Merge branch 'pm-opp'
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_lru(page), -hpage_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #endif
234
235                 get_page(new);
236                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237                 if (pte_swp_soft_dirty(*pvmw.pte))
238                         pte = pte_mksoft_dirty(pte);
239
240                 /*
241                  * Recheck VMA as permissions can change since migration started
242                  */
243                 entry = pte_to_swp_entry(*pvmw.pte);
244                 if (is_write_migration_entry(entry))
245                         pte = maybe_mkwrite(pte, vma);
246                 else if (pte_swp_uffd_wp(*pvmw.pte))
247                         pte = pte_mkuffd_wp(pte);
248
249                 if (unlikely(is_zone_device_page(new))) {
250                         if (is_device_private_page(new)) {
251                                 entry = make_device_private_entry(new, pte_write(pte));
252                                 pte = swp_entry_to_pte(entry);
253                                 if (pte_swp_uffd_wp(*pvmw.pte))
254                                         pte = pte_mkuffd_wp(pte);
255                         }
256                 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259                 if (PageHuge(new)) {
260                         pte = pte_mkhuge(pte);
261                         pte = arch_make_huge_pte(pte, vma, new, 0);
262                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263                         if (PageAnon(new))
264                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
265                         else
266                                 page_dup_rmap(new, true);
267                 } else
268 #endif
269                 {
270                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272                         if (PageAnon(new))
273                                 page_add_anon_rmap(new, vma, pvmw.address, false);
274                         else
275                                 page_add_file_rmap(new, false);
276                 }
277                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278                         mlock_vma_page(new);
279
280                 if (PageTransHuge(page) && PageMlocked(page))
281                         clear_page_mlock(page);
282
283                 /* No need to invalidate - it was non-present before */
284                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285         }
286
287         return true;
288 }
289
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296         struct rmap_walk_control rwc = {
297                 .rmap_one = remove_migration_pte,
298                 .arg = old,
299         };
300
301         if (locked)
302                 rmap_walk_locked(new, &rwc);
303         else
304                 rmap_walk(new, &rwc);
305 }
306
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313                                 spinlock_t *ptl)
314 {
315         pte_t pte;
316         swp_entry_t entry;
317         struct page *page;
318
319         spin_lock(ptl);
320         pte = *ptep;
321         if (!is_swap_pte(pte))
322                 goto out;
323
324         entry = pte_to_swp_entry(pte);
325         if (!is_migration_entry(entry))
326                 goto out;
327
328         page = migration_entry_to_page(entry);
329
330         /*
331          * Once page cache replacement of page migration started, page_count
332          * is zero; but we must not call put_and_wait_on_page_locked() without
333          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334          */
335         if (!get_page_unless_zero(page))
336                 goto out;
337         pte_unmap_unlock(ptep, ptl);
338         put_and_wait_on_page_locked(page);
339         return;
340 out:
341         pte_unmap_unlock(ptep, ptl);
342 }
343
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345                                 unsigned long address)
346 {
347         spinlock_t *ptl = pte_lockptr(mm, pmd);
348         pte_t *ptep = pte_offset_map(pmd, address);
349         __migration_entry_wait(mm, ptep, ptl);
350 }
351
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353                 struct mm_struct *mm, pte_t *pte)
354 {
355         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356         __migration_entry_wait(mm, pte, ptl);
357 }
358
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362         spinlock_t *ptl;
363         struct page *page;
364
365         ptl = pmd_lock(mm, pmd);
366         if (!is_pmd_migration_entry(*pmd))
367                 goto unlock;
368         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369         if (!get_page_unless_zero(page))
370                 goto unlock;
371         spin_unlock(ptl);
372         put_and_wait_on_page_locked(page);
373         return;
374 unlock:
375         spin_unlock(ptl);
376 }
377 #endif
378
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381         int expected_count = 1;
382
383         /*
384          * Device public or private pages have an extra refcount as they are
385          * ZONE_DEVICE pages.
386          */
387         expected_count += is_device_private_page(page);
388         if (mapping)
389                 expected_count += hpage_nr_pages(page) + page_has_private(page);
390
391         return expected_count;
392 }
393
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403                 struct page *newpage, struct page *page, int extra_count)
404 {
405         XA_STATE(xas, &mapping->i_pages, page_index(page));
406         struct zone *oldzone, *newzone;
407         int dirty;
408         int expected_count = expected_page_refs(mapping, page) + extra_count;
409
410         if (!mapping) {
411                 /* Anonymous page without mapping */
412                 if (page_count(page) != expected_count)
413                         return -EAGAIN;
414
415                 /* No turning back from here */
416                 newpage->index = page->index;
417                 newpage->mapping = page->mapping;
418                 if (PageSwapBacked(page))
419                         __SetPageSwapBacked(newpage);
420
421                 return MIGRATEPAGE_SUCCESS;
422         }
423
424         oldzone = page_zone(page);
425         newzone = page_zone(newpage);
426
427         xas_lock_irq(&xas);
428         if (page_count(page) != expected_count || xas_load(&xas) != page) {
429                 xas_unlock_irq(&xas);
430                 return -EAGAIN;
431         }
432
433         if (!page_ref_freeze(page, expected_count)) {
434                 xas_unlock_irq(&xas);
435                 return -EAGAIN;
436         }
437
438         /*
439          * Now we know that no one else is looking at the page:
440          * no turning back from here.
441          */
442         newpage->index = page->index;
443         newpage->mapping = page->mapping;
444         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445         if (PageSwapBacked(page)) {
446                 __SetPageSwapBacked(newpage);
447                 if (PageSwapCache(page)) {
448                         SetPageSwapCache(newpage);
449                         set_page_private(newpage, page_private(page));
450                 }
451         } else {
452                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
453         }
454
455         /* Move dirty while page refs frozen and newpage not yet exposed */
456         dirty = PageDirty(page);
457         if (dirty) {
458                 ClearPageDirty(page);
459                 SetPageDirty(newpage);
460         }
461
462         xas_store(&xas, newpage);
463         if (PageTransHuge(page)) {
464                 int i;
465
466                 for (i = 1; i < HPAGE_PMD_NR; i++) {
467                         xas_next(&xas);
468                         xas_store(&xas, newpage);
469                 }
470         }
471
472         /*
473          * Drop cache reference from old page by unfreezing
474          * to one less reference.
475          * We know this isn't the last reference.
476          */
477         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478
479         xas_unlock(&xas);
480         /* Leave irq disabled to prevent preemption while updating stats */
481
482         /*
483          * If moved to a different zone then also account
484          * the page for that zone. Other VM counters will be
485          * taken care of when we establish references to the
486          * new page and drop references to the old page.
487          *
488          * Note that anonymous pages are accounted for
489          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490          * are mapped to swap space.
491          */
492         if (newzone != oldzone) {
493                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
496                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
498                 }
499                 if (dirty && mapping_cap_account_dirty(mapping)) {
500                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504                 }
505         }
506         local_irq_enable();
507
508         return MIGRATEPAGE_SUCCESS;
509 }
510 EXPORT_SYMBOL(migrate_page_move_mapping);
511
512 /*
513  * The expected number of remaining references is the same as that
514  * of migrate_page_move_mapping().
515  */
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517                                    struct page *newpage, struct page *page)
518 {
519         XA_STATE(xas, &mapping->i_pages, page_index(page));
520         int expected_count;
521
522         xas_lock_irq(&xas);
523         expected_count = 2 + page_has_private(page);
524         if (page_count(page) != expected_count || xas_load(&xas) != page) {
525                 xas_unlock_irq(&xas);
526                 return -EAGAIN;
527         }
528
529         if (!page_ref_freeze(page, expected_count)) {
530                 xas_unlock_irq(&xas);
531                 return -EAGAIN;
532         }
533
534         newpage->index = page->index;
535         newpage->mapping = page->mapping;
536
537         get_page(newpage);
538
539         xas_store(&xas, newpage);
540
541         page_ref_unfreeze(page, expected_count - 1);
542
543         xas_unlock_irq(&xas);
544
545         return MIGRATEPAGE_SUCCESS;
546 }
547
548 /*
549  * Gigantic pages are so large that we do not guarantee that page++ pointer
550  * arithmetic will work across the entire page.  We need something more
551  * specialized.
552  */
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
554                                 int nr_pages)
555 {
556         int i;
557         struct page *dst_base = dst;
558         struct page *src_base = src;
559
560         for (i = 0; i < nr_pages; ) {
561                 cond_resched();
562                 copy_highpage(dst, src);
563
564                 i++;
565                 dst = mem_map_next(dst, dst_base, i);
566                 src = mem_map_next(src, src_base, i);
567         }
568 }
569
570 static void copy_huge_page(struct page *dst, struct page *src)
571 {
572         int i;
573         int nr_pages;
574
575         if (PageHuge(src)) {
576                 /* hugetlbfs page */
577                 struct hstate *h = page_hstate(src);
578                 nr_pages = pages_per_huge_page(h);
579
580                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581                         __copy_gigantic_page(dst, src, nr_pages);
582                         return;
583                 }
584         } else {
585                 /* thp page */
586                 BUG_ON(!PageTransHuge(src));
587                 nr_pages = hpage_nr_pages(src);
588         }
589
590         for (i = 0; i < nr_pages; i++) {
591                 cond_resched();
592                 copy_highpage(dst + i, src + i);
593         }
594 }
595
596 /*
597  * Copy the page to its new location
598  */
599 void migrate_page_states(struct page *newpage, struct page *page)
600 {
601         int cpupid;
602
603         if (PageError(page))
604                 SetPageError(newpage);
605         if (PageReferenced(page))
606                 SetPageReferenced(newpage);
607         if (PageUptodate(page))
608                 SetPageUptodate(newpage);
609         if (TestClearPageActive(page)) {
610                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
611                 SetPageActive(newpage);
612         } else if (TestClearPageUnevictable(page))
613                 SetPageUnevictable(newpage);
614         if (PageWorkingset(page))
615                 SetPageWorkingset(newpage);
616         if (PageChecked(page))
617                 SetPageChecked(newpage);
618         if (PageMappedToDisk(page))
619                 SetPageMappedToDisk(newpage);
620
621         /* Move dirty on pages not done by migrate_page_move_mapping() */
622         if (PageDirty(page))
623                 SetPageDirty(newpage);
624
625         if (page_is_young(page))
626                 set_page_young(newpage);
627         if (page_is_idle(page))
628                 set_page_idle(newpage);
629
630         /*
631          * Copy NUMA information to the new page, to prevent over-eager
632          * future migrations of this same page.
