t *ptl)
285 {
286         pte_t pte;
287         swp_entry_t entry;
288         struct page *page;
289
290         spin_lock(ptl);
291         pte = *ptep;
292         if (!is_swap_pte(pte))
293                 goto out;
294
295         entry = pte_to_swp_entry(pte);
296         if (!is_migration_entry(entry))
297                 goto out;
298
299         page = migration_entry_to_page(entry);
300         page = compound_head(page);
301
302         /*
303          * Once page cache replacement of page migration started, page_count
304          * is zero; but we must not call put_and_wait_on_page_locked() without
305          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
306          */
307         if (!get_page_unless_zero(page))
308                 goto out;
309         pte_unmap_unlock(ptep, ptl);
310         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
311         return;
312 out:
313         pte_unmap_unlock(ptep, ptl);
314 }
315
316 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
317                                 unsigned long address)
318 {
319         spinlock_t *ptl = pte_lockptr(mm, pmd);
320         pte_t *ptep = pte_offset_map(pmd, address);
321         __migration_entry_wait(mm, ptep, ptl);
322 }
323
324 void migration_entry_wait_huge(struct vm_area_struct *vma,
325                 struct mm_struct *mm, pte_t *pte)
326 {
327         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
328         __migration_entry_wait(mm, pte, ptl);
329 }
330
331 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
332 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
333 {
334         spinlock_t *ptl;
335         struct page *page;
336
337         ptl = pmd_lock(mm, pmd);
338         if (!is_pmd_migration_entry(*pmd))
339                 goto unlock;
340         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
341         if (!get_page_unless_zero(page))
342                 goto unlock;
343         spin_unlock(ptl);
344         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
345         return;
346 unlock:
347         spin_unlock(ptl);
348 }
349 #endif
350
351 static int expected_page_refs(struct address_space *mapping, struct page *page)
352 {
353         int expected_count = 1;
354
355         /*
356          * Device private pages have an extra refcount as they are
357          * ZONE_DEVICE pages.
358          */
359         expected_count += is_device_private_page(page);
360         if (mapping)
361                 expected_count += thp_nr_pages(page) + page_has_private(page);
362
363         return expected_count;
364 }
365
366 /*
367  * Replace the page in the mapping.
368  *
369  * The number of remaining references must be:
370  * 1 for anonymous pages without a mapping
371  * 2 for pages with a mapping
372  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
373  */
374 int migrate_page_move_mapping(struct address_space *mapping,
375                 struct page *newpage, struct page *page, int extra_count)
376 {
377         XA_STATE(xas, &mapping->i_pages, page_index(page));
378         struct zone *oldzone, *newzone;
379         int dirty;
380         int expected_count = expected_page_refs(mapping, page) + extra_count;
381         int nr = thp_nr_pages(page);
382
383         if (!mapping) {
384                 /* Anonymous page without mapping */
385                 if (page_count(page) != expected_count)
386                         return -EAGAIN;
387
388                 /* No turning back from here */
389                 newpage->index = page->index;
390                 newpage->mapping = page->mapping;
391                 if (PageSwapBacked(page))
392                         __SetPageSwapBacked(newpage);
393
394                 return MIGRATEPAGE_SUCCESS;
395         }
396
397         oldzone = page_zone(page);
398         newzone = page_zone(newpage);
399
400         xas_lock_irq(&xas);
401         if (page_count(page) != expected_count || xas_load(&xas) != page) {
402                 xas_unlock_irq(&xas);
403                 return -EAGAIN;
404         }
405
406         if (!page_ref_freeze(page, expected_count)) {
407                 xas_unlock_irq(&xas);
408                 return -EAGAIN;
409         }
410
411         /*
412          * Now we know that no one else is looking at the page:
413          * no turning back from here.
414          */
415         newpage->index = page->index;
416         newpage->mapping = page->mapping;
417         page_ref_add(newpage, nr); /* add cache reference */
418         if (PageSwapBacked(page)) {
419                 __SetPageSwapBacked(newpage);
420                 if (PageSwapCache(page)) {
421                         SetPageSwapCache(newpage);
422                         set_page_private(newpage, page_private(page));
423                 }
424         } else {
425                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
426         }
427
428         /* Move dirty while page refs frozen and newpage not yet exposed */
429         dirty = PageDirty(page);
430         if (dirty) {
431                 ClearPageDirty(page);
432                 SetPageDirty(newpage);
433         }
434
435         xas_store(&xas, newpage);
436         if (PageTransHuge(page)) {
437                 int i;
438
439                 for (i = 1; i < nr; i++) {
440                         xas_next(&xas);
441                         xas_store(&xas, newpage);
442                 }
443         }
444
445         /*
446          * Drop cache reference from old page by unfreezing
447          * to one less reference.
448          * We know this isn't the last reference.
449          */
450         page_ref_unfreeze(page, expected_count - nr);
451
452         xas_unlock(&xas);
453         /* Leave irq disabled to prevent preemption while updating stats */
454
455         /*
456          * If moved to a different zone then also account
457          * the page for that zone. Other VM counters will be
458          * taken care of when we establish references to the
459          * new page and drop references to the old page.
460          *
461          * Note that anonymous pages are accounted for
462          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
463          * are mapped to swap space.
464          */
465         if (newzone != oldzone) {
466                 struct lruvec *old_lruvec, *new_lruvec;
467                 struct mem_cgroup *memcg;
468
469                 memcg = page_memcg(page);
470                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
471                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
472
473                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
474                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
475                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
476                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
477                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
478                 }
479 #ifdef CONFIG_SWAP
480                 if (PageSwapCache(page)) {
481                         __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
482                         __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
483                 }
484 #endif
485                 if (dirty && mapping_can_writeback(mapping)) {
486                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
487                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
488                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
489                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
490                 }
491         }
492         local_irq_enable();
493
494         return MIGRATEPAGE_SUCCESS;
495 }
496 EXPORT_SYMBOL(migrate_page_move_mapping);
497
498 /*
499  * The expected number of remaining references is the same as that
500  * of migrate_page_move_mapping().
501  */
502 int migrate_huge_page_move_mapping(struct address_space *mapping,
503                                    struct page *newpage, struct page *page)
504 {
505         XA_STATE(xas, &mapping->i_pages, page_index(page));
506         int expected_count;
507
508         xas_lock_irq(&xas);
509         expected_count = 2 + page_has_private(page);
510         if (page_count(page) != expected_count || xas_load(&xas) != page) {
511                 xas_unlock_irq(&xas);
512                 return -EAGAIN;
513         }
514
515         if (!page_ref_freeze(page, expected_count)) {
516                 xas_unlock_irq(&xas);
517                 return -EAGAIN;
518         }
519
520         newpage->index = page->index;
521         newpage->mapping = page->mapping;
522
523         get_page(newpage);
524
525         xas_store(&xas, newpage);
526
527         page_ref_unfreeze(page, expected_count - 1);
528
529         xas_unlock_irq(&xas);
530
531         return MIGRATEPAGE_SUCCESS;
532 }
533
534 /*
535  * Gigantic pages are so large that we do not guarantee that page++ pointer
536  * arithmetic will work across the entire page.  We need something more
537  * specialized.
538  */
539 static void __copy_gigantic_page(struct page *dst, struct page *src,
540                                 int nr_pages)
541 {
542         int i;
543         struct page *dst_base = dst;
544         struct page *src_base = src;
545
546         for (i = 0; i < nr_pages; ) {
547                 cond_resched();
548                 copy_highpage(dst, src);
549
550                 i++;
551                 dst = mem_map_next(dst, dst_base, i);
552                 src = mem_map_next(src, src_base, i);
553         }
554 }
555
556 static void copy_huge_page(struct page *dst, struct page *src)
557 {
558         int i;
559         int nr_pages;
560
561         if (PageHuge(src)) {
562                 /* hugetlbfs page */
563                 struct hstate *h = page_hstate(src);
564                 nr_pages = pages_per_huge_page(h);
565
566                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
567                         __copy_gigantic_page(dst, src, nr_pages);
568                         return;
569                 }
570         } else {
571                 /* thp page */
572                 BUG_ON(!PageTransHuge(src));
573                 nr_pages = thp_nr_pages(src);
574         }
575
576         for (i = 0; i < nr_pages; i++) {
577                 cond_resched();
578                 copy_highpage(dst + i, src + i);
579         }
580 }
581
582 /*
583  * Copy the page to its new location
584  */
585 void migrate_page_states(struct page *newpage, struct page *page)
586 {
587         int cpupid;
588
589         if (PageError(page))
590                 SetPageError(newpage);
591         if (PageReferenced(page))
592                 SetPageReferenced(newpage);
593         if (PageUptodate(page))
594                 SetPageUptodate(newpage);
595         if (TestClearPageActive(page)) {
596                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
597                 SetPageActive(newpage);
598         } else if (TestClearPageUnevictable(page))
599                 SetPageUnevictable(newpage);
600         if (PageWorkingset(page))
601                 SetPageWorkingset(newpage);
602         if (PageChecked(page))
603                 SetPageChecked(newpage);
604         if (PageMappedToDisk(page))
605                 SetPageMappedToDisk(newpage);
606
607         /* Move dirty on pages not done by migrate_page_move_mapping() */
608         if (PageDirty(page))
609                 SetPageDirty(newpage);
610
611         if (page_is_young(page))
612                 set_page_young(newpage);
613         if (page_is_idle(page))
614                 set_page_idle(newpage);
615
616         /*
617          * Copy NUMA information to the new page, to prevent over-eager
618          * future migrations of this same page.
619          */
620         cpupid = page_cpupid_xchg_last(page, -1);
621         page_cpupid_xchg_last(newpage, cpupid);
622
623         ksm_migrate_page(newpage, page);
624         /*
625          * Please do not reorder this without considering how mm/ksm.c's
626          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
627          */
628         if (PageSwapCache(page))
629                 ClearPageSwapCache(page);
630         ClearPagePrivate(page);
631
632         /* page->private contains hugetlb specific flags */
633         if (!PageHuge(page))
634                 set_page_private(page, 0);
635
636         /*
637          * If any waiters have accumulated on the new page then
638          * wake them up.
639          */
640         if (PageWriteback(newpage))
641                 end_page_writeback(newpage);
642
643         /*
644          * PG_readahead shares the same bit with PG_reclaim.  The above
645          * end_page_writeback() may clear PG_readahead mistakenly, so set the
646          * bit after that.
647          */
648         if (PageReadahead(page))
649                 SetPageReadahead(newpage);
650
651         copy_page_owner(page, newpage);
652
653         if (!PageHuge(page))
654                 mem_cgroup_migrate(page, newpage);
655 }
656 EXPORT_SYMBOL(migrate_page_states);
657
658 void migrate_page_copy(struct page *newpage, struct page *page)
659 {
660         if (PageHuge(page) || PageTransHuge(page))
661                 copy_huge_page(newpage, page);
662         else
663                 copy_highpage(newpage, page);
664
665         migrate_page_states(newpage, page);
666 }
667 EXPORT_SYMBOL(migrate_page_copy);
668
669 /************************************************************
670  *                    Migration functions
671  ***********************************************************/
672
673 /*
674  * Common logic to directly migrate a single LRU page suitable for
675  * pages that do not use PagePrivate/PagePrivate2.
