1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
106 #include "internal.h"
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
115 /* Highest zone. An specific allocation for a zone below that is not
117 enum zone_type policy_zone = 0;
120 * run-time system-wide default policy => local allocation
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
131 * numa_map_to_online_node - Find closest online node
132 * @node: Node id to start the search
134 * Lookup the next closest node by distance if @nid is not online.
136 int numa_map_to_online_node(int node)
138 int min_dist = INT_MAX, dist, n, min_node;
140 if (node == NUMA_NO_NODE || node_online(node))
144 for_each_online_node(n) {
145 dist = node_distance(node, n);
146 if (dist < min_dist) {
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
156 struct mempolicy *get_task_policy(struct task_struct *p)
158 struct mempolicy *pol = p->mempolicy;
164 node = numa_node_id();
165 if (node != NUMA_NO_NODE) {
166 pol = &preferred_node_policy[node];
167 /* preferred_node_policy is not initialised early in boot */
172 return &default_policy;
175 static const struct mempolicy_operations {
176 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
182 return pol->flags & MPOL_MODE_FLAGS;
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 const nodemask_t *rel)
189 nodes_fold(tmp, *orig, nodes_weight(*rel));
190 nodes_onto(*ret, tmp, *rel);
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
195 if (nodes_empty(*nodes))
197 pol->v.nodes = *nodes;
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
204 pol->flags |= MPOL_F_LOCAL; /* local allocation */
205 else if (nodes_empty(*nodes))
206 return -EINVAL; /* no allowed nodes */
208 pol->v.preferred_node = first_node(*nodes);
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
214 if (nodes_empty(*nodes))
216 pol->v.nodes = *nodes;
221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222 * any, for the new policy. mpol_new() has already validated the nodes
223 * parameter with respect to the policy mode and flags. But, we need to
224 * handle an empty nodemask with MPOL_PREFERRED here.
226 * Must be called holding task's alloc_lock to protect task's mems_allowed
227 * and mempolicy. May also be called holding the mmap_lock for write.
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 const nodemask_t *nodes, struct nodemask_scratch *nsc)
234 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
242 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 nodes = NULL; /* explicit local allocation */
245 if (pol->flags & MPOL_F_RELATIVE_NODES)
246 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
248 nodes_and(nsc->mask2, *nodes, nsc->mask1);
250 if (mpol_store_user_nodemask(pol))
251 pol->w.user_nodemask = *nodes;
253 pol->w.cpuset_mems_allowed =
254 cpuset_current_mems_allowed;
258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
260 ret = mpol_ops[pol->mode].create(pol, NULL);
265 * This function just creates a new policy, does some check and simple
266 * initialization. You must invoke mpol_set_nodemask() to set nodes.
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
271 struct mempolicy *policy;
273 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
276 if (mode == MPOL_DEFAULT) {
277 if (nodes && !nodes_empty(*nodes))
278 return ERR_PTR(-EINVAL);
284 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 * All other modes require a valid pointer to a non-empty nodemask.
288 if (mode == MPOL_PREFERRED) {
289 if (nodes_empty(*nodes)) {
290 if (((flags & MPOL_F_STATIC_NODES) ||
291 (flags & MPOL_F_RELATIVE_NODES)))
292 return ERR_PTR(-EINVAL);
294 } else if (mode == MPOL_LOCAL) {
295 if (!nodes_empty(*nodes) ||
296 (flags & MPOL_F_STATIC_NODES) ||
297 (flags & MPOL_F_RELATIVE_NODES))
298 return ERR_PTR(-EINVAL);
299 mode = MPOL_PREFERRED;
300 } else if (nodes_empty(*nodes))
301 return ERR_PTR(-EINVAL);
302 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
304 return ERR_PTR(-ENOMEM);
305 atomic_set(&policy->refcnt, 1);
307 policy->flags = flags;
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
315 if (!atomic_dec_and_test(&p->refcnt))
317 kmem_cache_free(policy_cache, p);
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
328 if (pol->flags & MPOL_F_STATIC_NODES)
329 nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
335 pol->w.cpuset_mems_allowed = *nodes;
338 if (nodes_empty(tmp))
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 const nodemask_t *nodes)
349 if (pol->flags & MPOL_F_STATIC_NODES) {
350 int node = first_node(pol->w.user_nodemask);
352 if (node_isset(node, *nodes)) {
353 pol->v.preferred_node = node;
354 pol->flags &= ~MPOL_F_LOCAL;
356 pol->flags |= MPOL_F_LOCAL;
357 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 pol->v.preferred_node = first_node(tmp);
360 } else if (!(pol->flags & MPOL_F_LOCAL)) {
361 pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 pol->w.cpuset_mems_allowed,
364 pol->w.cpuset_mems_allowed = *nodes;
369 * mpol_rebind_policy - Migrate a policy to a different set of nodes
371 * Per-vma policies are protected by mmap_lock. Allocations using per-task
372 * policies are protected by task->mems_allowed_seq to prevent a premature
373 * OOM/allocation failure due to parallel nodemask modification.
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
379 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
383 mpol_ops[pol->mode].rebind(pol, newmask);
387 * Wrapper for mpol_rebind_policy() that just requires task
388 * pointer, and updates task mempolicy.
390 * Called with task's alloc_lock held.
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
395 mpol_rebind_policy(tsk->mempolicy, new);
399 * Rebind each vma in mm to new nodemask.
401 * Call holding a reference to mm. Takes mm->mmap_lock during call.
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
406 struct vm_area_struct *vma;
409 for (vma = mm->mmap; vma; vma = vma->vm_next)
410 mpol_rebind_policy(vma->vm_policy, new);
411 mmap_write_unlock(mm);
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
416 .rebind = mpol_rebind_default,
418 [MPOL_INTERLEAVE] = {
419 .create = mpol_new_interleave,
420 .rebind = mpol_rebind_nodemask,
423 .create = mpol_new_preferred,
424 .rebind = mpol_rebind_preferred,
427 .create = mpol_new_bind,
428 .rebind = mpol_rebind_nodemask,
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 unsigned long flags);
436 struct list_head *pagelist;
441 struct vm_area_struct *first;
445 * Check if the page's nid is in qp->nmask.
447 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448 * in the invert of qp->nmask.
450 static inline bool queue_pages_required(struct page *page,
451 struct queue_pages *qp)
453 int nid = page_to_nid(page);
454 unsigned long flags = qp->flags;
456 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
460 * queue_pages_pmd() has four possible return values:
461 * 0 - pages are placed on the right node or queued successfully.
462 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
465 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466 * existing page was already on a node that does not follow the
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 unsigned long end, struct mm_walk *walk)
475 struct queue_pages *qp = walk->private;
478 if (unlikely(is_pmd_migration_entry(*pmd))) {
482 page = pmd_page(*pmd);
483 if (is_huge_zero_page(page)) {
485 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
489 if (!queue_pages_required(page, qp))
493 /* go to thp migration */
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 if (!vma_migratable(walk->vma) ||
496 migrate_page_add(page, qp->pagelist, flags)) {
509 * Scan through pages checking if pages follow certain conditions,
510 * and move them to the pagelist if they do.
