Merge branch 'for-5.10/block' into for-5.10/drivers
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_lru(page), -thp_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #endif
234
235                 get_page(new);
236                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237                 if (pte_swp_soft_dirty(*pvmw.pte))
238                         pte = pte_mksoft_dirty(pte);
239
240                 /*
241                  * Recheck VMA as permissions can change since migration started
242                  */
243                 entry = pte_to_swp_entry(*pvmw.pte);
244                 if (is_write_migration_entry(entry))
245                         pte = maybe_mkwrite(pte, vma);
246                 else if (pte_swp_uffd_wp(*pvmw.pte))
247                         pte = pte_mkuffd_wp(pte);
248
249                 if (unlikely(is_device_private_page(new))) {
250                         entry = make_device_private_entry(new, pte_write(pte));
251                         pte = swp_entry_to_pte(entry);
252                         if (pte_swp_soft_dirty(*pvmw.pte))
253                                 pte = pte_swp_mksoft_dirty(pte);
254                         if (pte_swp_uffd_wp(*pvmw.pte))
255                                 pte = pte_swp_mkuffd_wp(pte);
256                 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259                 if (PageHuge(new)) {
260                         pte = pte_mkhuge(pte);
261                         pte = arch_make_huge_pte(pte, vma, new, 0);
262                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263                         if (PageAnon(new))
264                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
265                         else
266                                 page_dup_rmap(new, true);
267                 } else
268 #endif
269                 {
270                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272                         if (PageAnon(new))
273                                 page_add_anon_rmap(new, vma, pvmw.address, false);
274                         else
275                                 page_add_file_rmap(new, false);
276                 }
277                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278                         mlock_vma_page(new);
279
280                 if (PageTransHuge(page) && PageMlocked(page))
281                         clear_page_mlock(page);
282
283                 /* No need to invalidate - it was non-present before */
284                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285         }
286
287         return true;
288 }
289
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296         struct rmap_walk_control rwc = {
297                 .rmap_one = remove_migration_pte,
298                 .arg = old,
299         };
300
301         if (locked)
302                 rmap_walk_locked(new, &rwc);
303         else
304                 rmap_walk(new, &rwc);
305 }
306
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313                                 spinlock_t *ptl)
314 {
315         pte_t pte;
316         swp_entry_t entry;
317         struct page *page;
318
319         spin_lock(ptl);
320         pte = *ptep;
321         if (!is_swap_pte(pte))
322                 goto out;
323
324         entry = pte_to_swp_entry(pte);
325         if (!is_migration_entry(entry))
326                 goto out;
327
328         page = migration_entry_to_page(entry);
329
330         /*
331          * Once page cache replacement of page migration started, page_count
332          * is zero; but we must not call put_and_wait_on_page_locked() without
333          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334          */
335         if (!get_page_unless_zero(page))
336                 goto out;
337         pte_unmap_unlock(ptep, ptl);
338         put_and_wait_on_page_locked(page);
339         return;
340 out:
341         pte_unmap_unlock(ptep, ptl);
342 }
343
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345                                 unsigned long address)
346 {
347         spinlock_t *ptl = pte_lockptr(mm, pmd);
348         pte_t *ptep = pte_offset_map(pmd, address);
349         __migration_entry_wait(mm, ptep, ptl);
350 }
351
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353                 struct mm_struct *mm, pte_t *pte)
354 {
355         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356         __migration_entry_wait(mm, pte, ptl);
357 }
358
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362         spinlock_t *ptl;
363         struct page *page;
364
365         ptl = pmd_lock(mm, pmd);
366         if (!is_pmd_migration_entry(*pmd))
367                 goto unlock;
368         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369         if (!get_page_unless_zero(page))
370                 goto unlock;
371         spin_unlock(ptl);
372         put_and_wait_on_page_locked(page);
373         return;
374 unlock:
375         spin_unlock(ptl);
376 }
377 #endif
378
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381         int expected_count = 1;
382
383         /*
384          * Device public or private pages have an extra refcount as they are
385          * ZONE_DEVICE pages.
386          */
387         expected_count += is_device_private_page(page);
388         if (mapping)
389                 expected_count += thp_nr_pages(page) + page_has_private(page);
390
391         return expected_count;
392 }
393
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403                 struct page *newpage, struct page *page, int extra_count)
404 {
405         XA_STATE(xas, &mapping->i_pages, page_index(page));
406         struct zone *oldzone, *newzone;
407         int dirty;
408         int expected_count = expected_page_refs(mapping, page) + extra_count;
409
410         if (!mapping) {
411                 /* Anonymous page without mapping */
412                 if (page_count(page) != expected_count)
413                         return -EAGAIN;
414
415                 /* No turning back from here */
416                 newpage->index = page->index;
417                 newpage->mapping = page->mapping;
418                 if (PageSwapBacked(page))
419                         __SetPageSwapBacked(newpage);
420
421                 return MIGRATEPAGE_SUCCESS;
422         }
423
424         oldzone = page_zone(page);
425         newzone = page_zone(newpage);
426
427         xas_lock_irq(&xas);
428         if (page_count(page) != expected_count || xas_load(&xas) != page) {
429                 xas_unlock_irq(&xas);
430                 return -EAGAIN;
431         }
432
433         if (!page_ref_freeze(page, expected_count)) {
434                 xas_unlock_irq(&xas);
435                 return -EAGAIN;
436         }
437
438         /*
439          * Now we know that no one else is looking at the page:
440          * no turning back from here.
441          */
442         newpage->index = page->index;
443         newpage->mapping = page->mapping;
444         page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
445         if (PageSwapBacked(page)) {
446                 __SetPageSwapBacked(newpage);
447                 if (PageSwapCache(page)) {
448                         SetPageSwapCache(newpage);
449                         set_page_private(newpage, page_private(page));
450                 }
451         } else {
452                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
453         }
454
455         /* Move dirty while page refs frozen and newpage not yet exposed */
456         dirty = PageDirty(page);
457         if (dirty) {
458                 ClearPageDirty(page);
459                 SetPageDirty(newpage);
460         }
461
462         xas_store(&xas, newpage);
463         if (PageTransHuge(page)) {
464                 int i;
465
466                 for (i = 1; i < HPAGE_PMD_NR; i++) {
467                         xas_next(&xas);
468                         xas_store(&xas, newpage);
469                 }
470         }
471
472         /*
473          * Drop cache reference from old page by unfreezing
474          * to one less reference.
475          * We know this isn't the last reference.
476          */
477         page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
478
479         xas_unlock(&xas);
480         /* Leave irq disabled to prevent preemption while updating stats */
481
482         /*
483          * If moved to a different zone then also account
484          * the page for that zone. Other VM counters will be
485          * taken care of when we establish references to the
486          * new page and drop references to the old page.
487          *
488          * Note that anonymous pages are accounted for
489          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490          * are mapped to swap space.
491          */
492         if (newzone != oldzone) {
493                 struct lruvec *old_lruvec, *new_lruvec;
494                 struct mem_cgroup *memcg;
495
496                 memcg = page_memcg(page);
497                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499
500                 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501                 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
502                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
503                         __dec_lruvec_state(old_lruvec, NR_SHMEM);
504                         __inc_lruvec_state(new_lruvec, NR_SHMEM);
505                 }
506                 if (dirty && mapping_can_writeback(mapping)) {
507                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
508                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
509                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
510                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
511                 }
512         }
513         local_irq_enable();
514
515         return MIGRATEPAGE_SUCCESS;
516 }
517 EXPORT_SYMBOL(migrate_page_move_mapping);
518
519 /*
520  * The expected number of remaining references is the same as that
521  * of migrate_page_move_mapping().
522  */
523 int migrate_huge_page_move_mapping(struct address_space *mapping,
524                                    struct page *newpage, struct page *page)
525 {
526         XA_STATE(xas, &mapping->i_pages, page_index(page));
527         int expected_count;
528
529         xas_lock_irq(&xas);
530         expected_count = 2 + page_has_private(page);
531         if (page_count(page) != expected_count || xas_load(&xas) != page) {
532                 xas_unlock_irq(&xas);
533                 return -EAGAIN;
534         }
535
536         if (!page_ref_freeze(page, expected_count)) {
537                 xas_unlock_irq(&xas);
538                 return -EAGAIN;
539         }
540
541         newpage->index = page->index;
542         newpage->mapping = page->mapping;
543
544         get_page(newpage);
545
546         xas_store(&xas, newpage);
547
548         page_ref_unfreeze(page, expected_count - 1);
549
550         xas_unlock_irq(&xas);
551
552         return MIGRATEPAGE_SUCCESS;
553 }
554
555 /*
556  * Gigantic pages are so large that we do not guarantee that page++ pointer
557  * arithmetic will work across the entire page.  We need something more
558  * specialized.
559  */
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561                                 int nr_pages)
562 {
563         int i;
564         struct page *dst_base = dst;
565         struct page *src_base = src;
566
567         for (i = 0; i < nr_pages; ) {
568                 cond_resched();
569                 copy_highpage(dst, src);
570
571                 i++;
572                 dst = mem_map_next(dst, dst_base, i);
573                 src = mem_map_next(src, src_base, i);
574         }
575 }
576
577 static void copy_huge_page(struct page *dst, struct page *src)
578 {
579         int i;
580         int nr_pages;
581
582         if (PageHuge(src)) {
583                 /* hugetlbfs page */
584                 struct hstate *h = page_hstate(src);
585                 nr_pages = pages_per_huge_page(h);
586
587                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588                         __copy_gigantic_page(dst, src, nr_pages);
589                         return;
590                 }
591         } else {
592                 /* thp page */
593                 BUG_ON(!PageTransHuge(src));
594                 nr_pages = thp_nr_pages(src);
595         }
596
597         for (i = 0; i < nr_pages; i++) {
598                 cond_resched();
599                 copy_highpage(dst + i, src + i);
600         }
601 }
602
603 /*
604  * Copy the page to its new location
605  */
606 void migrate_page_states(struct page *newpage, struct page *page)
607 {
608         int cpupid;
609
610         if (PageError(page))
611                 SetPageError(newpage);
612         if (PageReferenced(page))
613                 SetPageReferenced(newpage);
614         if (PageUptodate(page))
615                 SetPageUptodate(newpage);
616         if (TestClearPageActive(page)) {
617                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
618                 SetPageActive(newpage);
619         } else if (TestClearPageUnevictable(page))
620                 SetPageUnevictable(newpage);
621         if (PageWorkingset(page))
622                 SetPageWorkingset(newpage);
623         if (PageChecked(page))
624                 SetPageChecked(newpage);
625         if (PageMappedToDisk(page))
626                 SetPageMappedToDisk(newpage);
627
628         /* Move dirty on pages not done by migrate_page_move_mapping() */
629         if (PageDirty(page))
630                 SetPageDirty(newpage);
631
632         if (page_is_young(page))
633                 set_page_young(newpage);
634         if (page_is_idle(page))
635                 set_page_idle(newpage);
636
637         /*
638          * Copy NUMA information to the new page, to prevent over-eager
639          * future migrations of this same page.
