mm: split out the non-present case from copy_one_pte()
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 /* use the per-pgdat data instead for discontigmem - mbligh */
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102
103 /*
104  * A number of key systems in x86 including ioremap() rely on the assumption
105  * that high_memory defines the upper bound on direct map memory, then end
106  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
107  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108  * and ZONE_HIGHMEM.
109  */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112
113 /*
114  * Randomize the address space (stacks, mmaps, brk, etc.).
115  *
116  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117  *   as ancient (libc5 based) binaries can segfault. )
118  */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121                                         1;
122 #else
123                                         2;
124 #endif
125
126 #ifndef arch_faults_on_old_pte
127 static inline bool arch_faults_on_old_pte(void)
128 {
129         /*
130          * Those arches which don't have hw access flag feature need to
131          * implement their own helper. By default, "true" means pagefault
132          * will be hit on old pte.
133          */
134         return true;
135 }
136 #endif
137
138 static int __init disable_randmaps(char *s)
139 {
140         randomize_va_space = 0;
141         return 1;
142 }
143 __setup("norandmaps", disable_randmaps);
144
145 unsigned long zero_pfn __read_mostly;
146 EXPORT_SYMBOL(zero_pfn);
147
148 unsigned long highest_memmap_pfn __read_mostly;
149
150 /*
151  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152  */
153 static int __init init_zero_pfn(void)
154 {
155         zero_pfn = page_to_pfn(ZERO_PAGE(0));
156         return 0;
157 }
158 core_initcall(init_zero_pfn);
159
160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
161 {
162         trace_rss_stat(mm, member, count);
163 }
164
165 #if defined(SPLIT_RSS_COUNTING)
166
167 void sync_mm_rss(struct mm_struct *mm)
168 {
169         int i;
170
171         for (i = 0; i < NR_MM_COUNTERS; i++) {
172                 if (current->rss_stat.count[i]) {
173                         add_mm_counter(mm, i, current->rss_stat.count[i]);
174                         current->rss_stat.count[i] = 0;
175                 }
176         }
177         current->rss_stat.events = 0;
178 }
179
180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181 {
182         struct task_struct *task = current;
183
184         if (likely(task->mm == mm))
185                 task->rss_stat.count[member] += val;
186         else
187                 add_mm_counter(mm, member, val);
188 }
189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191
192 /* sync counter once per 64 page faults */
193 #define TASK_RSS_EVENTS_THRESH  (64)
194 static void check_sync_rss_stat(struct task_struct *task)
195 {
196         if (unlikely(task != current))
197                 return;
198         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
199                 sync_mm_rss(task->mm);
200 }
201 #else /* SPLIT_RSS_COUNTING */
202
203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205
206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 }
209
210 #endif /* SPLIT_RSS_COUNTING */
211
212 /*
213  * Note: this doesn't free the actual pages themselves. That
214  * has been handled earlier when unmapping all the memory regions.
215  */
216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217                            unsigned long addr)
218 {
219         pgtable_t token = pmd_pgtable(*pmd);
220         pmd_clear(pmd);
221         pte_free_tlb(tlb, token, addr);
222         mm_dec_nr_ptes(tlb->mm);
223 }
224
225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226                                 unsigned long addr, unsigned long end,
227                                 unsigned long floor, unsigned long ceiling)
228 {
229         pmd_t *pmd;
230         unsigned long next;
231         unsigned long start;
232
233         start = addr;
234         pmd = pmd_offset(pud, addr);
235         do {
236                 next = pmd_addr_end(addr, end);
237                 if (pmd_none_or_clear_bad(pmd))
238                         continue;
239                 free_pte_range(tlb, pmd, addr);
240         } while (pmd++, addr = next, addr != end);
241
242         start &= PUD_MASK;
243         if (start < floor)
244                 return;
245         if (ceiling) {
246                 ceiling &= PUD_MASK;
247                 if (!ceiling)
248                         return;
249         }
250         if (end - 1 > ceiling - 1)
251                 return;
252
253         pmd = pmd_offset(pud, start);
254         pud_clear(pud);
255         pmd_free_tlb(tlb, pmd, start);
256         mm_dec_nr_pmds(tlb->mm);
257 }
258
259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
260                                 unsigned long addr, unsigned long end,
261                                 unsigned long floor, unsigned long ceiling)
262 {
263         pud_t *pud;
264         unsigned long next;
265         unsigned long start;
266
267         start = addr;
268         pud = pud_offset(p4d, addr);
269         do {
270                 next = pud_addr_end(addr, end);
271                 if (pud_none_or_clear_bad(pud))
272                         continue;
273                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
274         } while (pud++, addr = next, addr != end);
275
276         start &= P4D_MASK;
277         if (start < floor)
278                 return;
279         if (ceiling) {
280                 ceiling &= P4D_MASK;
281                 if (!ceiling)
282                         return;
283         }
284         if (end - 1 > ceiling - 1)
285                 return;
286
287         pud = pud_offset(p4d, start);
288         p4d_clear(p4d);
289         pud_free_tlb(tlb, pud, start);
290         mm_dec_nr_puds(tlb->mm);
291 }
292
293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294                                 unsigned long addr, unsigned long end,
295                                 unsigned long floor, unsigned long ceiling)
296 {
297         p4d_t *p4d;
298         unsigned long next;
299         unsigned long start;
300
301         start = addr;
302         p4d = p4d_offset(pgd, addr);
303         do {
304                 next = p4d_addr_end(addr, end);
305                 if (p4d_none_or_clear_bad(p4d))
306                         continue;
307                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308         } while (p4d++, addr = next, addr != end);
309
310         start &= PGDIR_MASK;
311         if (start < floor)
312                 return;
313         if (ceiling) {
314                 ceiling &= PGDIR_MASK;
315                 if (!ceiling)
316                         return;
317         }
318         if (end - 1 > ceiling - 1)
319                 return;
320
321         p4d = p4d_offset(pgd, start);
322         pgd_clear(pgd);
323         p4d_free_tlb(tlb, p4d, start);
324 }
325
326 /*
327  * This function frees user-level page tables of a process.
328  */
329 void free_pgd_range(struct mmu_gather *tlb,
330                         unsigned long addr, unsigned long end,
331                         unsigned long floor, unsigned long ceiling)
332 {
333         pgd_t *pgd;
334         unsigned long next;
335
336         /*
337          * The next few lines have given us lots of grief...
338          *
339          * Why are we testing PMD* at this top level?  Because often
340          * there will be no work to do at all, and we'd prefer not to
341          * go all the way down to the bottom just to discover that.
342          *
343          * Why all these "- 1"s?  Because 0 represents both the bottom
344          * of the address space and the top of it (using -1 for the
345          * top wouldn't help much: the masks would do the wrong thing).
346          * The rule is that addr 0 and floor 0 refer to the bottom of
347          * the address space, but end 0 and ceiling 0 refer to the top
348          * Comparisons need to use "end - 1" and "ceiling - 1" (though
349          * that end 0 case should be mythical).
350          *
351          * Wherever addr is brought up or ceiling brought down, we must
352          * be careful to reject "the opposite 0" before it confuses the
353          * subsequent tests.  But what about where end is brought down
354          * by PMD_SIZE below? no, end can't go down to 0 there.
355          *
356          * Whereas we round start (addr) and ceiling down, by different
357          * masks at different levels, in order to test whether a table
358          * now has no other vmas using it, so can be freed, we don't
359          * bother to round floor or end up - the tests don't need that.
360          */
361
362         addr &= PMD_MASK;
363         if (addr < floor) {
364                 addr += PMD_SIZE;
365                 if (!addr)
366                         return;
367         }
368         if (ceiling) {
369                 ceiling &= PMD_MASK;
370                 if (!ceiling)
371                         return;
372         }
373         if (end - 1 > ceiling - 1)
374                 end -= PMD_SIZE;
375         if (addr > end - 1)
376                 return;
377         /*
378          * We add page table cache pages with PAGE_SIZE,
379          * (see pte_free_tlb()), flush the tlb if we need
380          */
381         tlb_change_page_size(tlb, PAGE_SIZE);
382         pgd = pgd_offset(tlb->mm, addr);
383         do {
384                 next = pgd_addr_end(addr, end);
385                 if (pgd_none_or_clear_bad(pgd))
386                         continue;
387                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
388         } while (pgd++, addr = next, addr != end);
389 }
390
391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
392                 unsigned long floor, unsigned long ceiling)
393 {
394         while (vma) {
395                 struct vm_area_struct *next = vma->vm_next;
396                 unsigned long addr = vma->vm_start;
397
398                 /*
399                  * Hide vma from rmap and truncate_pagecache before freeing
400                  * pgtables
401                  */
402                 unlink_anon_vmas(vma);
403                 unlink_file_vma(vma);
404
405                 if (is_vm_hugetlb_page(vma)) {
406                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
407                                 floor, next ? next->vm_start : ceiling);
408                 } else {
409                         /*
410                          * Optimization: gather nearby vmas into one call down
411                          */
412                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
413                                && !is_vm_hugetlb_page(next)) {
414                                 vma = next;
415                                 next = vma->vm_next;
416                                 unlink_anon_vmas(vma);
417                                 unlink_file_vma(vma);
418                         }
419                         free_pgd_range(tlb, addr, vma->vm_end,
420                                 floor, next ? next->vm_start : ceiling);
421                 }
422                 vma = next;
423         }
424 }
425
426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 {
428         spinlock_t *ptl;
429         pgtable_t new = pte_alloc_one(mm);
430         if (!new)
431                 return -ENOMEM;
432
433         /*
434          * Ensure all pte setup (eg. pte page lock and page clearing) are
435          * visible before the pte is made visible to other CPUs by being
436          * put into page tables.
437          *
438          * The other side of the story is the pointer chasing in the page
439          * table walking code (when walking the page table without locking;
440          * ie. most of the time). Fortunately, these data accesses consist
441          * of a chain of data-dependent loads, meaning most CPUs (alpha
442          * being the notable exception) will already guarantee loads are
443          * seen in-order. See the alpha page table accessors for the
444          * smp_rmb() barriers in page table walking code.
445          */
446         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447
448         ptl = pmd_lock(mm, pmd);
449         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
450                 mm_inc_nr_ptes(mm);
451                 pmd_populate(mm, pmd, new);
452                 new = NULL;
453         }
454         spin_unlock(ptl);
455         if (new)
456                 pte_free(mm, new);
457         return 0;
458 }
459
460 int __pte_alloc_kernel(pmd_t *pmd)
461 {
462         pte_t *new = pte_alloc_one_kernel(&init_mm);
463         if (!new)
464                 return -ENOMEM;
465
466         smp_wmb(); /* See comment in __pte_alloc */
467
468         spin_lock(&init_mm.page_table_lock);
469         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
470                 pmd_populate_kernel(&init_mm, pmd, new);
471                 new = NULL;
472         }
473         spin_unlock(&init_mm.page_table_lock);
474         if (new)
475                 pte_free_kernel(&init_mm, new);
476         return 0;
477 }
478
479 static inline void init_rss_vec(int *rss)
480 {
481         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483
484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486         int i;
487
488         if (current->mm == mm)
489                 sync_mm_rss(mm);
490         for (i = 0; i < NR_MM_COUNTERS; i++)
491                 if (rss[i])
492                         add_mm_counter(mm, i, rss[i]);
493 }
494
495 /*
496  * This function is called to print an error when a bad pte
497  * is found. For example, we might have a PFN-mapped pte in
498  * a region that doesn't allow it.
499  *
500  * The calling function must still handle the error.
501  */
502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503                           pte_t pte, struct page *page)
504 {
505         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
506         p4d_t *p4d = p4d_offset(pgd, addr);
507         pud_t *pud = pud_offset(p4d, addr);
508         pmd_t *pmd = pmd_offset(pud, addr);
509         struct address_space *mapping;
510         pgoff_t index;
511         static unsigned long resume;
512         static unsigned long nr_shown;
513         static unsigned long nr_unshown;
514
515         /*
516          * Allow a burst of 60 reports, then keep quiet for that minute;
517          * or allow a steady drip of one report per second.
518          */
519         if (nr_shown == 60) {
520                 if (time_before(jiffies, resume)) {
521                         nr_unshown++;
522                         return;
523                 }
524                 if (nr_unshown) {
525                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526                                  nr_unshown);
527                         nr_unshown = 0;
528                 }
529                 nr_shown = 0;
530         }
531         if (nr_shown++ == 0)
532                 resume = jiffies + 60 * HZ;
533
534         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535         index = linear_page_index(vma, addr);
536
537         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
538                  current->comm,
539                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
540         if (page)
541                 dump_page(page, "bad pte");
542         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
543                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
544         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
545                  vma->vm_file,
546                  vma->vm_ops ? vma->vm_ops->fault : NULL,
547                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548                  mapping ? mapping->a_ops->readpage : NULL);
549         dump_stack();
550         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552
553 /*
554  * vm_normal_page -- This function gets the "struct page" associated with a pte.
555  *
556  * "Special" mappings do not wish to be associated with a "struct page" (either
557  * it doesn't exist, or it exists but they don't want to touch it). In this
558  * case, NULL is returned here. "Normal" mappings do have a struct page.
559  *
560  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561  * pte bit, in which case this function is trivial. Secondly, an architecture
562  * may not have a spare pte bit, which requires a more complicated scheme,
563  * described below.
564  *
565  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566  * special mapping (even if there are underlying and valid "struct pages").
567  * COWed pages of a VM_PFNMAP are always normal.
568  *
569  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572  * mapping will always honor the rule
573  *
574  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575  *
576  * And for normal mappings this is false.
577  *
578  * This restricts such mappings to be a linear translation from virtual address
579  * to pfn. To get around this restriction, we allow arbitrary mappings so long
580  * as the vma is not a COW mapping; in that case, we know that all ptes are
581  * special (because none can have been COWed).
582  *
583  *
584  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585  *
586  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587  * page" backing, however the difference is that _all_ pages with a struct
588  * page (that is, those where pfn_valid is true) are refcounted and considered
589  * normal pages by the VM. The disadvantage is that pages are refcounted
590  * (which can be slower and simply not an option for some PFNMAP users). The
591  * advantage is that we don't have to follow the strict linearity rule of
592  * PFNMAP mappings in order to support COWable mappings.
593  *
594  */
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596                             pte_t pte)
597 {
598         unsigned long pfn = pte_pfn(pte);
599
600         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
601                 if (likely(!pte_special(pte)))
602                         goto check_pfn;
603                 if (vma->vm_ops && vma->vm_ops->find_special_page)
604                         return vma->vm_ops->find_special_page(vma, addr);
605                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606                         return NULL;
607                 if (is_zero_pfn(pfn))
608                         return NULL;
609                 if (pte_devmap(pte))
610                         return NULL;
611
612                 print_bad_pte(vma, addr, pte, NULL);
613                 return NULL;
614         }
615
616         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617
618         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619                 if (vma->vm_flags & VM_MIXEDMAP) {
620                         if (!pfn_valid(pfn))
621                                 return NULL;
622                         goto out;
623                 } else {
624                         unsigned long off;
625                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
626                         if (pfn == vma->vm_pgoff + off)
627                                 return NULL;
628                         if (!is_cow_mapping(vma->vm_flags))
629                                 return NULL;
630                 }
631         }
632
633         if (is_zero_pfn(pfn))
634                 return NULL;
635
636 check_pfn:
637         if (unlikely(pfn > highest_memmap_pfn)) {
638                 print_bad_pte(vma, addr, pte, NULL);
639                 return NULL;
640         }
641
642         /*
643          * NOTE! We still have PageReserved() pages in the page tables.
644          * eg. VDSO mappings can cause them to exist.
645          */
646 out:
647         return pfn_to_page(pfn);
648 }
649
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652                                 pmd_t pmd)
653 {
654         unsigned long pfn = pmd_pfn(pmd);
655
656         /*
657          * There is no pmd_special() but there may be special pmds, e.g.
658          * in a direct-access (dax) mapping, so let's just replicate the
659          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660          */
661         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662                 if (vma->vm_flags & VM_MIXEDMAP) {
663                         if (!pfn_valid(pfn))
664                                 return NULL;
665                         goto out;
666                 } else {
667                         unsigned long off;
668                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
669                         if (pfn == vma->vm_pgoff + off)
670                                 return NULL;
671                         if (!is_cow_mapping(vma->vm_flags))
672                                 return NULL;
673                 }
674         }
675
676         if (pmd_devmap(pmd))
677                 return NULL;
678         if (is_huge_zero_pmd(pmd))
679                 return NULL;
680         if (unlikely(pfn > highest_memmap_pfn))
681                 return NULL;
682
683         /*
684          * NOTE! We still have PageReserved() pages in the page tables.
685          * eg. VDSO mappings can cause them to exist.
686          */
687 out:
688         return pfn_to_page(pfn);
689 }
690 #endif
691
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697
698 static unsigned long
699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701                 unsigned long addr, int *rss)
702 {
703         unsigned long vm_flags = vma->vm_flags;
704         pte_t pte = *src_pte;
705         struct page *page;
706         swp_entry_t entry = pte_to_swp_entry(pte);
707
708         if (likely(!non_swap_entry(entry))) {
709                 if (swap_duplicate(entry) < 0)
710                         return entry.val;
711
712                 /* make sure dst_mm is on swapoff's mmlist. */
713                 if (unlikely(list_empty(&dst_mm->mmlist))) {
714                         spin_lock(&mmlist_lock);
715                         if (list_empty(&dst_mm->mmlist))
716                                 list_add(&dst_mm->mmlist,
717                                                 &src_mm->mmlist);
718                         spin_unlock(&mmlist_lock);
719                 }
720                 rss[MM_SWAPENTS]++;
721         } else if (is_migration_entry(entry)) {
722                 page = migration_entry_to_page(entry);
723
724                 rss[mm_counter(page)]++;
725
726                 if (is_write_migration_entry(entry) &&
727                                 is_cow_mapping(vm_flags)) {
728                         /*
729                          * COW mappings require pages in both
730                          * parent and child to be set to read.
731                          */
732                         make_migration_entry_read(&entry);
733                         pte = swp_entry_to_pte(entry);
734                         if (pte_swp_soft_dirty(*src_pte))
735                                 pte = pte_swp_mksoft_dirty(pte);
736                         if (pte_swp_uffd_wp(*src_pte))
737                                 pte = pte_swp_mkuffd_wp(pte);
738                         set_pte_at(src_mm, addr, src_pte, pte);
739                 }
740         } else if (is_device_private_entry(entry)) {
741                 page = device_private_entry_to_page(entry);
742
743                 /*
744                  * Update rss count even for unaddressable pages, as
745                  * they should treated just like normal pages in this
746                  * respect.
747                  *
748                  * We will likely want to have some new rss counters
749                  * for unaddressable pages, at some point. But for now
750                  * keep things as they are.