512 * queue_pages_pte_range() has three possible return values:
513 * 0 - pages are placed on the right node or queued successfully.
514 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
516 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517 * on a node that does not follow the policy.
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 unsigned long end, struct mm_walk *walk)
522 struct vm_area_struct *vma = walk->vma;
524 struct queue_pages *qp = walk->private;
525 unsigned long flags = qp->flags;
527 bool has_unmovable = false;
531 ptl = pmd_trans_huge_lock(pmd, vma);
533 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
537 /* THP was split, fall through to pte walk */
539 if (pmd_trans_unstable(pmd))
542 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 for (; addr != end; pte++, addr += PAGE_SIZE) {
544 if (!pte_present(*pte))
546 page = vm_normal_page(vma, addr, *pte);
550 * vm_normal_page() filters out zero pages, but there might
551 * still be PageReserved pages to skip, perhaps in a VDSO.
553 if (PageReserved(page))
555 if (!queue_pages_required(page, qp))
557 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 /* MPOL_MF_STRICT must be specified if we get here */
559 if (!vma_migratable(vma)) {
560 has_unmovable = true;
565 * Do not abort immediately since there may be
566 * temporary off LRU pages in the range. Still
567 * need migrate other LRU pages.
569 if (migrate_page_add(page, qp->pagelist, flags))
570 has_unmovable = true;
574 pte_unmap_unlock(pte - 1, ptl);
580 return addr != end ? -EIO : 0;
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 unsigned long addr, unsigned long end,
585 struct mm_walk *walk)
588 #ifdef CONFIG_HUGETLB_PAGE
589 struct queue_pages *qp = walk->private;
590 unsigned long flags = (qp->flags & MPOL_MF_VALID);
595 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 entry = huge_ptep_get(pte);
597 if (!pte_present(entry))
599 page = pte_page(entry);
600 if (!queue_pages_required(page, qp))
603 if (flags == MPOL_MF_STRICT) {
605 * STRICT alone means only detecting misplaced page and no
606 * need to further check other vma.
612 if (!vma_migratable(walk->vma)) {
614 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 * stopped walking current vma.
616 * Detecting misplaced page but allow migrating pages which
623 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 if (flags & (MPOL_MF_MOVE_ALL) ||
625 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 if (!isolate_huge_page(page, qp->pagelist) &&
627 (flags & MPOL_MF_STRICT))
629 * Failed to isolate page but allow migrating pages
630 * which have been queued.
642 #ifdef CONFIG_NUMA_BALANCING
644 * This is used to mark a range of virtual addresses to be inaccessible.
645 * These are later cleared by a NUMA hinting fault. Depending on these
646 * faults, pages may be migrated for better NUMA placement.
648 * This is assuming that NUMA faults are handled using PROT_NONE. If
649 * an architecture makes a different choice, it will need further
650 * changes to the core.
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 unsigned long addr, unsigned long end)
657 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
659 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 unsigned long addr, unsigned long end)
669 #endif /* CONFIG_NUMA_BALANCING */
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 struct mm_walk *walk)
674 struct vm_area_struct *vma = walk->vma;
675 struct queue_pages *qp = walk->private;
676 unsigned long endvma = vma->vm_end;
677 unsigned long flags = qp->flags;
679 /* range check first */
680 VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
684 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 (qp->start < vma->vm_start))
686 /* hole at head side of range */
689 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 ((vma->vm_end < qp->end) &&
691 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 /* hole at middle or tail of range */
696 * Need check MPOL_MF_STRICT to return -EIO if possible
697 * regardless of vma_migratable
699 if (!vma_migratable(vma) &&
700 !(flags & MPOL_MF_STRICT))
706 if (flags & MPOL_MF_LAZY) {
707 /* Similar to task_numa_work, skip inaccessible VMAs */
708 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 !(vma->vm_flags & VM_MIXEDMAP))
710 change_prot_numa(vma, start, endvma);
714 /* queue pages from current vma */
715 if (flags & MPOL_MF_VALID)
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 .hugetlb_entry = queue_pages_hugetlb,
722 .pmd_entry = queue_pages_pte_range,
723 .test_walk = queue_pages_test_walk,
727 * Walk through page tables and collect pages to be migrated.
729 * If pages found in a given range are on a set of nodes (determined by
730 * @nodes and @flags,) it's isolated and queued to the pagelist which is
731 * passed via @private.
733 * queue_pages_range() has three possible return values:
734 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
736 * 0 - queue pages successfully or no misplaced page.
737 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738 * memory range specified by nodemask and maxnode points outside
739 * your accessible address space (-EFAULT)
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 nodemask_t *nodes, unsigned long flags,
744 struct list_head *pagelist)
747 struct queue_pages qp = {
748 .pagelist = pagelist,
756 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
759 /* whole range in hole */
766 * Apply policy to a single VMA
767 * This must be called with the mmap_lock held for writing.
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 struct mempolicy *pol)
773 struct mempolicy *old;
774 struct mempolicy *new;
776 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 vma->vm_ops, vma->vm_file,
779 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
785 if (vma->vm_ops && vma->vm_ops->set_policy) {
786 err = vma->vm_ops->set_policy(vma, new);
791 old = vma->vm_policy;
792 vma->vm_policy = new; /* protected by mmap_lock */
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 unsigned long end, struct mempolicy *new_pol)
805 struct vm_area_struct *next;
806 struct vm_area_struct *prev;
807 struct vm_area_struct *vma;
810 unsigned long vmstart;
813 vma = find_vma(mm, start);
817 if (start > vma->vm_start)
820 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
822 vmstart = max(start, vma->vm_start);
823 vmend = min(end, vma->vm_end);
825 if (mpol_equal(vma_policy(vma), new_pol))
828 pgoff = vma->vm_pgoff +
829 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 vma->anon_vma, vma->vm_file, pgoff,
832 new_pol, vma->vm_userfaultfd_ctx);
836 if (mpol_equal(vma_policy(vma), new_pol))
838 /* vma_merge() joined vma && vma->next, case 8 */
841 if (vma->vm_start != vmstart) {
842 err = split_vma(vma->vm_mm, vma, vmstart, 1);
846 if (vma->vm_end != vmend) {
847 err = split_vma(vma->vm_mm, vma, vmend, 0);
852 err = vma_replace_policy(vma, new_pol);
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
865 struct mempolicy *new, *old;
866 NODEMASK_SCRATCH(scratch);
872 new = mpol_new(mode, flags, nodes);
879 ret = mpol_set_nodemask(new, nodes, scratch);
881 task_unlock(current);
885 old = current->mempolicy;
886 current->mempolicy = new;
887 if (new && new->mode == MPOL_INTERLEAVE)
888 current->il_prev = MAX_NUMNODES-1;
889 task_unlock(current);
893 NODEMASK_SCRATCH_FREE(scratch);
898 * Return nodemask for policy for get_mempolicy() query
900 * Called with task's alloc_lock held
902 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
905 if (p == &default_policy)
910 case MPOL_INTERLEAVE:
914 if (!(p->flags & MPOL_F_LOCAL))
915 node_set(p->v.preferred_node, *nodes);
916 /* else return empty node mask for local allocation */
923 static int lookup_node(struct mm_struct *mm, unsigned long addr)
925 struct page *p = NULL;
929 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
931 err = page_to_nid(p);
935 mmap_read_unlock(mm);
939 /* Retrieve NUMA policy */
940 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
941 unsigned long addr, unsigned long flags)
944 struct mm_struct *mm = current->mm;
945 struct vm_area_struct *vma = NULL;
946 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
949 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
952 if (flags & MPOL_F_MEMS_ALLOWED) {
953 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
955 *policy = 0; /* just so it's initialized */
957 *nmask = cpuset_current_mems_allowed;
958 task_unlock(current);
962 if (flags & MPOL_F_ADDR) {
964 * Do NOT fall back to task policy if the
965 * vma/shared policy at addr is NULL. We
966 * want to return MPOL_DEFAULT in this case.
