Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 /* use the per-pgdat data instead for discontigmem - mbligh */
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102
103 /*
104  * A number of key systems in x86 including ioremap() rely on the assumption
105  * that high_memory defines the upper bound on direct map memory, then end
106  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
107  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108  * and ZONE_HIGHMEM.
109  */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112
113 /*
114  * Randomize the address space (stacks, mmaps, brk, etc.).
115  *
116  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117  *   as ancient (libc5 based) binaries can segfault. )
118  */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121                                         1;
122 #else
123                                         2;
124 #endif
125
126 #ifndef arch_faults_on_old_pte
127 static inline bool arch_faults_on_old_pte(void)
128 {
129         /*
130          * Those arches which don't have hw access flag feature need to
131          * implement their own helper. By default, "true" means pagefault
132          * will be hit on old pte.
133          */
134         return true;
135 }
136 #endif
137
138 static int __init disable_randmaps(char *s)
139 {
140         randomize_va_space = 0;
141         return 1;
142 }
143 __setup("norandmaps", disable_randmaps);
144
145 unsigned long zero_pfn __read_mostly;
146 EXPORT_SYMBOL(zero_pfn);
147
148 unsigned long highest_memmap_pfn __read_mostly;
149
150 /*
151  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152  */
153 static int __init init_zero_pfn(void)
154 {
155         zero_pfn = page_to_pfn(ZERO_PAGE(0));
156         return 0;
157 }
158 core_initcall(init_zero_pfn);
159
160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
161 {
162         trace_rss_stat(mm, member, count);
163 }
164
165 #if defined(SPLIT_RSS_COUNTING)
166
167 void sync_mm_rss(struct mm_struct *mm)
168 {
169         int i;
170
171         for (i = 0; i < NR_MM_COUNTERS; i++) {
172                 if (current->rss_stat.count[i]) {
173                         add_mm_counter(mm, i, current->rss_stat.count[i]);
174                         current->rss_stat.count[i] = 0;
175                 }
176         }
177         current->rss_stat.events = 0;
178 }
179
180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181 {
182         struct task_struct *task = current;
183
184         if (likely(task->mm == mm))
185                 task->rss_stat.count[member] += val;
186         else
187                 add_mm_counter(mm, member, val);
188 }
189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191
192 /* sync counter once per 64 page faults */
193 #define TASK_RSS_EVENTS_THRESH  (64)
194 static void check_sync_rss_stat(struct task_struct *task)
195 {
196         if (unlikely(task != current))
197                 return;
198         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
199                 sync_mm_rss(task->mm);
200 }
201 #else /* SPLIT_RSS_COUNTING */
202
203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205
206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 }
209
210 #endif /* SPLIT_RSS_COUNTING */
211
212 /*
213  * Note: this doesn't free the actual pages themselves. That
214  * has been handled earlier when unmapping all the memory regions.
215  */
216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217                            unsigned long addr)
218 {
219         pgtable_t token = pmd_pgtable(*pmd);
220         pmd_clear(pmd);
221         pte_free_tlb(tlb, token, addr);
222         mm_dec_nr_ptes(tlb->mm);
223 }
224
225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226                                 unsigned long addr, unsigned long end,
227                                 unsigned long floor, unsigned long ceiling)
228 {
229         pmd_t *pmd;
230         unsigned long next;
231         unsigned long start;
232
233         start = addr;
234         pmd = pmd_offset(pud, addr);
235         do {
236                 next = pmd_addr_end(addr, end);
237                 if (pmd_none_or_clear_bad(pmd))
238                         continue;
239                 free_pte_range(tlb, pmd, addr);
240         } while (pmd++, addr = next, addr != end);
241
242         start &= PUD_MASK;
243         if (start < floor)
244                 return;
245         if (ceiling) {
246                 ceiling &= PUD_MASK;
247                 if (!ceiling)
248                         return;
249         }
250         if (end - 1 > ceiling - 1)
251                 return;
252
253         pmd = pmd_offset(pud, start);
254         pud_clear(pud);
255         pmd_free_tlb(tlb, pmd, start);
256         mm_dec_nr_pmds(tlb->mm);
257 }
258
259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
260                                 unsigned long addr, unsigned long end,
261                                 unsigned long floor, unsigned long ceiling)
262 {
263         pud_t *pud;
264         unsigned long next;
265         unsigned long start;
266
267         start = addr;
268         pud = pud_offset(p4d, addr);
269         do {
270                 next = pud_addr_end(addr, end);
271                 if (pud_none_or_clear_bad(pud))
272                         continue;
273                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
274         } while (pud++, addr = next, addr != end);
275
276         start &= P4D_MASK;
277         if (start < floor)
278                 return;
279         if (ceiling) {
280                 ceiling &= P4D_MASK;
281                 if (!ceiling)
282                         return;
283         }
284         if (end - 1 > ceiling - 1)
285                 return;
286
287         pud = pud_offset(p4d, start);
288         p4d_clear(p4d);
289         pud_free_tlb(tlb, pud, start);
290         mm_dec_nr_puds(tlb->mm);
291 }
292
293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294                                 unsigned long addr, unsigned long end,
295                                 unsigned long floor, unsigned long ceiling)
296 {
297         p4d_t *p4d;
298         unsigned long next;
299         unsigned long start;
300
301         start = addr;
302         p4d = p4d_offset(pgd, addr);
303         do {
304                 next = p4d_addr_end(addr, end);
305                 if (p4d_none_or_clear_bad(p4d))
306                         continue;
307                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308         } while (p4d++, addr = next, addr != end);
309
310         start &= PGDIR_MASK;
311         if (start < floor)
312                 return;
313         if (ceiling) {
314                 ceiling &= PGDIR_MASK;
315                 if (!ceiling)
316                         return;
317         }
318         if (end - 1 > ceiling - 1)
319                 return;
320
321         p4d = p4d_offset(pgd, start);
322         pgd_clear(pgd);
323         p4d_free_tlb(tlb, p4d, start);
324 }
325
326 /*
327  * This function frees user-level page tables of a process.
