Merge tag 'timers-core-2022-01-13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NUMA
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100
101 /*
102  * A number of key systems in x86 including ioremap() rely on the assumption
103  * that high_memory defines the upper bound on direct map memory, then end
104  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106  * and ZONE_HIGHMEM.
107  */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110
111 /*
112  * Randomize the address space (stacks, mmaps, brk, etc.).
113  *
114  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115  *   as ancient (libc5 based) binaries can segfault. )
116  */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119                                         1;
120 #else
121                                         2;
122 #endif
123
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127         /*
128          * Those arches which don't have hw access flag feature need to
129          * implement their own helper. By default, "true" means pagefault
130          * will be hit on old pte.
131          */
132         return true;
133 }
134 #endif
135
136 #ifndef arch_wants_old_prefaulted_pte
137 static inline bool arch_wants_old_prefaulted_pte(void)
138 {
139         /*
140          * Transitioning a PTE from 'old' to 'young' can be expensive on
141          * some architectures, even if it's performed in hardware. By
142          * default, "false" means prefaulted entries will be 'young'.
143          */
144         return false;
145 }
146 #endif
147
148 static int __init disable_randmaps(char *s)
149 {
150         randomize_va_space = 0;
151         return 1;
152 }
153 __setup("norandmaps", disable_randmaps);
154
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
157
158 unsigned long highest_memmap_pfn __read_mostly;
159
160 /*
161  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162  */
163 static int __init init_zero_pfn(void)
164 {
165         zero_pfn = page_to_pfn(ZERO_PAGE(0));
166         return 0;
167 }
168 early_initcall(init_zero_pfn);
169
170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171 {
172         trace_rss_stat(mm, member, count);
173 }
174
175 #if defined(SPLIT_RSS_COUNTING)
176
177 void sync_mm_rss(struct mm_struct *mm)
178 {
179         int i;
180
181         for (i = 0; i < NR_MM_COUNTERS; i++) {
182                 if (current->rss_stat.count[i]) {
183                         add_mm_counter(mm, i, current->rss_stat.count[i]);
184                         current->rss_stat.count[i] = 0;
185                 }
186         }
187         current->rss_stat.events = 0;
188 }
189
190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192         struct task_struct *task = current;
193
194         if (likely(task->mm == mm))
195                 task->rss_stat.count[member] += val;
196         else
197                 add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH  (64)
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206         if (unlikely(task != current))
207                 return;
208         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209                 sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219
220 #endif /* SPLIT_RSS_COUNTING */
221
222 /*
223  * Note: this doesn't free the actual pages themselves. That
224  * has been handled earlier when unmapping all the memory regions.
225  */
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227                            unsigned long addr)
228 {
229         pgtable_t token = pmd_pgtable(*pmd);
230         pmd_clear(pmd);
231         pte_free_tlb(tlb, token, addr);
232         mm_dec_nr_ptes(tlb->mm);
233 }
234
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236                                 unsigned long addr, unsigned long end,
237                                 unsigned long floor, unsigned long ceiling)
238 {
239         pmd_t *pmd;
240         unsigned long next;
241         unsigned long start;
242
243         start = addr;
244         pmd = pmd_offset(pud, addr);
245         do {
246                 next = pmd_addr_end(addr, end);
247                 if (pmd_none_or_clear_bad(pmd))
248                         continue;
249                 free_pte_range(tlb, pmd, addr);
250         } while (pmd++, addr = next, addr != end);
251
252         start &= PUD_MASK;
253         if (start < floor)
254                 return;
255         if (ceiling) {
256                 ceiling &= PUD_MASK;
257                 if (!ceiling)
258                         return;
259         }
260         if (end - 1 > ceiling - 1)
261                 return;
262
263         pmd = pmd_offset(pud, start);
264         pud_clear(pud);
265         pmd_free_tlb(tlb, pmd, start);
266         mm_dec_nr_pmds(tlb->mm);
267 }
268
269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270                                 unsigned long addr, unsigned long end,
271                                 unsigned long floor, unsigned long ceiling)
272 {
273         pud_t *pud;
274         unsigned long next;
275         unsigned long start;
276
277         start = addr;
278         pud = pud_offset(p4d, addr);
279         do {
280                 next = pud_addr_end(addr, end);
281                 if (pud_none_or_clear_bad(pud))
282                         continue;
283                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284         } while (pud++, addr = next, addr != end);
285
286         start &= P4D_MASK;
287         if (start < floor)
288                 return;
289         if (ceiling) {
290                 ceiling &= P4D_MASK;
291                 if (!ceiling)
292                         return;
293         }
294         if (end - 1 > ceiling - 1)
295                 return;
296
297         pud = pud_offset(p4d, start);
298         p4d_clear(p4d);
299         pud_free_tlb(tlb, pud, start);
300         mm_dec_nr_puds(tlb->mm);
301 }
302
303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304                                 unsigned long addr, unsigned long end,
305                                 unsigned long floor, unsigned long ceiling)
306 {
307         p4d_t *p4d;
308         unsigned long next;
309         unsigned long start;
310
311         start = addr;
312         p4d = p4d_offset(pgd, addr);
313         do {
314                 next = p4d_addr_end(addr, end);
315                 if (p4d_none_or_clear_bad(p4d))
316                         continue;
317                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318         } while (p4d++, addr = next, addr != end);
319
320         start &= PGDIR_MASK;
321         if (start < floor)
322                 return;
323         if (ceiling) {
324                 ceiling &= PGDIR_MASK;
325                 if (!ceiling)
326                         return;
327         }
328         if (end - 1 > ceiling - 1)
329                 return;
330
331         p4d = p4d_offset(pgd, start);
332         pgd_clear(pgd);
333         p4d_free_tlb(tlb, p4d, start);
334 }
335
336 /*
337  * This function frees user-level page tables of a process.
338  */
339 void free_pgd_range(struct mmu_gather *tlb,
340                         unsigned long addr, unsigned long end,
341                         unsigned long floor, unsigned long ceiling)
342 {
343         pgd_t *pgd;
344         unsigned long next;
345
346         /*
347          * The next few lines have given us lots of grief...
348          *
349          * Why are we testing PMD* at this top level?  Because often
350          * there will be no work to do at all, and we'd prefer not to
351          * go all the way down to the bottom just to discover that.
352          *
353          * Why all these "- 1"s?  Because 0 represents both the bottom
354          * of the address space and the top of it (using -1 for the
355          * top wouldn't help much: the masks would do the wrong thing).
356          * The rule is that addr 0 and floor 0 refer to the bottom of
357          * the address space, but end 0 and ceiling 0 refer to the top
358          * Comparisons need to use "end - 1" and "ceiling - 1" (though
359          * that end 0 case should be mythical).
360          *
361          * Wherever addr is brought up or ceiling brought down, we must
362          * be careful to reject "the opposite 0" before it confuses the
363          * subsequent tests.  But what about where end is brought down
364          * by PMD_SIZE below? no, end can't go down to 0 there.
365          *
366          * Whereas we round start (addr) and ceiling down, by different
367          * masks at different levels, in order to test whether a table
368          * now has no other vmas using it, so can be freed, we don't
369          * bother to round floor or end up - the tests don't need that.
370          */
371
372         addr &= PMD_MASK;
373         if (addr < floor) {
374                 addr += PMD_SIZE;
375                 if (!addr)
376                         return;
377         }
378         if (ceiling) {
379                 ceiling &= PMD_MASK;
380                 if (!ceiling)
381                         return;
382         }
383         if (end - 1 > ceiling - 1)
384                 end -= PMD_SIZE;
385         if (addr > end - 1)
386                 return;
387         /*
388          * We add page table cache pages with PAGE_SIZE,
389          * (see pte_free_tlb()), flush the tlb if we need
390          */
391         tlb_change_page_size(tlb, PAGE_SIZE);
392         pgd = pgd_offset(tlb->mm, addr);
393         do {
394                 next = pgd_addr_end(addr, end);
395                 if (pgd_none_or_clear_bad(pgd))
396                         continue;
397                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398         } while (pgd++, addr = next, addr != end);
399 }
400
401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402                 unsigned long floor, unsigned long ceiling)
403 {
404         while (vma) {
405                 struct vm_area_struct *next = vma->vm_next;
406                 unsigned long addr = vma->vm_start;
407
408                 /*
409                  * Hide vma from rmap and truncate_pagecache before freeing
410                  * pgtables
411                  */
412                 unlink_anon_vmas(vma);
413                 unlink_file_vma(vma);
414
415                 if (is_vm_hugetlb_page(vma)) {
416                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 } else {
419                         /*
420                          * Optimization: gather nearby vmas into one call down
421                          */
422                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423                                && !is_vm_hugetlb_page(next)) {
424                                 vma = next;
425                                 next = vma->vm_next;
426                                 unlink_anon_vmas(vma);
427                                 unlink_file_vma(vma);
428                         }
429                         free_pgd_range(tlb, addr, vma->vm_end,
430                                 floor, next ? next->vm_start : ceiling);
431                 }
432                 vma = next;
433         }
434 }
435
436 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
437 {
438         spinlock_t *ptl = pmd_lock(mm, pmd);
439
440         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
441                 mm_inc_nr_ptes(mm);
442                 /*
443                  * Ensure all pte setup (eg. pte page lock and page clearing) are
444                  * visible before the pte is made visible to other CPUs by being
445                  * put into page tables.
446                  *
447                  * The other side of the story is the pointer chasing in the page
448                  * table walking code (when walking the page table without locking;
449                  * ie. most of the time). Fortunately, these data accesses consist
450                  * of a chain of data-dependent loads, meaning most CPUs (alpha
451                  * being the notable exception) will already guarantee loads are
452                  * seen in-order. See the alpha page table accessors for the
453                  * smp_rmb() barriers in page table walking code.
454                  */
455                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
456                 pmd_populate(mm, pmd, *pte);
457                 *pte = NULL;
458         }
459         spin_unlock(ptl);
460 }
461
462 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
463 {
464         pgtable_t new = pte_alloc_one(mm);
465         if (!new)
466                 return -ENOMEM;
467
468         pmd_install(mm, pmd, &new);
469         if (new)
470                 pte_free(mm, new);
471         return 0;
472 }
473
474 int __pte_alloc_kernel(pmd_t *pmd)
475 {
476         pte_t *new = pte_alloc_one_kernel(&init_mm);
477         if (!new)
478                 return -ENOMEM;
479
480         spin_lock(&init_mm.page_table_lock);
481         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
482                 smp_wmb(); /* See comment in pmd_install() */
483                 pmd_populate_kernel(&init_mm, pmd, new);
484                 new = NULL;
485         }
486         spin_unlock(&init_mm.page_table_lock);
487         if (new)
488                 pte_free_kernel(&init_mm, new);
489         return 0;
490 }
491
492 static inline void init_rss_vec(int *rss)
493 {
494         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
495 }
496
497 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
498 {
499         int i;
500
501         if (current->mm == mm)
502                 sync_mm_rss(mm);
503         for (i = 0; i < NR_MM_COUNTERS; i++)
504                 if (rss[i])
505                         add_mm_counter(mm, i, rss[i]);
506 }
507
508 /*
509  * This function is called to print an error when a bad pte
510  * is found. For example, we might have a PFN-mapped pte in
511  * a region that doesn't allow it.
512  *
513  * The calling function must still handle the error.
514  */
515 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
516                           pte_t pte, struct page *page)
517 {
518         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
519         p4d_t *p4d = p4d_offset(pgd, addr);
520         pud_t *pud = pud_offset(p4d, addr);
521         pmd_t *pmd = pmd_offset(pud, addr);
522         struct address_space *mapping;
523         pgoff_t index;
524         static unsigned long resume;
525         static unsigned long nr_shown;
526         static unsigned long nr_unshown;
527
528         /*
529          * Allow a burst of 60 reports, then keep quiet for that minute;
530          * or allow a steady drip of one report per second.
531          */
532         if (nr_shown == 60) {
533                 if (time_before(jiffies, resume)) {
534                         nr_unshown++;
535                         return;
536                 }
537                 if (nr_unshown) {
538                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
539                                  nr_unshown);
540                         nr_unshown = 0;
541                 }
542                 nr_shown = 0;
543         }
544         if (nr_shown++ == 0)
545                 resume = jiffies + 60 * HZ;
546
547         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
548         index = linear_page_index(vma, addr);
549
550         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
551                  current->comm,
552                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
553         if (page)
554                 dump_page(page, "bad pte");
555         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
556                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
557         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
558                  vma->vm_file,
559                  vma->vm_ops ? vma->vm_ops->fault : NULL,
560                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
561                  mapping ? mapping->a_ops->readpage : NULL);
562         dump_stack();
563         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
564 }
565
566 /*
567  * vm_normal_page -- This function gets the "struct page" associated with a pte.
568  *
569  * "Special" mappings do not wish to be associated with a "struct page" (either
570  * it doesn't exist, or it exists but they don't want to touch it). In this
571  * case, NULL is returned here. "Normal" mappings do have a struct page.
572  *
573  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
574  * pte bit, in which case this function is trivial. Secondly, an architecture
575  * may not have a spare pte bit, which requires a more complicated scheme,
576  * described below.
577  *
578  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
579  * special mapping (even if there are underlying and valid "struct pages").
580  * COWed pages of a VM_PFNMAP are always normal.
581  *
582  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
583  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
584  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
585  * mapping will always honor the rule
586  *
587  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
588  *
589  * And for normal mappings this is false.
590  *
591  * This restricts such mappings to be a linear translation from virtual address
592  * to pfn. To get around this restriction, we allow arbitrary mappings so long
593  * as the vma is not a COW mapping; in that case, we know that all ptes are
594  * special (because none can have been COWed).
595  *
596  *
597  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
598  *
599  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
600  * page" backing, however the difference is that _all_ pages with a struct
601  * page (that is, those where pfn_valid is true) are refcounted and considered
602  * normal pages by the VM. The disadvantage is that pages are refcounted
603  * (which can be slower and simply not an option for some PFNMAP users). The
604  * advantage is that we don't have to follow the strict linearity rule of
605  * PFNMAP mappings in order to support COWable mappings.
606  *
607  */
608 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
609                             pte_t pte)
610 {
611         unsigned long pfn = pte_pfn(pte);
612
613         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
614                 if (likely(!pte_special(pte)))
615                         goto check_pfn;
616                 if (vma->vm_ops && vma->vm_ops->find_special_page)
617                         return vma->vm_ops->find_special_page(vma, addr);
618                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
619                         return NULL;
620                 if (is_zero_pfn(pfn))
621                         return NULL;
622                 if (pte_devmap(pte))
623                         return NULL;
624
625                 print_bad_pte(vma, addr, pte, NULL);
626                 return NULL;
627         }
628
629         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
630
631         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
632                 if (vma->vm_flags & VM_MIXEDMAP) {
633                         if (!pfn_valid(pfn))
634                                 return NULL;
635                         goto out;
636                 } else {
637                         unsigned long off;
638                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
639                         if (pfn == vma->vm_pgoff + off)
640                                 return NULL;
641                         if (!is_cow_mapping(vma->vm_flags))
642                                 return NULL;
643                 }
644         }
645
646         if (is_zero_pfn(pfn))
647                 return NULL;
648
649 check_pfn:
650         if (unlikely(pfn > highest_memmap_pfn)) {
651                 print_bad_pte(vma, addr, pte, NULL);
652                 return NULL;
653         }
654
655         /*
656          * NOTE! We still have PageReserved() pages in the page tables.
657          * eg. VDSO mappings can cause them to exist.
658          */
659 out:
660         return pfn_to_page(pfn);
661 }
662
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
665                                 pmd_t pmd)
666 {
667         unsigned long pfn = pmd_pfn(pmd);
668
669         /*
670          * There is no pmd_special() but there may be special pmds, e.g.
671          * in a direct-access (dax) mapping, so let's just replicate the
672          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
673          */
674         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
675                 if (vma->vm_flags & VM_MIXEDMAP) {
676                         if (!pfn_valid(pfn))
677                                 return NULL;
678                         goto out;
679                 } else {
680                         unsigned long off;
681                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
682                         if (pfn == vma->vm_pgoff + off)
683                                 return NULL;
684                         if (!is_cow_mapping(vma->vm_flags))
685                                 return NULL;
686                 }
687         }
688
689         if (pmd_devmap(pmd))
690                 return NULL;
691         if (is_huge_zero_pmd(pmd))
692                 return NULL;
693         if (unlikely(pfn > highest_memmap_pfn))
694                 return NULL;
695
696         /*
697          * NOTE! We still have PageReserved() pages in the page tables.
698          * eg. VDSO mappings can cause them to exist.
699          */
700 out:
701         return pfn_to_page(pfn);
702 }
703 #endif
704
705 static void restore_exclusive_pte(struct vm_area_struct *vma,
706                                   struct page *page, unsigned long address,
707                                   pte_t *ptep)
708 {
709         pte_t pte;
710         swp_entry_t entry;
711
712         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
713         if (pte_swp_soft_dirty(*ptep))
714                 pte = pte_mksoft_dirty(pte);
715
716         entry = pte_to_swp_entry(*ptep);
717         if (pte_swp_uffd_wp(*ptep))
718                 pte = pte_mkuffd_wp(pte);
719         else if (is_writable_device_exclusive_entry(entry))
720                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
721
722         set_pte_at(vma->vm_mm, address, ptep, pte);
723
724         /*
725          * No need to take a page reference as one was already
726          * created when the swap entry was made.
727          */
728         if (PageAnon(page))
729                 page_add_anon_rmap(page, vma, address, false);
730         else
731                 /*
732                  * Currently device exclusive access only supports anonymous
733                  * memory so the entry shouldn't point to a filebacked page.
734                  */
735                 WARN_ON_ONCE(!PageAnon(page));
736
737         if (vma->vm_flags & VM_LOCKED)
738                 mlock_vma_page(page);
739
740         /*
741          * No need to invalidate - it was non-present before. However
742          * secondary CPUs may have mappings that need invalidating.
743          */
744         update_mmu_cache(vma, address, ptep);
745 }
746
747 /*
748  * Tries to restore an exclusive pte if the page lock can be acquired without
749  * sleeping.
750  */
751 static int
752 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
753                         unsigned long addr)
754 {
755         swp_entry_t entry = pte_to_swp_entry(*src_pte);
756         struct page *page = pfn_swap_entry_to_page(entry);
757
758         if (trylock_page(page)) {
759                 restore_exclusive_pte(vma, page, addr, src_pte);
760                 unlock_page(page);
761                 return 0;
762         }
763
764         return -EBUSY;
765 }
766
767 /*
768  * copy one vm_area from one task to the other. Assumes the page tables
769  * already present in the new task to be cleared in the whole range
770  * covered by this vma.
771  */
772
773 static unsigned long
774 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
775                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
776                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
777 {
778         unsigned long vm_flags = dst_vma->vm_flags;
779         pte_t pte = *src_pte;
780         struct page *page;
781         swp_entry_t entry = pte_to_swp_entry(pte);
782
783         if (likely(!non_swap_entry(entry))) {
784                 if (swap_duplicate(entry) < 0)
785                         return -EIO;
786
787                 /* make sure dst_mm is on swapoff's mmlist. */
788                 if (unlikely(list_empty(&dst_mm->mmlist))) {
789                         spin_lock(&mmlist_lock);
790                         if (list_empty(&dst_mm->mmlist))
791                                 list_add(&dst_mm->mmlist,
792                                                 &src_mm->mmlist);
793                         spin_unlock(&mmlist_lock);
794                 }
795                 rss[MM_SWAPENTS]++;
796         } else if (is_migration_entry(entry)) {
797                 page = pfn_swap_entry_to_page(entry);
798
799                 rss[mm_counter(page)]++;
800
801                 if (is_writable_migration_entry(entry) &&
802                                 is_cow_mapping(vm_flags)) {
803                         /*
804                          * COW mappings require pages in both
805                          * parent and child to be set to read.
806                          */
807                         entry = make_readable_migration_entry(
808                                                         swp_offset(entry));
809                         pte = swp_entry_to_pte(entry);
810                         if (pte_swp_soft_dirty(*src_pte))
811                                 pte = pte_swp_mksoft_dirty(pte);
812                         if (pte_swp_uffd_wp(*src_pte))
813                                 pte = pte_swp_mkuffd_wp(pte);
814                         set_pte_at(src_mm, addr, src_pte, pte);
815                 }
816         } else if (is_device_private_entry(entry)) {
817                 page = pfn_swap_entry_to_page(entry);
818
819                 /*
820                  * Update rss count even for unaddressable pages, as
821                  * they should treated just like normal pages in this
822                  * respect.