969 vma = find_vma_intersection(mm, addr, addr+1);
971 mmap_read_unlock(mm);
974 if (vma->vm_ops && vma->vm_ops->get_policy)
975 pol = vma->vm_ops->get_policy(vma, addr);
977 pol = vma->vm_policy;
982 pol = &default_policy; /* indicates default behavior */
984 if (flags & MPOL_F_NODE) {
985 if (flags & MPOL_F_ADDR) {
987 * Take a refcount on the mpol, lookup_node()
988 * wil drop the mmap_lock, so after calling
989 * lookup_node() only "pol" remains valid, "vma"
995 err = lookup_node(mm, addr);
999 } else if (pol == current->mempolicy &&
1000 pol->mode == MPOL_INTERLEAVE) {
1001 *policy = next_node_in(current->il_prev, pol->v.nodes);
1007 *policy = pol == &default_policy ? MPOL_DEFAULT :
1010 * Internal mempolicy flags must be masked off before exposing
1011 * the policy to userspace.
1013 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1018 if (mpol_store_user_nodemask(pol)) {
1019 *nmask = pol->w.user_nodemask;
1022 get_policy_nodemask(pol, nmask);
1023 task_unlock(current);
1030 mmap_read_unlock(mm);
1032 mpol_put(pol_refcount);
1036 #ifdef CONFIG_MIGRATION
1038 * page migration, thp tail pages can be passed.
1040 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1041 unsigned long flags)
1043 struct page *head = compound_head(page);
1045 * Avoid migrating a page that is shared with others.
1047 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1048 if (!isolate_lru_page(head)) {
1049 list_add_tail(&head->lru, pagelist);
1050 mod_node_page_state(page_pgdat(head),
1051 NR_ISOLATED_ANON + page_is_file_lru(head),
1052 hpage_nr_pages(head));
1053 } else if (flags & MPOL_MF_STRICT) {
1055 * Non-movable page may reach here. And, there may be
1056 * temporary off LRU pages or non-LRU movable pages.
1057 * Treat them as unmovable pages since they can't be
1058 * isolated, so they can't be moved at the moment. It
1059 * should return -EIO for this case too.
1068 /* page allocation callback for NUMA node migration */
1069 struct page *alloc_new_node_page(struct page *page, unsigned long node)
1072 return alloc_huge_page_node(page_hstate(compound_head(page)),
1074 else if (PageTransHuge(page)) {
1077 thp = alloc_pages_node(node,
1078 (GFP_TRANSHUGE | __GFP_THISNODE),
1082 prep_transhuge_page(thp);
1085 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1090 * Migrate pages from one node to a target node.
1091 * Returns error or the number of pages not migrated.
1093 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1097 LIST_HEAD(pagelist);
1101 node_set(source, nmask);
1104 * This does not "check" the range but isolates all pages that
1105 * need migration. Between passing in the full user address
1106 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1108 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1109 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1110 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1112 if (!list_empty(&pagelist)) {
1113 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1114 MIGRATE_SYNC, MR_SYSCALL);
1116 putback_movable_pages(&pagelist);
1123 * Move pages between the two nodesets so as to preserve the physical
1124 * layout as much as possible.
1126 * Returns the number of page that could not be moved.
1128 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1129 const nodemask_t *to, int flags)
1135 err = migrate_prep();
1142 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1143 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1144 * bit in 'tmp', and return that <source, dest> pair for migration.
1145 * The pair of nodemasks 'to' and 'from' define the map.
1147 * If no pair of bits is found that way, fallback to picking some
1148 * pair of 'source' and 'dest' bits that are not the same. If the
1149 * 'source' and 'dest' bits are the same, this represents a node
1150 * that will be migrating to itself, so no pages need move.
1152 * If no bits are left in 'tmp', or if all remaining bits left
1153 * in 'tmp' correspond to the same bit in 'to', return false
1154 * (nothing left to migrate).
1156 * This lets us pick a pair of nodes to migrate between, such that
1157 * if possible the dest node is not already occupied by some other
1158 * source node, minimizing the risk of overloading the memory on a
1159 * node that would happen if we migrated incoming memory to a node
1160 * before migrating outgoing memory source that same node.
1162 * A single scan of tmp is sufficient. As we go, we remember the
1163 * most recent <s, d> pair that moved (s != d). If we find a pair
1164 * that not only moved, but what's better, moved to an empty slot
1165 * (d is not set in tmp), then we break out then, with that pair.
1166 * Otherwise when we finish scanning from_tmp, we at least have the
1167 * most recent <s, d> pair that moved. If we get all the way through
1168 * the scan of tmp without finding any node that moved, much less
1169 * moved to an empty node, then there is nothing left worth migrating.
1173 while (!nodes_empty(tmp)) {
1175 int source = NUMA_NO_NODE;
1178 for_each_node_mask(s, tmp) {
1181 * do_migrate_pages() tries to maintain the relative
1182 * node relationship of the pages established between
1183 * threads and memory areas.
1185 * However if the number of source nodes is not equal to
1186 * the number of destination nodes we can not preserve
1187 * this node relative relationship. In that case, skip
1188 * copying memory from a node that is in the destination
1191 * Example: [2,3,4] -> [3,4,5] moves everything.
1192 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1195 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1196 (node_isset(s, *to)))
1199 d = node_remap(s, *from, *to);
1203 source = s; /* Node moved. Memorize */
1206 /* dest not in remaining from nodes? */
1207 if (!node_isset(dest, tmp))
1210 if (source == NUMA_NO_NODE)
1213 node_clear(source, tmp);
1214 err = migrate_to_node(mm, source, dest, flags);
1220 mmap_read_unlock(mm);
1228 * Allocate a new page for page migration based on vma policy.
1229 * Start by assuming the page is mapped by the same vma as contains @start.
1230 * Search forward from there, if not. N.B., this assumes that the
1231 * list of pages handed to migrate_pages()--which is how we get here--
1232 * is in virtual address order.
