Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126         zero_pfn = page_to_pfn(ZERO_PAGE(0));
127         return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136         int i;
137
138         for (i = 0; i < NR_MM_COUNTERS; i++) {
139                 if (current->rss_stat.count[i]) {
140                         add_mm_counter(mm, i, current->rss_stat.count[i]);
141                         current->rss_stat.count[i] = 0;
142                 }
143         }
144         current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149         struct task_struct *task = current;
150
151         if (likely(task->mm == mm))
152                 task->rss_stat.count[member] += val;
153         else
154                 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH  (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163         if (unlikely(task != current))
164                 return;
165         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166                 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183         struct mmu_gather_batch *batch;
184
185         batch = tlb->active;
186         if (batch->next) {
187                 tlb->active = batch->next;
188                 return 1;
189         }
190
191         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192                 return 0;
193
194         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195         if (!batch)
196                 return 0;
197
198         tlb->batch_count++;
199         batch->next = NULL;
200         batch->nr   = 0;
201         batch->max  = MAX_GATHER_BATCH;
202
203         tlb->active->next = batch;
204         tlb->active = batch;
205
206         return 1;
207 }
208
209 /* tlb_gather_mmu
210  *      Called to initialize an (on-stack) mmu_gather structure for page-table
211  *      tear-down from @mm. The @fullmm argument is used when @mm is without
212  *      users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
215 {
216         tlb->mm = mm;
217
218         /* Is it from 0 to ~0? */
219         tlb->fullmm     = !(start | (end+1));
220         tlb->need_flush_all = 0;
221         tlb->start      = start;
222         tlb->end        = end;
223         tlb->need_flush = 0;
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233 }
234
235 void tlb_flush_mmu(struct mmu_gather *tlb)
236 {
237         struct mmu_gather_batch *batch;
238
239         if (!tlb->need_flush)
240                 return;
241         tlb->need_flush = 0;
242         tlb_flush(tlb);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244         tlb_table_flush(tlb);
245 #endif
246
247         for (batch = &tlb->local; batch; batch = batch->next) {
248                 free_pages_and_swap_cache(batch->pages, batch->nr);
249                 batch->nr = 0;
250         }
251         tlb->active = &tlb->local;
252 }
253
254 /* tlb_finish_mmu
255  *      Called at the end of the shootdown operation to free up any resources
256  *      that were required.
257  */
258 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
259 {
260         struct mmu_gather_batch *batch, *next;
261
262         tlb_flush_mmu(tlb);
263
264         /* keep the page table cache within bounds */
265         check_pgt_cache();
266
267         for (batch = tlb->local.next; batch; batch = next) {
268                 next = batch->next;
269                 free_pages((unsigned long)batch, 0);
270         }
271         tlb->local.next = NULL;
272 }
273
274 /* __tlb_remove_page
275  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276  *      handling the additional races in SMP caused by other CPUs caching valid
277  *      mappings in their TLBs. Returns the number of free page slots left.
278  *      When out of page slots we must call tlb_flush_mmu().
279  */
280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
281 {
282         struct mmu_gather_batch *batch;
283
284         VM_BUG_ON(!tlb->need_flush);
285
286         batch = tlb->active;
287         batch->pages[batch->nr++] = page;
288         if (batch->nr == batch->max) {
289                 if (!tlb_next_batch(tlb))
290                         return 0;
291                 batch = tlb->active;
292         }
293         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
294
295         return batch->max - batch->nr;
296 }
297
298 #endif /* HAVE_GENERIC_MMU_GATHER */
299
300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301
302 /*
303  * See the comment near struct mmu_table_batch.
304  */
305
306 static void tlb_remove_table_smp_sync(void *arg)
307 {
308         /* Simply deliver the interrupt */
309 }
310
311 static void tlb_remove_table_one(void *table)
312 {
313         /*
314          * This isn't an RCU grace period and hence the page-tables cannot be
315          * assumed to be actually RCU-freed.
316          *
317          * It is however sufficient for software page-table walkers that rely on
318          * IRQ disabling. See the comment near struct mmu_table_batch.
319          */
320         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
321         __tlb_remove_table(table);
322 }
323
324 static void tlb_remove_table_rcu(struct rcu_head *head)
325 {
326         struct mmu_table_batch *batch;
327         int i;
328
329         batch = container_of(head, struct mmu_table_batch, rcu);
330
331         for (i = 0; i < batch->nr; i++)
332                 __tlb_remove_table(batch->tables[i]);
333
334         free_page((unsigned long)batch);
335 }
336
337 void tlb_table_flush(struct mmu_gather *tlb)
338 {
339         struct mmu_table_batch **batch = &tlb->batch;
340
341         if (*batch) {
342                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
343                 *batch = NULL;
344         }
345 }
346
347 void tlb_remove_table(struct mmu_gather *tlb, void *table)
348 {
349         struct mmu_table_batch **batch = &tlb->batch;
350
351         tlb->need_flush = 1;
352
353         /*
354          * When there's less then two users of this mm there cannot be a
355          * concurrent page-table walk.
356          */
357         if (atomic_read(&tlb->mm->mm_users) < 2) {
358                 __tlb_remove_table(table);
359                 return;
360         }
361
362         if (*batch == NULL) {
363                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
364                 if (*batch == NULL) {
365                         tlb_remove_table_one(table);
366                         return;
367                 }
368                 (*batch)->nr = 0;
369         }
370         (*batch)->tables[(*batch)->nr++] = table;
371         if ((*batch)->nr == MAX_TABLE_BATCH)
372                 tlb_table_flush(tlb);
373 }
374
375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376
377 /*
378  * Note: this doesn't free the actual pages themselves. That
379  * has been handled earlier when unmapping all the memory regions.
380  */
381 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
382                            unsigned long addr)
383 {
384         pgtable_t token = pmd_pgtable(*pmd);
385         pmd_clear(pmd);
386         pte_free_tlb(tlb, token, addr);
387         atomic_long_dec(&tlb->mm->nr_ptes);
388 }
389
390 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
391                                 unsigned long addr, unsigned long end,
392                                 unsigned long floor, unsigned long ceiling)
393 {
394         pmd_t *pmd;
395         unsigned long next;
396         unsigned long start;
397
398         start = addr;
399         pmd = pmd_offset(pud, addr);
400         do {
401                 next = pmd_addr_end(addr, end);
402                 if (pmd_none_or_clear_bad(pmd))
403                         continue;
404                 free_pte_range(tlb, pmd, addr);
405         } while (pmd++, addr = next, addr != end);
406
407         start &= PUD_MASK;
408         if (start < floor)
409                 return;
410         if (ceiling) {
411                 ceiling &= PUD_MASK;
412                 if (!ceiling)
413                         return;
414         }
415         if (end - 1 > ceiling - 1)
416                 return;
417
418         pmd = pmd_offset(pud, start);
419         pud_clear(pud);
420         pmd_free_tlb(tlb, pmd, start);
421 }
422
423 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
424                                 unsigned long addr, unsigned long end,
425                                 unsigned long floor, unsigned long ceiling)
426 {
427         pud_t *pud;
428         unsigned long next;
429         unsigned long start;
430
431         start = addr;
432         pud = pud_offset(pgd, addr);
433         do {
434                 next = pud_addr_end(addr, end);
435                 if (pud_none_or_clear_bad(pud))
436                         continue;
437                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
438         } while (pud++, addr = next, addr != end);
439
440         start &= PGDIR_MASK;
441         if (start < floor)
442                 return;
443         if (ceiling) {
444                 ceiling &= PGDIR_MASK;
445                 if (!ceiling)
446                         return;
447         }
448         if (end - 1 > ceiling - 1)
449                 return;
450
451         pud = pud_offset(pgd, start);
452         pgd_clear(pgd);
453         pud_free_tlb(tlb, pud, start);
454 }
455
456 /*
457  * This function frees user-level page tables of a process.
458  */
459 void free_pgd_range(struct mmu_gather *tlb,
460                         unsigned long addr, unsigned long end,
461                         unsigned long floor, unsigned long ceiling)
462 {
463         pgd_t *pgd;
464         unsigned long next;
465
466         /*
467          * The next few lines have given us lots of grief...
468          *
469          * Why are we testing PMD* at this top level?  Because often
470          * there will be no work to do at all, and we'd prefer not to
471          * go all the way down to the bottom just to discover that.
472          *
473          * Why all these "- 1"s?  Because 0 represents both the bottom
474          * of the address space and the top of it (using -1 for the
475          * top wouldn't help much: the masks would do the wrong thing).
476          * The rule is that addr 0 and floor 0 refer to the bottom of
477          * the address space, but end 0 and ceiling 0 refer to the top
478          * Comparisons need to use "end - 1" and "ceiling - 1" (though
479          * that end 0 case should be mythical).
480          *
481          * Wherever addr is brought up or ceiling brought down, we must
482          * be careful to reject "the opposite 0" before it confuses the
483          * subsequent tests.  But what about where end is brought down
484          * by PMD_SIZE below? no, end can't go down to 0 there.
485          *
486          * Whereas we round start (addr) and ceiling down, by different
487          * masks at different levels, in order to test whether a table
488          * now has no other vmas using it, so can be freed, we don't
489          * bother to round floor or end up - the tests don't need that.
490          */
491
492         addr &= PMD_MASK;
493         if (addr < floor) {
494                 addr += PMD_SIZE;
495                 if (!addr)
496                         return;
497         }
498         if (ceiling) {
499                 ceiling &= PMD_MASK;
500                 if (!ceiling)
501                         return;
502         }
503         if (end - 1 > ceiling - 1)
504                 end -= PMD_SIZE;
505         if (addr > end - 1)
506                 return;
507
508         pgd = pgd_offset(tlb->mm, addr);
509         do {
510                 next = pgd_addr_end(addr, end);
511                 if (pgd_none_or_clear_bad(pgd))
512                         continue;
513                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
514         } while (pgd++, addr = next, addr != end);
515 }
516
517 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
518                 unsigned long floor, unsigned long ceiling)
519 {
520         while (vma) {
521                 struct vm_area_struct *next = vma->vm_next;
522                 unsigned long addr = vma->vm_start;
523
524                 /*
525                  * Hide vma from rmap and truncate_pagecache before freeing
526                  * pgtables
527                  */
528                 unlink_anon_vmas(vma);
529                 unlink_file_vma(vma);
530
531                 if (is_vm_hugetlb_page(vma)) {
532                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
533                                 floor, next? next->vm_start: ceiling);
534                 } else {
535                         /*
536                          * Optimization: gather nearby vmas into one call down
537                          */
538                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
539                                && !is_vm_hugetlb_page(next)) {
540                                 vma = next;
541                                 next = vma->vm_next;
542                                 unlink_anon_vmas(vma);
543                                 unlink_file_vma(vma);
544                         }
545                         free_pgd_range(tlb, addr, vma->vm_end,
546                                 floor, next? next->vm_start: ceiling);
547                 }
548                 vma = next;
549         }
550 }
551
552 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
553                 pmd_t *pmd, unsigned long address)
554 {
555         spinlock_t *ptl;
556         pgtable_t new = pte_alloc_one(mm, address);
557         int wait_split_huge_page;
558         if (!new)
559                 return -ENOMEM;
560
561         /*
562          * Ensure all pte setup (eg. pte page lock and page clearing) are
563          * visible before the pte is made visible to other CPUs by being
564          * put into page tables.
565          *
566          * The other side of the story is the pointer chasing in the page
567          * table walking code (when walking the page table without locking;
568          * ie. most of the time). Fortunately, these data accesses consist
569          * of a chain of data-dependent loads, meaning most CPUs (alpha
570          * being the notable exception) will already guarantee loads are
571          * seen in-order. See the alpha page table accessors for the
572          * smp_read_barrier_depends() barriers in page table walking code.
573          */
574         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
575
576         ptl = pmd_lock(mm, pmd);
577         wait_split_huge_page = 0;
578         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
579                 atomic_long_inc(&mm->nr_ptes);
580                 pmd_populate(mm, pmd, new);
581                 new = NULL;
582         } else if (unlikely(pmd_trans_splitting(*pmd)))
583                 wait_split_huge_page = 1;
584         spin_unlock(ptl);
585         if (new)
586                 pte_free(mm, new);
587         if (wait_split_huge_page)
588                 wait_split_huge_page(vma->anon_vma, pmd);
589         return 0;
590 }
591
592 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
593 {
594         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
595         if (!new)
596                 return -ENOMEM;
597
598         smp_wmb(); /* See comment in __pte_alloc */
599
600         spin_lock(&init_mm.page_table_lock);
601         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
602                 pmd_populate_kernel(&init_mm, pmd, new);
603                 new = NULL;
604         } else
605                 VM_BUG_ON(pmd_trans_splitting(*pmd));
606         spin_unlock(&init_mm.page_table_lock);
607         if (new)
608                 pte_free_kernel(&init_mm, new);
609         return 0;
610 }
611
612 static inline void init_rss_vec(int *rss)
613 {
614         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
615 }
616
617 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
618 {
619         int i;
620
621         if (current->mm == mm)
622                 sync_mm_rss(mm);
623         for (i = 0; i < NR_MM_COUNTERS; i++)
624                 if (rss[i])
625                         add_mm_counter(mm, i, rss[i]);
626 }
627
628 /*
629  * This function is called to print an error when a bad pte
630  * is found. For example, we might have a PFN-mapped pte in
631  * a region that doesn't allow it.
632  *
633  * The calling function must still handle the error.
634  */
635 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
636                           pte_t pte, struct page *page)
637 {
638         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
639         pud_t *pud = pud_offset(pgd, addr);
640         pmd_t *pmd = pmd_offset(pud, addr);
641         struct address_space *mapping;
642         pgoff_t index;
643         static unsigned long resume;
644         static unsigned long nr_shown;
645         static unsigned long nr_unshown;
646
647         /*
648          * Allow a burst of 60 reports, then keep quiet for that minute;
649          * or allow a steady drip of one report per second.
650          */
651         if (nr_shown == 60) {
652                 if (time_before(jiffies, resume)) {
653                         nr_unshown++;
654                         return;
655                 }
656                 if (nr_unshown) {
657                         printk(KERN_ALERT
658                                 "BUG: Bad page map: %lu messages suppressed\n",
659                                 nr_unshown);
660                         nr_unshown = 0;
661                 }
662                 nr_shown = 0;
663         }
664         if (nr_shown++ == 0)
665                 resume = jiffies + 60 * HZ;
666
667         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
668         index = linear_page_index(vma, addr);
669
670         printk(KERN_ALERT
671                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
672                 current->comm,
673                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
674         if (page)
675                 dump_page(page, "bad pte");
676         printk(KERN_ALERT
677                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
678                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
679         /*
680          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
681          */
682         if (vma->vm_ops)
683                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
684                        vma->vm_ops->fault);
685         if (vma->vm_file)
686                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
687                        vma->vm_file->f_op->mmap);
688         dump_stack();
689         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
690 }
691
692 static inline bool is_cow_mapping(vm_flags_t flags)
693 {
694         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
695 }
696
697 /*
698  * vm_normal_page -- This function gets the "struct page" associated with a pte.
699  *
700  * "Special" mappings do not wish to be associated with a "struct page" (either
701  * it doesn't exist, or it exists but they don't want to touch it). In this
702  * case, NULL is returned here. "Normal" mappings do have a struct page.
703  *
704  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705  * pte bit, in which case this function is trivial. Secondly, an architecture
706  * may not have a spare pte bit, which requires a more complicated scheme,
707  * described below.
708  *
709  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710  * special mapping (even if there are underlying and valid "struct pages").
711  * COWed pages of a VM_PFNMAP are always normal.
712  *
713  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
715  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716  * mapping will always honor the rule
717  *
718  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719  *
720  * And for normal mappings this is false.
721  *
722  * This restricts such mappings to be a linear translation from virtual address
723  * to pfn. To get around this restriction, we allow arbitrary mappings so long
724  * as the vma is not a COW mapping; in that case, we know that all ptes are
725  * special (because none can have been COWed).
726  *
727  *
728  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
729  *
730  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731  * page" backing, however the difference is that _all_ pages with a struct
732  * page (that is, those where pfn_valid is true) are refcounted and considered
733  * normal pages by the VM. The disadvantage is that pages are refcounted
734  * (which can be slower and simply not an option for some PFNMAP users). The
735  * advantage is that we don't have to follow the strict linearity rule of
736  * PFNMAP mappings in order to support COWable mappings.