823                  *
824                  * We will likely want to have some new rss counters
825                  * for unaddressable pages, at some point. But for now
826                  * keep things as they are.
827                  */
828                 get_page(page);
829                 rss[mm_counter(page)]++;
830                 page_dup_rmap(page, false);
831
832                 /*
833                  * We do not preserve soft-dirty information, because so
834                  * far, checkpoint/restore is the only feature that
835                  * requires that. And checkpoint/restore does not work
836                  * when a device driver is involved (you cannot easily
837                  * save and restore device driver state).
838                  */
839                 if (is_writable_device_private_entry(entry) &&
840                     is_cow_mapping(vm_flags)) {
841                         entry = make_readable_device_private_entry(
842                                                         swp_offset(entry));
843                         pte = swp_entry_to_pte(entry);
844                         if (pte_swp_uffd_wp(*src_pte))
845                                 pte = pte_swp_mkuffd_wp(pte);
846                         set_pte_at(src_mm, addr, src_pte, pte);
847                 }
848         } else if (is_device_exclusive_entry(entry)) {
849                 /*
850                  * Make device exclusive entries present by restoring the
851                  * original entry then copying as for a present pte. Device
852                  * exclusive entries currently only support private writable
853                  * (ie. COW) mappings.
854                  */
855                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857                         return -EBUSY;
858                 return -ENOENT;
859         }
860         if (!userfaultfd_wp(dst_vma))
861                 pte = pte_swp_clear_uffd_wp(pte);
862         set_pte_at(dst_mm, addr, dst_pte, pte);
863         return 0;
864 }
865
866 /*
867  * Copy a present and normal page if necessary.
868  *
869  * NOTE! The usual case is that this doesn't need to do
870  * anything, and can just return a positive value. That
871  * will let the caller know that it can just increase
872  * the page refcount and re-use the pte the traditional
873  * way.
874  *
875  * But _if_ we need to copy it because it needs to be
876  * pinned in the parent (and the child should get its own
877  * copy rather than just a reference to the same page),
878  * we'll do that here and return zero to let the caller
879  * know we're done.
880  *
881  * And if we need a pre-allocated page but don't yet have
882  * one, return a negative error to let the preallocation
883  * code know so that it can do so outside the page table
884  * lock.
885  */
886 static inline int
887 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
888                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
889                   struct page **prealloc, pte_t pte, struct page *page)
890 {
891         struct page *new_page;
892
893         /*
894          * What we want to do is to check whether this page may
895          * have been pinned by the parent process.  If so,
896          * instead of wrprotect the pte on both sides, we copy
897          * the page immediately so that we'll always guarantee
898          * the pinned page won't be randomly replaced in the
899          * future.
900          *
901          * The page pinning checks are just "has this mm ever
902          * seen pinning", along with the (inexact) check of
903          * the page count. That might give false positives for
904          * for pinning, but it will work correctly.
905          */
906         if (likely(!page_needs_cow_for_dma(src_vma, page)))
907                 return 1;
908
909         new_page = *prealloc;
910         if (!new_page)
911                 return -EAGAIN;
912
913         /*
914          * We have a prealloc page, all good!  Take it
915          * over and copy the page & arm it.
916          */
917         *prealloc = NULL;
918         copy_user_highpage(new_page, page, addr, src_vma);
919         __SetPageUptodate(new_page);
920         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
921         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
922         rss[mm_counter(new_page)]++;
923
924         /* All done, just insert the new page copy in the child */
925         pte = mk_pte(new_page, dst_vma->vm_page_prot);
926         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
927         if (userfaultfd_pte_wp(dst_vma, *src_pte))
928                 /* Uffd-wp needs to be delivered to dest pte as well */
929                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
930         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
931         return 0;
932 }
933
934 /*
935  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
936  * is required to copy this pte.
937  */
938 static inline int
939 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
940                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
941                  struct page **prealloc)
942 {
943         struct mm_struct *src_mm = src_vma->vm_mm;
944         unsigned long vm_flags = src_vma->vm_flags;
945         pte_t pte = *src_pte;
946         struct page *page;
947
948         page = vm_normal_page(src_vma, addr, pte);
949         if (page) {
950                 int retval;
951
952                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
953                                            addr, rss, prealloc, pte, page);
954                 if (retval <= 0)
955                         return retval;
956
957                 get_page(page);
958                 page_dup_rmap(page, false);
959                 rss[mm_counter(page)]++;
960         }
961
962         /*
963          * If it's a COW mapping, write protect it both
964          * in the parent and the child
965          */
966         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
967                 ptep_set_wrprotect(src_mm, addr, src_pte);
968                 pte = pte_wrprotect(pte);
969         }
970
971         /*
972          * If it's a shared mapping, mark it clean in
973          * the child
974          */
975         if (vm_flags & VM_SHARED)
976                 pte = pte_mkclean(pte);
977         pte = pte_mkold(pte);
978
979         if (!userfaultfd_wp(dst_vma))
980                 pte = pte_clear_uffd_wp(pte);
981
982         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
983         return 0;
984 }
985
986 static inline struct page *
987 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
988                    unsigned long addr)
989 {
990         struct page *new_page;
991
992         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
993         if (!new_page)
994                 return NULL;
995
996         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
997                 put_page(new_page);
998                 return NULL;
999         }
1000         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1001
1002         return new_page;
1003 }
1004
1005 static int
1006 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1007                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1008                unsigned long end)
1009 {
1010         struct mm_struct *dst_mm = dst_vma->vm_mm;
1011         struct mm_struct *src_mm = src_vma->vm_mm;
1012         pte_t *orig_src_pte, *orig_dst_pte;
1013         pte_t *src_pte, *dst_pte;
1014         spinlock_t *src_ptl, *dst_ptl;
1015         int progress, ret = 0;
1016         int rss[NR_MM_COUNTERS];
1017         swp_entry_t entry = (swp_entry_t){0};
1018         struct page *prealloc = NULL;
1019
1020 again:
1021         progress = 0;
1022         init_rss_vec(rss);
1023
1024         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1025         if (!dst_pte) {
1026                 ret = -ENOMEM;
1027                 goto out;
1028         }
1029         src_pte = pte_offset_map(src_pmd, addr);
1030         src_ptl = pte_lockptr(src_mm, src_pmd);
1031         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1032         orig_src_pte = src_pte;
1033         orig_dst_pte = dst_pte;
1034         arch_enter_lazy_mmu_mode();
1035
1036         do {
1037                 /*
1038                  * We are holding two locks at this point - either of them
1039                  * could generate latencies in another task on another CPU.
1040                  */
1041                 if (progress >= 32) {
1042                         progress = 0;
1043                         if (need_resched() ||
1044                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1045                                 break;
1046                 }
1047                 if (pte_none(*src_pte)) {
1048                         progress++;
1049                         continue;
1050                 }
1051                 if (unlikely(!pte_present(*src_pte))) {
1052                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1053                                                   dst_pte, src_pte,
1054                                                   dst_vma, src_vma,
1055                                                   addr, rss);
1056                         if (ret == -EIO) {
1057                                 entry = pte_to_swp_entry(*src_pte);
1058                                 break;
1059                         } else if (ret == -EBUSY) {
1060                                 break;
1061                         } else if (!ret) {
1062                                 progress += 8;
1063                                 continue;
1064                         }
1065
1066                         /*
1067                          * Device exclusive entry restored, continue by copying
1068                          * the now present pte.
1069                          */
1070                         WARN_ON_ONCE(ret != -ENOENT);
1071                 }
1072                 /* copy_present_pte() will clear `*prealloc' if consumed */
1073                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1074                                        addr, rss, &prealloc);
1075                 /*
1076                  * If we need a pre-allocated page for this pte, drop the
1077                  * locks, allocate, and try again.
1078                  */
1079                 if (unlikely(ret == -EAGAIN))
1080                         break;
1081                 if (unlikely(prealloc)) {
1082                         /*
1083                          * pre-alloc page cannot be reused by next time so as
1084                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1085                          * will allocate page according to address).  This
1086                          * could only happen if one pinned pte changed.
1087                          */
1088                         put_page(prealloc);
1089                         prealloc = NULL;
1090                 }
1091                 progress += 8;
1092         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1093
1094         arch_leave_lazy_mmu_mode();
1095         spin_unlock(src_ptl);
1096         pte_unmap(orig_src_pte);
1097         add_mm_rss_vec(dst_mm, rss);
1098         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1099         cond_resched();
1100
1101         if (ret == -EIO) {
1102                 VM_WARN_ON_ONCE(!entry.val);
1103                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1104                         ret = -ENOMEM;
1105                         goto out;
1106                 }
1107                 entry.val = 0;
1108         } else if (ret == -EBUSY) {
1109                 goto out;
1110         } else if (ret ==  -EAGAIN) {
1111                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1112                 if (!prealloc)
1113                         return -ENOMEM;
1114         } else if (ret) {
1115                 VM_WARN_ON_ONCE(1);
1116         }
1117
1118         /* We've captured and resolved the error. Reset, try again. */
1119         ret = 0;
1120
1121         if (addr != end)
1122                 goto again;
1123 out:
1124         if (unlikely(prealloc))
1125                 put_page(prealloc);
1126         return ret;
1127 }
1128
1129 static inline int
1130 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1131                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1132                unsigned long end)
1133 {
1134         struct mm_struct *dst_mm = dst_vma->vm_mm;
1135         struct mm_struct *src_mm = src_vma->vm_mm;
1136         pmd_t *src_pmd, *dst_pmd;
1137         unsigned long next;
1138
1139         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1140         if (!dst_pmd)
1141                 return -ENOMEM;
1142         src_pmd = pmd_offset(src_pud, addr);
1143         do {
1144                 next = pmd_addr_end(addr, end);
1145                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1146                         || pmd_devmap(*src_pmd)) {
1147                         int err;
1148                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1149                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1150                                             addr, dst_vma, src_vma);
1151                         if (err == -ENOMEM)
1152                                 return -ENOMEM;
1153                         if (!err)
1154                                 continue;
1155                         /* fall through */
1156                 }
1157                 if (pmd_none_or_clear_bad(src_pmd))
1158                         continue;
1159                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1160                                    addr, next))
1161                         return -ENOMEM;
1162         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1163         return 0;
1164 }
1165
1166 static inline int
1167 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1168                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1169                unsigned long end)
1170 {
1171         struct mm_struct *dst_mm = dst_vma->vm_mm;
1172         struct mm_struct *src_mm = src_vma->vm_mm;
1173         pud_t *src_pud, *dst_pud;
1174         unsigned long next;
1175
1176         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1177         if (!dst_pud)
1178                 return -ENOMEM;
1179         src_pud = pud_offset(src_p4d, addr);
1180         do {
1181                 next = pud_addr_end(addr, end);
1182                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1183                         int err;
1184
1185                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1186                         err = copy_huge_pud(dst_mm, src_mm,
1187                                             dst_pud, src_pud, addr, src_vma);
1188                         if (err == -ENOMEM)
1189                                 return -ENOMEM;
1190                         if (!err)
1191                                 continue;
1192                         /* fall through */
1193                 }
1194                 if (pud_none_or_clear_bad(src_pud))
1195                         continue;
1196                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1197                                    addr, next))
1198                         return -ENOMEM;
1199         } while (dst_pud++, src_pud++, addr = next, addr != end);
1200         return 0;
1201 }
1202
1203 static inline int
1204 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1205                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1206                unsigned long end)
1207 {
1208         struct mm_struct *dst_mm = dst_vma->vm_mm;
1209         p4d_t *src_p4d, *dst_p4d;
1210         unsigned long next;
1211
1212         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1213         if (!dst_p4d)
1214                 return -ENOMEM;
1215         src_p4d = p4d_offset(src_pgd, addr);
1216         do {
1217                 next = p4d_addr_end(addr, end);
1218                 if (p4d_none_or_clear_bad(src_p4d))
1219                         continue;
1220                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1221                                    addr, next))
1222                         return -ENOMEM;
1223         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1224         return 0;
1225 }
1226
1227 int
1228 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1229 {
1230         pgd_t *src_pgd, *dst_pgd;
1231         unsigned long next;
1232         unsigned long addr = src_vma->vm_start;
1233         unsigned long end = src_vma->vm_end;
1234         struct mm_struct *dst_mm = dst_vma->vm_mm;
1235         struct mm_struct *src_mm = src_vma->vm_mm;
1236         struct mmu_notifier_range range;
1237         bool is_cow;
1238         int ret;
1239
1240         /*
1241          * Don't copy ptes where a page fault will fill them correctly.
1242          * Fork becomes much lighter when there are big shared or private
1243          * readonly mappings. The tradeoff is that copy_page_range is more
1244          * efficient than faulting.
1245          */
1246         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1247             !src_vma->anon_vma)
1248                 return 0;
1249
1250         if (is_vm_hugetlb_page(src_vma))
1251                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1252
1253         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1254                 /*
1255                  * We do not free on error cases below as remove_vma
1256                  * gets called on error from higher level routine
1257                  */
1258                 ret = track_pfn_copy(src_vma);
1259                 if (ret)
1260                         return ret;
1261         }
1262
1263         /*
1264          * We need to invalidate the secondary MMU mappings only when
1265          * there could be a permission downgrade on the ptes of the
1266          * parent mm. And a permission downgrade will only happen if
1267          * is_cow_mapping() returns true.
1268          */
1269         is_cow = is_cow_mapping(src_vma->vm_flags);
1270
1271         if (is_cow) {
1272                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1273                                         0, src_vma, src_mm, addr, end);
1274                 mmu_notifier_invalidate_range_start(&range);
1275                 /*
1276                  * Disabling preemption is not needed for the write side, as
1277                  * the read side doesn't spin, but goes to the mmap_lock.
1278                  *
1279                  * Use the raw variant of the seqcount_t write API to avoid
1280                  * lockdep complaining about preemptibility.
1281                  */
1282                 mmap_assert_write_locked(src_mm);
1283                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1284         }
1285
1286         ret = 0;
1287         dst_pgd = pgd_offset(dst_mm, addr);
1288         src_pgd = pgd_offset(src_mm, addr);
1289         do {
1290                 next = pgd_addr_end(addr, end);
1291                 if (pgd_none_or_clear_bad(src_pgd))
1292                         continue;
1293                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1294                                             addr, next))) {
1295                         ret = -ENOMEM;
1296                         break;
1297                 }
1298         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1299
1300         if (is_cow) {
1301                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1302                 mmu_notifier_invalidate_range_end(&range);
1303         }
1304         return ret;
1305 }
1306
1307 /*
1308  * Parameter block passed down to zap_pte_range in exceptional cases.
1309  */
1310 struct zap_details {
1311         struct address_space *zap_mapping;      /* Check page->mapping if set */
1312         struct folio *single_folio;     /* Locked folio to be unmapped */
1313 };
1314
1315 /*
1316  * We set details->zap_mapping when we want to unmap shared but keep private
1317  * pages. Return true if skip zapping this page, false otherwise.
1318  */
1319 static inline bool
1320 zap_skip_check_mapping(struct zap_details *details, struct page *page)
1321 {
1322         if (!details || !page)
1323                 return false;
1324
1325         return details->zap_mapping &&
1326                 (details->zap_mapping != page_rmapping(page));
1327 }
1328
1329 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1330                                 struct vm_area_struct *vma, pmd_t *pmd,
1331                                 unsigned long addr, unsigned long end,
1332                                 struct zap_details *details)
1333 {
1334         struct mm_struct *mm = tlb->mm;
1335         int force_flush = 0;
1336         int rss[NR_MM_COUNTERS];
1337         spinlock_t *ptl;
1338         pte_t *start_pte;
1339         pte_t *pte;
1340         swp_entry_t entry;
1341
1342         tlb_change_page_size(tlb, PAGE_SIZE);
1343 again:
1344         init_rss_vec(rss);
1345         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1346         pte = start_pte;
1347         flush_tlb_batched_pending(mm);
1348         arch_enter_lazy_mmu_mode();
1349         do {
1350                 pte_t ptent = *pte;
1351                 if (pte_none(ptent))
1352                         continue;
1353
1354                 if (need_resched())
1355                         break;
1356
1357                 if (pte_present(ptent)) {
1358                         struct page *page;
1359
1360                         page = vm_normal_page(vma, addr, ptent);
1361                         if (unlikely(zap_skip_check_mapping(details, page)))
1362                                 continue;
1363                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1364                                                         tlb->fullmm);
1365                         tlb_remove_tlb_entry(tlb, pte, addr);
1366                         if (unlikely(!page))
1367                                 continue;
1368
1369                         if (!PageAnon(page)) {
1370                                 if (pte_dirty(ptent)) {
1371                                         force_flush = 1;
1372                                         set_page_dirty(page);
1373                                 }
1374                                 if (pte_young(ptent) &&
1375                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1376                                         mark_page_accessed(page);
1377                         }
1378                         rss[mm_counter(page)]--;
1379                         page_remove_rmap(page, false);
1380                         if (unlikely(page_mapcount(page) < 0))
1381                                 print_bad_pte(vma, addr, ptent, page);
1382                         if (unlikely(__tlb_remove_page(tlb, page))) {
1383                                 force_flush = 1;
1384                                 addr += PAGE_SIZE;
1385                                 break;
1386                         }
1387                         continue;
1388                 }
1389
1390                 entry = pte_to_swp_entry(ptent);
1391                 if (is_device_private_entry(entry) ||
1392                     is_device_exclusive_entry(entry)) {
1393                         struct page *page = pfn_swap_entry_to_page(entry);
1394
1395                         if (unlikely(zap_skip_check_mapping(details, page)))
1396                                 continue;
1397                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1398                         rss[mm_counter(page)]--;
1399
1400                         if (is_device_private_entry(entry))
1401                                 page_remove_rmap(page, false);
1402
1403                         put_page(page);
1404                         continue;
1405                 }
1406
1407                 /* If details->check_mapping, we leave swap entries. */
1408                 if (unlikely(details))
1409                         continue;
1410
1411                 if (!non_swap_entry(entry))
1412                         rss[MM_SWAPENTS]--;
1413                 else if (is_migration_entry(entry)) {
1414                         struct page *page;
1415
1416                         page = pfn_swap_entry_to_page(entry);
1417                         rss[mm_counter(page)]--;
1418                 }
1419                 if (unlikely(!free_swap_and_cache(entry)))
1420                         print_bad_pte(vma, addr, ptent, NULL);
1421                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1422         } while (pte++, addr += PAGE_SIZE, addr != end);
1423
1424         add_mm_rss_vec(mm, rss);
1425         arch_leave_lazy_mmu_mode();
1426
1427         /* Do the actual TLB flush before dropping ptl */
1428         if (force_flush)
1429                 tlb_flush_mmu_tlbonly(tlb);
1430         pte_unmap_unlock(start_pte, ptl);
1431
1432         /*
1433          * If we forced a TLB flush (either due to running out of
1434          * batch buffers or because we needed to flush dirty TLB
1435          * entries before releasing the ptl), free the batched
1436          * memory too. Restart if we didn't do everything.
1437          */
1438         if (force_flush) {
1439                 force_flush = 0;
1440                 tlb_flush_mmu(tlb);
1441         }
1442
1443         if (addr != end) {
1444                 cond_resched();
1445                 goto again;
1446         }
1447
1448         return addr;
1449 }
1450
1451 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1452                                 struct vm_area_struct *vma, pud_t *pud,
1453                                 unsigned long addr, unsigned long end,
1454                                 struct zap_details *details)
1455 {
1456         pmd_t *pmd;
1457         unsigned long next;
1458
1459         pmd = pmd_offset(pud, addr);
1460         do {
1461                 next = pmd_addr_end(addr, end);
1462                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1463                         if (next - addr != HPAGE_PMD_SIZE)
1464                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1465                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1466                                 goto next;
1467                         /* fall through */
1468                 } else if (details && details->single_folio &&
1469                            folio_test_pmd_mappable(details->single_folio) &&
1470                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1471                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1472                         /*
1473                          * Take and drop THP pmd lock so that we cannot return
1474                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1475                          * but not yet decremented compound_mapcount().
1476                          */
1477                         spin_unlock(ptl);
1478                 }
1479
1480                 /*
1481                  * Here there can be other concurrent MADV_DONTNEED or
1482                  * trans huge page faults running, and if the pmd is
1483                  * none or trans huge it can change under us. This is
1484                  * because MADV_DONTNEED holds the mmap_lock in read
1485                  * mode.