633          */
634         cpupid = page_cpupid_xchg_last(page, -1);
635         page_cpupid_xchg_last(newpage, cpupid);
636
637         ksm_migrate_page(newpage, page);
638         /*
639          * Please do not reorder this without considering how mm/ksm.c's
640          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641          */
642         if (PageSwapCache(page))
643                 ClearPageSwapCache(page);
644         ClearPagePrivate(page);
645         set_page_private(page, 0);
646
647         /*
648          * If any waiters have accumulated on the new page then
649          * wake them up.
650          */
651         if (PageWriteback(newpage))
652                 end_page_writeback(newpage);
653
654         /*
655          * PG_readahead shares the same bit with PG_reclaim.  The above
656          * end_page_writeback() may clear PG_readahead mistakenly, so set the
657          * bit after that.
658          */
659         if (PageReadahead(page))
660                 SetPageReadahead(newpage);
661
662         copy_page_owner(page, newpage);
663
664         mem_cgroup_migrate(page, newpage);
665 }
666 EXPORT_SYMBOL(migrate_page_states);
667
668 void migrate_page_copy(struct page *newpage, struct page *page)
669 {
670         if (PageHuge(page) || PageTransHuge(page))
671                 copy_huge_page(newpage, page);
672         else
673                 copy_highpage(newpage, page);
674
675         migrate_page_states(newpage, page);
676 }
677 EXPORT_SYMBOL(migrate_page_copy);
678
679 /************************************************************
680  *                    Migration functions
681  ***********************************************************/
682
683 /*
684  * Common logic to directly migrate a single LRU page suitable for
685  * pages that do not use PagePrivate/PagePrivate2.
686  *
687  * Pages are locked upon entry and exit.
688  */
689 int migrate_page(struct address_space *mapping,
690                 struct page *newpage, struct page *page,
691                 enum migrate_mode mode)
692 {
693         int rc;
694
695         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
696
697         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
698
699         if (rc != MIGRATEPAGE_SUCCESS)
700                 return rc;
701
702         if (mode != MIGRATE_SYNC_NO_COPY)
703                 migrate_page_copy(newpage, page);
704         else
705                 migrate_page_states(newpage, page);
706         return MIGRATEPAGE_SUCCESS;
707 }
708 EXPORT_SYMBOL(migrate_page);
709
710 #ifdef CONFIG_BLOCK
711 /* Returns true if all buffers are successfully locked */
712 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
713                                                         enum migrate_mode mode)
714 {
715         struct buffer_head *bh = head;
716
717         /* Simple case, sync compaction */
718         if (mode != MIGRATE_ASYNC) {
719                 do {
720                         lock_buffer(bh);
721                         bh = bh->b_this_page;
722
723                 } while (bh != head);
724
725                 return true;
726         }
727
728         /* async case, we cannot block on lock_buffer so use trylock_buffer */
729         do {
730                 if (!trylock_buffer(bh)) {
731                         /*
732                          * We failed to lock the buffer and cannot stall in
733                          * async migration. Release the taken locks
734                          */
735                         struct buffer_head *failed_bh = bh;
736                         bh = head;
737                         while (bh != failed_bh) {
738                                 unlock_buffer(bh);
739                                 bh = bh->b_this_page;
740                         }
741                         return false;
742                 }
743
744                 bh = bh->b_this_page;
745         } while (bh != head);
746         return true;
747 }
748
749 static int __buffer_migrate_page(struct address_space *mapping,
750                 struct page *newpage, struct page *page, enum migrate_mode mode,
751                 bool check_refs)
752 {
753         struct buffer_head *bh, *head;
754         int rc;
755         int expected_count;
756
757         if (!page_has_buffers(page))
758                 return migrate_page(mapping, newpage, page, mode);
759
760         /* Check whether page does not have extra refs before we do more work */
761         expected_count = expected_page_refs(mapping, page);
762         if (page_count(page) != expected_count)
763                 return -EAGAIN;
764
765         head = page_buffers(page);
766         if (!buffer_migrate_lock_buffers(head, mode))
767                 return -EAGAIN;
768
769         if (check_refs) {
770                 bool busy;
771                 bool invalidated = false;
772
773 recheck_buffers:
774                 busy = false;
775                 spin_lock(&mapping->private_lock);
776                 bh = head;
777                 do {
778                         if (atomic_read(&bh->b_count)) {
779                                 busy = true;
780                                 break;
781                         }
782                         bh = bh->b_this_page;
783                 } while (bh != head);
784                 if (busy) {
785                         if (invalidated) {
786                                 rc = -EAGAIN;
787                                 goto unlock_buffers;
788                         }
789                         spin_unlock(&mapping->private_lock);
790                         invalidate_bh_lrus();
791                         invalidated = true;
792                         goto recheck_buffers;
793                 }
794         }
795
796         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
797         if (rc != MIGRATEPAGE_SUCCESS)
798                 goto unlock_buffers;
799
800         attach_page_private(newpage, detach_page_private(page));
801         get_page(newpage);
802
803         bh = head;
804         do {
805                 set_bh_page(bh, newpage, bh_offset(bh));
806                 bh = bh->b_this_page;
807
808         } while (bh != head);
809
810         if (mode != MIGRATE_SYNC_NO_COPY)
811                 migrate_page_copy(newpage, page);
812         else
813                 migrate_page_states(newpage, page);
814
815         rc = MIGRATEPAGE_SUCCESS;
816 unlock_buffers:
817         if (check_refs)
818                 spin_unlock(&mapping->private_lock);
819         bh = head;
820         do {
821                 unlock_buffer(bh);
822                 bh = bh->b_this_page;
823
824         } while (bh != head);
825
826         return rc;
827 }
828
829 /*
830  * Migration function for pages with buffers. This function can only be used
831  * if the underlying filesystem guarantees that no other references to "page"
832  * exist. For example attached buffer heads are accessed only under page lock.
833  */
834 int buffer_migrate_page(struct address_space *mapping,
835                 struct page *newpage, struct page *page, enum migrate_mode mode)
836 {
837         return __buffer_migrate_page(mapping, newpage, page, mode, false);
838 }
839 EXPORT_SYMBOL(buffer_migrate_page);
840
841 /*
842  * Same as above except that this variant is more careful and checks that there
843  * are also no buffer head references. This function is the right one for
844  * mappings where buffer heads are directly looked up and referenced (such as
845  * block device mappings).
846  */
847 int buffer_migrate_page_norefs(struct address_space *mapping,
848                 struct page *newpage, struct page *page, enum migrate_mode mode)
849 {
850         return __buffer_migrate_page(mapping, newpage, page, mode, true);
851 }
852 #endif
853
854 /*
855  * Writeback a page to clean the dirty state
856  */
857 static int writeout(struct address_space *mapping, struct page *page)
858 {
859         struct writeback_control wbc = {
860                 .sync_mode = WB_SYNC_NONE,
861                 .nr_to_write = 1,
862                 .range_start = 0,
863                 .range_end = LLONG_MAX,
864                 .for_reclaim = 1
865         };
866         int rc;
867
868         if (!mapping->a_ops->writepage)
869                 /* No write method for the address space */
870                 return -EINVAL;
871
872         if (!clear_page_dirty_for_io(page))
873                 /* Someone else already triggered a write */
874                 return -EAGAIN;
875
876         /*
877          * A dirty page may imply that the underlying filesystem has
878          * the page on some queue. So the page must be clean for
879          * migration. Writeout may mean we loose the lock and the
880          * page state is no longer what we checked for earlier.
881          * At this point we know that the migration attempt cannot
882          * be successful.
883          */
884         remove_migration_ptes(page, page, false);
885
886         rc = mapping->a_ops->writepage(page, &wbc);
887
888         if (rc != AOP_WRITEPAGE_ACTIVATE)
889                 /* unlocked. Relock */
890                 lock_page(page);
891
892         return (rc < 0) ? -EIO : -EAGAIN;
893 }
894
895 /*
896  * Default handling if a filesystem does not provide a migration function.
897  */
898 static int fallback_migrate_page(struct address_space *mapping,
899         struct page *newpage, struct page *page, enum migrate_mode mode)
900 {
901         if (PageDirty(page)) {
902                 /* Only writeback pages in full synchronous migration */
903                 switch (mode) {
904                 case MIGRATE_SYNC:
905                 case MIGRATE_SYNC_NO_COPY:
906                         break;
907                 default:
908                         return -EBUSY;
909                 }
910                 return writeout(mapping, page);
911         }
912
913         /*
914          * Buffers may be managed in a filesystem specific way.
915          * We must have no buffers or drop them.
916          */
917         if (page_has_private(page) &&
918             !try_to_release_page(page, GFP_KERNEL))
919                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
920
921         return migrate_page(mapping, newpage, page, mode);
922 }
923
924 /*
925  * Move a page to a newly allocated page
926  * The page is locked and all ptes have been successfully removed.
927  *
928  * The new page will have replaced the old page if this function
929  * is successful.
930  *
931  * Return value:
932  *   < 0 - error code
933  *  MIGRATEPAGE_SUCCESS - success
934  */
935 static int move_to_new_page(struct page *newpage, struct page *page,
936                                 enum migrate_mode mode)
937 {
938         struct address_space *mapping;
939         int rc = -EAGAIN;
940         bool is_lru = !__PageMovable(page);
941
942         VM_BUG_ON_PAGE(!PageLocked(page), page);
943         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
944
945         mapping = page_mapping(page);
946
947         if (likely(is_lru)) {
948                 if (!mapping)
949                         rc = migrate_page(mapping, newpage, page, mode);
950                 else if (mapping->a_ops->migratepage)
951                         /*
952                          * Most pages have a mapping and most filesystems
953                          * provide a migratepage callback. Anonymous pages
954                          * are part of swap space which also has its own
955                          * migratepage callback. This is the most common path
956                          * for page migration.
957                          */
958                         rc = mapping->a_ops->migratepage(mapping, newpage,
959                                                         page, mode);
960                 else
961                         rc = fallback_migrate_page(mapping, newpage,
962                                                         page, mode);
963         } else {
964                 /*
965                  * In case of non-lru page, it could be released after
966                  * isolation step. In that case, we shouldn't try migration.
967                  */
968                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
969                 if (!PageMovable(page)) {
970                         rc = MIGRATEPAGE_SUCCESS;
971                         __ClearPageIsolated(page);
972                         goto out;
973                 }
974
975                 rc = mapping->a_ops->migratepage(mapping, newpage,
976                                                 page, mode);
977                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
978                         !PageIsolated(page));
979         }
980
981         /*
982          * When successful, old pagecache page->mapping must be cleared before
983          * page is freed; but stats require that PageAnon be left as PageAnon.
984          */
985         if (rc == MIGRATEPAGE_SUCCESS) {
986                 if (__PageMovable(page)) {
987                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
988
989                         /*
990                          * We clear PG_movable under page_lock so any compactor
991                          * cannot try to migrate this page.