737  *
738  */
739 #ifdef __HAVE_ARCH_PTE_SPECIAL
740 # define HAVE_PTE_SPECIAL 1
741 #else
742 # define HAVE_PTE_SPECIAL 0
743 #endif
744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745                                 pte_t pte)
746 {
747         unsigned long pfn = pte_pfn(pte);
748
749         if (HAVE_PTE_SPECIAL) {
750                 if (likely(!pte_special(pte)))
751                         goto check_pfn;
752                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753                         return NULL;
754                 if (!is_zero_pfn(pfn))
755                         print_bad_pte(vma, addr, pte, NULL);
756                 return NULL;
757         }
758
759         /* !HAVE_PTE_SPECIAL case follows: */
760
761         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762                 if (vma->vm_flags & VM_MIXEDMAP) {
763                         if (!pfn_valid(pfn))
764                                 return NULL;
765                         goto out;
766                 } else {
767                         unsigned long off;
768                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
769                         if (pfn == vma->vm_pgoff + off)
770                                 return NULL;
771                         if (!is_cow_mapping(vma->vm_flags))
772                                 return NULL;
773                 }
774         }
775
776         if (is_zero_pfn(pfn))
777                 return NULL;
778 check_pfn:
779         if (unlikely(pfn > highest_memmap_pfn)) {
780                 print_bad_pte(vma, addr, pte, NULL);
781                 return NULL;
782         }
783
784         /*
785          * NOTE! We still have PageReserved() pages in the page tables.
786          * eg. VDSO mappings can cause them to exist.
787          */
788 out:
789         return pfn_to_page(pfn);
790 }
791
792 /*
793  * copy one vm_area from one task to the other. Assumes the page tables
794  * already present in the new task to be cleared in the whole range
795  * covered by this vma.
796  */
797
798 static inline unsigned long
799 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
800                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
801                 unsigned long addr, int *rss)
802 {
803         unsigned long vm_flags = vma->vm_flags;
804         pte_t pte = *src_pte;
805         struct page *page;
806
807         /* pte contains position in swap or file, so copy. */
808         if (unlikely(!pte_present(pte))) {
809                 if (!pte_file(pte)) {
810                         swp_entry_t entry = pte_to_swp_entry(pte);
811
812                         if (swap_duplicate(entry) < 0)
813                                 return entry.val;
814
815                         /* make sure dst_mm is on swapoff's mmlist. */
816                         if (unlikely(list_empty(&dst_mm->mmlist))) {
817                                 spin_lock(&mmlist_lock);
818                                 if (list_empty(&dst_mm->mmlist))
819                                         list_add(&dst_mm->mmlist,
820                                                  &src_mm->mmlist);
821                                 spin_unlock(&mmlist_lock);
822                         }
823                         if (likely(!non_swap_entry(entry)))
824                                 rss[MM_SWAPENTS]++;
825                         else if (is_migration_entry(entry)) {
826                                 page = migration_entry_to_page(entry);
827
828                                 if (PageAnon(page))
829                                         rss[MM_ANONPAGES]++;
830                                 else
831                                         rss[MM_FILEPAGES]++;
832
833                                 if (is_write_migration_entry(entry) &&
834                                     is_cow_mapping(vm_flags)) {
835                                         /*
836                                          * COW mappings require pages in both
837                                          * parent and child to be set to read.
838                                          */
839                                         make_migration_entry_read(&entry);
840                                         pte = swp_entry_to_pte(entry);
841                                         if (pte_swp_soft_dirty(*src_pte))
842                                                 pte = pte_swp_mksoft_dirty(pte);
843                                         set_pte_at(src_mm, addr, src_pte, pte);
844                                 }
845                         }
846                 }
847                 goto out_set_pte;
848         }
849
850         /*
851          * If it's a COW mapping, write protect it both
852          * in the parent and the child
853          */
854         if (is_cow_mapping(vm_flags)) {
855                 ptep_set_wrprotect(src_mm, addr, src_pte);
856                 pte = pte_wrprotect(pte);
857         }
858
859         /*
860          * If it's a shared mapping, mark it clean in
861          * the child
862          */
863         if (vm_flags & VM_SHARED)
864                 pte = pte_mkclean(pte);
865         pte = pte_mkold(pte);
866
867         page = vm_normal_page(vma, addr, pte);
868         if (page) {
869                 get_page(page);
870                 page_dup_rmap(page);
871                 if (PageAnon(page))
872                         rss[MM_ANONPAGES]++;
873                 else
874                         rss[MM_FILEPAGES]++;
875         }
876
877 out_set_pte:
878         set_pte_at(dst_mm, addr, dst_pte, pte);
879         return 0;
880 }
881
882 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
883                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
884                    unsigned long addr, unsigned long end)
885 {
886         pte_t *orig_src_pte, *orig_dst_pte;
887         pte_t *src_pte, *dst_pte;
888         spinlock_t *src_ptl, *dst_ptl;
889         int progress = 0;
890         int rss[NR_MM_COUNTERS];
891         swp_entry_t entry = (swp_entry_t){0};
892
893 again:
894         init_rss_vec(rss);
895
896         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
897         if (!dst_pte)
898                 return -ENOMEM;
899         src_pte = pte_offset_map(src_pmd, addr);
900         src_ptl = pte_lockptr(src_mm, src_pmd);
901         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
902         orig_src_pte = src_pte;
903         orig_dst_pte = dst_pte;
904         arch_enter_lazy_mmu_mode();
905
906         do {
907                 /*
908                  * We are holding two locks at this point - either of them
909                  * could generate latencies in another task on another CPU.
910                  */
911                 if (progress >= 32) {
912                         progress = 0;
913                         if (need_resched() ||
914                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
915                                 break;
916                 }
917                 if (pte_none(*src_pte)) {
918                         progress++;
919                         continue;
920                 }
921                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
922                                                         vma, addr, rss);
923                 if (entry.val)
924                         break;
925                 progress += 8;
926         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
927
928         arch_leave_lazy_mmu_mode();
929         spin_unlock(src_ptl);
930         pte_unmap(orig_src_pte);
931         add_mm_rss_vec(dst_mm, rss);
932         pte_unmap_unlock(orig_dst_pte, dst_ptl);
933         cond_resched();
934
935         if (entry.val) {
936                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
937                         return -ENOMEM;
938                 progress = 0;
939         }
940         if (addr != end)
941                 goto again;
942         return 0;
943 }
944
945 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
947                 unsigned long addr, unsigned long end)
948 {
949         pmd_t *src_pmd, *dst_pmd;
950         unsigned long next;
951
952         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
953         if (!dst_pmd)
954                 return -ENOMEM;
955         src_pmd = pmd_offset(src_pud, addr);
956         do {
957                 next = pmd_addr_end(addr, end);
958                 if (pmd_trans_huge(*src_pmd)) {
959                         int err;
960                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
961                         err = copy_huge_pmd(dst_mm, src_mm,
962                                             dst_pmd, src_pmd, addr, vma);
963                         if (err == -ENOMEM)
964                                 return -ENOMEM;
965                         if (!err)
966                                 continue;
967                         /* fall through */
968                 }
969                 if (pmd_none_or_clear_bad(src_pmd))
970                         continue;
971                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
972                                                 vma, addr, next))
973                         return -ENOMEM;
974         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
975         return 0;
976 }
977
978 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
980                 unsigned long addr, unsigned long end)
981 {
982         pud_t *src_pud, *dst_pud;
983         unsigned long next;
984
985         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
986         if (!dst_pud)
987                 return -ENOMEM;
988         src_pud = pud_offset(src_pgd, addr);
989         do {
990                 next = pud_addr_end(addr, end);
991                 if (pud_none_or_clear_bad(src_pud))
992                         continue;
993                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
994                                                 vma, addr, next))
995                         return -ENOMEM;
996         } while (dst_pud++, src_pud++, addr = next, addr != end);
997         return 0;
998 }
999
1000 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1001                 struct vm_area_struct *vma)
1002 {
1003         pgd_t *src_pgd, *dst_pgd;
1004         unsigned long next;
1005         unsigned long addr = vma->vm_start;
1006         unsigned long end = vma->vm_end;
1007         unsigned long mmun_start;       /* For mmu_notifiers */
1008         unsigned long mmun_end;         /* For mmu_notifiers */
1009         bool is_cow;
1010         int ret;
1011
1012         /*
1013          * Don't copy ptes where a page fault will fill them correctly.
1014          * Fork becomes much lighter when there are big shared or private
1015          * readonly mappings. The tradeoff is that copy_page_range is more
1016          * efficient than faulting.
1017          */
1018         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1019                                VM_PFNMAP | VM_MIXEDMAP))) {
1020                 if (!vma->anon_vma)
1021                         return 0;
1022         }
1023
1024         if (is_vm_hugetlb_page(vma))
1025                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1026
1027         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1028                 /*
1029                  * We do not free on error cases below as remove_vma
1030                  * gets called on error from higher level routine
1031                  */
1032                 ret = track_pfn_copy(vma);
1033                 if (ret)
1034                         return ret;
1035         }
1036
1037         /*
1038          * We need to invalidate the secondary MMU mappings only when
1039          * there could be a permission downgrade on the ptes of the
1040          * parent mm. And a permission downgrade will only happen if
1041          * is_cow_mapping() returns true.
1042          */
1043         is_cow = is_cow_mapping(vma->vm_flags);
1044         mmun_start = addr;
1045         mmun_end   = end;
1046         if (is_cow)
1047                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1048                                                     mmun_end);
1049
1050         ret = 0;
1051         dst_pgd = pgd_offset(dst_mm, addr);
1052         src_pgd = pgd_offset(src_mm, addr);
1053         do {
1054                 next = pgd_addr_end(addr, end);
1055                 if (pgd_none_or_clear_bad(src_pgd))
1056                         continue;
1057                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1058                                             vma, addr, next))) {
1059                         ret = -ENOMEM;
1060                         break;
1061                 }
1062         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1063
1064         if (is_cow)
1065                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1066         return ret;
1067 }
1068
1069 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1070                                 struct vm_area_struct *vma, pmd_t *pmd,
1071                                 unsigned long addr, unsigned long end,
1072                                 struct zap_details *details)
1073 {
1074         struct mm_struct *mm = tlb->mm;
1075         int force_flush = 0;
1076         int rss[NR_MM_COUNTERS];
1077         spinlock_t *ptl;
1078         pte_t *start_pte;
1079         pte_t *pte;
1080
1081 again:
1082         init_rss_vec(rss);
1083         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1084         pte = start_pte;
1085         arch_enter_lazy_mmu_mode();
1086         do {
1087                 pte_t ptent = *pte;
1088                 if (pte_none(ptent)) {
1089                         continue;
1090                 }
1091
1092                 if (pte_present(ptent)) {
1093                         struct page *page;
1094
1095                         page = vm_normal_page(vma, addr, ptent);
1096                         if (unlikely(details) && page) {
1097                                 /*
1098                                  * unmap_shared_mapping_pages() wants to
1099                                  * invalidate cache without truncating:
1100                                  * unmap shared but keep private pages.
1101                                  */
1102                                 if (details->check_mapping &&
1103                                     details->check_mapping != page->mapping)
1104                                         continue;
1105                                 /*
1106                                  * Each page->index must be checked when
1107                                  * invalidating or truncating nonlinear.
1108                                  */
1109                                 if (details->nonlinear_vma &&
1110                                     (page->index < details->first_index ||
1111                                      page->index > details->last_index))
1112                                         continue;
1113                         }
1114                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1115                                                         tlb->fullmm);
1116                         tlb_remove_tlb_entry(tlb, pte, addr);
1117                         if (unlikely(!page))
1118                                 continue;
1119                         if (unlikely(details) && details->nonlinear_vma
1120                             && linear_page_index(details->nonlinear_vma,
1121                                                 addr) != page->index) {
1122                                 pte_t ptfile = pgoff_to_pte(page->index);
1123                                 if (pte_soft_dirty(ptent))
1124                                         pte_file_mksoft_dirty(ptfile);
1125                                 set_pte_at(mm, addr, pte, ptfile);
1126                         }
1127                         if (PageAnon(page))
1128                                 rss[MM_ANONPAGES]--;
1129                         else {
1130                                 if (pte_dirty(ptent))
1131                                         set_page_dirty(page);
1132                                 if (pte_young(ptent) &&
1133                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1134                                         mark_page_accessed(page);
1135                                 rss[MM_FILEPAGES]--;
1136                         }
1137                         page_remove_rmap(page);
1138                         if (unlikely(page_mapcount(page) < 0))
1139                                 print_bad_pte(vma, addr, ptent, page);
1140                         force_flush = !__tlb_remove_page(tlb, page);
1141                         if (force_flush)
1142                                 break;
1143                         continue;
1144                 }
1145                 /*
1146                  * If details->check_mapping, we leave swap entries;
1147                  * if details->nonlinear_vma, we leave file entries.
1148                  */
1149                 if (unlikely(details))
1150                         continue;
1151                 if (pte_file(ptent)) {
1152                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1153                                 print_bad_pte(vma, addr, ptent, NULL);
1154                 } else {
1155                         swp_entry_t entry = pte_to_swp_entry(ptent);
1156
1157                         if (!non_swap_entry(entry))
1158                                 rss[MM_SWAPENTS]--;
1159                         else if (is_migration_entry(entry)) {
1160                                 struct page *page;
1161
1162                                 page = migration_entry_to_page(entry);
1163
1164                                 if (PageAnon(page))
1165                                         rss[MM_ANONPAGES]--;
1166                                 else
1167                                         rss[MM_FILEPAGES]--;
1168                         }
1169                         if (unlikely(!free_swap_and_cache(entry)))
1170                                 print_bad_pte(vma, addr, ptent, NULL);
1171                 }
1172                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1173         } while (pte++, addr += PAGE_SIZE, addr != end);
1174
1175         add_mm_rss_vec(mm, rss);
1176         arch_leave_lazy_mmu_mode();
1177         pte_unmap_unlock(start_pte, ptl);
1178
1179         /*
1180          * mmu_gather ran out of room to batch pages, we break out of
1181          * the PTE lock to avoid doing the potential expensive TLB invalidate
1182          * and page-free while holding it.
1183          */
1184         if (force_flush) {
1185                 unsigned long old_end;
1186
1187                 force_flush = 0;
1188
1189                 /*
1190                  * Flush the TLB just for the previous segment,
1191                  * then update the range to be the remaining
1192                  * TLB range.
1193                  */
1194                 old_end = tlb->end;
1195                 tlb->end = addr;
1196
1197                 tlb_flush_mmu(tlb);
1198
1199                 tlb->start = addr;
1200                 tlb->end = old_end;
1201
1202                 if (addr != end)
1203                         goto again;
1204         }
1205
1206         return addr;
1207 }
1208
1209 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1210                                 struct vm_area_struct *vma, pud_t *pud,
1211                                 unsigned long addr, unsigned long end,
1212                                 struct zap_details *details)
1213 {
1214         pmd_t *pmd;
1215         unsigned long next;
1216
1217         pmd = pmd_offset(pud, addr);
1218         do {
1219                 next = pmd_addr_end(addr, end);
1220                 if (pmd_trans_huge(*pmd)) {
1221                         if (next - addr != HPAGE_PMD_SIZE) {
1222 #ifdef CONFIG_DEBUG_VM
1223                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1224                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1225                                                 __func__, addr, end,
1226                                                 vma->vm_start,
1227                                                 vma->vm_end);
1228                                         BUG();
1229                                 }
1230 #endif
1231                                 split_huge_page_pmd(vma, addr, pmd);
1232                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1233                                 goto next;
1234                         /* fall through */
1235                 }
1236                 /*
1237                  * Here there can be other concurrent MADV_DONTNEED or
1238                  * trans huge page faults running, and if the pmd is
1239                  * none or trans huge it can change under us. This is
1240                  * because MADV_DONTNEED holds the mmap_sem in read
1241                  * mode.
1242                  */
1243                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1244                         goto next;
1245                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1246 next:
1247                 cond_resched();
1248         } while (pmd++, addr = next, addr != end);
1249
1250         return addr;
1251 }
1252
1253 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1254                                 struct vm_area_struct *vma, pgd_t *pgd,
1255                                 unsigned long addr, unsigned long end,
1256                                 struct zap_details *details)
1257 {
1258         pud_t *pud;
1259         unsigned long next;
1260
1261         pud = pud_offset(pgd, addr);
1262         do {
1263                 next = pud_addr_end(addr, end);
1264                 if (pud_none_or_clear_bad(pud))
1265                         continue;
1266                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1267         } while (pud++, addr = next, addr != end);
1268
1269         return addr;
1270 }
1271
1272 static void unmap_page_range(struct mmu_gather *tlb,
1273                              struct vm_area_struct *vma,
1274                              unsigned long addr, unsigned long end,
1275                              struct zap_details *details)
1276 {
1277         pgd_t *pgd;
1278         unsigned long next;
1279
1280         if (details && !details->check_mapping && !details->nonlinear_vma)
1281                 details = NULL;
1282
1283         BUG_ON(addr >= end);
1284         mem_cgroup_uncharge_start();
1285         tlb_start_vma(tlb, vma);
1286         pgd = pgd_offset(vma->vm_mm, addr);
1287         do {
1288                 next = pgd_addr_end(addr, end);
1289                 if (pgd_none_or_clear_bad(pgd))
1290                         continue;
1291                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1292         } while (pgd++, addr = next, addr != end);
1293         tlb_end_vma(tlb, vma);
1294         mem_cgroup_uncharge_end();
1295 }
1296
1297
1298 static void unmap_single_vma(struct mmu_gather *tlb,
1299                 struct vm_area_struct *vma, unsigned long start_addr,
1300                 unsigned long end_addr,
1301                 struct zap_details *details)
1302 {
1303         unsigned long start = max(vma->vm_start, start_addr);
1304         unsigned long end;
1305
1306         if (start >= vma->vm_end)
1307                 return;
1308         end = min(vma->vm_end, end_addr);
1309         if (end <= vma->vm_start)
1310                 return;
1311
1312         if (vma->vm_file)
1313                 uprobe_munmap(vma, start, end);
1314
1315         if (unlikely(vma->vm_flags & VM_PFNMAP))
1316                 untrack_pfn(vma, 0, 0);
1317
1318         if (start != end) {
1319                 if (unlikely(is_vm_hugetlb_page(vma))) {
1320                         /*
1321                          * It is undesirable to test vma->vm_file as it
1322                          * should be non-null for valid hugetlb area.