1234 static struct page *new_page(struct page *page, unsigned long start)
1236 struct vm_area_struct *vma;
1237 unsigned long address;
1239 vma = find_vma(current->mm, start);
1241 address = page_address_in_vma(page, vma);
1242 if (address != -EFAULT)
1247 if (PageHuge(page)) {
1248 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1250 } else if (PageTransHuge(page)) {
1253 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1257 prep_transhuge_page(thp);
1261 * if !vma, alloc_page_vma() will use task or system default policy
1263 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1268 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1269 unsigned long flags)
1274 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1275 const nodemask_t *to, int flags)
1280 static struct page *new_page(struct page *page, unsigned long start)
1286 static long do_mbind(unsigned long start, unsigned long len,
1287 unsigned short mode, unsigned short mode_flags,
1288 nodemask_t *nmask, unsigned long flags)
1290 struct mm_struct *mm = current->mm;
1291 struct mempolicy *new;
1295 LIST_HEAD(pagelist);
1297 if (flags & ~(unsigned long)MPOL_MF_VALID)
1299 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1302 if (start & ~PAGE_MASK)
1305 if (mode == MPOL_DEFAULT)
1306 flags &= ~MPOL_MF_STRICT;
1308 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1316 new = mpol_new(mode, mode_flags, nmask);
1318 return PTR_ERR(new);
1320 if (flags & MPOL_MF_LAZY)
1321 new->flags |= MPOL_F_MOF;
1324 * If we are using the default policy then operation
1325 * on discontinuous address spaces is okay after all
1328 flags |= MPOL_MF_DISCONTIG_OK;
1330 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1331 start, start + len, mode, mode_flags,
1332 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1334 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1336 err = migrate_prep();
1341 NODEMASK_SCRATCH(scratch);
1343 mmap_write_lock(mm);
1345 err = mpol_set_nodemask(new, nmask, scratch);
1346 task_unlock(current);
1348 mmap_write_unlock(mm);
1351 NODEMASK_SCRATCH_FREE(scratch);
1356 ret = queue_pages_range(mm, start, end, nmask,
1357 flags | MPOL_MF_INVERT, &pagelist);
1364 err = mbind_range(mm, start, end, new);
1369 if (!list_empty(&pagelist)) {
1370 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1371 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1372 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1374 putback_movable_pages(&pagelist);
1377 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1381 if (!list_empty(&pagelist))
1382 putback_movable_pages(&pagelist);
1385 mmap_write_unlock(mm);
1392 * User space interface with variable sized bitmaps for nodelists.
1395 /* Copy a node mask from user space. */
1396 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1397 unsigned long maxnode)
1401 unsigned long nlongs;
1402 unsigned long endmask;
1405 nodes_clear(*nodes);
1406 if (maxnode == 0 || !nmask)
1408 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1411 nlongs = BITS_TO_LONGS(maxnode);
1412 if ((maxnode % BITS_PER_LONG) == 0)
1415 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1418 * When the user specified more nodes than supported just check
1419 * if the non supported part is all zero.
1421 * If maxnode have more longs than MAX_NUMNODES, check
1422 * the bits in that area first. And then go through to
1423 * check the rest bits which equal or bigger than MAX_NUMNODES.
1424 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1426 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1427 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1428 if (get_user(t, nmask + k))
1430 if (k == nlongs - 1) {
1436 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1440 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1441 unsigned long valid_mask = endmask;
1443 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1444 if (get_user(t, nmask + nlongs - 1))
1450 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1452 nodes_addr(*nodes)[nlongs-1] &= endmask;
1456 /* Copy a kernel node mask to user space */
1457 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1460 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1461 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1463 if (copy > nbytes) {
1464 if (copy > PAGE_SIZE)
1466 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1470 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1473 static long kernel_mbind(unsigned long start, unsigned long len,
1474 unsigned long mode, const unsigned long __user *nmask,
1475 unsigned long maxnode, unsigned int flags)
1479 unsigned short mode_flags;
1481 start = untagged_addr(start);
1482 mode_flags = mode & MPOL_MODE_FLAGS;
1483 mode &= ~MPOL_MODE_FLAGS;
1484 if (mode >= MPOL_MAX)
1486 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1487 (mode_flags & MPOL_F_RELATIVE_NODES))
1489 err = get_nodes(&nodes, nmask, maxnode);
1492 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1495 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1496 unsigned long, mode, const unsigned long __user *, nmask,
1497 unsigned long, maxnode, unsigned int, flags)
1499 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1502 /* Set the process memory policy */
1503 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1504 unsigned long maxnode)
1508 unsigned short flags;
1510 flags = mode & MPOL_MODE_FLAGS;
1511 mode &= ~MPOL_MODE_FLAGS;
1512 if ((unsigned int)mode >= MPOL_MAX)
1514 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1516 err = get_nodes(&nodes, nmask, maxnode);
1519 return do_set_mempolicy(mode, flags, &nodes);
1522 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1523 unsigned long, maxnode)
1525 return kernel_set_mempolicy(mode, nmask, maxnode);
1528 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1529 const unsigned long __user *old_nodes,
1530 const unsigned long __user *new_nodes)
1532 struct mm_struct *mm = NULL;
1533 struct task_struct *task;
1534 nodemask_t task_nodes;
1538 NODEMASK_SCRATCH(scratch);
1543 old = &scratch->mask1;
1544 new = &scratch->mask2;
1546 err = get_nodes(old, old_nodes, maxnode);
1550 err = get_nodes(new, new_nodes, maxnode);
1554 /* Find the mm_struct */
1556 task = pid ? find_task_by_vpid(pid) : current;
1562 get_task_struct(task);
1567 * Check if this process has the right to modify the specified process.
1568 * Use the regular "ptrace_may_access()" checks.
1570 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1577 task_nodes = cpuset_mems_allowed(task);
1578 /* Is the user allowed to access the target nodes? */
1579 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1584 task_nodes = cpuset_mems_allowed(current);
1585 nodes_and(*new, *new, task_nodes);
1586 if (nodes_empty(*new))
1589 err = security_task_movememory(task);
1593 mm = get_task_mm(task);
1594 put_task_struct(task);
1601 err = do_migrate_pages(mm, old, new,
1602 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1606 NODEMASK_SCRATCH_FREE(scratch);
1611 put_task_struct(task);
1616 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1617 const unsigned long __user *, old_nodes,
1618 const unsigned long __user *, new_nodes)
1620 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1624 /* Retrieve NUMA policy */
1625 static int kernel_get_mempolicy(int __user *policy,
1626 unsigned long __user *nmask,
1627 unsigned long maxnode,
1629 unsigned long flags)
1635 if (nmask != NULL && maxnode < nr_node_ids)
1638 addr = untagged_addr(addr);
1640 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1645 if (policy && put_user(pval, policy))
1649 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1654 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1655 unsigned long __user *, nmask, unsigned long, maxnode,
1656 unsigned long, addr, unsigned long, flags)
1658 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1661 #ifdef CONFIG_COMPAT
1663 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1664 compat_ulong_t __user *, nmask,
1665 compat_ulong_t, maxnode,
1666 compat_ulong_t, addr, compat_ulong_t, flags)
1669 unsigned long __user *nm = NULL;
1670 unsigned long nr_bits, alloc_size;
1671 DECLARE_BITMAP(bm, MAX_NUMNODES);
1673 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1674 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1677 nm = compat_alloc_user_space(alloc_size);
1679 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1681 if (!err && nmask) {
1682 unsigned long copy_size;
1683 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1684 err = copy_from_user(bm, nm, copy_size);
1685 /* ensure entire bitmap is zeroed */
1686 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1687 err |= compat_put_bitmap(nmask, bm, nr_bits);
1693 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1694 compat_ulong_t, maxnode)
1696 unsigned long __user *nm = NULL;
1697 unsigned long nr_bits, alloc_size;
1698 DECLARE_BITMAP(bm, MAX_NUMNODES);
1700 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1701 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1704 if (compat_get_bitmap(bm, nmask, nr_bits))
1706 nm = compat_alloc_user_space(alloc_size);
1707 if (copy_to_user(nm, bm, alloc_size))
1711 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1714 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1715 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1716 compat_ulong_t, maxnode, compat_ulong_t, flags)
1718 unsigned long __user *nm = NULL;
1719 unsigned long nr_bits, alloc_size;
1722 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1723 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1726 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1728 nm = compat_alloc_user_space(alloc_size);
1729 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1733 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1736 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1737 compat_ulong_t, maxnode,
1738 const compat_ulong_t __user *, old_nodes,
1739 const compat_ulong_t __user *, new_nodes)
1741 unsigned long __user *old = NULL;
1742 unsigned long __user *new = NULL;
1743 nodemask_t tmp_mask;
1744 unsigned long nr_bits;
1747 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1748 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1750 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1752 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1754 new = old + size / sizeof(unsigned long);
1755 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1759 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1762 new = compat_alloc_user_space(size);
1763 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1766 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1769 #endif /* CONFIG_COMPAT */
1771 bool vma_migratable(struct vm_area_struct *vma)
1773 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1777 * DAX device mappings require predictable access latency, so avoid
1778 * incurring periodic faults.