992                          */
993                         __ClearPageIsolated(page);
994                 }
995
996                 /*
997                  * Anonymous and movable page->mapping will be cleared by
998                  * free_pages_prepare so don't reset it here for keeping
999                  * the type to work PageAnon, for example.
1000                  */
1001                 if (!PageMappingFlags(page))
1002                         page->mapping = NULL;
1003
1004                 if (likely(!is_zone_device_page(newpage)))
1005                         flush_dcache_page(newpage);
1006
1007         }
1008 out:
1009         return rc;
1010 }
1011
1012 static int __unmap_and_move(struct page *page, struct page *newpage,
1013                                 int force, enum migrate_mode mode)
1014 {
1015         int rc = -EAGAIN;
1016         int page_was_mapped = 0;
1017         struct anon_vma *anon_vma = NULL;
1018         bool is_lru = !__PageMovable(page);
1019
1020         if (!trylock_page(page)) {
1021                 if (!force || mode == MIGRATE_ASYNC)
1022                         goto out;
1023
1024                 /*
1025                  * It's not safe for direct compaction to call lock_page.
1026                  * For example, during page readahead pages are added locked
1027                  * to the LRU. Later, when the IO completes the pages are
1028                  * marked uptodate and unlocked. However, the queueing
1029                  * could be merging multiple pages for one bio (e.g.
1030                  * mpage_readahead). If an allocation happens for the
1031                  * second or third page, the process can end up locking
1032                  * the same page twice and deadlocking. Rather than
1033                  * trying to be clever about what pages can be locked,
1034                  * avoid the use of lock_page for direct compaction
1035                  * altogether.
1036                  */
1037                 if (current->flags & PF_MEMALLOC)
1038                         goto out;
1039
1040                 lock_page(page);
1041         }
1042
1043         if (PageWriteback(page)) {
1044                 /*
1045                  * Only in the case of a full synchronous migration is it
1046                  * necessary to wait for PageWriteback. In the async case,
1047                  * the retry loop is too short and in the sync-light case,
1048                  * the overhead of stalling is too much
1049                  */
1050                 switch (mode) {
1051                 case MIGRATE_SYNC:
1052                 case MIGRATE_SYNC_NO_COPY:
1053                         break;
1054                 default:
1055                         rc = -EBUSY;
1056                         goto out_unlock;
1057                 }
1058                 if (!force)
1059                         goto out_unlock;
1060                 wait_on_page_writeback(page);
1061         }
1062
1063         /*
1064          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1065          * we cannot notice that anon_vma is freed while we migrates a page.
1066          * This get_anon_vma() delays freeing anon_vma pointer until the end
1067          * of migration. File cache pages are no problem because of page_lock()
1068          * File Caches may use write_page() or lock_page() in migration, then,
1069          * just care Anon page here.
1070          *
1071          * Only page_get_anon_vma() understands the subtleties of
1072          * getting a hold on an anon_vma from outside one of its mms.
1073          * But if we cannot get anon_vma, then we won't need it anyway,
1074          * because that implies that the anon page is no longer mapped
1075          * (and cannot be remapped so long as we hold the page lock).
1076          */
1077         if (PageAnon(page) && !PageKsm(page))
1078                 anon_vma = page_get_anon_vma(page);
1079
1080         /*
1081          * Block others from accessing the new page when we get around to
1082          * establishing additional references. We are usually the only one
1083          * holding a reference to newpage at this point. We used to have a BUG
1084          * here if trylock_page(newpage) fails, but would like to allow for
1085          * cases where there might be a race with the previous use of newpage.
1086          * This is much like races on refcount of oldpage: just don't BUG().
1087          */
1088         if (unlikely(!trylock_page(newpage)))
1089                 goto out_unlock;
1090
1091         if (unlikely(!is_lru)) {
1092                 rc = move_to_new_page(newpage, page, mode);
1093                 goto out_unlock_both;
1094         }
1095
1096         /*
1097          * Corner case handling:
1098          * 1. When a new swap-cache page is read into, it is added to the LRU
1099          * and treated as swapcache but it has no rmap yet.
1100          * Calling try_to_unmap() against a page->mapping==NULL page will
1101          * trigger a BUG.  So handle it here.
1102          * 2. An orphaned page (see truncate_complete_page) might have
1103          * fs-private metadata. The page can be picked up due to memory
1104          * offlining.  Everywhere else except page reclaim, the page is
1105          * invisible to the vm, so the page can not be migrated.  So try to
1106          * free the metadata, so the page can be freed.
1107          */
1108         if (!page->mapping) {
1109                 VM_BUG_ON_PAGE(PageAnon(page), page);
1110                 if (page_has_private(page)) {
1111                         try_to_free_buffers(page);
1112                         goto out_unlock_both;
1113                 }
1114         } else if (page_mapped(page)) {
1115                 /* Establish migration ptes */
1116                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1117                                 page);
1118                 try_to_unmap(page,
1119                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1120                 page_was_mapped = 1;
1121         }
1122
1123         if (!page_mapped(page))
1124                 rc = move_to_new_page(newpage, page, mode);
1125
1126         if (page_was_mapped)
1127                 remove_migration_ptes(page,
1128                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1129
1130 out_unlock_both:
1131         unlock_page(newpage);
1132 out_unlock:
1133         /* Drop an anon_vma reference if we took one */
1134         if (anon_vma)
1135                 put_anon_vma(anon_vma);
1136         unlock_page(page);
1137 out:
1138         /*
1139          * If migration is successful, decrease refcount of the newpage
1140          * which will not free the page because new page owner increased
1141          * refcounter. As well, if it is LRU page, add the page to LRU
1142          * list in here. Use the old state of the isolated source page to
1143          * determine if we migrated a LRU page. newpage was already unlocked
1144          * and possibly modified by its owner - don't rely on the page
1145          * state.
1146          */
1147         if (rc == MIGRATEPAGE_SUCCESS) {
1148                 if (unlikely(!is_lru))
1149                         put_page(newpage);
1150                 else
1151                         putback_lru_page(newpage);
1152         }
1153
1154         return rc;
1155 }
1156
1157 /*
1158  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1159  * around it.
1160  */
1161 #if defined(CONFIG_ARM) && \
1162         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1163 #define ICE_noinline noinline
1164 #else
1165 #define ICE_noinline
1166 #endif
1167
1168 /*
1169  * Obtain the lock on page, remove all ptes and migrate the page
1170  * to the newly allocated page in newpage.
1171  */
1172 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1173                                    free_page_t put_new_page,
1174                                    unsigned long private, struct page *page,
1175                                    int force, enum migrate_mode mode,
1176                                    enum migrate_reason reason)
1177 {
1178         int rc = MIGRATEPAGE_SUCCESS;
1179         struct page *newpage = NULL;
1180
1181         if (!thp_migration_supported() && PageTransHuge(page))
1182                 return -ENOMEM;
1183
1184         if (page_count(page) == 1) {
1185                 /* page was freed from under us. So we are done. */
1186                 ClearPageActive(page);
1187                 ClearPageUnevictable(page);
1188                 if (unlikely(__PageMovable(page))) {
1189                         lock_page(page);
1190                         if (!PageMovable(page))
1191                                 __ClearPageIsolated(page);
1192                         unlock_page(page);
1193                 }
1194                 goto out;
1195         }
1196
1197         newpage = get_new_page(page, private);
1198         if (!newpage)
1199                 return -ENOMEM;
1200
1201         rc = __unmap_and_move(page, newpage, force, mode);
1202         if (rc == MIGRATEPAGE_SUCCESS)
1203                 set_page_owner_migrate_reason(newpage, reason);
1204
1205 out:
1206         if (rc != -EAGAIN) {
1207                 /*
1208                  * A page that has been migrated has all references
1209                  * removed and will be freed. A page that has not been
1210                  * migrated will have kept its references and be restored.
1211                  */
1212                 list_del(&page->lru);
1213
1214                 /*
1215                  * Compaction can migrate also non-LRU pages which are
1216                  * not accounted to NR_ISOLATED_*. They can be recognized
1217                  * as __PageMovable
1218                  */
1219                 if (likely(!__PageMovable(page)))
1220                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1221                                         page_is_file_lru(page), -hpage_nr_pages(page));
1222         }
1223
1224         /*
1225          * If migration is successful, releases reference grabbed during
1226          * isolation. Otherwise, restore the page to right list unless
1227          * we want to retry.
1228          */
1229         if (rc == MIGRATEPAGE_SUCCESS) {
1230                 put_page(page);
1231                 if (reason == MR_MEMORY_FAILURE) {
1232                         /*
1233                          * Set PG_HWPoison on just freed page
1234                          * intentionally. Although it's rather weird,
1235                          * it's how HWPoison flag works at the moment.
1236                          */
1237                         if (set_hwpoison_free_buddy_page(page))
1238                                 num_poisoned_pages_inc();
1239                 }
1240         } else {
1241                 if (rc != -EAGAIN) {
1242                         if (likely(!__PageMovable(page))) {
1243                                 putback_lru_page(page);
1244                                 goto put_new;
1245                         }
1246
1247                         lock_page(page);
1248                         if (PageMovable(page))
1249                                 putback_movable_page(page);
1250                         else
1251                                 __ClearPageIsolated(page);
1252                         unlock_page(page);
1253                         put_page(page);
1254                 }
1255 put_new:
1256                 if (put_new_page)
1257                         put_new_page(newpage, private);
1258                 else
1259                         put_page(newpage);
1260         }
1261
1262         return rc;
1263 }
1264
1265 /*
1266  * Counterpart of unmap_and_move_page() for hugepage migration.
1267  *
1268  * This function doesn't wait the completion of hugepage I/O
1269  * because there is no race between I/O and migration for hugepage.
1270  * Note that currently hugepage I/O occurs only in direct I/O
1271  * where no lock is held and PG_writeback is irrelevant,
1272  * and writeback status of all subpages are counted in the reference
1273  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1274  * under direct I/O, the reference of the head page is 512 and a bit more.)
1275  * This means that when we try to migrate hugepage whose subpages are
1276  * doing direct I/O, some references remain after try_to_unmap() and
1277  * hugepage migration fails without data corruption.
1278  *
1279  * There is also no race when direct I/O is issued on the page under migration,
1280  * because then pte is replaced with migration swap entry and direct I/O code
1281  * will wait in the page fault for migration to complete.
1282  */
1283 static int unmap_and_move_huge_page(new_page_t get_new_page,
1284                                 free_page_t put_new_page, unsigned long private,
1285                                 struct page *hpage, int force,
1286                                 enum migrate_mode mode, int reason)
1287 {
1288         int rc = -EAGAIN;
1289         int page_was_mapped = 0;
1290         struct page *new_hpage;
1291         struct anon_vma *anon_vma = NULL;
1292         struct address_space *mapping = NULL;
1293
1294         /*
1295          * Migratability of hugepages depends on architectures and their size.