1486                  */
1487                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1488                         goto next;
1489                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1490 next:
1491                 cond_resched();
1492         } while (pmd++, addr = next, addr != end);
1493
1494         return addr;
1495 }
1496
1497 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1498                                 struct vm_area_struct *vma, p4d_t *p4d,
1499                                 unsigned long addr, unsigned long end,
1500                                 struct zap_details *details)
1501 {
1502         pud_t *pud;
1503         unsigned long next;
1504
1505         pud = pud_offset(p4d, addr);
1506         do {
1507                 next = pud_addr_end(addr, end);
1508                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1509                         if (next - addr != HPAGE_PUD_SIZE) {
1510                                 mmap_assert_locked(tlb->mm);
1511                                 split_huge_pud(vma, pud, addr);
1512                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1513                                 goto next;
1514                         /* fall through */
1515                 }
1516                 if (pud_none_or_clear_bad(pud))
1517                         continue;
1518                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1519 next:
1520                 cond_resched();
1521         } while (pud++, addr = next, addr != end);
1522
1523         return addr;
1524 }
1525
1526 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1527                                 struct vm_area_struct *vma, pgd_t *pgd,
1528                                 unsigned long addr, unsigned long end,
1529                                 struct zap_details *details)
1530 {
1531         p4d_t *p4d;
1532         unsigned long next;
1533
1534         p4d = p4d_offset(pgd, addr);
1535         do {
1536                 next = p4d_addr_end(addr, end);
1537                 if (p4d_none_or_clear_bad(p4d))
1538                         continue;
1539                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1540         } while (p4d++, addr = next, addr != end);
1541
1542         return addr;
1543 }
1544
1545 void unmap_page_range(struct mmu_gather *tlb,
1546                              struct vm_area_struct *vma,
1547                              unsigned long addr, unsigned long end,
1548                              struct zap_details *details)
1549 {
1550         pgd_t *pgd;
1551         unsigned long next;
1552
1553         BUG_ON(addr >= end);
1554         tlb_start_vma(tlb, vma);
1555         pgd = pgd_offset(vma->vm_mm, addr);
1556         do {
1557                 next = pgd_addr_end(addr, end);
1558                 if (pgd_none_or_clear_bad(pgd))
1559                         continue;
1560                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1561         } while (pgd++, addr = next, addr != end);
1562         tlb_end_vma(tlb, vma);
1563 }
1564
1565
1566 static void unmap_single_vma(struct mmu_gather *tlb,
1567                 struct vm_area_struct *vma, unsigned long start_addr,
1568                 unsigned long end_addr,
1569                 struct zap_details *details)
1570 {
1571         unsigned long start = max(vma->vm_start, start_addr);
1572         unsigned long end;
1573
1574         if (start >= vma->vm_end)
1575                 return;
1576         end = min(vma->vm_end, end_addr);
1577         if (end <= vma->vm_start)
1578                 return;
1579
1580         if (vma->vm_file)
1581                 uprobe_munmap(vma, start, end);
1582
1583         if (unlikely(vma->vm_flags & VM_PFNMAP))
1584                 untrack_pfn(vma, 0, 0);
1585
1586         if (start != end) {
1587                 if (unlikely(is_vm_hugetlb_page(vma))) {
1588                         /*
1589                          * It is undesirable to test vma->vm_file as it
1590                          * should be non-null for valid hugetlb area.
1591                          * However, vm_file will be NULL in the error
1592                          * cleanup path of mmap_region. When
1593                          * hugetlbfs ->mmap method fails,
1594                          * mmap_region() nullifies vma->vm_file
1595                          * before calling this function to clean up.
1596                          * Since no pte has actually been setup, it is
1597                          * safe to do nothing in this case.
1598                          */
1599                         if (vma->vm_file) {
1600                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1601                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1602                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1603                         }
1604                 } else
1605                         unmap_page_range(tlb, vma, start, end, details);
1606         }
1607 }
1608
1609 /**
1610  * unmap_vmas - unmap a range of memory covered by a list of vma's
1611  * @tlb: address of the caller's struct mmu_gather
1612  * @vma: the starting vma
1613  * @start_addr: virtual address at which to start unmapping
1614  * @end_addr: virtual address at which to end unmapping
1615  *
1616  * Unmap all pages in the vma list.
1617  *
1618  * Only addresses between `start' and `end' will be unmapped.
1619  *
1620  * The VMA list must be sorted in ascending virtual address order.
1621  *
1622  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1623  * range after unmap_vmas() returns.  So the only responsibility here is to
1624  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1625  * drops the lock and schedules.
1626  */
1627 void unmap_vmas(struct mmu_gather *tlb,
1628                 struct vm_area_struct *vma, unsigned long start_addr,
1629                 unsigned long end_addr)
1630 {
1631         struct mmu_notifier_range range;
1632
1633         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1634                                 start_addr, end_addr);
1635         mmu_notifier_invalidate_range_start(&range);
1636         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1637                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1638         mmu_notifier_invalidate_range_end(&range);
1639 }
1640
1641 /**
1642  * zap_page_range - remove user pages in a given range
1643  * @vma: vm_area_struct holding the applicable pages
1644  * @start: starting address of pages to zap
1645  * @size: number of bytes to zap
1646  *
1647  * Caller must protect the VMA list
1648  */
1649 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1650                 unsigned long size)
1651 {
1652         struct mmu_notifier_range range;
1653         struct mmu_gather tlb;
1654
1655         lru_add_drain();
1656         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1657                                 start, start + size);
1658         tlb_gather_mmu(&tlb, vma->vm_mm);
1659         update_hiwater_rss(vma->vm_mm);
1660         mmu_notifier_invalidate_range_start(&range);
1661         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1662                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1663         mmu_notifier_invalidate_range_end(&range);
1664         tlb_finish_mmu(&tlb);
1665 }
1666
1667 /**
1668  * zap_page_range_single - remove user pages in a given range
1669  * @vma: vm_area_struct holding the applicable pages
1670  * @address: starting address of pages to zap
1671  * @size: number of bytes to zap
1672  * @details: details of shared cache invalidation
1673  *
1674  * The range must fit into one VMA.
1675  */
1676 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1677                 unsigned long size, struct zap_details *details)
1678 {
1679         struct mmu_notifier_range range;
1680         struct mmu_gather tlb;
1681
1682         lru_add_drain();
1683         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1684                                 address, address + size);
1685         tlb_gather_mmu(&tlb, vma->vm_mm);
1686         update_hiwater_rss(vma->vm_mm);
1687         mmu_notifier_invalidate_range_start(&range);
1688         unmap_single_vma(&tlb, vma, address, range.end, details);
1689         mmu_notifier_invalidate_range_end(&range);
1690         tlb_finish_mmu(&tlb);
1691 }
1692
1693 /**
1694  * zap_vma_ptes - remove ptes mapping the vma
1695  * @vma: vm_area_struct holding ptes to be zapped
1696  * @address: starting address of pages to zap
1697  * @size: number of bytes to zap
1698  *
1699  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1700  *
1701  * The entire address range must be fully contained within the vma.
1702  *
1703  */
1704 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1705                 unsigned long size)
1706 {
1707         if (address < vma->vm_start || address + size > vma->vm_end ||
1708                         !(vma->vm_flags & VM_PFNMAP))
1709                 return;
1710
1711         zap_page_range_single(vma, address, size, NULL);
1712 }
1713 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1714
1715 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1716 {
1717         pgd_t *pgd;
1718         p4d_t *p4d;
1719         pud_t *pud;
1720         pmd_t *pmd;
1721
1722         pgd = pgd_offset(mm, addr);
1723         p4d = p4d_alloc(mm, pgd, addr);
1724         if (!p4d)
1725                 return NULL;
1726         pud = pud_alloc(mm, p4d, addr);
1727         if (!pud)
1728                 return NULL;
1729         pmd = pmd_alloc(mm, pud, addr);
1730         if (!pmd)
1731                 return NULL;
1732
1733         VM_BUG_ON(pmd_trans_huge(*pmd));
1734         return pmd;
1735 }
1736
1737 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1738                         spinlock_t **ptl)
1739 {
1740         pmd_t *pmd = walk_to_pmd(mm, addr);
1741
1742         if (!pmd)
1743                 return NULL;
1744         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1745 }
1746
1747 static int validate_page_before_insert(struct page *page)
1748 {
1749         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1750                 return -EINVAL;
1751         flush_dcache_page(page);
1752         return 0;
1753 }
1754
1755 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1756                         unsigned long addr, struct page *page, pgprot_t prot)
1757 {
1758         if (!pte_none(*pte))
1759                 return -EBUSY;
1760         /* Ok, finally just insert the thing.. */
1761         get_page(page);
1762         inc_mm_counter_fast(mm, mm_counter_file(page));
1763         page_add_file_rmap(page, false);
1764         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1765         return 0;
1766 }
1767
1768 /*
1769  * This is the old fallback for page remapping.
1770  *
1771  * For historical reasons, it only allows reserved pages. Only
1772  * old drivers should use this, and they needed to mark their
1773  * pages reserved for the old functions anyway.
1774  */
1775 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1776                         struct page *page, pgprot_t prot)
1777 {
1778         struct mm_struct *mm = vma->vm_mm;
1779         int retval;
1780         pte_t *pte;
1781         spinlock_t *ptl;
1782
1783         retval = validate_page_before_insert(page);
1784         if (retval)
1785                 goto out;
1786         retval = -ENOMEM;
1787         pte = get_locked_pte(mm, addr, &ptl);
1788         if (!pte)
1789                 goto out;
1790         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1791         pte_unmap_unlock(pte, ptl);
1792 out:
1793         return retval;
1794 }
1795
1796 #ifdef pte_index
1797 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1798                         unsigned long addr, struct page *page, pgprot_t prot)
1799 {
1800         int err;
1801
1802         if (!page_count(page))
1803                 return -EINVAL;
1804         err = validate_page_before_insert(page);
1805         if (err)
1806                 return err;
1807         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1808 }
1809
1810 /* insert_pages() amortizes the cost of spinlock operations
1811  * when inserting pages in a loop. Arch *must* define pte_index.
1812  */
1813 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1814                         struct page **pages, unsigned long *num, pgprot_t prot)
1815 {
1816         pmd_t *pmd = NULL;
1817         pte_t *start_pte, *pte;
1818         spinlock_t *pte_lock;
1819         struct mm_struct *const mm = vma->vm_mm;
1820         unsigned long curr_page_idx = 0;
1821         unsigned long remaining_pages_total = *num;
1822         unsigned long pages_to_write_in_pmd;
1823         int ret;
1824 more:
1825         ret = -EFAULT;
1826         pmd = walk_to_pmd(mm, addr);
1827         if (!pmd)
1828                 goto out;
1829
1830         pages_to_write_in_pmd = min_t(unsigned long,
1831                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1832
1833         /* Allocate the PTE if necessary; takes PMD lock once only. */
1834         ret = -ENOMEM;
1835         if (pte_alloc(mm, pmd))
1836                 goto out;
1837
1838         while (pages_to_write_in_pmd) {
1839                 int pte_idx = 0;
1840                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1841
1842                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1843                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1844                         int err = insert_page_in_batch_locked(mm, pte,
1845                                 addr, pages[curr_page_idx], prot);
1846                         if (unlikely(err)) {
1847                                 pte_unmap_unlock(start_pte, pte_lock);
1848                                 ret = err;
1849                                 remaining_pages_total -= pte_idx;
1850                                 goto out;
1851                         }
1852                         addr += PAGE_SIZE;
1853                         ++curr_page_idx;
1854                 }
1855                 pte_unmap_unlock(start_pte, pte_lock);
1856                 pages_to_write_in_pmd -= batch_size;
1857                 remaining_pages_total -= batch_size;
1858         }
1859         if (remaining_pages_total)
1860                 goto more;
1861         ret = 0;
1862 out:
1863         *num = remaining_pages_total;
1864         return ret;
1865 }
1866 #endif  /* ifdef pte_index */
1867
1868 /**
1869  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1870  * @vma: user vma to map to
1871  * @addr: target start user address of these pages
1872  * @pages: source kernel pages
1873  * @num: in: number of pages to map. out: number of pages that were *not*
1874  * mapped. (0 means all pages were successfully mapped).
1875  *
1876  * Preferred over vm_insert_page() when inserting multiple pages.
1877  *
1878  * In case of error, we may have mapped a subset of the provided
1879  * pages. It is the caller's responsibility to account for this case.
1880  *
1881  * The same restrictions apply as in vm_insert_page().
1882  */
1883 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1884                         struct page **pages, unsigned long *num)
1885 {
1886 #ifdef pte_index
1887         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1888
1889         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1890                 return -EFAULT;
1891         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1892                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1893                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1894                 vma->vm_flags |= VM_MIXEDMAP;
1895         }
1896         /* Defer page refcount checking till we're about to map that page. */
1897         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1898 #else
1899         unsigned long idx = 0, pgcount = *num;
1900         int err = -EINVAL;
1901
1902         for (; idx < pgcount; ++idx) {
1903                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1904                 if (err)
1905                         break;
1906         }
1907         *num = pgcount - idx;
1908         return err;
1909 #endif  /* ifdef pte_index */
1910 }
1911 EXPORT_SYMBOL(vm_insert_pages);
1912
1913 /**
1914  * vm_insert_page - insert single page into user vma
1915  * @vma: user vma to map to
1916  * @addr: target user address of this page
1917  * @page: source kernel page
1918  *
1919  * This allows drivers to insert individual pages they've allocated
1920  * into a user vma.
1921  *
1922  * The page has to be a nice clean _individual_ kernel allocation.
1923  * If you allocate a compound page, you need to have marked it as
1924  * such (__GFP_COMP), or manually just split the page up yourself
1925  * (see split_page()).
1926  *
1927  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1928  * took an arbitrary page protection parameter. This doesn't allow
1929  * that. Your vma protection will have to be set up correctly, which
1930  * means that if you want a shared writable mapping, you'd better
1931  * ask for a shared writable mapping!
1932  *
1933  * The page does not need to be reserved.
1934  *
1935  * Usually this function is called from f_op->mmap() handler
1936  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1937  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1938  * function from other places, for example from page-fault handler.
1939  *
1940  * Return: %0 on success, negative error code otherwise.
1941  */
1942 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1943                         struct page *page)
1944 {
1945         if (addr < vma->vm_start || addr >= vma->vm_end)
1946                 return -EFAULT;
1947         if (!page_count(page))
1948                 return -EINVAL;
1949         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1950                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1951                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1952                 vma->vm_flags |= VM_MIXEDMAP;
1953         }
1954         return insert_page(vma, addr, page, vma->vm_page_prot);
1955 }
1956 EXPORT_SYMBOL(vm_insert_page);
1957
1958 /*
1959  * __vm_map_pages - maps range of kernel pages into user vma
1960  * @vma: user vma to map to
1961  * @pages: pointer to array of source kernel pages
1962  * @num: number of pages in page array
1963  * @offset: user's requested vm_pgoff
1964  *
1965  * This allows drivers to map range of kernel pages into a user vma.
1966  *
1967  * Return: 0 on success and error code otherwise.
1968  */
1969 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1970                                 unsigned long num, unsigned long offset)
1971 {
1972         unsigned long count = vma_pages(vma);
1973         unsigned long uaddr = vma->vm_start;
1974         int ret, i;
1975
1976         /* Fail if the user requested offset is beyond the end of the object */
1977         if (offset >= num)
1978                 return -ENXIO;
1979
1980         /* Fail if the user requested size exceeds available object size */
1981         if (count > num - offset)
1982                 return -ENXIO;
1983
1984         for (i = 0; i < count; i++) {
1985                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1986                 if (ret < 0)
1987                         return ret;
1988                 uaddr += PAGE_SIZE;
1989         }
1990
1991         return 0;
1992 }
1993
1994 /**
1995  * vm_map_pages - maps range of kernel pages starts with non zero offset
1996  * @vma: user vma to map to
1997  * @pages: pointer to array of source kernel pages
1998  * @num: number of pages in page array
1999  *
2000  * Maps an object consisting of @num pages, catering for the user's
2001  * requested vm_pgoff
2002  *
2003  * If we fail to insert any page into the vma, the function will return
2004  * immediately leaving any previously inserted pages present.  Callers
2005  * from the mmap handler may immediately return the error as their caller
2006  * will destroy the vma, removing any successfully inserted pages. Other
2007  * callers should make their own arrangements for calling unmap_region().
2008  *
2009  * Context: Process context. Called by mmap handlers.
2010  * Return: 0 on success and error code otherwise.
2011  */
2012 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2013                                 unsigned long num)
2014 {
2015         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2016 }
2017 EXPORT_SYMBOL(vm_map_pages);
2018
2019 /**
2020  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2021  * @vma: user vma to map to
2022  * @pages: pointer to array of source kernel pages
2023  * @num: number of pages in page array
2024  *
2025  * Similar to vm_map_pages(), except that it explicitly sets the offset
2026  * to 0. This function is intended for the drivers that did not consider
2027  * vm_pgoff.
2028  *
2029  * Context: Process context. Called by mmap handlers.
2030  * Return: 0 on success and error code otherwise.
2031  */
2032 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2033                                 unsigned long num)
2034 {
2035         return __vm_map_pages(vma, pages, num, 0);
2036 }
2037 EXPORT_SYMBOL(vm_map_pages_zero);
2038
2039 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2040                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2041 {
2042         struct mm_struct *mm = vma->vm_mm;
2043         pte_t *pte, entry;
2044         spinlock_t *ptl;
2045
2046         pte = get_locked_pte(mm, addr, &ptl);
2047         if (!pte)
2048                 return VM_FAULT_OOM;
2049         if (!pte_none(*pte)) {
2050                 if (mkwrite) {
2051                         /*
2052                          * For read faults on private mappings the PFN passed
2053                          * in may not match the PFN we have mapped if the
2054                          * mapped PFN is a writeable COW page.  In the mkwrite
2055                          * case we are creating a writable PTE for a shared
2056                          * mapping and we expect the PFNs to match. If they
2057                          * don't match, we are likely racing with block
2058                          * allocation and mapping invalidation so just skip the
2059                          * update.
2060                          */
2061                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2062                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2063                                 goto out_unlock;
2064                         }
2065                         entry = pte_mkyoung(*pte);
2066                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2067                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2068                                 update_mmu_cache(vma, addr, pte);
2069                 }
2070                 goto out_unlock;
2071         }
2072
2073         /* Ok, finally just insert the thing.. */
2074         if (pfn_t_devmap(pfn))
2075                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2076         else
2077                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2078
2079         if (mkwrite) {
2080                 entry = pte_mkyoung(entry);
2081                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2082         }
2083
2084         set_pte_at(mm, addr, pte, entry);
2085         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2086
2087 out_unlock:
2088         pte_unmap_unlock(pte, ptl);
2089         return VM_FAULT_NOPAGE;
2090 }
2091
2092 /**
2093  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2094  * @vma: user vma to map to
2095  * @addr: target user address of this page
2096  * @pfn: source kernel pfn
2097  * @pgprot: pgprot flags for the inserted page
2098  *
2099  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2100  * to override pgprot on a per-page basis.
2101  *
2102  * This only makes sense for IO mappings, and it makes no sense for
2103  * COW mappings.  In general, using multiple vmas is preferable;
2104  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2105  * impractical.
2106  *
2107  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2108  * a value of @pgprot different from that of @vma->vm_page_prot.
2109  *
2110  * Context: Process context.  May allocate using %GFP_KERNEL.
2111  * Return: vm_fault_t value.
2112  */
2113 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2114                         unsigned long pfn, pgprot_t pgprot)
2115 {
2116         /*
2117          * Technically, architectures with pte_special can avoid all these
2118          * restrictions (same for remap_pfn_range).  However we would like
2119          * consistency in testing and feature parity among all, so we should
2120          * try to keep these invariants in place for everybody.
2121          */
2122         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2123         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2124                                                 (VM_PFNMAP|VM_MIXEDMAP));
2125         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2126         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2127
2128         if (addr < vma->vm_start || addr >= vma->vm_end)
2129                 return VM_FAULT_SIGBUS;
2130
2131         if (!pfn_modify_allowed(pfn, pgprot))
2132                 return VM_FAULT_SIGBUS;
2133
2134         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2135
2136         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2137                         false);
2138 }
2139 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2140
2141 /**
2142  * vmf_insert_pfn - insert single pfn into user vma
2143  * @vma: user vma to map to
2144  * @addr: target user address of this page
2145  * @pfn: source kernel pfn
2146  *
2147  * Similar to vm_insert_page, this allows drivers to insert individual pages
2148  * they've allocated into a user vma. Same comments apply.