676  *
677  * Pages are locked upon entry and exit.
678  */
679 int migrate_page(struct address_space *mapping,
680                 struct page *newpage, struct page *page,
681                 enum migrate_mode mode)
682 {
683         int rc;
684
685         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
686
687         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
688
689         if (rc != MIGRATEPAGE_SUCCESS)
690                 return rc;
691
692         if (mode != MIGRATE_SYNC_NO_COPY)
693                 migrate_page_copy(newpage, page);
694         else
695                 migrate_page_states(newpage, page);
696         return MIGRATEPAGE_SUCCESS;
697 }
698 EXPORT_SYMBOL(migrate_page);
699
700 #ifdef CONFIG_BLOCK
701 /* Returns true if all buffers are successfully locked */
702 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
703                                                         enum migrate_mode mode)
704 {
705         struct buffer_head *bh = head;
706
707         /* Simple case, sync compaction */
708         if (mode != MIGRATE_ASYNC) {
709                 do {
710                         lock_buffer(bh);
711                         bh = bh->b_this_page;
712
713                 } while (bh != head);
714
715                 return true;
716         }
717
718         /* async case, we cannot block on lock_buffer so use trylock_buffer */
719         do {
720                 if (!trylock_buffer(bh)) {
721                         /*
722                          * We failed to lock the buffer and cannot stall in
723                          * async migration. Release the taken locks
724                          */
725                         struct buffer_head *failed_bh = bh;
726                         bh = head;
727                         while (bh != failed_bh) {
728                                 unlock_buffer(bh);
729                                 bh = bh->b_this_page;
730                         }
731                         return false;
732                 }
733
734                 bh = bh->b_this_page;
735         } while (bh != head);
736         return true;
737 }
738
739 static int __buffer_migrate_page(struct address_space *mapping,
740                 struct page *newpage, struct page *page, enum migrate_mode mode,
741                 bool check_refs)
742 {
743         struct buffer_head *bh, *head;
744         int rc;
745         int expected_count;
746
747         if (!page_has_buffers(page))
748                 return migrate_page(mapping, newpage, page, mode);
749
750         /* Check whether page does not have extra refs before we do more work */
751         expected_count = expected_page_refs(mapping, page);
752         if (page_count(page) != expected_count)
753                 return -EAGAIN;
754
755         head = page_buffers(page);
756         if (!buffer_migrate_lock_buffers(head, mode))
757                 return -EAGAIN;
758
759         if (check_refs) {
760                 bool busy;
761                 bool invalidated = false;
762
763 recheck_buffers:
764                 busy = false;
765                 spin_lock(&mapping->private_lock);
766                 bh = head;
767                 do {
768                         if (atomic_read(&bh->b_count)) {
769                                 busy = true;
770                                 break;
771                         }
772                         bh = bh->b_this_page;
773                 } while (bh != head);
774                 if (busy) {
775                         if (invalidated) {
776                                 rc = -EAGAIN;
777                                 goto unlock_buffers;
778                         }
779                         spin_unlock(&mapping->private_lock);
780                         invalidate_bh_lrus();
781                         invalidated = true;
782                         goto recheck_buffers;
783                 }
784         }
785
786         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
787         if (rc != MIGRATEPAGE_SUCCESS)
788                 goto unlock_buffers;
789
790         attach_page_private(newpage, detach_page_private(page));
791
792         bh = head;
793         do {
794                 set_bh_page(bh, newpage, bh_offset(bh));
795                 bh = bh->b_this_page;
796
797         } while (bh != head);
798
799         if (mode != MIGRATE_SYNC_NO_COPY)
800                 migrate_page_copy(newpage, page);
801         else
802                 migrate_page_states(newpage, page);
803
804         rc = MIGRATEPAGE_SUCCESS;
805 unlock_buffers:
806         if (check_refs)
807                 spin_unlock(&mapping->private_lock);
808         bh = head;
809         do {
810                 unlock_buffer(bh);
811                 bh = bh->b_this_page;
812
813         } while (bh != head);
814
815         return rc;
816 }
817
818 /*
819  * Migration function for pages with buffers. This function can only be used
820  * if the underlying filesystem guarantees that no other references to "page"
821  * exist. For example attached buffer heads are accessed only under page lock.
822  */
823 int buffer_migrate_page(struct address_space *mapping,
824                 struct page *newpage, struct page *page, enum migrate_mode mode)
825 {
826         return __buffer_migrate_page(mapping, newpage, page, mode, false);
827 }
828 EXPORT_SYMBOL(buffer_migrate_page);
829
830 /*
831  * Same as above except that this variant is more careful and checks that there
832  * are also no buffer head references. This function is the right one for
833  * mappings where buffer heads are directly looked up and referenced (such as
834  * block device mappings).
835  */
836 int buffer_migrate_page_norefs(struct address_space *mapping,
837                 struct page *newpage, struct page *page, enum migrate_mode mode)
838 {
839         return __buffer_migrate_page(mapping, newpage, page, mode, true);
840 }
841 #endif
842
843 /*
844  * Writeback a page to clean the dirty state
845  */
846 static int writeout(struct address_space *mapping, struct page *page)
847 {
848         struct writeback_control wbc = {
849                 .sync_mode = WB_SYNC_NONE,
850                 .nr_to_write = 1,
851                 .range_start = 0,
852                 .range_end = LLONG_MAX,
853                 .for_reclaim = 1
854         };
855         int rc;
856
857         if (!mapping->a_ops->writepage)
858                 /* No write method for the address space */
859                 return -EINVAL;
860
861         if (!clear_page_dirty_for_io(page))
862                 /* Someone else already triggered a write */
863                 return -EAGAIN;
864
865         /*
866          * A dirty page may imply that the underlying filesystem has
867          * the page on some queue. So the page must be clean for
868          * migration. Writeout may mean we loose the lock and the
869          * page state is no longer what we checked for earlier.
870          * At this point we know that the migration attempt cannot
871          * be successful.
872          */
873         remove_migration_ptes(page, page, false);
874
875         rc = mapping->a_ops->writepage(page, &wbc);
876
877         if (rc != AOP_WRITEPAGE_ACTIVATE)
878                 /* unlocked. Relock */
879                 lock_page(page);
880
881         return (rc < 0) ? -EIO : -EAGAIN;
882 }
883
884 /*
885  * Default handling if a filesystem does not provide a migration function.
886  */
887 static int fallback_migrate_page(struct address_space *mapping,
888         struct page *newpage, struct page *page, enum migrate_mode mode)
889 {
890         if (PageDirty(page)) {
891                 /* Only writeback pages in full synchronous migration */
892                 switch (mode) {
893                 case MIGRATE_SYNC:
894                 case MIGRATE_SYNC_NO_COPY:
895                         break;
896                 default:
897                         return -EBUSY;
898                 }
899                 return writeout(mapping, page);
900         }
901
902         /*
903          * Buffers may be managed in a filesystem specific way.
904          * We must have no buffers or drop them.
905          */
906         if (page_has_private(page) &&
907             !try_to_release_page(page, GFP_KERNEL))
908                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
909
910         return migrate_page(mapping, newpage, page, mode);
911 }
912
913 /*
914  * Move a page to a newly allocated page
915  * The page is locked and all ptes have been successfully removed.
916  *
917  * The new page will have replaced the old page if this function
918  * is successful.
919  *
920  * Return value:
921  *   < 0 - error code
922  *  MIGRATEPAGE_SUCCESS - success
923  */
924 static int move_to_new_page(struct page *newpage, struct page *page,
925                                 enum migrate_mode mode)
926 {
927         struct address_space *mapping;
928         int rc = -EAGAIN;
929         bool is_lru = !__PageMovable(page);
930
931         VM_BUG_ON_PAGE(!PageLocked(page), page);
932         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
933
934         mapping = page_mapping(page);
935
936         if (likely(is_lru)) {
937                 if (!mapping)
938                         rc = migrate_page(mapping, newpage, page, mode);
939                 else if (mapping->a_ops->migratepage)
940                         /*
941                          * Most pages have a mapping and most filesystems
942                          * provide a migratepage callback. Anonymous pages
943                          * are part of swap space which also has its own
944                          * migratepage callback. This is the most common path
945                          * for page migration.
946                          */
947                         rc = mapping->a_ops->migratepage(mapping, newpage,
948                                                         page, mode);
949                 else
950                         rc = fallback_migrate_page(mapping, newpage,
951                                                         page, mode);
952         } else {
953                 /*
954                  * In case of non-lru page, it could be released after
955                  * isolation step. In that case, we shouldn't try migration.
956                  */
957                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
958                 if (!PageMovable(page)) {
959                         rc = MIGRATEPAGE_SUCCESS;
960                         __ClearPageIsolated(page);
961                         goto out;
962                 }
963
964                 rc = mapping->a_ops->migratepage(mapping, newpage,
965                                                 page, mode);
966                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
967                         !PageIsolated(page));
968         }
969
970         /*
971          * When successful, old pagecache page->mapping must be cleared before
972          * page is freed; but stats require that PageAnon be left as PageAnon.
973          */
974         if (rc == MIGRATEPAGE_SUCCESS) {
975                 if (__PageMovable(page)) {
976                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
977
978                         /*
979                          * We clear PG_movable under page_lock so any compactor
980                          * cannot try to migrate this page.
981                          */
982                         __ClearPageIsolated(page);
983                 }
984
985                 /*
986                  * Anonymous and movable page->mapping will be cleared by
987                  * free_pages_prepare so don't reset it here for keeping
988                  * the type to work PageAnon, for example.
989                  */
990                 if (!PageMappingFlags(page))
991                         page->mapping = NULL;
992
993                 if (likely(!is_zone_device_page(newpage)))
994                         flush_dcache_page(newpage);
995
996         }
997 out:
998         return rc;
999 }
1000
1001 static int __unmap_and_move(struct page *page, struct page *newpage,
1002                                 int force, enum migrate_mode mode)
1003 {
1004         int rc = -EAGAIN;
1005         int page_was_mapped = 0;
1006         struct anon_vma *anon_vma = NULL;
1007         bool is_lru = !__PageMovable(page);
1008
1009         if (!trylock_page(page)) {
1010                 if (!force || mode == MIGRATE_ASYNC)
1011                         goto out;
1012
1013                 /*
1014                  * It's not safe for direct compaction to call lock_page.
1015                  * For example, during page readahead pages are added locked
1016                  * to the LRU. Later, when the IO completes the pages are
1017                  * marked uptodate and unlocked. However, the queueing
1018                  * could be merging multiple pages for one bio (e.g.
1019                  * mpage_readahead). If an allocation happens for the
1020                  * second or third page, the process can end up locking
1021                  * the same page twice and deadlocking. Rather than
1022                  * trying to be clever about what pages can be locked,
1023                  * avoid the use of lock_page for direct compaction
1024                  * altogether.