751                  */
752                 get_page(page);
753                 rss[mm_counter(page)]++;
754                 page_dup_rmap(page, false);
755
756                 /*
757                  * We do not preserve soft-dirty information, because so
758                  * far, checkpoint/restore is the only feature that
759                  * requires that. And checkpoint/restore does not work
760                  * when a device driver is involved (you cannot easily
761                  * save and restore device driver state).
762                  */
763                 if (is_write_device_private_entry(entry) &&
764                     is_cow_mapping(vm_flags)) {
765                         make_device_private_entry_read(&entry);
766                         pte = swp_entry_to_pte(entry);
767                         if (pte_swp_uffd_wp(*src_pte))
768                                 pte = pte_swp_mkuffd_wp(pte);
769                         set_pte_at(src_mm, addr, src_pte, pte);
770                 }
771         }
772         set_pte_at(dst_mm, addr, dst_pte, pte);
773         return 0;
774 }
775
776 static inline unsigned long
777 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
778                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
779                 unsigned long addr, int *rss)
780 {
781         unsigned long vm_flags = vma->vm_flags;
782         pte_t pte = *src_pte;
783         struct page *page;
784
785         /* pte contains position in swap or file, so copy. */
786         if (unlikely(!pte_present(pte)))
787                 return copy_nonpresent_pte(dst_mm, src_mm,
788                                            dst_pte, src_pte, vma,
789                                            addr, rss);
790
791         /*
792          * If it's a COW mapping, write protect it both
793          * in the parent and the child
794          */
795         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
796                 ptep_set_wrprotect(src_mm, addr, src_pte);
797                 pte = pte_wrprotect(pte);
798         }
799
800         /*
801          * If it's a shared mapping, mark it clean in
802          * the child
803          */
804         if (vm_flags & VM_SHARED)
805                 pte = pte_mkclean(pte);
806         pte = pte_mkold(pte);
807
808         /*
809          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
810          * does not have the VM_UFFD_WP, which means that the uffd
811          * fork event is not enabled.
812          */
813         if (!(vm_flags & VM_UFFD_WP))
814                 pte = pte_clear_uffd_wp(pte);
815
816         page = vm_normal_page(vma, addr, pte);
817         if (page) {
818                 get_page(page);
819                 page_dup_rmap(page, false);
820                 rss[mm_counter(page)]++;
821         }
822
823         set_pte_at(dst_mm, addr, dst_pte, pte);
824         return 0;
825 }
826
827 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
828                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
829                    unsigned long addr, unsigned long end)
830 {
831         pte_t *orig_src_pte, *orig_dst_pte;
832         pte_t *src_pte, *dst_pte;
833         spinlock_t *src_ptl, *dst_ptl;
834         int progress = 0;
835         int rss[NR_MM_COUNTERS];
836         swp_entry_t entry = (swp_entry_t){0};
837
838 again:
839         init_rss_vec(rss);
840
841         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
842         if (!dst_pte)
843                 return -ENOMEM;
844         src_pte = pte_offset_map(src_pmd, addr);
845         src_ptl = pte_lockptr(src_mm, src_pmd);
846         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
847         orig_src_pte = src_pte;
848         orig_dst_pte = dst_pte;
849         arch_enter_lazy_mmu_mode();
850
851         do {
852                 /*
853                  * We are holding two locks at this point - either of them
854                  * could generate latencies in another task on another CPU.
855                  */
856                 if (progress >= 32) {
857                         progress = 0;
858                         if (need_resched() ||
859                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
860                                 break;
861                 }
862                 if (pte_none(*src_pte)) {
863                         progress++;
864                         continue;
865                 }
866                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
867                                                         vma, addr, rss);
868                 if (entry.val)
869                         break;
870                 progress += 8;
871         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
872
873         arch_leave_lazy_mmu_mode();
874         spin_unlock(src_ptl);
875         pte_unmap(orig_src_pte);
876         add_mm_rss_vec(dst_mm, rss);
877         pte_unmap_unlock(orig_dst_pte, dst_ptl);
878         cond_resched();
879
880         if (entry.val) {
881                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
882                         return -ENOMEM;
883                 progress = 0;
884         }
885         if (addr != end)
886                 goto again;
887         return 0;
888 }
889
890 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
891                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
892                 unsigned long addr, unsigned long end)
893 {
894         pmd_t *src_pmd, *dst_pmd;
895         unsigned long next;
896
897         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
898         if (!dst_pmd)
899                 return -ENOMEM;
900         src_pmd = pmd_offset(src_pud, addr);
901         do {
902                 next = pmd_addr_end(addr, end);
903                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
904                         || pmd_devmap(*src_pmd)) {
905                         int err;
906                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
907                         err = copy_huge_pmd(dst_mm, src_mm,
908                                             dst_pmd, src_pmd, addr, vma);
909                         if (err == -ENOMEM)
910                                 return -ENOMEM;
911                         if (!err)
912                                 continue;
913                         /* fall through */
914                 }
915                 if (pmd_none_or_clear_bad(src_pmd))
916                         continue;
917                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
918                                                 vma, addr, next))
919                         return -ENOMEM;
920         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
921         return 0;
922 }
923
924 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
925                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
926                 unsigned long addr, unsigned long end)
927 {
928         pud_t *src_pud, *dst_pud;
929         unsigned long next;
930
931         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
932         if (!dst_pud)
933                 return -ENOMEM;
934         src_pud = pud_offset(src_p4d, addr);
935         do {
936                 next = pud_addr_end(addr, end);
937                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
938                         int err;
939
940                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
941                         err = copy_huge_pud(dst_mm, src_mm,
942                                             dst_pud, src_pud, addr, vma);
943                         if (err == -ENOMEM)
944                                 return -ENOMEM;
945                         if (!err)
946                                 continue;
947                         /* fall through */
948                 }
949                 if (pud_none_or_clear_bad(src_pud))
950                         continue;
951                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
952                                                 vma, addr, next))
953                         return -ENOMEM;
954         } while (dst_pud++, src_pud++, addr = next, addr != end);
955         return 0;
956 }
957
958 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
959                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
960                 unsigned long addr, unsigned long end)
961 {
962         p4d_t *src_p4d, *dst_p4d;
963         unsigned long next;
964
965         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
966         if (!dst_p4d)
967                 return -ENOMEM;
968         src_p4d = p4d_offset(src_pgd, addr);
969         do {
970                 next = p4d_addr_end(addr, end);
971                 if (p4d_none_or_clear_bad(src_p4d))
972                         continue;
973                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
974                                                 vma, addr, next))
975                         return -ENOMEM;
976         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
977         return 0;
978 }
979
980 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981                 struct vm_area_struct *vma)
982 {
983         pgd_t *src_pgd, *dst_pgd;
984         unsigned long next;
985         unsigned long addr = vma->vm_start;
986         unsigned long end = vma->vm_end;
987         struct mmu_notifier_range range;
988         bool is_cow;
989         int ret;
990
991         /*
992          * Don't copy ptes where a page fault will fill them correctly.
993          * Fork becomes much lighter when there are big shared or private
994          * readonly mappings. The tradeoff is that copy_page_range is more
995          * efficient than faulting.
996          */
997         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
998                         !vma->anon_vma)
999                 return 0;
1000
1001         if (is_vm_hugetlb_page(vma))
1002                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1003
1004         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1005                 /*
1006                  * We do not free on error cases below as remove_vma
1007                  * gets called on error from higher level routine
1008                  */
1009                 ret = track_pfn_copy(vma);
1010                 if (ret)
1011                         return ret;
1012         }
1013
1014         /*
1015          * We need to invalidate the secondary MMU mappings only when
1016          * there could be a permission downgrade on the ptes of the
1017          * parent mm. And a permission downgrade will only happen if
1018          * is_cow_mapping() returns true.
1019          */
1020         is_cow = is_cow_mapping(vma->vm_flags);
1021
1022         if (is_cow) {
1023                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1024                                         0, vma, src_mm, addr, end);
1025                 mmu_notifier_invalidate_range_start(&range);
1026         }
1027
1028         ret = 0;
1029         dst_pgd = pgd_offset(dst_mm, addr);
1030         src_pgd = pgd_offset(src_mm, addr);
1031         do {
1032                 next = pgd_addr_end(addr, end);
1033                 if (pgd_none_or_clear_bad(src_pgd))
1034                         continue;
1035                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1036                                             vma, addr, next))) {
1037                         ret = -ENOMEM;
1038                         break;
1039                 }
1040         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1041
1042         if (is_cow)
1043                 mmu_notifier_invalidate_range_end(&range);
1044         return ret;
1045 }
1046
1047 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1048                                 struct vm_area_struct *vma, pmd_t *pmd,
1049                                 unsigned long addr, unsigned long end,
1050                                 struct zap_details *details)
1051 {
1052         struct mm_struct *mm = tlb->mm;
1053         int force_flush = 0;
1054         int rss[NR_MM_COUNTERS];
1055         spinlock_t *ptl;
1056         pte_t *start_pte;
1057         pte_t *pte;
1058         swp_entry_t entry;
1059
1060         tlb_change_page_size(tlb, PAGE_SIZE);
1061 again:
1062         init_rss_vec(rss);
1063         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1064         pte = start_pte;
1065         flush_tlb_batched_pending(mm);
1066         arch_enter_lazy_mmu_mode();
1067         do {
1068                 pte_t ptent = *pte;
1069                 if (pte_none(ptent))
1070                         continue;
1071
1072                 if (need_resched())
1073                         break;
1074
1075                 if (pte_present(ptent)) {
1076                         struct page *page;
1077
1078                         page = vm_normal_page(vma, addr, ptent);
1079                         if (unlikely(details) && page) {
1080                                 /*
1081                                  * unmap_shared_mapping_pages() wants to
1082                                  * invalidate cache without truncating:
1083                                  * unmap shared but keep private pages.
1084                                  */
1085                                 if (details->check_mapping &&
1086                                     details->check_mapping != page_rmapping(page))
1087                                         continue;
1088                         }
1089                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1090                                                         tlb->fullmm);
1091                         tlb_remove_tlb_entry(tlb, pte, addr);
1092                         if (unlikely(!page))
1093                                 continue;
1094
1095                         if (!PageAnon(page)) {
1096                                 if (pte_dirty(ptent)) {
1097                                         force_flush = 1;
1098                                         set_page_dirty(page);
1099                                 }
1100                                 if (pte_young(ptent) &&
1101                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1102                                         mark_page_accessed(page);
1103                         }
1104                         rss[mm_counter(page)]--;
1105                         page_remove_rmap(page, false);
1106                         if (unlikely(page_mapcount(page) < 0))
1107                                 print_bad_pte(vma, addr, ptent, page);
1108                         if (unlikely(__tlb_remove_page(tlb, page))) {
1109                                 force_flush = 1;
1110                                 addr += PAGE_SIZE;
1111                                 break;
1112                         }
1113                         continue;
1114                 }
1115
1116                 entry = pte_to_swp_entry(ptent);
1117                 if (is_device_private_entry(entry)) {
1118                         struct page *page = device_private_entry_to_page(entry);
1119
1120                         if (unlikely(details && details->check_mapping)) {
1121                                 /*
1122                                  * unmap_shared_mapping_pages() wants to
1123                                  * invalidate cache without truncating:
1124                                  * unmap shared but keep private pages.
1125                                  */
1126                                 if (details->check_mapping !=
1127                                     page_rmapping(page))
1128                                         continue;
1129                         }
1130
1131                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1132                         rss[mm_counter(page)]--;
1133                         page_remove_rmap(page, false);
1134                         put_page(page);
1135                         continue;
1136                 }
1137
1138                 /* If details->check_mapping, we leave swap entries. */
1139                 if (unlikely(details))
1140                         continue;
1141
1142                 if (!non_swap_entry(entry))
1143                         rss[MM_SWAPENTS]--;
1144                 else if (is_migration_entry(entry)) {
1145                         struct page *page;
1146
1147                         page = migration_entry_to_page(entry);
1148                         rss[mm_counter(page)]--;
1149                 }
1150                 if (unlikely(!free_swap_and_cache(entry)))
1151                         print_bad_pte(vma, addr, ptent, NULL);
1152                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1153         } while (pte++, addr += PAGE_SIZE, addr != end);
1154
1155         add_mm_rss_vec(mm, rss);
1156         arch_leave_lazy_mmu_mode();
1157
1158         /* Do the actual TLB flush before dropping ptl */
1159         if (force_flush)
1160                 tlb_flush_mmu_tlbonly(tlb);
1161         pte_unmap_unlock(start_pte, ptl);
1162
1163         /*
1164          * If we forced a TLB flush (either due to running out of
1165          * batch buffers or because we needed to flush dirty TLB
1166          * entries before releasing the ptl), free the batched
1167          * memory too. Restart if we didn't do everything.
1168          */
1169         if (force_flush) {
1170                 force_flush = 0;
1171                 tlb_flush_mmu(tlb);
1172         }
1173
1174         if (addr != end) {
1175                 cond_resched();
1176                 goto again;
1177         }
1178
1179         return addr;
1180 }
1181
1182 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1183                                 struct vm_area_struct *vma, pud_t *pud,
1184                                 unsigned long addr, unsigned long end,
1185                                 struct zap_details *details)
1186 {
1187         pmd_t *pmd;
1188         unsigned long next;
1189
1190         pmd = pmd_offset(pud, addr);
1191         do {
1192                 next = pmd_addr_end(addr, end);
1193                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1194                         if (next - addr != HPAGE_PMD_SIZE)
1195                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1196                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1197                                 goto next;
1198                         /* fall through */
1199                 }
1200                 /*
1201                  * Here there can be other concurrent MADV_DONTNEED or
1202                  * trans huge page faults running, and if the pmd is
1203                  * none or trans huge it can change under us. This is
1204                  * because MADV_DONTNEED holds the mmap_lock in read
1205                  * mode.
1206                  */
1207                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1208                         goto next;
1209                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1210 next:
1211                 cond_resched();
1212         } while (pmd++, addr = next, addr != end);
1213
1214         return addr;
1215 }
1216
1217 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1218                                 struct vm_area_struct *vma, p4d_t *p4d,
1219                                 unsigned long addr, unsigned long end,
1220                                 struct zap_details *details)
1221 {
1222         pud_t *pud;
1223         unsigned long next;
1224
1225         pud = pud_offset(p4d, addr);
1226         do {
1227                 next = pud_addr_end(addr, end);
1228                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1229                         if (next - addr != HPAGE_PUD_SIZE) {
1230                                 mmap_assert_locked(tlb->mm);
1231                                 split_huge_pud(vma, pud, addr);
1232                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1233                                 goto next;
1234                         /* fall through */
1235                 }
1236                 if (pud_none_or_clear_bad(pud))
1237                         continue;
1238                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1239 next:
1240                 cond_resched();
1241         } while (pud++, addr = next, addr != end);
1242
1243         return addr;
1244 }
1245
1246 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1247                                 struct vm_area_struct *vma, pgd_t *pgd,
1248                                 unsigned long addr, unsigned long end,
1249                                 struct zap_details *details)
1250 {
1251         p4d_t *p4d;
1252         unsigned long next;
1253
1254         p4d = p4d_offset(pgd, addr);
1255         do {
1256                 next = p4d_addr_end(addr, end);
1257                 if (p4d_none_or_clear_bad(p4d))
1258                         continue;
1259                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1260         } while (p4d++, addr = next, addr != end);
1261
1262         return addr;
1263 }
1264
1265 void unmap_page_range(struct mmu_gather *tlb,
1266                              struct vm_area_struct *vma,
1267                              unsigned long addr, unsigned long end,
1268                              struct zap_details *details)
1269 {
1270         pgd_t *pgd;
1271         unsigned long next;
1272
1273         BUG_ON(addr >= end);
1274         tlb_start_vma(tlb, vma);
1275         pgd = pgd_offset(vma->vm_mm, addr);
1276         do {
1277                 next = pgd_addr_end(addr, end);
1278                 if (pgd_none_or_clear_bad(pgd))
1279                         continue;
1280                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1281         } while (pgd++, addr = next, addr != end);
1282         tlb_end_vma(tlb, vma);
1283 }
1284
1285
1286 static void unmap_single_vma(struct mmu_gather *tlb,
1287                 struct vm_area_struct *vma, unsigned long start_addr,
1288                 unsigned long end_addr,
1289                 struct zap_details *details)
1290 {
1291         unsigned long start = max(vma->vm_start, start_addr);
1292         unsigned long end;
1293
1294         if (start >= vma->vm_end)
1295                 return;
1296         end = min(vma->vm_end, end_addr);
1297         if (end <= vma->vm_start)
1298                 return;
1299
1300         if (vma->vm_file)
1301                 uprobe_munmap(vma, start, end);
1302
1303         if (unlikely(vma->vm_flags & VM_PFNMAP))
1304                 untrack_pfn(vma, 0, 0);
1305
1306         if (start != end) {
1307                 if (unlikely(is_vm_hugetlb_page(vma))) {
1308                         /*
1309                          * It is undesirable to test vma->vm_file as it
1310                          * should be non-null for valid hugetlb area.
1311                          * However, vm_file will be NULL in the error
1312                          * cleanup path of mmap_region. When
1313                          * hugetlbfs ->mmap method fails,
1314                          * mmap_region() nullifies vma->vm_file
1315                          * before calling this function to clean up.
1316                          * Since no pte has actually been setup, it is
1317                          * safe to do nothing in this case.
1318                          */
1319                         if (vma->vm_file) {
1320                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1321                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1322                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1323                         }
1324                 } else
1325                         unmap_page_range(tlb, vma, start, end, details);
1326         }
1327 }
1328
1329 /**
1330  * unmap_vmas - unmap a range of memory covered by a list of vma's
1331  * @tlb: address of the caller's struct mmu_gather
1332  * @vma: the starting vma
1333  * @start_addr: virtual address at which to start unmapping
1334  * @end_addr: virtual address at which to end unmapping
1335  *
1336  * Unmap all pages in the vma list.
1337  *
1338  * Only addresses between `start' and `end' will be unmapped.
1339  *
1340  * The VMA list must be sorted in ascending virtual address order.
1341  *
1342  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1343  * range after unmap_vmas() returns.  So the only responsibility here is to
1344  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1345  * drops the lock and schedules.
1346  */
1347 void unmap_vmas(struct mmu_gather *tlb,
1348                 struct vm_area_struct *vma, unsigned long start_addr,
1349                 unsigned long end_addr)
1350 {
1351         struct mmu_notifier_range range;
1352
1353         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1354                                 start_addr, end_addr);
1355         mmu_notifier_invalidate_range_start(&range);
1356         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1357                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1358         mmu_notifier_invalidate_range_end(&range);
1359 }
1360
1361 /**
1362  * zap_page_range - remove user pages in a given range
1363  * @vma: vm_area_struct holding the applicable pages
1364  * @start: starting address of pages to zap
1365  * @size: number of bytes to zap
1366  *
1367  * Caller must protect the VMA list
1368  */
1369 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1370                 unsigned long size)
1371 {
1372         struct mmu_notifier_range range;
1373         struct mmu_gather tlb;
1374
1375         lru_add_drain();
1376         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1377                                 start, start + size);
1378         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1379         update_hiwater_rss(vma->vm_mm);
1380         mmu_notifier_invalidate_range_start(&range);
1381         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1382                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1383         mmu_notifier_invalidate_range_end(&range);
1384         tlb_finish_mmu(&tlb, start, range.end);
1385 }
1386
1387 /**
1388  * zap_page_range_single - remove user pages in a given range
1389  * @vma: vm_area_struct holding the applicable pages
1390  * @address: starting address of pages to zap
1391  * @size: number of bytes to zap
1392  * @details: details of shared cache invalidation
1393  *
1394  * The range must fit into one VMA.