1780 if (vma_is_dax(vma))
1783 if (is_vm_hugetlb_page(vma) &&
1784 !hugepage_migration_supported(hstate_vma(vma)))
1788 * Migration allocates pages in the highest zone. If we cannot
1789 * do so then migration (at least from node to node) is not
1793 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1799 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1802 struct mempolicy *pol = NULL;
1805 if (vma->vm_ops && vma->vm_ops->get_policy) {
1806 pol = vma->vm_ops->get_policy(vma, addr);
1807 } else if (vma->vm_policy) {
1808 pol = vma->vm_policy;
1811 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1812 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1813 * count on these policies which will be dropped by
1814 * mpol_cond_put() later
1816 if (mpol_needs_cond_ref(pol))
1825 * get_vma_policy(@vma, @addr)
1826 * @vma: virtual memory area whose policy is sought
1827 * @addr: address in @vma for shared policy lookup
1829 * Returns effective policy for a VMA at specified address.
1830 * Falls back to current->mempolicy or system default policy, as necessary.
1831 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1832 * count--added by the get_policy() vm_op, as appropriate--to protect against
1833 * freeing by another task. It is the caller's responsibility to free the
1834 * extra reference for shared policies.
1836 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1839 struct mempolicy *pol = __get_vma_policy(vma, addr);
1842 pol = get_task_policy(current);
1847 bool vma_policy_mof(struct vm_area_struct *vma)
1849 struct mempolicy *pol;
1851 if (vma->vm_ops && vma->vm_ops->get_policy) {
1854 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1855 if (pol && (pol->flags & MPOL_F_MOF))
1862 pol = vma->vm_policy;
1864 pol = get_task_policy(current);
1866 return pol->flags & MPOL_F_MOF;
1869 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1871 enum zone_type dynamic_policy_zone = policy_zone;
1873 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1876 * if policy->v.nodes has movable memory only,
1877 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1879 * policy->v.nodes is intersect with node_states[N_MEMORY].
1880 * so if the following test faile, it implies
1881 * policy->v.nodes has movable memory only.
1883 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1884 dynamic_policy_zone = ZONE_MOVABLE;
1886 return zone >= dynamic_policy_zone;
1890 * Return a nodemask representing a mempolicy for filtering nodes for
1893 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1895 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1896 if (unlikely(policy->mode == MPOL_BIND) &&
1897 apply_policy_zone(policy, gfp_zone(gfp)) &&
1898 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1899 return &policy->v.nodes;
1904 /* Return the node id preferred by the given mempolicy, or the given id */
1905 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1908 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1909 nd = policy->v.preferred_node;
1912 * __GFP_THISNODE shouldn't even be used with the bind policy
1913 * because we might easily break the expectation to stay on the
1914 * requested node and not break the policy.
1916 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1922 /* Do dynamic interleaving for a process */
1923 static unsigned interleave_nodes(struct mempolicy *policy)
1926 struct task_struct *me = current;
1928 next = next_node_in(me->il_prev, policy->v.nodes);
1929 if (next < MAX_NUMNODES)
1935 * Depending on the memory policy provide a node from which to allocate the
1938 unsigned int mempolicy_slab_node(void)
1940 struct mempolicy *policy;
1941 int node = numa_mem_id();
1946 policy = current->mempolicy;
1947 if (!policy || policy->flags & MPOL_F_LOCAL)
1950 switch (policy->mode) {
1951 case MPOL_PREFERRED:
1953 * handled MPOL_F_LOCAL above
1955 return policy->v.preferred_node;
1957 case MPOL_INTERLEAVE:
1958 return interleave_nodes(policy);
1964 * Follow bind policy behavior and start allocation at the
1967 struct zonelist *zonelist;
1968 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1969 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1970 z = first_zones_zonelist(zonelist, highest_zoneidx,
1972 return z->zone ? zone_to_nid(z->zone) : node;
1981 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1982 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1983 * number of present nodes.
1985 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1987 unsigned nnodes = nodes_weight(pol->v.nodes);
1993 return numa_node_id();
1994 target = (unsigned int)n % nnodes;
1995 nid = first_node(pol->v.nodes);
1996 for (i = 0; i < target; i++)
1997 nid = next_node(nid, pol->v.nodes);
2001 /* Determine a node number for interleave */
2002 static inline unsigned interleave_nid(struct mempolicy *pol,
2003 struct vm_area_struct *vma, unsigned long addr, int shift)
2009 * for small pages, there is no difference between
2010 * shift and PAGE_SHIFT, so the bit-shift is safe.
2011 * for huge pages, since vm_pgoff is in units of small
2012 * pages, we need to shift off the always 0 bits to get
2015 BUG_ON(shift < PAGE_SHIFT);
2016 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2017 off += (addr - vma->vm_start) >> shift;
2018 return offset_il_node(pol, off);
2020 return interleave_nodes(pol);
2023 #ifdef CONFIG_HUGETLBFS
2025 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2026 * @vma: virtual memory area whose policy is sought
2027 * @addr: address in @vma for shared policy lookup and interleave policy
2028 * @gfp_flags: for requested zone
2029 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2030 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2032 * Returns a nid suitable for a huge page allocation and a pointer
2033 * to the struct mempolicy for conditional unref after allocation.
2034 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2035 * @nodemask for filtering the zonelist.