1025                  */
1026                 if (current->flags & PF_MEMALLOC)
1027                         goto out;
1028
1029                 lock_page(page);
1030         }
1031
1032         if (PageWriteback(page)) {
1033                 /*
1034                  * Only in the case of a full synchronous migration is it
1035                  * necessary to wait for PageWriteback. In the async case,
1036                  * the retry loop is too short and in the sync-light case,
1037                  * the overhead of stalling is too much
1038                  */
1039                 switch (mode) {
1040                 case MIGRATE_SYNC:
1041                 case MIGRATE_SYNC_NO_COPY:
1042                         break;
1043                 default:
1044                         rc = -EBUSY;
1045                         goto out_unlock;
1046                 }
1047                 if (!force)
1048                         goto out_unlock;
1049                 wait_on_page_writeback(page);
1050         }
1051
1052         /*
1053          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1054          * we cannot notice that anon_vma is freed while we migrates a page.
1055          * This get_anon_vma() delays freeing anon_vma pointer until the end
1056          * of migration. File cache pages are no problem because of page_lock()
1057          * File Caches may use write_page() or lock_page() in migration, then,
1058          * just care Anon page here.
1059          *
1060          * Only page_get_anon_vma() understands the subtleties of
1061          * getting a hold on an anon_vma from outside one of its mms.
1062          * But if we cannot get anon_vma, then we won't need it anyway,
1063          * because that implies that the anon page is no longer mapped
1064          * (and cannot be remapped so long as we hold the page lock).
1065          */
1066         if (PageAnon(page) && !PageKsm(page))
1067                 anon_vma = page_get_anon_vma(page);
1068
1069         /*
1070          * Block others from accessing the new page when we get around to
1071          * establishing additional references. We are usually the only one
1072          * holding a reference to newpage at this point. We used to have a BUG
1073          * here if trylock_page(newpage) fails, but would like to allow for
1074          * cases where there might be a race with the previous use of newpage.
1075          * This is much like races on refcount of oldpage: just don't BUG().
1076          */
1077         if (unlikely(!trylock_page(newpage)))
1078                 goto out_unlock;
1079
1080         if (unlikely(!is_lru)) {
1081                 rc = move_to_new_page(newpage, page, mode);
1082                 goto out_unlock_both;
1083         }
1084
1085         /*
1086          * Corner case handling:
1087          * 1. When a new swap-cache page is read into, it is added to the LRU
1088          * and treated as swapcache but it has no rmap yet.
1089          * Calling try_to_unmap() against a page->mapping==NULL page will
1090          * trigger a BUG.  So handle it here.
1091          * 2. An orphaned page (see truncate_cleanup_page) might have
1092          * fs-private metadata. The page can be picked up due to memory
1093          * offlining.  Everywhere else except page reclaim, the page is
1094          * invisible to the vm, so the page can not be migrated.  So try to
1095          * free the metadata, so the page can be freed.
1096          */
1097         if (!page->mapping) {
1098                 VM_BUG_ON_PAGE(PageAnon(page), page);
1099                 if (page_has_private(page)) {
1100                         try_to_free_buffers(page);
1101                         goto out_unlock_both;
1102                 }
1103         } else if (page_mapped(page)) {
1104                 /* Establish migration ptes */
1105                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1106                                 page);
1107                 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1108                 page_was_mapped = 1;
1109         }
1110
1111         if (!page_mapped(page))
1112                 rc = move_to_new_page(newpage, page, mode);
1113
1114         if (page_was_mapped)
1115                 remove_migration_ptes(page,
1116                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1117
1118 out_unlock_both:
1119         unlock_page(newpage);
1120 out_unlock:
1121         /* Drop an anon_vma reference if we took one */
1122         if (anon_vma)
1123                 put_anon_vma(anon_vma);
1124         unlock_page(page);
1125 out:
1126         /*
1127          * If migration is successful, decrease refcount of the newpage
1128          * which will not free the page because new page owner increased
1129          * refcounter. As well, if it is LRU page, add the page to LRU
1130          * list in here. Use the old state of the isolated source page to
1131          * determine if we migrated a LRU page. newpage was already unlocked
1132          * and possibly modified by its owner - don't rely on the page
1133          * state.
1134          */
1135         if (rc == MIGRATEPAGE_SUCCESS) {
1136                 if (unlikely(!is_lru))
1137                         put_page(newpage);
1138                 else
1139                         putback_lru_page(newpage);
1140         }
1141
1142         return rc;
1143 }
1144
1145 /*
1146  * Obtain the lock on page, remove all ptes and migrate the page
1147  * to the newly allocated page in newpage.
1148  */
1149 static int unmap_and_move(new_page_t get_new_page,
1150                                    free_page_t put_new_page,
1151                                    unsigned long private, struct page *page,
1152                                    int force, enum migrate_mode mode,
1153                                    enum migrate_reason reason,
1154                                    struct list_head *ret)
1155 {
1156         int rc = MIGRATEPAGE_SUCCESS;
1157         struct page *newpage = NULL;
1158
1159         if (!thp_migration_supported() && PageTransHuge(page))
1160                 return -ENOSYS;
1161
1162         if (page_count(page) == 1) {
1163                 /* page was freed from under us. So we are done. */
1164                 ClearPageActive(page);
1165                 ClearPageUnevictable(page);
1166                 if (unlikely(__PageMovable(page))) {
1167                         lock_page(page);
1168                         if (!PageMovable(page))
1169                                 __ClearPageIsolated(page);
1170                         unlock_page(page);
1171                 }
1172                 goto out;
1173         }
1174
1175         newpage = get_new_page(page, private);
1176         if (!newpage)
1177                 return -ENOMEM;
1178
1179         rc = __unmap_and_move(page, newpage, force, mode);
1180         if (rc == MIGRATEPAGE_SUCCESS)
1181                 set_page_owner_migrate_reason(newpage, reason);
1182
1183 out:
1184         if (rc != -EAGAIN) {
1185                 /*
1186                  * A page that has been migrated has all references
1187                  * removed and will be freed. A page that has not been
1188                  * migrated will have kept its references and be restored.
1189                  */
1190                 list_del(&page->lru);
1191         }
1192
1193         /*
1194          * If migration is successful, releases reference grabbed during
1195          * isolation. Otherwise, restore the page to right list unless
1196          * we want to retry.
1197          */
1198         if (rc == MIGRATEPAGE_SUCCESS) {
1199                 /*
1200                  * Compaction can migrate also non-LRU pages which are
1201                  * not accounted to NR_ISOLATED_*. They can be recognized
1202                  * as __PageMovable
1203                  */
1204                 if (likely(!__PageMovable(page)))
1205                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1206                                         page_is_file_lru(page), -thp_nr_pages(page));
1207
1208                 if (reason != MR_MEMORY_FAILURE)
1209                         /*
1210                          * We release the page in page_handle_poison.
1211                          */
1212                         put_page(page);
1213         } else {
1214                 if (rc != -EAGAIN)
1215                         list_add_tail(&page->lru, ret);
1216
1217                 if (put_new_page)
1218                         put_new_page(newpage, private);
1219                 else
1220                         put_page(newpage);
1221         }
1222
1223         return rc;
1224 }
1225
1226 /*
1227  * Counterpart of unmap_and_move_page() for hugepage migration.
1228  *
1229  * This function doesn't wait the completion of hugepage I/O
1230  * because there is no race between I/O and migration for hugepage.
1231  * Note that currently hugepage I/O occurs only in direct I/O
1232  * where no lock is held and PG_writeback is irrelevant,
1233  * and writeback status of all subpages are counted in the reference
1234  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1235  * under direct I/O, the reference of the head page is 512 and a bit more.)
1236  * This means that when we try to migrate hugepage whose subpages are
1237  * doing direct I/O, some references remain after try_to_unmap() and
1238  * hugepage migration fails without data corruption.
1239  *
1240  * There is also no race when direct I/O is issued on the page under migration,
1241  * because then pte is replaced with migration swap entry and direct I/O code
1242  * will wait in the page fault for migration to complete.
1243  */
1244 static int unmap_and_move_huge_page(new_page_t get_new_page,
1245                                 free_page_t put_new_page, unsigned long private,
1246                                 struct page *hpage, int force,
1247                                 enum migrate_mode mode, int reason,
1248                                 struct list_head *ret)
1249 {
1250         int rc = -EAGAIN;
1251         int page_was_mapped = 0;
1252         struct page *new_hpage;
1253         struct anon_vma *anon_vma = NULL;
1254         struct address_space *mapping = NULL;
1255
1256         /*
1257          * Migratability of hugepages depends on architectures and their size.
1258          * This check is necessary because some callers of hugepage migration
1259          * like soft offline and memory hotremove don't walk through page
1260          * tables or check whether the hugepage is pmd-based or not before
1261          * kicking migration.
1262          */
1263         if (!hugepage_migration_supported(page_hstate(hpage))) {
1264                 list_move_tail(&hpage->lru, ret);
1265                 return -ENOSYS;
1266         }
1267
1268         if (page_count(hpage) == 1) {
1269                 /* page was freed from under us. So we are done. */
1270                 putback_active_hugepage(hpage);
1271                 return MIGRATEPAGE_SUCCESS;
1272         }
1273
1274         new_hpage = get_new_page(hpage, private);
1275         if (!new_hpage)
1276                 return -ENOMEM;
1277
1278         if (!trylock_page(hpage)) {
1279                 if (!force)
1280                         goto out;
1281                 switch (mode) {
1282                 case MIGRATE_SYNC:
1283                 case MIGRATE_SYNC_NO_COPY:
1284                         break;
1285                 default:
1286                         goto out;
1287                 }
1288                 lock_page(hpage);
1289         }
1290
1291         /*
1292          * Check for pages which are in the process of being freed.  Without
1293          * page_mapping() set, hugetlbfs specific move page routine will not
1294          * be called and we could leak usage counts for subpools.
1295          */
1296         if (page_private(hpage) && !page_mapping(hpage)) {
1297                 rc = -EBUSY;
1298                 goto out_unlock;
1299         }
1300
1301         if (PageAnon(hpage))
1302                 anon_vma = page_get_anon_vma(hpage);
1303
1304         if (unlikely(!trylock_page(new_hpage)))
1305                 goto put_anon;
1306
1307         if (page_mapped(hpage)) {
1308                 bool mapping_locked = false;
1309                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1310
1311                 if (!PageAnon(hpage)) {
1312                         /*
1313                          * In shared mappings, try_to_unmap could potentially
1314                          * call huge_pmd_unshare.  Because of this, take
1315                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1316                          * to let lower levels know we have taken the lock.
1317                          */
1318                         mapping = hugetlb_page_mapping_lock_write(hpage);
1319                         if (unlikely(!mapping))
1320                                 goto unlock_put_anon;
1321
1322                         mapping_locked = true;
1323                         ttu |= TTU_RMAP_LOCKED;
1324                 }
1325
1326                 try_to_unmap(hpage, ttu);
1327                 page_was_mapped = 1;
1328
1329                 if (mapping_locked)
1330                         i_mmap_unlock_write(mapping);
1331         }
1332
1333         if (!page_mapped(hpage))
1334                 rc = move_to_new_page(new_hpage, hpage, mode);
1335
1336         if (page_was_mapped)
1337                 remove_migration_ptes(hpage,
1338                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1339
1340 unlock_put_anon:
1341         unlock_page(new_hpage);
1342
1343 put_anon:
1344         if (anon_vma)
1345                 put_anon_vma(anon_vma);
1346
1347         if (rc == MIGRATEPAGE_SUCCESS) {
1348                 move_hugetlb_state(hpage, new_hpage, reason);
1349                 put_new_page = NULL;
1350         }
1351
1352 out_unlock:
1353         unlock_page(hpage);
1354 out:
1355         if (rc == MIGRATEPAGE_SUCCESS)
1356                 putback_active_hugepage(hpage);
1357         else if (rc != -EAGAIN)
1358                 list_move_tail(&hpage->lru, ret);
1359
1360         /*
1361          * If migration was not successful and there's a freeing callback, use
1362          * it.  Otherwise, put_page() will drop the reference grabbed during
1363          * isolation.