640          */
641         cpupid = page_cpupid_xchg_last(page, -1);
642         page_cpupid_xchg_last(newpage, cpupid);
643
644         ksm_migrate_page(newpage, page);
645         /*
646          * Please do not reorder this without considering how mm/ksm.c's
647          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648          */
649         if (PageSwapCache(page))
650                 ClearPageSwapCache(page);
651         ClearPagePrivate(page);
652         set_page_private(page, 0);
653
654         /*
655          * If any waiters have accumulated on the new page then
656          * wake them up.
657          */
658         if (PageWriteback(newpage))
659                 end_page_writeback(newpage);
660
661         /*
662          * PG_readahead shares the same bit with PG_reclaim.  The above
663          * end_page_writeback() may clear PG_readahead mistakenly, so set the
664          * bit after that.
665          */
666         if (PageReadahead(page))
667                 SetPageReadahead(newpage);
668
669         copy_page_owner(page, newpage);
670
671         if (!PageHuge(page))
672                 mem_cgroup_migrate(page, newpage);
673 }
674 EXPORT_SYMBOL(migrate_page_states);
675
676 void migrate_page_copy(struct page *newpage, struct page *page)
677 {
678         if (PageHuge(page) || PageTransHuge(page))
679                 copy_huge_page(newpage, page);
680         else
681                 copy_highpage(newpage, page);
682
683         migrate_page_states(newpage, page);
684 }
685 EXPORT_SYMBOL(migrate_page_copy);
686
687 /************************************************************
688  *                    Migration functions
689  ***********************************************************/
690
691 /*
692  * Common logic to directly migrate a single LRU page suitable for
693  * pages that do not use PagePrivate/PagePrivate2.
694  *
695  * Pages are locked upon entry and exit.
696  */
697 int migrate_page(struct address_space *mapping,
698                 struct page *newpage, struct page *page,
699                 enum migrate_mode mode)
700 {
701         int rc;
702
703         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
704
705         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
706
707         if (rc != MIGRATEPAGE_SUCCESS)
708                 return rc;
709
710         if (mode != MIGRATE_SYNC_NO_COPY)
711                 migrate_page_copy(newpage, page);
712         else
713                 migrate_page_states(newpage, page);
714         return MIGRATEPAGE_SUCCESS;
715 }
716 EXPORT_SYMBOL(migrate_page);
717
718 #ifdef CONFIG_BLOCK
719 /* Returns true if all buffers are successfully locked */
720 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
721                                                         enum migrate_mode mode)
722 {
723         struct buffer_head *bh = head;
724
725         /* Simple case, sync compaction */
726         if (mode != MIGRATE_ASYNC) {
727                 do {
728                         lock_buffer(bh);
729                         bh = bh->b_this_page;
730
731                 } while (bh != head);
732
733                 return true;
734         }
735
736         /* async case, we cannot block on lock_buffer so use trylock_buffer */
737         do {
738                 if (!trylock_buffer(bh)) {
739                         /*
740                          * We failed to lock the buffer and cannot stall in
741                          * async migration. Release the taken locks
742                          */
743                         struct buffer_head *failed_bh = bh;
744                         bh = head;
745                         while (bh != failed_bh) {
746                                 unlock_buffer(bh);
747                                 bh = bh->b_this_page;
748                         }
749                         return false;
750                 }
751
752                 bh = bh->b_this_page;
753         } while (bh != head);
754         return true;
755 }
756
757 static int __buffer_migrate_page(struct address_space *mapping,
758                 struct page *newpage, struct page *page, enum migrate_mode mode,
759                 bool check_refs)
760 {
761         struct buffer_head *bh, *head;
762         int rc;
763         int expected_count;
764
765         if (!page_has_buffers(page))
766                 return migrate_page(mapping, newpage, page, mode);
767
768         /* Check whether page does not have extra refs before we do more work */
769         expected_count = expected_page_refs(mapping, page);
770         if (page_count(page) != expected_count)
771                 return -EAGAIN;
772
773         head = page_buffers(page);
774         if (!buffer_migrate_lock_buffers(head, mode))
775                 return -EAGAIN;
776
777         if (check_refs) {
778                 bool busy;
779                 bool invalidated = false;
780
781 recheck_buffers:
782                 busy = false;
783                 spin_lock(&mapping->private_lock);
784                 bh = head;
785                 do {
786                         if (atomic_read(&bh->b_count)) {
787                                 busy = true;
788                                 break;
789                         }
790                         bh = bh->b_this_page;
791                 } while (bh != head);
792                 if (busy) {
793                         if (invalidated) {
794                                 rc = -EAGAIN;
795                                 goto unlock_buffers;
796                         }
797                         spin_unlock(&mapping->private_lock);
798                         invalidate_bh_lrus();
799                         invalidated = true;
800                         goto recheck_buffers;
801                 }
802         }
803
804         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
805         if (rc != MIGRATEPAGE_SUCCESS)
806                 goto unlock_buffers;
807
808         attach_page_private(newpage, detach_page_private(page));
809
810         bh = head;
811         do {
812                 set_bh_page(bh, newpage, bh_offset(bh));
813                 bh = bh->b_this_page;
814
815         } while (bh != head);
816
817         if (mode != MIGRATE_SYNC_NO_COPY)
818                 migrate_page_copy(newpage, page);
819         else
820                 migrate_page_states(newpage, page);
821
822         rc = MIGRATEPAGE_SUCCESS;
823 unlock_buffers:
824         if (check_refs)
825                 spin_unlock(&mapping->private_lock);
826         bh = head;
827         do {
828                 unlock_buffer(bh);
829                 bh = bh->b_this_page;
830
831         } while (bh != head);
832
833         return rc;
834 }
835
836 /*
837  * Migration function for pages with buffers. This function can only be used
838  * if the underlying filesystem guarantees that no other references to "page"
839  * exist. For example attached buffer heads are accessed only under page lock.
840  */
841 int buffer_migrate_page(struct address_space *mapping,
842                 struct page *newpage, struct page *page, enum migrate_mode mode)
843 {
844         return __buffer_migrate_page(mapping, newpage, page, mode, false);
845 }
846 EXPORT_SYMBOL(buffer_migrate_page);
847
848 /*
849  * Same as above except that this variant is more careful and checks that there
850  * are also no buffer head references. This function is the right one for
851  * mappings where buffer heads are directly looked up and referenced (such as
852  * block device mappings).
853  */
854 int buffer_migrate_page_norefs(struct address_space *mapping,
855                 struct page *newpage, struct page *page, enum migrate_mode mode)
856 {
857         return __buffer_migrate_page(mapping, newpage, page, mode, true);
858 }
859 #endif
860
861 /*
862  * Writeback a page to clean the dirty state
863  */
864 static int writeout(struct address_space *mapping, struct page *page)
865 {
866         struct writeback_control wbc = {
867                 .sync_mode = WB_SYNC_NONE,
868                 .nr_to_write = 1,
869                 .range_start = 0,
870                 .range_end = LLONG_MAX,
871                 .for_reclaim = 1
872         };
873         int rc;
874
875         if (!mapping->a_ops->writepage)
876                 /* No write method for the address space */
877                 return -EINVAL;
878
879         if (!clear_page_dirty_for_io(page))
880                 /* Someone else already triggered a write */
881                 return -EAGAIN;
882
883         /*
884          * A dirty page may imply that the underlying filesystem has
885          * the page on some queue. So the page must be clean for
886          * migration. Writeout may mean we loose the lock and the
887          * page state is no longer what we checked for earlier.
888          * At this point we know that the migration attempt cannot
889          * be successful.
890          */
891         remove_migration_ptes(page, page, false);
892
893         rc = mapping->a_ops->writepage(page, &wbc);
894
895         if (rc != AOP_WRITEPAGE_ACTIVATE)
896                 /* unlocked. Relock */
897                 lock_page(page);
898
899         return (rc < 0) ? -EIO : -EAGAIN;
900 }
901
902 /*
903  * Default handling if a filesystem does not provide a migration function.
904  */
905 static int fallback_migrate_page(struct address_space *mapping,
906         struct page *newpage, struct page *page, enum migrate_mode mode)
907 {
908         if (PageDirty(page)) {
909                 /* Only writeback pages in full synchronous migration */
910                 switch (mode) {
911                 case MIGRATE_SYNC:
912                 case MIGRATE_SYNC_NO_COPY:
913                         break;
914                 default:
915                         return -EBUSY;
916                 }
917                 return writeout(mapping, page);
918         }
919
920         /*
921          * Buffers may be managed in a filesystem specific way.
922          * We must have no buffers or drop them.
923          */
924         if (page_has_private(page) &&
925             !try_to_release_page(page, GFP_KERNEL))
926                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
927
928         return migrate_page(mapping, newpage, page, mode);
929 }
930
931 /*
932  * Move a page to a newly allocated page
933  * The page is locked and all ptes have been successfully removed.
934  *
935  * The new page will have replaced the old page if this function
936  * is successful.
937  *
938  * Return value:
939  *   < 0 - error code
940  *  MIGRATEPAGE_SUCCESS - success
941  */
942 static int move_to_new_page(struct page *newpage, struct page *page,
943                                 enum migrate_mode mode)
944 {
945         struct address_space *mapping;
946         int rc = -EAGAIN;
947         bool is_lru = !__PageMovable(page);
948
949         VM_BUG_ON_PAGE(!PageLocked(page), page);
950         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
951
952         mapping = page_mapping(page);
953
954         if (likely(is_lru)) {
955                 if (!mapping)
956                         rc = migrate_page(mapping, newpage, page, mode);
957                 else if (mapping->a_ops->migratepage)
958                         /*
959                          * Most pages have a mapping and most filesystems
960                          * provide a migratepage callback. Anonymous pages
961                          * are part of swap space which also has its own
962                          * migratepage callback. This is the most common path
963                          * for page migration.
964                          */
965                         rc = mapping->a_ops->migratepage(mapping, newpage,
966                                                         page, mode);
967                 else
968                         rc = fallback_migrate_page(mapping, newpage,
969                                                         page, mode);
970         } else {
971                 /*
972                  * In case of non-lru page, it could be released after
973                  * isolation step. In that case, we shouldn't try migration.
974                  */
975                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
976                 if (!PageMovable(page)) {
977                         rc = MIGRATEPAGE_SUCCESS;
978                         __ClearPageIsolated(page);
979                         goto out;
980                 }
981
982                 rc = mapping->a_ops->migratepage(mapping, newpage,
983                                                 page, mode);
984                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
985                         !PageIsolated(page));
986         }
987
988         /*
989          * When successful, old pagecache page->mapping must be cleared before
990          * page is freed; but stats require that PageAnon be left as PageAnon.
991          */
992         if (rc == MIGRATEPAGE_SUCCESS) {
993                 if (__PageMovable(page)) {
994                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
995
996                         /*
997                          * We clear PG_movable under page_lock so any compactor
998                          * cannot try to migrate this page.
999                          */
1000                         __ClearPageIsolated(page);
1001                 }
1002
1003                 /*
1004                  * Anonymous and movable page->mapping will be cleared by
1005                  * free_pages_prepare so don't reset it here for keeping
1006                  * the type to work PageAnon, for example.