328  */
329 void free_pgd_range(struct mmu_gather *tlb,
330                         unsigned long addr, unsigned long end,
331                         unsigned long floor, unsigned long ceiling)
332 {
333         pgd_t *pgd;
334         unsigned long next;
335
336         /*
337          * The next few lines have given us lots of grief...
338          *
339          * Why are we testing PMD* at this top level?  Because often
340          * there will be no work to do at all, and we'd prefer not to
341          * go all the way down to the bottom just to discover that.
342          *
343          * Why all these "- 1"s?  Because 0 represents both the bottom
344          * of the address space and the top of it (using -1 for the
345          * top wouldn't help much: the masks would do the wrong thing).
346          * The rule is that addr 0 and floor 0 refer to the bottom of
347          * the address space, but end 0 and ceiling 0 refer to the top
348          * Comparisons need to use "end - 1" and "ceiling - 1" (though
349          * that end 0 case should be mythical).
350          *
351          * Wherever addr is brought up or ceiling brought down, we must
352          * be careful to reject "the opposite 0" before it confuses the
353          * subsequent tests.  But what about where end is brought down
354          * by PMD_SIZE below? no, end can't go down to 0 there.
355          *
356          * Whereas we round start (addr) and ceiling down, by different
357          * masks at different levels, in order to test whether a table
358          * now has no other vmas using it, so can be freed, we don't
359          * bother to round floor or end up - the tests don't need that.
360          */
361
362         addr &= PMD_MASK;
363         if (addr < floor) {
364                 addr += PMD_SIZE;
365                 if (!addr)
366                         return;
367         }
368         if (ceiling) {
369                 ceiling &= PMD_MASK;
370                 if (!ceiling)
371                         return;
372         }
373         if (end - 1 > ceiling - 1)
374                 end -= PMD_SIZE;
375         if (addr > end - 1)
376                 return;
377         /*
378          * We add page table cache pages with PAGE_SIZE,
379          * (see pte_free_tlb()), flush the tlb if we need
380          */
381         tlb_change_page_size(tlb, PAGE_SIZE);
382         pgd = pgd_offset(tlb->mm, addr);
383         do {
384                 next = pgd_addr_end(addr, end);
385                 if (pgd_none_or_clear_bad(pgd))
386                         continue;
387                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
388         } while (pgd++, addr = next, addr != end);
389 }
390
391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
392                 unsigned long floor, unsigned long ceiling)
393 {
394         while (vma) {
395                 struct vm_area_struct *next = vma->vm_next;
396                 unsigned long addr = vma->vm_start;
397
398                 /*
399                  * Hide vma from rmap and truncate_pagecache before freeing
400                  * pgtables
401                  */
402                 unlink_anon_vmas(vma);
403                 unlink_file_vma(vma);
404
405                 if (is_vm_hugetlb_page(vma)) {
406                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
407                                 floor, next ? next->vm_start : ceiling);
408                 } else {
409                         /*
410                          * Optimization: gather nearby vmas into one call down
411                          */
412                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
413                                && !is_vm_hugetlb_page(next)) {
414                                 vma = next;
415                                 next = vma->vm_next;
416                                 unlink_anon_vmas(vma);
417                                 unlink_file_vma(vma);
418                         }
419                         free_pgd_range(tlb, addr, vma->vm_end,
420                                 floor, next ? next->vm_start : ceiling);
421                 }
422                 vma = next;
423         }
424 }
425
426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 {
428         spinlock_t *ptl;
429         pgtable_t new = pte_alloc_one(mm);
430         if (!new)
431                 return -ENOMEM;
432
433         /*
434          * Ensure all pte setup (eg. pte page lock and page clearing) are
435          * visible before the pte is made visible to other CPUs by being
436          * put into page tables.
437          *
438          * The other side of the story is the pointer chasing in the page
439          * table walking code (when walking the page table without locking;
440          * ie. most of the time). Fortunately, these data accesses consist
441          * of a chain of data-dependent loads, meaning most CPUs (alpha
442          * being the notable exception) will already guarantee loads are
443          * seen in-order. See the alpha page table accessors for the
444          * smp_rmb() barriers in page table walking code.