1323                          * However, vm_file will be NULL in the error
1324                          * cleanup path of mmap_region. When
1325                          * hugetlbfs ->mmap method fails,
1326                          * mmap_region() nullifies vma->vm_file
1327                          * before calling this function to clean up.
1328                          * Since no pte has actually been setup, it is
1329                          * safe to do nothing in this case.
1330                          */
1331                         if (vma->vm_file) {
1332                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1333                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1334                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1335                         }
1336                 } else
1337                         unmap_page_range(tlb, vma, start, end, details);
1338         }
1339 }
1340
1341 /**
1342  * unmap_vmas - unmap a range of memory covered by a list of vma's
1343  * @tlb: address of the caller's struct mmu_gather
1344  * @vma: the starting vma
1345  * @start_addr: virtual address at which to start unmapping
1346  * @end_addr: virtual address at which to end unmapping
1347  *
1348  * Unmap all pages in the vma list.
1349  *
1350  * Only addresses between `start' and `end' will be unmapped.
1351  *
1352  * The VMA list must be sorted in ascending virtual address order.
1353  *
1354  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1355  * range after unmap_vmas() returns.  So the only responsibility here is to
1356  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1357  * drops the lock and schedules.
1358  */
1359 void unmap_vmas(struct mmu_gather *tlb,
1360                 struct vm_area_struct *vma, unsigned long start_addr,
1361                 unsigned long end_addr)
1362 {
1363         struct mm_struct *mm = vma->vm_mm;
1364
1365         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1366         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1367                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1368         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1369 }
1370
1371 /**
1372  * zap_page_range - remove user pages in a given range
1373  * @vma: vm_area_struct holding the applicable pages
1374  * @start: starting address of pages to zap
1375  * @size: number of bytes to zap
1376  * @details: details of nonlinear truncation or shared cache invalidation
1377  *
1378  * Caller must protect the VMA list
1379  */
1380 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1381                 unsigned long size, struct zap_details *details)
1382 {
1383         struct mm_struct *mm = vma->vm_mm;
1384         struct mmu_gather tlb;
1385         unsigned long end = start + size;
1386
1387         lru_add_drain();
1388         tlb_gather_mmu(&tlb, mm, start, end);
1389         update_hiwater_rss(mm);
1390         mmu_notifier_invalidate_range_start(mm, start, end);
1391         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1392                 unmap_single_vma(&tlb, vma, start, end, details);
1393         mmu_notifier_invalidate_range_end(mm, start, end);
1394         tlb_finish_mmu(&tlb, start, end);
1395 }
1396
1397 /**
1398  * zap_page_range_single - remove user pages in a given range
1399  * @vma: vm_area_struct holding the applicable pages
1400  * @address: starting address of pages to zap
1401  * @size: number of bytes to zap
1402  * @details: details of nonlinear truncation or shared cache invalidation
1403  *
1404  * The range must fit into one VMA.
1405  */
1406 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1407                 unsigned long size, struct zap_details *details)
1408 {
1409         struct mm_struct *mm = vma->vm_mm;
1410         struct mmu_gather tlb;
1411         unsigned long end = address + size;
1412
1413         lru_add_drain();
1414         tlb_gather_mmu(&tlb, mm, address, end);
1415         update_hiwater_rss(mm);
1416         mmu_notifier_invalidate_range_start(mm, address, end);
1417         unmap_single_vma(&tlb, vma, address, end, details);
1418         mmu_notifier_invalidate_range_end(mm, address, end);
1419         tlb_finish_mmu(&tlb, address, end);
1420 }
1421
1422 /**
1423  * zap_vma_ptes - remove ptes mapping the vma
1424  * @vma: vm_area_struct holding ptes to be zapped
1425  * @address: starting address of pages to zap
1426  * @size: number of bytes to zap
1427  *
1428  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1429  *
1430  * The entire address range must be fully contained within the vma.
1431  *
1432  * Returns 0 if successful.
1433  */
1434 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1435                 unsigned long size)
1436 {
1437         if (address < vma->vm_start || address + size > vma->vm_end ||
1438                         !(vma->vm_flags & VM_PFNMAP))
1439                 return -1;
1440         zap_page_range_single(vma, address, size, NULL);
1441         return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1444
1445 /**
1446  * follow_page_mask - look up a page descriptor from a user-virtual address
1447  * @vma: vm_area_struct mapping @address
1448  * @address: virtual address to look up
1449  * @flags: flags modifying lookup behaviour
1450  * @page_mask: on output, *page_mask is set according to the size of the page
1451  *
1452  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1453  *
1454  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1455  * an error pointer if there is a mapping to something not represented
1456  * by a page descriptor (see also vm_normal_page()).
1457  */
1458 struct page *follow_page_mask(struct vm_area_struct *vma,
1459                               unsigned long address, unsigned int flags,
1460                               unsigned int *page_mask)
1461 {
1462         pgd_t *pgd;
1463         pud_t *pud;
1464         pmd_t *pmd;
1465         pte_t *ptep, pte;
1466         spinlock_t *ptl;
1467         struct page *page;
1468         struct mm_struct *mm = vma->vm_mm;
1469
1470         *page_mask = 0;
1471
1472         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1473         if (!IS_ERR(page)) {
1474                 BUG_ON(flags & FOLL_GET);
1475                 goto out;
1476         }
1477
1478         page = NULL;
1479         pgd = pgd_offset(mm, address);
1480         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1481                 goto no_page_table;
1482
1483         pud = pud_offset(pgd, address);
1484         if (pud_none(*pud))
1485                 goto no_page_table;
1486         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1487                 if (flags & FOLL_GET)
1488                         goto out;
1489                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1490                 goto out;
1491         }
1492         if (unlikely(pud_bad(*pud)))
1493                 goto no_page_table;
1494
1495         pmd = pmd_offset(pud, address);
1496         if (pmd_none(*pmd))
1497                 goto no_page_table;
1498         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1499                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1500                 if (flags & FOLL_GET) {
1501                         /*
1502                          * Refcount on tail pages are not well-defined and
1503                          * shouldn't be taken. The caller should handle a NULL
1504                          * return when trying to follow tail pages.
1505                          */
1506                         if (PageHead(page))
1507                                 get_page(page);
1508                         else {
1509                                 page = NULL;
1510                                 goto out;
1511                         }
1512                 }
1513                 goto out;
1514         }
1515         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1516                 goto no_page_table;
1517         if (pmd_trans_huge(*pmd)) {
1518                 if (flags & FOLL_SPLIT) {
1519                         split_huge_page_pmd(vma, address, pmd);
1520                         goto split_fallthrough;
1521                 }
1522                 ptl = pmd_lock(mm, pmd);
1523                 if (likely(pmd_trans_huge(*pmd))) {
1524                         if (unlikely(pmd_trans_splitting(*pmd))) {
1525                                 spin_unlock(ptl);
1526                                 wait_split_huge_page(vma->anon_vma, pmd);
1527                         } else {
1528                                 page = follow_trans_huge_pmd(vma, address,
1529                                                              pmd, flags);
1530                                 spin_unlock(ptl);
1531                                 *page_mask = HPAGE_PMD_NR - 1;
1532                                 goto out;
1533                         }
1534                 } else
1535                         spin_unlock(ptl);
1536                 /* fall through */
1537         }
1538 split_fallthrough:
1539         if (unlikely(pmd_bad(*pmd)))
1540                 goto no_page_table;
1541
1542         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1543
1544         pte = *ptep;
1545         if (!pte_present(pte)) {
1546                 swp_entry_t entry;
1547                 /*
1548                  * KSM's break_ksm() relies upon recognizing a ksm page
1549                  * even while it is being migrated, so for that case we
1550                  * need migration_entry_wait().
1551                  */
1552                 if (likely(!(flags & FOLL_MIGRATION)))
1553                         goto no_page;
1554                 if (pte_none(pte) || pte_file(pte))
1555                         goto no_page;
1556                 entry = pte_to_swp_entry(pte);
1557                 if (!is_migration_entry(entry))
1558                         goto no_page;
1559                 pte_unmap_unlock(ptep, ptl);
1560                 migration_entry_wait(mm, pmd, address);
1561                 goto split_fallthrough;
1562         }
1563         if ((flags & FOLL_NUMA) && pte_numa(pte))
1564                 goto no_page;
1565         if ((flags & FOLL_WRITE) && !pte_write(pte))
1566                 goto unlock;
1567
1568         page = vm_normal_page(vma, address, pte);
1569         if (unlikely(!page)) {
1570                 if ((flags & FOLL_DUMP) ||
1571                     !is_zero_pfn(pte_pfn(pte)))
1572                         goto bad_page;
1573                 page = pte_page(pte);
1574         }
1575
1576         if (flags & FOLL_GET)
1577                 get_page_foll(page);
1578         if (flags & FOLL_TOUCH) {
1579                 if ((flags & FOLL_WRITE) &&
1580                     !pte_dirty(pte) && !PageDirty(page))
1581                         set_page_dirty(page);
1582                 /*
1583                  * pte_mkyoung() would be more correct here, but atomic care
1584                  * is needed to avoid losing the dirty bit: it is easier to use
1585                  * mark_page_accessed().
1586                  */
1587                 mark_page_accessed(page);
1588         }
1589         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1590                 /*
1591                  * The preliminary mapping check is mainly to avoid the
1592                  * pointless overhead of lock_page on the ZERO_PAGE
1593                  * which might bounce very badly if there is contention.
1594                  *
1595                  * If the page is already locked, we don't need to
1596                  * handle it now - vmscan will handle it later if and
1597                  * when it attempts to reclaim the page.
1598                  */
1599                 if (page->mapping && trylock_page(page)) {
1600                         lru_add_drain();  /* push cached pages to LRU */
1601                         /*
1602                          * Because we lock page here, and migration is
1603                          * blocked by the pte's page reference, and we
1604                          * know the page is still mapped, we don't even
1605                          * need to check for file-cache page truncation.
1606                          */
1607                         mlock_vma_page(page);
1608                         unlock_page(page);
1609                 }
1610         }
1611 unlock:
1612         pte_unmap_unlock(ptep, ptl);
1613 out:
1614         return page;
1615
1616 bad_page:
1617         pte_unmap_unlock(ptep, ptl);
1618         return ERR_PTR(-EFAULT);
1619
1620 no_page:
1621         pte_unmap_unlock(ptep, ptl);
1622         if (!pte_none(pte))
1623                 return page;
1624
1625 no_page_table:
1626         /*
1627          * When core dumping an enormous anonymous area that nobody
1628          * has touched so far, we don't want to allocate unnecessary pages or
1629          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1630          * then get_dump_page() will return NULL to leave a hole in the dump.
1631          * But we can only make this optimization where a hole would surely
1632          * be zero-filled if handle_mm_fault() actually did handle it.
1633          */
1634         if ((flags & FOLL_DUMP) &&
1635             (!vma->vm_ops || !vma->vm_ops->fault))
1636                 return ERR_PTR(-EFAULT);
1637         return page;
1638 }
1639
1640 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1641 {
1642         return stack_guard_page_start(vma, addr) ||
1643                stack_guard_page_end(vma, addr+PAGE_SIZE);
1644 }
1645
1646 /**
1647  * __get_user_pages() - pin user pages in memory
1648  * @tsk:        task_struct of target task
1649  * @mm:         mm_struct of target mm
1650  * @start:      starting user address
1651  * @nr_pages:   number of pages from start to pin
1652  * @gup_flags:  flags modifying pin behaviour
1653  * @pages:      array that receives pointers to the pages pinned.
1654  *              Should be at least nr_pages long. Or NULL, if caller
1655  *              only intends to ensure the pages are faulted in.
1656  * @vmas:       array of pointers to vmas corresponding to each page.
1657  *              Or NULL if the caller does not require them.
1658  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1659  *
1660  * Returns number of pages pinned. This may be fewer than the number
1661  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1662  * were pinned, returns -errno. Each page returned must be released
1663  * with a put_page() call when it is finished with. vmas will only
1664  * remain valid while mmap_sem is held.
1665  *
1666  * Must be called with mmap_sem held for read or write.
1667  *
1668  * __get_user_pages walks a process's page tables and takes a reference to
1669  * each struct page that each user address corresponds to at a given
1670  * instant. That is, it takes the page that would be accessed if a user
1671  * thread accesses the given user virtual address at that instant.
1672  *
1673  * This does not guarantee that the page exists in the user mappings when
1674  * __get_user_pages returns, and there may even be a completely different
1675  * page there in some cases (eg. if mmapped pagecache has been invalidated
1676  * and subsequently re faulted). However it does guarantee that the page
1677  * won't be freed completely. And mostly callers simply care that the page
1678  * contains data that was valid *at some point in time*. Typically, an IO
1679  * or similar operation cannot guarantee anything stronger anyway because
1680  * locks can't be held over the syscall boundary.
1681  *
1682  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1683  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1684  * appropriate) must be called after the page is finished with, and
1685  * before put_page is called.
1686  *
1687  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1688  * or mmap_sem contention, and if waiting is needed to pin all pages,
1689  * *@nonblocking will be set to 0.
1690  *
1691  * In most cases, get_user_pages or get_user_pages_fast should be used
1692  * instead of __get_user_pages. __get_user_pages should be used only if
1693  * you need some special @gup_flags.
1694  */
1695 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1696                 unsigned long start, unsigned long nr_pages,
1697                 unsigned int gup_flags, struct page **pages,
1698                 struct vm_area_struct **vmas, int *nonblocking)
1699 {
1700         long i;
1701         unsigned long vm_flags;
1702         unsigned int page_mask;
1703
1704         if (!nr_pages)
1705                 return 0;
1706
1707         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1708
1709         /*
1710          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1711          * would be called on PROT_NONE ranges. We must never invoke
1712          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1713          * page faults would unprotect the PROT_NONE ranges if
1714          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1715          * bitflag. So to avoid that, don't set FOLL_NUMA if
1716          * FOLL_FORCE is set.
1717          */
1718         if (!(gup_flags & FOLL_FORCE))
1719                 gup_flags |= FOLL_NUMA;
1720
1721         i = 0;
1722
1723         do {
1724                 struct vm_area_struct *vma;
1725
1726                 vma = find_extend_vma(mm, start);
1727                 if (!vma && in_gate_area(mm, start)) {
1728                         unsigned long pg = start & PAGE_MASK;
1729                         pgd_t *pgd;
1730                         pud_t *pud;
1731                         pmd_t *pmd;
1732                         pte_t *pte;
1733
1734                         /* user gate pages are read-only */
1735                         if (gup_flags & FOLL_WRITE)
1736                                 goto efault;
1737                         if (pg > TASK_SIZE)
1738                                 pgd = pgd_offset_k(pg);
1739                         else
1740                                 pgd = pgd_offset_gate(mm, pg);
1741                         BUG_ON(pgd_none(*pgd));
1742                         pud = pud_offset(pgd, pg);
1743                         BUG_ON(pud_none(*pud));
1744                         pmd = pmd_offset(pud, pg);
1745                         if (pmd_none(*pmd))
1746                                 goto efault;
1747                         VM_BUG_ON(pmd_trans_huge(*pmd));
1748                         pte = pte_offset_map(pmd, pg);
1749                         if (pte_none(*pte)) {
1750                                 pte_unmap(pte);
1751                                 goto efault;
1752                         }
1753                         vma = get_gate_vma(mm);
1754                         if (pages) {
1755                                 struct page *page;
1756
1757                                 page = vm_normal_page(vma, start, *pte);
1758                                 if (!page) {
1759                                         if (!(gup_flags & FOLL_DUMP) &&
1760                                              is_zero_pfn(pte_pfn(*pte)))
1761                                                 page = pte_page(*pte);
1762                                         else {
1763                                                 pte_unmap(pte);
1764                                                 goto efault;
1765                                         }
1766                                 }
1767                                 pages[i] = page;
1768                                 get_page(page);
1769                         }
1770                         pte_unmap(pte);
1771                         page_mask = 0;
1772                         goto next_page;
1773                 }
1774
1775                 if (!vma)
1776                         goto efault;
1777                 vm_flags = vma->vm_flags;
1778                 if (vm_flags & (VM_IO | VM_PFNMAP))
1779                         goto efault;
1780
1781                 if (gup_flags & FOLL_WRITE) {
1782                         if (!(vm_flags & VM_WRITE)) {
1783                                 if (!(gup_flags & FOLL_FORCE))
1784                                         goto efault;
1785                                 /*
1786                                  * We used to let the write,force case do COW
1787                                  * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1788                                  * ptrace could set a breakpoint in a read-only
1789                                  * mapping of an executable, without corrupting
1790                                  * the file (yet only when that file had been
1791                                  * opened for writing!).  Anon pages in shared
1792                                  * mappings are surprising: now just reject it.