1007                  */
1008                 if (!PageMappingFlags(page))
1009                         page->mapping = NULL;
1010
1011                 if (likely(!is_zone_device_page(newpage)))
1012                         flush_dcache_page(newpage);
1013
1014         }
1015 out:
1016         return rc;
1017 }
1018
1019 static int __unmap_and_move(struct page *page, struct page *newpage,
1020                                 int force, enum migrate_mode mode)
1021 {
1022         int rc = -EAGAIN;
1023         int page_was_mapped = 0;
1024         struct anon_vma *anon_vma = NULL;
1025         bool is_lru = !__PageMovable(page);
1026
1027         if (!trylock_page(page)) {
1028                 if (!force || mode == MIGRATE_ASYNC)
1029                         goto out;
1030
1031                 /*
1032                  * It's not safe for direct compaction to call lock_page.
1033                  * For example, during page readahead pages are added locked
1034                  * to the LRU. Later, when the IO completes the pages are
1035                  * marked uptodate and unlocked. However, the queueing
1036                  * could be merging multiple pages for one bio (e.g.
1037                  * mpage_readahead). If an allocation happens for the
1038                  * second or third page, the process can end up locking
1039                  * the same page twice and deadlocking. Rather than
1040                  * trying to be clever about what pages can be locked,
1041                  * avoid the use of lock_page for direct compaction
1042                  * altogether.
1043                  */
1044                 if (current->flags & PF_MEMALLOC)
1045                         goto out;
1046
1047                 lock_page(page);
1048         }
1049
1050         if (PageWriteback(page)) {
1051                 /*
1052                  * Only in the case of a full synchronous migration is it
1053                  * necessary to wait for PageWriteback. In the async case,
1054                  * the retry loop is too short and in the sync-light case,
1055                  * the overhead of stalling is too much
1056                  */
1057                 switch (mode) {
1058                 case MIGRATE_SYNC:
1059                 case MIGRATE_SYNC_NO_COPY:
1060                         break;
1061                 default:
1062                         rc = -EBUSY;
1063                         goto out_unlock;
1064                 }
1065                 if (!force)
1066                         goto out_unlock;
1067                 wait_on_page_writeback(page);
1068         }
1069
1070         /*
1071          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1072          * we cannot notice that anon_vma is freed while we migrates a page.
1073          * This get_anon_vma() delays freeing anon_vma pointer until the end
1074          * of migration. File cache pages are no problem because of page_lock()
1075          * File Caches may use write_page() or lock_page() in migration, then,
1076          * just care Anon page here.
1077          *
1078          * Only page_get_anon_vma() understands the subtleties of
1079          * getting a hold on an anon_vma from outside one of its mms.
1080          * But if we cannot get anon_vma, then we won't need it anyway,
1081          * because that implies that the anon page is no longer mapped
1082          * (and cannot be remapped so long as we hold the page lock).
1083          */
1084         if (PageAnon(page) && !PageKsm(page))
1085                 anon_vma = page_get_anon_vma(page);
1086
1087         /*
1088          * Block others from accessing the new page when we get around to
1089          * establishing additional references. We are usually the only one
1090          * holding a reference to newpage at this point. We used to have a BUG
1091          * here if trylock_page(newpage) fails, but would like to allow for
1092          * cases where there might be a race with the previous use of newpage.
1093          * This is much like races on refcount of oldpage: just don't BUG().
1094          */
1095         if (unlikely(!trylock_page(newpage)))
1096                 goto out_unlock;
1097
1098         if (unlikely(!is_lru)) {
1099                 rc = move_to_new_page(newpage, page, mode);
1100                 goto out_unlock_both;
1101         }
1102
1103         /*
1104          * Corner case handling:
1105          * 1. When a new swap-cache page is read into, it is added to the LRU
1106          * and treated as swapcache but it has no rmap yet.
1107          * Calling try_to_unmap() against a page->mapping==NULL page will
1108          * trigger a BUG.  So handle it here.
1109          * 2. An orphaned page (see truncate_complete_page) might have
1110          * fs-private metadata. The page can be picked up due to memory
1111          * offlining.  Everywhere else except page reclaim, the page is
1112          * invisible to the vm, so the page can not be migrated.  So try to
1113          * free the metadata, so the page can be freed.
1114          */
1115         if (!page->mapping) {
1116                 VM_BUG_ON_PAGE(PageAnon(page), page);
1117                 if (page_has_private(page)) {
1118                         try_to_free_buffers(page);
1119                         goto out_unlock_both;
1120                 }
1121         } else if (page_mapped(page)) {
1122                 /* Establish migration ptes */
1123                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1124                                 page);
1125                 try_to_unmap(page,
1126                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1127                 page_was_mapped = 1;
1128         }
1129
1130         if (!page_mapped(page))
1131                 rc = move_to_new_page(newpage, page, mode);
1132
1133         if (page_was_mapped)
1134                 remove_migration_ptes(page,
1135                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1136
1137 out_unlock_both:
1138         unlock_page(newpage);
1139 out_unlock:
1140         /* Drop an anon_vma reference if we took one */
1141         if (anon_vma)
1142                 put_anon_vma(anon_vma);
1143         unlock_page(page);
1144 out:
1145         /*
1146          * If migration is successful, decrease refcount of the newpage
1147          * which will not free the page because new page owner increased
1148          * refcounter. As well, if it is LRU page, add the page to LRU
1149          * list in here. Use the old state of the isolated source page to
1150          * determine if we migrated a LRU page. newpage was already unlocked
1151          * and possibly modified by its owner - don't rely on the page
1152          * state.
1153          */
1154         if (rc == MIGRATEPAGE_SUCCESS) {
1155                 if (unlikely(!is_lru))
1156                         put_page(newpage);
1157                 else
1158                         putback_lru_page(newpage);
1159         }
1160
1161         return rc;
1162 }
1163
1164 /*
1165  * Obtain the lock on page, remove all ptes and migrate the page
1166  * to the newly allocated page in newpage.
1167  */
1168 static int unmap_and_move(new_page_t get_new_page,
1169                                    free_page_t put_new_page,
1170                                    unsigned long private, struct page *page,
1171                                    int force, enum migrate_mode mode,
1172                                    enum migrate_reason reason)
1173 {
1174         int rc = MIGRATEPAGE_SUCCESS;
1175         struct page *newpage = NULL;
1176
1177         if (!thp_migration_supported() && PageTransHuge(page))
1178                 return -ENOMEM;
1179
1180         if (page_count(page) == 1) {
1181                 /* page was freed from under us. So we are done. */
1182                 ClearPageActive(page);
1183                 ClearPageUnevictable(page);
1184                 if (unlikely(__PageMovable(page))) {
1185                         lock_page(page);
1186                         if (!PageMovable(page))
1187                                 __ClearPageIsolated(page);
1188                         unlock_page(page);
1189                 }
1190                 goto out;
1191         }
1192
1193         newpage = get_new_page(page, private);
1194         if (!newpage)
1195                 return -ENOMEM;
1196
1197         rc = __unmap_and_move(page, newpage, force, mode);
1198         if (rc == MIGRATEPAGE_SUCCESS)
1199                 set_page_owner_migrate_reason(newpage, reason);
1200
1201 out:
1202         if (rc != -EAGAIN) {
1203                 /*
1204                  * A page that has been migrated has all references
1205                  * removed and will be freed. A page that has not been
1206                  * migrated will have kept its references and be restored.
1207                  */
1208                 list_del(&page->lru);
1209
1210                 /*
1211                  * Compaction can migrate also non-LRU pages which are
1212                  * not accounted to NR_ISOLATED_*. They can be recognized
1213                  * as __PageMovable
1214                  */
1215                 if (likely(!__PageMovable(page)))
1216                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217                                         page_is_file_lru(page), -thp_nr_pages(page));
1218         }
1219
1220         /*
1221          * If migration is successful, releases reference grabbed during
1222          * isolation. Otherwise, restore the page to right list unless
1223          * we want to retry.
1224          */
1225         if (rc == MIGRATEPAGE_SUCCESS) {
1226                 put_page(page);
1227                 if (reason == MR_MEMORY_FAILURE) {
1228                         /*
1229                          * Set PG_HWPoison on just freed page
1230                          * intentionally. Although it's rather weird,
1231                          * it's how HWPoison flag works at the moment.
1232                          */
1233                         if (set_hwpoison_free_buddy_page(page))
1234                                 num_poisoned_pages_inc();
1235                 }
1236         } else {
1237                 if (rc != -EAGAIN) {
1238                         if (likely(!__PageMovable(page))) {
1239                                 putback_lru_page(page);
1240                                 goto put_new;
1241                         }
1242
1243                         lock_page(page);
1244                         if (PageMovable(page))
1245                                 putback_movable_page(page);
1246                         else
1247                                 __ClearPageIsolated(page);
1248                         unlock_page(page);
1249                         put_page(page);
1250                 }
1251 put_new:
1252                 if (put_new_page)
1253                         put_new_page(newpage, private);
1254                 else
1255                         put_page(newpage);
1256         }
1257
1258         return rc;
1259 }
1260
1261 /*
1262  * Counterpart of unmap_and_move_page() for hugepage migration.
1263  *
1264  * This function doesn't wait the completion of hugepage I/O
1265  * because there is no race between I/O and migration for hugepage.
1266  * Note that currently hugepage I/O occurs only in direct I/O
1267  * where no lock is held and PG_writeback is irrelevant,
1268  * and writeback status of all subpages are counted in the reference
1269  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1270  * under direct I/O, the reference of the head page is 512 and a bit more.)
1271  * This means that when we try to migrate hugepage whose subpages are
1272  * doing direct I/O, some references remain after try_to_unmap() and
1273  * hugepage migration fails without data corruption.
1274  *
1275  * There is also no race when direct I/O is issued on the page under migration,
1276  * because then pte is replaced with migration swap entry and direct I/O code
1277  * will wait in the page fault for migration to complete.
1278  */
1279 static int unmap_and_move_huge_page(new_page_t get_new_page,
1280                                 free_page_t put_new_page, unsigned long private,
1281                                 struct page *hpage, int force,
1282                                 enum migrate_mode mode, int reason)
1283 {
1284         int rc = -EAGAIN;
1285         int page_was_mapped = 0;
1286         struct page *new_hpage;
1287         struct anon_vma *anon_vma = NULL;
1288         struct address_space *mapping = NULL;
1289
1290         /*
1291          * Migratability of hugepages depends on architectures and their size.
1292          * This check is necessary because some callers of hugepage migration
1293          * like soft offline and memory hotremove don't walk through page
1294          * tables or check whether the hugepage is pmd-based or not before
1295          * kicking migration.
1296          */
1297         if (!hugepage_migration_supported(page_hstate(hpage))) {
1298                 putback_active_hugepage(hpage);
1299                 return -ENOSYS;
1300         }
1301
1302         new_hpage = get_new_page(hpage, private);
1303         if (!new_hpage)
1304                 return -ENOMEM;
1305
1306         if (!trylock_page(hpage)) {
1307                 if (!force)
1308                         goto out;
1309                 switch (mode) {
1310                 case MIGRATE_SYNC:
1311                 case MIGRATE_SYNC_NO_COPY:
1312                         break;
1313                 default:
1314                         goto out;
1315                 }
1316                 lock_page(hpage);
1317         }
1318
1319         /*
1320          * Check for pages which are in the process of being freed.  Without
1321          * page_mapping() set, hugetlbfs specific move page routine will not
1322          * be called and we could leak usage counts for subpools.