2149  *
2150  * This function should only be called from a vm_ops->fault handler, and
2151  * in that case the handler should return the result of this function.
2152  *
2153  * vma cannot be a COW mapping.
2154  *
2155  * As this is called only for pages that do not currently exist, we
2156  * do not need to flush old virtual caches or the TLB.
2157  *
2158  * Context: Process context.  May allocate using %GFP_KERNEL.
2159  * Return: vm_fault_t value.
2160  */
2161 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2162                         unsigned long pfn)
2163 {
2164         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2165 }
2166 EXPORT_SYMBOL(vmf_insert_pfn);
2167
2168 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2169 {
2170         /* these checks mirror the abort conditions in vm_normal_page */
2171         if (vma->vm_flags & VM_MIXEDMAP)
2172                 return true;
2173         if (pfn_t_devmap(pfn))
2174                 return true;
2175         if (pfn_t_special(pfn))
2176                 return true;
2177         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2178                 return true;
2179         return false;
2180 }
2181
2182 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2183                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2184                 bool mkwrite)
2185 {
2186         int err;
2187
2188         BUG_ON(!vm_mixed_ok(vma, pfn));
2189
2190         if (addr < vma->vm_start || addr >= vma->vm_end)
2191                 return VM_FAULT_SIGBUS;
2192
2193         track_pfn_insert(vma, &pgprot, pfn);
2194
2195         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2196                 return VM_FAULT_SIGBUS;
2197
2198         /*
2199          * If we don't have pte special, then we have to use the pfn_valid()
2200          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2201          * refcount the page if pfn_valid is true (hence insert_page rather
2202          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2203          * without pte special, it would there be refcounted as a normal page.
2204          */
2205         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2206             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2207                 struct page *page;
2208
2209                 /*
2210                  * At this point we are committed to insert_page()
2211                  * regardless of whether the caller specified flags that
2212                  * result in pfn_t_has_page() == false.
2213                  */
2214                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2215                 err = insert_page(vma, addr, page, pgprot);
2216         } else {
2217                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2218         }
2219
2220         if (err == -ENOMEM)
2221                 return VM_FAULT_OOM;
2222         if (err < 0 && err != -EBUSY)
2223                 return VM_FAULT_SIGBUS;
2224
2225         return VM_FAULT_NOPAGE;
2226 }
2227
2228 /**
2229  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2230  * @vma: user vma to map to
2231  * @addr: target user address of this page
2232  * @pfn: source kernel pfn
2233  * @pgprot: pgprot flags for the inserted page
2234  *
2235  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2236  * to override pgprot on a per-page basis.
2237  *
2238  * Typically this function should be used by drivers to set caching- and
2239  * encryption bits different than those of @vma->vm_page_prot, because
2240  * the caching- or encryption mode may not be known at mmap() time.
2241  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2242  * to set caching and encryption bits for those vmas (except for COW pages).
2243  * This is ensured by core vm only modifying these page table entries using
2244  * functions that don't touch caching- or encryption bits, using pte_modify()
2245  * if needed. (See for example mprotect()).
2246  * Also when new page-table entries are created, this is only done using the
2247  * fault() callback, and never using the value of vma->vm_page_prot,
2248  * except for page-table entries that point to anonymous pages as the result
2249  * of COW.
2250  *
2251  * Context: Process context.  May allocate using %GFP_KERNEL.
2252  * Return: vm_fault_t value.
2253  */
2254 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2255                                  pfn_t pfn, pgprot_t pgprot)
2256 {
2257         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2258 }
2259 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2260
2261 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2262                 pfn_t pfn)
2263 {
2264         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2265 }
2266 EXPORT_SYMBOL(vmf_insert_mixed);
2267
2268 /*
2269  *  If the insertion of PTE failed because someone else already added a
2270  *  different entry in the mean time, we treat that as success as we assume
2271  *  the same entry was actually inserted.
2272  */
2273 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2274                 unsigned long addr, pfn_t pfn)
2275 {
2276         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2277 }
2278 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2279
2280 /*
2281  * maps a range of physical memory into the requested pages. the old
2282  * mappings are removed. any references to nonexistent pages results
2283  * in null mappings (currently treated as "copy-on-access")
2284  */
2285 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2286                         unsigned long addr, unsigned long end,
2287                         unsigned long pfn, pgprot_t prot)
2288 {
2289         pte_t *pte, *mapped_pte;
2290         spinlock_t *ptl;
2291         int err = 0;
2292
2293         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2294         if (!pte)
2295                 return -ENOMEM;
2296         arch_enter_lazy_mmu_mode();
2297         do {
2298                 BUG_ON(!pte_none(*pte));
2299                 if (!pfn_modify_allowed(pfn, prot)) {
2300                         err = -EACCES;
2301                         break;
2302                 }
2303                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2304                 pfn++;
2305         } while (pte++, addr += PAGE_SIZE, addr != end);
2306         arch_leave_lazy_mmu_mode();
2307         pte_unmap_unlock(mapped_pte, ptl);
2308         return err;
2309 }
2310
2311 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2312                         unsigned long addr, unsigned long end,
2313                         unsigned long pfn, pgprot_t prot)
2314 {
2315         pmd_t *pmd;
2316         unsigned long next;
2317         int err;
2318
2319         pfn -= addr >> PAGE_SHIFT;
2320         pmd = pmd_alloc(mm, pud, addr);
2321         if (!pmd)
2322                 return -ENOMEM;
2323         VM_BUG_ON(pmd_trans_huge(*pmd));
2324         do {
2325                 next = pmd_addr_end(addr, end);
2326                 err = remap_pte_range(mm, pmd, addr, next,
2327                                 pfn + (addr >> PAGE_SHIFT), prot);
2328                 if (err)
2329                         return err;
2330         } while (pmd++, addr = next, addr != end);
2331         return 0;
2332 }
2333
2334 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2335                         unsigned long addr, unsigned long end,
2336                         unsigned long pfn, pgprot_t prot)
2337 {
2338         pud_t *pud;
2339         unsigned long next;
2340         int err;
2341
2342         pfn -= addr >> PAGE_SHIFT;
2343         pud = pud_alloc(mm, p4d, addr);
2344         if (!pud)
2345                 return -ENOMEM;
2346         do {
2347                 next = pud_addr_end(addr, end);
2348                 err = remap_pmd_range(mm, pud, addr, next,
2349                                 pfn + (addr >> PAGE_SHIFT), prot);
2350                 if (err)
2351                         return err;
2352         } while (pud++, addr = next, addr != end);
2353         return 0;
2354 }
2355
2356 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2357                         unsigned long addr, unsigned long end,
2358                         unsigned long pfn, pgprot_t prot)
2359 {
2360         p4d_t *p4d;
2361         unsigned long next;
2362         int err;
2363
2364         pfn -= addr >> PAGE_SHIFT;
2365         p4d = p4d_alloc(mm, pgd, addr);
2366         if (!p4d)
2367                 return -ENOMEM;
2368         do {
2369                 next = p4d_addr_end(addr, end);
2370                 err = remap_pud_range(mm, p4d, addr, next,
2371                                 pfn + (addr >> PAGE_SHIFT), prot);
2372                 if (err)
2373                         return err;
2374         } while (p4d++, addr = next, addr != end);
2375         return 0;
2376 }
2377
2378 /*
2379  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2380  * must have pre-validated the caching bits of the pgprot_t.
2381  */
2382 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2383                 unsigned long pfn, unsigned long size, pgprot_t prot)
2384 {
2385         pgd_t *pgd;
2386         unsigned long next;
2387         unsigned long end = addr + PAGE_ALIGN(size);
2388         struct mm_struct *mm = vma->vm_mm;
2389         int err;
2390
2391         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2392                 return -EINVAL;
2393
2394         /*
2395          * Physically remapped pages are special. Tell the
2396          * rest of the world about it:
2397          *   VM_IO tells people not to look at these pages
2398          *      (accesses can have side effects).
2399          *   VM_PFNMAP tells the core MM that the base pages are just
2400          *      raw PFN mappings, and do not have a "struct page" associated
2401          *      with them.
2402          *   VM_DONTEXPAND
2403          *      Disable vma merging and expanding with mremap().
2404          *   VM_DONTDUMP
2405          *      Omit vma from core dump, even when VM_IO turned off.
2406          *
2407          * There's a horrible special case to handle copy-on-write
2408          * behaviour that some programs depend on. We mark the "original"
2409          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2410          * See vm_normal_page() for details.
2411          */
2412         if (is_cow_mapping(vma->vm_flags)) {
2413                 if (addr != vma->vm_start || end != vma->vm_end)
2414                         return -EINVAL;
2415                 vma->vm_pgoff = pfn;
2416         }
2417
2418         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2419
2420         BUG_ON(addr >= end);
2421         pfn -= addr >> PAGE_SHIFT;
2422         pgd = pgd_offset(mm, addr);
2423         flush_cache_range(vma, addr, end);
2424         do {
2425                 next = pgd_addr_end(addr, end);
2426                 err = remap_p4d_range(mm, pgd, addr, next,
2427                                 pfn + (addr >> PAGE_SHIFT), prot);
2428                 if (err)
2429                         return err;
2430         } while (pgd++, addr = next, addr != end);
2431
2432         return 0;
2433 }
2434
2435 /**
2436  * remap_pfn_range - remap kernel memory to userspace
2437  * @vma: user vma to map to
2438  * @addr: target page aligned user address to start at
2439  * @pfn: page frame number of kernel physical memory address
2440  * @size: size of mapping area
2441  * @prot: page protection flags for this mapping
2442  *
2443  * Note: this is only safe if the mm semaphore is held when called.
2444  *
2445  * Return: %0 on success, negative error code otherwise.
2446  */
2447 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2448                     unsigned long pfn, unsigned long size, pgprot_t prot)
2449 {
2450         int err;
2451
2452         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2453         if (err)
2454                 return -EINVAL;
2455
2456         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2457         if (err)
2458                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2459         return err;
2460 }
2461 EXPORT_SYMBOL(remap_pfn_range);
2462
2463 /**
2464  * vm_iomap_memory - remap memory to userspace
2465  * @vma: user vma to map to
2466  * @start: start of the physical memory to be mapped
2467  * @len: size of area
2468  *
2469  * This is a simplified io_remap_pfn_range() for common driver use. The
2470  * driver just needs to give us the physical memory range to be mapped,
2471  * we'll figure out the rest from the vma information.
2472  *
2473  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2474  * whatever write-combining details or similar.
2475  *
2476  * Return: %0 on success, negative error code otherwise.
2477  */
2478 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2479 {
2480         unsigned long vm_len, pfn, pages;
2481
2482         /* Check that the physical memory area passed in looks valid */
2483         if (start + len < start)
2484                 return -EINVAL;
2485         /*
2486          * You *really* shouldn't map things that aren't page-aligned,
2487          * but we've historically allowed it because IO memory might
2488          * just have smaller alignment.
2489          */
2490         len += start & ~PAGE_MASK;
2491         pfn = start >> PAGE_SHIFT;
2492         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2493         if (pfn + pages < pfn)
2494                 return -EINVAL;
2495
2496         /* We start the mapping 'vm_pgoff' pages into the area */
2497         if (vma->vm_pgoff > pages)
2498                 return -EINVAL;
2499         pfn += vma->vm_pgoff;
2500         pages -= vma->vm_pgoff;
2501
2502         /* Can we fit all of the mapping? */
2503         vm_len = vma->vm_end - vma->vm_start;
2504         if (vm_len >> PAGE_SHIFT > pages)
2505                 return -EINVAL;
2506
2507         /* Ok, let it rip */
2508         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2509 }
2510 EXPORT_SYMBOL(vm_iomap_memory);
2511
2512 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2513                                      unsigned long addr, unsigned long end,
2514                                      pte_fn_t fn, void *data, bool create,
2515                                      pgtbl_mod_mask *mask)
2516 {
2517         pte_t *pte, *mapped_pte;
2518         int err = 0;
2519         spinlock_t *ptl;
2520
2521         if (create) {
2522                 mapped_pte = pte = (mm == &init_mm) ?
2523                         pte_alloc_kernel_track(pmd, addr, mask) :
2524                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2525                 if (!pte)
2526                         return -ENOMEM;
2527         } else {
2528                 mapped_pte = pte = (mm == &init_mm) ?
2529                         pte_offset_kernel(pmd, addr) :
2530                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2531         }
2532
2533         BUG_ON(pmd_huge(*pmd));
2534
2535         arch_enter_lazy_mmu_mode();
2536
2537         if (fn) {
2538                 do {
2539                         if (create || !pte_none(*pte)) {
2540                                 err = fn(pte++, addr, data);
2541                                 if (err)
2542                                         break;
2543                         }
2544                 } while (addr += PAGE_SIZE, addr != end);
2545         }
2546         *mask |= PGTBL_PTE_MODIFIED;
2547
2548         arch_leave_lazy_mmu_mode();
2549
2550         if (mm != &init_mm)
2551                 pte_unmap_unlock(mapped_pte, ptl);
2552         return err;
2553 }
2554
2555 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2556                                      unsigned long addr, unsigned long end,
2557                                      pte_fn_t fn, void *data, bool create,
2558                                      pgtbl_mod_mask *mask)
2559 {
2560         pmd_t *pmd;
2561         unsigned long next;
2562         int err = 0;
2563
2564         BUG_ON(pud_huge(*pud));
2565
2566         if (create) {
2567                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2568                 if (!pmd)
2569                         return -ENOMEM;
2570         } else {
2571                 pmd = pmd_offset(pud, addr);
2572         }
2573         do {
2574                 next = pmd_addr_end(addr, end);
2575                 if (pmd_none(*pmd) && !create)
2576                         continue;
2577                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2578                         return -EINVAL;
2579                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2580                         if (!create)
2581                                 continue;
2582                         pmd_clear_bad(pmd);
2583                 }
2584                 err = apply_to_pte_range(mm, pmd, addr, next,
2585                                          fn, data, create, mask);
2586                 if (err)
2587                         break;
2588         } while (pmd++, addr = next, addr != end);
2589
2590         return err;
2591 }
2592
2593 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2594                                      unsigned long addr, unsigned long end,
2595                                      pte_fn_t fn, void *data, bool create,
2596                                      pgtbl_mod_mask *mask)
2597 {
2598         pud_t *pud;
2599         unsigned long next;
2600         int err = 0;
2601
2602         if (create) {
2603                 pud = pud_alloc_track(mm, p4d, addr, mask);
2604                 if (!pud)
2605                         return -ENOMEM;
2606         } else {
2607                 pud = pud_offset(p4d, addr);
2608         }
2609         do {
2610                 next = pud_addr_end(addr, end);
2611                 if (pud_none(*pud) && !create)
2612                         continue;
2613                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2614                         return -EINVAL;
2615                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2616                         if (!create)
2617                                 continue;
2618                         pud_clear_bad(pud);
2619                 }
2620                 err = apply_to_pmd_range(mm, pud, addr, next,
2621                                          fn, data, create, mask);
2622                 if (err)
2623                         break;
2624         } while (pud++, addr = next, addr != end);
2625
2626         return err;
2627 }
2628
2629 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2630                                      unsigned long addr, unsigned long end,
2631                                      pte_fn_t fn, void *data, bool create,
2632                                      pgtbl_mod_mask *mask)
2633 {
2634         p4d_t *p4d;
2635         unsigned long next;
2636         int err = 0;
2637
2638         if (create) {
2639                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2640                 if (!p4d)
2641                         return -ENOMEM;
2642         } else {
2643                 p4d = p4d_offset(pgd, addr);
2644         }
2645         do {
2646                 next = p4d_addr_end(addr, end);
2647                 if (p4d_none(*p4d) && !create)
2648                         continue;
2649                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2650                         return -EINVAL;
2651                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2652                         if (!create)
2653                                 continue;
2654                         p4d_clear_bad(p4d);
2655                 }
2656                 err = apply_to_pud_range(mm, p4d, addr, next,
2657                                          fn, data, create, mask);
2658                 if (err)
2659                         break;
2660         } while (p4d++, addr = next, addr != end);
2661
2662         return err;
2663 }
2664
2665 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2666                                  unsigned long size, pte_fn_t fn,
2667                                  void *data, bool create)
2668 {
2669         pgd_t *pgd;
2670         unsigned long start = addr, next;
2671         unsigned long end = addr + size;
2672         pgtbl_mod_mask mask = 0;
2673         int err = 0;
2674
2675         if (WARN_ON(addr >= end))
2676                 return -EINVAL;
2677
2678         pgd = pgd_offset(mm, addr);
2679         do {
2680                 next = pgd_addr_end(addr, end);
2681                 if (pgd_none(*pgd) && !create)
2682                         continue;
2683                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2684                         return -EINVAL;
2685                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2686                         if (!create)
2687                                 continue;
2688                         pgd_clear_bad(pgd);
2689                 }
2690                 err = apply_to_p4d_range(mm, pgd, addr, next,
2691                                          fn, data, create, &mask);
2692                 if (err)
2693                         break;
2694         } while (pgd++, addr = next, addr != end);
2695
2696         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2697                 arch_sync_kernel_mappings(start, start + size);
2698
2699         return err;
2700 }
2701
2702 /*
2703  * Scan a region of virtual memory, filling in page tables as necessary
2704  * and calling a provided function on each leaf page table.
2705  */
2706 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2707                         unsigned long size, pte_fn_t fn, void *data)
2708 {
2709         return __apply_to_page_range(mm, addr, size, fn, data, true);
2710 }
2711 EXPORT_SYMBOL_GPL(apply_to_page_range);
2712
2713 /*
2714  * Scan a region of virtual memory, calling a provided function on
2715  * each leaf page table where it exists.
2716  *
2717  * Unlike apply_to_page_range, this does _not_ fill in page tables
2718  * where they are absent.
2719  */
2720 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2721                                  unsigned long size, pte_fn_t fn, void *data)
2722 {
2723         return __apply_to_page_range(mm, addr, size, fn, data, false);
2724 }
2725 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2726
2727 /*
2728  * handle_pte_fault chooses page fault handler according to an entry which was
2729  * read non-atomically.  Before making any commitment, on those architectures
2730  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2731  * parts, do_swap_page must check under lock before unmapping the pte and
2732  * proceeding (but do_wp_page is only called after already making such a check;
2733  * and do_anonymous_page can safely check later on).
2734  */
2735 static inline int pte_unmap_same(struct vm_fault *vmf)
2736 {
2737         int same = 1;
2738 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2739         if (sizeof(pte_t) > sizeof(unsigned long)) {
2740                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2741                 spin_lock(ptl);
2742                 same = pte_same(*vmf->pte, vmf->orig_pte);
2743                 spin_unlock(ptl);
2744         }
2745 #endif
2746         pte_unmap(vmf->pte);
2747         vmf->pte = NULL;
2748         return same;
2749 }
2750
2751 static inline bool cow_user_page(struct page *dst, struct page *src,
2752                                  struct vm_fault *vmf)
2753 {
2754         bool ret;
2755         void *kaddr;
2756         void __user *uaddr;
2757         bool locked = false;
2758         struct vm_area_struct *vma = vmf->vma;
2759         struct mm_struct *mm = vma->vm_mm;
2760         unsigned long addr = vmf->address;
2761
2762         if (likely(src)) {
2763                 copy_user_highpage(dst, src, addr, vma);
2764                 return true;
2765         }
2766
2767         /*
2768          * If the source page was a PFN mapping, we don't have
2769          * a "struct page" for it. We do a best-effort copy by
2770          * just copying from the original user address. If that
2771          * fails, we just zero-fill it. Live with it.
2772          */
2773         kaddr = kmap_atomic(dst);
2774         uaddr = (void __user *)(addr & PAGE_MASK);
2775
2776         /*
2777          * On architectures with software "accessed" bits, we would
2778          * take a double page fault, so mark it accessed here.
2779          */
2780         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2781                 pte_t entry;
2782
2783                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2784                 locked = true;
2785                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2786                         /*
2787                          * Other thread has already handled the fault
2788                          * and update local tlb only
2789                          */
2790                         update_mmu_tlb(vma, addr, vmf->pte);
2791                         ret = false;
2792                         goto pte_unlock;
2793                 }
2794
2795                 entry = pte_mkyoung(vmf->orig_pte);
2796                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2797                         update_mmu_cache(vma, addr, vmf->pte);
2798         }
2799
2800         /*
2801          * This really shouldn't fail, because the page is there
2802          * in the page tables. But it might just be unreadable,
2803          * in which case we just give up and fill the result with
2804          * zeroes.