1364          */
1365         if (put_new_page)
1366                 put_new_page(new_hpage, private);
1367         else
1368                 putback_active_hugepage(new_hpage);
1369
1370         return rc;
1371 }
1372
1373 static inline int try_split_thp(struct page *page, struct page **page2,
1374                                 struct list_head *from)
1375 {
1376         int rc = 0;
1377
1378         lock_page(page);
1379         rc = split_huge_page_to_list(page, from);
1380         unlock_page(page);
1381         if (!rc)
1382                 list_safe_reset_next(page, *page2, lru);
1383
1384         return rc;
1385 }
1386
1387 /*
1388  * migrate_pages - migrate the pages specified in a list, to the free pages
1389  *                 supplied as the target for the page migration
1390  *
1391  * @from:               The list of pages to be migrated.
1392  * @get_new_page:       The function used to allocate free pages to be used
1393  *                      as the target of the page migration.
1394  * @put_new_page:       The function used to free target pages if migration
1395  *                      fails, or NULL if no special handling is necessary.
1396  * @private:            Private data to be passed on to get_new_page()
1397  * @mode:               The migration mode that specifies the constraints for
1398  *                      page migration, if any.
1399  * @reason:             The reason for page migration.
1400  *
1401  * The function returns after 10 attempts or if no pages are movable any more
1402  * because the list has become empty or no retryable pages exist any more.
1403  * It is caller's responsibility to call putback_movable_pages() to return pages
1404  * to the LRU or free list only if ret != 0.
1405  *
1406  * Returns the number of pages that were not migrated, or an error code.
1407  */
1408 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1409                 free_page_t put_new_page, unsigned long private,
1410                 enum migrate_mode mode, int reason)
1411 {
1412         int retry = 1;
1413         int thp_retry = 1;
1414         int nr_failed = 0;
1415         int nr_succeeded = 0;
1416         int nr_thp_succeeded = 0;
1417         int nr_thp_failed = 0;
1418         int nr_thp_split = 0;
1419         int pass = 0;
1420         bool is_thp = false;
1421         struct page *page;
1422         struct page *page2;
1423         int swapwrite = current->flags & PF_SWAPWRITE;
1424         int rc, nr_subpages;
1425         LIST_HEAD(ret_pages);
1426
1427         trace_mm_migrate_pages_start(mode, reason);
1428
1429         if (!swapwrite)
1430                 current->flags |= PF_SWAPWRITE;
1431
1432         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1433                 retry = 0;
1434                 thp_retry = 0;
1435
1436                 list_for_each_entry_safe(page, page2, from, lru) {
1437 retry:
1438                         /*
1439                          * THP statistics is based on the source huge page.
1440                          * Capture required information that might get lost
1441                          * during migration.
1442                          */
1443                         is_thp = PageTransHuge(page) && !PageHuge(page);
1444                         nr_subpages = thp_nr_pages(page);
1445                         cond_resched();
1446
1447                         if (PageHuge(page))
1448                                 rc = unmap_and_move_huge_page(get_new_page,
1449                                                 put_new_page, private, page,
1450                                                 pass > 2, mode, reason,
1451                                                 &ret_pages);
1452                         else
1453                                 rc = unmap_and_move(get_new_page, put_new_page,
1454                                                 private, page, pass > 2, mode,
1455                                                 reason, &ret_pages);
1456                         /*
1457                          * The rules are:
1458                          *      Success: non hugetlb page will be freed, hugetlb
1459                          *               page will be put back
1460                          *      -EAGAIN: stay on the from list
1461                          *      -ENOMEM: stay on the from list
1462                          *      Other errno: put on ret_pages list then splice to
1463                          *                   from list
1464                          */
1465                         switch(rc) {
1466                         /*
1467                          * THP migration might be unsupported or the
1468                          * allocation could've failed so we should
1469                          * retry on the same page with the THP split
1470                          * to base pages.
1471                          *
1472                          * Head page is retried immediately and tail
1473                          * pages are added to the tail of the list so
1474                          * we encounter them after the rest of the list
1475                          * is processed.
1476                          */
1477                         case -ENOSYS:
1478                                 /* THP migration is unsupported */
1479                                 if (is_thp) {
1480                                         if (!try_split_thp(page, &page2, from)) {
1481                                                 nr_thp_split++;
1482                                                 goto retry;
1483                                         }
1484
1485                                         nr_thp_failed++;
1486                                         nr_failed += nr_subpages;
1487                                         break;
1488                                 }
1489
1490                                 /* Hugetlb migration is unsupported */
1491                                 nr_failed++;
1492                                 break;
1493                         case -ENOMEM:
1494                                 /*
1495                                  * When memory is low, don't bother to try to migrate
1496                                  * other pages, just exit.
1497                                  */
1498                                 if (is_thp) {
1499                                         if (!try_split_thp(page, &page2, from)) {
1500                                                 nr_thp_split++;
1501                                                 goto retry;
1502                                         }
1503
1504                                         nr_thp_failed++;
1505                                         nr_failed += nr_subpages;
1506                                         goto out;
1507                                 }
1508                                 nr_failed++;
1509                                 goto out;
1510                         case -EAGAIN:
1511                                 if (is_thp) {
1512                                         thp_retry++;
1513                                         break;
1514                                 }
1515                                 retry++;
1516                                 break;
1517                         case MIGRATEPAGE_SUCCESS:
1518                                 if (is_thp) {
1519                                         nr_thp_succeeded++;
1520                                         nr_succeeded += nr_subpages;
1521                                         break;
1522                                 }
1523                                 nr_succeeded++;
1524                                 break;
1525                         default:
1526                                 /*
1527                                  * Permanent failure (-EBUSY, etc.):
1528                                  * unlike -EAGAIN case, the failed page is
1529                                  * removed from migration page list and not
1530                                  * retried in the next outer loop.
1531                                  */
1532                                 if (is_thp) {
1533                                         nr_thp_failed++;
1534                                         nr_failed += nr_subpages;
1535                                         break;
1536                                 }
1537                                 nr_failed++;
1538                                 break;
1539                         }
1540                 }
1541         }
1542         nr_failed += retry + thp_retry;
1543         nr_thp_failed += thp_retry;
1544         rc = nr_failed;
1545 out:
1546         /*
1547          * Put the permanent failure page back to migration list, they
1548          * will be put back to the right list by the caller.
1549          */
1550         list_splice(&ret_pages, from);
1551
1552         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1553         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1554         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1555         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1556         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1557         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1558                                nr_thp_failed, nr_thp_split, mode, reason);
1559
1560         if (!swapwrite)
1561                 current->flags &= ~PF_SWAPWRITE;
1562
1563         return rc;
1564 }
1565
1566 struct page *alloc_migration_target(struct page *page, unsigned long private)
1567 {
1568         struct migration_target_control *mtc;
1569         gfp_t gfp_mask;
1570         unsigned int order = 0;
1571         struct page *new_page = NULL;
1572         int nid;
1573         int zidx;
1574
1575         mtc = (struct migration_target_control *)private;
1576         gfp_mask = mtc->gfp_mask;
1577         nid = mtc->nid;
1578         if (nid == NUMA_NO_NODE)
1579                 nid = page_to_nid(page);
1580
1581         if (PageHuge(page)) {
1582                 struct hstate *h = page_hstate(compound_head(page));
1583
1584                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1585                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1586         }
1587
1588         if (PageTransHuge(page)) {
1589                 /*
1590                  * clear __GFP_RECLAIM to make the migration callback
1591                  * consistent with regular THP allocations.
1592                  */
1593                 gfp_mask &= ~__GFP_RECLAIM;
1594                 gfp_mask |= GFP_TRANSHUGE;
1595                 order = HPAGE_PMD_ORDER;
1596         }
1597         zidx = zone_idx(page_zone(page));
1598         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1599                 gfp_mask |= __GFP_HIGHMEM;
1600
1601         new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1602
1603         if (new_page && PageTransHuge(new_page))
1604                 prep_transhuge_page(new_page);
1605
1606         return new_page;
1607 }
1608
1609 #ifdef CONFIG_NUMA
1610
1611 static int store_status(int __user *status, int start, int value, int nr)
1612 {
1613         while (nr-- > 0) {
1614                 if (put_user(value, status + start))
1615                         return -EFAULT;
1616                 start++;
1617         }
1618
1619         return 0;
1620 }
1621
1622 static int do_move_pages_to_node(struct mm_struct *mm,
1623                 struct list_head *pagelist, int node)
1624 {
1625         int err;
1626         struct migration_target_control mtc = {
1627                 .nid = node,
1628                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1629         };
1630
1631         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1632                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1633         if (err)
1634                 putback_movable_pages(pagelist);
1635         return err;
1636 }
1637
1638 /*
1639  * Resolves the given address to a struct page, isolates it from the LRU and
1640  * puts it to the given pagelist.
1641  * Returns:
1642  *     errno - if the page cannot be found/isolated
1643  *     0 - when it doesn't have to be migrated because it is already on the
1644  *         target node
1645  *     1 - when it has been queued
1646  */
1647 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1648                 int node, struct list_head *pagelist, bool migrate_all)
1649 {
1650         struct vm_area_struct *vma;
1651         struct page *page;
1652         unsigned int follflags;
1653         int err;
1654
1655         mmap_read_lock(mm);
1656         err = -EFAULT;
1657         vma = find_vma(mm, addr);
1658         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1659                 goto out;
1660
1661         /* FOLL_DUMP to ignore special (like zero) pages */
1662         follflags = FOLL_GET | FOLL_DUMP;
1663         page = follow_page(vma, addr, follflags);
1664
1665         err = PTR_ERR(page);
1666         if (IS_ERR(page))
1667                 goto out;
1668
1669         err = -ENOENT;
1670         if (!page)
1671                 goto out;
1672
1673         err = 0;
1674         if (page_to_nid(page) == node)
1675                 goto out_putpage;
1676
1677         err = -EACCES;
1678         if (page_mapcount(page) > 1 && !migrate_all)
1679                 goto out_putpage;
1680
1681         if (PageHuge(page)) {
1682                 if (PageHead(page)) {
1683                         isolate_huge_page(page, pagelist);
1684                         err = 1;
1685                 }
1686         } else {
1687                 struct page *head;
1688
1689                 head = compound_head(page);
1690                 err = isolate_lru_page(head);
1691                 if (err)
1692                         goto out_putpage;
1693
1694                 err = 1;
1695                 list_add_tail(&head->lru, pagelist);
1696                 mod_node_page_state(page_pgdat(head),
1697                         NR_ISOLATED_ANON + page_is_file_lru(head),
1698                         thp_nr_pages(head));
1699         }
1700 out_putpage:
1701         /*
1702          * Either remove the duplicate refcount from
1703          * isolate_lru_page() or drop the page ref if it was
1704          * not isolated.