1395  */
1396 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1397                 unsigned long size, struct zap_details *details)
1398 {
1399         struct mmu_notifier_range range;
1400         struct mmu_gather tlb;
1401
1402         lru_add_drain();
1403         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1404                                 address, address + size);
1405         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1406         update_hiwater_rss(vma->vm_mm);
1407         mmu_notifier_invalidate_range_start(&range);
1408         unmap_single_vma(&tlb, vma, address, range.end, details);
1409         mmu_notifier_invalidate_range_end(&range);
1410         tlb_finish_mmu(&tlb, address, range.end);
1411 }
1412
1413 /**
1414  * zap_vma_ptes - remove ptes mapping the vma
1415  * @vma: vm_area_struct holding ptes to be zapped
1416  * @address: starting address of pages to zap
1417  * @size: number of bytes to zap
1418  *
1419  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1420  *
1421  * The entire address range must be fully contained within the vma.
1422  *
1423  */
1424 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1425                 unsigned long size)
1426 {
1427         if (address < vma->vm_start || address + size > vma->vm_end ||
1428                         !(vma->vm_flags & VM_PFNMAP))
1429                 return;
1430
1431         zap_page_range_single(vma, address, size, NULL);
1432 }
1433 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1434
1435 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1436 {
1437         pgd_t *pgd;
1438         p4d_t *p4d;
1439         pud_t *pud;
1440         pmd_t *pmd;
1441
1442         pgd = pgd_offset(mm, addr);
1443         p4d = p4d_alloc(mm, pgd, addr);
1444         if (!p4d)
1445                 return NULL;
1446         pud = pud_alloc(mm, p4d, addr);
1447         if (!pud)
1448                 return NULL;
1449         pmd = pmd_alloc(mm, pud, addr);
1450         if (!pmd)
1451                 return NULL;
1452
1453         VM_BUG_ON(pmd_trans_huge(*pmd));
1454         return pmd;
1455 }
1456
1457 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1458                         spinlock_t **ptl)
1459 {
1460         pmd_t *pmd = walk_to_pmd(mm, addr);
1461
1462         if (!pmd)
1463                 return NULL;
1464         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1465 }
1466
1467 static int validate_page_before_insert(struct page *page)
1468 {
1469         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1470                 return -EINVAL;
1471         flush_dcache_page(page);
1472         return 0;
1473 }
1474
1475 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1476                         unsigned long addr, struct page *page, pgprot_t prot)
1477 {
1478         if (!pte_none(*pte))
1479                 return -EBUSY;
1480         /* Ok, finally just insert the thing.. */
1481         get_page(page);
1482         inc_mm_counter_fast(mm, mm_counter_file(page));
1483         page_add_file_rmap(page, false);
1484         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1485         return 0;
1486 }
1487
1488 /*
1489  * This is the old fallback for page remapping.
1490  *
1491  * For historical reasons, it only allows reserved pages. Only
1492  * old drivers should use this, and they needed to mark their
1493  * pages reserved for the old functions anyway.
1494  */
1495 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1496                         struct page *page, pgprot_t prot)
1497 {
1498         struct mm_struct *mm = vma->vm_mm;
1499         int retval;
1500         pte_t *pte;
1501         spinlock_t *ptl;
1502
1503         retval = validate_page_before_insert(page);
1504         if (retval)
1505                 goto out;
1506         retval = -ENOMEM;
1507         pte = get_locked_pte(mm, addr, &ptl);
1508         if (!pte)
1509                 goto out;
1510         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1511         pte_unmap_unlock(pte, ptl);
1512 out:
1513         return retval;
1514 }
1515
1516 #ifdef pte_index
1517 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1518                         unsigned long addr, struct page *page, pgprot_t prot)
1519 {
1520         int err;
1521
1522         if (!page_count(page))
1523                 return -EINVAL;
1524         err = validate_page_before_insert(page);
1525         if (err)
1526                 return err;
1527         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1528 }
1529
1530 /* insert_pages() amortizes the cost of spinlock operations
1531  * when inserting pages in a loop. Arch *must* define pte_index.
1532  */
1533 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1534                         struct page **pages, unsigned long *num, pgprot_t prot)
1535 {
1536         pmd_t *pmd = NULL;
1537         pte_t *start_pte, *pte;
1538         spinlock_t *pte_lock;
1539         struct mm_struct *const mm = vma->vm_mm;
1540         unsigned long curr_page_idx = 0;
1541         unsigned long remaining_pages_total = *num;
1542         unsigned long pages_to_write_in_pmd;
1543         int ret;
1544 more:
1545         ret = -EFAULT;
1546         pmd = walk_to_pmd(mm, addr);
1547         if (!pmd)
1548                 goto out;
1549
1550         pages_to_write_in_pmd = min_t(unsigned long,
1551                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1552
1553         /* Allocate the PTE if necessary; takes PMD lock once only. */
1554         ret = -ENOMEM;
1555         if (pte_alloc(mm, pmd))
1556                 goto out;
1557
1558         while (pages_to_write_in_pmd) {
1559                 int pte_idx = 0;
1560                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1561
1562                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1563                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1564                         int err = insert_page_in_batch_locked(mm, pte,
1565                                 addr, pages[curr_page_idx], prot);
1566                         if (unlikely(err)) {
1567                                 pte_unmap_unlock(start_pte, pte_lock);
1568                                 ret = err;
1569                                 remaining_pages_total -= pte_idx;
1570                                 goto out;
1571                         }
1572                         addr += PAGE_SIZE;
1573                         ++curr_page_idx;
1574                 }
1575                 pte_unmap_unlock(start_pte, pte_lock);
1576                 pages_to_write_in_pmd -= batch_size;
1577                 remaining_pages_total -= batch_size;
1578         }
1579         if (remaining_pages_total)
1580                 goto more;
1581         ret = 0;
1582 out:
1583         *num = remaining_pages_total;
1584         return ret;
1585 }
1586 #endif  /* ifdef pte_index */
1587
1588 /**
1589  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1590  * @vma: user vma to map to
1591  * @addr: target start user address of these pages
1592  * @pages: source kernel pages
1593  * @num: in: number of pages to map. out: number of pages that were *not*
1594  * mapped. (0 means all pages were successfully mapped).
1595  *
1596  * Preferred over vm_insert_page() when inserting multiple pages.
1597  *
1598  * In case of error, we may have mapped a subset of the provided
1599  * pages. It is the caller's responsibility to account for this case.
1600  *
1601  * The same restrictions apply as in vm_insert_page().
1602  */
1603 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1604                         struct page **pages, unsigned long *num)
1605 {
1606 #ifdef pte_index
1607         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1608
1609         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1610                 return -EFAULT;
1611         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1612                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1613                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1614                 vma->vm_flags |= VM_MIXEDMAP;
1615         }
1616         /* Defer page refcount checking till we're about to map that page. */
1617         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1618 #else
1619         unsigned long idx = 0, pgcount = *num;
1620         int err = -EINVAL;
1621
1622         for (; idx < pgcount; ++idx) {
1623                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1624                 if (err)
1625                         break;
1626         }
1627         *num = pgcount - idx;
1628         return err;
1629 #endif  /* ifdef pte_index */
1630 }
1631 EXPORT_SYMBOL(vm_insert_pages);
1632
1633 /**
1634  * vm_insert_page - insert single page into user vma
1635  * @vma: user vma to map to
1636  * @addr: target user address of this page
1637  * @page: source kernel page
1638  *
1639  * This allows drivers to insert individual pages they've allocated
1640  * into a user vma.
1641  *
1642  * The page has to be a nice clean _individual_ kernel allocation.
1643  * If you allocate a compound page, you need to have marked it as
1644  * such (__GFP_COMP), or manually just split the page up yourself
1645  * (see split_page()).
1646  *
1647  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1648  * took an arbitrary page protection parameter. This doesn't allow
1649  * that. Your vma protection will have to be set up correctly, which
1650  * means that if you want a shared writable mapping, you'd better
1651  * ask for a shared writable mapping!
1652  *
1653  * The page does not need to be reserved.
1654  *
1655  * Usually this function is called from f_op->mmap() handler
1656  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1657  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1658  * function from other places, for example from page-fault handler.
1659  *
1660  * Return: %0 on success, negative error code otherwise.
1661  */
1662 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1663                         struct page *page)
1664 {
1665         if (addr < vma->vm_start || addr >= vma->vm_end)
1666                 return -EFAULT;
1667         if (!page_count(page))
1668                 return -EINVAL;
1669         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1670                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1671                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1672                 vma->vm_flags |= VM_MIXEDMAP;
1673         }
1674         return insert_page(vma, addr, page, vma->vm_page_prot);
1675 }
1676 EXPORT_SYMBOL(vm_insert_page);
1677
1678 /*
1679  * __vm_map_pages - maps range of kernel pages into user vma
1680  * @vma: user vma to map to
1681  * @pages: pointer to array of source kernel pages
1682  * @num: number of pages in page array
1683  * @offset: user's requested vm_pgoff
1684  *
1685  * This allows drivers to map range of kernel pages into a user vma.
1686  *
1687  * Return: 0 on success and error code otherwise.
1688  */
1689 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1690                                 unsigned long num, unsigned long offset)
1691 {
1692         unsigned long count = vma_pages(vma);
1693         unsigned long uaddr = vma->vm_start;
1694         int ret, i;
1695
1696         /* Fail if the user requested offset is beyond the end of the object */
1697         if (offset >= num)
1698                 return -ENXIO;
1699
1700         /* Fail if the user requested size exceeds available object size */
1701         if (count > num - offset)
1702                 return -ENXIO;
1703
1704         for (i = 0; i < count; i++) {
1705                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1706                 if (ret < 0)
1707                         return ret;
1708                 uaddr += PAGE_SIZE;
1709         }
1710
1711         return 0;
1712 }
1713
1714 /**
1715  * vm_map_pages - maps range of kernel pages starts with non zero offset
1716  * @vma: user vma to map to
1717  * @pages: pointer to array of source kernel pages
1718  * @num: number of pages in page array
1719  *
1720  * Maps an object consisting of @num pages, catering for the user's
1721  * requested vm_pgoff
1722  *
1723  * If we fail to insert any page into the vma, the function will return
1724  * immediately leaving any previously inserted pages present.  Callers
1725  * from the mmap handler may immediately return the error as their caller
1726  * will destroy the vma, removing any successfully inserted pages. Other
1727  * callers should make their own arrangements for calling unmap_region().
1728  *
1729  * Context: Process context. Called by mmap handlers.
1730  * Return: 0 on success and error code otherwise.
1731  */
1732 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1733                                 unsigned long num)
1734 {
1735         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1736 }
1737 EXPORT_SYMBOL(vm_map_pages);
1738
1739 /**
1740  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1741  * @vma: user vma to map to
1742  * @pages: pointer to array of source kernel pages
1743  * @num: number of pages in page array
1744  *
1745  * Similar to vm_map_pages(), except that it explicitly sets the offset
1746  * to 0. This function is intended for the drivers that did not consider
1747  * vm_pgoff.
1748  *
1749  * Context: Process context. Called by mmap handlers.
1750  * Return: 0 on success and error code otherwise.
1751  */
1752 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1753                                 unsigned long num)
1754 {
1755         return __vm_map_pages(vma, pages, num, 0);
1756 }
1757 EXPORT_SYMBOL(vm_map_pages_zero);
1758
1759 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1760                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1761 {
1762         struct mm_struct *mm = vma->vm_mm;
1763         pte_t *pte, entry;
1764         spinlock_t *ptl;
1765
1766         pte = get_locked_pte(mm, addr, &ptl);
1767         if (!pte)
1768                 return VM_FAULT_OOM;
1769         if (!pte_none(*pte)) {
1770                 if (mkwrite) {
1771                         /*
1772                          * For read faults on private mappings the PFN passed
1773                          * in may not match the PFN we have mapped if the
1774                          * mapped PFN is a writeable COW page.  In the mkwrite
1775                          * case we are creating a writable PTE for a shared
1776                          * mapping and we expect the PFNs to match. If they
1777                          * don't match, we are likely racing with block
1778                          * allocation and mapping invalidation so just skip the
1779                          * update.
1780                          */
1781                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1782                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1783                                 goto out_unlock;
1784                         }
1785                         entry = pte_mkyoung(*pte);
1786                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1787                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1788                                 update_mmu_cache(vma, addr, pte);
1789                 }
1790                 goto out_unlock;
1791         }
1792
1793         /* Ok, finally just insert the thing.. */
1794         if (pfn_t_devmap(pfn))
1795                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1796         else
1797                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1798
1799         if (mkwrite) {
1800                 entry = pte_mkyoung(entry);
1801                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1802         }
1803
1804         set_pte_at(mm, addr, pte, entry);
1805         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1806
1807 out_unlock:
1808         pte_unmap_unlock(pte, ptl);
1809         return VM_FAULT_NOPAGE;
1810 }
1811
1812 /**
1813  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1814  * @vma: user vma to map to
1815  * @addr: target user address of this page
1816  * @pfn: source kernel pfn
1817  * @pgprot: pgprot flags for the inserted page
1818  *
1819  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1820  * to override pgprot on a per-page basis.
1821  *
1822  * This only makes sense for IO mappings, and it makes no sense for
1823  * COW mappings.  In general, using multiple vmas is preferable;
1824  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1825  * impractical.
1826  *
1827  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1828  * a value of @pgprot different from that of @vma->vm_page_prot.
1829  *
1830  * Context: Process context.  May allocate using %GFP_KERNEL.
1831  * Return: vm_fault_t value.
1832  */
1833 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1834                         unsigned long pfn, pgprot_t pgprot)
1835 {
1836         /*
1837          * Technically, architectures with pte_special can avoid all these
1838          * restrictions (same for remap_pfn_range).  However we would like
1839          * consistency in testing and feature parity among all, so we should
1840          * try to keep these invariants in place for everybody.
1841          */
1842         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1843         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1844                                                 (VM_PFNMAP|VM_MIXEDMAP));
1845         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1846         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1847
1848         if (addr < vma->vm_start || addr >= vma->vm_end)
1849                 return VM_FAULT_SIGBUS;
1850
1851         if (!pfn_modify_allowed(pfn, pgprot))
1852                 return VM_FAULT_SIGBUS;
1853
1854         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1855
1856         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1857                         false);
1858 }
1859 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1860
1861 /**
1862  * vmf_insert_pfn - insert single pfn into user vma
1863  * @vma: user vma to map to
1864  * @addr: target user address of this page
1865  * @pfn: source kernel pfn
1866  *
1867  * Similar to vm_insert_page, this allows drivers to insert individual pages
1868  * they've allocated into a user vma. Same comments apply.
1869  *
1870  * This function should only be called from a vm_ops->fault handler, and
1871  * in that case the handler should return the result of this function.
1872  *
1873  * vma cannot be a COW mapping.
1874  *
1875  * As this is called only for pages that do not currently exist, we
1876  * do not need to flush old virtual caches or the TLB.
1877  *
1878  * Context: Process context.  May allocate using %GFP_KERNEL.
1879  * Return: vm_fault_t value.
1880  */
1881 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1882                         unsigned long pfn)
1883 {
1884         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1885 }
1886 EXPORT_SYMBOL(vmf_insert_pfn);
1887
1888 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1889 {
1890         /* these checks mirror the abort conditions in vm_normal_page */
1891         if (vma->vm_flags & VM_MIXEDMAP)
1892                 return true;
1893         if (pfn_t_devmap(pfn))
1894                 return true;
1895         if (pfn_t_special(pfn))
1896                 return true;
1897         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1898                 return true;
1899         return false;
1900 }
1901
1902 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1903                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1904                 bool mkwrite)
1905 {
1906         int err;
1907
1908         BUG_ON(!vm_mixed_ok(vma, pfn));
1909
1910         if (addr < vma->vm_start || addr >= vma->vm_end)
1911                 return VM_FAULT_SIGBUS;
1912
1913         track_pfn_insert(vma, &pgprot, pfn);
1914
1915         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1916                 return VM_FAULT_SIGBUS;
1917
1918         /*
1919          * If we don't have pte special, then we have to use the pfn_valid()
1920          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1921          * refcount the page if pfn_valid is true (hence insert_page rather
1922          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1923          * without pte special, it would there be refcounted as a normal page.
1924          */
1925         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1926             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1927                 struct page *page;
1928
1929                 /*
1930                  * At this point we are committed to insert_page()
1931                  * regardless of whether the caller specified flags that
1932                  * result in pfn_t_has_page() == false.
1933                  */
1934                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1935                 err = insert_page(vma, addr, page, pgprot);
1936         } else {
1937                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1938         }
1939
1940         if (err == -ENOMEM)
1941                 return VM_FAULT_OOM;
1942         if (err < 0 && err != -EBUSY)
1943                 return VM_FAULT_SIGBUS;
1944
1945         return VM_FAULT_NOPAGE;
1946 }
1947
1948 /**
1949  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1950  * @vma: user vma to map to
1951  * @addr: target user address of this page
1952  * @pfn: source kernel pfn
1953  * @pgprot: pgprot flags for the inserted page
1954  *
1955  * This is exactly like vmf_insert_mixed(), except that it allows drivers
1956  * to override pgprot on a per-page basis.
1957  *
1958  * Typically this function should be used by drivers to set caching- and
1959  * encryption bits different than those of @vma->vm_page_prot, because
1960  * the caching- or encryption mode may not be known at mmap() time.
1961  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1962  * to set caching and encryption bits for those vmas (except for COW pages).
1963  * This is ensured by core vm only modifying these page table entries using
1964  * functions that don't touch caching- or encryption bits, using pte_modify()
1965  * if needed. (See for example mprotect()).
1966  * Also when new page-table entries are created, this is only done using the
1967  * fault() callback, and never using the value of vma->vm_page_prot,
1968  * except for page-table entries that point to anonymous pages as the result
1969  * of COW.
1970  *
1971  * Context: Process context.  May allocate using %GFP_KERNEL.
1972  * Return: vm_fault_t value.
1973  */
1974 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1975                                  pfn_t pfn, pgprot_t pgprot)
1976 {
1977         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1978 }
1979 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1980
1981 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1982                 pfn_t pfn)
1983 {
1984         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1985 }
1986 EXPORT_SYMBOL(vmf_insert_mixed);
1987
1988 /*
1989  *  If the insertion of PTE failed because someone else already added a
1990  *  different entry in the mean time, we treat that as success as we assume
1991  *  the same entry was actually inserted.