1323          */
1324         if (page_private(hpage) && !page_mapping(hpage)) {
1325                 rc = -EBUSY;
1326                 goto out_unlock;
1327         }
1328
1329         if (PageAnon(hpage))
1330                 anon_vma = page_get_anon_vma(hpage);
1331
1332         if (unlikely(!trylock_page(new_hpage)))
1333                 goto put_anon;
1334
1335         if (page_mapped(hpage)) {
1336                 /*
1337                  * try_to_unmap could potentially call huge_pmd_unshare.
1338                  * Because of this, take semaphore in write mode here and
1339                  * set TTU_RMAP_LOCKED to let lower levels know we have
1340                  * taken the lock.
1341                  */
1342                 mapping = hugetlb_page_mapping_lock_write(hpage);
1343                 if (unlikely(!mapping))
1344                         goto unlock_put_anon;
1345
1346                 try_to_unmap(hpage,
1347                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1348                         TTU_RMAP_LOCKED);
1349                 page_was_mapped = 1;
1350                 /*
1351                  * Leave mapping locked until after subsequent call to
1352                  * remove_migration_ptes()
1353                  */
1354         }
1355
1356         if (!page_mapped(hpage))
1357                 rc = move_to_new_page(new_hpage, hpage, mode);
1358
1359         if (page_was_mapped) {
1360                 remove_migration_ptes(hpage,
1361                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1362                 i_mmap_unlock_write(mapping);
1363         }
1364
1365 unlock_put_anon:
1366         unlock_page(new_hpage);
1367
1368 put_anon:
1369         if (anon_vma)
1370                 put_anon_vma(anon_vma);
1371
1372         if (rc == MIGRATEPAGE_SUCCESS) {
1373                 move_hugetlb_state(hpage, new_hpage, reason);
1374                 put_new_page = NULL;
1375         }
1376
1377 out_unlock:
1378         unlock_page(hpage);
1379 out:
1380         if (rc != -EAGAIN)
1381                 putback_active_hugepage(hpage);
1382
1383         /*
1384          * If migration was not successful and there's a freeing callback, use
1385          * it.  Otherwise, put_page() will drop the reference grabbed during
1386          * isolation.
1387          */
1388         if (put_new_page)
1389                 put_new_page(new_hpage, private);
1390         else
1391                 putback_active_hugepage(new_hpage);
1392
1393         return rc;
1394 }
1395
1396 /*
1397  * migrate_pages - migrate the pages specified in a list, to the free pages
1398  *                 supplied as the target for the page migration
1399  *
1400  * @from:               The list of pages to be migrated.
1401  * @get_new_page:       The function used to allocate free pages to be used
1402  *                      as the target of the page migration.
1403  * @put_new_page:       The function used to free target pages if migration
1404  *                      fails, or NULL if no special handling is necessary.
1405  * @private:            Private data to be passed on to get_new_page()
1406  * @mode:               The migration mode that specifies the constraints for
1407  *                      page migration, if any.
1408  * @reason:             The reason for page migration.
1409  *
1410  * The function returns after 10 attempts or if no pages are movable any more
1411  * because the list has become empty or no retryable pages exist any more.
1412  * The caller should call putback_movable_pages() to return pages to the LRU
1413  * or free list only if ret != 0.
1414  *
1415  * Returns the number of pages that were not migrated, or an error code.
1416  */
1417 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1418                 free_page_t put_new_page, unsigned long private,
1419                 enum migrate_mode mode, int reason)
1420 {
1421         int retry = 1;
1422         int thp_retry = 1;
1423         int nr_failed = 0;
1424         int nr_succeeded = 0;
1425         int nr_thp_succeeded = 0;
1426         int nr_thp_failed = 0;
1427         int nr_thp_split = 0;
1428         int pass = 0;
1429         bool is_thp = false;
1430         struct page *page;
1431         struct page *page2;
1432         int swapwrite = current->flags & PF_SWAPWRITE;
1433         int rc, nr_subpages;
1434
1435         if (!swapwrite)
1436                 current->flags |= PF_SWAPWRITE;
1437
1438         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1439                 retry = 0;
1440                 thp_retry = 0;
1441
1442                 list_for_each_entry_safe(page, page2, from, lru) {
1443 retry:
1444                         /*
1445                          * THP statistics is based on the source huge page.
1446                          * Capture required information that might get lost
1447                          * during migration.
1448                          */
1449                         is_thp = PageTransHuge(page);
1450                         nr_subpages = thp_nr_pages(page);
1451                         cond_resched();
1452
1453                         if (PageHuge(page))
1454                                 rc = unmap_and_move_huge_page(get_new_page,
1455                                                 put_new_page, private, page,
1456                                                 pass > 2, mode, reason);
1457                         else
1458                                 rc = unmap_and_move(get_new_page, put_new_page,
1459                                                 private, page, pass > 2, mode,
1460                                                 reason);
1461
1462                         switch(rc) {
1463                         case -ENOMEM:
1464                                 /*
1465                                  * THP migration might be unsupported or the
1466                                  * allocation could've failed so we should
1467                                  * retry on the same page with the THP split
1468                                  * to base pages.
1469                                  *
1470                                  * Head page is retried immediately and tail
1471                                  * pages are added to the tail of the list so
1472                                  * we encounter them after the rest of the list
1473                                  * is processed.
1474                                  */
1475                                 if (PageTransHuge(page) && !PageHuge(page)) {
1476                                         lock_page(page);
1477                                         rc = split_huge_page_to_list(page, from);
1478                                         unlock_page(page);
1479                                         if (!rc) {
1480                                                 list_safe_reset_next(page, page2, lru);
1481                                                 nr_thp_split++;
1482                                                 goto retry;
1483                                         }
1484                                 }
1485                                 if (is_thp) {
1486                                         nr_thp_failed++;
1487                                         nr_failed += nr_subpages;
1488                                         goto out;
1489                                 }
1490                                 nr_failed++;
1491                                 goto out;
1492                         case -EAGAIN:
1493                                 if (is_thp) {
1494                                         thp_retry++;
1495                                         break;
1496                                 }
1497                                 retry++;
1498                                 break;
1499                         case MIGRATEPAGE_SUCCESS:
1500                                 if (is_thp) {
1501                                         nr_thp_succeeded++;
1502                                         nr_succeeded += nr_subpages;
1503                                         break;
1504                                 }
1505                                 nr_succeeded++;
1506                                 break;
1507                         default:
1508                                 /*
1509                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1510                                  * unlike -EAGAIN case, the failed page is
1511                                  * removed from migration page list and not
1512                                  * retried in the next outer loop.
1513                                  */
1514                                 if (is_thp) {
1515                                         nr_thp_failed++;
1516                                         nr_failed += nr_subpages;
1517                                         break;
1518                                 }
1519                                 nr_failed++;
1520                                 break;
1521                         }
1522                 }
1523         }
1524         nr_failed += retry + thp_retry;
1525         nr_thp_failed += thp_retry;
1526         rc = nr_failed;
1527 out:
1528         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1529         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1530         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1531         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1532         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1533         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1534                                nr_thp_failed, nr_thp_split, mode, reason);
1535
1536         if (!swapwrite)
1537                 current->flags &= ~PF_SWAPWRITE;
1538
1539         return rc;
1540 }
1541
1542 struct page *alloc_migration_target(struct page *page, unsigned long private)
1543 {
1544         struct migration_target_control *mtc;
1545         gfp_t gfp_mask;
1546         unsigned int order = 0;
1547         struct page *new_page = NULL;
1548         int nid;
1549         int zidx;
1550
1551         mtc = (struct migration_target_control *)private;
1552         gfp_mask = mtc->gfp_mask;
1553         nid = mtc->nid;
1554         if (nid == NUMA_NO_NODE)
1555                 nid = page_to_nid(page);
1556
1557         if (PageHuge(page)) {
1558                 struct hstate *h = page_hstate(compound_head(page));
1559
1560                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1561                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1562         }
1563
1564         if (PageTransHuge(page)) {
1565                 /*
1566                  * clear __GFP_RECLAIM to make the migration callback
1567                  * consistent with regular THP allocations.
1568                  */
1569                 gfp_mask &= ~__GFP_RECLAIM;
1570                 gfp_mask |= GFP_TRANSHUGE;
1571                 order = HPAGE_PMD_ORDER;
1572         }
1573         zidx = zone_idx(page_zone(page));
1574         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1575                 gfp_mask |= __GFP_HIGHMEM;
1576
1577         new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1578
1579         if (new_page && PageTransHuge(new_page))
1580                 prep_transhuge_page(new_page);
1581
1582         return new_page;
1583 }
1584
1585 #ifdef CONFIG_NUMA
1586
1587 static int store_status(int __user *status, int start, int value, int nr)
1588 {
1589         while (nr-- > 0) {
1590                 if (put_user(value, status + start))
1591                         return -EFAULT;
1592                 start++;
1593         }
1594
1595         return 0;
1596 }
1597
1598 static int do_move_pages_to_node(struct mm_struct *mm,
1599                 struct list_head *pagelist, int node)
1600 {
1601         int err;
1602         struct migration_target_control mtc = {
1603                 .nid = node,
1604                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1605         };
1606
1607         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1608                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1609         if (err)
1610                 putback_movable_pages(pagelist);
1611         return err;
1612 }
1613
1614 /*
1615  * Resolves the given address to a struct page, isolates it from the LRU and
1616  * puts it to the given pagelist.
1617  * Returns:
1618  *     errno - if the page cannot be found/isolated
1619  *     0 - when it doesn't have to be migrated because it is already on the
1620  *         target node
1621  *     1 - when it has been queued
1622  */
1623 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1624                 int node, struct list_head *pagelist, bool migrate_all)
1625 {
1626         struct vm_area_struct *vma;
1627         struct page *page;
1628         unsigned int follflags;
1629         int err;
1630
1631         mmap_read_lock(mm);
1632         err = -EFAULT;
1633         vma = find_vma(mm, addr);
1634         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1635                 goto out;
1636
1637         /* FOLL_DUMP to ignore special (like zero) pages */
1638         follflags = FOLL_GET | FOLL_DUMP;
1639         page = follow_page(vma, addr, follflags);
1640
1641         err = PTR_ERR(page);
1642         if (IS_ERR(page))
1643                 goto out;
1644
1645         err = -ENOENT;
1646         if (!page)
1647                 goto out;
1648
1649         err = 0;
1650         if (page_to_nid(page) == node)
1651                 goto out_putpage;
1652
1653         err = -EACCES;
1654         if (page_mapcount(page) > 1 && !migrate_all)
1655                 goto out_putpage;
1656
1657         if (PageHuge(page)) {
1658                 if (PageHead(page)) {
1659                         isolate_huge_page(page, pagelist);
1660                         err = 1;
1661                 }
1662         } else {
1663                 struct page *head;
1664
1665                 head = compound_head(page);
1666                 err = isolate_lru_page(head);
1667                 if (err)
1668                         goto out_putpage;
1669
1670                 err = 1;
1671                 list_add_tail(&head->lru, pagelist);
1672                 mod_node_page_state(page_pgdat(head),
1673                         NR_ISOLATED_ANON + page_is_file_lru(head),
1674                         thp_nr_pages(head));
1675         }
1676 out_putpage:
1677         /*
1678          * Either remove the duplicate refcount from
1679          * isolate_lru_page() or drop the page ref if it was
1680          * not isolated.