2037 * Must be protected by read_mems_allowed_begin()
2039 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2040 struct mempolicy **mpol, nodemask_t **nodemask)
2044 *mpol = get_vma_policy(vma, addr);
2045 *nodemask = NULL; /* assume !MPOL_BIND */
2047 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2048 nid = interleave_nid(*mpol, vma, addr,
2049 huge_page_shift(hstate_vma(vma)));
2051 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2052 if ((*mpol)->mode == MPOL_BIND)
2053 *nodemask = &(*mpol)->v.nodes;
2059 * init_nodemask_of_mempolicy
2061 * If the current task's mempolicy is "default" [NULL], return 'false'
2062 * to indicate default policy. Otherwise, extract the policy nodemask
2063 * for 'bind' or 'interleave' policy into the argument nodemask, or
2064 * initialize the argument nodemask to contain the single node for
2065 * 'preferred' or 'local' policy and return 'true' to indicate presence
2066 * of non-default mempolicy.
2068 * We don't bother with reference counting the mempolicy [mpol_get/put]
2069 * because the current task is examining it's own mempolicy and a task's
2070 * mempolicy is only ever changed by the task itself.
2072 * N.B., it is the caller's responsibility to free a returned nodemask.
2074 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2076 struct mempolicy *mempolicy;
2079 if (!(mask && current->mempolicy))
2083 mempolicy = current->mempolicy;
2084 switch (mempolicy->mode) {
2085 case MPOL_PREFERRED:
2086 if (mempolicy->flags & MPOL_F_LOCAL)
2087 nid = numa_node_id();
2089 nid = mempolicy->v.preferred_node;
2090 init_nodemask_of_node(mask, nid);
2094 case MPOL_INTERLEAVE:
2095 *mask = mempolicy->v.nodes;
2101 task_unlock(current);
2108 * mempolicy_nodemask_intersects
2110 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2111 * policy. Otherwise, check for intersection between mask and the policy
2112 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2113 * policy, always return true since it may allocate elsewhere on fallback.
2115 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2117 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2118 const nodemask_t *mask)
2120 struct mempolicy *mempolicy;
2126 mempolicy = tsk->mempolicy;
2130 switch (mempolicy->mode) {
2131 case MPOL_PREFERRED:
2133 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2134 * allocate from, they may fallback to other nodes when oom.
2135 * Thus, it's possible for tsk to have allocated memory from
2140 case MPOL_INTERLEAVE:
2141 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2151 /* Allocate a page in interleaved policy.
2152 Own path because it needs to do special accounting. */
2153 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2158 page = __alloc_pages(gfp, order, nid);
2159 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2160 if (!static_branch_likely(&vm_numa_stat_key))
2162 if (page && page_to_nid(page) == nid) {
2164 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2171 * alloc_pages_vma - Allocate a page for a VMA.
2174 * %GFP_USER user allocation.
2175 * %GFP_KERNEL kernel allocations,
2176 * %GFP_HIGHMEM highmem/user allocations,
2177 * %GFP_FS allocation should not call back into a file system.
2178 * %GFP_ATOMIC don't sleep.
2180 * @order:Order of the GFP allocation.
2181 * @vma: Pointer to VMA or NULL if not available.
2182 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2183 * @node: Which node to prefer for allocation (modulo policy).
2184 * @hugepage: for hugepages try only the preferred node if possible
2186 * This function allocates a page from the kernel page pool and applies
2187 * a NUMA policy associated with the VMA or the current process.
2188 * When VMA is not NULL caller must read-lock the mmap_lock of the
2189 * mm_struct of the VMA to prevent it from going away. Should be used for
2190 * all allocations for pages that will be mapped into user space. Returns
2191 * NULL when no page can be allocated.
2194 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2195 unsigned long addr, int node, bool hugepage)
2197 struct mempolicy *pol;
2202 pol = get_vma_policy(vma, addr);
2204 if (pol->mode == MPOL_INTERLEAVE) {
2207 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2209 page = alloc_page_interleave(gfp, order, nid);
2213 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2214 int hpage_node = node;
2217 * For hugepage allocation and non-interleave policy which
2218 * allows the current node (or other explicitly preferred
2219 * node) we only try to allocate from the current/preferred
2220 * node and don't fall back to other nodes, as the cost of
2221 * remote accesses would likely offset THP benefits.
2223 * If the policy is interleave, or does not allow the current
2224 * node in its nodemask, we allocate the standard way.
2226 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2227 hpage_node = pol->v.preferred_node;
2229 nmask = policy_nodemask(gfp, pol);
2230 if (!nmask || node_isset(hpage_node, *nmask)) {
2233 * First, try to allocate THP only on local node, but
2234 * don't reclaim unnecessarily, just compact.
2236 page = __alloc_pages_node(hpage_node,
2237 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2240 * If hugepage allocations are configured to always
2241 * synchronous compact or the vma has been madvised
2242 * to prefer hugepage backing, retry allowing remote
2243 * memory with both reclaim and compact as well.
2245 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2246 page = __alloc_pages_node(hpage_node,
2253 nmask = policy_nodemask(gfp, pol);
2254 preferred_nid = policy_node(gfp, pol, node);
2255 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2260 EXPORT_SYMBOL(alloc_pages_vma);
2263 * alloc_pages_current - Allocate pages.
2266 * %GFP_USER user allocation,
2267 * %GFP_KERNEL kernel allocation,
2268 * %GFP_HIGHMEM highmem allocation,
2269 * %GFP_FS don't call back into a file system.
2270 * %GFP_ATOMIC don't sleep.
2271 * @order: Power of two of allocation size in pages. 0 is a single page.
2273 * Allocate a page from the kernel page pool. When not in
2274 * interrupt context and apply the current process NUMA policy.
2275 * Returns NULL when no page can be allocated.
2277 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2279 struct mempolicy *pol = &default_policy;
2282 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2283 pol = get_task_policy(current);
2286 * No reference counting needed for current->mempolicy
2287 * nor system default_policy
2289 if (pol->mode == MPOL_INTERLEAVE)
2290 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2292 page = __alloc_pages_nodemask(gfp, order,
2293 policy_node(gfp, pol, numa_node_id()),
2294 policy_nodemask(gfp, pol));
2298 EXPORT_SYMBOL(alloc_pages_current);
2300 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2302 struct mempolicy *pol = mpol_dup(vma_policy(src));
2305 return PTR_ERR(pol);
2306 dst->vm_policy = pol;
2311 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2312 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2313 * with the mems_allowed returned by cpuset_mems_allowed(). This
2314 * keeps mempolicies cpuset relative after its cpuset moves. See
2315 * further kernel/cpuset.c update_nodemask().
2317 * current's mempolicy may be rebinded by the other task(the task that changes
2318 * cpuset's mems), so we needn't do rebind work for current task.
2321 /* Slow path of a mempolicy duplicate */
2322 struct mempolicy *__mpol_dup(struct mempolicy *old)
2324 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2327 return ERR_PTR(-ENOMEM);
2329 /* task's mempolicy is protected by alloc_lock */
2330 if (old == current->mempolicy) {
2333 task_unlock(current);
2337 if (current_cpuset_is_being_rebound()) {
2338 nodemask_t mems = cpuset_mems_allowed(current);
2339 mpol_rebind_policy(new, &mems);
2341 atomic_set(&new->refcnt, 1);
2345 /* Slow path of a mempolicy comparison */
2346 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2350 if (a->mode != b->mode)
2352 if (a->flags != b->flags)
2354 if (mpol_store_user_nodemask(a))
2355 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2360 case MPOL_INTERLEAVE:
2361 return !!nodes_equal(a->v.nodes, b->v.nodes);
2362 case MPOL_PREFERRED:
2363 /* a's ->flags is the same as b's */
2364 if (a->flags & MPOL_F_LOCAL)
2366 return a->v.preferred_node == b->v.preferred_node;
2374 * Shared memory backing store policy support.