1705          */
1706         put_page(page);
1707 out:
1708         mmap_read_unlock(mm);
1709         return err;
1710 }
1711
1712 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1713                 struct list_head *pagelist, int __user *status,
1714                 int start, int i, unsigned long nr_pages)
1715 {
1716         int err;
1717
1718         if (list_empty(pagelist))
1719                 return 0;
1720
1721         err = do_move_pages_to_node(mm, pagelist, node);
1722         if (err) {
1723                 /*
1724                  * Positive err means the number of failed
1725                  * pages to migrate.  Since we are going to
1726                  * abort and return the number of non-migrated
1727                  * pages, so need to include the rest of the
1728                  * nr_pages that have not been attempted as
1729                  * well.
1730                  */
1731                 if (err > 0)
1732                         err += nr_pages - i - 1;
1733                 return err;
1734         }
1735         return store_status(status, start, node, i - start);
1736 }
1737
1738 /*
1739  * Migrate an array of page address onto an array of nodes and fill
1740  * the corresponding array of status.
1741  */
1742 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1743                          unsigned long nr_pages,
1744                          const void __user * __user *pages,
1745                          const int __user *nodes,
1746                          int __user *status, int flags)
1747 {
1748         int current_node = NUMA_NO_NODE;
1749         LIST_HEAD(pagelist);
1750         int start, i;
1751         int err = 0, err1;
1752
1753         lru_cache_disable();
1754
1755         for (i = start = 0; i < nr_pages; i++) {
1756                 const void __user *p;
1757                 unsigned long addr;
1758                 int node;
1759
1760                 err = -EFAULT;
1761                 if (get_user(p, pages + i))
1762                         goto out_flush;
1763                 if (get_user(node, nodes + i))
1764                         goto out_flush;
1765                 addr = (unsigned long)untagged_addr(p);
1766
1767                 err = -ENODEV;
1768                 if (node < 0 || node >= MAX_NUMNODES)
1769                         goto out_flush;
1770                 if (!node_state(node, N_MEMORY))
1771                         goto out_flush;
1772
1773                 err = -EACCES;
1774                 if (!node_isset(node, task_nodes))
1775                         goto out_flush;
1776
1777                 if (current_node == NUMA_NO_NODE) {
1778                         current_node = node;
1779                         start = i;
1780                 } else if (node != current_node) {
1781                         err = move_pages_and_store_status(mm, current_node,
1782                                         &pagelist, status, start, i, nr_pages);
1783                         if (err)
1784                                 goto out;
1785                         start = i;
1786                         current_node = node;
1787                 }
1788
1789                 /*
1790                  * Errors in the page lookup or isolation are not fatal and we simply
1791                  * report them via status
1792                  */
1793                 err = add_page_for_migration(mm, addr, current_node,
1794                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1795
1796                 if (err > 0) {
1797                         /* The page is successfully queued for migration */
1798                         continue;
1799                 }
1800
1801                 /*
1802                  * If the page is already on the target node (!err), store the
1803                  * node, otherwise, store the err.
1804                  */
1805                 err = store_status(status, i, err ? : current_node, 1);
1806                 if (err)
1807                         goto out_flush;
1808
1809                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1810                                 status, start, i, nr_pages);
1811                 if (err)
1812                         goto out;
1813                 current_node = NUMA_NO_NODE;
1814         }
1815 out_flush:
1816         /* Make sure we do not overwrite the existing error */
1817         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1818                                 status, start, i, nr_pages);
1819         if (err >= 0)
1820                 err = err1;
1821 out:
1822         lru_cache_enable();
1823         return err;
1824 }
1825
1826 /*
1827  * Determine the nodes of an array of pages and store it in an array of status.
1828  */
1829 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1830                                 const void __user **pages, int *status)
1831 {
1832         unsigned long i;
1833
1834         mmap_read_lock(mm);
1835
1836         for (i = 0; i < nr_pages; i++) {
1837                 unsigned long addr = (unsigned long)(*pages);
1838                 struct vm_area_struct *vma;
1839                 struct page *page;
1840                 int err = -EFAULT;
1841
1842                 vma = vma_lookup(mm, addr);
1843                 if (!vma)
1844                         goto set_status;
1845
1846                 /* FOLL_DUMP to ignore special (like zero) pages */
1847                 page = follow_page(vma, addr, FOLL_DUMP);
1848
1849                 err = PTR_ERR(page);
1850                 if (IS_ERR(page))
1851                         goto set_status;
1852
1853                 err = page ? page_to_nid(page) : -ENOENT;
1854 set_status:
1855                 *status = err;
1856
1857                 pages++;
1858                 status++;
1859         }
1860
1861         mmap_read_unlock(mm);
1862 }
1863
1864 /*
1865  * Determine the nodes of a user array of pages and store it in
1866  * a user array of status.
1867  */
1868 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1869                          const void __user * __user *pages,
1870                          int __user *status)
1871 {
1872 #define DO_PAGES_STAT_CHUNK_NR 16
1873         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1874         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1875
1876         while (nr_pages) {
1877                 unsigned long chunk_nr;
1878
1879                 chunk_nr = nr_pages;
1880                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1881                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1882
1883                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1884                         break;
1885
1886                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1887
1888                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1889                         break;
1890
1891                 pages += chunk_nr;
1892                 status += chunk_nr;
1893                 nr_pages -= chunk_nr;
1894         }
1895         return nr_pages ? -EFAULT : 0;
1896 }
1897
1898 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1899 {
1900         struct task_struct *task;
1901         struct mm_struct *mm;
1902
1903         /*
1904          * There is no need to check if current process has the right to modify
1905          * the specified process when they are same.
1906          */
1907         if (!pid) {
1908                 mmget(current->mm);
1909                 *mem_nodes = cpuset_mems_allowed(current);
1910                 return current->mm;
1911         }
1912
1913         /* Find the mm_struct */
1914         rcu_read_lock();
1915         task = find_task_by_vpid(pid);
1916         if (!task) {
1917                 rcu_read_unlock();
1918                 return ERR_PTR(-ESRCH);
1919         }
1920         get_task_struct(task);
1921
1922         /*
1923          * Check if this process has the right to modify the specified
1924          * process. Use the regular "ptrace_may_access()" checks.
1925          */
1926         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1927                 rcu_read_unlock();
1928                 mm = ERR_PTR(-EPERM);
1929                 goto out;
1930         }
1931         rcu_read_unlock();
1932
1933         mm = ERR_PTR(security_task_movememory(task));
1934         if (IS_ERR(mm))
1935                 goto out;
1936         *mem_nodes = cpuset_mems_allowed(task);
1937         mm = get_task_mm(task);
1938 out:
1939         put_task_struct(task);
1940         if (!mm)
1941                 mm = ERR_PTR(-EINVAL);
1942         return mm;
1943 }
1944
1945 /*
1946  * Move a list of pages in the address space of the currently executing
1947  * process.
1948  */
1949 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1950                              const void __user * __user *pages,
1951                              const int __user *nodes,
1952                              int __user *status, int flags)
1953 {
1954         struct mm_struct *mm;
1955         int err;
1956         nodemask_t task_nodes;
1957
1958         /* Check flags */
1959         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1960                 return -EINVAL;
1961
1962         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1963                 return -EPERM;
1964
1965         mm = find_mm_struct(pid, &task_nodes);
1966         if (IS_ERR(mm))
1967                 return PTR_ERR(mm);
1968
1969         if (nodes)
1970                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1971                                     nodes, status, flags);
1972         else
1973                 err = do_pages_stat(mm, nr_pages, pages, status);
1974
1975         mmput(mm);
1976         return err;
1977 }
1978
1979 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1980                 const void __user * __user *, pages,
1981                 const int __user *, nodes,
1982                 int __user *, status, int, flags)
1983 {
1984         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1985 }
1986
1987 #ifdef CONFIG_COMPAT
1988 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1989                        compat_uptr_t __user *, pages32,
1990                        const int __user *, nodes,
1991                        int __user *, status,
1992                        int, flags)
1993 {
1994         const void __user * __user *pages;
1995         int i;
1996
1997         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1998         for (i = 0; i < nr_pages; i++) {
1999                 compat_uptr_t p;
2000
2001                 if (get_user(p, pages32 + i) ||
2002                         put_user(compat_ptr(p), pages + i))
2003                         return -EFAULT;
2004         }
2005         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2006 }
2007 #endif /* CONFIG_COMPAT */
2008
2009 #ifdef CONFIG_NUMA_BALANCING
2010 /*
2011  * Returns true if this is a safe migration target node for misplaced NUMA
2012  * pages. Currently it only checks the watermarks which crude
2013  */
2014 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2015                                    unsigned long nr_migrate_pages)
2016 {
2017         int z;
2018
2019         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2020                 struct zone *zone = pgdat->node_zones + z;
2021
2022                 if (!populated_zone(zone))
2023                         continue;
2024
2025                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2026                 if (!zone_watermark_ok(zone, 0,
2027                                        high_wmark_pages(zone) +
2028                                        nr_migrate_pages,
2029                                        ZONE_MOVABLE, 0))
2030                         continue;
2031                 return true;
2032         }
2033         return false;
2034 }
2035
2036 static struct page *alloc_misplaced_dst_page(struct page *page,
2037                                            unsigned long data)
2038 {
2039         int nid = (int) data;
2040         struct page *newpage;
2041
2042         newpage = __alloc_pages_node(nid,
2043                                          (GFP_HIGHUSER_MOVABLE |
2044                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2045                                           __GFP_NORETRY | __GFP_NOWARN) &
2046                                          ~__GFP_RECLAIM, 0);
2047
2048         return newpage;
2049 }
2050
2051 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2052 {
2053         int page_lru;
2054
2055         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2056
2057         /* Avoid migrating to a node that is nearly full */
2058         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2059                 return 0;
2060
2061         if (isolate_lru_page(page))
2062                 return 0;
2063
2064         /*
2065          * migrate_misplaced_transhuge_page() skips page migration's usual
2066          * check on page_count(), so we must do it here, now that the page
2067          * has been isolated: a GUP pin, or any other pin, prevents migration.
2068          * The expected page count is 3: 1 for page's mapcount and 1 for the
2069          * caller's pin and 1 for the reference taken by isolate_lru_page().
2070          */
2071         if (PageTransHuge(page) && page_count(page) != 3) {
2072                 putback_lru_page(page);
2073                 return 0;
2074         }
2075
2076         page_lru = page_is_file_lru(page);
2077         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2078                                 thp_nr_pages(page));
2079
2080         /*
2081          * Isolating the page has taken another reference, so the
2082          * caller's reference can be safely dropped without the page
2083          * disappearing underneath us during migration.
2084          */
2085         put_page(page);
2086         return 1;
2087 }
2088
2089 bool pmd_trans_migrating(pmd_t pmd)
2090 {
2091         struct page *page = pmd_page(pmd);
2092         return PageLocked(page);
2093 }
2094
2095 /*
2096  * Attempt to migrate a misplaced page to the specified destination
2097  * node. Caller is expected to have an elevated reference count on
2098  * the page that will be dropped by this function before returning.