1992  */
1993 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1994                 unsigned long addr, pfn_t pfn)
1995 {
1996         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1997 }
1998 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1999
2000 /*
2001  * maps a range of physical memory into the requested pages. the old
2002  * mappings are removed. any references to nonexistent pages results
2003  * in null mappings (currently treated as "copy-on-access")
2004  */
2005 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2006                         unsigned long addr, unsigned long end,
2007                         unsigned long pfn, pgprot_t prot)
2008 {
2009         pte_t *pte;
2010         spinlock_t *ptl;
2011         int err = 0;
2012
2013         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2014         if (!pte)
2015                 return -ENOMEM;
2016         arch_enter_lazy_mmu_mode();
2017         do {
2018                 BUG_ON(!pte_none(*pte));
2019                 if (!pfn_modify_allowed(pfn, prot)) {
2020                         err = -EACCES;
2021                         break;
2022                 }
2023                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2024                 pfn++;
2025         } while (pte++, addr += PAGE_SIZE, addr != end);
2026         arch_leave_lazy_mmu_mode();
2027         pte_unmap_unlock(pte - 1, ptl);
2028         return err;
2029 }
2030
2031 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2032                         unsigned long addr, unsigned long end,
2033                         unsigned long pfn, pgprot_t prot)
2034 {
2035         pmd_t *pmd;
2036         unsigned long next;
2037         int err;
2038
2039         pfn -= addr >> PAGE_SHIFT;
2040         pmd = pmd_alloc(mm, pud, addr);
2041         if (!pmd)
2042                 return -ENOMEM;
2043         VM_BUG_ON(pmd_trans_huge(*pmd));
2044         do {
2045                 next = pmd_addr_end(addr, end);
2046                 err = remap_pte_range(mm, pmd, addr, next,
2047                                 pfn + (addr >> PAGE_SHIFT), prot);
2048                 if (err)
2049                         return err;
2050         } while (pmd++, addr = next, addr != end);
2051         return 0;
2052 }
2053
2054 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2055                         unsigned long addr, unsigned long end,
2056                         unsigned long pfn, pgprot_t prot)
2057 {
2058         pud_t *pud;
2059         unsigned long next;
2060         int err;
2061
2062         pfn -= addr >> PAGE_SHIFT;
2063         pud = pud_alloc(mm, p4d, addr);
2064         if (!pud)
2065                 return -ENOMEM;
2066         do {
2067                 next = pud_addr_end(addr, end);
2068                 err = remap_pmd_range(mm, pud, addr, next,
2069                                 pfn + (addr >> PAGE_SHIFT), prot);
2070                 if (err)
2071                         return err;
2072         } while (pud++, addr = next, addr != end);
2073         return 0;
2074 }
2075
2076 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2077                         unsigned long addr, unsigned long end,
2078                         unsigned long pfn, pgprot_t prot)
2079 {
2080         p4d_t *p4d;
2081         unsigned long next;
2082         int err;
2083
2084         pfn -= addr >> PAGE_SHIFT;
2085         p4d = p4d_alloc(mm, pgd, addr);
2086         if (!p4d)
2087                 return -ENOMEM;
2088         do {
2089                 next = p4d_addr_end(addr, end);
2090                 err = remap_pud_range(mm, p4d, addr, next,
2091                                 pfn + (addr >> PAGE_SHIFT), prot);
2092                 if (err)
2093                         return err;
2094         } while (p4d++, addr = next, addr != end);
2095         return 0;
2096 }
2097
2098 /**
2099  * remap_pfn_range - remap kernel memory to userspace
2100  * @vma: user vma to map to
2101  * @addr: target page aligned user address to start at
2102  * @pfn: page frame number of kernel physical memory address
2103  * @size: size of mapping area
2104  * @prot: page protection flags for this mapping
2105  *
2106  * Note: this is only safe if the mm semaphore is held when called.
2107  *
2108  * Return: %0 on success, negative error code otherwise.
2109  */
2110 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2111                     unsigned long pfn, unsigned long size, pgprot_t prot)
2112 {
2113         pgd_t *pgd;
2114         unsigned long next;
2115         unsigned long end = addr + PAGE_ALIGN(size);
2116         struct mm_struct *mm = vma->vm_mm;
2117         unsigned long remap_pfn = pfn;
2118         int err;
2119
2120         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2121                 return -EINVAL;
2122
2123         /*
2124          * Physically remapped pages are special. Tell the
2125          * rest of the world about it:
2126          *   VM_IO tells people not to look at these pages
2127          *      (accesses can have side effects).
2128          *   VM_PFNMAP tells the core MM that the base pages are just
2129          *      raw PFN mappings, and do not have a "struct page" associated
2130          *      with them.
2131          *   VM_DONTEXPAND
2132          *      Disable vma merging and expanding with mremap().
2133          *   VM_DONTDUMP
2134          *      Omit vma from core dump, even when VM_IO turned off.
2135          *
2136          * There's a horrible special case to handle copy-on-write
2137          * behaviour that some programs depend on. We mark the "original"
2138          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2139          * See vm_normal_page() for details.
2140          */
2141         if (is_cow_mapping(vma->vm_flags)) {
2142                 if (addr != vma->vm_start || end != vma->vm_end)
2143                         return -EINVAL;
2144                 vma->vm_pgoff = pfn;
2145         }
2146
2147         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2148         if (err)
2149                 return -EINVAL;
2150
2151         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2152
2153         BUG_ON(addr >= end);
2154         pfn -= addr >> PAGE_SHIFT;
2155         pgd = pgd_offset(mm, addr);
2156         flush_cache_range(vma, addr, end);
2157         do {
2158                 next = pgd_addr_end(addr, end);
2159                 err = remap_p4d_range(mm, pgd, addr, next,
2160                                 pfn + (addr >> PAGE_SHIFT), prot);
2161                 if (err)
2162                         break;
2163         } while (pgd++, addr = next, addr != end);
2164
2165         if (err)
2166                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2167
2168         return err;
2169 }
2170 EXPORT_SYMBOL(remap_pfn_range);
2171
2172 /**
2173  * vm_iomap_memory - remap memory to userspace
2174  * @vma: user vma to map to
2175  * @start: start of the physical memory to be mapped
2176  * @len: size of area
2177  *
2178  * This is a simplified io_remap_pfn_range() for common driver use. The
2179  * driver just needs to give us the physical memory range to be mapped,
2180  * we'll figure out the rest from the vma information.
2181  *
2182  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2183  * whatever write-combining details or similar.
2184  *
2185  * Return: %0 on success, negative error code otherwise.
2186  */
2187 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2188 {
2189         unsigned long vm_len, pfn, pages;
2190
2191         /* Check that the physical memory area passed in looks valid */
2192         if (start + len < start)
2193                 return -EINVAL;
2194         /*
2195          * You *really* shouldn't map things that aren't page-aligned,
2196          * but we've historically allowed it because IO memory might
2197          * just have smaller alignment.
2198          */
2199         len += start & ~PAGE_MASK;
2200         pfn = start >> PAGE_SHIFT;
2201         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2202         if (pfn + pages < pfn)
2203                 return -EINVAL;
2204
2205         /* We start the mapping 'vm_pgoff' pages into the area */
2206         if (vma->vm_pgoff > pages)
2207                 return -EINVAL;
2208         pfn += vma->vm_pgoff;
2209         pages -= vma->vm_pgoff;
2210
2211         /* Can we fit all of the mapping? */
2212         vm_len = vma->vm_end - vma->vm_start;
2213         if (vm_len >> PAGE_SHIFT > pages)
2214                 return -EINVAL;
2215
2216         /* Ok, let it rip */
2217         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2218 }
2219 EXPORT_SYMBOL(vm_iomap_memory);
2220
2221 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2222                                      unsigned long addr, unsigned long end,
2223                                      pte_fn_t fn, void *data, bool create,
2224                                      pgtbl_mod_mask *mask)
2225 {
2226         pte_t *pte;
2227         int err = 0;
2228         spinlock_t *ptl;
2229
2230         if (create) {
2231                 pte = (mm == &init_mm) ?
2232                         pte_alloc_kernel_track(pmd, addr, mask) :
2233                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2234                 if (!pte)
2235                         return -ENOMEM;
2236         } else {
2237                 pte = (mm == &init_mm) ?
2238                         pte_offset_kernel(pmd, addr) :
2239                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2240         }
2241
2242         BUG_ON(pmd_huge(*pmd));
2243
2244         arch_enter_lazy_mmu_mode();
2245
2246         do {
2247                 if (create || !pte_none(*pte)) {
2248                         err = fn(pte++, addr, data);
2249                         if (err)
2250                                 break;
2251                 }
2252         } while (addr += PAGE_SIZE, addr != end);
2253         *mask |= PGTBL_PTE_MODIFIED;
2254
2255         arch_leave_lazy_mmu_mode();
2256
2257         if (mm != &init_mm)
2258                 pte_unmap_unlock(pte-1, ptl);
2259         return err;
2260 }
2261
2262 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2263                                      unsigned long addr, unsigned long end,
2264                                      pte_fn_t fn, void *data, bool create,
2265                                      pgtbl_mod_mask *mask)
2266 {
2267         pmd_t *pmd;
2268         unsigned long next;
2269         int err = 0;
2270
2271         BUG_ON(pud_huge(*pud));
2272
2273         if (create) {
2274                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2275                 if (!pmd)
2276                         return -ENOMEM;
2277         } else {
2278                 pmd = pmd_offset(pud, addr);
2279         }
2280         do {
2281                 next = pmd_addr_end(addr, end);
2282                 if (create || !pmd_none_or_clear_bad(pmd)) {
2283                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2284                                                  create, mask);
2285                         if (err)
2286                                 break;
2287                 }
2288         } while (pmd++, addr = next, addr != end);
2289         return err;
2290 }
2291
2292 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2293                                      unsigned long addr, unsigned long end,
2294                                      pte_fn_t fn, void *data, bool create,
2295                                      pgtbl_mod_mask *mask)
2296 {
2297         pud_t *pud;
2298         unsigned long next;
2299         int err = 0;
2300
2301         if (create) {
2302                 pud = pud_alloc_track(mm, p4d, addr, mask);
2303                 if (!pud)
2304                         return -ENOMEM;
2305         } else {
2306                 pud = pud_offset(p4d, addr);
2307         }
2308         do {
2309                 next = pud_addr_end(addr, end);
2310                 if (create || !pud_none_or_clear_bad(pud)) {
2311                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2312                                                  create, mask);
2313                         if (err)
2314                                 break;
2315                 }
2316         } while (pud++, addr = next, addr != end);
2317         return err;
2318 }
2319
2320 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2321                                      unsigned long addr, unsigned long end,
2322                                      pte_fn_t fn, void *data, bool create,
2323                                      pgtbl_mod_mask *mask)
2324 {
2325         p4d_t *p4d;
2326         unsigned long next;
2327         int err = 0;
2328
2329         if (create) {
2330                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2331                 if (!p4d)
2332                         return -ENOMEM;
2333         } else {
2334                 p4d = p4d_offset(pgd, addr);
2335         }
2336         do {
2337                 next = p4d_addr_end(addr, end);
2338                 if (create || !p4d_none_or_clear_bad(p4d)) {
2339                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2340                                                  create, mask);
2341                         if (err)
2342                                 break;
2343                 }
2344         } while (p4d++, addr = next, addr != end);
2345         return err;
2346 }
2347
2348 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2349                                  unsigned long size, pte_fn_t fn,
2350                                  void *data, bool create)
2351 {
2352         pgd_t *pgd;
2353         unsigned long start = addr, next;
2354         unsigned long end = addr + size;
2355         pgtbl_mod_mask mask = 0;
2356         int err = 0;
2357
2358         if (WARN_ON(addr >= end))
2359                 return -EINVAL;
2360
2361         pgd = pgd_offset(mm, addr);
2362         do {
2363                 next = pgd_addr_end(addr, end);
2364                 if (!create && pgd_none_or_clear_bad(pgd))
2365                         continue;
2366                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2367                 if (err)
2368                         break;
2369         } while (pgd++, addr = next, addr != end);
2370
2371         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2372                 arch_sync_kernel_mappings(start, start + size);
2373
2374         return err;
2375 }
2376
2377 /*
2378  * Scan a region of virtual memory, filling in page tables as necessary
2379  * and calling a provided function on each leaf page table.
2380  */
2381 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2382                         unsigned long size, pte_fn_t fn, void *data)
2383 {
2384         return __apply_to_page_range(mm, addr, size, fn, data, true);
2385 }
2386 EXPORT_SYMBOL_GPL(apply_to_page_range);
2387
2388 /*
2389  * Scan a region of virtual memory, calling a provided function on
2390  * each leaf page table where it exists.
2391  *
2392  * Unlike apply_to_page_range, this does _not_ fill in page tables
2393  * where they are absent.
2394  */
2395 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2396                                  unsigned long size, pte_fn_t fn, void *data)
2397 {
2398         return __apply_to_page_range(mm, addr, size, fn, data, false);
2399 }
2400 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2401
2402 /*
2403  * handle_pte_fault chooses page fault handler according to an entry which was
2404  * read non-atomically.  Before making any commitment, on those architectures
2405  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2406  * parts, do_swap_page must check under lock before unmapping the pte and
2407  * proceeding (but do_wp_page is only called after already making such a check;
2408  * and do_anonymous_page can safely check later on).
2409  */
2410 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2411                                 pte_t *page_table, pte_t orig_pte)
2412 {
2413         int same = 1;
2414 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2415         if (sizeof(pte_t) > sizeof(unsigned long)) {
2416                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2417                 spin_lock(ptl);
2418                 same = pte_same(*page_table, orig_pte);
2419                 spin_unlock(ptl);
2420         }
2421 #endif
2422         pte_unmap(page_table);
2423         return same;
2424 }
2425
2426 static inline bool cow_user_page(struct page *dst, struct page *src,
2427                                  struct vm_fault *vmf)
2428 {
2429         bool ret;
2430         void *kaddr;
2431         void __user *uaddr;
2432         bool locked = false;
2433         struct vm_area_struct *vma = vmf->vma;
2434         struct mm_struct *mm = vma->vm_mm;
2435         unsigned long addr = vmf->address;
2436
2437         if (likely(src)) {
2438                 copy_user_highpage(dst, src, addr, vma);
2439                 return true;
2440         }
2441
2442         /*
2443          * If the source page was a PFN mapping, we don't have
2444          * a "struct page" for it. We do a best-effort copy by
2445          * just copying from the original user address. If that
2446          * fails, we just zero-fill it. Live with it.
2447          */
2448         kaddr = kmap_atomic(dst);
2449         uaddr = (void __user *)(addr & PAGE_MASK);
2450
2451         /*
2452          * On architectures with software "accessed" bits, we would
2453          * take a double page fault, so mark it accessed here.
2454          */
2455         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2456                 pte_t entry;
2457
2458                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2459                 locked = true;
2460                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2461                         /*
2462                          * Other thread has already handled the fault
2463                          * and update local tlb only
2464                          */
2465                         update_mmu_tlb(vma, addr, vmf->pte);
2466                         ret = false;
2467                         goto pte_unlock;
2468                 }
2469
2470                 entry = pte_mkyoung(vmf->orig_pte);
2471                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2472                         update_mmu_cache(vma, addr, vmf->pte);
2473         }
2474
2475         /*
2476          * This really shouldn't fail, because the page is there
2477          * in the page tables. But it might just be unreadable,
2478          * in which case we just give up and fill the result with
2479          * zeroes.
2480          */
2481         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2482                 if (locked)
2483                         goto warn;
2484
2485                 /* Re-validate under PTL if the page is still mapped */
2486                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2487                 locked = true;
2488                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2489                         /* The PTE changed under us, update local tlb */
2490                         update_mmu_tlb(vma, addr, vmf->pte);
2491                         ret = false;
2492                         goto pte_unlock;
2493                 }
2494
2495                 /*
2496                  * The same page can be mapped back since last copy attempt.
2497                  * Try to copy again under PTL.
2498                  */
2499                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2500                         /*
2501                          * Give a warn in case there can be some obscure
2502                          * use-case
2503                          */
2504 warn:
2505                         WARN_ON_ONCE(1);
2506                         clear_page(kaddr);
2507                 }
2508         }
2509
2510         ret = true;
2511
2512 pte_unlock:
2513         if (locked)
2514                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2515         kunmap_atomic(kaddr);
2516         flush_dcache_page(dst);
2517
2518         return ret;
2519 }
2520
2521 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2522 {
2523         struct file *vm_file = vma->vm_file;
2524
2525         if (vm_file)
2526                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2527
2528         /*
2529          * Special mappings (e.g. VDSO) do not have any file so fake
2530          * a default GFP_KERNEL for them.
2531          */
2532         return GFP_KERNEL;
2533 }
2534
2535 /*
2536  * Notify the address space that the page is about to become writable so that
2537  * it can prohibit this or wait for the page to get into an appropriate state.
2538  *
2539  * We do this without the lock held, so that it can sleep if it needs to.
2540  */
2541 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2542 {
2543         vm_fault_t ret;
2544         struct page *page = vmf->page;
2545         unsigned int old_flags = vmf->flags;
2546
2547         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2548
2549         if (vmf->vma->vm_file &&
2550             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2551                 return VM_FAULT_SIGBUS;
2552
2553         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2554         /* Restore original flags so that caller is not surprised */
2555         vmf->flags = old_flags;
2556         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2557                 return ret;
2558         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2559                 lock_page(page);
2560                 if (!page->mapping) {
2561                         unlock_page(page);
2562                         return 0; /* retry */
2563                 }
2564                 ret |= VM_FAULT_LOCKED;
2565         } else
2566                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2567         return ret;
2568 }
2569
2570 /*
2571  * Handle dirtying of a page in shared file mapping on a write fault.
2572  *
2573  * The function expects the page to be locked and unlocks it.
2574  */
2575 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2576 {
2577         struct vm_area_struct *vma = vmf->vma;
2578         struct address_space *mapping;
2579         struct page *page = vmf->page;
2580         bool dirtied;
2581         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2582
2583         dirtied = set_page_dirty(page);
2584         VM_BUG_ON_PAGE(PageAnon(page), page);
2585         /*
2586          * Take a local copy of the address_space - page.mapping may be zeroed
2587          * by truncate after unlock_page().   The address_space itself remains
2588          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2589          * release semantics to prevent the compiler from undoing this copying.
2590          */
2591         mapping = page_rmapping(page);
2592         unlock_page(page);
2593
2594         if (!page_mkwrite)
2595                 file_update_time(vma->vm_file);
2596
2597         /*
2598          * Throttle page dirtying rate down to writeback speed.
2599          *
2600          * mapping may be NULL here because some device drivers do not
2601          * set page.mapping but still dirty their pages
2602          *
2603          * Drop the mmap_lock before waiting on IO, if we can. The file
2604          * is pinning the mapping, as per above.