2376 * Remember policies even when nobody has shared memory mapped.
2377 * The policies are kept in Red-Black tree linked from the inode.
2378 * They are protected by the sp->lock rwlock, which should be held
2379 * for any accesses to the tree.
2383 * lookup first element intersecting start-end. Caller holds sp->lock for
2384 * reading or for writing
2386 static struct sp_node *
2387 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2389 struct rb_node *n = sp->root.rb_node;
2392 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2394 if (start >= p->end)
2396 else if (end <= p->start)
2404 struct sp_node *w = NULL;
2405 struct rb_node *prev = rb_prev(n);
2408 w = rb_entry(prev, struct sp_node, nd);
2409 if (w->end <= start)
2413 return rb_entry(n, struct sp_node, nd);
2417 * Insert a new shared policy into the list. Caller holds sp->lock for
2420 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2422 struct rb_node **p = &sp->root.rb_node;
2423 struct rb_node *parent = NULL;
2428 nd = rb_entry(parent, struct sp_node, nd);
2429 if (new->start < nd->start)
2431 else if (new->end > nd->end)
2432 p = &(*p)->rb_right;
2436 rb_link_node(&new->nd, parent, p);
2437 rb_insert_color(&new->nd, &sp->root);
2438 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2439 new->policy ? new->policy->mode : 0);
2442 /* Find shared policy intersecting idx */
2444 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2446 struct mempolicy *pol = NULL;
2449 if (!sp->root.rb_node)
2451 read_lock(&sp->lock);
2452 sn = sp_lookup(sp, idx, idx+1);
2454 mpol_get(sn->policy);
2457 read_unlock(&sp->lock);
2461 static void sp_free(struct sp_node *n)
2463 mpol_put(n->policy);
2464 kmem_cache_free(sn_cache, n);
2468 * mpol_misplaced - check whether current page node is valid in policy
2470 * @page: page to be checked
2471 * @vma: vm area where page mapped
2472 * @addr: virtual address where page mapped
2474 * Lookup current policy node id for vma,addr and "compare to" page's
2478 * -1 - not misplaced, page is in the right node
2479 * node - node id where the page should be
2481 * Policy determination "mimics" alloc_page_vma().
2482 * Called from fault path where we know the vma and faulting address.
2484 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2486 struct mempolicy *pol;
2488 int curnid = page_to_nid(page);
2489 unsigned long pgoff;
2490 int thiscpu = raw_smp_processor_id();
2491 int thisnid = cpu_to_node(thiscpu);
2492 int polnid = NUMA_NO_NODE;
2495 pol = get_vma_policy(vma, addr);
2496 if (!(pol->flags & MPOL_F_MOF))
2499 switch (pol->mode) {
2500 case MPOL_INTERLEAVE:
2501 pgoff = vma->vm_pgoff;
2502 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2503 polnid = offset_il_node(pol, pgoff);
2506 case MPOL_PREFERRED:
2507 if (pol->flags & MPOL_F_LOCAL)
2508 polnid = numa_node_id();
2510 polnid = pol->v.preferred_node;
2516 * allows binding to multiple nodes.
2517 * use current page if in policy nodemask,
2518 * else select nearest allowed node, if any.
2519 * If no allowed nodes, use current [!misplaced].
2521 if (node_isset(curnid, pol->v.nodes))
2523 z = first_zones_zonelist(
2524 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2525 gfp_zone(GFP_HIGHUSER),
2527 polnid = zone_to_nid(z->zone);
2534 /* Migrate the page towards the node whose CPU is referencing it */
2535 if (pol->flags & MPOL_F_MORON) {
2538 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2542 if (curnid != polnid)
2551 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2552 * dropped after task->mempolicy is set to NULL so that any allocation done as
2553 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2556 void mpol_put_task_policy(struct task_struct *task)
2558 struct mempolicy *pol;
2561 pol = task->mempolicy;
2562 task->mempolicy = NULL;
2567 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2569 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2570 rb_erase(&n->nd, &sp->root);
2574 static void sp_node_init(struct sp_node *node, unsigned long start,
2575 unsigned long end, struct mempolicy *pol)
2577 node->start = start;
2582 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2583 struct mempolicy *pol)
2586 struct mempolicy *newpol;
2588 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2592 newpol = mpol_dup(pol);
2593 if (IS_ERR(newpol)) {
2594 kmem_cache_free(sn_cache, n);
2597 newpol->flags |= MPOL_F_SHARED;
2598 sp_node_init(n, start, end, newpol);
2603 /* Replace a policy range. */
2604 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2605 unsigned long end, struct sp_node *new)
2608 struct sp_node *n_new = NULL;
2609 struct mempolicy *mpol_new = NULL;
2613 write_lock(&sp->lock);
2614 n = sp_lookup(sp, start, end);
2615 /* Take care of old policies in the same range. */
2616 while (n && n->start < end) {
2617 struct rb_node *next = rb_next(&n->nd);
2618 if (n->start >= start) {
2624 /* Old policy spanning whole new range. */
2629 *mpol_new = *n->policy;
2630 atomic_set(&mpol_new->refcnt, 1);
2631 sp_node_init(n_new, end, n->end, mpol_new);
2633 sp_insert(sp, n_new);
2642 n = rb_entry(next, struct sp_node, nd);
2646 write_unlock(&sp->lock);
2653 kmem_cache_free(sn_cache, n_new);
2658 write_unlock(&sp->lock);
2660 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2663 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2670 * mpol_shared_policy_init - initialize shared policy for inode
2671 * @sp: pointer to inode shared policy
2672 * @mpol: struct mempolicy to install
2674 * Install non-NULL @mpol in inode's shared policy rb-tree.
2675 * On entry, the current task has a reference on a non-NULL @mpol.
2676 * This must be released on exit.
2677 * This is called at get_inode() calls and we can use GFP_KERNEL.