1793                                  */
1794                                 if (!is_cow_mapping(vm_flags)) {
1795                                         WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
1796                                         goto efault;
1797                                 }
1798                         }
1799                 } else {
1800                         if (!(vm_flags & VM_READ)) {
1801                                 if (!(gup_flags & FOLL_FORCE))
1802                                         goto efault;
1803                                 /*
1804                                  * Is there actually any vma we can reach here
1805                                  * which does not have VM_MAYREAD set?
1806                                  */
1807                                 if (!(vm_flags & VM_MAYREAD))
1808                                         goto efault;
1809                         }
1810                 }
1811
1812                 if (is_vm_hugetlb_page(vma)) {
1813                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1814                                         &start, &nr_pages, i, gup_flags);
1815                         continue;
1816                 }
1817
1818                 do {
1819                         struct page *page;
1820                         unsigned int foll_flags = gup_flags;
1821                         unsigned int page_increm;
1822
1823                         /*
1824                          * If we have a pending SIGKILL, don't keep faulting
1825                          * pages and potentially allocating memory.
1826                          */
1827                         if (unlikely(fatal_signal_pending(current)))
1828                                 return i ? i : -ERESTARTSYS;
1829
1830                         cond_resched();
1831                         while (!(page = follow_page_mask(vma, start,
1832                                                 foll_flags, &page_mask))) {
1833                                 int ret;
1834                                 unsigned int fault_flags = 0;
1835
1836                                 /* For mlock, just skip the stack guard page. */
1837                                 if (foll_flags & FOLL_MLOCK) {
1838                                         if (stack_guard_page(vma, start))
1839                                                 goto next_page;
1840                                 }
1841                                 if (foll_flags & FOLL_WRITE)
1842                                         fault_flags |= FAULT_FLAG_WRITE;
1843                                 if (nonblocking)
1844                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1845                                 if (foll_flags & FOLL_NOWAIT)
1846                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1847
1848                                 ret = handle_mm_fault(mm, vma, start,
1849                                                         fault_flags);
1850
1851                                 if (ret & VM_FAULT_ERROR) {
1852                                         if (ret & VM_FAULT_OOM)
1853                                                 return i ? i : -ENOMEM;
1854                                         if (ret & (VM_FAULT_HWPOISON |
1855                                                    VM_FAULT_HWPOISON_LARGE)) {
1856                                                 if (i)
1857                                                         return i;
1858                                                 else if (gup_flags & FOLL_HWPOISON)
1859                                                         return -EHWPOISON;
1860                                                 else
1861                                                         return -EFAULT;
1862                                         }
1863                                         if (ret & VM_FAULT_SIGBUS)
1864                                                 goto efault;
1865                                         BUG();
1866                                 }
1867
1868                                 if (tsk) {
1869                                         if (ret & VM_FAULT_MAJOR)
1870                                                 tsk->maj_flt++;
1871                                         else
1872                                                 tsk->min_flt++;
1873                                 }
1874
1875                                 if (ret & VM_FAULT_RETRY) {
1876                                         if (nonblocking)
1877                                                 *nonblocking = 0;
1878                                         return i;
1879                                 }
1880
1881                                 /*
1882                                  * The VM_FAULT_WRITE bit tells us that
1883                                  * do_wp_page has broken COW when necessary,
1884                                  * even if maybe_mkwrite decided not to set
1885                                  * pte_write. We can thus safely do subsequent
1886                                  * page lookups as if they were reads. But only
1887                                  * do so when looping for pte_write is futile:
1888                                  * in some cases userspace may also be wanting
1889                                  * to write to the gotten user page, which a
1890                                  * read fault here might prevent (a readonly
1891                                  * page might get reCOWed by userspace write).
1892                                  */
1893                                 if ((ret & VM_FAULT_WRITE) &&
1894                                     !(vma->vm_flags & VM_WRITE))
1895                                         foll_flags &= ~FOLL_WRITE;
1896
1897                                 cond_resched();
1898                         }
1899                         if (IS_ERR(page))
1900                                 return i ? i : PTR_ERR(page);
1901                         if (pages) {
1902                                 pages[i] = page;
1903
1904                                 flush_anon_page(vma, page, start);
1905                                 flush_dcache_page(page);
1906                                 page_mask = 0;
1907                         }
1908 next_page:
1909                         if (vmas) {
1910                                 vmas[i] = vma;
1911                                 page_mask = 0;
1912                         }
1913                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1914                         if (page_increm > nr_pages)
1915                                 page_increm = nr_pages;
1916                         i += page_increm;
1917                         start += page_increm * PAGE_SIZE;
1918                         nr_pages -= page_increm;
1919                 } while (nr_pages && start < vma->vm_end);
1920         } while (nr_pages);
1921         return i;
1922 efault:
1923         return i ? : -EFAULT;
1924 }
1925 EXPORT_SYMBOL(__get_user_pages);
1926
1927 /*
1928  * fixup_user_fault() - manually resolve a user page fault
1929  * @tsk:        the task_struct to use for page fault accounting, or
1930  *              NULL if faults are not to be recorded.
1931  * @mm:         mm_struct of target mm
1932  * @address:    user address
1933  * @fault_flags:flags to pass down to handle_mm_fault()
1934  *
1935  * This is meant to be called in the specific scenario where for locking reasons
1936  * we try to access user memory in atomic context (within a pagefault_disable()
1937  * section), this returns -EFAULT, and we want to resolve the user fault before
1938  * trying again.
1939  *
1940  * Typically this is meant to be used by the futex code.
1941  *
1942  * The main difference with get_user_pages() is that this function will
1943  * unconditionally call handle_mm_fault() which will in turn perform all the
1944  * necessary SW fixup of the dirty and young bits in the PTE, while
1945  * handle_mm_fault() only guarantees to update these in the struct page.
1946  *
1947  * This is important for some architectures where those bits also gate the
1948  * access permission to the page because they are maintained in software.  On
1949  * such architectures, gup() will not be enough to make a subsequent access
1950  * succeed.
1951  *
1952  * This should be called with the mm_sem held for read.
1953  */
1954 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1955                      unsigned long address, unsigned int fault_flags)
1956 {
1957         struct vm_area_struct *vma;
1958         vm_flags_t vm_flags;
1959         int ret;
1960
1961         vma = find_extend_vma(mm, address);
1962         if (!vma || address < vma->vm_start)
1963                 return -EFAULT;
1964
1965         vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1966         if (!(vm_flags & vma->vm_flags))
1967                 return -EFAULT;
1968
1969         ret = handle_mm_fault(mm, vma, address, fault_flags);
1970         if (ret & VM_FAULT_ERROR) {
1971                 if (ret & VM_FAULT_OOM)
1972                         return -ENOMEM;
1973                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1974                         return -EHWPOISON;
1975                 if (ret & VM_FAULT_SIGBUS)
1976                         return -EFAULT;
1977                 BUG();
1978         }
1979         if (tsk) {
1980                 if (ret & VM_FAULT_MAJOR)
1981                         tsk->maj_flt++;
1982                 else
1983                         tsk->min_flt++;
1984         }
1985         return 0;
1986 }
1987
1988 /*
1989  * get_user_pages() - pin user pages in memory
1990  * @tsk:        the task_struct to use for page fault accounting, or
1991  *              NULL if faults are not to be recorded.
1992  * @mm:         mm_struct of target mm
1993  * @start:      starting user address
1994  * @nr_pages:   number of pages from start to pin
1995  * @write:      whether pages will be written to by the caller
1996  * @force:      whether to force access even when user mapping is currently
1997  *              protected (but never forces write access to shared mapping).
1998  * @pages:      array that receives pointers to the pages pinned.
1999  *              Should be at least nr_pages long. Or NULL, if caller
2000  *              only intends to ensure the pages are faulted in.
2001  * @vmas:       array of pointers to vmas corresponding to each page.
2002  *              Or NULL if the caller does not require them.
2003  *
2004  * Returns number of pages pinned. This may be fewer than the number
2005  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2006  * were pinned, returns -errno. Each page returned must be released
2007  * with a put_page() call when it is finished with. vmas will only
2008  * remain valid while mmap_sem is held.
2009  *
2010  * Must be called with mmap_sem held for read or write.
2011  *
2012  * get_user_pages walks a process's page tables and takes a reference to
2013  * each struct page that each user address corresponds to at a given
2014  * instant. That is, it takes the page that would be accessed if a user
2015  * thread accesses the given user virtual address at that instant.
2016  *
2017  * This does not guarantee that the page exists in the user mappings when
2018  * get_user_pages returns, and there may even be a completely different
2019  * page there in some cases (eg. if mmapped pagecache has been invalidated
2020  * and subsequently re faulted). However it does guarantee that the page
2021  * won't be freed completely. And mostly callers simply care that the page
2022  * contains data that was valid *at some point in time*. Typically, an IO
2023  * or similar operation cannot guarantee anything stronger anyway because
2024  * locks can't be held over the syscall boundary.
2025  *
2026  * If write=0, the page must not be written to. If the page is written to,
2027  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2028  * after the page is finished with, and before put_page is called.
2029  *
2030  * get_user_pages is typically used for fewer-copy IO operations, to get a
2031  * handle on the memory by some means other than accesses via the user virtual
2032  * addresses. The pages may be submitted for DMA to devices or accessed via
2033  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2034  * use the correct cache flushing APIs.
2035  *
2036  * See also get_user_pages_fast, for performance critical applications.
2037  */
2038 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2039                 unsigned long start, unsigned long nr_pages, int write,
2040                 int force, struct page **pages, struct vm_area_struct **vmas)
2041 {
2042         int flags = FOLL_TOUCH;
2043
2044         if (pages)
2045                 flags |= FOLL_GET;
2046         if (write)
2047                 flags |= FOLL_WRITE;
2048         if (force)
2049                 flags |= FOLL_FORCE;
2050
2051         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2052                                 NULL);
2053 }
2054 EXPORT_SYMBOL(get_user_pages);
2055
2056 /**
2057  * get_dump_page() - pin user page in memory while writing it to core dump
2058  * @addr: user address
2059  *
2060  * Returns struct page pointer of user page pinned for dump,
2061  * to be freed afterwards by page_cache_release() or put_page().
2062  *
2063  * Returns NULL on any kind of failure - a hole must then be inserted into
2064  * the corefile, to preserve alignment with its headers; and also returns
2065  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2066  * allowing a hole to be left in the corefile to save diskspace.
2067  *
2068  * Called without mmap_sem, but after all other threads have been killed.
2069  */
2070 #ifdef CONFIG_ELF_CORE
2071 struct page *get_dump_page(unsigned long addr)
2072 {
2073         struct vm_area_struct *vma;
2074         struct page *page;
2075
2076         if (__get_user_pages(current, current->mm, addr, 1,
2077                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2078                              NULL) < 1)
2079                 return NULL;
2080         flush_cache_page(vma, addr, page_to_pfn(page));
2081         return page;
2082 }
2083 #endif /* CONFIG_ELF_CORE */
2084
2085 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2086                         spinlock_t **ptl)
2087 {
2088         pgd_t * pgd = pgd_offset(mm, addr);
2089         pud_t * pud = pud_alloc(mm, pgd, addr);
2090         if (pud) {
2091                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2092                 if (pmd) {
2093                         VM_BUG_ON(pmd_trans_huge(*pmd));
2094                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2095                 }
2096         }
2097         return NULL;
2098 }
2099
2100 /*
2101  * This is the old fallback for page remapping.
2102  *
2103  * For historical reasons, it only allows reserved pages. Only
2104  * old drivers should use this, and they needed to mark their
2105  * pages reserved for the old functions anyway.
2106  */
2107 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2108                         struct page *page, pgprot_t prot)
2109 {
2110         struct mm_struct *mm = vma->vm_mm;
2111         int retval;
2112         pte_t *pte;
2113         spinlock_t *ptl;
2114
2115         retval = -EINVAL;
2116         if (PageAnon(page))
2117                 goto out;
2118         retval = -ENOMEM;
2119         flush_dcache_page(page);
2120         pte = get_locked_pte(mm, addr, &ptl);
2121         if (!pte)
2122                 goto out;
2123         retval = -EBUSY;
2124         if (!pte_none(*pte))
2125                 goto out_unlock;
2126
2127         /* Ok, finally just insert the thing.. */
2128         get_page(page);
2129         inc_mm_counter_fast(mm, MM_FILEPAGES);
2130         page_add_file_rmap(page);
2131         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2132
2133         retval = 0;
2134         pte_unmap_unlock(pte, ptl);
2135         return retval;
2136 out_unlock:
2137         pte_unmap_unlock(pte, ptl);
2138 out:
2139         return retval;
2140 }
2141
2142 /**
2143  * vm_insert_page - insert single page into user vma
2144  * @vma: user vma to map to
2145  * @addr: target user address of this page
2146  * @page: source kernel page
2147  *
2148  * This allows drivers to insert individual pages they've allocated
2149  * into a user vma.
2150  *
2151  * The page has to be a nice clean _individual_ kernel allocation.
2152  * If you allocate a compound page, you need to have marked it as
2153  * such (__GFP_COMP), or manually just split the page up yourself
2154  * (see split_page()).
2155  *
2156  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2157  * took an arbitrary page protection parameter. This doesn't allow
2158  * that. Your vma protection will have to be set up correctly, which
2159  * means that if you want a shared writable mapping, you'd better
2160  * ask for a shared writable mapping!
2161  *
2162  * The page does not need to be reserved.
2163  *
2164  * Usually this function is called from f_op->mmap() handler
2165  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2166  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2167  * function from other places, for example from page-fault handler.
2168  */
2169 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2170                         struct page *page)
2171 {
2172         if (addr < vma->vm_start || addr >= vma->vm_end)
2173                 return -EFAULT;
2174         if (!page_count(page))
2175                 return -EINVAL;
2176         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2177                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2178                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2179                 vma->vm_flags |= VM_MIXEDMAP;
2180         }
2181         return insert_page(vma, addr, page, vma->vm_page_prot);
2182 }
2183 EXPORT_SYMBOL(vm_insert_page);
2184
2185 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2186                         unsigned long pfn, pgprot_t prot)
2187 {
2188         struct mm_struct *mm = vma->vm_mm;
2189         int retval;
2190         pte_t *pte, entry;
2191         spinlock_t *ptl;
2192
2193         retval = -ENOMEM;
2194         pte = get_locked_pte(mm, addr, &ptl);
2195         if (!pte)
2196                 goto out;
2197         retval = -EBUSY;
2198         if (!pte_none(*pte))
2199                 goto out_unlock;
2200
2201         /* Ok, finally just insert the thing.. */
2202         entry = pte_mkspecial(pfn_pte(pfn, prot));
2203         set_pte_at(mm, addr, pte, entry);
2204         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2205
2206         retval = 0;
2207 out_unlock:
2208         pte_unmap_unlock(pte, ptl);
2209 out:
2210         return retval;
2211 }
2212
2213 /**
2214  * vm_insert_pfn - insert single pfn into user vma
2215  * @vma: user vma to map to
2216  * @addr: target user address of this page
2217  * @pfn: source kernel pfn
2218  *
2219  * Similar to vm_insert_page, this allows drivers to insert individual pages
2220  * they've allocated into a user vma. Same comments apply.
2221  *
2222  * This function should only be called from a vm_ops->fault handler, and
2223  * in that case the handler should return NULL.
2224  *
2225  * vma cannot be a COW mapping.
2226  *
2227  * As this is called only for pages that do not currently exist, we
2228  * do not need to flush old virtual caches or the TLB.
2229  */
2230 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2231                         unsigned long pfn)
2232 {
2233         int ret;
2234         pgprot_t pgprot = vma->vm_page_prot;
2235         /*
2236          * Technically, architectures with pte_special can avoid all these
2237          * restrictions (same for remap_pfn_range).  However we would like
2238          * consistency in testing and feature parity among all, so we should
2239          * try to keep these invariants in place for everybody.
2240          */
2241         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2242         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2243                                                 (VM_PFNMAP|VM_MIXEDMAP));
2244         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2245         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2246
2247         if (addr < vma->vm_start || addr >= vma->vm_end)
2248                 return -EFAULT;
2249         if (track_pfn_insert(vma, &pgprot, pfn))
2250                 return -EINVAL;
2251
2252         ret = insert_pfn(vma, addr, pfn, pgprot);
2253
2254         return ret;
2255 }
2256 EXPORT_SYMBOL(vm_insert_pfn);
2257
2258 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2259                         unsigned long pfn)
2260 {
2261         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2262
2263         if (addr < vma->vm_start || addr >= vma->vm_end)
2264                 return -EFAULT;
2265
2266         /*
2267          * If we don't have pte special, then we have to use the pfn_valid()
2268          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2269          * refcount the page if pfn_valid is true (hence insert_page rather
2270          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2271          * without pte special, it would there be refcounted as a normal page.