2605          */
2606         if ((dirtied || page_mkwrite) && mapping) {
2607                 struct file *fpin;
2608
2609                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2610                 balance_dirty_pages_ratelimited(mapping);
2611                 if (fpin) {
2612                         fput(fpin);
2613                         return VM_FAULT_RETRY;
2614                 }
2615         }
2616
2617         return 0;
2618 }
2619
2620 /*
2621  * Handle write page faults for pages that can be reused in the current vma
2622  *
2623  * This can happen either due to the mapping being with the VM_SHARED flag,
2624  * or due to us being the last reference standing to the page. In either
2625  * case, all we need to do here is to mark the page as writable and update
2626  * any related book-keeping.
2627  */
2628 static inline void wp_page_reuse(struct vm_fault *vmf)
2629         __releases(vmf->ptl)
2630 {
2631         struct vm_area_struct *vma = vmf->vma;
2632         struct page *page = vmf->page;
2633         pte_t entry;
2634         /*
2635          * Clear the pages cpupid information as the existing
2636          * information potentially belongs to a now completely
2637          * unrelated process.
2638          */
2639         if (page)
2640                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2641
2642         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2643         entry = pte_mkyoung(vmf->orig_pte);
2644         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2645         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2646                 update_mmu_cache(vma, vmf->address, vmf->pte);
2647         pte_unmap_unlock(vmf->pte, vmf->ptl);
2648         count_vm_event(PGREUSE);
2649 }
2650
2651 /*
2652  * Handle the case of a page which we actually need to copy to a new page.
2653  *
2654  * Called with mmap_lock locked and the old page referenced, but
2655  * without the ptl held.
2656  *
2657  * High level logic flow:
2658  *
2659  * - Allocate a page, copy the content of the old page to the new one.
2660  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2661  * - Take the PTL. If the pte changed, bail out and release the allocated page
2662  * - If the pte is still the way we remember it, update the page table and all
2663  *   relevant references. This includes dropping the reference the page-table
2664  *   held to the old page, as well as updating the rmap.
2665  * - In any case, unlock the PTL and drop the reference we took to the old page.
2666  */
2667 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2668 {
2669         struct vm_area_struct *vma = vmf->vma;
2670         struct mm_struct *mm = vma->vm_mm;
2671         struct page *old_page = vmf->page;
2672         struct page *new_page = NULL;
2673         pte_t entry;
2674         int page_copied = 0;
2675         struct mmu_notifier_range range;
2676
2677         if (unlikely(anon_vma_prepare(vma)))
2678                 goto oom;
2679
2680         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2681                 new_page = alloc_zeroed_user_highpage_movable(vma,
2682                                                               vmf->address);
2683                 if (!new_page)
2684                         goto oom;
2685         } else {
2686                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2687                                 vmf->address);
2688                 if (!new_page)
2689                         goto oom;
2690
2691                 if (!cow_user_page(new_page, old_page, vmf)) {
2692                         /*
2693                          * COW failed, if the fault was solved by other,
2694                          * it's fine. If not, userspace would re-fault on
2695                          * the same address and we will handle the fault
2696                          * from the second attempt.
2697                          */
2698                         put_page(new_page);
2699                         if (old_page)
2700                                 put_page(old_page);
2701                         return 0;
2702                 }
2703         }
2704
2705         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2706                 goto oom_free_new;
2707         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2708
2709         __SetPageUptodate(new_page);
2710
2711         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2712                                 vmf->address & PAGE_MASK,
2713                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2714         mmu_notifier_invalidate_range_start(&range);
2715
2716         /*
2717          * Re-check the pte - we dropped the lock
2718          */
2719         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2720         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2721                 if (old_page) {
2722                         if (!PageAnon(old_page)) {
2723                                 dec_mm_counter_fast(mm,
2724                                                 mm_counter_file(old_page));
2725                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2726                         }
2727                 } else {
2728                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2729                 }
2730                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2731                 entry = mk_pte(new_page, vma->vm_page_prot);
2732                 entry = pte_sw_mkyoung(entry);
2733                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2734                 /*
2735                  * Clear the pte entry and flush it first, before updating the
2736                  * pte with the new entry. This will avoid a race condition
2737                  * seen in the presence of one thread doing SMC and another
2738                  * thread doing COW.
2739                  */
2740                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2741                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2742                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2743                 /*
2744                  * We call the notify macro here because, when using secondary
2745                  * mmu page tables (such as kvm shadow page tables), we want the
2746                  * new page to be mapped directly into the secondary page table.
2747                  */
2748                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2749                 update_mmu_cache(vma, vmf->address, vmf->pte);
2750                 if (old_page) {
2751                         /*
2752                          * Only after switching the pte to the new page may
2753                          * we remove the mapcount here. Otherwise another
2754                          * process may come and find the rmap count decremented
2755                          * before the pte is switched to the new page, and
2756                          * "reuse" the old page writing into it while our pte
2757                          * here still points into it and can be read by other
2758                          * threads.
2759                          *
2760                          * The critical issue is to order this
2761                          * page_remove_rmap with the ptp_clear_flush above.
2762                          * Those stores are ordered by (if nothing else,)
2763                          * the barrier present in the atomic_add_negative
2764                          * in page_remove_rmap.
2765                          *
2766                          * Then the TLB flush in ptep_clear_flush ensures that
2767                          * no process can access the old page before the
2768                          * decremented mapcount is visible. And the old page
2769                          * cannot be reused until after the decremented
2770                          * mapcount is visible. So transitively, TLBs to
2771                          * old page will be flushed before it can be reused.
2772                          */
2773                         page_remove_rmap(old_page, false);
2774                 }
2775
2776                 /* Free the old page.. */
2777                 new_page = old_page;
2778                 page_copied = 1;
2779         } else {
2780                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2781         }
2782
2783         if (new_page)
2784                 put_page(new_page);
2785
2786         pte_unmap_unlock(vmf->pte, vmf->ptl);
2787         /*
2788          * No need to double call mmu_notifier->invalidate_range() callback as
2789          * the above ptep_clear_flush_notify() did already call it.
2790          */
2791         mmu_notifier_invalidate_range_only_end(&range);
2792         if (old_page) {
2793                 /*
2794                  * Don't let another task, with possibly unlocked vma,
2795                  * keep the mlocked page.
2796                  */
2797                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2798                         lock_page(old_page);    /* LRU manipulation */
2799                         if (PageMlocked(old_page))
2800                                 munlock_vma_page(old_page);
2801                         unlock_page(old_page);
2802                 }
2803                 put_page(old_page);
2804         }
2805         return page_copied ? VM_FAULT_WRITE : 0;
2806 oom_free_new:
2807         put_page(new_page);
2808 oom:
2809         if (old_page)
2810                 put_page(old_page);
2811         return VM_FAULT_OOM;
2812 }
2813
2814 /**
2815  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2816  *                        writeable once the page is prepared
2817  *
2818  * @vmf: structure describing the fault
2819  *
2820  * This function handles all that is needed to finish a write page fault in a
2821  * shared mapping due to PTE being read-only once the mapped page is prepared.
2822  * It handles locking of PTE and modifying it.
2823  *
2824  * The function expects the page to be locked or other protection against
2825  * concurrent faults / writeback (such as DAX radix tree locks).
2826  *
2827  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2828  * we acquired PTE lock.
2829  */
2830 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2831 {
2832         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2833         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2834                                        &vmf->ptl);
2835         /*
2836          * We might have raced with another page fault while we released the
2837          * pte_offset_map_lock.
2838          */
2839         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2840                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2841                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2842                 return VM_FAULT_NOPAGE;
2843         }
2844         wp_page_reuse(vmf);
2845         return 0;
2846 }
2847
2848 /*
2849  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2850  * mapping
2851  */
2852 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2853 {
2854         struct vm_area_struct *vma = vmf->vma;
2855
2856         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2857                 vm_fault_t ret;
2858
2859                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2860                 vmf->flags |= FAULT_FLAG_MKWRITE;
2861                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2862                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2863                         return ret;
2864                 return finish_mkwrite_fault(vmf);
2865         }
2866         wp_page_reuse(vmf);
2867         return VM_FAULT_WRITE;
2868 }
2869
2870 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2871         __releases(vmf->ptl)
2872 {
2873         struct vm_area_struct *vma = vmf->vma;
2874         vm_fault_t ret = VM_FAULT_WRITE;
2875
2876         get_page(vmf->page);
2877
2878         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2879                 vm_fault_t tmp;
2880
2881                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2882                 tmp = do_page_mkwrite(vmf);
2883                 if (unlikely(!tmp || (tmp &
2884                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2885                         put_page(vmf->page);
2886                         return tmp;
2887                 }
2888                 tmp = finish_mkwrite_fault(vmf);
2889                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2890                         unlock_page(vmf->page);
2891                         put_page(vmf->page);
2892                         return tmp;
2893                 }
2894         } else {
2895                 wp_page_reuse(vmf);
2896                 lock_page(vmf->page);
2897         }
2898         ret |= fault_dirty_shared_page(vmf);
2899         put_page(vmf->page);
2900
2901         return ret;
2902 }
2903
2904 /*
2905  * This routine handles present pages, when users try to write
2906  * to a shared page. It is done by copying the page to a new address
2907  * and decrementing the shared-page counter for the old page.
2908  *
2909  * Note that this routine assumes that the protection checks have been
2910  * done by the caller (the low-level page fault routine in most cases).
2911  * Thus we can safely just mark it writable once we've done any necessary
2912  * COW.
2913  *
2914  * We also mark the page dirty at this point even though the page will
2915  * change only once the write actually happens. This avoids a few races,
2916  * and potentially makes it more efficient.
2917  *
2918  * We enter with non-exclusive mmap_lock (to exclude vma changes,
2919  * but allow concurrent faults), with pte both mapped and locked.
2920  * We return with mmap_lock still held, but pte unmapped and unlocked.
2921  */
2922 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2923         __releases(vmf->ptl)
2924 {
2925         struct vm_area_struct *vma = vmf->vma;
2926
2927         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2928                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2929                 return handle_userfault(vmf, VM_UFFD_WP);
2930         }
2931
2932         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2933         if (!vmf->page) {
2934                 /*
2935                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2936                  * VM_PFNMAP VMA.
2937                  *
2938                  * We should not cow pages in a shared writeable mapping.
2939                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2940                  */
2941                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2942                                      (VM_WRITE|VM_SHARED))
2943                         return wp_pfn_shared(vmf);
2944
2945                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2946                 return wp_page_copy(vmf);
2947         }
2948
2949         /*
2950          * Take out anonymous pages first, anonymous shared vmas are
2951          * not dirty accountable.
2952          */
2953         if (PageAnon(vmf->page)) {
2954                 struct page *page = vmf->page;
2955
2956                 /* PageKsm() doesn't necessarily raise the page refcount */
2957                 if (PageKsm(page) || page_count(page) != 1)
2958                         goto copy;
2959                 if (!trylock_page(page))
2960                         goto copy;
2961                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
2962                         unlock_page(page);
2963                         goto copy;
2964                 }
2965                 /*
2966                  * Ok, we've got the only map reference, and the only
2967                  * page count reference, and the page is locked,
2968                  * it's dark out, and we're wearing sunglasses. Hit it.
2969                  */
2970                 wp_page_reuse(vmf);
2971                 unlock_page(page);
2972                 return VM_FAULT_WRITE;
2973         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2974                                         (VM_WRITE|VM_SHARED))) {
2975                 return wp_page_shared(vmf);
2976         }
2977 copy:
2978         /*
2979          * Ok, we need to copy. Oh, well..
2980          */
2981         get_page(vmf->page);
2982
2983         pte_unmap_unlock(vmf->pte, vmf->ptl);
2984         return wp_page_copy(vmf);
2985 }
2986
2987 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2988                 unsigned long start_addr, unsigned long end_addr,
2989                 struct zap_details *details)
2990 {
2991         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2992 }
2993
2994 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2995                                             struct zap_details *details)
2996 {
2997         struct vm_area_struct *vma;
2998         pgoff_t vba, vea, zba, zea;
2999
3000         vma_interval_tree_foreach(vma, root,
3001                         details->first_index, details->last_index) {
3002
3003                 vba = vma->vm_pgoff;
3004                 vea = vba + vma_pages(vma) - 1;
3005                 zba = details->first_index;
3006                 if (zba < vba)
3007                         zba = vba;
3008                 zea = details->last_index;
3009                 if (zea > vea)
3010                         zea = vea;
3011
3012                 unmap_mapping_range_vma(vma,
3013                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3014                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3015                                 details);
3016         }
3017 }
3018
3019 /**
3020  * unmap_mapping_pages() - Unmap pages from processes.
3021  * @mapping: The address space containing pages to be unmapped.
3022  * @start: Index of first page to be unmapped.
3023  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3024  * @even_cows: Whether to unmap even private COWed pages.
3025  *
3026  * Unmap the pages in this address space from any userspace process which
3027  * has them mmaped.  Generally, you want to remove COWed pages as well when
3028  * a file is being truncated, but not when invalidating pages from the page
3029  * cache.
3030  */
3031 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3032                 pgoff_t nr, bool even_cows)
3033 {
3034         struct zap_details details = { };
3035
3036         details.check_mapping = even_cows ? NULL : mapping;
3037         details.first_index = start;
3038         details.last_index = start + nr - 1;
3039         if (details.last_index < details.first_index)
3040                 details.last_index = ULONG_MAX;
3041
3042         i_mmap_lock_write(mapping);
3043         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3044                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3045         i_mmap_unlock_write(mapping);
3046 }
3047
3048 /**
3049  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3050  * address_space corresponding to the specified byte range in the underlying
3051  * file.
3052  *
3053  * @mapping: the address space containing mmaps to be unmapped.
3054  * @holebegin: byte in first page to unmap, relative to the start of
3055  * the underlying file.  This will be rounded down to a PAGE_SIZE
3056  * boundary.  Note that this is different from truncate_pagecache(), which
3057  * must keep the partial page.  In contrast, we must get rid of
3058  * partial pages.
3059  * @holelen: size of prospective hole in bytes.  This will be rounded
3060  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3061  * end of the file.
3062  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3063  * but 0 when invalidating pagecache, don't throw away private data.
3064  */
3065 void unmap_mapping_range(struct address_space *mapping,
3066                 loff_t const holebegin, loff_t const holelen, int even_cows)
3067 {
3068         pgoff_t hba = holebegin >> PAGE_SHIFT;
3069         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3070
3071         /* Check for overflow. */
3072         if (sizeof(holelen) > sizeof(hlen)) {
3073                 long long holeend =
3074                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3075                 if (holeend & ~(long long)ULONG_MAX)
3076                         hlen = ULONG_MAX - hba + 1;
3077         }
3078
3079         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3080 }
3081 EXPORT_SYMBOL(unmap_mapping_range);
3082
3083 /*
3084  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3085  * but allow concurrent faults), and pte mapped but not yet locked.
3086  * We return with pte unmapped and unlocked.
3087  *
3088  * We return with the mmap_lock locked or unlocked in the same cases
3089  * as does filemap_fault().
3090  */
3091 vm_fault_t do_swap_page(struct vm_fault *vmf)
3092 {
3093         struct vm_area_struct *vma = vmf->vma;
3094         struct page *page = NULL, *swapcache;
3095         swp_entry_t entry;
3096         pte_t pte;
3097         int locked;
3098         int exclusive = 0;
3099         vm_fault_t ret = 0;
3100         void *shadow = NULL;
3101
3102         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3103                 goto out;
3104
3105         entry = pte_to_swp_entry(vmf->orig_pte);
3106         if (unlikely(non_swap_entry(entry))) {
3107                 if (is_migration_entry(entry)) {
3108                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3109                                              vmf->address);
3110                 } else if (is_device_private_entry(entry)) {
3111                         vmf->page = device_private_entry_to_page(entry);
3112                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3113                 } else if (is_hwpoison_entry(entry)) {
3114                         ret = VM_FAULT_HWPOISON;
3115                 } else {
3116                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3117                         ret = VM_FAULT_SIGBUS;
3118                 }
3119                 goto out;
3120         }
3121
3122
3123         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3124         page = lookup_swap_cache(entry, vma, vmf->address);
3125         swapcache = page;
3126
3127         if (!page) {
3128                 struct swap_info_struct *si = swp_swap_info(entry);
3129
3130                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3131                     __swap_count(entry) == 1) {
3132                         /* skip swapcache */
3133                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3134                                                         vmf->address);
3135                         if (page) {
3136                                 int err;
3137
3138                                 __SetPageLocked(page);
3139                                 __SetPageSwapBacked(page);
3140                                 set_page_private(page, entry.val);
3141
3142                                 /* Tell memcg to use swap ownership records */
3143                                 SetPageSwapCache(page);
3144                                 err = mem_cgroup_charge(page, vma->vm_mm,
3145                                                         GFP_KERNEL);
3146                                 ClearPageSwapCache(page);
3147                                 if (err) {
3148                                         ret = VM_FAULT_OOM;
3149                                         goto out_page;
3150                                 }
3151
3152                                 shadow = get_shadow_from_swap_cache(entry);
3153                                 if (shadow)
3154                                         workingset_refault(page, shadow);
3155
3156                                 lru_cache_add(page);
3157                                 swap_readpage(page, true);
3158                         }
3159                 } else {
3160                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3161                                                 vmf);
3162                         swapcache = page;
3163                 }
3164
3165                 if (!page) {
3166                         /*
3167                          * Back out if somebody else faulted in this pte
3168                          * while we released the pte lock.
3169                          */
3170                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3171                                         vmf->address, &vmf->ptl);
3172                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3173                                 ret = VM_FAULT_OOM;
3174                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3175                         goto unlock;
3176                 }
3177
3178                 /* Had to read the page from swap area: Major fault */
3179                 ret = VM_FAULT_MAJOR;
3180                 count_vm_event(PGMAJFAULT);
3181                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3182         } else if (PageHWPoison(page)) {
3183                 /*
3184                  * hwpoisoned dirty swapcache pages are kept for killing
3185                  * owner processes (which may be unknown at hwpoison time)
3186                  */
3187                 ret = VM_FAULT_HWPOISON;
3188                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3189                 goto out_release;
3190         }
3191
3192         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3193
3194         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3195         if (!locked) {
3196                 ret |= VM_FAULT_RETRY;
3197                 goto out_release;
3198         }
3199
3200         /*
3201          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3202          * release the swapcache from under us.  The page pin, and pte_same
3203          * test below, are not enough to exclude that.  Even if it is still
3204          * swapcache, we need to check that the page's swap has not changed.
3205          */
3206         if (unlikely((!PageSwapCache(page) ||
3207                         page_private(page) != entry.val)) && swapcache)
3208                 goto out_page;
3209
3210         page = ksm_might_need_to_copy(page, vma, vmf->address);
3211         if (unlikely(!page)) {
3212                 ret = VM_FAULT_OOM;
3213                 page = swapcache;
3214                 goto out_page;
3215         }
3216
3217         cgroup_throttle_swaprate(page, GFP_KERNEL);
3218
3219         /*
3220          * Back out if somebody else already faulted in this pte.