2099  */
2100 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2101                            int node)
2102 {
2103         pg_data_t *pgdat = NODE_DATA(node);
2104         int isolated;
2105         int nr_remaining;
2106         LIST_HEAD(migratepages);
2107
2108         /*
2109          * Don't migrate file pages that are mapped in multiple processes
2110          * with execute permissions as they are probably shared libraries.
2111          */
2112         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2113             (vma->vm_flags & VM_EXEC))
2114                 goto out;
2115
2116         /*
2117          * Also do not migrate dirty pages as not all filesystems can move
2118          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2119          */
2120         if (page_is_file_lru(page) && PageDirty(page))
2121                 goto out;
2122
2123         isolated = numamigrate_isolate_page(pgdat, page);
2124         if (!isolated)
2125                 goto out;
2126
2127         list_add(&page->lru, &migratepages);
2128         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2129                                      NULL, node, MIGRATE_ASYNC,
2130                                      MR_NUMA_MISPLACED);
2131         if (nr_remaining) {
2132                 if (!list_empty(&migratepages)) {
2133                         list_del(&page->lru);
2134                         dec_node_page_state(page, NR_ISOLATED_ANON +
2135                                         page_is_file_lru(page));
2136                         putback_lru_page(page);
2137                 }
2138                 isolated = 0;
2139         } else
2140                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2141         BUG_ON(!list_empty(&migratepages));
2142         return isolated;
2143
2144 out:
2145         put_page(page);
2146         return 0;
2147 }
2148 #endif /* CONFIG_NUMA_BALANCING */
2149
2150 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2151 /*
2152  * Migrates a THP to a given target node. page must be locked and is unlocked
2153  * before returning.
2154  */
2155 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2156                                 struct vm_area_struct *vma,
2157                                 pmd_t *pmd, pmd_t entry,
2158                                 unsigned long address,
2159                                 struct page *page, int node)
2160 {
2161         spinlock_t *ptl;
2162         pg_data_t *pgdat = NODE_DATA(node);
2163         int isolated = 0;
2164         struct page *new_page = NULL;
2165         int page_lru = page_is_file_lru(page);
2166         unsigned long start = address & HPAGE_PMD_MASK;
2167
2168         new_page = alloc_pages_node(node,
2169                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2170                 HPAGE_PMD_ORDER);
2171         if (!new_page)
2172                 goto out_fail;
2173         prep_transhuge_page(new_page);
2174
2175         isolated = numamigrate_isolate_page(pgdat, page);
2176         if (!isolated) {
2177                 put_page(new_page);
2178                 goto out_fail;
2179         }
2180
2181         /* Prepare a page as a migration target */
2182         __SetPageLocked(new_page);
2183         if (PageSwapBacked(page))
2184                 __SetPageSwapBacked(new_page);
2185
2186         /* anon mapping, we can simply copy page->mapping to the new page: */
2187         new_page->mapping = page->mapping;
2188         new_page->index = page->index;
2189         /* flush the cache before copying using the kernel virtual address */
2190         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2191         migrate_page_copy(new_page, page);
2192         WARN_ON(PageLRU(new_page));
2193
2194         /* Recheck the target PMD */
2195         ptl = pmd_lock(mm, pmd);
2196         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2197                 spin_unlock(ptl);
2198
2199                 /* Reverse changes made by migrate_page_copy() */
2200                 if (TestClearPageActive(new_page))
2201                         SetPageActive(page);
2202                 if (TestClearPageUnevictable(new_page))
2203                         SetPageUnevictable(page);
2204
2205                 unlock_page(new_page);
2206                 put_page(new_page);             /* Free it */
2207
2208                 /* Retake the callers reference and putback on LRU */
2209                 get_page(page);
2210                 putback_lru_page(page);
2211                 mod_node_page_state(page_pgdat(page),
2212                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2213
2214                 goto out_unlock;
2215         }
2216
2217         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2218         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2219
2220         /*
2221          * Overwrite the old entry under pagetable lock and establish
2222          * the new PTE. Any parallel GUP will either observe the old
2223          * page blocking on the page lock, block on the page table
2224          * lock or observe the new page. The SetPageUptodate on the
2225          * new page and page_add_new_anon_rmap guarantee the copy is
2226          * visible before the pagetable update.
2227          */
2228         page_add_anon_rmap(new_page, vma, start, true);
2229         /*
2230          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2231          * has already been flushed globally.  So no TLB can be currently
2232          * caching this non present pmd mapping.  There's no need to clear the
2233          * pmd before doing set_pmd_at(), nor to flush the TLB after
2234          * set_pmd_at().  Clearing the pmd here would introduce a race
2235          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2236          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2237          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2238          * pmd.
2239          */
2240         set_pmd_at(mm, start, pmd, entry);
2241         update_mmu_cache_pmd(vma, address, &entry);
2242
2243         page_ref_unfreeze(page, 2);
2244         mlock_migrate_page(new_page, page);
2245         page_remove_rmap(page, true);
2246         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2247
2248         spin_unlock(ptl);
2249
2250         /* Take an "isolate" reference and put new page on the LRU. */
2251         get_page(new_page);
2252         putback_lru_page(new_page);
2253
2254         unlock_page(new_page);
2255         unlock_page(page);
2256         put_page(page);                 /* Drop the rmap reference */
2257         put_page(page);                 /* Drop the LRU isolation reference */
2258
2259         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2260         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2261
2262         mod_node_page_state(page_pgdat(page),
2263                         NR_ISOLATED_ANON + page_lru,
2264                         -HPAGE_PMD_NR);
2265         return isolated;
2266
2267 out_fail:
2268         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2269         ptl = pmd_lock(mm, pmd);
2270         if (pmd_same(*pmd, entry)) {
2271                 entry = pmd_modify(entry, vma->vm_page_prot);
2272                 set_pmd_at(mm, start, pmd, entry);
2273                 update_mmu_cache_pmd(vma, address, &entry);
2274         }
2275         spin_unlock(ptl);
2276
2277 out_unlock:
2278         unlock_page(page);
2279         put_page(page);
2280         return 0;
2281 }
2282 #endif /* CONFIG_NUMA_BALANCING */
2283
2284 #endif /* CONFIG_NUMA */
2285
2286 #ifdef CONFIG_DEVICE_PRIVATE
2287 static int migrate_vma_collect_skip(unsigned long start,
2288                                     unsigned long end,
2289                                     struct mm_walk *walk)
2290 {
2291         struct migrate_vma *migrate = walk->private;
2292         unsigned long addr;
2293
2294         for (addr = start; addr < end; addr += PAGE_SIZE) {
2295                 migrate->dst[migrate->npages] = 0;
2296                 migrate->src[migrate->npages++] = 0;
2297         }
2298
2299         return 0;
2300 }
2301
2302 static int migrate_vma_collect_hole(unsigned long start,
2303                                     unsigned long end,
2304                                     __always_unused int depth,
2305                                     struct mm_walk *walk)
2306 {
2307         struct migrate_vma *migrate = walk->private;
2308         unsigned long addr;
2309
2310         /* Only allow populating anonymous memory. */
2311         if (!vma_is_anonymous(walk->vma))
2312                 return migrate_vma_collect_skip(start, end, walk);
2313
2314         for (addr = start; addr < end; addr += PAGE_SIZE) {
2315                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2316                 migrate->dst[migrate->npages] = 0;
2317                 migrate->npages++;
2318                 migrate->cpages++;
2319         }
2320
2321         return 0;
2322 }
2323
2324 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2325                                    unsigned long start,
2326                                    unsigned long end,
2327                                    struct mm_walk *walk)
2328 {
2329         struct migrate_vma *migrate = walk->private;
2330         struct vm_area_struct *vma = walk->vma;
2331         struct mm_struct *mm = vma->vm_mm;
2332         unsigned long addr = start, unmapped = 0;
2333         spinlock_t *ptl;
2334         pte_t *ptep;
2335
2336 again:
2337         if (pmd_none(*pmdp))
2338                 return migrate_vma_collect_hole(start, end, -1, walk);
2339
2340         if (pmd_trans_huge(*pmdp)) {
2341                 struct page *page;
2342
2343                 ptl = pmd_lock(mm, pmdp);
2344                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2345                         spin_unlock(ptl);
2346                         goto again;
2347                 }
2348
2349                 page = pmd_page(*pmdp);
2350                 if (is_huge_zero_page(page)) {
2351                         spin_unlock(ptl);
2352                         split_huge_pmd(vma, pmdp, addr);
2353                         if (pmd_trans_unstable(pmdp))
2354                                 return migrate_vma_collect_skip(start, end,
2355                                                                 walk);
2356                 } else {
2357                         int ret;
2358
2359                         get_page(page);
2360                         spin_unlock(ptl);
2361                         if (unlikely(!trylock_page(page)))
2362                                 return migrate_vma_collect_skip(start, end,
2363                                                                 walk);
2364                         ret = split_huge_page(page);
2365                         unlock_page(page);
2366                         put_page(page);
2367                         if (ret)
2368                                 return migrate_vma_collect_skip(start, end,
2369                                                                 walk);
2370                         if (pmd_none(*pmdp))
2371                                 return migrate_vma_collect_hole(start, end, -1,
2372                                                                 walk);
2373                 }
2374         }
2375
2376         if (unlikely(pmd_bad(*pmdp)))
2377                 return migrate_vma_collect_skip(start, end, walk);
2378
2379         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2380         arch_enter_lazy_mmu_mode();
2381
2382         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2383                 unsigned long mpfn = 0, pfn;
2384                 struct page *page;
2385                 swp_entry_t entry;
2386                 pte_t pte;
2387
2388                 pte = *ptep;
2389
2390                 if (pte_none(pte)) {
2391                         if (vma_is_anonymous(vma)) {
2392                                 mpfn = MIGRATE_PFN_MIGRATE;
2393                                 migrate->cpages++;
2394                         }
2395                         goto next;
2396                 }
2397
2398                 if (!pte_present(pte)) {
2399                         /*
2400                          * Only care about unaddressable device page special
2401                          * page table entry. Other special swap entries are not
2402                          * migratable, and we ignore regular swapped page.
2403                          */
2404                         entry = pte_to_swp_entry(pte);
2405                         if (!is_device_private_entry(entry))
2406                                 goto next;
2407
2408                         page = device_private_entry_to_page(entry);
2409                         if (!(migrate->flags &
2410                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2411                             page->pgmap->owner != migrate->pgmap_owner)
2412                                 goto next;
2413
2414                         mpfn = migrate_pfn(page_to_pfn(page)) |
2415                                         MIGRATE_PFN_MIGRATE;
2416                         if (is_write_device_private_entry(entry))
2417                                 mpfn |= MIGRATE_PFN_WRITE;
2418                 } else {
2419                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2420                                 goto next;
2421                         pfn = pte_pfn(pte);
2422                         if (is_zero_pfn(pfn)) {
2423                                 mpfn = MIGRATE_PFN_MIGRATE;
2424                                 migrate->cpages++;
2425                                 goto next;
2426                         }
2427                         page = vm_normal_page(migrate->vma, addr, pte);
2428                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2429                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2430                 }
2431
2432                 /* FIXME support THP */
2433                 if (!page || !page->mapping || PageTransCompound(page)) {
2434                         mpfn = 0;
2435                         goto next;
2436                 }
2437
2438                 /*
2439                  * By getting a reference on the page we pin it and that blocks
2440                  * any kind of migration. Side effect is that it "freezes" the
2441                  * pte.