2805          */
2806         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2807                 if (locked)
2808                         goto warn;
2809
2810                 /* Re-validate under PTL if the page is still mapped */
2811                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2812                 locked = true;
2813                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2814                         /* The PTE changed under us, update local tlb */
2815                         update_mmu_tlb(vma, addr, vmf->pte);
2816                         ret = false;
2817                         goto pte_unlock;
2818                 }
2819
2820                 /*
2821                  * The same page can be mapped back since last copy attempt.
2822                  * Try to copy again under PTL.
2823                  */
2824                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2825                         /*
2826                          * Give a warn in case there can be some obscure
2827                          * use-case
2828                          */
2829 warn:
2830                         WARN_ON_ONCE(1);
2831                         clear_page(kaddr);
2832                 }
2833         }
2834
2835         ret = true;
2836
2837 pte_unlock:
2838         if (locked)
2839                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2840         kunmap_atomic(kaddr);
2841         flush_dcache_page(dst);
2842
2843         return ret;
2844 }
2845
2846 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2847 {
2848         struct file *vm_file = vma->vm_file;
2849
2850         if (vm_file)
2851                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2852
2853         /*
2854          * Special mappings (e.g. VDSO) do not have any file so fake
2855          * a default GFP_KERNEL for them.
2856          */
2857         return GFP_KERNEL;
2858 }
2859
2860 /*
2861  * Notify the address space that the page is about to become writable so that
2862  * it can prohibit this or wait for the page to get into an appropriate state.
2863  *
2864  * We do this without the lock held, so that it can sleep if it needs to.
2865  */
2866 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2867 {
2868         vm_fault_t ret;
2869         struct page *page = vmf->page;
2870         unsigned int old_flags = vmf->flags;
2871
2872         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2873
2874         if (vmf->vma->vm_file &&
2875             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2876                 return VM_FAULT_SIGBUS;
2877
2878         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2879         /* Restore original flags so that caller is not surprised */
2880         vmf->flags = old_flags;
2881         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2882                 return ret;
2883         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2884                 lock_page(page);
2885                 if (!page->mapping) {
2886                         unlock_page(page);
2887                         return 0; /* retry */
2888                 }
2889                 ret |= VM_FAULT_LOCKED;
2890         } else
2891                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2892         return ret;
2893 }
2894
2895 /*
2896  * Handle dirtying of a page in shared file mapping on a write fault.
2897  *
2898  * The function expects the page to be locked and unlocks it.
2899  */
2900 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2901 {
2902         struct vm_area_struct *vma = vmf->vma;
2903         struct address_space *mapping;
2904         struct page *page = vmf->page;
2905         bool dirtied;
2906         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2907
2908         dirtied = set_page_dirty(page);
2909         VM_BUG_ON_PAGE(PageAnon(page), page);
2910         /*
2911          * Take a local copy of the address_space - page.mapping may be zeroed
2912          * by truncate after unlock_page().   The address_space itself remains
2913          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2914          * release semantics to prevent the compiler from undoing this copying.
2915          */
2916         mapping = page_rmapping(page);
2917         unlock_page(page);
2918
2919         if (!page_mkwrite)
2920                 file_update_time(vma->vm_file);
2921
2922         /*
2923          * Throttle page dirtying rate down to writeback speed.
2924          *
2925          * mapping may be NULL here because some device drivers do not
2926          * set page.mapping but still dirty their pages
2927          *
2928          * Drop the mmap_lock before waiting on IO, if we can. The file
2929          * is pinning the mapping, as per above.
2930          */
2931         if ((dirtied || page_mkwrite) && mapping) {
2932                 struct file *fpin;
2933
2934                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2935                 balance_dirty_pages_ratelimited(mapping);
2936                 if (fpin) {
2937                         fput(fpin);
2938                         return VM_FAULT_RETRY;
2939                 }
2940         }
2941
2942         return 0;
2943 }
2944
2945 /*
2946  * Handle write page faults for pages that can be reused in the current vma
2947  *
2948  * This can happen either due to the mapping being with the VM_SHARED flag,
2949  * or due to us being the last reference standing to the page. In either
2950  * case, all we need to do here is to mark the page as writable and update
2951  * any related book-keeping.
2952  */
2953 static inline void wp_page_reuse(struct vm_fault *vmf)
2954         __releases(vmf->ptl)
2955 {
2956         struct vm_area_struct *vma = vmf->vma;
2957         struct page *page = vmf->page;
2958         pte_t entry;
2959         /*
2960          * Clear the pages cpupid information as the existing
2961          * information potentially belongs to a now completely
2962          * unrelated process.
2963          */
2964         if (page)
2965                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2966
2967         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2968         entry = pte_mkyoung(vmf->orig_pte);
2969         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2970         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2971                 update_mmu_cache(vma, vmf->address, vmf->pte);
2972         pte_unmap_unlock(vmf->pte, vmf->ptl);
2973         count_vm_event(PGREUSE);
2974 }
2975
2976 /*
2977  * Handle the case of a page which we actually need to copy to a new page.
2978  *
2979  * Called with mmap_lock locked and the old page referenced, but
2980  * without the ptl held.
2981  *
2982  * High level logic flow:
2983  *
2984  * - Allocate a page, copy the content of the old page to the new one.
2985  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2986  * - Take the PTL. If the pte changed, bail out and release the allocated page
2987  * - If the pte is still the way we remember it, update the page table and all
2988  *   relevant references. This includes dropping the reference the page-table
2989  *   held to the old page, as well as updating the rmap.
2990  * - In any case, unlock the PTL and drop the reference we took to the old page.
2991  */
2992 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2993 {
2994         struct vm_area_struct *vma = vmf->vma;
2995         struct mm_struct *mm = vma->vm_mm;
2996         struct page *old_page = vmf->page;
2997         struct page *new_page = NULL;
2998         pte_t entry;
2999         int page_copied = 0;
3000         struct mmu_notifier_range range;
3001
3002         if (unlikely(anon_vma_prepare(vma)))
3003                 goto oom;
3004
3005         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3006                 new_page = alloc_zeroed_user_highpage_movable(vma,
3007                                                               vmf->address);
3008                 if (!new_page)
3009                         goto oom;
3010         } else {
3011                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3012                                 vmf->address);
3013                 if (!new_page)
3014                         goto oom;
3015
3016                 if (!cow_user_page(new_page, old_page, vmf)) {
3017                         /*
3018                          * COW failed, if the fault was solved by other,
3019                          * it's fine. If not, userspace would re-fault on
3020                          * the same address and we will handle the fault
3021                          * from the second attempt.
3022                          */
3023                         put_page(new_page);
3024                         if (old_page)
3025                                 put_page(old_page);
3026                         return 0;
3027                 }
3028         }
3029
3030         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3031                 goto oom_free_new;
3032         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3033
3034         __SetPageUptodate(new_page);
3035
3036         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3037                                 vmf->address & PAGE_MASK,
3038                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3039         mmu_notifier_invalidate_range_start(&range);
3040
3041         /*
3042          * Re-check the pte - we dropped the lock
3043          */
3044         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3045         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3046                 if (old_page) {
3047                         if (!PageAnon(old_page)) {
3048                                 dec_mm_counter_fast(mm,
3049                                                 mm_counter_file(old_page));
3050                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3051                         }
3052                 } else {
3053                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3054                 }
3055                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3056                 entry = mk_pte(new_page, vma->vm_page_prot);
3057                 entry = pte_sw_mkyoung(entry);
3058                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3059
3060                 /*
3061                  * Clear the pte entry and flush it first, before updating the
3062                  * pte with the new entry, to keep TLBs on different CPUs in
3063                  * sync. This code used to set the new PTE then flush TLBs, but
3064                  * that left a window where the new PTE could be loaded into
3065                  * some TLBs while the old PTE remains in others.
3066                  */
3067                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3068                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3069                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3070                 /*
3071                  * We call the notify macro here because, when using secondary
3072                  * mmu page tables (such as kvm shadow page tables), we want the
3073                  * new page to be mapped directly into the secondary page table.
3074                  */
3075                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3076                 update_mmu_cache(vma, vmf->address, vmf->pte);
3077                 if (old_page) {
3078                         /*
3079                          * Only after switching the pte to the new page may
3080                          * we remove the mapcount here. Otherwise another
3081                          * process may come and find the rmap count decremented
3082                          * before the pte is switched to the new page, and
3083                          * "reuse" the old page writing into it while our pte
3084                          * here still points into it and can be read by other
3085                          * threads.
3086                          *
3087                          * The critical issue is to order this
3088                          * page_remove_rmap with the ptp_clear_flush above.
3089                          * Those stores are ordered by (if nothing else,)
3090                          * the barrier present in the atomic_add_negative
3091                          * in page_remove_rmap.
3092                          *
3093                          * Then the TLB flush in ptep_clear_flush ensures that
3094                          * no process can access the old page before the
3095                          * decremented mapcount is visible. And the old page
3096                          * cannot be reused until after the decremented
3097                          * mapcount is visible. So transitively, TLBs to
3098                          * old page will be flushed before it can be reused.
3099                          */
3100                         page_remove_rmap(old_page, false);
3101                 }
3102
3103                 /* Free the old page.. */
3104                 new_page = old_page;
3105                 page_copied = 1;
3106         } else {
3107                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3108         }
3109
3110         if (new_page)
3111                 put_page(new_page);
3112
3113         pte_unmap_unlock(vmf->pte, vmf->ptl);
3114         /*
3115          * No need to double call mmu_notifier->invalidate_range() callback as
3116          * the above ptep_clear_flush_notify() did already call it.
3117          */
3118         mmu_notifier_invalidate_range_only_end(&range);
3119         if (old_page) {
3120                 /*
3121                  * Don't let another task, with possibly unlocked vma,
3122                  * keep the mlocked page.
3123                  */
3124                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3125                         lock_page(old_page);    /* LRU manipulation */
3126                         if (PageMlocked(old_page))
3127                                 munlock_vma_page(old_page);
3128                         unlock_page(old_page);
3129                 }
3130                 if (page_copied)
3131                         free_swap_cache(old_page);
3132                 put_page(old_page);
3133         }
3134         return page_copied ? VM_FAULT_WRITE : 0;
3135 oom_free_new:
3136         put_page(new_page);
3137 oom:
3138         if (old_page)
3139                 put_page(old_page);
3140         return VM_FAULT_OOM;
3141 }
3142
3143 /**
3144  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3145  *                        writeable once the page is prepared
3146  *
3147  * @vmf: structure describing the fault
3148  *
3149  * This function handles all that is needed to finish a write page fault in a
3150  * shared mapping due to PTE being read-only once the mapped page is prepared.
3151  * It handles locking of PTE and modifying it.
3152  *
3153  * The function expects the page to be locked or other protection against
3154  * concurrent faults / writeback (such as DAX radix tree locks).
3155  *
3156  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3157  * we acquired PTE lock.
3158  */
3159 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3160 {
3161         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3162         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3163                                        &vmf->ptl);
3164         /*
3165          * We might have raced with another page fault while we released the
3166          * pte_offset_map_lock.
3167          */
3168         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3169                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3170                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3171                 return VM_FAULT_NOPAGE;
3172         }
3173         wp_page_reuse(vmf);
3174         return 0;
3175 }
3176
3177 /*
3178  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3179  * mapping
3180  */
3181 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3182 {
3183         struct vm_area_struct *vma = vmf->vma;
3184
3185         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3186                 vm_fault_t ret;
3187
3188                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3189                 vmf->flags |= FAULT_FLAG_MKWRITE;
3190                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3191                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3192                         return ret;
3193                 return finish_mkwrite_fault(vmf);
3194         }
3195         wp_page_reuse(vmf);
3196         return VM_FAULT_WRITE;
3197 }
3198
3199 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3200         __releases(vmf->ptl)
3201 {
3202         struct vm_area_struct *vma = vmf->vma;
3203         vm_fault_t ret = VM_FAULT_WRITE;
3204
3205         get_page(vmf->page);
3206
3207         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3208                 vm_fault_t tmp;
3209
3210                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3211                 tmp = do_page_mkwrite(vmf);
3212                 if (unlikely(!tmp || (tmp &
3213                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3214                         put_page(vmf->page);
3215                         return tmp;
3216                 }
3217                 tmp = finish_mkwrite_fault(vmf);
3218                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3219                         unlock_page(vmf->page);
3220                         put_page(vmf->page);
3221                         return tmp;
3222                 }
3223         } else {
3224                 wp_page_reuse(vmf);
3225                 lock_page(vmf->page);
3226         }
3227         ret |= fault_dirty_shared_page(vmf);
3228         put_page(vmf->page);
3229
3230         return ret;
3231 }
3232
3233 /*
3234  * This routine handles present pages, when users try to write
3235  * to a shared page. It is done by copying the page to a new address
3236  * and decrementing the shared-page counter for the old page.
3237  *
3238  * Note that this routine assumes that the protection checks have been
3239  * done by the caller (the low-level page fault routine in most cases).
3240  * Thus we can safely just mark it writable once we've done any necessary
3241  * COW.
3242  *
3243  * We also mark the page dirty at this point even though the page will
3244  * change only once the write actually happens. This avoids a few races,
3245  * and potentially makes it more efficient.
3246  *
3247  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3248  * but allow concurrent faults), with pte both mapped and locked.
3249  * We return with mmap_lock still held, but pte unmapped and unlocked.
3250  */
3251 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3252         __releases(vmf->ptl)
3253 {
3254         struct vm_area_struct *vma = vmf->vma;
3255
3256         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3257                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3258                 return handle_userfault(vmf, VM_UFFD_WP);
3259         }
3260
3261         /*
3262          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3263          * is flushed in this case before copying.
3264          */
3265         if (unlikely(userfaultfd_wp(vmf->vma) &&
3266                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3267                 flush_tlb_page(vmf->vma, vmf->address);
3268
3269         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3270         if (!vmf->page) {
3271                 /*
3272                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3273                  * VM_PFNMAP VMA.
3274                  *
3275                  * We should not cow pages in a shared writeable mapping.
3276                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3277                  */
3278                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3279                                      (VM_WRITE|VM_SHARED))
3280                         return wp_pfn_shared(vmf);
3281
3282                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3283                 return wp_page_copy(vmf);
3284         }
3285
3286         /*
3287          * Take out anonymous pages first, anonymous shared vmas are
3288          * not dirty accountable.
3289          */
3290         if (PageAnon(vmf->page)) {
3291                 struct page *page = vmf->page;
3292
3293                 /* PageKsm() doesn't necessarily raise the page refcount */
3294                 if (PageKsm(page) || page_count(page) != 1)
3295                         goto copy;
3296                 if (!trylock_page(page))
3297                         goto copy;
3298                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3299                         unlock_page(page);
3300                         goto copy;
3301                 }
3302                 /*
3303                  * Ok, we've got the only map reference, and the only
3304                  * page count reference, and the page is locked,
3305                  * it's dark out, and we're wearing sunglasses. Hit it.
3306                  */
3307                 unlock_page(page);
3308                 wp_page_reuse(vmf);
3309                 return VM_FAULT_WRITE;
3310         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3311                                         (VM_WRITE|VM_SHARED))) {
3312                 return wp_page_shared(vmf);
3313         }
3314 copy:
3315         /*
3316          * Ok, we need to copy. Oh, well..
3317          */
3318         get_page(vmf->page);
3319
3320         pte_unmap_unlock(vmf->pte, vmf->ptl);
3321         return wp_page_copy(vmf);
3322 }
3323
3324 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3325                 unsigned long start_addr, unsigned long end_addr,
3326                 struct zap_details *details)
3327 {
3328         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3329 }
3330
3331 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3332                                             pgoff_t first_index,
3333                                             pgoff_t last_index,
3334                                             struct zap_details *details)
3335 {
3336         struct vm_area_struct *vma;
3337         pgoff_t vba, vea, zba, zea;
3338
3339         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3340                 vba = vma->vm_pgoff;
3341                 vea = vba + vma_pages(vma) - 1;
3342                 zba = first_index;
3343                 if (zba < vba)
3344                         zba = vba;
3345                 zea = last_index;
3346                 if (zea > vea)
3347                         zea = vea;
3348
3349                 unmap_mapping_range_vma(vma,
3350                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3351                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3352                                 details);
3353         }
3354 }
3355
3356 /**
3357  * unmap_mapping_folio() - Unmap single folio from processes.
3358  * @folio: The locked folio to be unmapped.
3359  *
3360  * Unmap this folio from any userspace process which still has it mmaped.
3361  * Typically, for efficiency, the range of nearby pages has already been
3362  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3363  * truncation or invalidation holds the lock on a folio, it may find that
3364  * the page has been remapped again: and then uses unmap_mapping_folio()
3365  * to unmap it finally.
3366  */
3367 void unmap_mapping_folio(struct folio *folio)
3368 {
3369         struct address_space *mapping = folio->mapping;
3370         struct zap_details details = { };
3371         pgoff_t first_index;
3372         pgoff_t last_index;
3373
3374         VM_BUG_ON(!folio_test_locked(folio));
3375
3376         first_index = folio->index;
3377         last_index = folio->index + folio_nr_pages(folio) - 1;
3378
3379         details.zap_mapping = mapping;
3380         details.single_folio = folio;
3381
3382         i_mmap_lock_write(mapping);
3383         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3384                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3385                                          last_index, &details);
3386         i_mmap_unlock_write(mapping);
3387 }
3388
3389 /**
3390  * unmap_mapping_pages() - Unmap pages from processes.
3391  * @mapping: The address space containing pages to be unmapped.
3392  * @start: Index of first page to be unmapped.
3393  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3394  * @even_cows: Whether to unmap even private COWed pages.
3395  *
3396  * Unmap the pages in this address space from any userspace process which
3397  * has them mmaped.  Generally, you want to remove COWed pages as well when
3398  * a file is being truncated, but not when invalidating pages from the page
3399  * cache.
3400  */
3401 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3402                 pgoff_t nr, bool even_cows)
3403 {
3404         struct zap_details details = { };
3405         pgoff_t first_index = start;
3406         pgoff_t last_index = start + nr - 1;
3407
3408         details.zap_mapping = even_cows ? NULL : mapping;
3409         if (last_index < first_index)
3410                 last_index = ULONG_MAX;
3411
3412         i_mmap_lock_write(mapping);
3413         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3414                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3415                                          last_index, &details);
3416         i_mmap_unlock_write(mapping);
3417 }
3418 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3419
3420 /**
3421  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3422  * address_space corresponding to the specified byte range in the underlying
3423  * file.
3424  *
3425  * @mapping: the address space containing mmaps to be unmapped.
3426  * @holebegin: byte in first page to unmap, relative to the start of
3427  * the underlying file.  This will be rounded down to a PAGE_SIZE
3428  * boundary.  Note that this is different from truncate_pagecache(), which
3429  * must keep the partial page.  In contrast, we must get rid of
3430  * partial pages.
3431  * @holelen: size of prospective hole in bytes.  This will be rounded
3432  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3433  * end of the file.
3434  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3435  * but 0 when invalidating pagecache, don't throw away private data.
3436  */
3437 void unmap_mapping_range(struct address_space *mapping,
3438                 loff_t const holebegin, loff_t const holelen, int even_cows)
3439 {
3440         pgoff_t hba = holebegin >> PAGE_SHIFT;
3441         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3442
3443         /* Check for overflow. */
3444         if (sizeof(holelen) > sizeof(hlen)) {
3445                 long long holeend =
3446                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3447                 if (holeend & ~(long long)ULONG_MAX)
3448                         hlen = ULONG_MAX - hba + 1;
3449         }
3450
3451         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3452 }
3453 EXPORT_SYMBOL(unmap_mapping_range);
3454
3455 /*
3456  * Restore a potential device exclusive pte to a working pte entry
3457  */
3458 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3459 {
3460         struct page *page = vmf->page;
3461         struct vm_area_struct *vma = vmf->vma;
3462         struct mmu_notifier_range range;
3463
3464         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3465                 return VM_FAULT_RETRY;
3466         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3467                                 vma->vm_mm, vmf->address & PAGE_MASK,
3468                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3469         mmu_notifier_invalidate_range_start(&range);
3470
3471         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3472                                 &vmf->ptl);
3473         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3474                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3475
3476         pte_unmap_unlock(vmf->pte, vmf->ptl);
3477         unlock_page(page);
3478
3479         mmu_notifier_invalidate_range_end(&range);
3480         return 0;
3481 }
3482
3483 /*
3484  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3485  * but allow concurrent faults), and pte mapped but not yet locked.
3486  * We return with pte unmapped and unlocked.
3487  *
3488  * We return with the mmap_lock locked or unlocked in the same cases
3489  * as does filemap_fault().