1296          * This check is necessary because some callers of hugepage migration
1297          * like soft offline and memory hotremove don't walk through page
1298          * tables or check whether the hugepage is pmd-based or not before
1299          * kicking migration.
1300          */
1301         if (!hugepage_migration_supported(page_hstate(hpage))) {
1302                 putback_active_hugepage(hpage);
1303                 return -ENOSYS;
1304         }
1305
1306         new_hpage = get_new_page(hpage, private);
1307         if (!new_hpage)
1308                 return -ENOMEM;
1309
1310         if (!trylock_page(hpage)) {
1311                 if (!force)
1312                         goto out;
1313                 switch (mode) {
1314                 case MIGRATE_SYNC:
1315                 case MIGRATE_SYNC_NO_COPY:
1316                         break;
1317                 default:
1318                         goto out;
1319                 }
1320                 lock_page(hpage);
1321         }
1322
1323         /*
1324          * Check for pages which are in the process of being freed.  Without
1325          * page_mapping() set, hugetlbfs specific move page routine will not
1326          * be called and we could leak usage counts for subpools.
1327          */
1328         if (page_private(hpage) && !page_mapping(hpage)) {
1329                 rc = -EBUSY;
1330                 goto out_unlock;
1331         }
1332
1333         if (PageAnon(hpage))
1334                 anon_vma = page_get_anon_vma(hpage);
1335
1336         if (unlikely(!trylock_page(new_hpage)))
1337                 goto put_anon;
1338
1339         if (page_mapped(hpage)) {
1340                 /*
1341                  * try_to_unmap could potentially call huge_pmd_unshare.
1342                  * Because of this, take semaphore in write mode here and
1343                  * set TTU_RMAP_LOCKED to let lower levels know we have
1344                  * taken the lock.
1345                  */
1346                 mapping = hugetlb_page_mapping_lock_write(hpage);
1347                 if (unlikely(!mapping))
1348                         goto unlock_put_anon;
1349
1350                 try_to_unmap(hpage,
1351                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1352                         TTU_RMAP_LOCKED);
1353                 page_was_mapped = 1;
1354                 /*
1355                  * Leave mapping locked until after subsequent call to
1356                  * remove_migration_ptes()
1357                  */
1358         }
1359
1360         if (!page_mapped(hpage))
1361                 rc = move_to_new_page(new_hpage, hpage, mode);
1362
1363         if (page_was_mapped) {
1364                 remove_migration_ptes(hpage,
1365                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1366                 i_mmap_unlock_write(mapping);
1367         }
1368
1369 unlock_put_anon:
1370         unlock_page(new_hpage);
1371
1372 put_anon:
1373         if (anon_vma)
1374                 put_anon_vma(anon_vma);
1375
1376         if (rc == MIGRATEPAGE_SUCCESS) {
1377                 move_hugetlb_state(hpage, new_hpage, reason);
1378                 put_new_page = NULL;
1379         }
1380
1381 out_unlock:
1382         unlock_page(hpage);
1383 out:
1384         if (rc != -EAGAIN)
1385                 putback_active_hugepage(hpage);
1386
1387         /*
1388          * If migration was not successful and there's a freeing callback, use
1389          * it.  Otherwise, put_page() will drop the reference grabbed during
1390          * isolation.
1391          */
1392         if (put_new_page)
1393                 put_new_page(new_hpage, private);
1394         else
1395                 putback_active_hugepage(new_hpage);
1396
1397         return rc;
1398 }
1399
1400 /*
1401  * migrate_pages - migrate the pages specified in a list, to the free pages
1402  *                 supplied as the target for the page migration
1403  *
1404  * @from:               The list of pages to be migrated.
1405  * @get_new_page:       The function used to allocate free pages to be used
1406  *                      as the target of the page migration.
1407  * @put_new_page:       The function used to free target pages if migration
1408  *                      fails, or NULL if no special handling is necessary.
1409  * @private:            Private data to be passed on to get_new_page()
1410  * @mode:               The migration mode that specifies the constraints for
1411  *                      page migration, if any.
1412  * @reason:             The reason for page migration.
1413  *
1414  * The function returns after 10 attempts or if no pages are movable any more
1415  * because the list has become empty or no retryable pages exist any more.
1416  * The caller should call putback_movable_pages() to return pages to the LRU
1417  * or free list only if ret != 0.
1418  *
1419  * Returns the number of pages that were not migrated, or an error code.
1420  */
1421 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1422                 free_page_t put_new_page, unsigned long private,
1423                 enum migrate_mode mode, int reason)
1424 {
1425         int retry = 1;
1426         int nr_failed = 0;
1427         int nr_succeeded = 0;
1428         int pass = 0;
1429         struct page *page;
1430         struct page *page2;
1431         int swapwrite = current->flags & PF_SWAPWRITE;
1432         int rc;
1433
1434         if (!swapwrite)
1435                 current->flags |= PF_SWAPWRITE;
1436
1437         for(pass = 0; pass < 10 && retry; pass++) {
1438                 retry = 0;
1439
1440                 list_for_each_entry_safe(page, page2, from, lru) {
1441 retry:
1442                         cond_resched();
1443
1444                         if (PageHuge(page))
1445                                 rc = unmap_and_move_huge_page(get_new_page,
1446                                                 put_new_page, private, page,
1447                                                 pass > 2, mode, reason);
1448                         else
1449                                 rc = unmap_and_move(get_new_page, put_new_page,
1450                                                 private, page, pass > 2, mode,
1451                                                 reason);
1452
1453                         switch(rc) {
1454                         case -ENOMEM:
1455                                 /*
1456                                  * THP migration might be unsupported or the
1457                                  * allocation could've failed so we should
1458                                  * retry on the same page with the THP split
1459                                  * to base pages.
1460                                  *
1461                                  * Head page is retried immediately and tail
1462                                  * pages are added to the tail of the list so
1463                                  * we encounter them after the rest of the list
1464                                  * is processed.
1465                                  */
1466                                 if (PageTransHuge(page) && !PageHuge(page)) {
1467                                         lock_page(page);
1468                                         rc = split_huge_page_to_list(page, from);
1469                                         unlock_page(page);
1470                                         if (!rc) {
1471                                                 list_safe_reset_next(page, page2, lru);
1472                                                 goto retry;
1473                                         }
1474                                 }
1475                                 nr_failed++;
1476                                 goto out;
1477                         case -EAGAIN:
1478                                 retry++;
1479                                 break;
1480                         case MIGRATEPAGE_SUCCESS:
1481                                 nr_succeeded++;
1482                                 break;
1483                         default:
1484                                 /*
1485                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1486                                  * unlike -EAGAIN case, the failed page is
1487                                  * removed from migration page list and not
1488                                  * retried in the next outer loop.
1489                                  */
1490                                 nr_failed++;
1491                                 break;
1492                         }
1493                 }
1494         }
1495         nr_failed += retry;
1496         rc = nr_failed;
1497 out:
1498         if (nr_succeeded)
1499                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1500         if (nr_failed)
1501                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1502         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1503
1504         if (!swapwrite)
1505                 current->flags &= ~PF_SWAPWRITE;
1506
1507         return rc;
1508 }
1509
1510 #ifdef CONFIG_NUMA
1511
1512 static int store_status(int __user *status, int start, int value, int nr)
1513 {
1514         while (nr-- > 0) {
1515                 if (put_user(value, status + start))
1516                         return -EFAULT;
1517                 start++;
1518         }
1519
1520         return 0;
1521 }
1522
1523 static int do_move_pages_to_node(struct mm_struct *mm,
1524                 struct list_head *pagelist, int node)
1525 {
1526         int err;
1527
1528         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1529                         MIGRATE_SYNC, MR_SYSCALL);
1530         if (err)
1531                 putback_movable_pages(pagelist);
1532         return err;
1533 }
1534
1535 /*
1536  * Resolves the given address to a struct page, isolates it from the LRU and
1537  * puts it to the given pagelist.
1538  * Returns:
1539  *     errno - if the page cannot be found/isolated
1540  *     0 - when it doesn't have to be migrated because it is already on the
1541  *         target node
1542  *     1 - when it has been queued
1543  */
1544 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1545                 int node, struct list_head *pagelist, bool migrate_all)
1546 {
1547         struct vm_area_struct *vma;
1548         struct page *page;
1549         unsigned int follflags;
1550         int err;
1551
1552         down_read(&mm->mmap_sem);
1553         err = -EFAULT;
1554         vma = find_vma(mm, addr);
1555         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1556                 goto out;
1557
1558         /* FOLL_DUMP to ignore special (like zero) pages */
1559         follflags = FOLL_GET | FOLL_DUMP;
1560         page = follow_page(vma, addr, follflags);
1561
1562         err = PTR_ERR(page);
1563         if (IS_ERR(page))
1564                 goto out;
1565
1566         err = -ENOENT;
1567         if (!page)
1568                 goto out;
1569
1570         err = 0;
1571         if (page_to_nid(page) == node)
1572                 goto out_putpage;
1573
1574         err = -EACCES;
1575         if (page_mapcount(page) > 1 && !migrate_all)
1576                 goto out_putpage;
1577
1578         if (PageHuge(page)) {
1579                 if (PageHead(page)) {
1580                         isolate_huge_page(page, pagelist);
1581                         err = 1;
1582                 }
1583         } else {
1584                 struct page *head;
1585
1586                 head = compound_head(page);
1587                 err = isolate_lru_page(head);
1588                 if (err)
1589                         goto out_putpage;
1590
1591                 err = 1;
1592                 list_add_tail(&head->lru, pagelist);
1593                 mod_node_page_state(page_pgdat(head),
1594                         NR_ISOLATED_ANON + page_is_file_lru(head),
1595                         hpage_nr_pages(head));
1596         }
1597 out_putpage:
1598         /*
1599          * Either remove the duplicate refcount from
1600          * isolate_lru_page() or drop the page ref if it was
1601          * not isolated.
1602          */
1603         put_page(page);
1604 out:
1605         up_read(&mm->mmap_sem);
1606         return err;
1607 }
1608
1609 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1610                 struct list_head *pagelist, int __user *status,
1611                 int start, int i, unsigned long nr_pages)
1612 {
1613         int err;
1614
1615         if (list_empty(pagelist))
1616                 return 0;
1617
1618         err = do_move_pages_to_node(mm, pagelist, node);
1619         if (err) {
1620                 /*
1621                  * Positive err means the number of failed
1622                  * pages to migrate.  Since we are going to
1623                  * abort and return the number of non-migrated
1624                  * pages, so need to incude the rest of the
1625                  * nr_pages that have not been attempted as
1626                  * well.