3221          */
3222         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3223                         &vmf->ptl);
3224         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3225                 goto out_nomap;
3226
3227         if (unlikely(!PageUptodate(page))) {
3228                 ret = VM_FAULT_SIGBUS;
3229                 goto out_nomap;
3230         }
3231
3232         /*
3233          * The page isn't present yet, go ahead with the fault.
3234          *
3235          * Be careful about the sequence of operations here.
3236          * To get its accounting right, reuse_swap_page() must be called
3237          * while the page is counted on swap but not yet in mapcount i.e.
3238          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3239          * must be called after the swap_free(), or it will never succeed.
3240          */
3241
3242         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3243         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3244         pte = mk_pte(page, vma->vm_page_prot);
3245         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3246                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3247                 vmf->flags &= ~FAULT_FLAG_WRITE;
3248                 ret |= VM_FAULT_WRITE;
3249                 exclusive = RMAP_EXCLUSIVE;
3250         }
3251         flush_icache_page(vma, page);
3252         if (pte_swp_soft_dirty(vmf->orig_pte))
3253                 pte = pte_mksoft_dirty(pte);
3254         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3255                 pte = pte_mkuffd_wp(pte);
3256                 pte = pte_wrprotect(pte);
3257         }
3258         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3259         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3260         vmf->orig_pte = pte;
3261
3262         /* ksm created a completely new copy */
3263         if (unlikely(page != swapcache && swapcache)) {
3264                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3265                 lru_cache_add_inactive_or_unevictable(page, vma);
3266         } else {
3267                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3268         }
3269
3270         swap_free(entry);
3271         if (mem_cgroup_swap_full(page) ||
3272             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3273                 try_to_free_swap(page);
3274         unlock_page(page);
3275         if (page != swapcache && swapcache) {
3276                 /*
3277                  * Hold the lock to avoid the swap entry to be reused
3278                  * until we take the PT lock for the pte_same() check
3279                  * (to avoid false positives from pte_same). For
3280                  * further safety release the lock after the swap_free
3281                  * so that the swap count won't change under a
3282                  * parallel locked swapcache.
3283                  */
3284                 unlock_page(swapcache);
3285                 put_page(swapcache);
3286         }
3287
3288         if (vmf->flags & FAULT_FLAG_WRITE) {
3289                 ret |= do_wp_page(vmf);
3290                 if (ret & VM_FAULT_ERROR)
3291                         ret &= VM_FAULT_ERROR;
3292                 goto out;
3293         }
3294
3295         /* No need to invalidate - it was non-present before */
3296         update_mmu_cache(vma, vmf->address, vmf->pte);
3297 unlock:
3298         pte_unmap_unlock(vmf->pte, vmf->ptl);
3299 out:
3300         return ret;
3301 out_nomap:
3302         pte_unmap_unlock(vmf->pte, vmf->ptl);
3303 out_page:
3304         unlock_page(page);
3305 out_release:
3306         put_page(page);
3307         if (page != swapcache && swapcache) {
3308                 unlock_page(swapcache);
3309                 put_page(swapcache);
3310         }
3311         return ret;
3312 }
3313
3314 /*
3315  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3316  * but allow concurrent faults), and pte mapped but not yet locked.
3317  * We return with mmap_lock still held, but pte unmapped and unlocked.
3318  */
3319 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3320 {
3321         struct vm_area_struct *vma = vmf->vma;
3322         struct page *page;
3323         vm_fault_t ret = 0;
3324         pte_t entry;
3325
3326         /* File mapping without ->vm_ops ? */
3327         if (vma->vm_flags & VM_SHARED)
3328                 return VM_FAULT_SIGBUS;
3329
3330         /*
3331          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3332          * pte_offset_map() on pmds where a huge pmd might be created
3333          * from a different thread.
3334          *
3335          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3336          * parallel threads are excluded by other means.
3337          *
3338          * Here we only have mmap_read_lock(mm).
3339          */
3340         if (pte_alloc(vma->vm_mm, vmf->pmd))
3341                 return VM_FAULT_OOM;
3342
3343         /* See the comment in pte_alloc_one_map() */
3344         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3345                 return 0;
3346
3347         /* Use the zero-page for reads */
3348         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3349                         !mm_forbids_zeropage(vma->vm_mm)) {
3350                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3351                                                 vma->vm_page_prot));
3352                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3353                                 vmf->address, &vmf->ptl);
3354                 if (!pte_none(*vmf->pte)) {
3355                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3356                         goto unlock;
3357                 }
3358                 ret = check_stable_address_space(vma->vm_mm);
3359                 if (ret)
3360                         goto unlock;
3361                 /* Deliver the page fault to userland, check inside PT lock */
3362                 if (userfaultfd_missing(vma)) {
3363                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3364                         return handle_userfault(vmf, VM_UFFD_MISSING);
3365                 }
3366                 goto setpte;
3367         }
3368
3369         /* Allocate our own private page. */
3370         if (unlikely(anon_vma_prepare(vma)))
3371                 goto oom;
3372         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3373         if (!page)
3374                 goto oom;
3375
3376         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3377                 goto oom_free_page;
3378         cgroup_throttle_swaprate(page, GFP_KERNEL);
3379
3380         /*
3381          * The memory barrier inside __SetPageUptodate makes sure that
3382          * preceding stores to the page contents become visible before
3383          * the set_pte_at() write.
3384          */
3385         __SetPageUptodate(page);
3386
3387         entry = mk_pte(page, vma->vm_page_prot);
3388         entry = pte_sw_mkyoung(entry);
3389         if (vma->vm_flags & VM_WRITE)
3390                 entry = pte_mkwrite(pte_mkdirty(entry));
3391
3392         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3393                         &vmf->ptl);
3394         if (!pte_none(*vmf->pte)) {
3395                 update_mmu_cache(vma, vmf->address, vmf->pte);
3396                 goto release;
3397         }
3398
3399         ret = check_stable_address_space(vma->vm_mm);
3400         if (ret)
3401                 goto release;
3402
3403         /* Deliver the page fault to userland, check inside PT lock */
3404         if (userfaultfd_missing(vma)) {
3405                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3406                 put_page(page);
3407                 return handle_userfault(vmf, VM_UFFD_MISSING);
3408         }
3409
3410         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3411         page_add_new_anon_rmap(page, vma, vmf->address, false);
3412         lru_cache_add_inactive_or_unevictable(page, vma);
3413 setpte:
3414         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3415
3416         /* No need to invalidate - it was non-present before */
3417         update_mmu_cache(vma, vmf->address, vmf->pte);
3418 unlock:
3419         pte_unmap_unlock(vmf->pte, vmf->ptl);
3420         return ret;
3421 release:
3422         put_page(page);
3423         goto unlock;
3424 oom_free_page:
3425         put_page(page);
3426 oom:
3427         return VM_FAULT_OOM;
3428 }
3429
3430 /*
3431  * The mmap_lock must have been held on entry, and may have been
3432  * released depending on flags and vma->vm_ops->fault() return value.
3433  * See filemap_fault() and __lock_page_retry().
3434  */
3435 static vm_fault_t __do_fault(struct vm_fault *vmf)
3436 {
3437         struct vm_area_struct *vma = vmf->vma;
3438         vm_fault_t ret;
3439
3440         /*
3441          * Preallocate pte before we take page_lock because this might lead to
3442          * deadlocks for memcg reclaim which waits for pages under writeback:
3443          *                              lock_page(A)
3444          *                              SetPageWriteback(A)
3445          *                              unlock_page(A)
3446          * lock_page(B)
3447          *                              lock_page(B)
3448          * pte_alloc_pne
3449          *   shrink_page_list
3450          *     wait_on_page_writeback(A)
3451          *                              SetPageWriteback(B)
3452          *                              unlock_page(B)
3453          *                              # flush A, B to clear the writeback
3454          */
3455         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3456                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3457                 if (!vmf->prealloc_pte)
3458                         return VM_FAULT_OOM;
3459                 smp_wmb(); /* See comment in __pte_alloc() */
3460         }
3461
3462         ret = vma->vm_ops->fault(vmf);
3463         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3464                             VM_FAULT_DONE_COW)))
3465                 return ret;
3466
3467         if (unlikely(PageHWPoison(vmf->page))) {
3468                 if (ret & VM_FAULT_LOCKED)
3469                         unlock_page(vmf->page);
3470                 put_page(vmf->page);
3471                 vmf->page = NULL;
3472                 return VM_FAULT_HWPOISON;
3473         }
3474
3475         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3476                 lock_page(vmf->page);
3477         else
3478                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3479
3480         return ret;
3481 }
3482
3483 /*
3484  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3485  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3486  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3487  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3488  */
3489 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3490 {
3491         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3492 }
3493
3494 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3495 {
3496         struct vm_area_struct *vma = vmf->vma;
3497
3498         if (!pmd_none(*vmf->pmd))
3499                 goto map_pte;
3500         if (vmf->prealloc_pte) {
3501                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3502                 if (unlikely(!pmd_none(*vmf->pmd))) {
3503                         spin_unlock(vmf->ptl);
3504                         goto map_pte;
3505                 }
3506
3507                 mm_inc_nr_ptes(vma->vm_mm);
3508                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3509                 spin_unlock(vmf->ptl);
3510                 vmf->prealloc_pte = NULL;
3511         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3512                 return VM_FAULT_OOM;
3513         }
3514 map_pte:
3515         /*
3516          * If a huge pmd materialized under us just retry later.  Use
3517          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3518          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3519          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3520          * running immediately after a huge pmd fault in a different thread of
3521          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3522          * All we have to ensure is that it is a regular pmd that we can walk
3523          * with pte_offset_map() and we can do that through an atomic read in
3524          * C, which is what pmd_trans_unstable() provides.
3525          */
3526         if (pmd_devmap_trans_unstable(vmf->pmd))
3527                 return VM_FAULT_NOPAGE;
3528
3529         /*
3530          * At this point we know that our vmf->pmd points to a page of ptes
3531          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3532          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3533          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3534          * be valid and we will re-check to make sure the vmf->pte isn't
3535          * pte_none() under vmf->ptl protection when we return to
3536          * alloc_set_pte().
3537          */
3538         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3539                         &vmf->ptl);
3540         return 0;
3541 }
3542
3543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3544 static void deposit_prealloc_pte(struct vm_fault *vmf)
3545 {
3546         struct vm_area_struct *vma = vmf->vma;
3547
3548         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3549         /*
3550          * We are going to consume the prealloc table,
3551          * count that as nr_ptes.
3552          */
3553         mm_inc_nr_ptes(vma->vm_mm);
3554         vmf->prealloc_pte = NULL;
3555 }
3556
3557 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3558 {
3559         struct vm_area_struct *vma = vmf->vma;
3560         bool write = vmf->flags & FAULT_FLAG_WRITE;
3561         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3562         pmd_t entry;
3563         int i;
3564         vm_fault_t ret;
3565
3566         if (!transhuge_vma_suitable(vma, haddr))
3567                 return VM_FAULT_FALLBACK;
3568
3569         ret = VM_FAULT_FALLBACK;
3570         page = compound_head(page);
3571
3572         /*
3573          * Archs like ppc64 need additonal space to store information
3574          * related to pte entry. Use the preallocated table for that.
3575          */
3576         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3577                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3578                 if (!vmf->prealloc_pte)
3579                         return VM_FAULT_OOM;
3580                 smp_wmb(); /* See comment in __pte_alloc() */
3581         }
3582
3583         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3584         if (unlikely(!pmd_none(*vmf->pmd)))
3585                 goto out;
3586
3587         for (i = 0; i < HPAGE_PMD_NR; i++)
3588                 flush_icache_page(vma, page + i);
3589
3590         entry = mk_huge_pmd(page, vma->vm_page_prot);
3591         if (write)
3592                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3593
3594         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3595         page_add_file_rmap(page, true);
3596         /*
3597          * deposit and withdraw with pmd lock held
3598          */
3599         if (arch_needs_pgtable_deposit())
3600                 deposit_prealloc_pte(vmf);
3601
3602         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3603
3604         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3605
3606         /* fault is handled */
3607         ret = 0;
3608         count_vm_event(THP_FILE_MAPPED);
3609 out:
3610         spin_unlock(vmf->ptl);
3611         return ret;
3612 }
3613 #else
3614 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3615 {
3616         BUILD_BUG();
3617         return 0;
3618 }
3619 #endif
3620
3621 /**
3622  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3623  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3624  *
3625  * @vmf: fault environment
3626  * @page: page to map
3627  *
3628  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3629  * return.
3630  *
3631  * Target users are page handler itself and implementations of
3632  * vm_ops->map_pages.
3633  *
3634  * Return: %0 on success, %VM_FAULT_ code in case of error.
3635  */
3636 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3637 {
3638         struct vm_area_struct *vma = vmf->vma;
3639         bool write = vmf->flags & FAULT_FLAG_WRITE;
3640         pte_t entry;
3641         vm_fault_t ret;
3642
3643         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3644                 ret = do_set_pmd(vmf, page);
3645                 if (ret != VM_FAULT_FALLBACK)
3646                         return ret;
3647         }
3648
3649         if (!vmf->pte) {
3650                 ret = pte_alloc_one_map(vmf);
3651                 if (ret)
3652                         return ret;
3653         }
3654
3655         /* Re-check under ptl */
3656         if (unlikely(!pte_none(*vmf->pte))) {
3657                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3658                 return VM_FAULT_NOPAGE;
3659         }
3660
3661         flush_icache_page(vma, page);
3662         entry = mk_pte(page, vma->vm_page_prot);
3663         entry = pte_sw_mkyoung(entry);
3664         if (write)
3665                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3666         /* copy-on-write page */
3667         if (write && !(vma->vm_flags & VM_SHARED)) {
3668                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3669                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3670                 lru_cache_add_inactive_or_unevictable(page, vma);
3671         } else {
3672                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3673                 page_add_file_rmap(page, false);
3674         }
3675         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3676
3677         /* no need to invalidate: a not-present page won't be cached */
3678         update_mmu_cache(vma, vmf->address, vmf->pte);
3679
3680         return 0;
3681 }
3682
3683
3684 /**
3685  * finish_fault - finish page fault once we have prepared the page to fault
3686  *
3687  * @vmf: structure describing the fault
3688  *
3689  * This function handles all that is needed to finish a page fault once the
3690  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3691  * given page, adds reverse page mapping, handles memcg charges and LRU
3692  * addition.
3693  *
3694  * The function expects the page to be locked and on success it consumes a
3695  * reference of a page being mapped (for the PTE which maps it).
3696  *
3697  * Return: %0 on success, %VM_FAULT_ code in case of error.
3698  */
3699 vm_fault_t finish_fault(struct vm_fault *vmf)
3700 {
3701         struct page *page;
3702         vm_fault_t ret = 0;
3703
3704         /* Did we COW the page? */
3705         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3706             !(vmf->vma->vm_flags & VM_SHARED))
3707                 page = vmf->cow_page;
3708         else
3709                 page = vmf->page;
3710
3711         /*
3712          * check even for read faults because we might have lost our CoWed
3713          * page
3714          */
3715         if (!(vmf->vma->vm_flags & VM_SHARED))
3716                 ret = check_stable_address_space(vmf->vma->vm_mm);
3717         if (!ret)
3718                 ret = alloc_set_pte(vmf, page);
3719         if (vmf->pte)
3720                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3721         return ret;
3722 }
3723
3724 static unsigned long fault_around_bytes __read_mostly =
3725         rounddown_pow_of_two(65536);
3726
3727 #ifdef CONFIG_DEBUG_FS
3728 static int fault_around_bytes_get(void *data, u64 *val)
3729 {
3730         *val = fault_around_bytes;
3731         return 0;
3732 }
3733
3734 /*
3735  * fault_around_bytes must be rounded down to the nearest page order as it's
3736  * what do_fault_around() expects to see.
3737  */
3738 static int fault_around_bytes_set(void *data, u64 val)
3739 {
3740         if (val / PAGE_SIZE > PTRS_PER_PTE)
3741                 return -EINVAL;
3742         if (val > PAGE_SIZE)
3743                 fault_around_bytes = rounddown_pow_of_two(val);
3744         else
3745                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3746         return 0;
3747 }
3748 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3749                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3750
3751 static int __init fault_around_debugfs(void)
3752 {
3753         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3754                                    &fault_around_bytes_fops);
3755         return 0;
3756 }
3757 late_initcall(fault_around_debugfs);
3758 #endif
3759
3760 /*
3761  * do_fault_around() tries to map few pages around the fault address. The hope
3762  * is that the pages will be needed soon and this will lower the number of
3763  * faults to handle.
3764  *
3765  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3766  * not ready to be mapped: not up-to-date, locked, etc.
3767  *
3768  * This function is called with the page table lock taken. In the split ptlock
3769  * case the page table lock only protects only those entries which belong to
3770  * the page table corresponding to the fault address.
3771  *
3772  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3773  * only once.
3774  *
3775  * fault_around_bytes defines how many bytes we'll try to map.
3776  * do_fault_around() expects it to be set to a power of two less than or equal
3777  * to PTRS_PER_PTE.
3778  *
3779  * The virtual address of the area that we map is naturally aligned to
3780  * fault_around_bytes rounded down to the machine page size
3781  * (and therefore to page order).  This way it's easier to guarantee
3782  * that we don't cross page table boundaries.
3783  */
3784 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3785 {
3786         unsigned long address = vmf->address, nr_pages, mask;
3787         pgoff_t start_pgoff = vmf->pgoff;
3788         pgoff_t end_pgoff;
3789         int off;
3790         vm_fault_t ret = 0;
3791
3792         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3793         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3794
3795         vmf->address = max(address & mask, vmf->vma->vm_start);
3796         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3797         start_pgoff -= off;
3798
3799         /*
3800          *  end_pgoff is either the end of the page table, the end of
3801          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3802          */
3803         end_pgoff = start_pgoff -
3804                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3805                 PTRS_PER_PTE - 1;
3806         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3807                         start_pgoff + nr_pages - 1);
3808
3809         if (pmd_none(*vmf->pmd)) {
3810                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3811                 if (!vmf->prealloc_pte)
3812                         goto out;
3813                 smp_wmb(); /* See comment in __pte_alloc() */
3814         }
3815
3816         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3817
3818         /* Huge page is mapped? Page fault is solved */
3819         if (pmd_trans_huge(*vmf->pmd)) {
3820                 ret = VM_FAULT_NOPAGE;
3821                 goto out;
3822         }
3823
3824         /* ->map_pages() haven't done anything useful. Cold page cache? */
3825         if (!vmf->pte)
3826                 goto out;
3827
3828         /* check if the page fault is solved */
3829         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3830         if (!pte_none(*vmf->pte))
3831                 ret = VM_FAULT_NOPAGE;
3832         pte_unmap_unlock(vmf->pte, vmf->ptl);
3833 out:
3834         vmf->address = address;
3835         vmf->pte = NULL;
3836         return ret;
3837 }
3838
3839 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3840 {
3841         struct vm_area_struct *vma = vmf->vma;
3842         vm_fault_t ret = 0;
3843
3844         /*
3845          * Let's call ->map_pages() first and use ->fault() as fallback
3846          * if page by the offset is not ready to be mapped (cold cache or
3847          * something).