2272          */
2273         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2274                 struct page *page;
2275
2276                 page = pfn_to_page(pfn);
2277                 return insert_page(vma, addr, page, vma->vm_page_prot);
2278         }
2279         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2280 }
2281 EXPORT_SYMBOL(vm_insert_mixed);
2282
2283 /*
2284  * maps a range of physical memory into the requested pages. the old
2285  * mappings are removed. any references to nonexistent pages results
2286  * in null mappings (currently treated as "copy-on-access")
2287  */
2288 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2289                         unsigned long addr, unsigned long end,
2290                         unsigned long pfn, pgprot_t prot)
2291 {
2292         pte_t *pte;
2293         spinlock_t *ptl;
2294
2295         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2296         if (!pte)
2297                 return -ENOMEM;
2298         arch_enter_lazy_mmu_mode();
2299         do {
2300                 BUG_ON(!pte_none(*pte));
2301                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2302                 pfn++;
2303         } while (pte++, addr += PAGE_SIZE, addr != end);
2304         arch_leave_lazy_mmu_mode();
2305         pte_unmap_unlock(pte - 1, ptl);
2306         return 0;
2307 }
2308
2309 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2310                         unsigned long addr, unsigned long end,
2311                         unsigned long pfn, pgprot_t prot)
2312 {
2313         pmd_t *pmd;
2314         unsigned long next;
2315
2316         pfn -= addr >> PAGE_SHIFT;
2317         pmd = pmd_alloc(mm, pud, addr);
2318         if (!pmd)
2319                 return -ENOMEM;
2320         VM_BUG_ON(pmd_trans_huge(*pmd));
2321         do {
2322                 next = pmd_addr_end(addr, end);
2323                 if (remap_pte_range(mm, pmd, addr, next,
2324                                 pfn + (addr >> PAGE_SHIFT), prot))
2325                         return -ENOMEM;
2326         } while (pmd++, addr = next, addr != end);
2327         return 0;
2328 }
2329
2330 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2331                         unsigned long addr, unsigned long end,
2332                         unsigned long pfn, pgprot_t prot)
2333 {
2334         pud_t *pud;
2335         unsigned long next;
2336
2337         pfn -= addr >> PAGE_SHIFT;
2338         pud = pud_alloc(mm, pgd, addr);
2339         if (!pud)
2340                 return -ENOMEM;
2341         do {
2342                 next = pud_addr_end(addr, end);
2343                 if (remap_pmd_range(mm, pud, addr, next,
2344                                 pfn + (addr >> PAGE_SHIFT), prot))
2345                         return -ENOMEM;
2346         } while (pud++, addr = next, addr != end);
2347         return 0;
2348 }
2349
2350 /**
2351  * remap_pfn_range - remap kernel memory to userspace
2352  * @vma: user vma to map to
2353  * @addr: target user address to start at
2354  * @pfn: physical address of kernel memory
2355  * @size: size of map area
2356  * @prot: page protection flags for this mapping
2357  *
2358  *  Note: this is only safe if the mm semaphore is held when called.
2359  */
2360 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2361                     unsigned long pfn, unsigned long size, pgprot_t prot)
2362 {
2363         pgd_t *pgd;
2364         unsigned long next;
2365         unsigned long end = addr + PAGE_ALIGN(size);
2366         struct mm_struct *mm = vma->vm_mm;
2367         int err;
2368
2369         /*
2370          * Physically remapped pages are special. Tell the
2371          * rest of the world about it:
2372          *   VM_IO tells people not to look at these pages
2373          *      (accesses can have side effects).
2374          *   VM_PFNMAP tells the core MM that the base pages are just
2375          *      raw PFN mappings, and do not have a "struct page" associated
2376          *      with them.
2377          *   VM_DONTEXPAND
2378          *      Disable vma merging and expanding with mremap().
2379          *   VM_DONTDUMP
2380          *      Omit vma from core dump, even when VM_IO turned off.
2381          *
2382          * There's a horrible special case to handle copy-on-write
2383          * behaviour that some programs depend on. We mark the "original"
2384          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2385          * See vm_normal_page() for details.
2386          */
2387         if (is_cow_mapping(vma->vm_flags)) {
2388                 if (addr != vma->vm_start || end != vma->vm_end)
2389                         return -EINVAL;
2390                 vma->vm_pgoff = pfn;
2391         }
2392
2393         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2394         if (err)
2395                 return -EINVAL;
2396
2397         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2398
2399         BUG_ON(addr >= end);
2400         pfn -= addr >> PAGE_SHIFT;
2401         pgd = pgd_offset(mm, addr);
2402         flush_cache_range(vma, addr, end);
2403         do {
2404                 next = pgd_addr_end(addr, end);
2405                 err = remap_pud_range(mm, pgd, addr, next,
2406                                 pfn + (addr >> PAGE_SHIFT), prot);
2407                 if (err)
2408                         break;
2409         } while (pgd++, addr = next, addr != end);
2410
2411         if (err)
2412                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2413
2414         return err;
2415 }
2416 EXPORT_SYMBOL(remap_pfn_range);
2417
2418 /**
2419  * vm_iomap_memory - remap memory to userspace
2420  * @vma: user vma to map to
2421  * @start: start of area
2422  * @len: size of area
2423  *
2424  * This is a simplified io_remap_pfn_range() for common driver use. The
2425  * driver just needs to give us the physical memory range to be mapped,
2426  * we'll figure out the rest from the vma information.
2427  *
2428  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2429  * whatever write-combining details or similar.
2430  */
2431 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2432 {
2433         unsigned long vm_len, pfn, pages;
2434
2435         /* Check that the physical memory area passed in looks valid */
2436         if (start + len < start)
2437                 return -EINVAL;
2438         /*
2439          * You *really* shouldn't map things that aren't page-aligned,
2440          * but we've historically allowed it because IO memory might
2441          * just have smaller alignment.
2442          */
2443         len += start & ~PAGE_MASK;
2444         pfn = start >> PAGE_SHIFT;
2445         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2446         if (pfn + pages < pfn)
2447                 return -EINVAL;
2448
2449         /* We start the mapping 'vm_pgoff' pages into the area */
2450         if (vma->vm_pgoff > pages)
2451                 return -EINVAL;
2452         pfn += vma->vm_pgoff;
2453         pages -= vma->vm_pgoff;
2454
2455         /* Can we fit all of the mapping? */
2456         vm_len = vma->vm_end - vma->vm_start;
2457         if (vm_len >> PAGE_SHIFT > pages)
2458                 return -EINVAL;
2459
2460         /* Ok, let it rip */
2461         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2462 }
2463 EXPORT_SYMBOL(vm_iomap_memory);
2464
2465 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2466                                      unsigned long addr, unsigned long end,
2467                                      pte_fn_t fn, void *data)
2468 {
2469         pte_t *pte;
2470         int err;
2471         pgtable_t token;
2472         spinlock_t *uninitialized_var(ptl);
2473
2474         pte = (mm == &init_mm) ?
2475                 pte_alloc_kernel(pmd, addr) :
2476                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2477         if (!pte)
2478                 return -ENOMEM;
2479
2480         BUG_ON(pmd_huge(*pmd));
2481
2482         arch_enter_lazy_mmu_mode();
2483
2484         token = pmd_pgtable(*pmd);
2485
2486         do {
2487                 err = fn(pte++, token, addr, data);
2488                 if (err)
2489                         break;
2490         } while (addr += PAGE_SIZE, addr != end);
2491
2492         arch_leave_lazy_mmu_mode();
2493
2494         if (mm != &init_mm)
2495                 pte_unmap_unlock(pte-1, ptl);
2496         return err;
2497 }
2498
2499 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2500                                      unsigned long addr, unsigned long end,
2501                                      pte_fn_t fn, void *data)
2502 {
2503         pmd_t *pmd;
2504         unsigned long next;
2505         int err;
2506
2507         BUG_ON(pud_huge(*pud));
2508
2509         pmd = pmd_alloc(mm, pud, addr);
2510         if (!pmd)
2511                 return -ENOMEM;
2512         do {
2513                 next = pmd_addr_end(addr, end);
2514                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2515                 if (err)
2516                         break;
2517         } while (pmd++, addr = next, addr != end);
2518         return err;
2519 }
2520
2521 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2522                                      unsigned long addr, unsigned long end,
2523                                      pte_fn_t fn, void *data)
2524 {
2525         pud_t *pud;
2526         unsigned long next;
2527         int err;
2528
2529         pud = pud_alloc(mm, pgd, addr);
2530         if (!pud)
2531                 return -ENOMEM;
2532         do {
2533                 next = pud_addr_end(addr, end);
2534                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2535                 if (err)
2536                         break;
2537         } while (pud++, addr = next, addr != end);
2538         return err;
2539 }
2540
2541 /*
2542  * Scan a region of virtual memory, filling in page tables as necessary
2543  * and calling a provided function on each leaf page table.
2544  */
2545 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2546                         unsigned long size, pte_fn_t fn, void *data)
2547 {
2548         pgd_t *pgd;
2549         unsigned long next;
2550         unsigned long end = addr + size;
2551         int err;
2552
2553         BUG_ON(addr >= end);
2554         pgd = pgd_offset(mm, addr);
2555         do {
2556                 next = pgd_addr_end(addr, end);
2557                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2558                 if (err)
2559                         break;
2560         } while (pgd++, addr = next, addr != end);
2561
2562         return err;
2563 }
2564 EXPORT_SYMBOL_GPL(apply_to_page_range);
2565
2566 /*
2567  * handle_pte_fault chooses page fault handler according to an entry
2568  * which was read non-atomically.  Before making any commitment, on
2569  * those architectures or configurations (e.g. i386 with PAE) which
2570  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2571  * must check under lock before unmapping the pte and proceeding
2572  * (but do_wp_page is only called after already making such a check;
2573  * and do_anonymous_page can safely check later on).
2574  */
2575 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2576                                 pte_t *page_table, pte_t orig_pte)
2577 {
2578         int same = 1;
2579 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2580         if (sizeof(pte_t) > sizeof(unsigned long)) {
2581                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2582                 spin_lock(ptl);
2583                 same = pte_same(*page_table, orig_pte);
2584                 spin_unlock(ptl);
2585         }
2586 #endif
2587         pte_unmap(page_table);
2588         return same;
2589 }
2590
2591 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2592 {
2593         debug_dma_assert_idle(src);
2594
2595         /*
2596          * If the source page was a PFN mapping, we don't have
2597          * a "struct page" for it. We do a best-effort copy by
2598          * just copying from the original user address. If that
2599          * fails, we just zero-fill it. Live with it.
2600          */
2601         if (unlikely(!src)) {
2602                 void *kaddr = kmap_atomic(dst);
2603                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2604
2605                 /*
2606                  * This really shouldn't fail, because the page is there
2607                  * in the page tables. But it might just be unreadable,
2608                  * in which case we just give up and fill the result with
2609                  * zeroes.
2610                  */
2611                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2612                         clear_page(kaddr);
2613                 kunmap_atomic(kaddr);
2614                 flush_dcache_page(dst);
2615         } else
2616                 copy_user_highpage(dst, src, va, vma);
2617 }
2618
2619 /*
2620  * Notify the address space that the page is about to become writable so that
2621  * it can prohibit this or wait for the page to get into an appropriate state.
2622  *
2623  * We do this without the lock held, so that it can sleep if it needs to.
2624  */
2625 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2626                unsigned long address)
2627 {
2628         struct vm_fault vmf;
2629         int ret;
2630
2631         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2632         vmf.pgoff = page->index;
2633         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2634         vmf.page = page;
2635
2636         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2637         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2638                 return ret;
2639         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2640                 lock_page(page);
2641                 if (!page->mapping) {
2642                         unlock_page(page);
2643                         return 0; /* retry */
2644                 }
2645                 ret |= VM_FAULT_LOCKED;
2646         } else
2647                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2648         return ret;
2649 }
2650
2651 /*
2652  * This routine handles present pages, when users try to write
2653  * to a shared page. It is done by copying the page to a new address
2654  * and decrementing the shared-page counter for the old page.
2655  *
2656  * Note that this routine assumes that the protection checks have been
2657  * done by the caller (the low-level page fault routine in most cases).
2658  * Thus we can safely just mark it writable once we've done any necessary
2659  * COW.
2660  *
2661  * We also mark the page dirty at this point even though the page will
2662  * change only once the write actually happens. This avoids a few races,
2663  * and potentially makes it more efficient.
2664  *
2665  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2666  * but allow concurrent faults), with pte both mapped and locked.
2667  * We return with mmap_sem still held, but pte unmapped and unlocked.
2668  */
2669 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2670                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2671                 spinlock_t *ptl, pte_t orig_pte)
2672         __releases(ptl)
2673 {
2674         struct page *old_page, *new_page = NULL;
2675         pte_t entry;
2676         int ret = 0;
2677         int page_mkwrite = 0;
2678         struct page *dirty_page = NULL;
2679         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2680         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2681
2682         old_page = vm_normal_page(vma, address, orig_pte);
2683         if (!old_page) {
2684                 /*
2685                  * VM_MIXEDMAP !pfn_valid() case
2686                  *
2687                  * We should not cow pages in a shared writeable mapping.
2688                  * Just mark the pages writable as we can't do any dirty
2689                  * accounting on raw pfn maps.
2690                  */
2691                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2692                                      (VM_WRITE|VM_SHARED))
2693                         goto reuse;
2694                 goto gotten;
2695         }
2696
2697         /*
2698          * Take out anonymous pages first, anonymous shared vmas are
2699          * not dirty accountable.
2700          */
2701         if (PageAnon(old_page) && !PageKsm(old_page)) {
2702                 if (!trylock_page(old_page)) {
2703                         page_cache_get(old_page);
2704                         pte_unmap_unlock(page_table, ptl);
2705                         lock_page(old_page);
2706                         page_table = pte_offset_map_lock(mm, pmd, address,
2707                                                          &ptl);
2708                         if (!pte_same(*page_table, orig_pte)) {
2709                                 unlock_page(old_page);
2710                                 goto unlock;
2711                         }
2712                         page_cache_release(old_page);
2713                 }
2714                 if (reuse_swap_page(old_page)) {
2715                         /*
2716                          * The page is all ours.  Move it to our anon_vma so
2717                          * the rmap code will not search our parent or siblings.
2718                          * Protected against the rmap code by the page lock.
2719                          */
2720                         page_move_anon_rmap(old_page, vma, address);
2721                         unlock_page(old_page);
2722                         goto reuse;
2723                 }
2724                 unlock_page(old_page);
2725         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2726                                         (VM_WRITE|VM_SHARED))) {
2727                 /*
2728                  * Only catch write-faults on shared writable pages,
2729                  * read-only shared pages can get COWed by
2730                  * get_user_pages(.write=1, .force=1).
2731                  */
2732                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2733                         int tmp;
2734                         page_cache_get(old_page);
2735                         pte_unmap_unlock(page_table, ptl);
2736                         tmp = do_page_mkwrite(vma, old_page, address);
2737                         if (unlikely(!tmp || (tmp &
2738                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2739                                 page_cache_release(old_page);
2740                                 return tmp;
2741                         }
2742                         /*
2743                          * Since we dropped the lock we need to revalidate
2744                          * the PTE as someone else may have changed it.  If
2745                          * they did, we just return, as we can count on the
2746                          * MMU to tell us if they didn't also make it writable.
2747                          */
2748                         page_table = pte_offset_map_lock(mm, pmd, address,
2749                                                          &ptl);
2750                         if (!pte_same(*page_table, orig_pte)) {
2751                                 unlock_page(old_page);
2752                                 goto unlock;
2753                         }
2754
2755                         page_mkwrite = 1;
2756                 }
2757                 dirty_page = old_page;
2758                 get_page(dirty_page);
2759
2760 reuse:
2761                 /*
2762                  * Clear the pages cpupid information as the existing
2763                  * information potentially belongs to a now completely
2764                  * unrelated process.
2765                  */
2766                 if (old_page)
2767                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2768
2769                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2770                 entry = pte_mkyoung(orig_pte);
2771                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2772                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2773                         update_mmu_cache(vma, address, page_table);
2774                 pte_unmap_unlock(page_table, ptl);
2775                 ret |= VM_FAULT_WRITE;
2776
2777                 if (!dirty_page)
2778                         return ret;
2779
2780                 /*
2781                  * Yes, Virginia, this is actually required to prevent a race
2782                  * with clear_page_dirty_for_io() from clearing the page dirty
2783                  * bit after it clear all dirty ptes, but before a racing
2784                  * do_wp_page installs a dirty pte.
2785                  *
2786                  * do_shared_fault is protected similarly.