3490  */
3491 vm_fault_t do_swap_page(struct vm_fault *vmf)
3492 {
3493         struct vm_area_struct *vma = vmf->vma;
3494         struct page *page = NULL, *swapcache;
3495         struct swap_info_struct *si = NULL;
3496         swp_entry_t entry;
3497         pte_t pte;
3498         int locked;
3499         int exclusive = 0;
3500         vm_fault_t ret = 0;
3501         void *shadow = NULL;
3502
3503         if (!pte_unmap_same(vmf))
3504                 goto out;
3505
3506         entry = pte_to_swp_entry(vmf->orig_pte);
3507         if (unlikely(non_swap_entry(entry))) {
3508                 if (is_migration_entry(entry)) {
3509                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3510                                              vmf->address);
3511                 } else if (is_device_exclusive_entry(entry)) {
3512                         vmf->page = pfn_swap_entry_to_page(entry);
3513                         ret = remove_device_exclusive_entry(vmf);
3514                 } else if (is_device_private_entry(entry)) {
3515                         vmf->page = pfn_swap_entry_to_page(entry);
3516                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3517                 } else if (is_hwpoison_entry(entry)) {
3518                         ret = VM_FAULT_HWPOISON;
3519                 } else {
3520                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3521                         ret = VM_FAULT_SIGBUS;
3522                 }
3523                 goto out;
3524         }
3525
3526         /* Prevent swapoff from happening to us. */
3527         si = get_swap_device(entry);
3528         if (unlikely(!si))
3529                 goto out;
3530
3531         delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3532         page = lookup_swap_cache(entry, vma, vmf->address);
3533         swapcache = page;
3534
3535         if (!page) {
3536                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3537                     __swap_count(entry) == 1) {
3538                         /* skip swapcache */
3539                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3540                                                         vmf->address);
3541                         if (page) {
3542                                 __SetPageLocked(page);
3543                                 __SetPageSwapBacked(page);
3544
3545                                 if (mem_cgroup_swapin_charge_page(page,
3546                                         vma->vm_mm, GFP_KERNEL, entry)) {
3547                                         ret = VM_FAULT_OOM;
3548                                         goto out_page;
3549                                 }
3550                                 mem_cgroup_swapin_uncharge_swap(entry);
3551
3552                                 shadow = get_shadow_from_swap_cache(entry);
3553                                 if (shadow)
3554                                         workingset_refault(page_folio(page),
3555                                                                 shadow);
3556
3557                                 lru_cache_add(page);
3558
3559                                 /* To provide entry to swap_readpage() */
3560                                 set_page_private(page, entry.val);
3561                                 swap_readpage(page, true);
3562                                 set_page_private(page, 0);
3563                         }
3564                 } else {
3565                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3566                                                 vmf);
3567                         swapcache = page;
3568                 }
3569
3570                 if (!page) {
3571                         /*
3572                          * Back out if somebody else faulted in this pte
3573                          * while we released the pte lock.
3574                          */
3575                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3576                                         vmf->address, &vmf->ptl);
3577                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3578                                 ret = VM_FAULT_OOM;
3579                         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3580                         goto unlock;
3581                 }
3582
3583                 /* Had to read the page from swap area: Major fault */
3584                 ret = VM_FAULT_MAJOR;
3585                 count_vm_event(PGMAJFAULT);
3586                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3587         } else if (PageHWPoison(page)) {
3588                 /*
3589                  * hwpoisoned dirty swapcache pages are kept for killing
3590                  * owner processes (which may be unknown at hwpoison time)
3591                  */
3592                 ret = VM_FAULT_HWPOISON;
3593                 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3594                 goto out_release;
3595         }
3596
3597         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3598
3599         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3600         if (!locked) {
3601                 ret |= VM_FAULT_RETRY;
3602                 goto out_release;
3603         }
3604
3605         /*
3606          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3607          * release the swapcache from under us.  The page pin, and pte_same
3608          * test below, are not enough to exclude that.  Even if it is still
3609          * swapcache, we need to check that the page's swap has not changed.
3610          */
3611         if (unlikely((!PageSwapCache(page) ||
3612                         page_private(page) != entry.val)) && swapcache)
3613                 goto out_page;
3614
3615         page = ksm_might_need_to_copy(page, vma, vmf->address);
3616         if (unlikely(!page)) {
3617                 ret = VM_FAULT_OOM;
3618                 page = swapcache;
3619                 goto out_page;
3620         }
3621
3622         cgroup_throttle_swaprate(page, GFP_KERNEL);
3623
3624         /*
3625          * Back out if somebody else already faulted in this pte.
3626          */
3627         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3628                         &vmf->ptl);
3629         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3630                 goto out_nomap;
3631
3632         if (unlikely(!PageUptodate(page))) {
3633                 ret = VM_FAULT_SIGBUS;
3634                 goto out_nomap;
3635         }
3636
3637         /*
3638          * The page isn't present yet, go ahead with the fault.
3639          *
3640          * Be careful about the sequence of operations here.
3641          * To get its accounting right, reuse_swap_page() must be called
3642          * while the page is counted on swap but not yet in mapcount i.e.
3643          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3644          * must be called after the swap_free(), or it will never succeed.
3645          */
3646
3647         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3648         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3649         pte = mk_pte(page, vma->vm_page_prot);
3650         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3651                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3652                 vmf->flags &= ~FAULT_FLAG_WRITE;
3653                 ret |= VM_FAULT_WRITE;
3654                 exclusive = RMAP_EXCLUSIVE;
3655         }
3656         flush_icache_page(vma, page);
3657         if (pte_swp_soft_dirty(vmf->orig_pte))
3658                 pte = pte_mksoft_dirty(pte);
3659         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3660                 pte = pte_mkuffd_wp(pte);
3661                 pte = pte_wrprotect(pte);
3662         }
3663         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3664         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3665         vmf->orig_pte = pte;
3666
3667         /* ksm created a completely new copy */
3668         if (unlikely(page != swapcache && swapcache)) {
3669                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3670                 lru_cache_add_inactive_or_unevictable(page, vma);
3671         } else {
3672                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3673         }
3674
3675         swap_free(entry);
3676         if (mem_cgroup_swap_full(page) ||
3677             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3678                 try_to_free_swap(page);
3679         unlock_page(page);
3680         if (page != swapcache && swapcache) {
3681                 /*
3682                  * Hold the lock to avoid the swap entry to be reused
3683                  * until we take the PT lock for the pte_same() check
3684                  * (to avoid false positives from pte_same). For
3685                  * further safety release the lock after the swap_free
3686                  * so that the swap count won't change under a
3687                  * parallel locked swapcache.
3688                  */
3689                 unlock_page(swapcache);
3690                 put_page(swapcache);
3691         }
3692
3693         if (vmf->flags & FAULT_FLAG_WRITE) {
3694                 ret |= do_wp_page(vmf);
3695                 if (ret & VM_FAULT_ERROR)
3696                         ret &= VM_FAULT_ERROR;
3697                 goto out;
3698         }
3699
3700         /* No need to invalidate - it was non-present before */
3701         update_mmu_cache(vma, vmf->address, vmf->pte);
3702 unlock:
3703         pte_unmap_unlock(vmf->pte, vmf->ptl);
3704 out:
3705         if (si)
3706                 put_swap_device(si);
3707         return ret;
3708 out_nomap:
3709         pte_unmap_unlock(vmf->pte, vmf->ptl);
3710 out_page:
3711         unlock_page(page);
3712 out_release:
3713         put_page(page);
3714         if (page != swapcache && swapcache) {
3715                 unlock_page(swapcache);
3716                 put_page(swapcache);
3717         }
3718         if (si)
3719                 put_swap_device(si);
3720         return ret;
3721 }
3722
3723 /*
3724  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3725  * but allow concurrent faults), and pte mapped but not yet locked.
3726  * We return with mmap_lock still held, but pte unmapped and unlocked.
3727  */
3728 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3729 {
3730         struct vm_area_struct *vma = vmf->vma;
3731         struct page *page;
3732         vm_fault_t ret = 0;
3733         pte_t entry;
3734
3735         /* File mapping without ->vm_ops ? */
3736         if (vma->vm_flags & VM_SHARED)
3737                 return VM_FAULT_SIGBUS;
3738
3739         /*
3740          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3741          * pte_offset_map() on pmds where a huge pmd might be created
3742          * from a different thread.
3743          *
3744          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3745          * parallel threads are excluded by other means.
3746          *
3747          * Here we only have mmap_read_lock(mm).
3748          */
3749         if (pte_alloc(vma->vm_mm, vmf->pmd))
3750                 return VM_FAULT_OOM;
3751
3752         /* See comment in handle_pte_fault() */
3753         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3754                 return 0;
3755
3756         /* Use the zero-page for reads */
3757         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3758                         !mm_forbids_zeropage(vma->vm_mm)) {
3759                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3760                                                 vma->vm_page_prot));
3761                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3762                                 vmf->address, &vmf->ptl);
3763                 if (!pte_none(*vmf->pte)) {
3764                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3765                         goto unlock;
3766                 }
3767                 ret = check_stable_address_space(vma->vm_mm);
3768                 if (ret)
3769                         goto unlock;
3770                 /* Deliver the page fault to userland, check inside PT lock */
3771                 if (userfaultfd_missing(vma)) {
3772                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3773                         return handle_userfault(vmf, VM_UFFD_MISSING);
3774                 }
3775                 goto setpte;
3776         }
3777
3778         /* Allocate our own private page. */
3779         if (unlikely(anon_vma_prepare(vma)))
3780                 goto oom;
3781         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3782         if (!page)
3783                 goto oom;
3784
3785         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3786                 goto oom_free_page;
3787         cgroup_throttle_swaprate(page, GFP_KERNEL);
3788
3789         /*
3790          * The memory barrier inside __SetPageUptodate makes sure that
3791          * preceding stores to the page contents become visible before
3792          * the set_pte_at() write.
3793          */
3794         __SetPageUptodate(page);
3795
3796         entry = mk_pte(page, vma->vm_page_prot);
3797         entry = pte_sw_mkyoung(entry);
3798         if (vma->vm_flags & VM_WRITE)
3799                 entry = pte_mkwrite(pte_mkdirty(entry));
3800
3801         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3802                         &vmf->ptl);
3803         if (!pte_none(*vmf->pte)) {
3804                 update_mmu_cache(vma, vmf->address, vmf->pte);
3805                 goto release;
3806         }
3807
3808         ret = check_stable_address_space(vma->vm_mm);
3809         if (ret)
3810                 goto release;
3811
3812         /* Deliver the page fault to userland, check inside PT lock */
3813         if (userfaultfd_missing(vma)) {
3814                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3815                 put_page(page);
3816                 return handle_userfault(vmf, VM_UFFD_MISSING);
3817         }
3818
3819         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3820         page_add_new_anon_rmap(page, vma, vmf->address, false);
3821         lru_cache_add_inactive_or_unevictable(page, vma);
3822 setpte:
3823         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3824
3825         /* No need to invalidate - it was non-present before */
3826         update_mmu_cache(vma, vmf->address, vmf->pte);
3827 unlock:
3828         pte_unmap_unlock(vmf->pte, vmf->ptl);
3829         return ret;
3830 release:
3831         put_page(page);
3832         goto unlock;
3833 oom_free_page:
3834         put_page(page);
3835 oom:
3836         return VM_FAULT_OOM;
3837 }
3838
3839 /*
3840  * The mmap_lock must have been held on entry, and may have been
3841  * released depending on flags and vma->vm_ops->fault() return value.
3842  * See filemap_fault() and __lock_page_retry().
3843  */
3844 static vm_fault_t __do_fault(struct vm_fault *vmf)
3845 {
3846         struct vm_area_struct *vma = vmf->vma;
3847         vm_fault_t ret;
3848
3849         /*
3850          * Preallocate pte before we take page_lock because this might lead to
3851          * deadlocks for memcg reclaim which waits for pages under writeback:
3852          *                              lock_page(A)
3853          *                              SetPageWriteback(A)
3854          *                              unlock_page(A)
3855          * lock_page(B)
3856          *                              lock_page(B)
3857          * pte_alloc_one
3858          *   shrink_page_list
3859          *     wait_on_page_writeback(A)
3860          *                              SetPageWriteback(B)
3861          *                              unlock_page(B)
3862          *                              # flush A, B to clear the writeback
3863          */
3864         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3865                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3866                 if (!vmf->prealloc_pte)
3867                         return VM_FAULT_OOM;
3868         }
3869
3870         ret = vma->vm_ops->fault(vmf);
3871         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3872                             VM_FAULT_DONE_COW)))
3873                 return ret;
3874
3875         if (unlikely(PageHWPoison(vmf->page))) {
3876                 if (ret & VM_FAULT_LOCKED)
3877                         unlock_page(vmf->page);
3878                 put_page(vmf->page);
3879                 vmf->page = NULL;
3880                 return VM_FAULT_HWPOISON;
3881         }
3882
3883         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3884                 lock_page(vmf->page);
3885         else
3886                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3887
3888         return ret;
3889 }
3890
3891 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3892 static void deposit_prealloc_pte(struct vm_fault *vmf)
3893 {
3894         struct vm_area_struct *vma = vmf->vma;
3895
3896         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3897         /*
3898          * We are going to consume the prealloc table,
3899          * count that as nr_ptes.
3900          */
3901         mm_inc_nr_ptes(vma->vm_mm);
3902         vmf->prealloc_pte = NULL;
3903 }
3904
3905 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3906 {
3907         struct vm_area_struct *vma = vmf->vma;
3908         bool write = vmf->flags & FAULT_FLAG_WRITE;
3909         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3910         pmd_t entry;
3911         int i;
3912         vm_fault_t ret = VM_FAULT_FALLBACK;
3913
3914         if (!transhuge_vma_suitable(vma, haddr))
3915                 return ret;
3916
3917         page = compound_head(page);
3918         if (compound_order(page) != HPAGE_PMD_ORDER)
3919                 return ret;
3920
3921         /*
3922          * Just backoff if any subpage of a THP is corrupted otherwise
3923          * the corrupted page may mapped by PMD silently to escape the
3924          * check.  This kind of THP just can be PTE mapped.  Access to
3925          * the corrupted subpage should trigger SIGBUS as expected.
3926          */
3927         if (unlikely(PageHasHWPoisoned(page)))
3928                 return ret;
3929
3930         /*
3931          * Archs like ppc64 need additional space to store information
3932          * related to pte entry. Use the preallocated table for that.
3933          */
3934         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3935                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3936                 if (!vmf->prealloc_pte)
3937                         return VM_FAULT_OOM;
3938         }
3939
3940         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3941         if (unlikely(!pmd_none(*vmf->pmd)))
3942                 goto out;
3943
3944         for (i = 0; i < HPAGE_PMD_NR; i++)
3945                 flush_icache_page(vma, page + i);
3946
3947         entry = mk_huge_pmd(page, vma->vm_page_prot);
3948         if (write)
3949                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3950
3951         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3952         page_add_file_rmap(page, true);
3953         /*
3954          * deposit and withdraw with pmd lock held
3955          */
3956         if (arch_needs_pgtable_deposit())
3957                 deposit_prealloc_pte(vmf);
3958
3959         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3960
3961         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3962
3963         /* fault is handled */
3964         ret = 0;
3965         count_vm_event(THP_FILE_MAPPED);
3966 out:
3967         spin_unlock(vmf->ptl);
3968         return ret;
3969 }
3970 #else
3971 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3972 {
3973         return VM_FAULT_FALLBACK;
3974 }
3975 #endif
3976
3977 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3978 {
3979         struct vm_area_struct *vma = vmf->vma;
3980         bool write = vmf->flags & FAULT_FLAG_WRITE;
3981         bool prefault = vmf->address != addr;
3982         pte_t entry;
3983
3984         flush_icache_page(vma, page);
3985         entry = mk_pte(page, vma->vm_page_prot);
3986
3987         if (prefault && arch_wants_old_prefaulted_pte())
3988                 entry = pte_mkold(entry);
3989         else
3990                 entry = pte_sw_mkyoung(entry);
3991
3992         if (write)
3993                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3994         /* copy-on-write page */
3995         if (write && !(vma->vm_flags & VM_SHARED)) {
3996                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3997                 page_add_new_anon_rmap(page, vma, addr, false);
3998                 lru_cache_add_inactive_or_unevictable(page, vma);
3999         } else {
4000                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4001                 page_add_file_rmap(page, false);
4002         }
4003         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4004 }
4005
4006 /**
4007  * finish_fault - finish page fault once we have prepared the page to fault
4008  *
4009  * @vmf: structure describing the fault
4010  *
4011  * This function handles all that is needed to finish a page fault once the
4012  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4013  * given page, adds reverse page mapping, handles memcg charges and LRU
4014  * addition.
4015  *
4016  * The function expects the page to be locked and on success it consumes a
4017  * reference of a page being mapped (for the PTE which maps it).
4018  *
4019  * Return: %0 on success, %VM_FAULT_ code in case of error.
4020  */
4021 vm_fault_t finish_fault(struct vm_fault *vmf)
4022 {
4023         struct vm_area_struct *vma = vmf->vma;
4024         struct page *page;
4025         vm_fault_t ret;
4026
4027         /* Did we COW the page? */
4028         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4029                 page = vmf->cow_page;
4030         else
4031                 page = vmf->page;
4032
4033         /*
4034          * check even for read faults because we might have lost our CoWed
4035          * page
4036          */
4037         if (!(vma->vm_flags & VM_SHARED)) {
4038                 ret = check_stable_address_space(vma->vm_mm);
4039                 if (ret)
4040                         return ret;
4041         }
4042
4043         if (pmd_none(*vmf->pmd)) {
4044                 if (PageTransCompound(page)) {
4045                         ret = do_set_pmd(vmf, page);
4046                         if (ret != VM_FAULT_FALLBACK)
4047                                 return ret;
4048                 }
4049
4050                 if (vmf->prealloc_pte)
4051                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4052                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4053                         return VM_FAULT_OOM;
4054         }
4055
4056         /* See comment in handle_pte_fault() */
4057         if (pmd_devmap_trans_unstable(vmf->pmd))
4058                 return 0;
4059
4060         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4061                                       vmf->address, &vmf->ptl);
4062         ret = 0;
4063         /* Re-check under ptl */
4064         if (likely(pte_none(*vmf->pte)))
4065                 do_set_pte(vmf, page, vmf->address);
4066         else
4067                 ret = VM_FAULT_NOPAGE;
4068
4069         update_mmu_tlb(vma, vmf->address, vmf->pte);
4070         pte_unmap_unlock(vmf->pte, vmf->ptl);
4071         return ret;
4072 }
4073
4074 static unsigned long fault_around_bytes __read_mostly =
4075         rounddown_pow_of_two(65536);
4076
4077 #ifdef CONFIG_DEBUG_FS
4078 static int fault_around_bytes_get(void *data, u64 *val)
4079 {
4080         *val = fault_around_bytes;
4081         return 0;
4082 }
4083
4084 /*
4085  * fault_around_bytes must be rounded down to the nearest page order as it's
4086  * what do_fault_around() expects to see.
4087  */
4088 static int fault_around_bytes_set(void *data, u64 val)
4089 {
4090         if (val / PAGE_SIZE > PTRS_PER_PTE)
4091                 return -EINVAL;
4092         if (val > PAGE_SIZE)
4093                 fault_around_bytes = rounddown_pow_of_two(val);
4094         else
4095                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4096         return 0;
4097 }
4098 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4099                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4100
4101 static int __init fault_around_debugfs(void)
4102 {
4103         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4104                                    &fault_around_bytes_fops);
4105         return 0;
4106 }
4107 late_initcall(fault_around_debugfs);
4108 #endif
4109
4110 /*
4111  * do_fault_around() tries to map few pages around the fault address. The hope
4112  * is that the pages will be needed soon and this will lower the number of
4113  * faults to handle.
4114  *
4115  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4116  * not ready to be mapped: not up-to-date, locked, etc.
4117  *
4118  * This function is called with the page table lock taken. In the split ptlock
4119  * case the page table lock only protects only those entries which belong to
4120  * the page table corresponding to the fault address.
4121  *
4122  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4123  * only once.
4124  *
4125  * fault_around_bytes defines how many bytes we'll try to map.
4126  * do_fault_around() expects it to be set to a power of two less than or equal
4127  * to PTRS_PER_PTE.
4128  *
4129  * The virtual address of the area that we map is naturally aligned to
4130  * fault_around_bytes rounded down to the machine page size
4131  * (and therefore to page order).  This way it's easier to guarantee
4132  * that we don't cross page table boundaries.