3848          */
3849         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3850                 ret = do_fault_around(vmf);
3851                 if (ret)
3852                         return ret;
3853         }
3854
3855         ret = __do_fault(vmf);
3856         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3857                 return ret;
3858
3859         ret |= finish_fault(vmf);
3860         unlock_page(vmf->page);
3861         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3862                 put_page(vmf->page);
3863         return ret;
3864 }
3865
3866 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3867 {
3868         struct vm_area_struct *vma = vmf->vma;
3869         vm_fault_t ret;
3870
3871         if (unlikely(anon_vma_prepare(vma)))
3872                 return VM_FAULT_OOM;
3873
3874         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3875         if (!vmf->cow_page)
3876                 return VM_FAULT_OOM;
3877
3878         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3879                 put_page(vmf->cow_page);
3880                 return VM_FAULT_OOM;
3881         }
3882         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3883
3884         ret = __do_fault(vmf);
3885         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3886                 goto uncharge_out;
3887         if (ret & VM_FAULT_DONE_COW)
3888                 return ret;
3889
3890         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3891         __SetPageUptodate(vmf->cow_page);
3892
3893         ret |= finish_fault(vmf);
3894         unlock_page(vmf->page);
3895         put_page(vmf->page);
3896         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3897                 goto uncharge_out;
3898         return ret;
3899 uncharge_out:
3900         put_page(vmf->cow_page);
3901         return ret;
3902 }
3903
3904 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3905 {
3906         struct vm_area_struct *vma = vmf->vma;
3907         vm_fault_t ret, tmp;
3908
3909         ret = __do_fault(vmf);
3910         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3911                 return ret;
3912
3913         /*
3914          * Check if the backing address space wants to know that the page is
3915          * about to become writable
3916          */
3917         if (vma->vm_ops->page_mkwrite) {
3918                 unlock_page(vmf->page);
3919                 tmp = do_page_mkwrite(vmf);
3920                 if (unlikely(!tmp ||
3921                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3922                         put_page(vmf->page);
3923                         return tmp;
3924                 }
3925         }
3926
3927         ret |= finish_fault(vmf);
3928         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3929                                         VM_FAULT_RETRY))) {
3930                 unlock_page(vmf->page);
3931                 put_page(vmf->page);
3932                 return ret;
3933         }
3934
3935         ret |= fault_dirty_shared_page(vmf);
3936         return ret;
3937 }
3938
3939 /*
3940  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3941  * but allow concurrent faults).
3942  * The mmap_lock may have been released depending on flags and our
3943  * return value.  See filemap_fault() and __lock_page_or_retry().
3944  * If mmap_lock is released, vma may become invalid (for example
3945  * by other thread calling munmap()).
3946  */
3947 static vm_fault_t do_fault(struct vm_fault *vmf)
3948 {
3949         struct vm_area_struct *vma = vmf->vma;
3950         struct mm_struct *vm_mm = vma->vm_mm;
3951         vm_fault_t ret;
3952
3953         /*
3954          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3955          */
3956         if (!vma->vm_ops->fault) {
3957                 /*
3958                  * If we find a migration pmd entry or a none pmd entry, which
3959                  * should never happen, return SIGBUS
3960                  */
3961                 if (unlikely(!pmd_present(*vmf->pmd)))
3962                         ret = VM_FAULT_SIGBUS;
3963                 else {
3964                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3965                                                        vmf->pmd,
3966                                                        vmf->address,
3967                                                        &vmf->ptl);
3968                         /*
3969                          * Make sure this is not a temporary clearing of pte
3970                          * by holding ptl and checking again. A R/M/W update
3971                          * of pte involves: take ptl, clearing the pte so that
3972                          * we don't have concurrent modification by hardware
3973                          * followed by an update.
3974                          */
3975                         if (unlikely(pte_none(*vmf->pte)))
3976                                 ret = VM_FAULT_SIGBUS;
3977                         else
3978                                 ret = VM_FAULT_NOPAGE;
3979
3980                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3981                 }
3982         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3983                 ret = do_read_fault(vmf);
3984         else if (!(vma->vm_flags & VM_SHARED))
3985                 ret = do_cow_fault(vmf);
3986         else
3987                 ret = do_shared_fault(vmf);
3988
3989         /* preallocated pagetable is unused: free it */
3990         if (vmf->prealloc_pte) {
3991                 pte_free(vm_mm, vmf->prealloc_pte);
3992                 vmf->prealloc_pte = NULL;
3993         }
3994         return ret;
3995 }
3996
3997 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3998                                 unsigned long addr, int page_nid,
3999                                 int *flags)
4000 {
4001         get_page(page);
4002
4003         count_vm_numa_event(NUMA_HINT_FAULTS);
4004         if (page_nid == numa_node_id()) {
4005                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4006                 *flags |= TNF_FAULT_LOCAL;
4007         }
4008
4009         return mpol_misplaced(page, vma, addr);
4010 }
4011
4012 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4013 {
4014         struct vm_area_struct *vma = vmf->vma;
4015         struct page *page = NULL;
4016         int page_nid = NUMA_NO_NODE;
4017         int last_cpupid;
4018         int target_nid;
4019         bool migrated = false;
4020         pte_t pte, old_pte;
4021         bool was_writable = pte_savedwrite(vmf->orig_pte);
4022         int flags = 0;
4023
4024         /*
4025          * The "pte" at this point cannot be used safely without
4026          * validation through pte_unmap_same(). It's of NUMA type but
4027          * the pfn may be screwed if the read is non atomic.
4028          */
4029         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4030         spin_lock(vmf->ptl);
4031         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4032                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4033                 goto out;
4034         }
4035
4036         /*
4037          * Make it present again, Depending on how arch implementes non
4038          * accessible ptes, some can allow access by kernel mode.
4039          */
4040         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4041         pte = pte_modify(old_pte, vma->vm_page_prot);
4042         pte = pte_mkyoung(pte);
4043         if (was_writable)
4044                 pte = pte_mkwrite(pte);
4045         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4046         update_mmu_cache(vma, vmf->address, vmf->pte);
4047
4048         page = vm_normal_page(vma, vmf->address, pte);
4049         if (!page) {
4050                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4051                 return 0;
4052         }
4053
4054         /* TODO: handle PTE-mapped THP */
4055         if (PageCompound(page)) {
4056                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4057                 return 0;
4058         }
4059
4060         /*
4061          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4062          * much anyway since they can be in shared cache state. This misses
4063          * the case where a mapping is writable but the process never writes
4064          * to it but pte_write gets cleared during protection updates and
4065          * pte_dirty has unpredictable behaviour between PTE scan updates,
4066          * background writeback, dirty balancing and application behaviour.
4067          */
4068         if (!pte_write(pte))
4069                 flags |= TNF_NO_GROUP;
4070
4071         /*
4072          * Flag if the page is shared between multiple address spaces. This
4073          * is later used when determining whether to group tasks together
4074          */
4075         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4076                 flags |= TNF_SHARED;
4077
4078         last_cpupid = page_cpupid_last(page);
4079         page_nid = page_to_nid(page);
4080         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4081                         &flags);
4082         pte_unmap_unlock(vmf->pte, vmf->ptl);
4083         if (target_nid == NUMA_NO_NODE) {
4084                 put_page(page);
4085                 goto out;
4086         }
4087
4088         /* Migrate to the requested node */
4089         migrated = migrate_misplaced_page(page, vma, target_nid);
4090         if (migrated) {
4091                 page_nid = target_nid;
4092                 flags |= TNF_MIGRATED;
4093         } else
4094                 flags |= TNF_MIGRATE_FAIL;
4095
4096 out:
4097         if (page_nid != NUMA_NO_NODE)
4098                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4099         return 0;
4100 }
4101
4102 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4103 {
4104         if (vma_is_anonymous(vmf->vma))
4105                 return do_huge_pmd_anonymous_page(vmf);
4106         if (vmf->vma->vm_ops->huge_fault)
4107                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4108         return VM_FAULT_FALLBACK;
4109 }
4110
4111 /* `inline' is required to avoid gcc 4.1.2 build error */
4112 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4113 {
4114         if (vma_is_anonymous(vmf->vma)) {
4115                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4116                         return handle_userfault(vmf, VM_UFFD_WP);
4117                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4118         }
4119         if (vmf->vma->vm_ops->huge_fault) {
4120                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4121
4122                 if (!(ret & VM_FAULT_FALLBACK))
4123                         return ret;
4124         }
4125
4126         /* COW or write-notify handled on pte level: split pmd. */
4127         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4128
4129         return VM_FAULT_FALLBACK;
4130 }
4131
4132 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4133 {
4134 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4135         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4136         /* No support for anonymous transparent PUD pages yet */
4137         if (vma_is_anonymous(vmf->vma))
4138                 goto split;
4139         if (vmf->vma->vm_ops->huge_fault) {
4140                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4141
4142                 if (!(ret & VM_FAULT_FALLBACK))
4143                         return ret;
4144         }
4145 split:
4146         /* COW or write-notify not handled on PUD level: split pud.*/
4147         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4148 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4149         return VM_FAULT_FALLBACK;
4150 }
4151
4152 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4153 {
4154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4155         /* No support for anonymous transparent PUD pages yet */
4156         if (vma_is_anonymous(vmf->vma))
4157                 return VM_FAULT_FALLBACK;
4158         if (vmf->vma->vm_ops->huge_fault)
4159                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4160 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4161         return VM_FAULT_FALLBACK;
4162 }
4163
4164 /*
4165  * These routines also need to handle stuff like marking pages dirty
4166  * and/or accessed for architectures that don't do it in hardware (most
4167  * RISC architectures).  The early dirtying is also good on the i386.
4168  *
4169  * There is also a hook called "update_mmu_cache()" that architectures
4170  * with external mmu caches can use to update those (ie the Sparc or
4171  * PowerPC hashed page tables that act as extended TLBs).
4172  *
4173  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4174  * concurrent faults).
4175  *
4176  * The mmap_lock may have been released depending on flags and our return value.
4177  * See filemap_fault() and __lock_page_or_retry().
4178  */
4179 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4180 {
4181         pte_t entry;
4182
4183         if (unlikely(pmd_none(*vmf->pmd))) {
4184                 /*
4185                  * Leave __pte_alloc() until later: because vm_ops->fault may
4186                  * want to allocate huge page, and if we expose page table
4187                  * for an instant, it will be difficult to retract from
4188                  * concurrent faults and from rmap lookups.
4189                  */
4190                 vmf->pte = NULL;
4191         } else {
4192                 /* See comment in pte_alloc_one_map() */
4193                 if (pmd_devmap_trans_unstable(vmf->pmd))
4194                         return 0;
4195                 /*
4196                  * A regular pmd is established and it can't morph into a huge
4197                  * pmd from under us anymore at this point because we hold the
4198                  * mmap_lock read mode and khugepaged takes it in write mode.
4199                  * So now it's safe to run pte_offset_map().
4200                  */
4201                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4202                 vmf->orig_pte = *vmf->pte;
4203
4204                 /*
4205                  * some architectures can have larger ptes than wordsize,
4206                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4207                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4208                  * accesses.  The code below just needs a consistent view
4209                  * for the ifs and we later double check anyway with the
4210                  * ptl lock held. So here a barrier will do.
4211                  */
4212                 barrier();
4213                 if (pte_none(vmf->orig_pte)) {
4214                         pte_unmap(vmf->pte);
4215                         vmf->pte = NULL;
4216                 }
4217         }
4218
4219         if (!vmf->pte) {
4220                 if (vma_is_anonymous(vmf->vma))
4221                         return do_anonymous_page(vmf);
4222                 else
4223                         return do_fault(vmf);
4224         }
4225
4226         if (!pte_present(vmf->orig_pte))
4227                 return do_swap_page(vmf);
4228
4229         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4230                 return do_numa_page(vmf);
4231
4232         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4233         spin_lock(vmf->ptl);
4234         entry = vmf->orig_pte;
4235         if (unlikely(!pte_same(*vmf->pte, entry))) {
4236                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4237                 goto unlock;
4238         }
4239         if (vmf->flags & FAULT_FLAG_WRITE) {
4240                 if (!pte_write(entry))
4241                         return do_wp_page(vmf);
4242                 entry = pte_mkdirty(entry);
4243         }
4244         entry = pte_mkyoung(entry);
4245         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4246                                 vmf->flags & FAULT_FLAG_WRITE)) {
4247                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4248         } else {
4249                 /* Skip spurious TLB flush for retried page fault */
4250                 if (vmf->flags & FAULT_FLAG_TRIED)
4251                         goto unlock;
4252                 /*
4253                  * This is needed only for protection faults but the arch code
4254                  * is not yet telling us if this is a protection fault or not.
4255                  * This still avoids useless tlb flushes for .text page faults
4256                  * with threads.
4257                  */
4258                 if (vmf->flags & FAULT_FLAG_WRITE)
4259                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4260         }
4261 unlock:
4262         pte_unmap_unlock(vmf->pte, vmf->ptl);
4263         return 0;
4264 }
4265
4266 /*
4267  * By the time we get here, we already hold the mm semaphore
4268  *
4269  * The mmap_lock may have been released depending on flags and our
4270  * return value.  See filemap_fault() and __lock_page_or_retry().
4271  */
4272 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4273                 unsigned long address, unsigned int flags)
4274 {
4275         struct vm_fault vmf = {
4276                 .vma = vma,
4277                 .address = address & PAGE_MASK,
4278                 .flags = flags,
4279                 .pgoff = linear_page_index(vma, address),
4280                 .gfp_mask = __get_fault_gfp_mask(vma),
4281         };
4282         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4283         struct mm_struct *mm = vma->vm_mm;
4284         pgd_t *pgd;
4285         p4d_t *p4d;
4286         vm_fault_t ret;
4287
4288         pgd = pgd_offset(mm, address);
4289         p4d = p4d_alloc(mm, pgd, address);
4290         if (!p4d)
4291                 return VM_FAULT_OOM;
4292
4293         vmf.pud = pud_alloc(mm, p4d, address);
4294         if (!vmf.pud)
4295                 return VM_FAULT_OOM;
4296 retry_pud:
4297         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4298                 ret = create_huge_pud(&vmf);
4299                 if (!(ret & VM_FAULT_FALLBACK))
4300                         return ret;
4301         } else {
4302                 pud_t orig_pud = *vmf.pud;
4303
4304                 barrier();
4305                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4306
4307                         /* NUMA case for anonymous PUDs would go here */
4308
4309                         if (dirty && !pud_write(orig_pud)) {
4310                                 ret = wp_huge_pud(&vmf, orig_pud);
4311                                 if (!(ret & VM_FAULT_FALLBACK))
4312                                         return ret;
4313                         } else {
4314                                 huge_pud_set_accessed(&vmf, orig_pud);
4315                                 return 0;
4316                         }
4317                 }
4318         }
4319
4320         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4321         if (!vmf.pmd)
4322                 return VM_FAULT_OOM;
4323
4324         /* Huge pud page fault raced with pmd_alloc? */
4325         if (pud_trans_unstable(vmf.pud))
4326                 goto retry_pud;
4327
4328         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4329                 ret = create_huge_pmd(&vmf);
4330                 if (!(ret & VM_FAULT_FALLBACK))
4331                         return ret;
4332         } else {
4333                 pmd_t orig_pmd = *vmf.pmd;
4334
4335                 barrier();
4336                 if (unlikely(is_swap_pmd(orig_pmd))) {
4337                         VM_BUG_ON(thp_migration_supported() &&
4338                                           !is_pmd_migration_entry(orig_pmd));
4339                         if (is_pmd_migration_entry(orig_pmd))
4340                                 pmd_migration_entry_wait(mm, vmf.pmd);
4341                         return 0;
4342                 }
4343                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4344                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4345                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4346
4347                         if (dirty && !pmd_write(orig_pmd)) {
4348                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4349                                 if (!(ret & VM_FAULT_FALLBACK))
4350                                         return ret;
4351                         } else {
4352                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4353                                 return 0;
4354                         }
4355                 }
4356         }
4357
4358         return handle_pte_fault(&vmf);
4359 }
4360
4361 /**
4362  * mm_account_fault - Do page fault accountings
4363  *
4364  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4365  *        of perf event counters, but we'll still do the per-task accounting to
4366  *        the task who triggered this page fault.
4367  * @address: the faulted address.
4368  * @flags: the fault flags.
4369  * @ret: the fault retcode.
4370  *
4371  * This will take care of most of the page fault accountings.  Meanwhile, it
4372  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4373  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4374  * still be in per-arch page fault handlers at the entry of page fault.
4375  */
4376 static inline void mm_account_fault(struct pt_regs *regs,
4377                                     unsigned long address, unsigned int flags,
4378                                     vm_fault_t ret)
4379 {
4380         bool major;
4381
4382         /*
4383          * We don't do accounting for some specific faults:
4384          *
4385          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4386          *   includes arch_vma_access_permitted() failing before reaching here.
4387          *   So this is not a "this many hardware page faults" counter.  We
4388          *   should use the hw profiling for that.
4389          *
4390          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4391          *   once they're completed.
4392          */
4393         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4394                 return;
4395
4396         /*
4397          * We define the fault as a major fault when the final successful fault
4398          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4399          * handle it immediately previously).
4400          */
4401         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4402
4403         if (major)
4404                 current->maj_flt++;
4405         else
4406                 current->min_flt++;
4407
4408         /*
4409          * If the fault is done for GUP, regs will be NULL.  We only do the
4410          * accounting for the per thread fault counters who triggered the
4411          * fault, and we skip the perf event updates.
4412          */
4413         if (!regs)
4414                 return;
4415
4416         if (major)
4417                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4418         else
4419                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4420 }
4421
4422 /*
4423  * By the time we get here, we already hold the mm semaphore
4424  *
4425  * The mmap_lock may have been released depending on flags and our
4426  * return value.  See filemap_fault() and __lock_page_or_retry().
4427  */
4428 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4429                            unsigned int flags, struct pt_regs *regs)
4430 {
4431         vm_fault_t ret;
4432
4433         __set_current_state(TASK_RUNNING);
4434
4435         count_vm_event(PGFAULT);
4436         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4437
4438         /* do counter updates before entering really critical section. */
4439         check_sync_rss_stat(current);
4440
4441         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4442                                             flags & FAULT_FLAG_INSTRUCTION,
4443                                             flags & FAULT_FLAG_REMOTE))
4444                 return VM_FAULT_SIGSEGV;
4445
4446         /*
4447          * Enable the memcg OOM handling for faults triggered in user
4448          * space.  Kernel faults are handled more gracefully.