1681          */
1682         put_page(page);
1683 out:
1684         mmap_read_unlock(mm);
1685         return err;
1686 }
1687
1688 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1689                 struct list_head *pagelist, int __user *status,
1690                 int start, int i, unsigned long nr_pages)
1691 {
1692         int err;
1693
1694         if (list_empty(pagelist))
1695                 return 0;
1696
1697         err = do_move_pages_to_node(mm, pagelist, node);
1698         if (err) {
1699                 /*
1700                  * Positive err means the number of failed
1701                  * pages to migrate.  Since we are going to
1702                  * abort and return the number of non-migrated
1703                  * pages, so need to incude the rest of the
1704                  * nr_pages that have not been attempted as
1705                  * well.
1706                  */
1707                 if (err > 0)
1708                         err += nr_pages - i - 1;
1709                 return err;
1710         }
1711         return store_status(status, start, node, i - start);
1712 }
1713
1714 /*
1715  * Migrate an array of page address onto an array of nodes and fill
1716  * the corresponding array of status.
1717  */
1718 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1719                          unsigned long nr_pages,
1720                          const void __user * __user *pages,
1721                          const int __user *nodes,
1722                          int __user *status, int flags)
1723 {
1724         int current_node = NUMA_NO_NODE;
1725         LIST_HEAD(pagelist);
1726         int start, i;
1727         int err = 0, err1;
1728
1729         migrate_prep();
1730
1731         for (i = start = 0; i < nr_pages; i++) {
1732                 const void __user *p;
1733                 unsigned long addr;
1734                 int node;
1735
1736                 err = -EFAULT;
1737                 if (get_user(p, pages + i))
1738                         goto out_flush;
1739                 if (get_user(node, nodes + i))
1740                         goto out_flush;
1741                 addr = (unsigned long)untagged_addr(p);
1742
1743                 err = -ENODEV;
1744                 if (node < 0 || node >= MAX_NUMNODES)
1745                         goto out_flush;
1746                 if (!node_state(node, N_MEMORY))
1747                         goto out_flush;
1748
1749                 err = -EACCES;
1750                 if (!node_isset(node, task_nodes))
1751                         goto out_flush;
1752
1753                 if (current_node == NUMA_NO_NODE) {
1754                         current_node = node;
1755                         start = i;
1756                 } else if (node != current_node) {
1757                         err = move_pages_and_store_status(mm, current_node,
1758                                         &pagelist, status, start, i, nr_pages);
1759                         if (err)
1760                                 goto out;
1761                         start = i;
1762                         current_node = node;
1763                 }
1764
1765                 /*
1766                  * Errors in the page lookup or isolation are not fatal and we simply
1767                  * report them via status
1768                  */
1769                 err = add_page_for_migration(mm, addr, current_node,
1770                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1771
1772                 if (err > 0) {
1773                         /* The page is successfully queued for migration */
1774                         continue;
1775                 }
1776
1777                 /*
1778                  * If the page is already on the target node (!err), store the
1779                  * node, otherwise, store the err.
1780                  */
1781                 err = store_status(status, i, err ? : current_node, 1);
1782                 if (err)
1783                         goto out_flush;
1784
1785                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1786                                 status, start, i, nr_pages);
1787                 if (err)
1788                         goto out;
1789                 current_node = NUMA_NO_NODE;
1790         }
1791 out_flush:
1792         /* Make sure we do not overwrite the existing error */
1793         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1794                                 status, start, i, nr_pages);
1795         if (err >= 0)
1796                 err = err1;
1797 out:
1798         return err;
1799 }
1800
1801 /*
1802  * Determine the nodes of an array of pages and store it in an array of status.
1803  */
1804 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1805                                 const void __user **pages, int *status)
1806 {
1807         unsigned long i;
1808
1809         mmap_read_lock(mm);
1810
1811         for (i = 0; i < nr_pages; i++) {
1812                 unsigned long addr = (unsigned long)(*pages);
1813                 struct vm_area_struct *vma;
1814                 struct page *page;
1815                 int err = -EFAULT;
1816
1817                 vma = find_vma(mm, addr);
1818                 if (!vma || addr < vma->vm_start)
1819                         goto set_status;
1820
1821                 /* FOLL_DUMP to ignore special (like zero) pages */
1822                 page = follow_page(vma, addr, FOLL_DUMP);
1823
1824                 err = PTR_ERR(page);
1825                 if (IS_ERR(page))
1826                         goto set_status;
1827
1828                 err = page ? page_to_nid(page) : -ENOENT;
1829 set_status:
1830                 *status = err;
1831
1832                 pages++;
1833                 status++;
1834         }
1835
1836         mmap_read_unlock(mm);
1837 }
1838
1839 /*
1840  * Determine the nodes of a user array of pages and store it in
1841  * a user array of status.
1842  */
1843 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1844                          const void __user * __user *pages,
1845                          int __user *status)
1846 {
1847 #define DO_PAGES_STAT_CHUNK_NR 16
1848         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1849         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1850
1851         while (nr_pages) {
1852                 unsigned long chunk_nr;
1853
1854                 chunk_nr = nr_pages;
1855                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1856                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1857
1858                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1859                         break;
1860
1861                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1862
1863                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1864                         break;
1865
1866                 pages += chunk_nr;
1867                 status += chunk_nr;
1868                 nr_pages -= chunk_nr;
1869         }
1870         return nr_pages ? -EFAULT : 0;
1871 }
1872
1873 /*
1874  * Move a list of pages in the address space of the currently executing
1875  * process.
1876  */
1877 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1878                              const void __user * __user *pages,
1879                              const int __user *nodes,
1880                              int __user *status, int flags)
1881 {
1882         struct task_struct *task;
1883         struct mm_struct *mm;
1884         int err;
1885         nodemask_t task_nodes;
1886
1887         /* Check flags */
1888         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1889                 return -EINVAL;
1890
1891         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1892                 return -EPERM;
1893
1894         /* Find the mm_struct */
1895         rcu_read_lock();
1896         task = pid ? find_task_by_vpid(pid) : current;
1897         if (!task) {
1898                 rcu_read_unlock();
1899                 return -ESRCH;
1900         }
1901         get_task_struct(task);
1902
1903         /*
1904          * Check if this process has the right to modify the specified
1905          * process. Use the regular "ptrace_may_access()" checks.
1906          */
1907         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1908                 rcu_read_unlock();
1909                 err = -EPERM;
1910                 goto out;
1911         }
1912         rcu_read_unlock();
1913
1914         err = security_task_movememory(task);
1915         if (err)
1916                 goto out;
1917
1918         task_nodes = cpuset_mems_allowed(task);
1919         mm = get_task_mm(task);
1920         put_task_struct(task);
1921
1922         if (!mm)
1923                 return -EINVAL;
1924
1925         if (nodes)
1926                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1927                                     nodes, status, flags);
1928         else
1929                 err = do_pages_stat(mm, nr_pages, pages, status);
1930
1931         mmput(mm);
1932         return err;
1933
1934 out:
1935         put_task_struct(task);
1936         return err;
1937 }
1938
1939 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1940                 const void __user * __user *, pages,
1941                 const int __user *, nodes,
1942                 int __user *, status, int, flags)
1943 {
1944         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1945 }
1946
1947 #ifdef CONFIG_COMPAT
1948 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1949                        compat_uptr_t __user *, pages32,
1950                        const int __user *, nodes,
1951                        int __user *, status,
1952                        int, flags)
1953 {
1954         const void __user * __user *pages;
1955         int i;
1956
1957         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1958         for (i = 0; i < nr_pages; i++) {
1959                 compat_uptr_t p;
1960
1961                 if (get_user(p, pages32 + i) ||
1962                         put_user(compat_ptr(p), pages + i))
1963                         return -EFAULT;
1964         }
1965         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1966 }
1967 #endif /* CONFIG_COMPAT */
1968
1969 #ifdef CONFIG_NUMA_BALANCING
1970 /*
1971  * Returns true if this is a safe migration target node for misplaced NUMA
1972  * pages. Currently it only checks the watermarks which crude
1973  */
1974 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1975                                    unsigned long nr_migrate_pages)
1976 {
1977         int z;
1978
1979         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1980                 struct zone *zone = pgdat->node_zones + z;
1981
1982                 if (!populated_zone(zone))
1983                         continue;
1984
1985                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1986                 if (!zone_watermark_ok(zone, 0,
1987                                        high_wmark_pages(zone) +
1988                                        nr_migrate_pages,
1989                                        ZONE_MOVABLE, 0))
1990                         continue;
1991                 return true;
1992         }
1993         return false;
1994 }
1995
1996 static struct page *alloc_misplaced_dst_page(struct page *page,
1997                                            unsigned long data)
1998 {
1999         int nid = (int) data;
2000         struct page *newpage;
2001
2002         newpage = __alloc_pages_node(nid,
2003                                          (GFP_HIGHUSER_MOVABLE |
2004                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2005                                           __GFP_NORETRY | __GFP_NOWARN) &
2006                                          ~__GFP_RECLAIM, 0);
2007
2008         return newpage;
2009 }
2010
2011 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2012 {
2013         int page_lru;
2014
2015         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2016
2017         /* Avoid migrating to a node that is nearly full */
2018         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2019                 return 0;
2020
2021         if (isolate_lru_page(page))
2022                 return 0;
2023
2024         /*
2025          * migrate_misplaced_transhuge_page() skips page migration's usual
2026          * check on page_count(), so we must do it here, now that the page
2027          * has been isolated: a GUP pin, or any other pin, prevents migration.
2028          * The expected page count is 3: 1 for page's mapcount and 1 for the
2029          * caller's pin and 1 for the reference taken by isolate_lru_page().
2030          */
2031         if (PageTransHuge(page) && page_count(page) != 3) {
2032                 putback_lru_page(page);
2033                 return 0;
2034         }
2035
2036         page_lru = page_is_file_lru(page);
2037         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2038                                 thp_nr_pages(page));
2039
2040         /*
2041          * Isolating the page has taken another reference, so the
2042          * caller's reference can be safely dropped without the page
2043          * disappearing underneath us during migration.
2044          */
2045         put_page(page);
2046         return 1;
2047 }
2048
2049 bool pmd_trans_migrating(pmd_t pmd)
2050 {
2051         struct page *page = pmd_page(pmd);
2052         return PageLocked(page);
2053 }
2054
2055 /*
2056  * Attempt to migrate a misplaced page to the specified destination
2057  * node. Caller is expected to have an elevated reference count on
2058  * the page that will be dropped by this function before returning.