4133  */
4134 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4135 {
4136         unsigned long address = vmf->address, nr_pages, mask;
4137         pgoff_t start_pgoff = vmf->pgoff;
4138         pgoff_t end_pgoff;
4139         int off;
4140
4141         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4142         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4143
4144         address = max(address & mask, vmf->vma->vm_start);
4145         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4146         start_pgoff -= off;
4147
4148         /*
4149          *  end_pgoff is either the end of the page table, the end of
4150          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4151          */
4152         end_pgoff = start_pgoff -
4153                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4154                 PTRS_PER_PTE - 1;
4155         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4156                         start_pgoff + nr_pages - 1);
4157
4158         if (pmd_none(*vmf->pmd)) {
4159                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4160                 if (!vmf->prealloc_pte)
4161                         return VM_FAULT_OOM;
4162         }
4163
4164         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4165 }
4166
4167 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4168 {
4169         struct vm_area_struct *vma = vmf->vma;
4170         vm_fault_t ret = 0;
4171
4172         /*
4173          * Let's call ->map_pages() first and use ->fault() as fallback
4174          * if page by the offset is not ready to be mapped (cold cache or
4175          * something).
4176          */
4177         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4178                 if (likely(!userfaultfd_minor(vmf->vma))) {
4179                         ret = do_fault_around(vmf);
4180                         if (ret)
4181                                 return ret;
4182                 }
4183         }
4184
4185         ret = __do_fault(vmf);
4186         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4187                 return ret;
4188
4189         ret |= finish_fault(vmf);
4190         unlock_page(vmf->page);
4191         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4192                 put_page(vmf->page);
4193         return ret;
4194 }
4195
4196 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4197 {
4198         struct vm_area_struct *vma = vmf->vma;
4199         vm_fault_t ret;
4200
4201         if (unlikely(anon_vma_prepare(vma)))
4202                 return VM_FAULT_OOM;
4203
4204         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4205         if (!vmf->cow_page)
4206                 return VM_FAULT_OOM;
4207
4208         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4209                                 GFP_KERNEL)) {
4210                 put_page(vmf->cow_page);
4211                 return VM_FAULT_OOM;
4212         }
4213         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4214
4215         ret = __do_fault(vmf);
4216         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4217                 goto uncharge_out;
4218         if (ret & VM_FAULT_DONE_COW)
4219                 return ret;
4220
4221         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4222         __SetPageUptodate(vmf->cow_page);
4223
4224         ret |= finish_fault(vmf);
4225         unlock_page(vmf->page);
4226         put_page(vmf->page);
4227         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4228                 goto uncharge_out;
4229         return ret;
4230 uncharge_out:
4231         put_page(vmf->cow_page);
4232         return ret;
4233 }
4234
4235 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4236 {
4237         struct vm_area_struct *vma = vmf->vma;
4238         vm_fault_t ret, tmp;
4239
4240         ret = __do_fault(vmf);
4241         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4242                 return ret;
4243
4244         /*
4245          * Check if the backing address space wants to know that the page is
4246          * about to become writable
4247          */
4248         if (vma->vm_ops->page_mkwrite) {
4249                 unlock_page(vmf->page);
4250                 tmp = do_page_mkwrite(vmf);
4251                 if (unlikely(!tmp ||
4252                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4253                         put_page(vmf->page);
4254                         return tmp;
4255                 }
4256         }
4257
4258         ret |= finish_fault(vmf);
4259         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4260                                         VM_FAULT_RETRY))) {
4261                 unlock_page(vmf->page);
4262                 put_page(vmf->page);
4263                 return ret;
4264         }
4265
4266         ret |= fault_dirty_shared_page(vmf);
4267         return ret;
4268 }
4269
4270 /*
4271  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4272  * but allow concurrent faults).
4273  * The mmap_lock may have been released depending on flags and our
4274  * return value.  See filemap_fault() and __folio_lock_or_retry().
4275  * If mmap_lock is released, vma may become invalid (for example
4276  * by other thread calling munmap()).
4277  */
4278 static vm_fault_t do_fault(struct vm_fault *vmf)
4279 {
4280         struct vm_area_struct *vma = vmf->vma;
4281         struct mm_struct *vm_mm = vma->vm_mm;
4282         vm_fault_t ret;
4283
4284         /*
4285          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4286          */
4287         if (!vma->vm_ops->fault) {
4288                 /*
4289                  * If we find a migration pmd entry or a none pmd entry, which
4290                  * should never happen, return SIGBUS
4291                  */
4292                 if (unlikely(!pmd_present(*vmf->pmd)))
4293                         ret = VM_FAULT_SIGBUS;
4294                 else {
4295                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4296                                                        vmf->pmd,
4297                                                        vmf->address,
4298                                                        &vmf->ptl);
4299                         /*
4300                          * Make sure this is not a temporary clearing of pte
4301                          * by holding ptl and checking again. A R/M/W update
4302                          * of pte involves: take ptl, clearing the pte so that
4303                          * we don't have concurrent modification by hardware
4304                          * followed by an update.
4305                          */
4306                         if (unlikely(pte_none(*vmf->pte)))
4307                                 ret = VM_FAULT_SIGBUS;
4308                         else
4309                                 ret = VM_FAULT_NOPAGE;
4310
4311                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4312                 }
4313         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4314                 ret = do_read_fault(vmf);
4315         else if (!(vma->vm_flags & VM_SHARED))
4316                 ret = do_cow_fault(vmf);
4317         else
4318                 ret = do_shared_fault(vmf);
4319
4320         /* preallocated pagetable is unused: free it */
4321         if (vmf->prealloc_pte) {
4322                 pte_free(vm_mm, vmf->prealloc_pte);
4323                 vmf->prealloc_pte = NULL;
4324         }
4325         return ret;
4326 }
4327
4328 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4329                       unsigned long addr, int page_nid, int *flags)
4330 {
4331         get_page(page);
4332
4333         count_vm_numa_event(NUMA_HINT_FAULTS);
4334         if (page_nid == numa_node_id()) {
4335                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4336                 *flags |= TNF_FAULT_LOCAL;
4337         }
4338
4339         return mpol_misplaced(page, vma, addr);
4340 }
4341
4342 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4343 {
4344         struct vm_area_struct *vma = vmf->vma;
4345         struct page *page = NULL;
4346         int page_nid = NUMA_NO_NODE;
4347         int last_cpupid;
4348         int target_nid;
4349         pte_t pte, old_pte;
4350         bool was_writable = pte_savedwrite(vmf->orig_pte);
4351         int flags = 0;
4352
4353         /*
4354          * The "pte" at this point cannot be used safely without
4355          * validation through pte_unmap_same(). It's of NUMA type but
4356          * the pfn may be screwed if the read is non atomic.
4357          */
4358         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4359         spin_lock(vmf->ptl);
4360         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4361                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4362                 goto out;
4363         }
4364
4365         /* Get the normal PTE  */
4366         old_pte = ptep_get(vmf->pte);
4367         pte = pte_modify(old_pte, vma->vm_page_prot);
4368
4369         page = vm_normal_page(vma, vmf->address, pte);
4370         if (!page)
4371                 goto out_map;
4372
4373         /* TODO: handle PTE-mapped THP */
4374         if (PageCompound(page))
4375                 goto out_map;
4376
4377         /*
4378          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4379          * much anyway since they can be in shared cache state. This misses
4380          * the case where a mapping is writable but the process never writes
4381          * to it but pte_write gets cleared during protection updates and
4382          * pte_dirty has unpredictable behaviour between PTE scan updates,
4383          * background writeback, dirty balancing and application behaviour.
4384          */
4385         if (!was_writable)
4386                 flags |= TNF_NO_GROUP;
4387
4388         /*
4389          * Flag if the page is shared between multiple address spaces. This
4390          * is later used when determining whether to group tasks together
4391          */
4392         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4393                 flags |= TNF_SHARED;
4394
4395         last_cpupid = page_cpupid_last(page);
4396         page_nid = page_to_nid(page);
4397         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4398                         &flags);
4399         if (target_nid == NUMA_NO_NODE) {
4400                 put_page(page);
4401                 goto out_map;
4402         }
4403         pte_unmap_unlock(vmf->pte, vmf->ptl);
4404
4405         /* Migrate to the requested node */
4406         if (migrate_misplaced_page(page, vma, target_nid)) {
4407                 page_nid = target_nid;
4408                 flags |= TNF_MIGRATED;
4409         } else {
4410                 flags |= TNF_MIGRATE_FAIL;
4411                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4412                 spin_lock(vmf->ptl);
4413                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4414                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4415                         goto out;
4416                 }
4417                 goto out_map;
4418         }
4419
4420 out:
4421         if (page_nid != NUMA_NO_NODE)
4422                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4423         return 0;
4424 out_map:
4425         /*
4426          * Make it present again, depending on how arch implements
4427          * non-accessible ptes, some can allow access by kernel mode.
4428          */
4429         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4430         pte = pte_modify(old_pte, vma->vm_page_prot);
4431         pte = pte_mkyoung(pte);
4432         if (was_writable)
4433                 pte = pte_mkwrite(pte);
4434         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4435         update_mmu_cache(vma, vmf->address, vmf->pte);
4436         pte_unmap_unlock(vmf->pte, vmf->ptl);
4437         goto out;
4438 }
4439
4440 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4441 {
4442         if (vma_is_anonymous(vmf->vma))
4443                 return do_huge_pmd_anonymous_page(vmf);
4444         if (vmf->vma->vm_ops->huge_fault)
4445                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4446         return VM_FAULT_FALLBACK;
4447 }
4448
4449 /* `inline' is required to avoid gcc 4.1.2 build error */
4450 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4451 {
4452         if (vma_is_anonymous(vmf->vma)) {
4453                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4454                         return handle_userfault(vmf, VM_UFFD_WP);
4455                 return do_huge_pmd_wp_page(vmf);
4456         }
4457         if (vmf->vma->vm_ops->huge_fault) {
4458                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4459
4460                 if (!(ret & VM_FAULT_FALLBACK))
4461                         return ret;
4462         }
4463
4464         /* COW or write-notify handled on pte level: split pmd. */
4465         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4466
4467         return VM_FAULT_FALLBACK;
4468 }
4469
4470 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4471 {
4472 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4473         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4474         /* No support for anonymous transparent PUD pages yet */
4475         if (vma_is_anonymous(vmf->vma))
4476                 goto split;
4477         if (vmf->vma->vm_ops->huge_fault) {
4478                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4479
4480                 if (!(ret & VM_FAULT_FALLBACK))
4481                         return ret;
4482         }
4483 split:
4484         /* COW or write-notify not handled on PUD level: split pud.*/
4485         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4486 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4487         return VM_FAULT_FALLBACK;
4488 }
4489
4490 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4491 {
4492 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4493         /* No support for anonymous transparent PUD pages yet */
4494         if (vma_is_anonymous(vmf->vma))
4495                 return VM_FAULT_FALLBACK;
4496         if (vmf->vma->vm_ops->huge_fault)
4497                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4498 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4499         return VM_FAULT_FALLBACK;
4500 }
4501
4502 /*
4503  * These routines also need to handle stuff like marking pages dirty
4504  * and/or accessed for architectures that don't do it in hardware (most
4505  * RISC architectures).  The early dirtying is also good on the i386.
4506  *
4507  * There is also a hook called "update_mmu_cache()" that architectures
4508  * with external mmu caches can use to update those (ie the Sparc or
4509  * PowerPC hashed page tables that act as extended TLBs).
4510  *
4511  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4512  * concurrent faults).
4513  *
4514  * The mmap_lock may have been released depending on flags and our return value.
4515  * See filemap_fault() and __folio_lock_or_retry().
4516  */
4517 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4518 {
4519         pte_t entry;
4520
4521         if (unlikely(pmd_none(*vmf->pmd))) {
4522                 /*
4523                  * Leave __pte_alloc() until later: because vm_ops->fault may
4524                  * want to allocate huge page, and if we expose page table
4525                  * for an instant, it will be difficult to retract from
4526                  * concurrent faults and from rmap lookups.
4527                  */
4528                 vmf->pte = NULL;
4529         } else {
4530                 /*
4531                  * If a huge pmd materialized under us just retry later.  Use
4532                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4533                  * of pmd_trans_huge() to ensure the pmd didn't become
4534                  * pmd_trans_huge under us and then back to pmd_none, as a
4535                  * result of MADV_DONTNEED running immediately after a huge pmd
4536                  * fault in a different thread of this mm, in turn leading to a
4537                  * misleading pmd_trans_huge() retval. All we have to ensure is
4538                  * that it is a regular pmd that we can walk with
4539                  * pte_offset_map() and we can do that through an atomic read
4540                  * in C, which is what pmd_trans_unstable() provides.
4541                  */
4542                 if (pmd_devmap_trans_unstable(vmf->pmd))
4543                         return 0;
4544                 /*
4545                  * A regular pmd is established and it can't morph into a huge
4546                  * pmd from under us anymore at this point because we hold the
4547                  * mmap_lock read mode and khugepaged takes it in write mode.
4548                  * So now it's safe to run pte_offset_map().
4549                  */
4550                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4551                 vmf->orig_pte = *vmf->pte;
4552
4553                 /*
4554                  * some architectures can have larger ptes than wordsize,
4555                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4556                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4557                  * accesses.  The code below just needs a consistent view
4558                  * for the ifs and we later double check anyway with the
4559                  * ptl lock held. So here a barrier will do.
4560                  */
4561                 barrier();
4562                 if (pte_none(vmf->orig_pte)) {
4563                         pte_unmap(vmf->pte);
4564                         vmf->pte = NULL;
4565                 }
4566         }
4567
4568         if (!vmf->pte) {
4569                 if (vma_is_anonymous(vmf->vma))
4570                         return do_anonymous_page(vmf);
4571                 else
4572                         return do_fault(vmf);
4573         }
4574
4575         if (!pte_present(vmf->orig_pte))
4576                 return do_swap_page(vmf);
4577
4578         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4579                 return do_numa_page(vmf);
4580
4581         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4582         spin_lock(vmf->ptl);
4583         entry = vmf->orig_pte;
4584         if (unlikely(!pte_same(*vmf->pte, entry))) {
4585                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4586                 goto unlock;
4587         }
4588         if (vmf->flags & FAULT_FLAG_WRITE) {
4589                 if (!pte_write(entry))
4590                         return do_wp_page(vmf);
4591                 entry = pte_mkdirty(entry);
4592         }
4593         entry = pte_mkyoung(entry);
4594         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4595                                 vmf->flags & FAULT_FLAG_WRITE)) {
4596                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4597         } else {
4598                 /* Skip spurious TLB flush for retried page fault */
4599                 if (vmf->flags & FAULT_FLAG_TRIED)
4600                         goto unlock;
4601                 /*
4602                  * This is needed only for protection faults but the arch code
4603                  * is not yet telling us if this is a protection fault or not.
4604                  * This still avoids useless tlb flushes for .text page faults
4605                  * with threads.
4606                  */
4607                 if (vmf->flags & FAULT_FLAG_WRITE)
4608                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4609         }
4610 unlock:
4611         pte_unmap_unlock(vmf->pte, vmf->ptl);
4612         return 0;
4613 }
4614
4615 /*
4616  * By the time we get here, we already hold the mm semaphore
4617  *
4618  * The mmap_lock may have been released depending on flags and our
4619  * return value.  See filemap_fault() and __folio_lock_or_retry().
4620  */
4621 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4622                 unsigned long address, unsigned int flags)
4623 {
4624         struct vm_fault vmf = {
4625                 .vma = vma,
4626                 .address = address & PAGE_MASK,
4627                 .flags = flags,
4628                 .pgoff = linear_page_index(vma, address),
4629                 .gfp_mask = __get_fault_gfp_mask(vma),
4630         };
4631         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4632         struct mm_struct *mm = vma->vm_mm;
4633         pgd_t *pgd;
4634         p4d_t *p4d;
4635         vm_fault_t ret;
4636
4637         pgd = pgd_offset(mm, address);
4638         p4d = p4d_alloc(mm, pgd, address);
4639         if (!p4d)
4640                 return VM_FAULT_OOM;
4641
4642         vmf.pud = pud_alloc(mm, p4d, address);
4643         if (!vmf.pud)
4644                 return VM_FAULT_OOM;
4645 retry_pud:
4646         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4647                 ret = create_huge_pud(&vmf);
4648                 if (!(ret & VM_FAULT_FALLBACK))
4649                         return ret;
4650         } else {
4651                 pud_t orig_pud = *vmf.pud;
4652
4653                 barrier();
4654                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4655
4656                         /* NUMA case for anonymous PUDs would go here */
4657
4658                         if (dirty && !pud_write(orig_pud)) {
4659                                 ret = wp_huge_pud(&vmf, orig_pud);
4660                                 if (!(ret & VM_FAULT_FALLBACK))
4661                                         return ret;
4662                         } else {
4663                                 huge_pud_set_accessed(&vmf, orig_pud);
4664                                 return 0;
4665                         }
4666                 }
4667         }
4668
4669         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4670         if (!vmf.pmd)
4671                 return VM_FAULT_OOM;
4672
4673         /* Huge pud page fault raced with pmd_alloc? */
4674         if (pud_trans_unstable(vmf.pud))
4675                 goto retry_pud;
4676
4677         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4678                 ret = create_huge_pmd(&vmf);
4679                 if (!(ret & VM_FAULT_FALLBACK))
4680                         return ret;
4681         } else {
4682                 vmf.orig_pmd = *vmf.pmd;
4683
4684                 barrier();
4685                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4686                         VM_BUG_ON(thp_migration_supported() &&
4687                                           !is_pmd_migration_entry(vmf.orig_pmd));
4688                         if (is_pmd_migration_entry(vmf.orig_pmd))
4689                                 pmd_migration_entry_wait(mm, vmf.pmd);
4690                         return 0;
4691                 }
4692                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4693                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4694                                 return do_huge_pmd_numa_page(&vmf);
4695
4696                         if (dirty && !pmd_write(vmf.orig_pmd)) {
4697                                 ret = wp_huge_pmd(&vmf);
4698                                 if (!(ret & VM_FAULT_FALLBACK))
4699                                         return ret;
4700                         } else {
4701                                 huge_pmd_set_accessed(&vmf);
4702                                 return 0;
4703                         }
4704                 }
4705         }
4706
4707         return handle_pte_fault(&vmf);
4708 }
4709
4710 /**
4711  * mm_account_fault - Do page fault accounting
4712  *
4713  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4714  *        of perf event counters, but we'll still do the per-task accounting to
4715  *        the task who triggered this page fault.
4716  * @address: the faulted address.
4717  * @flags: the fault flags.
4718  * @ret: the fault retcode.
4719  *
4720  * This will take care of most of the page fault accounting.  Meanwhile, it
4721  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4722  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4723  * still be in per-arch page fault handlers at the entry of page fault.
4724  */
4725 static inline void mm_account_fault(struct pt_regs *regs,
4726                                     unsigned long address, unsigned int flags,
4727                                     vm_fault_t ret)
4728 {
4729         bool major;
4730
4731         /*
4732          * We don't do accounting for some specific faults:
4733          *
4734          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4735          *   includes arch_vma_access_permitted() failing before reaching here.
4736          *   So this is not a "this many hardware page faults" counter.  We
4737          *   should use the hw profiling for that.
4738          *
4739          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4740          *   once they're completed.
4741          */
4742         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4743                 return;
4744
4745         /*
4746          * We define the fault as a major fault when the final successful fault
4747          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4748          * handle it immediately previously).
4749          */
4750         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4751
4752         if (major)
4753                 current->maj_flt++;
4754         else
4755                 current->min_flt++;
4756
4757         /*
4758          * If the fault is done for GUP, regs will be NULL.  We only do the
4759          * accounting for the per thread fault counters who triggered the
4760          * fault, and we skip the perf event updates.
4761          */
4762         if (!regs)
4763                 return;
4764
4765         if (major)
4766                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4767         else
4768                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4769 }
4770
4771 /*
4772  * By the time we get here, we already hold the mm semaphore
4773  *
4774  * The mmap_lock may have been released depending on flags and our
4775  * return value.  See filemap_fault() and __folio_lock_or_retry().