445          */
446         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447
448         ptl = pmd_lock(mm, pmd);
449         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
450                 mm_inc_nr_ptes(mm);
451                 pmd_populate(mm, pmd, new);
452                 new = NULL;
453         }
454         spin_unlock(ptl);
455         if (new)
456                 pte_free(mm, new);
457         return 0;
458 }
459
460 int __pte_alloc_kernel(pmd_t *pmd)
461 {
462         pte_t *new = pte_alloc_one_kernel(&init_mm);
463         if (!new)
464                 return -ENOMEM;
465
466         smp_wmb(); /* See comment in __pte_alloc */
467
468         spin_lock(&init_mm.page_table_lock);
469         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
470                 pmd_populate_kernel(&init_mm, pmd, new);
471                 new = NULL;
472         }
473         spin_unlock(&init_mm.page_table_lock);
474         if (new)
475                 pte_free_kernel(&init_mm, new);
476         return 0;
477 }
478
479 static inline void init_rss_vec(int *rss)
480 {
481         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483
484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486         int i;
487
488         if (current->mm == mm)
489                 sync_mm_rss(mm);
490         for (i = 0; i < NR_MM_COUNTERS; i++)
491                 if (rss[i])
492                         add_mm_counter(mm, i, rss[i]);
493 }
494
495 /*
496  * This function is called to print an error when a bad pte
497  * is found. For example, we might have a PFN-mapped pte in
498  * a region that doesn't allow it.
499  *
500  * The calling function must still handle the error.
501  */
502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503                           pte_t pte, struct page *page)
504 {
505         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
506         p4d_t *p4d = p4d_offset(pgd, addr);
507         pud_t *pud = pud_offset(p4d, addr);
508         pmd_t *pmd = pmd_offset(pud, addr);
509         struct address_space *mapping;
510         pgoff_t index;
511         static unsigned long resume;
512         static unsigned long nr_shown;
513         static unsigned long nr_unshown;
514
515         /*
516          * Allow a burst of 60 reports, then keep quiet for that minute;
517          * or allow a steady drip of one report per second.
518          */
519         if (nr_shown == 60) {
520                 if (time_before(jiffies, resume)) {
521                         nr_unshown++;
522                         return;
523                 }
524                 if (nr_unshown) {
525                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526                                  nr_unshown);
527                         nr_unshown = 0;
528                 }
529                 nr_shown = 0;
530         }
531         if (nr_shown++ == 0)
532                 resume = jiffies + 60 * HZ;
533
534         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535         index = linear_page_index(vma, addr);
536
537         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
538                  current->comm,
539                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
540         if (page)
541                 dump_page(page, "bad pte");
542         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
543                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
544         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
545                  vma->vm_file,
546                  vma->vm_ops ? vma->vm_ops->fault : NULL,
547                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548                  mapping ? mapping->a_ops->readpage : NULL);
549         dump_stack();
550         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552
553 /*
554  * vm_normal_page -- This function gets the "struct page" associated with a pte.
555  *
556  * "Special" mappings do not wish to be associated with a "struct page" (either
557  * it doesn't exist, or it exists but they don't want to touch it). In this
558  * case, NULL is returned here. "Normal" mappings do have a struct page.
559  *
560  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561  * pte bit, in which case this function is trivial. Secondly, an architecture
562  * may not have a spare pte bit, which requires a more complicated scheme,
563  * described below.
564  *
565  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566  * special mapping (even if there are underlying and valid "struct pages").
567  * COWed pages of a VM_PFNMAP are always normal.
568  *
569  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572  * mapping will always honor the rule
573  *
574  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575  *
576  * And for normal mappings this is false.
577  *
578  * This restricts such mappings to be a linear translation from virtual address
579  * to pfn. To get around this restriction, we allow arbitrary mappings so long
580  * as the vma is not a COW mapping; in that case, we know that all ptes are
581  * special (because none can have been COWed).
582  *
583  *
584  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585  *
586  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587  * page" backing, however the difference is that _all_ pages with a struct
588  * page (that is, those where pfn_valid is true) are refcounted and considered
589  * normal pages by the VM. The disadvantage is that pages are refcounted
590  * (which can be slower and simply not an option for some PFNMAP users). The
591  * advantage is that we don't have to follow the strict linearity rule of
592  * PFNMAP mappings in order to support COWable mappings.
593  *
594  */
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596                             pte_t pte)
597 {
598         unsigned long pfn = pte_pfn(pte);
599
600         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
601                 if (likely(!pte_special(pte)))
602                         goto check_pfn;
603                 if (vma->vm_ops && vma->vm_ops->find_special_page)
604                         return vma->vm_ops->find_special_page(vma, addr);
605                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606                         return NULL;
607                 if (is_zero_pfn(pfn))
608                         return NULL;
609                 if (pte_devmap(pte))
610                         return NULL;
611
612                 print_bad_pte(vma, addr, pte, NULL);
613                 return NULL;
614         }
615
616         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617
618         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619                 if (vma->vm_flags & VM_MIXEDMAP) {
620                         if (!pfn_valid(pfn))
621                                 return NULL;
622                         goto out;
623                 } else {
624                         unsigned long off;
625                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
626                         if (pfn == vma->vm_pgoff + off)
627                                 return NULL;
628                         if (!is_cow_mapping(vma->vm_flags))
629                                 return NULL;
630                 }
631         }
632
633         if (is_zero_pfn(pfn))
634                 return NULL;
635
636 check_pfn:
637         if (unlikely(pfn > highest_memmap_pfn)) {
638                 print_bad_pte(vma, addr, pte, NULL);
639                 return NULL;
640         }
641
642         /*
643          * NOTE! We still have PageReserved() pages in the page tables.