1627                  */
1628                 if (err > 0)
1629                         err += nr_pages - i - 1;
1630                 return err;
1631         }
1632         return store_status(status, start, node, i - start);
1633 }
1634
1635 /*
1636  * Migrate an array of page address onto an array of nodes and fill
1637  * the corresponding array of status.
1638  */
1639 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1640                          unsigned long nr_pages,
1641                          const void __user * __user *pages,
1642                          const int __user *nodes,
1643                          int __user *status, int flags)
1644 {
1645         int current_node = NUMA_NO_NODE;
1646         LIST_HEAD(pagelist);
1647         int start, i;
1648         int err = 0, err1;
1649
1650         migrate_prep();
1651
1652         for (i = start = 0; i < nr_pages; i++) {
1653                 const void __user *p;
1654                 unsigned long addr;
1655                 int node;
1656
1657                 err = -EFAULT;
1658                 if (get_user(p, pages + i))
1659                         goto out_flush;
1660                 if (get_user(node, nodes + i))
1661                         goto out_flush;
1662                 addr = (unsigned long)untagged_addr(p);
1663
1664                 err = -ENODEV;
1665                 if (node < 0 || node >= MAX_NUMNODES)
1666                         goto out_flush;
1667                 if (!node_state(node, N_MEMORY))
1668                         goto out_flush;
1669
1670                 err = -EACCES;
1671                 if (!node_isset(node, task_nodes))
1672                         goto out_flush;
1673
1674                 if (current_node == NUMA_NO_NODE) {
1675                         current_node = node;
1676                         start = i;
1677                 } else if (node != current_node) {
1678                         err = move_pages_and_store_status(mm, current_node,
1679                                         &pagelist, status, start, i, nr_pages);
1680                         if (err)
1681                                 goto out;
1682                         start = i;
1683                         current_node = node;
1684                 }
1685
1686                 /*
1687                  * Errors in the page lookup or isolation are not fatal and we simply
1688                  * report them via status
1689                  */
1690                 err = add_page_for_migration(mm, addr, current_node,
1691                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1692
1693                 if (err > 0) {
1694                         /* The page is successfully queued for migration */
1695                         continue;
1696                 }
1697
1698                 /*
1699                  * If the page is already on the target node (!err), store the
1700                  * node, otherwise, store the err.
1701                  */
1702                 err = store_status(status, i, err ? : current_node, 1);
1703                 if (err)
1704                         goto out_flush;
1705
1706                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1707                                 status, start, i, nr_pages);
1708                 if (err)
1709                         goto out;
1710                 current_node = NUMA_NO_NODE;
1711         }
1712 out_flush:
1713         /* Make sure we do not overwrite the existing error */
1714         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1715                                 status, start, i, nr_pages);
1716         if (err >= 0)
1717                 err = err1;
1718 out:
1719         return err;
1720 }
1721
1722 /*
1723  * Determine the nodes of an array of pages and store it in an array of status.
1724  */
1725 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1726                                 const void __user **pages, int *status)
1727 {
1728         unsigned long i;
1729
1730         down_read(&mm->mmap_sem);
1731
1732         for (i = 0; i < nr_pages; i++) {
1733                 unsigned long addr = (unsigned long)(*pages);
1734                 struct vm_area_struct *vma;
1735                 struct page *page;
1736                 int err = -EFAULT;
1737
1738                 vma = find_vma(mm, addr);
1739                 if (!vma || addr < vma->vm_start)
1740                         goto set_status;
1741
1742                 /* FOLL_DUMP to ignore special (like zero) pages */
1743                 page = follow_page(vma, addr, FOLL_DUMP);
1744
1745                 err = PTR_ERR(page);
1746                 if (IS_ERR(page))
1747                         goto set_status;
1748
1749                 err = page ? page_to_nid(page) : -ENOENT;
1750 set_status:
1751                 *status = err;
1752
1753                 pages++;
1754                 status++;
1755         }
1756
1757         up_read(&mm->mmap_sem);
1758 }
1759
1760 /*
1761  * Determine the nodes of a user array of pages and store it in
1762  * a user array of status.
1763  */
1764 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1765                          const void __user * __user *pages,
1766                          int __user *status)
1767 {
1768 #define DO_PAGES_STAT_CHUNK_NR 16
1769         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1770         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1771
1772         while (nr_pages) {
1773                 unsigned long chunk_nr;
1774
1775                 chunk_nr = nr_pages;
1776                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1777                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1778
1779                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1780                         break;
1781
1782                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1783
1784                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1785                         break;
1786
1787                 pages += chunk_nr;
1788                 status += chunk_nr;
1789                 nr_pages -= chunk_nr;
1790         }
1791         return nr_pages ? -EFAULT : 0;
1792 }
1793
1794 /*
1795  * Move a list of pages in the address space of the currently executing
1796  * process.
1797  */
1798 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1799                              const void __user * __user *pages,
1800                              const int __user *nodes,
1801                              int __user *status, int flags)
1802 {
1803         struct task_struct *task;
1804         struct mm_struct *mm;
1805         int err;
1806         nodemask_t task_nodes;
1807
1808         /* Check flags */
1809         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1810                 return -EINVAL;
1811
1812         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1813                 return -EPERM;
1814
1815         /* Find the mm_struct */
1816         rcu_read_lock();
1817         task = pid ? find_task_by_vpid(pid) : current;
1818         if (!task) {
1819                 rcu_read_unlock();
1820                 return -ESRCH;
1821         }
1822         get_task_struct(task);
1823
1824         /*
1825          * Check if this process has the right to modify the specified
1826          * process. Use the regular "ptrace_may_access()" checks.
1827          */
1828         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1829                 rcu_read_unlock();
1830                 err = -EPERM;
1831                 goto out;
1832         }
1833         rcu_read_unlock();
1834
1835         err = security_task_movememory(task);
1836         if (err)
1837                 goto out;
1838
1839         task_nodes = cpuset_mems_allowed(task);
1840         mm = get_task_mm(task);
1841         put_task_struct(task);
1842
1843         if (!mm)
1844                 return -EINVAL;
1845
1846         if (nodes)
1847                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1848                                     nodes, status, flags);
1849         else
1850                 err = do_pages_stat(mm, nr_pages, pages, status);
1851
1852         mmput(mm);
1853         return err;
1854
1855 out:
1856         put_task_struct(task);
1857         return err;
1858 }
1859
1860 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1861                 const void __user * __user *, pages,
1862                 const int __user *, nodes,
1863                 int __user *, status, int, flags)
1864 {
1865         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1866 }
1867
1868 #ifdef CONFIG_COMPAT
1869 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1870                        compat_uptr_t __user *, pages32,
1871                        const int __user *, nodes,
1872                        int __user *, status,
1873                        int, flags)
1874 {
1875         const void __user * __user *pages;
1876         int i;
1877
1878         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1879         for (i = 0; i < nr_pages; i++) {
1880                 compat_uptr_t p;
1881
1882                 if (get_user(p, pages32 + i) ||
1883                         put_user(compat_ptr(p), pages + i))
1884                         return -EFAULT;
1885         }
1886         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1887 }
1888 #endif /* CONFIG_COMPAT */
1889
1890 #ifdef CONFIG_NUMA_BALANCING
1891 /*
1892  * Returns true if this is a safe migration target node for misplaced NUMA
1893  * pages. Currently it only checks the watermarks which crude
1894  */
1895 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1896                                    unsigned long nr_migrate_pages)
1897 {
1898         int z;
1899
1900         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1901                 struct zone *zone = pgdat->node_zones + z;
1902
1903                 if (!populated_zone(zone))
1904                         continue;
1905
1906                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1907                 if (!zone_watermark_ok(zone, 0,
1908                                        high_wmark_pages(zone) +
1909                                        nr_migrate_pages,
1910                                        ZONE_MOVABLE, 0))
1911                         continue;
1912                 return true;
1913         }
1914         return false;
1915 }
1916
1917 static struct page *alloc_misplaced_dst_page(struct page *page,
1918                                            unsigned long data)
1919 {
1920         int nid = (int) data;
1921         struct page *newpage;
1922
1923         newpage = __alloc_pages_node(nid,
1924                                          (GFP_HIGHUSER_MOVABLE |
1925                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1926                                           __GFP_NORETRY | __GFP_NOWARN) &
1927                                          ~__GFP_RECLAIM, 0);
1928
1929         return newpage;
1930 }
1931
1932 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1933 {
1934         int page_lru;
1935
1936         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1937
1938         /* Avoid migrating to a node that is nearly full */
1939         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1940                 return 0;
1941
1942         if (isolate_lru_page(page))
1943                 return 0;
1944
1945         /*
1946          * migrate_misplaced_transhuge_page() skips page migration's usual
1947          * check on page_count(), so we must do it here, now that the page
1948          * has been isolated: a GUP pin, or any other pin, prevents migration.
1949          * The expected page count is 3: 1 for page's mapcount and 1 for the
1950          * caller's pin and 1 for the reference taken by isolate_lru_page().
1951          */
1952         if (PageTransHuge(page) && page_count(page) != 3) {
1953                 putback_lru_page(page);
1954                 return 0;
1955         }
1956
1957         page_lru = page_is_file_lru(page);
1958         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1959                                 hpage_nr_pages(page));
1960
1961         /*
1962          * Isolating the page has taken another reference, so the
1963          * caller's reference can be safely dropped without the page
1964          * disappearing underneath us during migration.
1965          */
1966         put_page(page);
1967         return 1;
1968 }
1969
1970 bool pmd_trans_migrating(pmd_t pmd)
1971 {
1972         struct page *page = pmd_page(pmd);
1973         return PageLocked(page);
1974 }
1975
1976 /*
1977  * Attempt to migrate a misplaced page to the specified destination
1978  * node. Caller is expected to have an elevated reference count on
1979  * the page that will be dropped by this function before returning.
1980  */
1981 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1982                            int node)
1983 {
1984         pg_data_t *pgdat = NODE_DATA(node);
1985         int isolated;
1986         int nr_remaining;
1987         LIST_HEAD(migratepages);
1988
1989         /*
1990          * Don't migrate file pages that are mapped in multiple processes
1991          * with execute permissions as they are probably shared libraries.