2787                  */
2788                 if (!page_mkwrite) {
2789                         wait_on_page_locked(dirty_page);
2790                         set_page_dirty_balance(dirty_page);
2791                         /* file_update_time outside page_lock */
2792                         if (vma->vm_file)
2793                                 file_update_time(vma->vm_file);
2794                 }
2795                 put_page(dirty_page);
2796                 if (page_mkwrite) {
2797                         struct address_space *mapping = dirty_page->mapping;
2798
2799                         set_page_dirty(dirty_page);
2800                         unlock_page(dirty_page);
2801                         page_cache_release(dirty_page);
2802                         if (mapping)    {
2803                                 /*
2804                                  * Some device drivers do not set page.mapping
2805                                  * but still dirty their pages
2806                                  */
2807                                 balance_dirty_pages_ratelimited(mapping);
2808                         }
2809                 }
2810
2811                 return ret;
2812         }
2813
2814         /*
2815          * Ok, we need to copy. Oh, well..
2816          */
2817         page_cache_get(old_page);
2818 gotten:
2819         pte_unmap_unlock(page_table, ptl);
2820
2821         if (unlikely(anon_vma_prepare(vma)))
2822                 goto oom;
2823
2824         if (is_zero_pfn(pte_pfn(orig_pte))) {
2825                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2826                 if (!new_page)
2827                         goto oom;
2828         } else {
2829                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2830                 if (!new_page)
2831                         goto oom;
2832                 cow_user_page(new_page, old_page, address, vma);
2833         }
2834         __SetPageUptodate(new_page);
2835
2836         if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
2837                 goto oom_free_new;
2838
2839         mmun_start  = address & PAGE_MASK;
2840         mmun_end    = mmun_start + PAGE_SIZE;
2841         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2842
2843         /*
2844          * Re-check the pte - we dropped the lock
2845          */
2846         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2847         if (likely(pte_same(*page_table, orig_pte))) {
2848                 if (old_page) {
2849                         if (!PageAnon(old_page)) {
2850                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2851                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2852                         }
2853                 } else
2854                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2855                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2856                 entry = mk_pte(new_page, vma->vm_page_prot);
2857                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2858                 /*
2859                  * Clear the pte entry and flush it first, before updating the
2860                  * pte with the new entry. This will avoid a race condition
2861                  * seen in the presence of one thread doing SMC and another
2862                  * thread doing COW.
2863                  */
2864                 ptep_clear_flush(vma, address, page_table);
2865                 page_add_new_anon_rmap(new_page, vma, address);
2866                 /*
2867                  * We call the notify macro here because, when using secondary
2868                  * mmu page tables (such as kvm shadow page tables), we want the
2869                  * new page to be mapped directly into the secondary page table.
2870                  */
2871                 set_pte_at_notify(mm, address, page_table, entry);
2872                 update_mmu_cache(vma, address, page_table);
2873                 if (old_page) {
2874                         /*
2875                          * Only after switching the pte to the new page may
2876                          * we remove the mapcount here. Otherwise another
2877                          * process may come and find the rmap count decremented
2878                          * before the pte is switched to the new page, and
2879                          * "reuse" the old page writing into it while our pte
2880                          * here still points into it and can be read by other
2881                          * threads.
2882                          *
2883                          * The critical issue is to order this
2884                          * page_remove_rmap with the ptp_clear_flush above.
2885                          * Those stores are ordered by (if nothing else,)
2886                          * the barrier present in the atomic_add_negative
2887                          * in page_remove_rmap.
2888                          *
2889                          * Then the TLB flush in ptep_clear_flush ensures that
2890                          * no process can access the old page before the
2891                          * decremented mapcount is visible. And the old page
2892                          * cannot be reused until after the decremented
2893                          * mapcount is visible. So transitively, TLBs to
2894                          * old page will be flushed before it can be reused.
2895                          */
2896                         page_remove_rmap(old_page);
2897                 }
2898
2899                 /* Free the old page.. */
2900                 new_page = old_page;
2901                 ret |= VM_FAULT_WRITE;
2902         } else
2903                 mem_cgroup_uncharge_page(new_page);
2904
2905         if (new_page)
2906                 page_cache_release(new_page);
2907 unlock:
2908         pte_unmap_unlock(page_table, ptl);
2909         if (mmun_end > mmun_start)
2910                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2911         if (old_page) {
2912                 /*
2913                  * Don't let another task, with possibly unlocked vma,
2914                  * keep the mlocked page.
2915                  */
2916                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2917                         lock_page(old_page);    /* LRU manipulation */
2918                         munlock_vma_page(old_page);
2919                         unlock_page(old_page);
2920                 }
2921                 page_cache_release(old_page);
2922         }
2923         return ret;
2924 oom_free_new:
2925         page_cache_release(new_page);
2926 oom:
2927         if (old_page)
2928                 page_cache_release(old_page);
2929         return VM_FAULT_OOM;
2930 }
2931
2932 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2933                 unsigned long start_addr, unsigned long end_addr,
2934                 struct zap_details *details)
2935 {
2936         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2937 }
2938
2939 static inline void unmap_mapping_range_tree(struct rb_root *root,
2940                                             struct zap_details *details)
2941 {
2942         struct vm_area_struct *vma;
2943         pgoff_t vba, vea, zba, zea;
2944
2945         vma_interval_tree_foreach(vma, root,
2946                         details->first_index, details->last_index) {
2947
2948                 vba = vma->vm_pgoff;
2949                 vea = vba + vma_pages(vma) - 1;
2950                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2951                 zba = details->first_index;
2952                 if (zba < vba)
2953                         zba = vba;
2954                 zea = details->last_index;
2955                 if (zea > vea)
2956                         zea = vea;
2957
2958                 unmap_mapping_range_vma(vma,
2959                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2960                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2961                                 details);
2962         }
2963 }
2964
2965 static inline void unmap_mapping_range_list(struct list_head *head,
2966                                             struct zap_details *details)
2967 {
2968         struct vm_area_struct *vma;
2969
2970         /*
2971          * In nonlinear VMAs there is no correspondence between virtual address
2972          * offset and file offset.  So we must perform an exhaustive search
2973          * across *all* the pages in each nonlinear VMA, not just the pages
2974          * whose virtual address lies outside the file truncation point.
2975          */
2976         list_for_each_entry(vma, head, shared.nonlinear) {
2977                 details->nonlinear_vma = vma;
2978                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2979         }
2980 }
2981
2982 /**
2983  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2984  * @mapping: the address space containing mmaps to be unmapped.
2985  * @holebegin: byte in first page to unmap, relative to the start of
2986  * the underlying file.  This will be rounded down to a PAGE_SIZE
2987  * boundary.  Note that this is different from truncate_pagecache(), which
2988  * must keep the partial page.  In contrast, we must get rid of
2989  * partial pages.
2990  * @holelen: size of prospective hole in bytes.  This will be rounded
2991  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2992  * end of the file.
2993  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2994  * but 0 when invalidating pagecache, don't throw away private data.
2995  */
2996 void unmap_mapping_range(struct address_space *mapping,
2997                 loff_t const holebegin, loff_t const holelen, int even_cows)
2998 {
2999         struct zap_details details;
3000         pgoff_t hba = holebegin >> PAGE_SHIFT;
3001         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3002
3003         /* Check for overflow. */
3004         if (sizeof(holelen) > sizeof(hlen)) {
3005                 long long holeend =
3006                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3007                 if (holeend & ~(long long)ULONG_MAX)
3008                         hlen = ULONG_MAX - hba + 1;
3009         }
3010
3011         details.check_mapping = even_cows? NULL: mapping;
3012         details.nonlinear_vma = NULL;
3013         details.first_index = hba;
3014         details.last_index = hba + hlen - 1;
3015         if (details.last_index < details.first_index)
3016                 details.last_index = ULONG_MAX;
3017
3018
3019         mutex_lock(&mapping->i_mmap_mutex);
3020         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3021                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3022         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3023                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3024         mutex_unlock(&mapping->i_mmap_mutex);
3025 }
3026 EXPORT_SYMBOL(unmap_mapping_range);
3027
3028 /*
3029  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3030  * but allow concurrent faults), and pte mapped but not yet locked.
3031  * We return with mmap_sem still held, but pte unmapped and unlocked.
3032  */
3033 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3034                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3035                 unsigned int flags, pte_t orig_pte)
3036 {
3037         spinlock_t *ptl;
3038         struct page *page, *swapcache;
3039         swp_entry_t entry;
3040         pte_t pte;
3041         int locked;
3042         struct mem_cgroup *ptr;
3043         int exclusive = 0;
3044         int ret = 0;
3045
3046         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3047                 goto out;
3048
3049         entry = pte_to_swp_entry(orig_pte);
3050         if (unlikely(non_swap_entry(entry))) {
3051                 if (is_migration_entry(entry)) {
3052                         migration_entry_wait(mm, pmd, address);
3053                 } else if (is_hwpoison_entry(entry)) {
3054                         ret = VM_FAULT_HWPOISON;
3055                 } else {
3056                         print_bad_pte(vma, address, orig_pte, NULL);
3057                         ret = VM_FAULT_SIGBUS;
3058                 }
3059                 goto out;
3060         }
3061         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3062         page = lookup_swap_cache(entry);
3063         if (!page) {
3064                 page = swapin_readahead(entry,
3065                                         GFP_HIGHUSER_MOVABLE, vma, address);
3066                 if (!page) {
3067                         /*
3068                          * Back out if somebody else faulted in this pte
3069                          * while we released the pte lock.
3070                          */
3071                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3072                         if (likely(pte_same(*page_table, orig_pte)))
3073                                 ret = VM_FAULT_OOM;
3074                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3075                         goto unlock;
3076                 }
3077
3078                 /* Had to read the page from swap area: Major fault */
3079                 ret = VM_FAULT_MAJOR;
3080                 count_vm_event(PGMAJFAULT);
3081                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3082         } else if (PageHWPoison(page)) {
3083                 /*
3084                  * hwpoisoned dirty swapcache pages are kept for killing
3085                  * owner processes (which may be unknown at hwpoison time)
3086                  */
3087                 ret = VM_FAULT_HWPOISON;
3088                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3089                 swapcache = page;
3090                 goto out_release;
3091         }
3092
3093         swapcache = page;
3094         locked = lock_page_or_retry(page, mm, flags);
3095
3096         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3097         if (!locked) {
3098                 ret |= VM_FAULT_RETRY;
3099                 goto out_release;
3100         }
3101
3102         /*
3103          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3104          * release the swapcache from under us.  The page pin, and pte_same
3105          * test below, are not enough to exclude that.  Even if it is still
3106          * swapcache, we need to check that the page's swap has not changed.
3107          */
3108         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3109                 goto out_page;
3110
3111         page = ksm_might_need_to_copy(page, vma, address);
3112         if (unlikely(!page)) {
3113                 ret = VM_FAULT_OOM;
3114                 page = swapcache;
3115                 goto out_page;
3116         }
3117
3118         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3119                 ret = VM_FAULT_OOM;
3120                 goto out_page;
3121         }
3122
3123         /*
3124          * Back out if somebody else already faulted in this pte.
3125          */
3126         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3127         if (unlikely(!pte_same(*page_table, orig_pte)))
3128                 goto out_nomap;
3129
3130         if (unlikely(!PageUptodate(page))) {
3131                 ret = VM_FAULT_SIGBUS;
3132                 goto out_nomap;
3133         }
3134
3135         /*
3136          * The page isn't present yet, go ahead with the fault.
3137          *
3138          * Be careful about the sequence of operations here.
3139          * To get its accounting right, reuse_swap_page() must be called
3140          * while the page is counted on swap but not yet in mapcount i.e.
3141          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3142          * must be called after the swap_free(), or it will never succeed.
3143          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3144          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3145          * in page->private. In this case, a record in swap_cgroup  is silently
3146          * discarded at swap_free().
3147          */
3148
3149         inc_mm_counter_fast(mm, MM_ANONPAGES);
3150         dec_mm_counter_fast(mm, MM_SWAPENTS);
3151         pte = mk_pte(page, vma->vm_page_prot);
3152         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3153                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3154                 flags &= ~FAULT_FLAG_WRITE;
3155                 ret |= VM_FAULT_WRITE;
3156                 exclusive = 1;
3157         }
3158         flush_icache_page(vma, page);
3159         if (pte_swp_soft_dirty(orig_pte))
3160                 pte = pte_mksoft_dirty(pte);
3161         set_pte_at(mm, address, page_table, pte);
3162         if (page == swapcache)
3163                 do_page_add_anon_rmap(page, vma, address, exclusive);
3164         else /* ksm created a completely new copy */
3165                 page_add_new_anon_rmap(page, vma, address);
3166         /* It's better to call commit-charge after rmap is established */
3167         mem_cgroup_commit_charge_swapin(page, ptr);
3168
3169         swap_free(entry);
3170         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3171                 try_to_free_swap(page);
3172         unlock_page(page);
3173         if (page != swapcache) {
3174                 /*
3175                  * Hold the lock to avoid the swap entry to be reused
3176                  * until we take the PT lock for the pte_same() check
3177                  * (to avoid false positives from pte_same). For
3178                  * further safety release the lock after the swap_free
3179                  * so that the swap count won't change under a
3180                  * parallel locked swapcache.
3181                  */
3182                 unlock_page(swapcache);
3183                 page_cache_release(swapcache);
3184         }
3185
3186         if (flags & FAULT_FLAG_WRITE) {
3187                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3188                 if (ret & VM_FAULT_ERROR)
3189                         ret &= VM_FAULT_ERROR;
3190                 goto out;
3191         }
3192
3193         /* No need to invalidate - it was non-present before */
3194         update_mmu_cache(vma, address, page_table);
3195 unlock:
3196         pte_unmap_unlock(page_table, ptl);
3197 out:
3198         return ret;
3199 out_nomap:
3200         mem_cgroup_cancel_charge_swapin(ptr);
3201         pte_unmap_unlock(page_table, ptl);
3202 out_page:
3203         unlock_page(page);
3204 out_release:
3205         page_cache_release(page);
3206         if (page != swapcache) {
3207                 unlock_page(swapcache);
3208                 page_cache_release(swapcache);
3209         }
3210         return ret;
3211 }
3212
3213 /*
3214  * This is like a special single-page "expand_{down|up}wards()",
3215  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3216  * doesn't hit another vma.
3217  */
3218 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3219 {
3220         address &= PAGE_MASK;
3221         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3222                 struct vm_area_struct *prev = vma->vm_prev;
3223
3224                 /*
3225                  * Is there a mapping abutting this one below?
3226                  *
3227                  * That's only ok if it's the same stack mapping
3228                  * that has gotten split..
3229                  */
3230                 if (prev && prev->vm_end == address)
3231                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3232
3233                 expand_downwards(vma, address - PAGE_SIZE);
3234         }
3235         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3236                 struct vm_area_struct *next = vma->vm_next;
3237
3238                 /* As VM_GROWSDOWN but s/below/above/ */
3239                 if (next && next->vm_start == address + PAGE_SIZE)
3240                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3241
3242                 expand_upwards(vma, address + PAGE_SIZE);
3243         }
3244         return 0;
3245 }
3246
3247 /*
3248  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3249  * but allow concurrent faults), and pte mapped but not yet locked.
3250  * We return with mmap_sem still held, but pte unmapped and unlocked.
3251  */
3252 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3253                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3254                 unsigned int flags)
3255 {
3256         struct page *page;
3257         spinlock_t *ptl;
3258         pte_t entry;
3259
3260         pte_unmap(page_table);
3261
3262         /* Check if we need to add a guard page to the stack */
3263         if (check_stack_guard_page(vma, address) < 0)
3264                 return VM_FAULT_SIGBUS;
3265
3266         /* Use the zero-page for reads */
3267         if (!(flags & FAULT_FLAG_WRITE)) {
3268                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3269                                                 vma->vm_page_prot));
3270                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3271                 if (!pte_none(*page_table))
3272                         goto unlock;
3273                 goto setpte;
3274         }
3275
3276         /* Allocate our own private page. */
3277         if (unlikely(anon_vma_prepare(vma)))
3278                 goto oom;
3279         page = alloc_zeroed_user_highpage_movable(vma, address);
3280         if (!page)
3281                 goto oom;
3282         /*
3283          * The memory barrier inside __SetPageUptodate makes sure that
3284          * preceeding stores to the page contents become visible before
3285          * the set_pte_at() write.