644          * eg. VDSO mappings can cause them to exist.
645          */
646 out:
647         return pfn_to_page(pfn);
648 }
649
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652                                 pmd_t pmd)
653 {
654         unsigned long pfn = pmd_pfn(pmd);
655
656         /*
657          * There is no pmd_special() but there may be special pmds, e.g.
658          * in a direct-access (dax) mapping, so let's just replicate the
659          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660          */
661         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662                 if (vma->vm_flags & VM_MIXEDMAP) {
663                         if (!pfn_valid(pfn))
664                                 return NULL;
665                         goto out;
666                 } else {
667                         unsigned long off;
668                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
669                         if (pfn == vma->vm_pgoff + off)
670                                 return NULL;
671                         if (!is_cow_mapping(vma->vm_flags))
672                                 return NULL;
673                 }
674         }
675
676         if (pmd_devmap(pmd))
677                 return NULL;
678         if (is_huge_zero_pmd(pmd))
679                 return NULL;
680         if (unlikely(pfn > highest_memmap_pfn))
681                 return NULL;
682
683         /*
684          * NOTE! We still have PageReserved() pages in the page tables.
685          * eg. VDSO mappings can cause them to exist.
686          */
687 out:
688         return pfn_to_page(pfn);
689 }
690 #endif
691
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697
698 static unsigned long
699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701                 unsigned long addr, int *rss)
702 {
703         unsigned long vm_flags = vma->vm_flags;
704         pte_t pte = *src_pte;
705         struct page *page;
706         swp_entry_t entry = pte_to_swp_entry(pte);
707
708         if (likely(!non_swap_entry(entry))) {
709                 if (swap_duplicate(entry) < 0)
710                         return entry.val;
711
712                 /* make sure dst_mm is on swapoff's mmlist. */
713                 if (unlikely(list_empty(&dst_mm->mmlist))) {
714                         spin_lock(&mmlist_lock);
715                         if (list_empty(&dst_mm->mmlist))
716                                 list_add(&dst_mm->mmlist,
717                                                 &src_mm->mmlist);
718                         spin_unlock(&mmlist_lock);
719                 }
720                 rss[MM_SWAPENTS]++;
721         } else if (is_migration_entry(entry)) {
722                 page = migration_entry_to_page(entry);
723
724                 rss[mm_counter(page)]++;
725
726                 if (is_write_migration_entry(entry) &&
727                                 is_cow_mapping(vm_flags)) {
728                         /*
729                          * COW mappings require pages in both
730                          * parent and child to be set to read.
731                          */
732                         make_migration_entry_read(&entry);
733                         pte = swp_entry_to_pte(entry);
734                         if (pte_swp_soft_dirty(*src_pte))
735                                 pte = pte_swp_mksoft_dirty(pte);
736                         if (pte_swp_uffd_wp(*src_pte))
737                                 pte = pte_swp_mkuffd_wp(pte);
738                         set_pte_at(src_mm, addr, src_pte, pte);
739                 }
740         } else if (is_device_private_entry(entry)) {
741                 page = device_private_entry_to_page(entry);
742
743                 /*
744                  * Update rss count even for unaddressable pages, as
745                  * they should treated just like normal pages in this
746                  * respect.
747                  *
748                  * We will likely want to have some new rss counters
749                  * for unaddressable pages, at some point. But for now
750                  * keep things as they are.
751                  */
752                 get_page(page);
753                 rss[mm_counter(page)]++;
754                 page_dup_rmap(page, false);
755
756                 /*
757                  * We do not preserve soft-dirty information, because so
758                  * far, checkpoint/restore is the only feature that
759                  * requires that. And checkpoint/restore does not work
760                  * when a device driver is involved (you cannot easily
761                  * save and restore device driver state).
762                  */
763                 if (is_write_device_private_entry(entry) &&
764                     is_cow_mapping(vm_flags)) {
765                         make_device_private_entry_read(&entry);
766                         pte = swp_entry_to_pte(entry);
767                         if (pte_swp_uffd_wp(*src_pte))
768                                 pte = pte_swp_mkuffd_wp(pte);
769                         set_pte_at(src_mm, addr, src_pte, pte);
770                 }
771         }
772         set_pte_at(dst_mm, addr, dst_pte, pte);
773         return 0;
774 }
775
776 /*
777  * Copy a present and normal page if necessary.
778  *
779  * NOTE! The usual case is that this doesn't need to do
780  * anything, and can just return a positive value. That
781  * will let the caller know that it can just increase
782  * the page refcount and re-use the pte the traditional
783  * way.
784  *
785  * But _if_ we need to copy it because it needs to be
786  * pinned in the parent (and the child should get its own
787  * copy rather than just a reference to the same page),
788  * we'll do that here and return zero to let the caller
789  * know we're done.
790  *
791  * And if we need a pre-allocated page but don't yet have
792  * one, return a negative error to let the preallocation
793  * code know so that it can do so outside the page table
794  * lock.