2059  */
2060 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2061                            int node)
2062 {
2063         pg_data_t *pgdat = NODE_DATA(node);
2064         int isolated;
2065         int nr_remaining;
2066         LIST_HEAD(migratepages);
2067
2068         /*
2069          * Don't migrate file pages that are mapped in multiple processes
2070          * with execute permissions as they are probably shared libraries.
2071          */
2072         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2073             (vma->vm_flags & VM_EXEC))
2074                 goto out;
2075
2076         /*
2077          * Also do not migrate dirty pages as not all filesystems can move
2078          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2079          */
2080         if (page_is_file_lru(page) && PageDirty(page))
2081                 goto out;
2082
2083         isolated = numamigrate_isolate_page(pgdat, page);
2084         if (!isolated)
2085                 goto out;
2086
2087         list_add(&page->lru, &migratepages);
2088         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2089                                      NULL, node, MIGRATE_ASYNC,
2090                                      MR_NUMA_MISPLACED);
2091         if (nr_remaining) {
2092                 if (!list_empty(&migratepages)) {
2093                         list_del(&page->lru);
2094                         dec_node_page_state(page, NR_ISOLATED_ANON +
2095                                         page_is_file_lru(page));
2096                         putback_lru_page(page);
2097                 }
2098                 isolated = 0;
2099         } else
2100                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2101         BUG_ON(!list_empty(&migratepages));
2102         return isolated;
2103
2104 out:
2105         put_page(page);
2106         return 0;
2107 }
2108 #endif /* CONFIG_NUMA_BALANCING */
2109
2110 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2111 /*
2112  * Migrates a THP to a given target node. page must be locked and is unlocked
2113  * before returning.
2114  */
2115 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2116                                 struct vm_area_struct *vma,
2117                                 pmd_t *pmd, pmd_t entry,
2118                                 unsigned long address,
2119                                 struct page *page, int node)
2120 {
2121         spinlock_t *ptl;
2122         pg_data_t *pgdat = NODE_DATA(node);
2123         int isolated = 0;
2124         struct page *new_page = NULL;
2125         int page_lru = page_is_file_lru(page);
2126         unsigned long start = address & HPAGE_PMD_MASK;
2127
2128         new_page = alloc_pages_node(node,
2129                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2130                 HPAGE_PMD_ORDER);
2131         if (!new_page)
2132                 goto out_fail;
2133         prep_transhuge_page(new_page);
2134
2135         isolated = numamigrate_isolate_page(pgdat, page);
2136         if (!isolated) {
2137                 put_page(new_page);
2138                 goto out_fail;
2139         }
2140
2141         /* Prepare a page as a migration target */
2142         __SetPageLocked(new_page);
2143         if (PageSwapBacked(page))
2144                 __SetPageSwapBacked(new_page);
2145
2146         /* anon mapping, we can simply copy page->mapping to the new page: */
2147         new_page->mapping = page->mapping;
2148         new_page->index = page->index;
2149         /* flush the cache before copying using the kernel virtual address */
2150         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2151         migrate_page_copy(new_page, page);
2152         WARN_ON(PageLRU(new_page));
2153
2154         /* Recheck the target PMD */
2155         ptl = pmd_lock(mm, pmd);
2156         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2157                 spin_unlock(ptl);
2158
2159                 /* Reverse changes made by migrate_page_copy() */
2160                 if (TestClearPageActive(new_page))
2161                         SetPageActive(page);
2162                 if (TestClearPageUnevictable(new_page))
2163                         SetPageUnevictable(page);
2164
2165                 unlock_page(new_page);
2166                 put_page(new_page);             /* Free it */
2167
2168                 /* Retake the callers reference and putback on LRU */
2169                 get_page(page);
2170                 putback_lru_page(page);
2171                 mod_node_page_state(page_pgdat(page),
2172                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2173
2174                 goto out_unlock;
2175         }
2176
2177         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2178         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2179
2180         /*
2181          * Overwrite the old entry under pagetable lock and establish
2182          * the new PTE. Any parallel GUP will either observe the old
2183          * page blocking on the page lock, block on the page table
2184          * lock or observe the new page. The SetPageUptodate on the
2185          * new page and page_add_new_anon_rmap guarantee the copy is
2186          * visible before the pagetable update.
2187          */
2188         page_add_anon_rmap(new_page, vma, start, true);
2189         /*
2190          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2191          * has already been flushed globally.  So no TLB can be currently
2192          * caching this non present pmd mapping.  There's no need to clear the
2193          * pmd before doing set_pmd_at(), nor to flush the TLB after
2194          * set_pmd_at().  Clearing the pmd here would introduce a race
2195          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2196          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2197          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2198          * pmd.
2199          */
2200         set_pmd_at(mm, start, pmd, entry);
2201         update_mmu_cache_pmd(vma, address, &entry);
2202
2203         page_ref_unfreeze(page, 2);
2204         mlock_migrate_page(new_page, page);
2205         page_remove_rmap(page, true);
2206         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2207
2208         spin_unlock(ptl);
2209
2210         /* Take an "isolate" reference and put new page on the LRU. */
2211         get_page(new_page);
2212         putback_lru_page(new_page);
2213
2214         unlock_page(new_page);
2215         unlock_page(page);
2216         put_page(page);                 /* Drop the rmap reference */
2217         put_page(page);                 /* Drop the LRU isolation reference */
2218
2219         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2220         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2221
2222         mod_node_page_state(page_pgdat(page),
2223                         NR_ISOLATED_ANON + page_lru,
2224                         -HPAGE_PMD_NR);
2225         return isolated;
2226
2227 out_fail:
2228         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2229         ptl = pmd_lock(mm, pmd);
2230         if (pmd_same(*pmd, entry)) {
2231                 entry = pmd_modify(entry, vma->vm_page_prot);
2232                 set_pmd_at(mm, start, pmd, entry);
2233                 update_mmu_cache_pmd(vma, address, &entry);
2234         }
2235         spin_unlock(ptl);
2236
2237 out_unlock:
2238         unlock_page(page);
2239         put_page(page);
2240         return 0;
2241 }
2242 #endif /* CONFIG_NUMA_BALANCING */
2243
2244 #endif /* CONFIG_NUMA */
2245
2246 #ifdef CONFIG_DEVICE_PRIVATE
2247 static int migrate_vma_collect_hole(unsigned long start,
2248                                     unsigned long end,
2249                                     __always_unused int depth,
2250                                     struct mm_walk *walk)
2251 {
2252         struct migrate_vma *migrate = walk->private;
2253         unsigned long addr;
2254
2255         /* Only allow populating anonymous memory. */
2256         if (!vma_is_anonymous(walk->vma)) {
2257                 for (addr = start; addr < end; addr += PAGE_SIZE) {
2258                         migrate->src[migrate->npages] = 0;
2259                         migrate->dst[migrate->npages] = 0;
2260                         migrate->npages++;
2261                 }
2262                 return 0;
2263         }
2264
2265         for (addr = start; addr < end; addr += PAGE_SIZE) {
2266                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2267                 migrate->dst[migrate->npages] = 0;
2268                 migrate->npages++;
2269                 migrate->cpages++;
2270         }
2271
2272         return 0;
2273 }
2274
2275 static int migrate_vma_collect_skip(unsigned long start,
2276                                     unsigned long end,
2277                                     struct mm_walk *walk)
2278 {
2279         struct migrate_vma *migrate = walk->private;
2280         unsigned long addr;
2281
2282         for (addr = start; addr < end; addr += PAGE_SIZE) {
2283                 migrate->dst[migrate->npages] = 0;
2284                 migrate->src[migrate->npages++] = 0;
2285         }
2286
2287         return 0;
2288 }
2289
2290 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2291                                    unsigned long start,
2292                                    unsigned long end,
2293                                    struct mm_walk *walk)
2294 {
2295         struct migrate_vma *migrate = walk->private;
2296         struct vm_area_struct *vma = walk->vma;
2297         struct mm_struct *mm = vma->vm_mm;
2298         unsigned long addr = start, unmapped = 0;
2299         spinlock_t *ptl;
2300         pte_t *ptep;
2301
2302 again:
2303         if (pmd_none(*pmdp))
2304                 return migrate_vma_collect_hole(start, end, -1, walk);
2305
2306         if (pmd_trans_huge(*pmdp)) {
2307                 struct page *page;
2308
2309                 ptl = pmd_lock(mm, pmdp);
2310                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2311                         spin_unlock(ptl);
2312                         goto again;
2313                 }
2314
2315                 page = pmd_page(*pmdp);
2316                 if (is_huge_zero_page(page)) {
2317                         spin_unlock(ptl);
2318                         split_huge_pmd(vma, pmdp, addr);
2319                         if (pmd_trans_unstable(pmdp))
2320                                 return migrate_vma_collect_skip(start, end,
2321                                                                 walk);
2322                 } else {
2323                         int ret;
2324
2325                         get_page(page);
2326                         spin_unlock(ptl);
2327                         if (unlikely(!trylock_page(page)))
2328                                 return migrate_vma_collect_skip(start, end,
2329                                                                 walk);
2330                         ret = split_huge_page(page);
2331                         unlock_page(page);
2332                         put_page(page);
2333                         if (ret)
2334                                 return migrate_vma_collect_skip(start, end,
2335                                                                 walk);
2336                         if (pmd_none(*pmdp))
2337                                 return migrate_vma_collect_hole(start, end, -1,
2338                                                                 walk);
2339                 }
2340         }
2341
2342         if (unlikely(pmd_bad(*pmdp)))
2343                 return migrate_vma_collect_skip(start, end, walk);
2344
2345         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2346         arch_enter_lazy_mmu_mode();
2347
2348         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2349                 unsigned long mpfn = 0, pfn;
2350                 struct page *page;
2351                 swp_entry_t entry;
2352                 pte_t pte;
2353
2354                 pte = *ptep;
2355
2356                 if (pte_none(pte)) {
2357                         if (vma_is_anonymous(vma)) {
2358                                 mpfn = MIGRATE_PFN_MIGRATE;
2359                                 migrate->cpages++;
2360                         }
2361                         goto next;
2362                 }
2363
2364                 if (!pte_present(pte)) {
2365                         /*
2366                          * Only care about unaddressable device page special
2367                          * page table entry. Other special swap entries are not
2368                          * migratable, and we ignore regular swapped page.
2369                          */
2370                         entry = pte_to_swp_entry(pte);
2371                         if (!is_device_private_entry(entry))
2372                                 goto next;
2373
2374                         page = device_private_entry_to_page(entry);
2375                         if (!(migrate->flags &
2376                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2377                             page->pgmap->owner != migrate->pgmap_owner)
2378                                 goto next;
2379
2380                         mpfn = migrate_pfn(page_to_pfn(page)) |
2381                                         MIGRATE_PFN_MIGRATE;
2382                         if (is_write_device_private_entry(entry))
2383                                 mpfn |= MIGRATE_PFN_WRITE;
2384                 } else {
2385                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2386                                 goto next;
2387                         pfn = pte_pfn(pte);
2388                         if (is_zero_pfn(pfn)) {
2389                                 mpfn = MIGRATE_PFN_MIGRATE;
2390                                 migrate->cpages++;
2391                                 goto next;
2392                         }
2393                         page = vm_normal_page(migrate->vma, addr, pte);
2394                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2395                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2396                 }
2397
2398                 /* FIXME support THP */
2399                 if (!page || !page->mapping || PageTransCompound(page)) {
2400                         mpfn = 0;
2401                         goto next;
2402                 }
2403
2404                 /*
2405                  * By getting a reference on the page we pin it and that blocks
2406                  * any kind of migration. Side effect is that it "freezes" the
2407                  * pte.