1992          */
1993         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1994             (vma->vm_flags & VM_EXEC))
1995                 goto out;
1996
1997         /*
1998          * Also do not migrate dirty pages as not all filesystems can move
1999          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2000          */
2001         if (page_is_file_lru(page) && PageDirty(page))
2002                 goto out;
2003
2004         isolated = numamigrate_isolate_page(pgdat, page);
2005         if (!isolated)
2006                 goto out;
2007
2008         list_add(&page->lru, &migratepages);
2009         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2010                                      NULL, node, MIGRATE_ASYNC,
2011                                      MR_NUMA_MISPLACED);
2012         if (nr_remaining) {
2013                 if (!list_empty(&migratepages)) {
2014                         list_del(&page->lru);
2015                         dec_node_page_state(page, NR_ISOLATED_ANON +
2016                                         page_is_file_lru(page));
2017                         putback_lru_page(page);
2018                 }
2019                 isolated = 0;
2020         } else
2021                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2022         BUG_ON(!list_empty(&migratepages));
2023         return isolated;
2024
2025 out:
2026         put_page(page);
2027         return 0;
2028 }
2029 #endif /* CONFIG_NUMA_BALANCING */
2030
2031 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2032 /*
2033  * Migrates a THP to a given target node. page must be locked and is unlocked
2034  * before returning.
2035  */
2036 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2037                                 struct vm_area_struct *vma,
2038                                 pmd_t *pmd, pmd_t entry,
2039                                 unsigned long address,
2040                                 struct page *page, int node)
2041 {
2042         spinlock_t *ptl;
2043         pg_data_t *pgdat = NODE_DATA(node);
2044         int isolated = 0;
2045         struct page *new_page = NULL;
2046         int page_lru = page_is_file_lru(page);
2047         unsigned long start = address & HPAGE_PMD_MASK;
2048
2049         new_page = alloc_pages_node(node,
2050                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2051                 HPAGE_PMD_ORDER);
2052         if (!new_page)
2053                 goto out_fail;
2054         prep_transhuge_page(new_page);
2055
2056         isolated = numamigrate_isolate_page(pgdat, page);
2057         if (!isolated) {
2058                 put_page(new_page);
2059                 goto out_fail;
2060         }
2061
2062         /* Prepare a page as a migration target */
2063         __SetPageLocked(new_page);
2064         if (PageSwapBacked(page))
2065                 __SetPageSwapBacked(new_page);
2066
2067         /* anon mapping, we can simply copy page->mapping to the new page: */
2068         new_page->mapping = page->mapping;
2069         new_page->index = page->index;
2070         /* flush the cache before copying using the kernel virtual address */
2071         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2072         migrate_page_copy(new_page, page);
2073         WARN_ON(PageLRU(new_page));
2074
2075         /* Recheck the target PMD */
2076         ptl = pmd_lock(mm, pmd);
2077         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2078                 spin_unlock(ptl);
2079
2080                 /* Reverse changes made by migrate_page_copy() */
2081                 if (TestClearPageActive(new_page))
2082                         SetPageActive(page);
2083                 if (TestClearPageUnevictable(new_page))
2084                         SetPageUnevictable(page);
2085
2086                 unlock_page(new_page);
2087                 put_page(new_page);             /* Free it */
2088
2089                 /* Retake the callers reference and putback on LRU */
2090                 get_page(page);
2091                 putback_lru_page(page);
2092                 mod_node_page_state(page_pgdat(page),
2093                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2094
2095                 goto out_unlock;
2096         }
2097
2098         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2099         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2100
2101         /*
2102          * Overwrite the old entry under pagetable lock and establish
2103          * the new PTE. Any parallel GUP will either observe the old
2104          * page blocking on the page lock, block on the page table
2105          * lock or observe the new page. The SetPageUptodate on the
2106          * new page and page_add_new_anon_rmap guarantee the copy is
2107          * visible before the pagetable update.
2108          */
2109         page_add_anon_rmap(new_page, vma, start, true);
2110         /*
2111          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2112          * has already been flushed globally.  So no TLB can be currently
2113          * caching this non present pmd mapping.  There's no need to clear the
2114          * pmd before doing set_pmd_at(), nor to flush the TLB after
2115          * set_pmd_at().  Clearing the pmd here would introduce a race
2116          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2117          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2118          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2119          * pmd.
2120          */
2121         set_pmd_at(mm, start, pmd, entry);
2122         update_mmu_cache_pmd(vma, address, &entry);
2123
2124         page_ref_unfreeze(page, 2);
2125         mlock_migrate_page(new_page, page);
2126         page_remove_rmap(page, true);
2127         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2128
2129         spin_unlock(ptl);
2130
2131         /* Take an "isolate" reference and put new page on the LRU. */
2132         get_page(new_page);
2133         putback_lru_page(new_page);
2134
2135         unlock_page(new_page);
2136         unlock_page(page);
2137         put_page(page);                 /* Drop the rmap reference */
2138         put_page(page);                 /* Drop the LRU isolation reference */
2139
2140         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2141         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2142
2143         mod_node_page_state(page_pgdat(page),
2144                         NR_ISOLATED_ANON + page_lru,
2145                         -HPAGE_PMD_NR);
2146         return isolated;
2147
2148 out_fail:
2149         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2150         ptl = pmd_lock(mm, pmd);
2151         if (pmd_same(*pmd, entry)) {
2152                 entry = pmd_modify(entry, vma->vm_page_prot);
2153                 set_pmd_at(mm, start, pmd, entry);
2154                 update_mmu_cache_pmd(vma, address, &entry);
2155         }
2156         spin_unlock(ptl);
2157
2158 out_unlock:
2159         unlock_page(page);
2160         put_page(page);
2161         return 0;
2162 }
2163 #endif /* CONFIG_NUMA_BALANCING */
2164
2165 #endif /* CONFIG_NUMA */
2166
2167 #ifdef CONFIG_DEVICE_PRIVATE
2168 static int migrate_vma_collect_hole(unsigned long start,
2169                                     unsigned long end,
2170                                     __always_unused int depth,
2171                                     struct mm_walk *walk)
2172 {
2173         struct migrate_vma *migrate = walk->private;
2174         unsigned long addr;
2175
2176         for (addr = start; addr < end; addr += PAGE_SIZE) {
2177                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2178                 migrate->dst[migrate->npages] = 0;
2179                 migrate->npages++;
2180                 migrate->cpages++;
2181         }
2182
2183         return 0;
2184 }
2185
2186 static int migrate_vma_collect_skip(unsigned long start,
2187                                     unsigned long end,
2188                                     struct mm_walk *walk)
2189 {
2190         struct migrate_vma *migrate = walk->private;
2191         unsigned long addr;
2192
2193         for (addr = start; addr < end; addr += PAGE_SIZE) {
2194                 migrate->dst[migrate->npages] = 0;
2195                 migrate->src[migrate->npages++] = 0;
2196         }
2197
2198         return 0;
2199 }
2200
2201 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2202                                    unsigned long start,
2203                                    unsigned long end,
2204                                    struct mm_walk *walk)
2205 {
2206         struct migrate_vma *migrate = walk->private;
2207         struct vm_area_struct *vma = walk->vma;
2208         struct mm_struct *mm = vma->vm_mm;
2209         unsigned long addr = start, unmapped = 0;
2210         spinlock_t *ptl;
2211         pte_t *ptep;
2212
2213 again:
2214         if (pmd_none(*pmdp))
2215                 return migrate_vma_collect_hole(start, end, -1, walk);
2216
2217         if (pmd_trans_huge(*pmdp)) {
2218                 struct page *page;
2219
2220                 ptl = pmd_lock(mm, pmdp);
2221                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2222                         spin_unlock(ptl);
2223                         goto again;
2224                 }
2225
2226                 page = pmd_page(*pmdp);
2227                 if (is_huge_zero_page(page)) {
2228                         spin_unlock(ptl);
2229                         split_huge_pmd(vma, pmdp, addr);
2230                         if (pmd_trans_unstable(pmdp))
2231                                 return migrate_vma_collect_skip(start, end,
2232                                                                 walk);
2233                 } else {
2234                         int ret;
2235
2236                         get_page(page);
2237                         spin_unlock(ptl);
2238                         if (unlikely(!trylock_page(page)))
2239                                 return migrate_vma_collect_skip(start, end,
2240                                                                 walk);
2241                         ret = split_huge_page(page);
2242                         unlock_page(page);
2243                         put_page(page);
2244                         if (ret)
2245                                 return migrate_vma_collect_skip(start, end,
2246                                                                 walk);
2247                         if (pmd_none(*pmdp))
2248                                 return migrate_vma_collect_hole(start, end, -1,
2249                                                                 walk);
2250                 }
2251         }
2252
2253         if (unlikely(pmd_bad(*pmdp)))
2254                 return migrate_vma_collect_skip(start, end, walk);
2255
2256         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2257         arch_enter_lazy_mmu_mode();
2258
2259         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2260                 unsigned long mpfn = 0, pfn;
2261                 struct page *page;
2262                 swp_entry_t entry;
2263                 pte_t pte;
2264
2265                 pte = *ptep;
2266
2267                 if (pte_none(pte)) {
2268                         mpfn = MIGRATE_PFN_MIGRATE;
2269                         migrate->cpages++;
2270                         goto next;
2271                 }
2272
2273                 if (!pte_present(pte)) {
2274                         /*
2275                          * Only care about unaddressable device page special
2276                          * page table entry. Other special swap entries are not
2277                          * migratable, and we ignore regular swapped page.
2278                          */
2279                         entry = pte_to_swp_entry(pte);
2280                         if (!is_device_private_entry(entry))
2281                                 goto next;
2282
2283                         page = device_private_entry_to_page(entry);
2284                         if (page->pgmap->owner != migrate->src_owner)
2285                                 goto next;
2286
2287                         mpfn = migrate_pfn(page_to_pfn(page)) |
2288                                         MIGRATE_PFN_MIGRATE;
2289                         if (is_write_device_private_entry(entry))
2290                                 mpfn |= MIGRATE_PFN_WRITE;
2291                 } else {
2292                         if (migrate->src_owner)
2293                                 goto next;
2294                         pfn = pte_pfn(pte);
2295                         if (is_zero_pfn(pfn)) {
2296                                 mpfn = MIGRATE_PFN_MIGRATE;
2297                                 migrate->cpages++;
2298                                 goto next;
2299                         }
2300                         page = vm_normal_page(migrate->vma, addr, pte);
2301                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2302                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2303                 }
2304
2305                 /* FIXME support THP */
2306                 if (!page || !page->mapping || PageTransCompound(page)) {
2307                         mpfn = 0;
2308                         goto next;
2309                 }
2310
2311                 /*
2312                  * By getting a reference on the page we pin it and that blocks
2313                  * any kind of migration. Side effect is that it "freezes" the
2314                  * pte.
2315                  *
2316                  * We drop this reference after isolating the page from the lru
2317                  * for non device page (device page are not on the lru and thus
2318                  * can't be dropped from it).