795  */
796 static inline int
797 copy_present_page(struct mm_struct *dst_mm, struct mm_struct *src_mm,
798                 pte_t *dst_pte, pte_t *src_pte,
799                 struct vm_area_struct *vma, struct vm_area_struct *new,
800                 unsigned long addr, int *rss, struct page **prealloc,
801                 pte_t pte, struct page *page)
802 {
803         struct page *new_page;
804
805         if (!is_cow_mapping(vma->vm_flags))
806                 return 1;
807
808         /*
809          * The trick starts.
810          *
811          * What we want to do is to check whether this page may
812          * have been pinned by the parent process.  If so,
813          * instead of wrprotect the pte on both sides, we copy
814          * the page immediately so that we'll always guarantee
815          * the pinned page won't be randomly replaced in the
816          * future.
817          *
818          * To achieve this, we do the following:
819          *
820          * 1. Write-protect the pte if it's writable.  This is
821          *    to protect concurrent write fast-gup with
822          *    FOLL_PIN, so that we'll fail the fast-gup with
823          *    the write bit removed.
824          *
825          * 2. Check page_maybe_dma_pinned() to see whether this
826          *    page may have been pinned.
827          *
828          * The order of these steps is important to serialize
829          * against the fast-gup code (gup_pte_range()) on the
830          * pte check and try_grab_compound_head(), so that
831          * we'll make sure either we'll capture that fast-gup
832          * so we'll copy the pinned page here, or we'll fail
833          * that fast-gup.
834          *
835          * NOTE! Even if we don't end up copying the page,
836          * we won't undo this wrprotect(), because the normal
837          * reference copy will need it anyway.
838          */
839         if (pte_write(pte))
840                 ptep_set_wrprotect(src_mm, addr, src_pte);
841
842         /*
843          * These are the "normally we can just copy by reference"
844          * checks.
845          */
846         if (likely(!atomic_read(&src_mm->has_pinned)))
847                 return 1;
848         if (likely(!page_maybe_dma_pinned(page)))
849                 return 1;
850
851         /*
852          * Uhhuh. It looks like the page might be a pinned page,
853          * and we actually need to copy it. Now we can set the
854          * source pte back to being writable.
855          */
856         if (pte_write(pte))
857                 set_pte_at(src_mm, addr, src_pte, pte);
858
859         new_page = *prealloc;
860         if (!new_page)
861                 return -EAGAIN;
862
863         /*
864          * We have a prealloc page, all good!  Take it
865          * over and copy the page & arm it.
866          */
867         *prealloc = NULL;
868         copy_user_highpage(new_page, page, addr, vma);
869         __SetPageUptodate(new_page);
870         page_add_new_anon_rmap(new_page, new, addr, false);
871         lru_cache_add_inactive_or_unevictable(new_page, new);
872         rss[mm_counter(new_page)]++;
873
874         /* All done, just insert the new page copy in the child */
875         pte = mk_pte(new_page, new->vm_page_prot);
876         pte = maybe_mkwrite(pte_mkdirty(pte), new);
877         set_pte_at(dst_mm, addr, dst_pte, pte);
878         return 0;
879 }
880
881 /*
882  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
883  * is required to copy this pte.
884  */
885 static inline int
886 copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
887                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
888                 struct vm_area_struct *new,
889                 unsigned long addr, int *rss, struct page **prealloc)
890 {
891         unsigned long vm_flags = vma->vm_flags;
892         pte_t pte = *src_pte;
893         struct page *page;
894
895         page = vm_normal_page(vma, addr, pte);
896         if (page) {
897                 int retval;
898
899                 retval = copy_present_page(dst_mm, src_mm,
900                         dst_pte, src_pte,
901                         vma, new,
902                         addr, rss, prealloc,
903                         pte, page);
904                 if (retval <= 0)
905                         return retval;
906
907                 get_page(page);
908                 page_dup_rmap(page, false);
909                 rss[mm_counter(page)]++;
910         }
911
912         /*
913          * If it's a COW mapping, write protect it both
914          * in the parent and the child
915          */
916         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
917                 ptep_set_wrprotect(src_mm, addr, src_pte);
918                 pte = pte_wrprotect(pte);
919         }
920
921         /*
922          * If it's a shared mapping, mark it clean in
923          * the child
924          */
925         if (vm_flags & VM_SHARED)
926                 pte = pte_mkclean(pte);
927         pte = pte_mkold(pte);
928
929         /*
930          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
931          * does not have the VM_UFFD_WP, which means that the uffd
932          * fork event is not enabled.