4449          */
4450         if (flags & FAULT_FLAG_USER)
4451                 mem_cgroup_enter_user_fault();
4452
4453         if (unlikely(is_vm_hugetlb_page(vma)))
4454                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4455         else
4456                 ret = __handle_mm_fault(vma, address, flags);
4457
4458         if (flags & FAULT_FLAG_USER) {
4459                 mem_cgroup_exit_user_fault();
4460                 /*
4461                  * The task may have entered a memcg OOM situation but
4462                  * if the allocation error was handled gracefully (no
4463                  * VM_FAULT_OOM), there is no need to kill anything.
4464                  * Just clean up the OOM state peacefully.
4465                  */
4466                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4467                         mem_cgroup_oom_synchronize(false);
4468         }
4469
4470         mm_account_fault(regs, address, flags, ret);
4471
4472         return ret;
4473 }
4474 EXPORT_SYMBOL_GPL(handle_mm_fault);
4475
4476 #ifndef __PAGETABLE_P4D_FOLDED
4477 /*
4478  * Allocate p4d page table.
4479  * We've already handled the fast-path in-line.
4480  */
4481 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4482 {
4483         p4d_t *new = p4d_alloc_one(mm, address);
4484         if (!new)
4485                 return -ENOMEM;
4486
4487         smp_wmb(); /* See comment in __pte_alloc */
4488
4489         spin_lock(&mm->page_table_lock);
4490         if (pgd_present(*pgd))          /* Another has populated it */
4491                 p4d_free(mm, new);
4492         else
4493                 pgd_populate(mm, pgd, new);
4494         spin_unlock(&mm->page_table_lock);
4495         return 0;
4496 }
4497 #endif /* __PAGETABLE_P4D_FOLDED */
4498
4499 #ifndef __PAGETABLE_PUD_FOLDED
4500 /*
4501  * Allocate page upper directory.
4502  * We've already handled the fast-path in-line.
4503  */
4504 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4505 {
4506         pud_t *new = pud_alloc_one(mm, address);
4507         if (!new)
4508                 return -ENOMEM;
4509
4510         smp_wmb(); /* See comment in __pte_alloc */
4511
4512         spin_lock(&mm->page_table_lock);
4513         if (!p4d_present(*p4d)) {
4514                 mm_inc_nr_puds(mm);
4515                 p4d_populate(mm, p4d, new);
4516         } else  /* Another has populated it */
4517                 pud_free(mm, new);
4518         spin_unlock(&mm->page_table_lock);
4519         return 0;
4520 }
4521 #endif /* __PAGETABLE_PUD_FOLDED */
4522
4523 #ifndef __PAGETABLE_PMD_FOLDED
4524 /*
4525  * Allocate page middle directory.
4526  * We've already handled the fast-path in-line.
4527  */
4528 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4529 {
4530         spinlock_t *ptl;
4531         pmd_t *new = pmd_alloc_one(mm, address);
4532         if (!new)
4533                 return -ENOMEM;
4534
4535         smp_wmb(); /* See comment in __pte_alloc */
4536
4537         ptl = pud_lock(mm, pud);
4538         if (!pud_present(*pud)) {
4539                 mm_inc_nr_pmds(mm);
4540                 pud_populate(mm, pud, new);
4541         } else  /* Another has populated it */
4542                 pmd_free(mm, new);
4543         spin_unlock(ptl);
4544         return 0;
4545 }
4546 #endif /* __PAGETABLE_PMD_FOLDED */
4547
4548 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4549                             struct mmu_notifier_range *range,
4550                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4551 {
4552         pgd_t *pgd;
4553         p4d_t *p4d;
4554         pud_t *pud;
4555         pmd_t *pmd;
4556         pte_t *ptep;
4557
4558         pgd = pgd_offset(mm, address);
4559         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4560                 goto out;
4561
4562         p4d = p4d_offset(pgd, address);
4563         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4564                 goto out;
4565
4566         pud = pud_offset(p4d, address);
4567         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4568                 goto out;
4569
4570         pmd = pmd_offset(pud, address);
4571         VM_BUG_ON(pmd_trans_huge(*pmd));
4572
4573         if (pmd_huge(*pmd)) {
4574                 if (!pmdpp)
4575                         goto out;
4576
4577                 if (range) {
4578                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4579                                                 NULL, mm, address & PMD_MASK,
4580                                                 (address & PMD_MASK) + PMD_SIZE);
4581                         mmu_notifier_invalidate_range_start(range);
4582                 }
4583                 *ptlp = pmd_lock(mm, pmd);
4584                 if (pmd_huge(*pmd)) {
4585                         *pmdpp = pmd;
4586                         return 0;
4587                 }
4588                 spin_unlock(*ptlp);
4589                 if (range)
4590                         mmu_notifier_invalidate_range_end(range);
4591         }
4592
4593         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4594                 goto out;
4595
4596         if (range) {
4597                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4598                                         address & PAGE_MASK,
4599                                         (address & PAGE_MASK) + PAGE_SIZE);
4600                 mmu_notifier_invalidate_range_start(range);
4601         }
4602         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4603         if (!pte_present(*ptep))
4604                 goto unlock;
4605         *ptepp = ptep;
4606         return 0;
4607 unlock:
4608         pte_unmap_unlock(ptep, *ptlp);
4609         if (range)
4610                 mmu_notifier_invalidate_range_end(range);
4611 out:
4612         return -EINVAL;
4613 }
4614
4615 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4616                              pte_t **ptepp, spinlock_t **ptlp)
4617 {
4618         int res;
4619
4620         /* (void) is needed to make gcc happy */
4621         (void) __cond_lock(*ptlp,
4622                            !(res = __follow_pte_pmd(mm, address, NULL,
4623                                                     ptepp, NULL, ptlp)));
4624         return res;
4625 }
4626
4627 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4628                    struct mmu_notifier_range *range,
4629                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4630 {
4631         int res;
4632
4633         /* (void) is needed to make gcc happy */
4634         (void) __cond_lock(*ptlp,
4635                            !(res = __follow_pte_pmd(mm, address, range,
4636                                                     ptepp, pmdpp, ptlp)));
4637         return res;
4638 }
4639 EXPORT_SYMBOL(follow_pte_pmd);
4640
4641 /**
4642  * follow_pfn - look up PFN at a user virtual address
4643  * @vma: memory mapping
4644  * @address: user virtual address
4645  * @pfn: location to store found PFN
4646  *
4647  * Only IO mappings and raw PFN mappings are allowed.
4648  *
4649  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4650  */
4651 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4652         unsigned long *pfn)
4653 {
4654         int ret = -EINVAL;
4655         spinlock_t *ptl;
4656         pte_t *ptep;
4657
4658         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4659                 return ret;
4660
4661         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4662         if (ret)
4663                 return ret;
4664         *pfn = pte_pfn(*ptep);
4665         pte_unmap_unlock(ptep, ptl);
4666         return 0;
4667 }
4668 EXPORT_SYMBOL(follow_pfn);
4669
4670 #ifdef CONFIG_HAVE_IOREMAP_PROT
4671 int follow_phys(struct vm_area_struct *vma,
4672                 unsigned long address, unsigned int flags,
4673                 unsigned long *prot, resource_size_t *phys)
4674 {
4675         int ret = -EINVAL;
4676         pte_t *ptep, pte;
4677         spinlock_t *ptl;
4678
4679         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4680                 goto out;
4681
4682         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4683                 goto out;
4684         pte = *ptep;
4685
4686         if ((flags & FOLL_WRITE) && !pte_write(pte))
4687                 goto unlock;
4688
4689         *prot = pgprot_val(pte_pgprot(pte));
4690         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4691
4692         ret = 0;
4693 unlock:
4694         pte_unmap_unlock(ptep, ptl);
4695 out:
4696         return ret;
4697 }
4698
4699 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4700                         void *buf, int len, int write)
4701 {
4702         resource_size_t phys_addr;
4703         unsigned long prot = 0;
4704         void __iomem *maddr;
4705         int offset = addr & (PAGE_SIZE-1);
4706
4707         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4708                 return -EINVAL;
4709
4710         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4711         if (!maddr)
4712                 return -ENOMEM;
4713
4714         if (write)
4715                 memcpy_toio(maddr + offset, buf, len);
4716         else
4717                 memcpy_fromio(buf, maddr + offset, len);
4718         iounmap(maddr);
4719
4720         return len;
4721 }
4722 EXPORT_SYMBOL_GPL(generic_access_phys);
4723 #endif
4724
4725 /*
4726  * Access another process' address space as given in mm.  If non-NULL, use the
4727  * given task for page fault accounting.
4728  */
4729 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4730                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4731 {
4732         struct vm_area_struct *vma;
4733         void *old_buf = buf;
4734         int write = gup_flags & FOLL_WRITE;
4735
4736         if (mmap_read_lock_killable(mm))
4737                 return 0;
4738
4739         /* ignore errors, just check how much was successfully transferred */
4740         while (len) {
4741                 int bytes, ret, offset;
4742                 void *maddr;
4743                 struct page *page = NULL;
4744
4745                 ret = get_user_pages_remote(mm, addr, 1,
4746                                 gup_flags, &page, &vma, NULL);
4747                 if (ret <= 0) {
4748 #ifndef CONFIG_HAVE_IOREMAP_PROT
4749                         break;
4750 #else
4751                         /*
4752                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4753                          * we can access using slightly different code.
4754                          */
4755                         vma = find_vma(mm, addr);
4756                         if (!vma || vma->vm_start > addr)
4757                                 break;
4758                         if (vma->vm_ops && vma->vm_ops->access)
4759                                 ret = vma->vm_ops->access(vma, addr, buf,
4760                                                           len, write);
4761                         if (ret <= 0)
4762                                 break;
4763                         bytes = ret;
4764 #endif
4765                 } else {
4766                         bytes = len;
4767                         offset = addr & (PAGE_SIZE-1);
4768                         if (bytes > PAGE_SIZE-offset)
4769                                 bytes = PAGE_SIZE-offset;
4770
4771                         maddr = kmap(page);
4772                         if (write) {
4773                                 copy_to_user_page(vma, page, addr,
4774                                                   maddr + offset, buf, bytes);
4775                                 set_page_dirty_lock(page);
4776                         } else {
4777                                 copy_from_user_page(vma, page, addr,
4778                                                     buf, maddr + offset, bytes);
4779                         }
4780                         kunmap(page);
4781                         put_page(page);
4782                 }
4783                 len -= bytes;
4784                 buf += bytes;
4785                 addr += bytes;
4786         }
4787         mmap_read_unlock(mm);
4788
4789         return buf - old_buf;
4790 }
4791
4792 /**
4793  * access_remote_vm - access another process' address space
4794  * @mm:         the mm_struct of the target address space
4795  * @addr:       start address to access
4796  * @buf:        source or destination buffer
4797  * @len:        number of bytes to transfer
4798  * @gup_flags:  flags modifying lookup behaviour
4799  *
4800  * The caller must hold a reference on @mm.
4801  *
4802  * Return: number of bytes copied from source to destination.
4803  */
4804 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4805                 void *buf, int len, unsigned int gup_flags)
4806 {
4807         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4808 }
4809
4810 /*
4811  * Access another process' address space.
4812  * Source/target buffer must be kernel space,
4813  * Do not walk the page table directly, use get_user_pages
4814  */
4815 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4816                 void *buf, int len, unsigned int gup_flags)
4817 {
4818         struct mm_struct *mm;
4819         int ret;
4820
4821         mm = get_task_mm(tsk);
4822         if (!mm)
4823                 return 0;
4824
4825         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4826
4827         mmput(mm);
4828
4829         return ret;
4830 }
4831 EXPORT_SYMBOL_GPL(access_process_vm);
4832
4833 /*
4834  * Print the name of a VMA.
4835  */
4836 void print_vma_addr(char *prefix, unsigned long ip)
4837 {
4838         struct mm_struct *mm = current->mm;
4839         struct vm_area_struct *vma;
4840
4841         /*
4842          * we might be running from an atomic context so we cannot sleep
4843          */
4844         if (!mmap_read_trylock(mm))
4845                 return;
4846
4847         vma = find_vma(mm, ip);
4848         if (vma && vma->vm_file) {
4849                 struct file *f = vma->vm_file;
4850                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4851                 if (buf) {
4852                         char *p;
4853
4854                         p = file_path(f, buf, PAGE_SIZE);
4855                         if (IS_ERR(p))
4856                                 p = "?";
4857                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4858                                         vma->vm_start,
4859                                         vma->vm_end - vma->vm_start);
4860                         free_page((unsigned long)buf);
4861                 }
4862         }
4863         mmap_read_unlock(mm);
4864 }
4865
4866 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4867 void __might_fault(const char *file, int line)
4868 {
4869         /*
4870          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4871          * holding the mmap_lock, this is safe because kernel memory doesn't
4872          * get paged out, therefore we'll never actually fault, and the
4873          * below annotations will generate false positives.
4874          */
4875         if (uaccess_kernel())
4876                 return;
4877         if (pagefault_disabled())
4878                 return;
4879         __might_sleep(file, line, 0);
4880 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4881         if (current->mm)
4882                 might_lock_read(&current->mm->mmap_lock);
4883 #endif
4884 }
4885 EXPORT_SYMBOL(__might_fault);
4886 #endif
4887
4888 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4889 /*
4890  * Process all subpages of the specified huge page with the specified
4891  * operation.  The target subpage will be processed last to keep its
4892  * cache lines hot.
4893  */
4894 static inline void process_huge_page(
4895         unsigned long addr_hint, unsigned int pages_per_huge_page,
4896         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4897         void *arg)
4898 {
4899         int i, n, base, l;
4900         unsigned long addr = addr_hint &
4901                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4902
4903         /* Process target subpage last to keep its cache lines hot */
4904         might_sleep();
4905         n = (addr_hint - addr) / PAGE_SIZE;
4906         if (2 * n <= pages_per_huge_page) {
4907                 /* If target subpage in first half of huge page */
4908                 base = 0;
4909                 l = n;
4910                 /* Process subpages at the end of huge page */
4911                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4912                         cond_resched();
4913                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4914                 }
4915         } else {
4916                 /* If target subpage in second half of huge page */
4917                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4918                 l = pages_per_huge_page - n;
4919                 /* Process subpages at the begin of huge page */
4920                 for (i = 0; i < base; i++) {
4921                         cond_resched();
4922                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4923                 }
4924         }
4925         /*
4926          * Process remaining subpages in left-right-left-right pattern
4927          * towards the target subpage
4928          */
4929         for (i = 0; i < l; i++) {
4930                 int left_idx = base + i;
4931                 int right_idx = base + 2 * l - 1 - i;
4932
4933                 cond_resched();
4934                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4935                 cond_resched();
4936                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4937         }
4938 }
4939
4940 static void clear_gigantic_page(struct page *page,
4941                                 unsigned long addr,
4942                                 unsigned int pages_per_huge_page)
4943 {
4944         int i;
4945         struct page *p = page;
4946
4947         might_sleep();
4948         for (i = 0; i < pages_per_huge_page;
4949              i++, p = mem_map_next(p, page, i)) {
4950                 cond_resched();
4951                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4952         }
4953 }
4954
4955 static void clear_subpage(unsigned long addr, int idx, void *arg)
4956 {
4957         struct page *page = arg;
4958
4959         clear_user_highpage(page + idx, addr);
4960 }
4961
4962 void clear_huge_page(struct page *page,
4963                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4964 {
4965         unsigned long addr = addr_hint &
4966                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4967
4968         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4969                 clear_gigantic_page(page, addr, pages_per_huge_page);
4970                 return;
4971         }
4972
4973         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4974 }
4975
4976 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4977                                     unsigned long addr,
4978                                     struct vm_area_struct *vma,
4979                                     unsigned int pages_per_huge_page)
4980 {
4981         int i;
4982         struct page *dst_base = dst;
4983         struct page *src_base = src;
4984
4985         for (i = 0; i < pages_per_huge_page; ) {
4986                 cond_resched();
4987                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4988
4989                 i++;
4990                 dst = mem_map_next(dst, dst_base, i);
4991                 src = mem_map_next(src, src_base, i);
4992         }
4993 }
4994
4995 struct copy_subpage_arg {
4996         struct page *dst;
4997         struct page *src;
4998         struct vm_area_struct *vma;
4999 };
5000
5001 static void copy_subpage(unsigned long addr, int idx, void *arg)
5002 {
5003         struct copy_subpage_arg *copy_arg = arg;
5004
5005         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5006                            addr, copy_arg->vma);
5007 }
5008
5009 void copy_user_huge_page(struct page *dst, struct page *src,
5010                          unsigned long addr_hint, struct vm_area_struct *vma,
5011                          unsigned int pages_per_huge_page)
5012 {
5013         unsigned long addr = addr_hint &
5014                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5015         struct copy_subpage_arg arg = {
5016                 .dst = dst,
5017                 .src = src,
5018                 .vma = vma,
5019         };
5020
5021         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5022                 copy_user_gigantic_page(dst, src, addr, vma,
5023                                         pages_per_huge_page);
5024                 return;
5025         }
5026
5027         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5028 }
5029
5030 long copy_huge_page_from_user(struct page *dst_page,
5031                                 const void __user *usr_src,
5032                                 unsigned int pages_per_huge_page,
5033                                 bool allow_pagefault)
5034 {
5035         void *src = (void *)usr_src;
5036         void *page_kaddr;
5037         unsigned long i, rc = 0;
5038         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5039
5040         for (i = 0; i < pages_per_huge_page; i++) {
5041                 if (allow_pagefault)
5042                         page_kaddr = kmap(dst_page + i);
5043                 else
5044                         page_kaddr = kmap_atomic(dst_page + i);
5045                 rc = copy_from_user(page_kaddr,
5046                                 (const void __user *)(src + i * PAGE_SIZE),
5047                                 PAGE_SIZE);
5048                 if (allow_pagefault)
5049                         kunmap(dst_page + i);
5050                 else
5051                         kunmap_atomic(page_kaddr);
5052
5053                 ret_val -= (PAGE_SIZE - rc);
5054                 if (rc)
5055                         break;
5056
5057                 cond_resched();
5058         }
5059         return ret_val;
5060 }
5061 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5062
5063 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5064
5065 static struct kmem_cache *page_ptl_cachep;
5066
5067 void __init ptlock_cache_init(void)
5068 {
5069         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5070                         SLAB_PANIC, NULL);
5071 }
5072
5073 bool ptlock_alloc(struct page *page)
5074 {
5075         spinlock_t *ptl;
5076
5077         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5078         if (!ptl)
5079                 return false;
5080         page->ptl = ptl;
5081         return true;
5082 }
5083
5084 void ptlock_free(struct page *page)
5085 {
5086         kmem_cache_free(page_ptl_cachep, page->ptl);
5087 }
5088 #endif