4776  */
4777 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4778                            unsigned int flags, struct pt_regs *regs)
4779 {
4780         vm_fault_t ret;
4781
4782         __set_current_state(TASK_RUNNING);
4783
4784         count_vm_event(PGFAULT);
4785         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4786
4787         /* do counter updates before entering really critical section. */
4788         check_sync_rss_stat(current);
4789
4790         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4791                                             flags & FAULT_FLAG_INSTRUCTION,
4792                                             flags & FAULT_FLAG_REMOTE))
4793                 return VM_FAULT_SIGSEGV;
4794
4795         /*
4796          * Enable the memcg OOM handling for faults triggered in user
4797          * space.  Kernel faults are handled more gracefully.
4798          */
4799         if (flags & FAULT_FLAG_USER)
4800                 mem_cgroup_enter_user_fault();
4801
4802         if (unlikely(is_vm_hugetlb_page(vma)))
4803                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4804         else
4805                 ret = __handle_mm_fault(vma, address, flags);
4806
4807         if (flags & FAULT_FLAG_USER) {
4808                 mem_cgroup_exit_user_fault();
4809                 /*
4810                  * The task may have entered a memcg OOM situation but
4811                  * if the allocation error was handled gracefully (no
4812                  * VM_FAULT_OOM), there is no need to kill anything.
4813                  * Just clean up the OOM state peacefully.
4814                  */
4815                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4816                         mem_cgroup_oom_synchronize(false);
4817         }
4818
4819         mm_account_fault(regs, address, flags, ret);
4820
4821         return ret;
4822 }
4823 EXPORT_SYMBOL_GPL(handle_mm_fault);
4824
4825 #ifndef __PAGETABLE_P4D_FOLDED
4826 /*
4827  * Allocate p4d page table.
4828  * We've already handled the fast-path in-line.
4829  */
4830 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4831 {
4832         p4d_t *new = p4d_alloc_one(mm, address);
4833         if (!new)
4834                 return -ENOMEM;
4835
4836         spin_lock(&mm->page_table_lock);
4837         if (pgd_present(*pgd)) {        /* Another has populated it */
4838                 p4d_free(mm, new);
4839         } else {
4840                 smp_wmb(); /* See comment in pmd_install() */
4841                 pgd_populate(mm, pgd, new);
4842         }
4843         spin_unlock(&mm->page_table_lock);
4844         return 0;
4845 }
4846 #endif /* __PAGETABLE_P4D_FOLDED */
4847
4848 #ifndef __PAGETABLE_PUD_FOLDED
4849 /*
4850  * Allocate page upper directory.
4851  * We've already handled the fast-path in-line.
4852  */
4853 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4854 {
4855         pud_t *new = pud_alloc_one(mm, address);
4856         if (!new)
4857                 return -ENOMEM;
4858
4859         spin_lock(&mm->page_table_lock);
4860         if (!p4d_present(*p4d)) {
4861                 mm_inc_nr_puds(mm);
4862                 smp_wmb(); /* See comment in pmd_install() */
4863                 p4d_populate(mm, p4d, new);
4864         } else  /* Another has populated it */
4865                 pud_free(mm, new);
4866         spin_unlock(&mm->page_table_lock);
4867         return 0;
4868 }
4869 #endif /* __PAGETABLE_PUD_FOLDED */
4870
4871 #ifndef __PAGETABLE_PMD_FOLDED
4872 /*
4873  * Allocate page middle directory.
4874  * We've already handled the fast-path in-line.
4875  */
4876 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4877 {
4878         spinlock_t *ptl;
4879         pmd_t *new = pmd_alloc_one(mm, address);
4880         if (!new)
4881                 return -ENOMEM;
4882
4883         ptl = pud_lock(mm, pud);
4884         if (!pud_present(*pud)) {
4885                 mm_inc_nr_pmds(mm);
4886                 smp_wmb(); /* See comment in pmd_install() */
4887                 pud_populate(mm, pud, new);
4888         } else {        /* Another has populated it */
4889                 pmd_free(mm, new);
4890         }
4891         spin_unlock(ptl);
4892         return 0;
4893 }
4894 #endif /* __PAGETABLE_PMD_FOLDED */
4895
4896 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4897                           struct mmu_notifier_range *range, pte_t **ptepp,
4898                           pmd_t **pmdpp, spinlock_t **ptlp)
4899 {
4900         pgd_t *pgd;
4901         p4d_t *p4d;
4902         pud_t *pud;
4903         pmd_t *pmd;
4904         pte_t *ptep;
4905
4906         pgd = pgd_offset(mm, address);
4907         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4908                 goto out;
4909
4910         p4d = p4d_offset(pgd, address);
4911         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4912                 goto out;
4913
4914         pud = pud_offset(p4d, address);
4915         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4916                 goto out;
4917
4918         pmd = pmd_offset(pud, address);
4919         VM_BUG_ON(pmd_trans_huge(*pmd));
4920
4921         if (pmd_huge(*pmd)) {
4922                 if (!pmdpp)
4923                         goto out;
4924
4925                 if (range) {
4926                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4927                                                 NULL, mm, address & PMD_MASK,
4928                                                 (address & PMD_MASK) + PMD_SIZE);
4929                         mmu_notifier_invalidate_range_start(range);
4930                 }
4931                 *ptlp = pmd_lock(mm, pmd);
4932                 if (pmd_huge(*pmd)) {
4933                         *pmdpp = pmd;
4934                         return 0;
4935                 }
4936                 spin_unlock(*ptlp);
4937                 if (range)
4938                         mmu_notifier_invalidate_range_end(range);
4939         }
4940
4941         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4942                 goto out;
4943
4944         if (range) {
4945                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4946                                         address & PAGE_MASK,
4947                                         (address & PAGE_MASK) + PAGE_SIZE);
4948                 mmu_notifier_invalidate_range_start(range);
4949         }
4950         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4951         if (!pte_present(*ptep))
4952                 goto unlock;
4953         *ptepp = ptep;
4954         return 0;
4955 unlock:
4956         pte_unmap_unlock(ptep, *ptlp);
4957         if (range)
4958                 mmu_notifier_invalidate_range_end(range);
4959 out:
4960         return -EINVAL;
4961 }
4962
4963 /**
4964  * follow_pte - look up PTE at a user virtual address
4965  * @mm: the mm_struct of the target address space
4966  * @address: user virtual address
4967  * @ptepp: location to store found PTE
4968  * @ptlp: location to store the lock for the PTE
4969  *
4970  * On a successful return, the pointer to the PTE is stored in @ptepp;
4971  * the corresponding lock is taken and its location is stored in @ptlp.
4972  * The contents of the PTE are only stable until @ptlp is released;
4973  * any further use, if any, must be protected against invalidation
4974  * with MMU notifiers.
4975  *
4976  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4977  * should be taken for read.
4978  *
4979  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4980  * it is not a good general-purpose API.
4981  *
4982  * Return: zero on success, -ve otherwise.
4983  */
4984 int follow_pte(struct mm_struct *mm, unsigned long address,
4985                pte_t **ptepp, spinlock_t **ptlp)
4986 {
4987         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4988 }
4989 EXPORT_SYMBOL_GPL(follow_pte);
4990
4991 /**
4992  * follow_pfn - look up PFN at a user virtual address
4993  * @vma: memory mapping
4994  * @address: user virtual address
4995  * @pfn: location to store found PFN
4996  *
4997  * Only IO mappings and raw PFN mappings are allowed.
4998  *
4999  * This function does not allow the caller to read the permissions
5000  * of the PTE.  Do not use it.
5001  *
5002  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5003  */
5004 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5005         unsigned long *pfn)
5006 {
5007         int ret = -EINVAL;
5008         spinlock_t *ptl;
5009         pte_t *ptep;
5010
5011         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5012                 return ret;
5013
5014         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5015         if (ret)
5016                 return ret;
5017         *pfn = pte_pfn(*ptep);
5018         pte_unmap_unlock(ptep, ptl);
5019         return 0;
5020 }
5021 EXPORT_SYMBOL(follow_pfn);
5022
5023 #ifdef CONFIG_HAVE_IOREMAP_PROT
5024 int follow_phys(struct vm_area_struct *vma,
5025                 unsigned long address, unsigned int flags,
5026                 unsigned long *prot, resource_size_t *phys)
5027 {
5028         int ret = -EINVAL;
5029         pte_t *ptep, pte;
5030         spinlock_t *ptl;
5031
5032         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5033                 goto out;
5034
5035         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5036                 goto out;
5037         pte = *ptep;
5038
5039         if ((flags & FOLL_WRITE) && !pte_write(pte))
5040                 goto unlock;
5041
5042         *prot = pgprot_val(pte_pgprot(pte));
5043         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5044
5045         ret = 0;
5046 unlock:
5047         pte_unmap_unlock(ptep, ptl);
5048 out:
5049         return ret;
5050 }
5051
5052 /**
5053  * generic_access_phys - generic implementation for iomem mmap access
5054  * @vma: the vma to access
5055  * @addr: userspace address, not relative offset within @vma
5056  * @buf: buffer to read/write
5057  * @len: length of transfer
5058  * @write: set to FOLL_WRITE when writing, otherwise reading
5059  *
5060  * This is a generic implementation for &vm_operations_struct.access for an
5061  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5062  * not page based.
5063  */
5064 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5065                         void *buf, int len, int write)
5066 {
5067         resource_size_t phys_addr;
5068         unsigned long prot = 0;
5069         void __iomem *maddr;
5070         pte_t *ptep, pte;
5071         spinlock_t *ptl;
5072         int offset = offset_in_page(addr);
5073         int ret = -EINVAL;
5074
5075         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5076                 return -EINVAL;
5077
5078 retry:
5079         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5080                 return -EINVAL;
5081         pte = *ptep;
5082         pte_unmap_unlock(ptep, ptl);
5083
5084         prot = pgprot_val(pte_pgprot(pte));
5085         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5086
5087         if ((write & FOLL_WRITE) && !pte_write(pte))
5088                 return -EINVAL;
5089
5090         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5091         if (!maddr)
5092                 return -ENOMEM;
5093
5094         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5095                 goto out_unmap;
5096
5097         if (!pte_same(pte, *ptep)) {
5098                 pte_unmap_unlock(ptep, ptl);
5099                 iounmap(maddr);
5100
5101                 goto retry;
5102         }
5103
5104         if (write)
5105                 memcpy_toio(maddr + offset, buf, len);
5106         else
5107                 memcpy_fromio(buf, maddr + offset, len);
5108         ret = len;
5109         pte_unmap_unlock(ptep, ptl);
5110 out_unmap:
5111         iounmap(maddr);
5112
5113         return ret;
5114 }
5115 EXPORT_SYMBOL_GPL(generic_access_phys);
5116 #endif
5117
5118 /*
5119  * Access another process' address space as given in mm.
5120  */
5121 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5122                        int len, unsigned int gup_flags)
5123 {
5124         struct vm_area_struct *vma;
5125         void *old_buf = buf;
5126         int write = gup_flags & FOLL_WRITE;
5127
5128         if (mmap_read_lock_killable(mm))
5129                 return 0;
5130
5131         /* ignore errors, just check how much was successfully transferred */
5132         while (len) {
5133                 int bytes, ret, offset;
5134                 void *maddr;
5135                 struct page *page = NULL;
5136
5137                 ret = get_user_pages_remote(mm, addr, 1,
5138                                 gup_flags, &page, &vma, NULL);
5139                 if (ret <= 0) {
5140 #ifndef CONFIG_HAVE_IOREMAP_PROT
5141                         break;
5142 #else
5143                         /*
5144                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5145                          * we can access using slightly different code.
5146                          */
5147                         vma = vma_lookup(mm, addr);
5148                         if (!vma)
5149                                 break;
5150                         if (vma->vm_ops && vma->vm_ops->access)
5151                                 ret = vma->vm_ops->access(vma, addr, buf,
5152                                                           len, write);
5153                         if (ret <= 0)
5154                                 break;
5155                         bytes = ret;
5156 #endif
5157                 } else {
5158                         bytes = len;
5159                         offset = addr & (PAGE_SIZE-1);
5160                         if (bytes > PAGE_SIZE-offset)
5161                                 bytes = PAGE_SIZE-offset;
5162
5163                         maddr = kmap(page);
5164                         if (write) {
5165                                 copy_to_user_page(vma, page, addr,
5166                                                   maddr + offset, buf, bytes);
5167                                 set_page_dirty_lock(page);
5168                         } else {
5169                                 copy_from_user_page(vma, page, addr,
5170                                                     buf, maddr + offset, bytes);
5171                         }
5172                         kunmap(page);
5173                         put_page(page);
5174                 }
5175                 len -= bytes;
5176                 buf += bytes;
5177                 addr += bytes;
5178         }
5179         mmap_read_unlock(mm);
5180
5181         return buf - old_buf;
5182 }
5183
5184 /**
5185  * access_remote_vm - access another process' address space
5186  * @mm:         the mm_struct of the target address space
5187  * @addr:       start address to access
5188  * @buf:        source or destination buffer
5189  * @len:        number of bytes to transfer
5190  * @gup_flags:  flags modifying lookup behaviour
5191  *
5192  * The caller must hold a reference on @mm.
5193  *
5194  * Return: number of bytes copied from source to destination.
5195  */
5196 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5197                 void *buf, int len, unsigned int gup_flags)
5198 {
5199         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5200 }
5201
5202 /*
5203  * Access another process' address space.
5204  * Source/target buffer must be kernel space,
5205  * Do not walk the page table directly, use get_user_pages
5206  */
5207 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5208                 void *buf, int len, unsigned int gup_flags)
5209 {
5210         struct mm_struct *mm;
5211         int ret;
5212
5213         mm = get_task_mm(tsk);
5214         if (!mm)
5215                 return 0;
5216
5217         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5218
5219         mmput(mm);
5220
5221         return ret;
5222 }
5223 EXPORT_SYMBOL_GPL(access_process_vm);
5224
5225 /*
5226  * Print the name of a VMA.
5227  */
5228 void print_vma_addr(char *prefix, unsigned long ip)
5229 {
5230         struct mm_struct *mm = current->mm;
5231         struct vm_area_struct *vma;
5232
5233         /*
5234          * we might be running from an atomic context so we cannot sleep
5235          */
5236         if (!mmap_read_trylock(mm))
5237                 return;
5238
5239         vma = find_vma(mm, ip);
5240         if (vma && vma->vm_file) {
5241                 struct file *f = vma->vm_file;
5242                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5243                 if (buf) {
5244                         char *p;
5245
5246                         p = file_path(f, buf, PAGE_SIZE);
5247                         if (IS_ERR(p))
5248                                 p = "?";
5249                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5250                                         vma->vm_start,
5251                                         vma->vm_end - vma->vm_start);
5252                         free_page((unsigned long)buf);
5253                 }
5254         }
5255         mmap_read_unlock(mm);
5256 }
5257
5258 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5259 void __might_fault(const char *file, int line)
5260 {
5261         /*
5262          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5263          * holding the mmap_lock, this is safe because kernel memory doesn't
5264          * get paged out, therefore we'll never actually fault, and the
5265          * below annotations will generate false positives.
5266          */
5267         if (uaccess_kernel())
5268                 return;
5269         if (pagefault_disabled())
5270                 return;
5271         __might_sleep(file, line);
5272 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5273         if (current->mm)
5274                 might_lock_read(&current->mm->mmap_lock);
5275 #endif
5276 }
5277 EXPORT_SYMBOL(__might_fault);
5278 #endif
5279
5280 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5281 /*
5282  * Process all subpages of the specified huge page with the specified
5283  * operation.  The target subpage will be processed last to keep its
5284  * cache lines hot.
5285  */
5286 static inline void process_huge_page(
5287         unsigned long addr_hint, unsigned int pages_per_huge_page,
5288         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5289         void *arg)
5290 {
5291         int i, n, base, l;
5292         unsigned long addr = addr_hint &
5293                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5294
5295         /* Process target subpage last to keep its cache lines hot */
5296         might_sleep();
5297         n = (addr_hint - addr) / PAGE_SIZE;
5298         if (2 * n <= pages_per_huge_page) {
5299                 /* If target subpage in first half of huge page */
5300                 base = 0;
5301                 l = n;
5302                 /* Process subpages at the end of huge page */
5303                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5304                         cond_resched();
5305                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5306                 }
5307         } else {
5308                 /* If target subpage in second half of huge page */
5309                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5310                 l = pages_per_huge_page - n;
5311                 /* Process subpages at the begin of huge page */
5312                 for (i = 0; i < base; i++) {
5313                         cond_resched();
5314                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5315                 }
5316         }
5317         /*
5318          * Process remaining subpages in left-right-left-right pattern
5319          * towards the target subpage
5320          */
5321         for (i = 0; i < l; i++) {
5322                 int left_idx = base + i;
5323                 int right_idx = base + 2 * l - 1 - i;
5324
5325                 cond_resched();
5326                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5327                 cond_resched();
5328                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5329         }
5330 }
5331
5332 static void clear_gigantic_page(struct page *page,
5333                                 unsigned long addr,
5334                                 unsigned int pages_per_huge_page)
5335 {
5336         int i;
5337         struct page *p = page;
5338
5339         might_sleep();
5340         for (i = 0; i < pages_per_huge_page;
5341              i++, p = mem_map_next(p, page, i)) {
5342                 cond_resched();
5343                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5344         }
5345 }
5346
5347 static void clear_subpage(unsigned long addr, int idx, void *arg)
5348 {
5349         struct page *page = arg;
5350
5351         clear_user_highpage(page + idx, addr);
5352 }
5353
5354 void clear_huge_page(struct page *page,
5355                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5356 {
5357         unsigned long addr = addr_hint &
5358                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5359
5360         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5361                 clear_gigantic_page(page, addr, pages_per_huge_page);
5362                 return;
5363         }
5364
5365         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5366 }
5367
5368 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5369                                     unsigned long addr,
5370                                     struct vm_area_struct *vma,
5371                                     unsigned int pages_per_huge_page)
5372 {
5373         int i;
5374         struct page *dst_base = dst;
5375         struct page *src_base = src;
5376
5377         for (i = 0; i < pages_per_huge_page; ) {
5378                 cond_resched();
5379                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5380
5381                 i++;
5382                 dst = mem_map_next(dst, dst_base, i);
5383                 src = mem_map_next(src, src_base, i);
5384         }
5385 }
5386
5387 struct copy_subpage_arg {
5388         struct page *dst;
5389         struct page *src;
5390         struct vm_area_struct *vma;
5391 };
5392
5393 static void copy_subpage(unsigned long addr, int idx, void *arg)
5394 {
5395         struct copy_subpage_arg *copy_arg = arg;
5396
5397         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5398                            addr, copy_arg->vma);
5399 }
5400
5401 void copy_user_huge_page(struct page *dst, struct page *src,
5402                          unsigned long addr_hint, struct vm_area_struct *vma,
5403                          unsigned int pages_per_huge_page)
5404 {
5405         unsigned long addr = addr_hint &
5406                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5407         struct copy_subpage_arg arg = {
5408                 .dst = dst,
5409                 .src = src,
5410                 .vma = vma,
5411         };
5412
5413         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5414                 copy_user_gigantic_page(dst, src, addr, vma,
5415                                         pages_per_huge_page);
5416                 return;
5417         }
5418
5419         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5420 }
5421
5422 long copy_huge_page_from_user(struct page *dst_page,
5423                                 const void __user *usr_src,
5424                                 unsigned int pages_per_huge_page,
5425                                 bool allow_pagefault)
5426 {
5427         void *page_kaddr;
5428         unsigned long i, rc = 0;
5429         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5430         struct page *subpage = dst_page;
5431
5432         for (i = 0; i < pages_per_huge_page;
5433              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5434                 if (allow_pagefault)
5435                         page_kaddr = kmap(subpage);
5436                 else
5437                         page_kaddr = kmap_atomic(subpage);
5438                 rc = copy_from_user(page_kaddr,
5439                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5440                 if (allow_pagefault)
5441                         kunmap(subpage);
5442                 else
5443                         kunmap_atomic(page_kaddr);
5444
5445                 ret_val -= (PAGE_SIZE - rc);
5446                 if (rc)
5447                         break;
5448
5449                 cond_resched();
5450         }
5451         return ret_val;
5452 }
5453 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5454
5455 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5456
5457 static struct kmem_cache *page_ptl_cachep;
5458
5459 void __init ptlock_cache_init(void)
5460 {
5461         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5462                         SLAB_PANIC, NULL);
5463 }
5464
5465 bool ptlock_alloc(struct page *page)
5466 {
5467         spinlock_t *ptl;
5468
5469         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5470         if (!ptl)
5471                 return false;
5472         page->ptl = ptl;
5473         return true;
5474 }
5475
5476 void ptlock_free(struct page *page)
5477 {
5478         kmem_cache_free(page_ptl_cachep, page->ptl);
5479 }
5480 #endif