2442                  *
2443                  * We drop this reference after isolating the page from the lru
2444                  * for non device page (device page are not on the lru and thus
2445                  * can't be dropped from it).
2446                  */
2447                 get_page(page);
2448                 migrate->cpages++;
2449
2450                 /*
2451                  * Optimize for the common case where page is only mapped once
2452                  * in one process. If we can lock the page, then we can safely
2453                  * set up a special migration page table entry now.
2454                  */
2455                 if (trylock_page(page)) {
2456                         pte_t swp_pte;
2457
2458                         mpfn |= MIGRATE_PFN_LOCKED;
2459                         ptep_get_and_clear(mm, addr, ptep);
2460
2461                         /* Setup special migration page table entry */
2462                         entry = make_migration_entry(page, mpfn &
2463                                                      MIGRATE_PFN_WRITE);
2464                         swp_pte = swp_entry_to_pte(entry);
2465                         if (pte_present(pte)) {
2466                                 if (pte_soft_dirty(pte))
2467                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2468                                 if (pte_uffd_wp(pte))
2469                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2470                         } else {
2471                                 if (pte_swp_soft_dirty(pte))
2472                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2473                                 if (pte_swp_uffd_wp(pte))
2474                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2475                         }
2476                         set_pte_at(mm, addr, ptep, swp_pte);
2477
2478                         /*
2479                          * This is like regular unmap: we remove the rmap and
2480                          * drop page refcount. Page won't be freed, as we took
2481                          * a reference just above.
2482                          */
2483                         page_remove_rmap(page, false);
2484                         put_page(page);
2485
2486                         if (pte_present(pte))
2487                                 unmapped++;
2488                 }
2489
2490 next:
2491                 migrate->dst[migrate->npages] = 0;
2492                 migrate->src[migrate->npages++] = mpfn;
2493         }
2494         arch_leave_lazy_mmu_mode();
2495         pte_unmap_unlock(ptep - 1, ptl);
2496
2497         /* Only flush the TLB if we actually modified any entries */
2498         if (unmapped)
2499                 flush_tlb_range(walk->vma, start, end);
2500
2501         return 0;
2502 }
2503
2504 static const struct mm_walk_ops migrate_vma_walk_ops = {
2505         .pmd_entry              = migrate_vma_collect_pmd,
2506         .pte_hole               = migrate_vma_collect_hole,
2507 };
2508
2509 /*
2510  * migrate_vma_collect() - collect pages over a range of virtual addresses
2511  * @migrate: migrate struct containing all migration information
2512  *
2513  * This will walk the CPU page table. For each virtual address backed by a
2514  * valid page, it updates the src array and takes a reference on the page, in
2515  * order to pin the page until we lock it and unmap it.
2516  */
2517 static void migrate_vma_collect(struct migrate_vma *migrate)
2518 {
2519         struct mmu_notifier_range range;
2520
2521         /*
2522          * Note that the pgmap_owner is passed to the mmu notifier callback so
2523          * that the registered device driver can skip invalidating device
2524          * private page mappings that won't be migrated.
2525          */
2526         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2527                 migrate->vma->vm_mm, migrate->start, migrate->end,
2528                 migrate->pgmap_owner);
2529         mmu_notifier_invalidate_range_start(&range);
2530
2531         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2532                         &migrate_vma_walk_ops, migrate);
2533
2534         mmu_notifier_invalidate_range_end(&range);
2535         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2536 }
2537
2538 /*
2539  * migrate_vma_check_page() - check if page is pinned or not
2540  * @page: struct page to check
2541  *
2542  * Pinned pages cannot be migrated. This is the same test as in
2543  * migrate_page_move_mapping(), except that here we allow migration of a
2544  * ZONE_DEVICE page.
2545  */
2546 static bool migrate_vma_check_page(struct page *page)
2547 {
2548         /*
2549          * One extra ref because caller holds an extra reference, either from
2550          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2551          * a device page.
2552          */
2553         int extra = 1;
2554
2555         /*
2556          * FIXME support THP (transparent huge page), it is bit more complex to
2557          * check them than regular pages, because they can be mapped with a pmd
2558          * or with a pte (split pte mapping).
2559          */
2560         if (PageCompound(page))
2561                 return false;
2562
2563         /* Page from ZONE_DEVICE have one extra reference */
2564         if (is_zone_device_page(page)) {
2565                 /*
2566                  * Private page can never be pin as they have no valid pte and
2567                  * GUP will fail for those. Yet if there is a pending migration
2568                  * a thread might try to wait on the pte migration entry and
2569                  * will bump the page reference count. Sadly there is no way to
2570                  * differentiate a regular pin from migration wait. Hence to
2571                  * avoid 2 racing thread trying to migrate back to CPU to enter
2572                  * infinite loop (one stopping migration because the other is
2573                  * waiting on pte migration entry). We always return true here.
2574                  *
2575                  * FIXME proper solution is to rework migration_entry_wait() so
2576                  * it does not need to take a reference on page.
2577                  */
2578                 return is_device_private_page(page);
2579         }
2580
2581         /* For file back page */
2582         if (page_mapping(page))
2583                 extra += 1 + page_has_private(page);
2584
2585         if ((page_count(page) - extra) > page_mapcount(page))
2586                 return false;
2587
2588         return true;
2589 }
2590
2591 /*
2592  * migrate_vma_prepare() - lock pages and isolate them from the lru
2593  * @migrate: migrate struct containing all migration information
2594  *
2595  * This locks pages that have been collected by migrate_vma_collect(). Once each
2596  * page is locked it is isolated from the lru (for non-device pages). Finally,
2597  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2598  * migrated by concurrent kernel threads.
2599  */
2600 static void migrate_vma_prepare(struct migrate_vma *migrate)
2601 {
2602         const unsigned long npages = migrate->npages;
2603         const unsigned long start = migrate->start;
2604         unsigned long addr, i, restore = 0;
2605         bool allow_drain = true;
2606
2607         lru_add_drain();
2608
2609         for (i = 0; (i < npages) && migrate->cpages; i++) {
2610                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2611                 bool remap = true;
2612
2613                 if (!page)
2614                         continue;
2615
2616                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2617                         /*
2618                          * Because we are migrating several pages there can be
2619                          * a deadlock between 2 concurrent migration where each
2620                          * are waiting on each other page lock.
2621                          *
2622                          * Make migrate_vma() a best effort thing and backoff
2623                          * for any page we can not lock right away.
2624                          */
2625                         if (!trylock_page(page)) {
2626                                 migrate->src[i] = 0;
2627                                 migrate->cpages--;
2628                                 put_page(page);
2629                                 continue;
2630                         }
2631                         remap = false;
2632                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2633                 }
2634
2635                 /* ZONE_DEVICE pages are not on LRU */
2636                 if (!is_zone_device_page(page)) {
2637                         if (!PageLRU(page) && allow_drain) {
2638                                 /* Drain CPU's pagevec */
2639                                 lru_add_drain_all();
2640                                 allow_drain = false;
2641                         }
2642
2643                         if (isolate_lru_page(page)) {
2644                                 if (remap) {
2645                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2646                                         migrate->cpages--;
2647                                         restore++;
2648                                 } else {
2649                                         migrate->src[i] = 0;
2650                                         unlock_page(page);
2651                                         migrate->cpages--;
2652                                         put_page(page);
2653                                 }
2654                                 continue;
2655                         }
2656
2657                         /* Drop the reference we took in collect */
2658                         put_page(page);
2659                 }
2660
2661                 if (!migrate_vma_check_page(page)) {
2662                         if (remap) {
2663                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2664                                 migrate->cpages--;
2665                                 restore++;
2666
2667                                 if (!is_zone_device_page(page)) {
2668                                         get_page(page);
2669                                         putback_lru_page(page);
2670                                 }
2671                         } else {
2672                                 migrate->src[i] = 0;
2673                                 unlock_page(page);
2674                                 migrate->cpages--;
2675
2676                                 if (!is_zone_device_page(page))
2677                                         putback_lru_page(page);
2678                                 else
2679                                         put_page(page);
2680                         }
2681                 }
2682         }
2683
2684         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2685                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2686
2687                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2688                         continue;
2689
2690                 remove_migration_pte(page, migrate->vma, addr, page);
2691
2692                 migrate->src[i] = 0;
2693                 unlock_page(page);
2694                 put_page(page);
2695                 restore--;
2696         }
2697 }
2698
2699 /*
2700  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2701  * @migrate: migrate struct containing all migration information
2702  *
2703  * Replace page mapping (CPU page table pte) with a special migration pte entry
2704  * and check again if it has been pinned. Pinned pages are restored because we
2705  * cannot migrate them.
2706  *
2707  * This is the last step before we call the device driver callback to allocate
2708  * destination memory and copy contents of original page over to new page.
2709  */
2710 static void migrate_vma_unmap(struct migrate_vma *migrate)
2711 {
2712         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2713         const unsigned long npages = migrate->npages;
2714         const unsigned long start = migrate->start;
2715         unsigned long addr, i, restore = 0;
2716
2717         for (i = 0; i < npages; i++) {
2718                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2719
2720                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2721                         continue;
2722
2723                 if (page_mapped(page)) {
2724                         try_to_unmap(page, flags);
2725                         if (page_mapped(page))
2726                                 goto restore;
2727                 }
2728
2729                 if (migrate_vma_check_page(page))
2730                         continue;
2731
2732 restore:
2733                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2734                 migrate->cpages--;
2735                 restore++;
2736         }
2737
2738         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2739                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2740
2741                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2742                         continue;
2743
2744                 remove_migration_ptes(page, page, false);
2745
2746                 migrate->src[i] = 0;
2747                 unlock_page(page);
2748                 restore--;
2749
2750                 if (is_zone_device_page(page))
2751                         put_page(page);
2752                 else
2753                         putback_lru_page(page);
2754         }
2755 }
2756
2757 /**
2758  * migrate_vma_setup() - prepare to migrate a range of memory
2759  * @args: contains the vma, start, and pfns arrays for the migration
2760  *
2761  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2762  * without an error.
2763  *
2764  * Prepare to migrate a range of memory virtual address range by collecting all
2765  * the pages backing each virtual address in the range, saving them inside the
2766  * src array.  Then lock those pages and unmap them. Once the pages are locked
2767  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2768  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2769  * corresponding src array entry.  Then restores any pages that are pinned, by
2770  * remapping and unlocking those pages.
2771  *
2772  * The caller should then allocate destination memory and copy source memory to
2773  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2774  * flag set).  Once these are allocated and copied, the caller must update each
2775  * corresponding entry in the dst array with the pfn value of the destination
2776  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2777  * (destination pages must have their struct pages locked, via lock_page()).
2778  *
2779  * Note that the caller does not have to migrate all the pages that are marked
2780  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2781  * device memory to system memory.  If the caller cannot migrate a device page
2782  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2783  * consequences for the userspace process, so it must be avoided if at all
2784  * possible.