2679 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2683 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2684 rwlock_init(&sp->lock);
2687 struct vm_area_struct pvma;
2688 struct mempolicy *new;
2689 NODEMASK_SCRATCH(scratch);
2693 /* contextualize the tmpfs mount point mempolicy */
2694 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2696 goto free_scratch; /* no valid nodemask intersection */
2699 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2700 task_unlock(current);
2704 /* Create pseudo-vma that contains just the policy */
2705 vma_init(&pvma, NULL);
2706 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2707 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2710 mpol_put(new); /* drop initial ref */
2712 NODEMASK_SCRATCH_FREE(scratch);
2714 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2718 int mpol_set_shared_policy(struct shared_policy *info,
2719 struct vm_area_struct *vma, struct mempolicy *npol)
2722 struct sp_node *new = NULL;
2723 unsigned long sz = vma_pages(vma);
2725 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2727 sz, npol ? npol->mode : -1,
2728 npol ? npol->flags : -1,
2729 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2732 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2736 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2742 /* Free a backing policy store on inode delete. */
2743 void mpol_free_shared_policy(struct shared_policy *p)
2746 struct rb_node *next;
2748 if (!p->root.rb_node)
2750 write_lock(&p->lock);
2751 next = rb_first(&p->root);
2753 n = rb_entry(next, struct sp_node, nd);
2754 next = rb_next(&n->nd);
2757 write_unlock(&p->lock);
2760 #ifdef CONFIG_NUMA_BALANCING
2761 static int __initdata numabalancing_override;
2763 static void __init check_numabalancing_enable(void)
2765 bool numabalancing_default = false;
2767 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2768 numabalancing_default = true;
2770 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2771 if (numabalancing_override)
2772 set_numabalancing_state(numabalancing_override == 1);
2774 if (num_online_nodes() > 1 && !numabalancing_override) {
2775 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2776 numabalancing_default ? "Enabling" : "Disabling");
2777 set_numabalancing_state(numabalancing_default);
2781 static int __init setup_numabalancing(char *str)
2787 if (!strcmp(str, "enable")) {
2788 numabalancing_override = 1;
2790 } else if (!strcmp(str, "disable")) {
2791 numabalancing_override = -1;
2796 pr_warn("Unable to parse numa_balancing=\n");
2800 __setup("numa_balancing=", setup_numabalancing);
2802 static inline void __init check_numabalancing_enable(void)
2805 #endif /* CONFIG_NUMA_BALANCING */
2807 /* assumes fs == KERNEL_DS */
2808 void __init numa_policy_init(void)
2810 nodemask_t interleave_nodes;
2811 unsigned long largest = 0;
2812 int nid, prefer = 0;
2814 policy_cache = kmem_cache_create("numa_policy",
2815 sizeof(struct mempolicy),
2816 0, SLAB_PANIC, NULL);
2818 sn_cache = kmem_cache_create("shared_policy_node",
2819 sizeof(struct sp_node),
2820 0, SLAB_PANIC, NULL);
2822 for_each_node(nid) {
2823 preferred_node_policy[nid] = (struct mempolicy) {
2824 .refcnt = ATOMIC_INIT(1),
2825 .mode = MPOL_PREFERRED,
2826 .flags = MPOL_F_MOF | MPOL_F_MORON,
2827 .v = { .preferred_node = nid, },
2832 * Set interleaving policy for system init. Interleaving is only
2833 * enabled across suitably sized nodes (default is >= 16MB), or
2834 * fall back to the largest node if they're all smaller.
2836 nodes_clear(interleave_nodes);
2837 for_each_node_state(nid, N_MEMORY) {
2838 unsigned long total_pages = node_present_pages(nid);
2840 /* Preserve the largest node */
2841 if (largest < total_pages) {
2842 largest = total_pages;
2846 /* Interleave this node? */
2847 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2848 node_set(nid, interleave_nodes);
2851 /* All too small, use the largest */
2852 if (unlikely(nodes_empty(interleave_nodes)))
2853 node_set(prefer, interleave_nodes);
2855 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2856 pr_err("%s: interleaving failed\n", __func__);
2858 check_numabalancing_enable();
2861 /* Reset policy of current process to default */
2862 void numa_default_policy(void)
2864 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2868 * Parse and format mempolicy from/to strings
2872 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2874 static const char * const policy_modes[] =
2876 [MPOL_DEFAULT] = "default",
2877 [MPOL_PREFERRED] = "prefer",
2878 [MPOL_BIND] = "bind",
2879 [MPOL_INTERLEAVE] = "interleave",
2880 [MPOL_LOCAL] = "local",
2886 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2887 * @str: string containing mempolicy to parse
2888 * @mpol: pointer to struct mempolicy pointer, returned on success.
2891 * <mode>[=<flags>][:<nodelist>]
2893 * On success, returns 0, else 1
2895 int mpol_parse_str(char *str, struct mempolicy **mpol)
2897 struct mempolicy *new = NULL;
2898 unsigned short mode_flags;
2900 char *nodelist = strchr(str, ':');
2901 char *flags = strchr(str, '=');
2905 *flags++ = '\0'; /* terminate mode string */
2908 /* NUL-terminate mode or flags string */
2910 if (nodelist_parse(nodelist, nodes))
2912 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2917 mode = match_string(policy_modes, MPOL_MAX, str);
2922 case MPOL_PREFERRED:
2924 * Insist on a nodelist of one node only, although later
2925 * we use first_node(nodes) to grab a single node, so here
2926 * nodelist (or nodes) cannot be empty.
2929 char *rest = nodelist;
2930 while (isdigit(*rest))
2934 if (nodes_empty(nodes))
2938 case MPOL_INTERLEAVE:
2940 * Default to online nodes with memory if no nodelist
2943 nodes = node_states[N_MEMORY];
2947 * Don't allow a nodelist; mpol_new() checks flags
2951 mode = MPOL_PREFERRED;
2955 * Insist on a empty nodelist
2962 * Insist on a nodelist
2971 * Currently, we only support two mutually exclusive
2974 if (!strcmp(flags, "static"))
2975 mode_flags |= MPOL_F_STATIC_NODES;
2976 else if (!strcmp(flags, "relative"))
2977 mode_flags |= MPOL_F_RELATIVE_NODES;
2982 new = mpol_new(mode, mode_flags, &nodes);
2987 * Save nodes for mpol_to_str() to show the tmpfs mount options
2988 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2990 if (mode != MPOL_PREFERRED)
2991 new->v.nodes = nodes;
2993 new->v.preferred_node = first_node(nodes);
2995 new->flags |= MPOL_F_LOCAL;
2998 * Save nodes for contextualization: this will be used to "clone"
2999 * the mempolicy in a specific context [cpuset] at a later time.
3001 new->w.user_nodemask = nodes;
3006 /* Restore string for error message */
3015 #endif /* CONFIG_TMPFS */
3018 * mpol_to_str - format a mempolicy structure for printing
3019 * @buffer: to contain formatted mempolicy string
3020 * @maxlen: length of @buffer
3021 * @pol: pointer to mempolicy to be formatted
3023 * Convert @pol into a string. If @buffer is too short, truncate the string.
3024 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3025 * longest flag, "relative", and to display at least a few node ids.
3027 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3030 nodemask_t nodes = NODE_MASK_NONE;
3031 unsigned short mode = MPOL_DEFAULT;
3032 unsigned short flags = 0;
3034 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3042 case MPOL_PREFERRED:
3043 if (flags & MPOL_F_LOCAL)
3046 node_set(pol->v.preferred_node, nodes);
3049 case MPOL_INTERLEAVE:
3050 nodes = pol->v.nodes;
3054 snprintf(p, maxlen, "unknown");
3058 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3060 if (flags & MPOL_MODE_FLAGS) {
3061 p += snprintf(p, buffer + maxlen - p, "=");
3064 * Currently, the only defined flags are mutually exclusive
3066 if (flags & MPOL_F_STATIC_NODES)
3067 p += snprintf(p, buffer + maxlen - p, "static");
3068 else if (flags & MPOL_F_RELATIVE_NODES)
3069 p += snprintf(p, buffer + maxlen - p, "relative");
3072 if (!nodes_empty(nodes))
3073 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3074 nodemask_pr_args(&nodes));