2319                  */
2320                 get_page(page);
2321                 migrate->cpages++;
2322
2323                 /*
2324                  * Optimize for the common case where page is only mapped once
2325                  * in one process. If we can lock the page, then we can safely
2326                  * set up a special migration page table entry now.
2327                  */
2328                 if (trylock_page(page)) {
2329                         pte_t swp_pte;
2330
2331                         mpfn |= MIGRATE_PFN_LOCKED;
2332                         ptep_get_and_clear(mm, addr, ptep);
2333
2334                         /* Setup special migration page table entry */
2335                         entry = make_migration_entry(page, mpfn &
2336                                                      MIGRATE_PFN_WRITE);
2337                         swp_pte = swp_entry_to_pte(entry);
2338                         if (pte_soft_dirty(pte))
2339                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2340                         if (pte_uffd_wp(pte))
2341                                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2342                         set_pte_at(mm, addr, ptep, swp_pte);
2343
2344                         /*
2345                          * This is like regular unmap: we remove the rmap and
2346                          * drop page refcount. Page won't be freed, as we took
2347                          * a reference just above.
2348                          */
2349                         page_remove_rmap(page, false);
2350                         put_page(page);
2351
2352                         if (pte_present(pte))
2353                                 unmapped++;
2354                 }
2355
2356 next:
2357                 migrate->dst[migrate->npages] = 0;
2358                 migrate->src[migrate->npages++] = mpfn;
2359         }
2360         arch_leave_lazy_mmu_mode();
2361         pte_unmap_unlock(ptep - 1, ptl);
2362
2363         /* Only flush the TLB if we actually modified any entries */
2364         if (unmapped)
2365                 flush_tlb_range(walk->vma, start, end);
2366
2367         return 0;
2368 }
2369
2370 static const struct mm_walk_ops migrate_vma_walk_ops = {
2371         .pmd_entry              = migrate_vma_collect_pmd,
2372         .pte_hole               = migrate_vma_collect_hole,
2373 };
2374
2375 /*
2376  * migrate_vma_collect() - collect pages over a range of virtual addresses
2377  * @migrate: migrate struct containing all migration information
2378  *
2379  * This will walk the CPU page table. For each virtual address backed by a
2380  * valid page, it updates the src array and takes a reference on the page, in
2381  * order to pin the page until we lock it and unmap it.
2382  */
2383 static void migrate_vma_collect(struct migrate_vma *migrate)
2384 {
2385         struct mmu_notifier_range range;
2386
2387         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2388                         migrate->vma->vm_mm, migrate->start, migrate->end);
2389         mmu_notifier_invalidate_range_start(&range);
2390
2391         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2392                         &migrate_vma_walk_ops, migrate);
2393
2394         mmu_notifier_invalidate_range_end(&range);
2395         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2396 }
2397
2398 /*
2399  * migrate_vma_check_page() - check if page is pinned or not
2400  * @page: struct page to check
2401  *
2402  * Pinned pages cannot be migrated. This is the same test as in
2403  * migrate_page_move_mapping(), except that here we allow migration of a
2404  * ZONE_DEVICE page.
2405  */
2406 static bool migrate_vma_check_page(struct page *page)
2407 {
2408         /*
2409          * One extra ref because caller holds an extra reference, either from
2410          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2411          * a device page.
2412          */
2413         int extra = 1;
2414
2415         /*
2416          * FIXME support THP (transparent huge page), it is bit more complex to
2417          * check them than regular pages, because they can be mapped with a pmd
2418          * or with a pte (split pte mapping).
2419          */
2420         if (PageCompound(page))
2421                 return false;
2422
2423         /* Page from ZONE_DEVICE have one extra reference */
2424         if (is_zone_device_page(page)) {
2425                 /*
2426                  * Private page can never be pin as they have no valid pte and
2427                  * GUP will fail for those. Yet if there is a pending migration
2428                  * a thread might try to wait on the pte migration entry and
2429                  * will bump the page reference count. Sadly there is no way to
2430                  * differentiate a regular pin from migration wait. Hence to
2431                  * avoid 2 racing thread trying to migrate back to CPU to enter
2432                  * infinite loop (one stoping migration because the other is
2433                  * waiting on pte migration entry). We always return true here.
2434                  *
2435                  * FIXME proper solution is to rework migration_entry_wait() so
2436                  * it does not need to take a reference on page.
2437                  */
2438                 return is_device_private_page(page);
2439         }
2440
2441         /* For file back page */
2442         if (page_mapping(page))
2443                 extra += 1 + page_has_private(page);
2444
2445         if ((page_count(page) - extra) > page_mapcount(page))
2446                 return false;
2447
2448         return true;
2449 }
2450
2451 /*
2452  * migrate_vma_prepare() - lock pages and isolate them from the lru
2453  * @migrate: migrate struct containing all migration information
2454  *
2455  * This locks pages that have been collected by migrate_vma_collect(). Once each
2456  * page is locked it is isolated from the lru (for non-device pages). Finally,
2457  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2458  * migrated by concurrent kernel threads.
2459  */
2460 static void migrate_vma_prepare(struct migrate_vma *migrate)
2461 {
2462         const unsigned long npages = migrate->npages;
2463         const unsigned long start = migrate->start;
2464         unsigned long addr, i, restore = 0;
2465         bool allow_drain = true;
2466
2467         lru_add_drain();
2468
2469         for (i = 0; (i < npages) && migrate->cpages; i++) {
2470                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2471                 bool remap = true;
2472
2473                 if (!page)
2474                         continue;
2475
2476                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2477                         /*
2478                          * Because we are migrating several pages there can be
2479                          * a deadlock between 2 concurrent migration where each
2480                          * are waiting on each other page lock.
2481                          *
2482                          * Make migrate_vma() a best effort thing and backoff
2483                          * for any page we can not lock right away.
2484                          */
2485                         if (!trylock_page(page)) {
2486                                 migrate->src[i] = 0;
2487                                 migrate->cpages--;
2488                                 put_page(page);
2489                                 continue;
2490                         }
2491                         remap = false;
2492                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2493                 }
2494
2495                 /* ZONE_DEVICE pages are not on LRU */
2496                 if (!is_zone_device_page(page)) {
2497                         if (!PageLRU(page) && allow_drain) {
2498                                 /* Drain CPU's pagevec */
2499                                 lru_add_drain_all();
2500                                 allow_drain = false;
2501                         }
2502
2503                         if (isolate_lru_page(page)) {
2504                                 if (remap) {
2505                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2506                                         migrate->cpages--;
2507                                         restore++;
2508                                 } else {
2509                                         migrate->src[i] = 0;
2510                                         unlock_page(page);
2511                                         migrate->cpages--;
2512                                         put_page(page);
2513                                 }
2514                                 continue;
2515                         }
2516
2517                         /* Drop the reference we took in collect */
2518                         put_page(page);
2519                 }
2520
2521                 if (!migrate_vma_check_page(page)) {
2522                         if (remap) {
2523                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2524                                 migrate->cpages--;
2525                                 restore++;
2526
2527                                 if (!is_zone_device_page(page)) {
2528                                         get_page(page);
2529                                         putback_lru_page(page);
2530                                 }
2531                         } else {
2532                                 migrate->src[i] = 0;
2533                                 unlock_page(page);
2534                                 migrate->cpages--;
2535
2536                                 if (!is_zone_device_page(page))
2537                                         putback_lru_page(page);
2538                                 else
2539                                         put_page(page);
2540                         }
2541                 }
2542         }
2543
2544         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2545                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2546
2547                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2548                         continue;
2549
2550                 remove_migration_pte(page, migrate->vma, addr, page);
2551
2552                 migrate->src[i] = 0;
2553                 unlock_page(page);
2554                 put_page(page);
2555                 restore--;
2556         }
2557 }
2558
2559 /*
2560  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2561  * @migrate: migrate struct containing all migration information
2562  *
2563  * Replace page mapping (CPU page table pte) with a special migration pte entry
2564  * and check again if it has been pinned. Pinned pages are restored because we
2565  * cannot migrate them.
2566  *
2567  * This is the last step before we call the device driver callback to allocate
2568  * destination memory and copy contents of original page over to new page.
2569  */
2570 static void migrate_vma_unmap(struct migrate_vma *migrate)
2571 {
2572         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2573         const unsigned long npages = migrate->npages;
2574         const unsigned long start = migrate->start;
2575         unsigned long addr, i, restore = 0;
2576
2577         for (i = 0; i < npages; i++) {
2578                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2579
2580                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2581                         continue;
2582
2583                 if (page_mapped(page)) {
2584                         try_to_unmap(page, flags);
2585                         if (page_mapped(page))
2586                                 goto restore;
2587                 }
2588
2589                 if (migrate_vma_check_page(page))
2590                         continue;
2591
2592 restore:
2593                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2594                 migrate->cpages--;
2595                 restore++;
2596         }
2597
2598         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2599                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2600
2601                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2602                         continue;
2603
2604                 remove_migration_ptes(page, page, false);
2605
2606                 migrate->src[i] = 0;
2607                 unlock_page(page);
2608                 restore--;
2609
2610                 if (is_zone_device_page(page))
2611                         put_page(page);
2612                 else
2613                         putback_lru_page(page);
2614         }
2615 }
2616
2617 /**
2618  * migrate_vma_setup() - prepare to migrate a range of memory
2619  * @args: contains the vma, start, and and pfns arrays for the migration
2620  *
2621  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2622  * without an error.
2623  *
2624  * Prepare to migrate a range of memory virtual address range by collecting all
2625  * the pages backing each virtual address in the range, saving them inside the
2626  * src array.  Then lock those pages and unmap them. Once the pages are locked
2627  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2628  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2629  * corresponding src array entry.  Then restores any pages that are pinned, by
2630  * remapping and unlocking those pages.
2631  *
2632  * The caller should then allocate destination memory and copy source memory to
2633  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2634  * flag set).  Once these are allocated and copied, the caller must update each
2635  * corresponding entry in the dst array with the pfn value of the destination
2636  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2637  * (destination pages must have their struct pages locked, via lock_page()).
2638  *
2639  * Note that the caller does not have to migrate all the pages that are marked
2640  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2641  * device memory to system memory.  If the caller cannot migrate a device page
2642  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2643  * consequences for the userspace process, so it must be avoided if at all
2644  * possible.
2645  *
2646  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2647  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2648  * allowing the caller to allocate device memory for those unback virtual
2649  * address.  For this the caller simply has to allocate device memory and
2650  * properly set the destination entry like for regular migration.  Note that
2651  * this can still fails and thus inside the device driver must check if the
2652  * migration was successful for those entries after calling migrate_vma_pages()
2653  * just like for regular migration.
2654  *
2655  * After that, the callers must call migrate_vma_pages() to go over each entry
2656  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2657  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2658  * then migrate_vma_pages() to migrate struct page information from the source
2659  * struct page to the destination struct page.  If it fails to migrate the
2660  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2661  * src array.