933          */
934         if (!(vm_flags & VM_UFFD_WP))
935                 pte = pte_clear_uffd_wp(pte);
936
937         set_pte_at(dst_mm, addr, dst_pte, pte);
938         return 0;
939 }
940
941 static inline struct page *
942 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
943                    unsigned long addr)
944 {
945         struct page *new_page;
946
947         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
948         if (!new_page)
949                 return NULL;
950
951         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
952                 put_page(new_page);
953                 return NULL;
954         }
955         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
956
957         return new_page;
958 }
959
960 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
961                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
962                    struct vm_area_struct *new,
963                    unsigned long addr, unsigned long end)
964 {
965         pte_t *orig_src_pte, *orig_dst_pte;
966         pte_t *src_pte, *dst_pte;
967         spinlock_t *src_ptl, *dst_ptl;
968         int progress, ret = 0;
969         int rss[NR_MM_COUNTERS];
970         swp_entry_t entry = (swp_entry_t){0};
971         struct page *prealloc = NULL;
972
973 again:
974         progress = 0;
975         init_rss_vec(rss);
976
977         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
978         if (!dst_pte) {
979                 ret = -ENOMEM;
980                 goto out;
981         }
982         src_pte = pte_offset_map(src_pmd, addr);
983         src_ptl = pte_lockptr(src_mm, src_pmd);
984         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
985         orig_src_pte = src_pte;
986         orig_dst_pte = dst_pte;
987         arch_enter_lazy_mmu_mode();
988
989         do {
990                 /*
991                  * We are holding two locks at this point - either of them
992                  * could generate latencies in another task on another CPU.
993                  */
994                 if (progress >= 32) {
995                         progress = 0;
996                         if (need_resched() ||
997                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
998                                 break;
999                 }
1000                 if (pte_none(*src_pte)) {
1001                         progress++;
1002                         continue;
1003                 }
1004                 if (unlikely(!pte_present(*src_pte))) {
1005                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
1006                                                         dst_pte, src_pte,
1007                                                         vma, addr, rss);
1008                         if (entry.val)
1009                                 break;
1010                         progress += 8;
1011                         continue;
1012                 }
1013                 /* copy_present_pte() will clear `*prealloc' if consumed */
1014                 ret = copy_present_pte(dst_mm, src_mm, dst_pte, src_pte,
1015                                        vma, new, addr, rss, &prealloc);
1016                 /*
1017                  * If we need a pre-allocated page for this pte, drop the
1018                  * locks, allocate, and try again.
1019                  */
1020                 if (unlikely(ret == -EAGAIN))
1021                         break;
1022                 if (unlikely(prealloc)) {
1023                         /*
1024                          * pre-alloc page cannot be reused by next time so as
1025                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1026                          * will allocate page according to address).  This
1027                          * could only happen if one pinned pte changed.
1028                          */
1029                         put_page(prealloc);
1030                         prealloc = NULL;
1031                 }
1032                 progress += 8;
1033         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1034
1035         arch_leave_lazy_mmu_mode();
1036         spin_unlock(src_ptl);
1037         pte_unmap(orig_src_pte);
1038         add_mm_rss_vec(dst_mm, rss);
1039         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1040         cond_resched();
1041
1042         if (entry.val) {
1043                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1044                         ret = -ENOMEM;
1045                         goto out;
1046                 }
1047                 entry.val = 0;
1048         } else if (ret) {
1049                 WARN_ON_ONCE(ret != -EAGAIN);
1050                 prealloc = page_copy_prealloc(src_mm, vma, addr);
1051                 if (!prealloc)
1052                         return -ENOMEM;
1053                 /* We've captured and resolved the error. Reset, try again. */
1054                 ret = 0;
1055         }
1056         if (addr != end)
1057                 goto again;
1058 out:
1059         if (unlikely(prealloc))
1060                 put_page(prealloc);
1061         return ret;
1062 }
1063
1064 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1065                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1066                 struct vm_area_struct *new,
1067                 unsigned long addr, unsigned long end)
1068 {
1069         pmd_t *src_pmd, *dst_pmd;
1070         unsigned long next;
1071
1072         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1073         if (!dst_pmd)
1074                 return -ENOMEM;
1075         src_pmd = pmd_offset(src_pud, addr);
1076         do {
1077                 next = pmd_addr_end(addr, end);
1078                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1079                         || pmd_devmap(*src_pmd)) {
1080                         int err;
1081                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1082                         err = copy_huge_pmd(dst_mm, src_mm,
1083                                             dst_pmd, src_pmd, addr, vma);
1084                         if (err == -ENOMEM)
1085                                 return -ENOMEM;
1086                         if (!err)
1087                                 continue;
1088                         /* fall through */
1089                 }
1090                 if (pmd_none_or_clear_bad(src_pmd))
1091                         continue;
1092                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1093                                    vma, new, addr, next))
1094                         return -ENOMEM;
1095         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1096         return 0;
1097 }
1098
1099 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1100                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1101                 struct vm_area_struct *new,
1102                 unsigned long addr, unsigned long end)
1103 {
1104         pud_t *src_pud, *dst_pud;
1105         unsigned long next;
1106
1107         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1108         if (!dst_pud)
1109                 return -ENOMEM;
1110         src_pud = pud_offset(src_p4d, addr);
1111         do {
1112                 next = pud_addr_end(addr, end);
1113                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1114                         int err;
1115
1116                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1117                         err = copy_huge_pud(dst_mm, src_mm,
1118                                             dst_pud, src_pud, addr, vma);
1119                         if (err == -ENOMEM)
1120                                 return -ENOMEM;
1121                         if (!err)
1122                                 continue;
1123                         /* fall through */
1124                 }
1125                 if (pud_none_or_clear_bad(src_pud))
1126                         continue;
1127                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1128                                    vma, new, addr, next))
1129                         return -ENOMEM;
1130         } while (dst_pud++, src_pud++, addr = next, addr != end);
1131         return 0;
1132 }
1133
1134 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1135                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1136                 struct vm_area_struct *new,
1137                 unsigned long addr, unsigned long end)
1138 {
1139         p4d_t *src_p4d, *dst_p4d;
1140         unsigned long next;
1141
1142         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1143         if (!dst_p4d)
1144                 return -ENOMEM;
1145         src_p4d = p4d_offset(src_pgd, addr);
1146         do {
1147                 next = p4d_addr_end(addr, end);
1148                 if (p4d_none_or_clear_bad(src_p4d))
1149                         continue;
1150                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1151                                    vma, new, addr, next))
1152                         return -ENOMEM;
1153         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1154         return 0;
1155 }
1156
1157 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1158                     struct vm_area_struct *vma, struct vm_area_struct *new)
1159 {
1160         pgd_t *src_pgd, *dst_pgd;
1161         unsigned long next;
1162         unsigned long addr = vma->vm_start;
1163         unsigned long end = vma->vm_end;
1164         struct mmu_notifier_range range;
1165         bool is_cow;
1166         int ret;
1167
1168         /*
1169          * Don't copy ptes where a page fault will fill them correctly.