2408                  *
2409                  * We drop this reference after isolating the page from the lru
2410                  * for non device page (device page are not on the lru and thus
2411                  * can't be dropped from it).
2412                  */
2413                 get_page(page);
2414                 migrate->cpages++;
2415
2416                 /*
2417                  * Optimize for the common case where page is only mapped once
2418                  * in one process. If we can lock the page, then we can safely
2419                  * set up a special migration page table entry now.
2420                  */
2421                 if (trylock_page(page)) {
2422                         pte_t swp_pte;
2423
2424                         mpfn |= MIGRATE_PFN_LOCKED;
2425                         ptep_get_and_clear(mm, addr, ptep);
2426
2427                         /* Setup special migration page table entry */
2428                         entry = make_migration_entry(page, mpfn &
2429                                                      MIGRATE_PFN_WRITE);
2430                         swp_pte = swp_entry_to_pte(entry);
2431                         if (pte_present(pte)) {
2432                                 if (pte_soft_dirty(pte))
2433                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2434                                 if (pte_uffd_wp(pte))
2435                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2436                         } else {
2437                                 if (pte_swp_soft_dirty(pte))
2438                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2439                                 if (pte_swp_uffd_wp(pte))
2440                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2441                         }
2442                         set_pte_at(mm, addr, ptep, swp_pte);
2443
2444                         /*
2445                          * This is like regular unmap: we remove the rmap and
2446                          * drop page refcount. Page won't be freed, as we took
2447                          * a reference just above.
2448                          */
2449                         page_remove_rmap(page, false);
2450                         put_page(page);
2451
2452                         if (pte_present(pte))
2453                                 unmapped++;
2454                 }
2455
2456 next:
2457                 migrate->dst[migrate->npages] = 0;
2458                 migrate->src[migrate->npages++] = mpfn;
2459         }
2460         arch_leave_lazy_mmu_mode();
2461         pte_unmap_unlock(ptep - 1, ptl);
2462
2463         /* Only flush the TLB if we actually modified any entries */
2464         if (unmapped)
2465                 flush_tlb_range(walk->vma, start, end);
2466
2467         return 0;
2468 }
2469
2470 static const struct mm_walk_ops migrate_vma_walk_ops = {
2471         .pmd_entry              = migrate_vma_collect_pmd,
2472         .pte_hole               = migrate_vma_collect_hole,
2473 };
2474
2475 /*
2476  * migrate_vma_collect() - collect pages over a range of virtual addresses
2477  * @migrate: migrate struct containing all migration information
2478  *
2479  * This will walk the CPU page table. For each virtual address backed by a
2480  * valid page, it updates the src array and takes a reference on the page, in
2481  * order to pin the page until we lock it and unmap it.
2482  */
2483 static void migrate_vma_collect(struct migrate_vma *migrate)
2484 {
2485         struct mmu_notifier_range range;
2486
2487         /*
2488          * Note that the pgmap_owner is passed to the mmu notifier callback so
2489          * that the registered device driver can skip invalidating device
2490          * private page mappings that won't be migrated.
2491          */
2492         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2493                 migrate->vma->vm_mm, migrate->start, migrate->end,
2494                 migrate->pgmap_owner);
2495         mmu_notifier_invalidate_range_start(&range);
2496
2497         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2498                         &migrate_vma_walk_ops, migrate);
2499
2500         mmu_notifier_invalidate_range_end(&range);
2501         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2502 }
2503
2504 /*
2505  * migrate_vma_check_page() - check if page is pinned or not
2506  * @page: struct page to check
2507  *
2508  * Pinned pages cannot be migrated. This is the same test as in
2509  * migrate_page_move_mapping(), except that here we allow migration of a
2510  * ZONE_DEVICE page.
2511  */
2512 static bool migrate_vma_check_page(struct page *page)
2513 {
2514         /*
2515          * One extra ref because caller holds an extra reference, either from
2516          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2517          * a device page.
2518          */
2519         int extra = 1;
2520
2521         /*
2522          * FIXME support THP (transparent huge page), it is bit more complex to
2523          * check them than regular pages, because they can be mapped with a pmd
2524          * or with a pte (split pte mapping).
2525          */
2526         if (PageCompound(page))
2527                 return false;
2528
2529         /* Page from ZONE_DEVICE have one extra reference */
2530         if (is_zone_device_page(page)) {
2531                 /*
2532                  * Private page can never be pin as they have no valid pte and
2533                  * GUP will fail for those. Yet if there is a pending migration
2534                  * a thread might try to wait on the pte migration entry and
2535                  * will bump the page reference count. Sadly there is no way to
2536                  * differentiate a regular pin from migration wait. Hence to
2537                  * avoid 2 racing thread trying to migrate back to CPU to enter
2538                  * infinite loop (one stoping migration because the other is
2539                  * waiting on pte migration entry). We always return true here.
2540                  *
2541                  * FIXME proper solution is to rework migration_entry_wait() so
2542                  * it does not need to take a reference on page.
2543                  */
2544                 return is_device_private_page(page);
2545         }
2546
2547         /* For file back page */
2548         if (page_mapping(page))
2549                 extra += 1 + page_has_private(page);
2550
2551         if ((page_count(page) - extra) > page_mapcount(page))
2552                 return false;
2553
2554         return true;
2555 }
2556
2557 /*
2558  * migrate_vma_prepare() - lock pages and isolate them from the lru
2559  * @migrate: migrate struct containing all migration information
2560  *
2561  * This locks pages that have been collected by migrate_vma_collect(). Once each
2562  * page is locked it is isolated from the lru (for non-device pages). Finally,
2563  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2564  * migrated by concurrent kernel threads.
2565  */
2566 static void migrate_vma_prepare(struct migrate_vma *migrate)
2567 {
2568         const unsigned long npages = migrate->npages;
2569         const unsigned long start = migrate->start;
2570         unsigned long addr, i, restore = 0;
2571         bool allow_drain = true;
2572
2573         lru_add_drain();
2574
2575         for (i = 0; (i < npages) && migrate->cpages; i++) {
2576                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2577                 bool remap = true;
2578
2579                 if (!page)
2580                         continue;
2581
2582                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2583                         /*
2584                          * Because we are migrating several pages there can be
2585                          * a deadlock between 2 concurrent migration where each
2586                          * are waiting on each other page lock.
2587                          *
2588                          * Make migrate_vma() a best effort thing and backoff
2589                          * for any page we can not lock right away.
2590                          */
2591                         if (!trylock_page(page)) {
2592                                 migrate->src[i] = 0;
2593                                 migrate->cpages--;
2594                                 put_page(page);
2595                                 continue;
2596                         }
2597                         remap = false;
2598                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2599                 }
2600
2601                 /* ZONE_DEVICE pages are not on LRU */
2602                 if (!is_zone_device_page(page)) {
2603                         if (!PageLRU(page) && allow_drain) {
2604                                 /* Drain CPU's pagevec */
2605                                 lru_add_drain_all();
2606                                 allow_drain = false;
2607                         }
2608
2609                         if (isolate_lru_page(page)) {
2610                                 if (remap) {
2611                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2612                                         migrate->cpages--;
2613                                         restore++;
2614                                 } else {
2615                                         migrate->src[i] = 0;
2616                                         unlock_page(page);
2617                                         migrate->cpages--;
2618                                         put_page(page);
2619                                 }
2620                                 continue;
2621                         }
2622
2623                         /* Drop the reference we took in collect */
2624                         put_page(page);
2625                 }
2626
2627                 if (!migrate_vma_check_page(page)) {
2628                         if (remap) {
2629                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2630                                 migrate->cpages--;
2631                                 restore++;
2632
2633                                 if (!is_zone_device_page(page)) {
2634                                         get_page(page);
2635                                         putback_lru_page(page);
2636                                 }
2637                         } else {
2638                                 migrate->src[i] = 0;
2639                                 unlock_page(page);
2640                                 migrate->cpages--;
2641
2642                                 if (!is_zone_device_page(page))
2643                                         putback_lru_page(page);
2644                                 else
2645                                         put_page(page);
2646                         }
2647                 }
2648         }
2649
2650         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2651                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2652
2653                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2654                         continue;
2655
2656                 remove_migration_pte(page, migrate->vma, addr, page);
2657
2658                 migrate->src[i] = 0;
2659                 unlock_page(page);
2660                 put_page(page);
2661                 restore--;
2662         }
2663 }
2664
2665 /*
2666  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2667  * @migrate: migrate struct containing all migration information
2668  *
2669  * Replace page mapping (CPU page table pte) with a special migration pte entry
2670  * and check again if it has been pinned. Pinned pages are restored because we
2671  * cannot migrate them.
2672  *
2673  * This is the last step before we call the device driver callback to allocate
2674  * destination memory and copy contents of original page over to new page.
2675  */
2676 static void migrate_vma_unmap(struct migrate_vma *migrate)
2677 {
2678         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2679         const unsigned long npages = migrate->npages;
2680         const unsigned long start = migrate->start;
2681         unsigned long addr, i, restore = 0;
2682
2683         for (i = 0; i < npages; i++) {
2684                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2685
2686                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2687                         continue;
2688
2689                 if (page_mapped(page)) {
2690                         try_to_unmap(page, flags);
2691                         if (page_mapped(page))
2692                                 goto restore;
2693                 }
2694
2695                 if (migrate_vma_check_page(page))
2696                         continue;
2697
2698 restore:
2699                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2700                 migrate->cpages--;
2701                 restore++;
2702         }
2703
2704         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2705                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2706
2707                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2708                         continue;
2709
2710                 remove_migration_ptes(page, page, false);
2711
2712                 migrate->src[i] = 0;
2713                 unlock_page(page);
2714                 restore--;
2715
2716                 if (is_zone_device_page(page))
2717                         put_page(page);
2718                 else
2719                         putback_lru_page(page);
2720         }
2721 }
2722
2723 /**
2724  * migrate_vma_setup() - prepare to migrate a range of memory
2725  * @args: contains the vma, start, and pfns arrays for the migration
2726  *
2727  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2728  * without an error.
2729  *
2730  * Prepare to migrate a range of memory virtual address range by collecting all
2731  * the pages backing each virtual address in the range, saving them inside the
2732  * src array.  Then lock those pages and unmap them. Once the pages are locked
2733  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2734  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2735  * corresponding src array entry.  Then restores any pages that are pinned, by
2736  * remapping and unlocking those pages.
2737  *
2738  * The caller should then allocate destination memory and copy source memory to
2739  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2740  * flag set).  Once these are allocated and copied, the caller must update each
2741  * corresponding entry in the dst array with the pfn value of the destination
2742  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2743  * (destination pages must have their struct pages locked, via lock_page()).