2785  *
2786  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2787  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2788  * allowing the caller to allocate device memory for those unbacked virtual
2789  * addresses.  For this the caller simply has to allocate device memory and
2790  * properly set the destination entry like for regular migration.  Note that
2791  * this can still fail, and thus inside the device driver you must check if the
2792  * migration was successful for those entries after calling migrate_vma_pages(),
2793  * just like for regular migration.
2794  *
2795  * After that, the callers must call migrate_vma_pages() to go over each entry
2796  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2797  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2798  * then migrate_vma_pages() to migrate struct page information from the source
2799  * struct page to the destination struct page.  If it fails to migrate the
2800  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2801  * src array.
2802  *
2803  * At this point all successfully migrated pages have an entry in the src
2804  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2805  * array entry with MIGRATE_PFN_VALID flag set.
2806  *
2807  * Once migrate_vma_pages() returns the caller may inspect which pages were
2808  * successfully migrated, and which were not.  Successfully migrated pages will
2809  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2810  *
2811  * It is safe to update device page table after migrate_vma_pages() because
2812  * both destination and source page are still locked, and the mmap_lock is held
2813  * in read mode (hence no one can unmap the range being migrated).
2814  *
2815  * Once the caller is done cleaning up things and updating its page table (if it
2816  * chose to do so, this is not an obligation) it finally calls
2817  * migrate_vma_finalize() to update the CPU page table to point to new pages
2818  * for successfully migrated pages or otherwise restore the CPU page table to
2819  * point to the original source pages.
2820  */
2821 int migrate_vma_setup(struct migrate_vma *args)
2822 {
2823         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2824
2825         args->start &= PAGE_MASK;
2826         args->end &= PAGE_MASK;
2827         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2828             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2829                 return -EINVAL;
2830         if (nr_pages <= 0)
2831                 return -EINVAL;
2832         if (args->start < args->vma->vm_start ||
2833             args->start >= args->vma->vm_end)
2834                 return -EINVAL;
2835         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2836                 return -EINVAL;
2837         if (!args->src || !args->dst)
2838                 return -EINVAL;
2839
2840         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2841         args->cpages = 0;
2842         args->npages = 0;
2843
2844         migrate_vma_collect(args);
2845
2846         if (args->cpages)
2847                 migrate_vma_prepare(args);
2848         if (args->cpages)
2849                 migrate_vma_unmap(args);
2850
2851         /*
2852          * At this point pages are locked and unmapped, and thus they have
2853          * stable content and can safely be copied to destination memory that
2854          * is allocated by the drivers.
2855          */
2856         return 0;
2857
2858 }
2859 EXPORT_SYMBOL(migrate_vma_setup);
2860
2861 /*
2862  * This code closely matches the code in:
2863  *   __handle_mm_fault()
2864  *     handle_pte_fault()
2865  *       do_anonymous_page()
2866  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2867  * private page.
2868  */
2869 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2870                                     unsigned long addr,
2871                                     struct page *page,
2872                                     unsigned long *src)
2873 {
2874         struct vm_area_struct *vma = migrate->vma;
2875         struct mm_struct *mm = vma->vm_mm;
2876         bool flush = false;
2877         spinlock_t *ptl;
2878         pte_t entry;
2879         pgd_t *pgdp;
2880         p4d_t *p4dp;
2881         pud_t *pudp;
2882         pmd_t *pmdp;
2883         pte_t *ptep;
2884
2885         /* Only allow populating anonymous memory */
2886         if (!vma_is_anonymous(vma))
2887                 goto abort;
2888
2889         pgdp = pgd_offset(mm, addr);
2890         p4dp = p4d_alloc(mm, pgdp, addr);
2891         if (!p4dp)
2892                 goto abort;
2893         pudp = pud_alloc(mm, p4dp, addr);
2894         if (!pudp)
2895                 goto abort;
2896         pmdp = pmd_alloc(mm, pudp, addr);
2897         if (!pmdp)
2898                 goto abort;
2899
2900         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2901                 goto abort;
2902
2903         /*
2904          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2905          * pte_offset_map() on pmds where a huge pmd might be created
2906          * from a different thread.
2907          *
2908          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2909          * parallel threads are excluded by other means.
2910          *
2911          * Here we only have mmap_read_lock(mm).
2912          */
2913         if (pte_alloc(mm, pmdp))
2914                 goto abort;
2915
2916         /* See the comment in pte_alloc_one_map() */
2917         if (unlikely(pmd_trans_unstable(pmdp)))
2918                 goto abort;
2919
2920         if (unlikely(anon_vma_prepare(vma)))
2921                 goto abort;
2922         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2923                 goto abort;
2924
2925         /*
2926          * The memory barrier inside __SetPageUptodate makes sure that
2927          * preceding stores to the page contents become visible before
2928          * the set_pte_at() write.
2929          */
2930         __SetPageUptodate(page);
2931
2932         if (is_zone_device_page(page)) {
2933                 if (is_device_private_page(page)) {
2934                         swp_entry_t swp_entry;
2935
2936                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2937                         entry = swp_entry_to_pte(swp_entry);
2938                 } else {
2939                         /*
2940                          * For now we only support migrating to un-addressable
2941                          * device memory.
2942                          */
2943                         pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2944                         goto abort;
2945                 }
2946         } else {
2947                 entry = mk_pte(page, vma->vm_page_prot);
2948                 if (vma->vm_flags & VM_WRITE)
2949                         entry = pte_mkwrite(pte_mkdirty(entry));
2950         }
2951
2952         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2953
2954         if (check_stable_address_space(mm))
2955                 goto unlock_abort;
2956
2957         if (pte_present(*ptep)) {
2958                 unsigned long pfn = pte_pfn(*ptep);
2959
2960                 if (!is_zero_pfn(pfn))
2961                         goto unlock_abort;
2962                 flush = true;
2963         } else if (!pte_none(*ptep))
2964                 goto unlock_abort;
2965
2966         /*
2967          * Check for userfaultfd but do not deliver the fault. Instead,
2968          * just back off.
2969          */
2970         if (userfaultfd_missing(vma))
2971                 goto unlock_abort;
2972
2973         inc_mm_counter(mm, MM_ANONPAGES);
2974         page_add_new_anon_rmap(page, vma, addr, false);
2975         if (!is_zone_device_page(page))
2976                 lru_cache_add_inactive_or_unevictable(page, vma);
2977         get_page(page);
2978
2979         if (flush) {
2980                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2981                 ptep_clear_flush_notify(vma, addr, ptep);
2982                 set_pte_at_notify(mm, addr, ptep, entry);
2983                 update_mmu_cache(vma, addr, ptep);
2984         } else {
2985                 /* No need to invalidate - it was non-present before */
2986                 set_pte_at(mm, addr, ptep, entry);
2987                 update_mmu_cache(vma, addr, ptep);
2988         }
2989
2990         pte_unmap_unlock(ptep, ptl);
2991         *src = MIGRATE_PFN_MIGRATE;
2992         return;
2993
2994 unlock_abort:
2995         pte_unmap_unlock(ptep, ptl);
2996 abort:
2997         *src &= ~MIGRATE_PFN_MIGRATE;
2998 }
2999
3000 /**
3001  * migrate_vma_pages() - migrate meta-data from src page to dst page
3002  * @migrate: migrate struct containing all migration information
3003  *
3004  * This migrates struct page meta-data from source struct page to destination
3005  * struct page. This effectively finishes the migration from source page to the
3006  * destination page.
3007  */
3008 void migrate_vma_pages(struct migrate_vma *migrate)
3009 {
3010         const unsigned long npages = migrate->npages;
3011         const unsigned long start = migrate->start;
3012         struct mmu_notifier_range range;
3013         unsigned long addr, i;
3014         bool notified = false;
3015
3016         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3017                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3018                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3019                 struct address_space *mapping;
3020                 int r;
3021
3022                 if (!newpage) {
3023                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3024                         continue;
3025                 }
3026
3027                 if (!page) {
3028                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3029                                 continue;
3030                         if (!notified) {
3031                                 notified = true;
3032
3033                                 mmu_notifier_range_init_migrate(&range, 0,
3034                                         migrate->vma, migrate->vma->vm_mm,
3035                                         addr, migrate->end,
3036                                         migrate->pgmap_owner);
3037                                 mmu_notifier_invalidate_range_start(&range);
3038                         }
3039                         migrate_vma_insert_page(migrate, addr, newpage,
3040                                                 &migrate->src[i]);
3041                         continue;
3042                 }
3043
3044                 mapping = page_mapping(page);
3045
3046                 if (is_zone_device_page(newpage)) {
3047                         if (is_device_private_page(newpage)) {
3048                                 /*
3049                                  * For now only support private anonymous when
3050                                  * migrating to un-addressable device memory.
3051                                  */
3052                                 if (mapping) {
3053                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3054                                         continue;
3055                                 }
3056                         } else {
3057                                 /*
3058                                  * Other types of ZONE_DEVICE page are not
3059                                  * supported.
3060                                  */
3061                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3062                                 continue;
3063                         }
3064                 }
3065
3066                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3067                 if (r != MIGRATEPAGE_SUCCESS)
3068                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3069         }
3070
3071         /*
3072          * No need to double call mmu_notifier->invalidate_range() callback as
3073          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3074          * did already call it.
3075          */
3076         if (notified)
3077                 mmu_notifier_invalidate_range_only_end(&range);
3078 }
3079 EXPORT_SYMBOL(migrate_vma_pages);
3080
3081 /**
3082  * migrate_vma_finalize() - restore CPU page table entry
3083  * @migrate: migrate struct containing all migration information
3084  *
3085  * This replaces the special migration pte entry with either a mapping to the
3086  * new page if migration was successful for that page, or to the original page
3087  * otherwise.
3088  *
3089  * This also unlocks the pages and puts them back on the lru, or drops the extra
3090  * refcount, for device pages.
3091  */
3092 void migrate_vma_finalize(struct migrate_vma *migrate)
3093 {
3094         const unsigned long npages = migrate->npages;
3095         unsigned long i;
3096
3097         for (i = 0; i < npages; i++) {
3098                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3099                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3100
3101                 if (!page) {
3102                         if (newpage) {
3103                                 unlock_page(newpage);
3104                                 put_page(newpage);
3105                         }
3106                         continue;
3107                 }
3108
3109                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3110                         if (newpage) {
3111                                 unlock_page(newpage);
3112                                 put_page(newpage);
3113                         }
3114                         newpage = page;
3115                 }
3116
3117                 remove_migration_ptes(page, newpage, false);
3118                 unlock_page(page);
3119
3120                 if (is_zone_device_page(page))
3121                         put_page(page);
3122                 else
3123                         putback_lru_page(page);
3124
3125                 if (newpage != page) {
3126                         unlock_page(newpage);
3127                         if (is_zone_device_page(newpage))
3128                                 put_page(newpage);
3129                         else
3130                                 putback_lru_page(newpage);
3131                 }
3132         }
3133 }
3134 EXPORT_SYMBOL(migrate_vma_finalize);
3135 #endif /* CONFIG_DEVICE_PRIVATE */