3286          */
3287         __SetPageUptodate(page);
3288
3289         if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
3290                 goto oom_free_page;
3291
3292         entry = mk_pte(page, vma->vm_page_prot);
3293         if (vma->vm_flags & VM_WRITE)
3294                 entry = pte_mkwrite(pte_mkdirty(entry));
3295
3296         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3297         if (!pte_none(*page_table))
3298                 goto release;
3299
3300         inc_mm_counter_fast(mm, MM_ANONPAGES);
3301         page_add_new_anon_rmap(page, vma, address);
3302 setpte:
3303         set_pte_at(mm, address, page_table, entry);
3304
3305         /* No need to invalidate - it was non-present before */
3306         update_mmu_cache(vma, address, page_table);
3307 unlock:
3308         pte_unmap_unlock(page_table, ptl);
3309         return 0;
3310 release:
3311         mem_cgroup_uncharge_page(page);
3312         page_cache_release(page);
3313         goto unlock;
3314 oom_free_page:
3315         page_cache_release(page);
3316 oom:
3317         return VM_FAULT_OOM;
3318 }
3319
3320 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
3321                 pgoff_t pgoff, unsigned int flags, struct page **page)
3322 {
3323         struct vm_fault vmf;
3324         int ret;
3325
3326         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3327         vmf.pgoff = pgoff;
3328         vmf.flags = flags;
3329         vmf.page = NULL;
3330
3331         ret = vma->vm_ops->fault(vma, &vmf);
3332         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3333                 return ret;
3334
3335         if (unlikely(PageHWPoison(vmf.page))) {
3336                 if (ret & VM_FAULT_LOCKED)
3337                         unlock_page(vmf.page);
3338                 page_cache_release(vmf.page);
3339                 return VM_FAULT_HWPOISON;
3340         }
3341
3342         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3343                 lock_page(vmf.page);
3344         else
3345                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3346
3347         *page = vmf.page;
3348         return ret;
3349 }
3350
3351 /**
3352  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
3353  *
3354  * @vma: virtual memory area
3355  * @address: user virtual address
3356  * @page: page to map
3357  * @pte: pointer to target page table entry
3358  * @write: true, if new entry is writable
3359  * @anon: true, if it's anonymous page
3360  *
3361  * Caller must hold page table lock relevant for @pte.
3362  *
3363  * Target users are page handler itself and implementations of
3364  * vm_ops->map_pages.
3365  */
3366 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3367                 struct page *page, pte_t *pte, bool write, bool anon)
3368 {
3369         pte_t entry;
3370
3371         flush_icache_page(vma, page);
3372         entry = mk_pte(page, vma->vm_page_prot);
3373         if (write)
3374                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3375         else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
3376                 pte_mksoft_dirty(entry);
3377         if (anon) {
3378                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3379                 page_add_new_anon_rmap(page, vma, address);
3380         } else {
3381                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
3382                 page_add_file_rmap(page);
3383         }
3384         set_pte_at(vma->vm_mm, address, pte, entry);
3385
3386         /* no need to invalidate: a not-present page won't be cached */
3387         update_mmu_cache(vma, address, pte);
3388 }
3389
3390 #define FAULT_AROUND_ORDER 4
3391
3392 #ifdef CONFIG_DEBUG_FS
3393 static unsigned int fault_around_order = FAULT_AROUND_ORDER;
3394
3395 static int fault_around_order_get(void *data, u64 *val)
3396 {
3397         *val = fault_around_order;
3398         return 0;
3399 }
3400
3401 static int fault_around_order_set(void *data, u64 val)
3402 {
3403         BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER) > PTRS_PER_PTE);
3404         if (1UL << val > PTRS_PER_PTE)
3405                 return -EINVAL;
3406         fault_around_order = val;
3407         return 0;
3408 }
3409 DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops,
3410                 fault_around_order_get, fault_around_order_set, "%llu\n");
3411
3412 static int __init fault_around_debugfs(void)
3413 {
3414         void *ret;
3415
3416         ret = debugfs_create_file("fault_around_order", 0644, NULL, NULL,
3417                         &fault_around_order_fops);
3418         if (!ret)
3419                 pr_warn("Failed to create fault_around_order in debugfs");
3420         return 0;
3421 }
3422 late_initcall(fault_around_debugfs);
3423
3424 static inline unsigned long fault_around_pages(void)
3425 {
3426         return 1UL << fault_around_order;
3427 }
3428
3429 static inline unsigned long fault_around_mask(void)
3430 {
3431         return ~((1UL << (PAGE_SHIFT + fault_around_order)) - 1);
3432 }
3433 #else
3434 static inline unsigned long fault_around_pages(void)
3435 {
3436         unsigned long nr_pages;
3437
3438         nr_pages = 1UL << FAULT_AROUND_ORDER;
3439         BUILD_BUG_ON(nr_pages > PTRS_PER_PTE);
3440         return nr_pages;
3441 }
3442
3443 static inline unsigned long fault_around_mask(void)
3444 {
3445         return ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1);
3446 }
3447 #endif
3448
3449 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
3450                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
3451 {
3452         unsigned long start_addr;
3453         pgoff_t max_pgoff;
3454         struct vm_fault vmf;
3455         int off;
3456
3457         start_addr = max(address & fault_around_mask(), vma->vm_start);
3458         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3459         pte -= off;
3460         pgoff -= off;
3461
3462         /*
3463          *  max_pgoff is either end of page table or end of vma
3464          *  or fault_around_pages() from pgoff, depending what is neast.
3465          */
3466         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3467                 PTRS_PER_PTE - 1;
3468         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
3469                         pgoff + fault_around_pages() - 1);
3470
3471         /* Check if it makes any sense to call ->map_pages */
3472         while (!pte_none(*pte)) {
3473                 if (++pgoff > max_pgoff)
3474                         return;
3475                 start_addr += PAGE_SIZE;
3476                 if (start_addr >= vma->vm_end)
3477                         return;
3478                 pte++;
3479         }
3480
3481         vmf.virtual_address = (void __user *) start_addr;
3482         vmf.pte = pte;
3483         vmf.pgoff = pgoff;
3484         vmf.max_pgoff = max_pgoff;
3485         vmf.flags = flags;
3486         vma->vm_ops->map_pages(vma, &vmf);
3487 }
3488
3489 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3490                 unsigned long address, pmd_t *pmd,
3491                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3492 {
3493         struct page *fault_page;
3494         spinlock_t *ptl;
3495         pte_t *pte;
3496         int ret = 0;
3497
3498         /*
3499          * Let's call ->map_pages() first and use ->fault() as fallback
3500          * if page by the offset is not ready to be mapped (cold cache or
3501          * something).
3502          */
3503         if (vma->vm_ops->map_pages) {
3504                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3505                 do_fault_around(vma, address, pte, pgoff, flags);
3506                 if (!pte_same(*pte, orig_pte))
3507                         goto unlock_out;
3508                 pte_unmap_unlock(pte, ptl);
3509         }
3510
3511         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3512         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3513                 return ret;
3514
3515         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3516         if (unlikely(!pte_same(*pte, orig_pte))) {
3517                 pte_unmap_unlock(pte, ptl);
3518                 unlock_page(fault_page);
3519                 page_cache_release(fault_page);
3520                 return ret;
3521         }
3522         do_set_pte(vma, address, fault_page, pte, false, false);
3523         unlock_page(fault_page);
3524 unlock_out:
3525         pte_unmap_unlock(pte, ptl);
3526         return ret;
3527 }
3528
3529 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3530                 unsigned long address, pmd_t *pmd,
3531                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3532 {
3533         struct page *fault_page, *new_page;
3534         spinlock_t *ptl;
3535         pte_t *pte;
3536         int ret;
3537
3538         if (unlikely(anon_vma_prepare(vma)))
3539                 return VM_FAULT_OOM;
3540
3541         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3542         if (!new_page)
3543                 return VM_FAULT_OOM;
3544
3545         if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
3546                 page_cache_release(new_page);
3547                 return VM_FAULT_OOM;
3548         }
3549
3550         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3551         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3552                 goto uncharge_out;
3553
3554         copy_user_highpage(new_page, fault_page, address, vma);
3555         __SetPageUptodate(new_page);
3556
3557         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3558         if (unlikely(!pte_same(*pte, orig_pte))) {
3559                 pte_unmap_unlock(pte, ptl);
3560                 unlock_page(fault_page);
3561                 page_cache_release(fault_page);
3562                 goto uncharge_out;
3563         }
3564         do_set_pte(vma, address, new_page, pte, true, true);
3565         pte_unmap_unlock(pte, ptl);
3566         unlock_page(fault_page);
3567         page_cache_release(fault_page);
3568         return ret;
3569 uncharge_out:
3570         mem_cgroup_uncharge_page(new_page);
3571         page_cache_release(new_page);
3572         return ret;
3573 }
3574
3575 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3576                 unsigned long address, pmd_t *pmd,
3577                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3578 {
3579         struct page *fault_page;
3580         struct address_space *mapping;
3581         spinlock_t *ptl;
3582         pte_t *pte;
3583         int dirtied = 0;
3584         int ret, tmp;
3585
3586         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3587         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3588                 return ret;
3589
3590         /*
3591          * Check if the backing address space wants to know that the page is
3592          * about to become writable
3593          */
3594         if (vma->vm_ops->page_mkwrite) {
3595                 unlock_page(fault_page);
3596                 tmp = do_page_mkwrite(vma, fault_page, address);
3597                 if (unlikely(!tmp ||
3598                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3599                         page_cache_release(fault_page);
3600                         return tmp;
3601                 }
3602         }
3603
3604         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3605         if (unlikely(!pte_same(*pte, orig_pte))) {
3606                 pte_unmap_unlock(pte, ptl);
3607                 unlock_page(fault_page);
3608                 page_cache_release(fault_page);
3609                 return ret;
3610         }
3611         do_set_pte(vma, address, fault_page, pte, true, false);
3612         pte_unmap_unlock(pte, ptl);
3613
3614         if (set_page_dirty(fault_page))
3615                 dirtied = 1;
3616         mapping = fault_page->mapping;
3617         unlock_page(fault_page);
3618         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3619                 /*
3620                  * Some device drivers do not set page.mapping but still
3621                  * dirty their pages
3622                  */
3623                 balance_dirty_pages_ratelimited(mapping);
3624         }
3625
3626         /* file_update_time outside page_lock */
3627         if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3628                 file_update_time(vma->vm_file);
3629
3630         return ret;
3631 }
3632
3633 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3634                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3635                 unsigned int flags, pte_t orig_pte)
3636 {
3637         pgoff_t pgoff = (((address & PAGE_MASK)
3638                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3639
3640         pte_unmap(page_table);
3641         if (!(flags & FAULT_FLAG_WRITE))
3642                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3643                                 orig_pte);
3644         if (!(vma->vm_flags & VM_SHARED))
3645                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3646                                 orig_pte);
3647         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3648 }
3649
3650 /*
3651  * Fault of a previously existing named mapping. Repopulate the pte
3652  * from the encoded file_pte if possible. This enables swappable
3653  * nonlinear vmas.
3654  *
3655  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3656  * but allow concurrent faults), and pte mapped but not yet locked.
3657  * We return with mmap_sem still held, but pte unmapped and unlocked.
3658  */
3659 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3660                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3661                 unsigned int flags, pte_t orig_pte)
3662 {
3663         pgoff_t pgoff;
3664
3665         flags |= FAULT_FLAG_NONLINEAR;
3666
3667         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3668                 return 0;
3669
3670         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3671                 /*
3672                  * Page table corrupted: show pte and kill process.
3673                  */
3674                 print_bad_pte(vma, address, orig_pte, NULL);
3675                 return VM_FAULT_SIGBUS;
3676         }
3677
3678         pgoff = pte_to_pgoff(orig_pte);
3679         if (!(flags & FAULT_FLAG_WRITE))
3680                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3681                                 orig_pte);
3682         if (!(vma->vm_flags & VM_SHARED))
3683                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3684                                 orig_pte);
3685         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3686 }
3687
3688 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3689                                 unsigned long addr, int page_nid,
3690                                 int *flags)
3691 {
3692         get_page(page);
3693
3694         count_vm_numa_event(NUMA_HINT_FAULTS);
3695         if (page_nid == numa_node_id()) {
3696                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3697                 *flags |= TNF_FAULT_LOCAL;
3698         }
3699
3700         return mpol_misplaced(page, vma, addr);
3701 }
3702
3703 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3704                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3705 {
3706         struct page *page = NULL;
3707         spinlock_t *ptl;
3708         int page_nid = -1;
3709         int last_cpupid;
3710         int target_nid;
3711         bool migrated = false;
3712         int flags = 0;
3713
3714         /*
3715         * The "pte" at this point cannot be used safely without
3716         * validation through pte_unmap_same(). It's of NUMA type but
3717         * the pfn may be screwed if the read is non atomic.
3718         *
3719         * ptep_modify_prot_start is not called as this is clearing
3720         * the _PAGE_NUMA bit and it is not really expected that there
3721         * would be concurrent hardware modifications to the PTE.
3722         */
3723         ptl = pte_lockptr(mm, pmd);
3724         spin_lock(ptl);
3725         if (unlikely(!pte_same(*ptep, pte))) {
3726                 pte_unmap_unlock(ptep, ptl);
3727                 goto out;
3728         }
3729
3730         pte = pte_mknonnuma(pte);
3731         set_pte_at(mm, addr, ptep, pte);
3732         update_mmu_cache(vma, addr, ptep);
3733
3734         page = vm_normal_page(vma, addr, pte);
3735         if (!page) {
3736                 pte_unmap_unlock(ptep, ptl);
3737                 return 0;
3738         }
3739         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3740
3741         /*
3742          * Avoid grouping on DSO/COW pages in specific and RO pages
3743          * in general, RO pages shouldn't hurt as much anyway since
3744          * they can be in shared cache state.
3745          */
3746         if (!pte_write(pte))
3747                 flags |= TNF_NO_GROUP;
3748
3749         /*
3750          * Flag if the page is shared between multiple address spaces. This
3751          * is later used when determining whether to group tasks together
3752          */
3753         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3754                 flags |= TNF_SHARED;
3755
3756         last_cpupid = page_cpupid_last(page);
3757         page_nid = page_to_nid(page);
3758         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3759         pte_unmap_unlock(ptep, ptl);
3760         if (target_nid == -1) {
3761                 put_page(page);
3762                 goto out;
3763         }
3764
3765         /* Migrate to the requested node */
3766         migrated = migrate_misplaced_page(page, vma, target_nid);
3767         if (migrated) {
3768                 page_nid = target_nid;
3769                 flags |= TNF_MIGRATED;
3770         }
3771
3772 out:
3773         if (page_nid != -1)
3774                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3775         return 0;
3776 }
3777
3778 /*
3779  * These routines also need to handle stuff like marking pages dirty
3780  * and/or accessed for architectures that don't do it in hardware (most
3781  * RISC architectures).  The early dirtying is also good on the i386.
3782  *
3783  * There is also a hook called "update_mmu_cache()" that architectures
3784  * with external mmu caches can use to update those (ie the Sparc or
3785  * PowerPC hashed page tables that act as extended TLBs).
3786  *
3787  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3788  * but allow concurrent faults), and pte mapped but not yet locked.
3789  * We return with mmap_sem still held, but pte unmapped and unlocked.
3790  */
3791 static int handle_pte_fault(struct mm_struct *mm,
3792                      struct vm_area_struct *vma, unsigned long address,
3793                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3794 {
3795         pte_t entry;
3796         spinlock_t *ptl;
3797
3798         entry = *pte;
3799         if (!pte_present(entry)) {
3800                 if (pte_none(entry)) {
3801                         if (vma->vm_ops) {
3802                                 if (likely(vma->vm_ops->fault))
3803                                         return do_linear_fault(mm, vma, address,
3804                                                 pte, pmd, flags, entry);
3805                         }
3806                         return do_anonymous_page(mm, vma, address,
3807                                                  pte, pmd, flags);
3808                 }
3809                 if (pte_file(entry))
3810                         return do_nonlinear_fault(mm, vma, address,
3811                                         pte, pmd, flags, entry);
3812                 return do_swap_page(mm, vma, address,
3813                                         pte, pmd, flags, entry);
3814         }
3815
3816         if (pte_numa(entry))
3817                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3818
3819         ptl = pte_lockptr(mm, pmd);
3820         spin_lock(ptl);
3821         if (unlikely(!pte_same(*pte, entry)))
3822                 goto unlock;
3823         if (flags & FAULT_FLAG_WRITE) {
3824                 if (!pte_write(entry))
3825                         return do_wp_page(mm, vma, address,
3826                                         pte, pmd, ptl, entry);
3827                 entry = pte_mkdirty(entry);
3828         }
3829         entry = pte_mkyoung(entry);
3830         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3831                 update_mmu_cache(vma, address, pte);
3832         } else {
3833                 /*
3834                  * This is needed only for protection faults but the arch code
3835                  * is not yet telling us if this is a protection fault or not.
3836                  * This still avoids useless tlb flushes for .text page faults
3837                  * with threads.
3838                  */
3839                 if (flags & FAULT_FLAG_WRITE)
3840                         flush_tlb_fix_spurious_fault(vma, address);
3841         }
3842 unlock:
3843         pte_unmap_unlock(pte, ptl);
3844         return 0;
3845 }
3846
3847 /*
3848  * By the time we get here, we already hold the mm semaphore
3849  */
3850 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3851                              unsigned long address, unsigned int flags)
3852 {
3853         pgd_t *pgd;
3854         pud_t *pud;
3855         pmd_t *pmd;
3856         pte_t *pte;
3857
3858         if (unlikely(is_vm_hugetlb_page(vma)))
3859                 return hugetlb_fault(mm, vma, address, flags);
3860
3861         pgd = pgd_offset(mm, address);
3862         pud = pud_alloc(mm, pgd, address);
3863         if (!pud)
3864                 return VM_FAULT_OOM;
3865         pmd = pmd_alloc(mm, pud, address);
3866         if (!pmd)
3867                 return VM_FAULT_OOM;
3868         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3869                 int ret = VM_FAULT_FALLBACK;
3870                 if (!vma->vm_ops)
3871                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3872                                         pmd, flags);
3873                 if (!(ret & VM_FAULT_FALLBACK))
3874                         return ret;
3875         } else {
3876                 pmd_t orig_pmd = *pmd;
3877                 int ret;
3878
3879                 barrier();
3880                 if (pmd_trans_huge(orig_pmd)) {
3881                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3882
3883                         /*
3884                          * If the pmd is splitting, return and retry the
3885                          * the fault.  Alternative: wait until the split
3886                          * is done, and goto retry.