1170          * Fork becomes much lighter when there are big shared or private
1171          * readonly mappings. The tradeoff is that copy_page_range is more
1172          * efficient than faulting.
1173          */
1174         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1175                         !vma->anon_vma)
1176                 return 0;
1177
1178         if (is_vm_hugetlb_page(vma))
1179                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1180
1181         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1182                 /*
1183                  * We do not free on error cases below as remove_vma
1184                  * gets called on error from higher level routine
1185                  */
1186                 ret = track_pfn_copy(vma);
1187                 if (ret)
1188                         return ret;
1189         }
1190
1191         /*
1192          * We need to invalidate the secondary MMU mappings only when
1193          * there could be a permission downgrade on the ptes of the
1194          * parent mm. And a permission downgrade will only happen if
1195          * is_cow_mapping() returns true.
1196          */
1197         is_cow = is_cow_mapping(vma->vm_flags);
1198
1199         if (is_cow) {
1200                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1201                                         0, vma, src_mm, addr, end);
1202                 mmu_notifier_invalidate_range_start(&range);
1203         }
1204
1205         ret = 0;
1206         dst_pgd = pgd_offset(dst_mm, addr);
1207         src_pgd = pgd_offset(src_mm, addr);
1208         do {
1209                 next = pgd_addr_end(addr, end);
1210                 if (pgd_none_or_clear_bad(src_pgd))
1211                         continue;
1212                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1213                                             vma, new, addr, next))) {
1214                         ret = -ENOMEM;
1215                         break;
1216                 }
1217         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1218
1219         if (is_cow)
1220                 mmu_notifier_invalidate_range_end(&range);
1221         return ret;
1222 }
1223
1224 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1225                                 struct vm_area_struct *vma, pmd_t *pmd,
1226                                 unsigned long addr, unsigned long end,
1227                                 struct zap_details *details)
1228 {
1229         struct mm_struct *mm = tlb->mm;
1230         int force_flush = 0;
1231         int rss[NR_MM_COUNTERS];
1232         spinlock_t *ptl;
1233         pte_t *start_pte;
1234         pte_t *pte;
1235         swp_entry_t entry;
1236
1237         tlb_change_page_size(tlb, PAGE_SIZE);
1238 again:
1239         init_rss_vec(rss);
1240         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1241         pte = start_pte;
1242         flush_tlb_batched_pending(mm);
1243         arch_enter_lazy_mmu_mode();
1244         do {
1245                 pte_t ptent = *pte;
1246                 if (pte_none(ptent))
1247                         continue;
1248
1249                 if (need_resched())
1250                         break;
1251
1252                 if (pte_present(ptent)) {
1253                         struct page *page;
1254
1255                         page = vm_normal_page(vma, addr, ptent);
1256                         if (unlikely(details) && page) {
1257                                 /*
1258                                  * unmap_shared_mapping_pages() wants to
1259                                  * invalidate cache without truncating:
1260                                  * unmap shared but keep private pages.
1261                                  */
1262                                 if (details->check_mapping &&
1263                                     details->check_mapping != page_rmapping(page))
1264                                         continue;
1265                         }
1266                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1267                                                         tlb->fullmm);
1268                         tlb_remove_tlb_entry(tlb, pte, addr);
1269                         if (unlikely(!page))
1270                                 continue;
1271
1272                         if (!PageAnon(page)) {
1273                                 if (pte_dirty(ptent)) {
1274                                         force_flush = 1;
1275                                         set_page_dirty(page);
1276                                 }
1277                                 if (pte_young(ptent) &&
1278                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1279                                         mark_page_accessed(page);
1280                         }
1281                         rss[mm_counter(page)]--;
1282                         page_remove_rmap(page, false);
1283                         if (unlikely(page_mapcount(page) < 0))
1284                                 print_bad_pte(vma, addr, ptent, page);
1285                         if (unlikely(__tlb_remove_page(tlb, page))) {
1286                                 force_flush = 1;
1287                                 addr += PAGE_SIZE;
1288                                 break;
1289                         }
1290                         continue;
1291                 }
1292
1293                 entry = pte_to_swp_entry(ptent);
1294                 if (is_device_private_entry(entry)) {
1295                         struct page *page = device_private_entry_to_page(entry);
1296
1297                         if (unlikely(details && details->check_mapping)) {
1298                                 /*
1299                                  * unmap_shared_mapping_pages() wants to
1300                                  * invalidate cache without truncating:
1301                                  * unmap shared but keep private pages.