2744  *
2745  * Note that the caller does not have to migrate all the pages that are marked
2746  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2747  * device memory to system memory.  If the caller cannot migrate a device page
2748  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2749  * consequences for the userspace process, so it must be avoided if at all
2750  * possible.
2751  *
2752  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2753  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2754  * allowing the caller to allocate device memory for those unback virtual
2755  * address.  For this the caller simply has to allocate device memory and
2756  * properly set the destination entry like for regular migration.  Note that
2757  * this can still fails and thus inside the device driver must check if the
2758  * migration was successful for those entries after calling migrate_vma_pages()
2759  * just like for regular migration.
2760  *
2761  * After that, the callers must call migrate_vma_pages() to go over each entry
2762  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2763  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2764  * then migrate_vma_pages() to migrate struct page information from the source
2765  * struct page to the destination struct page.  If it fails to migrate the
2766  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2767  * src array.
2768  *
2769  * At this point all successfully migrated pages have an entry in the src
2770  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2771  * array entry with MIGRATE_PFN_VALID flag set.
2772  *
2773  * Once migrate_vma_pages() returns the caller may inspect which pages were
2774  * successfully migrated, and which were not.  Successfully migrated pages will
2775  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2776  *
2777  * It is safe to update device page table after migrate_vma_pages() because
2778  * both destination and source page are still locked, and the mmap_lock is held
2779  * in read mode (hence no one can unmap the range being migrated).
2780  *
2781  * Once the caller is done cleaning up things and updating its page table (if it
2782  * chose to do so, this is not an obligation) it finally calls
2783  * migrate_vma_finalize() to update the CPU page table to point to new pages
2784  * for successfully migrated pages or otherwise restore the CPU page table to
2785  * point to the original source pages.
2786  */
2787 int migrate_vma_setup(struct migrate_vma *args)
2788 {
2789         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2790
2791         args->start &= PAGE_MASK;
2792         args->end &= PAGE_MASK;
2793         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2794             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2795                 return -EINVAL;
2796         if (nr_pages <= 0)
2797                 return -EINVAL;
2798         if (args->start < args->vma->vm_start ||
2799             args->start >= args->vma->vm_end)
2800                 return -EINVAL;
2801         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2802                 return -EINVAL;
2803         if (!args->src || !args->dst)
2804                 return -EINVAL;
2805
2806         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2807         args->cpages = 0;
2808         args->npages = 0;
2809
2810         migrate_vma_collect(args);
2811
2812         if (args->cpages)
2813                 migrate_vma_prepare(args);
2814         if (args->cpages)
2815                 migrate_vma_unmap(args);
2816
2817         /*
2818          * At this point pages are locked and unmapped, and thus they have
2819          * stable content and can safely be copied to destination memory that
2820          * is allocated by the drivers.
2821          */
2822         return 0;
2823
2824 }
2825 EXPORT_SYMBOL(migrate_vma_setup);
2826
2827 /*
2828  * This code closely matches the code in:
2829  *   __handle_mm_fault()
2830  *     handle_pte_fault()
2831  *       do_anonymous_page()
2832  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2833  * private page.
2834  */
2835 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2836                                     unsigned long addr,
2837                                     struct page *page,
2838                                     unsigned long *src,
2839                                     unsigned long *dst)
2840 {
2841         struct vm_area_struct *vma = migrate->vma;
2842         struct mm_struct *mm = vma->vm_mm;
2843         bool flush = false;
2844         spinlock_t *ptl;
2845         pte_t entry;
2846         pgd_t *pgdp;
2847         p4d_t *p4dp;
2848         pud_t *pudp;
2849         pmd_t *pmdp;
2850         pte_t *ptep;
2851
2852         /* Only allow populating anonymous memory */
2853         if (!vma_is_anonymous(vma))
2854                 goto abort;
2855
2856         pgdp = pgd_offset(mm, addr);
2857         p4dp = p4d_alloc(mm, pgdp, addr);
2858         if (!p4dp)
2859                 goto abort;
2860         pudp = pud_alloc(mm, p4dp, addr);
2861         if (!pudp)
2862                 goto abort;
2863         pmdp = pmd_alloc(mm, pudp, addr);
2864         if (!pmdp)
2865                 goto abort;
2866
2867         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2868                 goto abort;
2869
2870         /*
2871          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2872          * pte_offset_map() on pmds where a huge pmd might be created
2873          * from a different thread.
2874          *
2875          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2876          * parallel threads are excluded by other means.
2877          *
2878          * Here we only have mmap_read_lock(mm).
2879          */
2880         if (pte_alloc(mm, pmdp))
2881                 goto abort;
2882
2883         /* See the comment in pte_alloc_one_map() */
2884         if (unlikely(pmd_trans_unstable(pmdp)))
2885                 goto abort;
2886
2887         if (unlikely(anon_vma_prepare(vma)))
2888                 goto abort;
2889         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2890                 goto abort;
2891
2892         /*
2893          * The memory barrier inside __SetPageUptodate makes sure that
2894          * preceding stores to the page contents become visible before
2895          * the set_pte_at() write.
2896          */
2897         __SetPageUptodate(page);
2898
2899         if (is_zone_device_page(page)) {
2900                 if (is_device_private_page(page)) {
2901                         swp_entry_t swp_entry;
2902
2903                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2904                         entry = swp_entry_to_pte(swp_entry);
2905                 }
2906         } else {
2907                 entry = mk_pte(page, vma->vm_page_prot);
2908                 if (vma->vm_flags & VM_WRITE)
2909                         entry = pte_mkwrite(pte_mkdirty(entry));
2910         }
2911
2912         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2913
2914         if (check_stable_address_space(mm))
2915                 goto unlock_abort;
2916
2917         if (pte_present(*ptep)) {
2918                 unsigned long pfn = pte_pfn(*ptep);
2919
2920                 if (!is_zero_pfn(pfn))
2921                         goto unlock_abort;
2922                 flush = true;
2923         } else if (!pte_none(*ptep))
2924                 goto unlock_abort;
2925
2926         /*
2927          * Check for userfaultfd but do not deliver the fault. Instead,
2928          * just back off.
2929          */
2930         if (userfaultfd_missing(vma))
2931                 goto unlock_abort;
2932
2933         inc_mm_counter(mm, MM_ANONPAGES);
2934         page_add_new_anon_rmap(page, vma, addr, false);
2935         if (!is_zone_device_page(page))
2936                 lru_cache_add_inactive_or_unevictable(page, vma);
2937         get_page(page);
2938
2939         if (flush) {
2940                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2941                 ptep_clear_flush_notify(vma, addr, ptep);
2942                 set_pte_at_notify(mm, addr, ptep, entry);
2943                 update_mmu_cache(vma, addr, ptep);
2944         } else {
2945                 /* No need to invalidate - it was non-present before */
2946                 set_pte_at(mm, addr, ptep, entry);
2947                 update_mmu_cache(vma, addr, ptep);
2948         }
2949
2950         pte_unmap_unlock(ptep, ptl);
2951         *src = MIGRATE_PFN_MIGRATE;
2952         return;
2953
2954 unlock_abort:
2955         pte_unmap_unlock(ptep, ptl);
2956 abort:
2957         *src &= ~MIGRATE_PFN_MIGRATE;
2958 }
2959
2960 /**
2961  * migrate_vma_pages() - migrate meta-data from src page to dst page
2962  * @migrate: migrate struct containing all migration information
2963  *
2964  * This migrates struct page meta-data from source struct page to destination
2965  * struct page. This effectively finishes the migration from source page to the
2966  * destination page.
2967  */
2968 void migrate_vma_pages(struct migrate_vma *migrate)
2969 {
2970         const unsigned long npages = migrate->npages;
2971         const unsigned long start = migrate->start;
2972         struct mmu_notifier_range range;
2973         unsigned long addr, i;
2974         bool notified = false;
2975
2976         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2977                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2978                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2979                 struct address_space *mapping;
2980                 int r;
2981
2982                 if (!newpage) {
2983                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2984                         continue;
2985                 }
2986
2987                 if (!page) {
2988                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2989                                 continue;
2990                         if (!notified) {
2991                                 notified = true;
2992
2993                                 mmu_notifier_range_init(&range,
2994                                                         MMU_NOTIFY_CLEAR, 0,
2995                                                         NULL,
2996                                                         migrate->vma->vm_mm,
2997                                                         addr, migrate->end);
2998                                 mmu_notifier_invalidate_range_start(&range);
2999                         }
3000                         migrate_vma_insert_page(migrate, addr, newpage,
3001                                                 &migrate->src[i],
3002                                                 &migrate->dst[i]);
3003                         continue;
3004                 }
3005
3006                 mapping = page_mapping(page);
3007
3008                 if (is_zone_device_page(newpage)) {
3009                         if (is_device_private_page(newpage)) {
3010                                 /*
3011                                  * For now only support private anonymous when
3012                                  * migrating to un-addressable device memory.
3013                                  */
3014                                 if (mapping) {
3015                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3016                                         continue;
3017                                 }
3018                         } else {
3019                                 /*
3020                                  * Other types of ZONE_DEVICE page are not
3021                                  * supported.
3022                                  */
3023                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3024                                 continue;
3025                         }
3026                 }
3027
3028                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3029                 if (r != MIGRATEPAGE_SUCCESS)
3030                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3031         }
3032
3033         /*
3034          * No need to double call mmu_notifier->invalidate_range() callback as
3035          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3036          * did already call it.
3037          */
3038         if (notified)
3039                 mmu_notifier_invalidate_range_only_end(&range);
3040 }
3041 EXPORT_SYMBOL(migrate_vma_pages);
3042
3043 /**
3044  * migrate_vma_finalize() - restore CPU page table entry
3045  * @migrate: migrate struct containing all migration information
3046  *
3047  * This replaces the special migration pte entry with either a mapping to the
3048  * new page if migration was successful for that page, or to the original page
3049  * otherwise.
3050  *
3051  * This also unlocks the pages and puts them back on the lru, or drops the extra
3052  * refcount, for device pages.
3053  */
3054 void migrate_vma_finalize(struct migrate_vma *migrate)
3055 {
3056         const unsigned long npages = migrate->npages;
3057         unsigned long i;
3058
3059         for (i = 0; i < npages; i++) {
3060                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3061                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3062
3063                 if (!page) {
3064                         if (newpage) {
3065                                 unlock_page(newpage);
3066                                 put_page(newpage);
3067                         }
3068                         continue;
3069                 }
3070
3071                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3072                         if (newpage) {
3073                                 unlock_page(newpage);
3074                                 put_page(newpage);
3075                         }
3076                         newpage = page;
3077                 }
3078
3079                 remove_migration_ptes(page, newpage, false);
3080                 unlock_page(page);
3081                 migrate->cpages--;
3082
3083                 if (is_zone_device_page(page))
3084                         put_page(page);
3085                 else
3086                         putback_lru_page(page);
3087
3088                 if (newpage != page) {
3089                         unlock_page(newpage);
3090                         if (is_zone_device_page(newpage))
3091                                 put_page(newpage);
3092                         else
3093                                 putback_lru_page(newpage);
3094                 }
3095         }
3096 }
3097 EXPORT_SYMBOL(migrate_vma_finalize);
3098 #endif /* CONFIG_DEVICE_PRIVATE */