2662  *
2663  * At this point all successfully migrated pages have an entry in the src
2664  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2665  * array entry with MIGRATE_PFN_VALID flag set.
2666  *
2667  * Once migrate_vma_pages() returns the caller may inspect which pages were
2668  * successfully migrated, and which were not.  Successfully migrated pages will
2669  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2670  *
2671  * It is safe to update device page table after migrate_vma_pages() because
2672  * both destination and source page are still locked, and the mmap_sem is held
2673  * in read mode (hence no one can unmap the range being migrated).
2674  *
2675  * Once the caller is done cleaning up things and updating its page table (if it
2676  * chose to do so, this is not an obligation) it finally calls
2677  * migrate_vma_finalize() to update the CPU page table to point to new pages
2678  * for successfully migrated pages or otherwise restore the CPU page table to
2679  * point to the original source pages.
2680  */
2681 int migrate_vma_setup(struct migrate_vma *args)
2682 {
2683         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2684
2685         args->start &= PAGE_MASK;
2686         args->end &= PAGE_MASK;
2687         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2688             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2689                 return -EINVAL;
2690         if (nr_pages <= 0)
2691                 return -EINVAL;
2692         if (args->start < args->vma->vm_start ||
2693             args->start >= args->vma->vm_end)
2694                 return -EINVAL;
2695         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2696                 return -EINVAL;
2697         if (!args->src || !args->dst)
2698                 return -EINVAL;
2699
2700         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2701         args->cpages = 0;
2702         args->npages = 0;
2703
2704         migrate_vma_collect(args);
2705
2706         if (args->cpages)
2707                 migrate_vma_prepare(args);
2708         if (args->cpages)
2709                 migrate_vma_unmap(args);
2710
2711         /*
2712          * At this point pages are locked and unmapped, and thus they have
2713          * stable content and can safely be copied to destination memory that
2714          * is allocated by the drivers.
2715          */
2716         return 0;
2717
2718 }
2719 EXPORT_SYMBOL(migrate_vma_setup);
2720
2721 /*
2722  * This code closely matches the code in:
2723  *   __handle_mm_fault()
2724  *     handle_pte_fault()
2725  *       do_anonymous_page()
2726  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2727  * private page.
2728  */
2729 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2730                                     unsigned long addr,
2731                                     struct page *page,
2732                                     unsigned long *src,
2733                                     unsigned long *dst)
2734 {
2735         struct vm_area_struct *vma = migrate->vma;
2736         struct mm_struct *mm = vma->vm_mm;
2737         struct mem_cgroup *memcg;
2738         bool flush = false;
2739         spinlock_t *ptl;
2740         pte_t entry;
2741         pgd_t *pgdp;
2742         p4d_t *p4dp;
2743         pud_t *pudp;
2744         pmd_t *pmdp;
2745         pte_t *ptep;
2746
2747         /* Only allow populating anonymous memory */
2748         if (!vma_is_anonymous(vma))
2749                 goto abort;
2750
2751         pgdp = pgd_offset(mm, addr);
2752         p4dp = p4d_alloc(mm, pgdp, addr);
2753         if (!p4dp)
2754                 goto abort;
2755         pudp = pud_alloc(mm, p4dp, addr);
2756         if (!pudp)
2757                 goto abort;
2758         pmdp = pmd_alloc(mm, pudp, addr);
2759         if (!pmdp)
2760                 goto abort;
2761
2762         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2763                 goto abort;
2764
2765         /*
2766          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2767          * pte_offset_map() on pmds where a huge pmd might be created
2768          * from a different thread.
2769          *
2770          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2771          * parallel threads are excluded by other means.
2772          *
2773          * Here we only have down_read(mmap_sem).
2774          */
2775         if (pte_alloc(mm, pmdp))
2776                 goto abort;
2777
2778         /* See the comment in pte_alloc_one_map() */
2779         if (unlikely(pmd_trans_unstable(pmdp)))
2780                 goto abort;
2781
2782         if (unlikely(anon_vma_prepare(vma)))
2783                 goto abort;
2784         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2785                 goto abort;
2786
2787         /*
2788          * The memory barrier inside __SetPageUptodate makes sure that
2789          * preceding stores to the page contents become visible before
2790          * the set_pte_at() write.
2791          */
2792         __SetPageUptodate(page);
2793
2794         if (is_zone_device_page(page)) {
2795                 if (is_device_private_page(page)) {
2796                         swp_entry_t swp_entry;
2797
2798                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2799                         entry = swp_entry_to_pte(swp_entry);
2800                 }
2801         } else {
2802                 entry = mk_pte(page, vma->vm_page_prot);
2803                 if (vma->vm_flags & VM_WRITE)
2804                         entry = pte_mkwrite(pte_mkdirty(entry));
2805         }
2806
2807         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2808
2809         if (check_stable_address_space(mm))
2810                 goto unlock_abort;
2811
2812         if (pte_present(*ptep)) {
2813                 unsigned long pfn = pte_pfn(*ptep);
2814
2815                 if (!is_zero_pfn(pfn))
2816                         goto unlock_abort;
2817                 flush = true;
2818         } else if (!pte_none(*ptep))
2819                 goto unlock_abort;
2820
2821         /*
2822          * Check for userfaultfd but do not deliver the fault. Instead,
2823          * just back off.
2824          */
2825         if (userfaultfd_missing(vma))
2826                 goto unlock_abort;
2827
2828         inc_mm_counter(mm, MM_ANONPAGES);
2829         page_add_new_anon_rmap(page, vma, addr, false);
2830         mem_cgroup_commit_charge(page, memcg, false, false);
2831         if (!is_zone_device_page(page))
2832                 lru_cache_add_active_or_unevictable(page, vma);
2833         get_page(page);
2834
2835         if (flush) {
2836                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2837                 ptep_clear_flush_notify(vma, addr, ptep);
2838                 set_pte_at_notify(mm, addr, ptep, entry);
2839                 update_mmu_cache(vma, addr, ptep);
2840         } else {
2841                 /* No need to invalidate - it was non-present before */
2842                 set_pte_at(mm, addr, ptep, entry);
2843                 update_mmu_cache(vma, addr, ptep);
2844         }
2845
2846         pte_unmap_unlock(ptep, ptl);
2847         *src = MIGRATE_PFN_MIGRATE;
2848         return;
2849
2850 unlock_abort:
2851         pte_unmap_unlock(ptep, ptl);
2852         mem_cgroup_cancel_charge(page, memcg, false);
2853 abort:
2854         *src &= ~MIGRATE_PFN_MIGRATE;
2855 }
2856
2857 /**
2858  * migrate_vma_pages() - migrate meta-data from src page to dst page
2859  * @migrate: migrate struct containing all migration information
2860  *
2861  * This migrates struct page meta-data from source struct page to destination
2862  * struct page. This effectively finishes the migration from source page to the
2863  * destination page.
2864  */
2865 void migrate_vma_pages(struct migrate_vma *migrate)
2866 {
2867         const unsigned long npages = migrate->npages;
2868         const unsigned long start = migrate->start;
2869         struct mmu_notifier_range range;
2870         unsigned long addr, i;
2871         bool notified = false;
2872
2873         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2874                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2875                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2876                 struct address_space *mapping;
2877                 int r;
2878
2879                 if (!newpage) {
2880                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2881                         continue;
2882                 }
2883
2884                 if (!page) {
2885                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2886                                 continue;
2887                         if (!notified) {
2888                                 notified = true;
2889
2890                                 mmu_notifier_range_init(&range,
2891                                                         MMU_NOTIFY_CLEAR, 0,
2892                                                         NULL,
2893                                                         migrate->vma->vm_mm,
2894                                                         addr, migrate->end);
2895                                 mmu_notifier_invalidate_range_start(&range);
2896                         }
2897                         migrate_vma_insert_page(migrate, addr, newpage,
2898                                                 &migrate->src[i],
2899                                                 &migrate->dst[i]);
2900                         continue;
2901                 }
2902
2903                 mapping = page_mapping(page);
2904
2905                 if (is_zone_device_page(newpage)) {
2906                         if (is_device_private_page(newpage)) {
2907                                 /*
2908                                  * For now only support private anonymous when
2909                                  * migrating to un-addressable device memory.
2910                                  */
2911                                 if (mapping) {
2912                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2913                                         continue;
2914                                 }
2915                         } else {
2916                                 /*
2917                                  * Other types of ZONE_DEVICE page are not
2918                                  * supported.
2919                                  */
2920                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2921                                 continue;
2922                         }
2923                 }
2924
2925                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2926                 if (r != MIGRATEPAGE_SUCCESS)
2927                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2928         }
2929
2930         /*
2931          * No need to double call mmu_notifier->invalidate_range() callback as
2932          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2933          * did already call it.
2934          */
2935         if (notified)
2936                 mmu_notifier_invalidate_range_only_end(&range);
2937 }
2938 EXPORT_SYMBOL(migrate_vma_pages);
2939
2940 /**
2941  * migrate_vma_finalize() - restore CPU page table entry
2942  * @migrate: migrate struct containing all migration information
2943  *
2944  * This replaces the special migration pte entry with either a mapping to the
2945  * new page if migration was successful for that page, or to the original page
2946  * otherwise.
2947  *
2948  * This also unlocks the pages and puts them back on the lru, or drops the extra
2949  * refcount, for device pages.
2950  */
2951 void migrate_vma_finalize(struct migrate_vma *migrate)
2952 {
2953         const unsigned long npages = migrate->npages;
2954         unsigned long i;
2955
2956         for (i = 0; i < npages; i++) {
2957                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2958                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2959
2960                 if (!page) {
2961                         if (newpage) {
2962                                 unlock_page(newpage);
2963                                 put_page(newpage);
2964                         }
2965                         continue;
2966                 }
2967
2968                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2969                         if (newpage) {
2970                                 unlock_page(newpage);
2971                                 put_page(newpage);
2972                         }
2973                         newpage = page;
2974                 }
2975
2976                 remove_migration_ptes(page, newpage, false);
2977                 unlock_page(page);
2978                 migrate->cpages--;
2979
2980                 if (is_zone_device_page(page))
2981                         put_page(page);
2982                 else
2983                         putback_lru_page(page);
2984
2985                 if (newpage != page) {
2986                         unlock_page(newpage);
2987                         if (is_zone_device_page(newpage))
2988                                 put_page(newpage);
2989                         else
2990                                 putback_lru_page(newpage);
2991                 }
2992         }
2993 }
2994 EXPORT_SYMBOL(migrate_vma_finalize);
2995 #endif /* CONFIG_DEVICE_PRIVATE */