3887                          */
3888                         if (pmd_trans_splitting(orig_pmd))
3889                                 return 0;
3890
3891                         if (pmd_numa(orig_pmd))
3892                                 return do_huge_pmd_numa_page(mm, vma, address,
3893                                                              orig_pmd, pmd);
3894
3895                         if (dirty && !pmd_write(orig_pmd)) {
3896                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3897                                                           orig_pmd);
3898                                 if (!(ret & VM_FAULT_FALLBACK))
3899                                         return ret;
3900                         } else {
3901                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3902                                                       orig_pmd, dirty);
3903                                 return 0;
3904                         }
3905                 }
3906         }
3907
3908         /* THP should already have been handled */
3909         BUG_ON(pmd_numa(*pmd));
3910
3911         /*
3912          * Use __pte_alloc instead of pte_alloc_map, because we can't
3913          * run pte_offset_map on the pmd, if an huge pmd could
3914          * materialize from under us from a different thread.
3915          */
3916         if (unlikely(pmd_none(*pmd)) &&
3917             unlikely(__pte_alloc(mm, vma, pmd, address)))
3918                 return VM_FAULT_OOM;
3919         /* if an huge pmd materialized from under us just retry later */
3920         if (unlikely(pmd_trans_huge(*pmd)))
3921                 return 0;
3922         /*
3923          * A regular pmd is established and it can't morph into a huge pmd
3924          * from under us anymore at this point because we hold the mmap_sem
3925          * read mode and khugepaged takes it in write mode. So now it's
3926          * safe to run pte_offset_map().
3927          */
3928         pte = pte_offset_map(pmd, address);
3929
3930         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3931 }
3932
3933 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3934                     unsigned long address, unsigned int flags)
3935 {
3936         int ret;
3937
3938         __set_current_state(TASK_RUNNING);
3939
3940         count_vm_event(PGFAULT);
3941         mem_cgroup_count_vm_event(mm, PGFAULT);
3942
3943         /* do counter updates before entering really critical section. */
3944         check_sync_rss_stat(current);
3945
3946         /*
3947          * Enable the memcg OOM handling for faults triggered in user
3948          * space.  Kernel faults are handled more gracefully.
3949          */
3950         if (flags & FAULT_FLAG_USER)
3951                 mem_cgroup_oom_enable();
3952
3953         ret = __handle_mm_fault(mm, vma, address, flags);
3954
3955         if (flags & FAULT_FLAG_USER) {
3956                 mem_cgroup_oom_disable();
3957                 /*
3958                  * The task may have entered a memcg OOM situation but
3959                  * if the allocation error was handled gracefully (no
3960                  * VM_FAULT_OOM), there is no need to kill anything.
3961                  * Just clean up the OOM state peacefully.
3962                  */
3963                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3964                         mem_cgroup_oom_synchronize(false);
3965         }
3966
3967         return ret;
3968 }
3969
3970 #ifndef __PAGETABLE_PUD_FOLDED
3971 /*
3972  * Allocate page upper directory.
3973  * We've already handled the fast-path in-line.
3974  */
3975 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3976 {
3977         pud_t *new = pud_alloc_one(mm, address);
3978         if (!new)
3979                 return -ENOMEM;
3980
3981         smp_wmb(); /* See comment in __pte_alloc */
3982
3983         spin_lock(&mm->page_table_lock);
3984         if (pgd_present(*pgd))          /* Another has populated it */
3985                 pud_free(mm, new);
3986         else
3987                 pgd_populate(mm, pgd, new);
3988         spin_unlock(&mm->page_table_lock);
3989         return 0;
3990 }
3991 #endif /* __PAGETABLE_PUD_FOLDED */
3992
3993 #ifndef __PAGETABLE_PMD_FOLDED
3994 /*
3995  * Allocate page middle directory.
3996  * We've already handled the fast-path in-line.
3997  */
3998 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3999 {
4000         pmd_t *new = pmd_alloc_one(mm, address);
4001         if (!new)
4002                 return -ENOMEM;
4003
4004         smp_wmb(); /* See comment in __pte_alloc */
4005
4006         spin_lock(&mm->page_table_lock);
4007 #ifndef __ARCH_HAS_4LEVEL_HACK
4008         if (pud_present(*pud))          /* Another has populated it */
4009                 pmd_free(mm, new);
4010         else
4011                 pud_populate(mm, pud, new);
4012 #else
4013         if (pgd_present(*pud))          /* Another has populated it */
4014                 pmd_free(mm, new);
4015         else
4016                 pgd_populate(mm, pud, new);
4017 #endif /* __ARCH_HAS_4LEVEL_HACK */
4018         spin_unlock(&mm->page_table_lock);
4019         return 0;
4020 }
4021 #endif /* __PAGETABLE_PMD_FOLDED */
4022
4023 #if !defined(__HAVE_ARCH_GATE_AREA)
4024
4025 #if defined(AT_SYSINFO_EHDR)
4026 static struct vm_area_struct gate_vma;
4027
4028 static int __init gate_vma_init(void)
4029 {
4030         gate_vma.vm_mm = NULL;
4031         gate_vma.vm_start = FIXADDR_USER_START;
4032         gate_vma.vm_end = FIXADDR_USER_END;
4033         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
4034         gate_vma.vm_page_prot = __P101;
4035
4036         return 0;
4037 }
4038 __initcall(gate_vma_init);
4039 #endif
4040
4041 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4042 {
4043 #ifdef AT_SYSINFO_EHDR
4044         return &gate_vma;
4045 #else
4046         return NULL;
4047 #endif
4048 }
4049
4050 int in_gate_area_no_mm(unsigned long addr)
4051 {
4052 #ifdef AT_SYSINFO_EHDR
4053         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4054                 return 1;
4055 #endif
4056         return 0;
4057 }
4058
4059 #endif  /* __HAVE_ARCH_GATE_AREA */
4060
4061 static int __follow_pte(struct mm_struct *mm, unsigned long address,
4062                 pte_t **ptepp, spinlock_t **ptlp)
4063 {
4064         pgd_t *pgd;
4065         pud_t *pud;
4066         pmd_t *pmd;
4067         pte_t *ptep;
4068
4069         pgd = pgd_offset(mm, address);
4070         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4071                 goto out;
4072
4073         pud = pud_offset(pgd, address);
4074         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4075                 goto out;
4076
4077         pmd = pmd_offset(pud, address);
4078         VM_BUG_ON(pmd_trans_huge(*pmd));
4079         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4080                 goto out;
4081
4082         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4083         if (pmd_huge(*pmd))
4084                 goto out;
4085
4086         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4087         if (!ptep)
4088                 goto out;
4089         if (!pte_present(*ptep))
4090                 goto unlock;
4091         *ptepp = ptep;
4092         return 0;
4093 unlock:
4094         pte_unmap_unlock(ptep, *ptlp);
4095 out:
4096         return -EINVAL;
4097 }
4098
4099 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4100                              pte_t **ptepp, spinlock_t **ptlp)
4101 {
4102         int res;
4103
4104         /* (void) is needed to make gcc happy */
4105         (void) __cond_lock(*ptlp,
4106                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
4107         return res;
4108 }
4109
4110 /**
4111  * follow_pfn - look up PFN at a user virtual address
4112  * @vma: memory mapping
4113  * @address: user virtual address
4114  * @pfn: location to store found PFN
4115  *
4116  * Only IO mappings and raw PFN mappings are allowed.
4117  *
4118  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4119  */
4120 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4121         unsigned long *pfn)
4122 {
4123         int ret = -EINVAL;
4124         spinlock_t *ptl;
4125         pte_t *ptep;
4126
4127         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4128                 return ret;
4129
4130         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4131         if (ret)
4132                 return ret;
4133         *pfn = pte_pfn(*ptep);
4134         pte_unmap_unlock(ptep, ptl);
4135         return 0;
4136 }
4137 EXPORT_SYMBOL(follow_pfn);
4138
4139 #ifdef CONFIG_HAVE_IOREMAP_PROT
4140 int follow_phys(struct vm_area_struct *vma,
4141                 unsigned long address, unsigned int flags,
4142                 unsigned long *prot, resource_size_t *phys)
4143 {
4144         int ret = -EINVAL;
4145         pte_t *ptep, pte;
4146         spinlock_t *ptl;
4147
4148         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4149                 goto out;
4150
4151         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4152                 goto out;
4153         pte = *ptep;
4154
4155         if ((flags & FOLL_WRITE) && !pte_write(pte))
4156                 goto unlock;
4157
4158         *prot = pgprot_val(pte_pgprot(pte));
4159         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4160
4161         ret = 0;
4162 unlock:
4163         pte_unmap_unlock(ptep, ptl);
4164 out:
4165         return ret;
4166 }
4167
4168 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4169                         void *buf, int len, int write)
4170 {
4171         resource_size_t phys_addr;
4172         unsigned long prot = 0;
4173         void __iomem *maddr;
4174         int offset = addr & (PAGE_SIZE-1);
4175
4176         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4177                 return -EINVAL;
4178
4179         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4180         if (write)
4181                 memcpy_toio(maddr + offset, buf, len);
4182         else
4183                 memcpy_fromio(buf, maddr + offset, len);
4184         iounmap(maddr);
4185
4186         return len;
4187 }
4188 EXPORT_SYMBOL_GPL(generic_access_phys);
4189 #endif
4190
4191 /*
4192  * Access another process' address space as given in mm.  If non-NULL, use the
4193  * given task for page fault accounting.
4194  */
4195 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4196                 unsigned long addr, void *buf, int len, int write)
4197 {
4198         struct vm_area_struct *vma;
4199         void *old_buf = buf;
4200
4201         down_read(&mm->mmap_sem);
4202         /* ignore errors, just check how much was successfully transferred */
4203         while (len) {
4204                 int bytes, ret, offset;
4205                 void *maddr;
4206                 struct page *page = NULL;
4207
4208                 ret = get_user_pages(tsk, mm, addr, 1,
4209                                 write, 1, &page, &vma);
4210                 if (ret <= 0) {
4211                         /*
4212                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4213                          * we can access using slightly different code.
4214                          */
4215 #ifdef CONFIG_HAVE_IOREMAP_PROT
4216                         vma = find_vma(mm, addr);
4217                         if (!vma || vma->vm_start > addr)
4218                                 break;
4219                         if (vma->vm_ops && vma->vm_ops->access)
4220                                 ret = vma->vm_ops->access(vma, addr, buf,
4221                                                           len, write);
4222                         if (ret <= 0)
4223 #endif
4224                                 break;
4225                         bytes = ret;
4226                 } else {
4227                         bytes = len;
4228                         offset = addr & (PAGE_SIZE-1);
4229                         if (bytes > PAGE_SIZE-offset)
4230                                 bytes = PAGE_SIZE-offset;
4231
4232                         maddr = kmap(page);
4233                         if (write) {
4234                                 copy_to_user_page(vma, page, addr,
4235                                                   maddr + offset, buf, bytes);
4236                                 set_page_dirty_lock(page);
4237                         } else {
4238                                 copy_from_user_page(vma, page, addr,
4239                                                     buf, maddr + offset, bytes);
4240                         }
4241                         kunmap(page);
4242                         page_cache_release(page);
4243                 }
4244                 len -= bytes;
4245                 buf += bytes;
4246                 addr += bytes;
4247         }
4248         up_read(&mm->mmap_sem);
4249
4250         return buf - old_buf;
4251 }
4252
4253 /**
4254  * access_remote_vm - access another process' address space
4255  * @mm:         the mm_struct of the target address space
4256  * @addr:       start address to access
4257  * @buf:        source or destination buffer
4258  * @len:        number of bytes to transfer
4259  * @write:      whether the access is a write
4260  *
4261  * The caller must hold a reference on @mm.
4262  */
4263 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4264                 void *buf, int len, int write)
4265 {
4266         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4267 }
4268
4269 /*
4270  * Access another process' address space.
4271  * Source/target buffer must be kernel space,
4272  * Do not walk the page table directly, use get_user_pages
4273  */
4274 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4275                 void *buf, int len, int write)
4276 {
4277         struct mm_struct *mm;
4278         int ret;
4279
4280         mm = get_task_mm(tsk);
4281         if (!mm)
4282                 return 0;
4283
4284         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4285         mmput(mm);
4286
4287         return ret;
4288 }
4289
4290 /*
4291  * Print the name of a VMA.
4292  */
4293 void print_vma_addr(char *prefix, unsigned long ip)
4294 {
4295         struct mm_struct *mm = current->mm;
4296         struct vm_area_struct *vma;
4297
4298         /*
4299          * Do not print if we are in atomic
4300          * contexts (in exception stacks, etc.):
4301          */
4302         if (preempt_count())
4303                 return;
4304
4305         down_read(&mm->mmap_sem);
4306         vma = find_vma(mm, ip);
4307         if (vma && vma->vm_file) {
4308                 struct file *f = vma->vm_file;
4309                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4310                 if (buf) {
4311                         char *p;
4312
4313                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4314                         if (IS_ERR(p))
4315                                 p = "?";
4316                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4317                                         vma->vm_start,
4318                                         vma->vm_end - vma->vm_start);
4319                         free_page((unsigned long)buf);
4320                 }
4321         }
4322         up_read(&mm->mmap_sem);
4323 }
4324
4325 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4326 void might_fault(void)
4327 {
4328         /*
4329          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4330          * holding the mmap_sem, this is safe because kernel memory doesn't
4331          * get paged out, therefore we'll never actually fault, and the
4332          * below annotations will generate false positives.
4333          */
4334         if (segment_eq(get_fs(), KERNEL_DS))
4335                 return;
4336
4337         /*
4338          * it would be nicer only to annotate paths which are not under
4339          * pagefault_disable, however that requires a larger audit and
4340          * providing helpers like get_user_atomic.
4341          */
4342         if (in_atomic())
4343                 return;
4344
4345         __might_sleep(__FILE__, __LINE__, 0);
4346
4347         if (current->mm)
4348                 might_lock_read(&current->mm->mmap_sem);
4349 }
4350 EXPORT_SYMBOL(might_fault);
4351 #endif
4352
4353 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4354 static void clear_gigantic_page(struct page *page,
4355                                 unsigned long addr,
4356                                 unsigned int pages_per_huge_page)
4357 {
4358         int i;
4359         struct page *p = page;
4360
4361         might_sleep();
4362         for (i = 0; i < pages_per_huge_page;
4363              i++, p = mem_map_next(p, page, i)) {
4364                 cond_resched();
4365                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4366         }
4367 }
4368 void clear_huge_page(struct page *page,
4369                      unsigned long addr, unsigned int pages_per_huge_page)
4370 {
4371         int i;
4372
4373         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4374                 clear_gigantic_page(page, addr, pages_per_huge_page);
4375                 return;
4376         }
4377
4378         might_sleep();
4379         for (i = 0; i < pages_per_huge_page; i++) {
4380                 cond_resched();
4381                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4382         }
4383 }
4384
4385 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4386                                     unsigned long addr,
4387                                     struct vm_area_struct *vma,
4388                                     unsigned int pages_per_huge_page)
4389 {
4390         int i;
4391         struct page *dst_base = dst;
4392         struct page *src_base = src;
4393
4394         for (i = 0; i < pages_per_huge_page; ) {
4395                 cond_resched();
4396                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4397
4398                 i++;
4399                 dst = mem_map_next(dst, dst_base, i);
4400                 src = mem_map_next(src, src_base, i);
4401         }
4402 }
4403
4404 void copy_user_huge_page(struct page *dst, struct page *src,
4405                          unsigned long addr, struct vm_area_struct *vma,
4406                          unsigned int pages_per_huge_page)
4407 {
4408         int i;
4409
4410         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4411                 copy_user_gigantic_page(dst, src, addr, vma,
4412                                         pages_per_huge_page);
4413                 return;
4414         }
4415
4416         might_sleep();
4417         for (i = 0; i < pages_per_huge_page; i++) {
4418                 cond_resched();
4419                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4420         }
4421 }
4422 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4423
4424 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4425
4426 static struct kmem_cache *page_ptl_cachep;
4427
4428 void __init ptlock_cache_init(void)
4429 {
4430         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4431                         SLAB_PANIC, NULL);
4432 }
4433
4434 bool ptlock_alloc(struct page *page)
4435 {
4436         spinlock_t *ptl;
4437
4438         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4439         if (!ptl)
4440                 return false;
4441         page->ptl = ptl;
4442         return true;
4443 }
4444
4445 void ptlock_free(struct page *page)
4446 {
4447         kmem_cache_free(page_ptl_cachep, page->ptl);
4448 }
4449 #endif