1302                                  */
1303                                 if (details->check_mapping !=
1304                                     page_rmapping(page))
1305                                         continue;
1306                         }
1307
1308                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1309                         rss[mm_counter(page)]--;
1310                         page_remove_rmap(page, false);
1311                         put_page(page);
1312                         continue;
1313                 }
1314
1315                 /* If details->check_mapping, we leave swap entries. */
1316                 if (unlikely(details))
1317                         continue;
1318
1319                 if (!non_swap_entry(entry))
1320                         rss[MM_SWAPENTS]--;
1321                 else if (is_migration_entry(entry)) {
1322                         struct page *page;
1323
1324                         page = migration_entry_to_page(entry);
1325                         rss[mm_counter(page)]--;
1326                 }
1327                 if (unlikely(!free_swap_and_cache(entry)))
1328                         print_bad_pte(vma, addr, ptent, NULL);
1329                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1330         } while (pte++, addr += PAGE_SIZE, addr != end);
1331
1332         add_mm_rss_vec(mm, rss);
1333         arch_leave_lazy_mmu_mode();
1334
1335         /* Do the actual TLB flush before dropping ptl */
1336         if (force_flush)
1337                 tlb_flush_mmu_tlbonly(tlb);
1338         pte_unmap_unlock(start_pte, ptl);
1339
1340         /*
1341          * If we forced a TLB flush (either due to running out of
1342          * batch buffers or because we needed to flush dirty TLB
1343          * entries before releasing the ptl), free the batched
1344          * memory too. Restart if we didn't do everything.
1345          */
1346         if (force_flush) {
1347                 force_flush = 0;
1348                 tlb_flush_mmu(tlb);
1349         }
1350
1351         if (addr != end) {
1352                 cond_resched();
1353                 goto again;
1354         }
1355
1356         return addr;
1357 }
1358
1359 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1360                                 struct vm_area_struct *vma, pud_t *pud,
1361                                 unsigned long addr, unsigned long end,
1362                                 struct zap_details *details)
1363 {
1364         pmd_t *pmd;
1365         unsigned long next;
1366
1367         pmd = pmd_offset(pud, addr);
1368         do {
1369                 next = pmd_addr_end(addr, end);
1370                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1371                         if (next - addr != HPAGE_PMD_SIZE)
1372                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1373                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1374                                 goto next;
1375                         /* fall through */
1376                 }
1377                 /*
1378                  * Here there can be other concurrent MADV_DONTNEED or
1379                  * trans huge page faults running, and if the pmd is
1380                  * none or trans huge it can change under us. This is
1381                  * because MADV_DONTNEED holds the mmap_lock in read
1382                  * mode.
1383                  */
1384                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1385                         goto next;
1386                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1387 next:
1388                 cond_resched();
1389         } while (pmd++, addr = next, addr != end);
1390
1391         return addr;
1392 }
1393
1394 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1395                                 struct vm_area_struct *vma, p4d_t *p4d,
1396                                 unsigned long addr, unsigned long end,
1397                                 struct zap_details *details)
1398 {
1399         pud_t *pud;
1400         unsigned long next;
1401
1402         pud = pud_offset(p4d, addr);
1403         do {
1404                 next = pud_addr_end(addr, end);
1405                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1406                         if (next - addr != HPAGE_PUD_SIZE) {
1407                                 mmap_assert_locked(tlb->mm);
1408                                 split_huge_pud(vma, pud, addr);
1409                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1410                                 goto next;
1411                         /* fall through */
1412                 }
1413                 if (pud_none_or_clear_bad(pud))
1414                         continue;
1415                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1416 next:
1417                 cond_resched();
1418         } while (pud++, addr = next, addr != end);
1419
1420         return addr;
1421 }
1422
1423 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1424                                 struct vm_area_struct *vma, pgd_t *pgd,
1425                                 unsigned long addr, unsigned long end,
1426                                 struct zap_details *details)
1427 {
1428         p4d_t *p4d;
1429         unsigned long next;
1430
1431         p4d = p4d_offset(pgd, addr);
1432         do {
1433                 next = p4d_addr_end(addr, end);
1434                 if (p4d_none_or_clear_bad(p4d))
1435                         continue;
1436                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1437         } while (p4d++, addr = next, addr != end);
1438
1439         return addr;
1440 }
1441
1442 void unmap_page_range(struct mmu_gather *tlb,
1443                              struct vm_area_struct *vma,
1444                              unsigned long addr, unsigned long end,
1445                              struct zap_details *details)
1446 {
1447         pgd_t *pgd;
1448         unsigned long next;
1449
1450         BUG_ON(addr >= end);
1451         tlb_start_vma(tlb, vma);
1452         pgd = pgd_offset(vma->vm_mm, addr);
1453         do {
1454                 next = pgd_addr_end(addr, end);
1455                 if (pgd_none_or_clear_bad(pgd))
1456                         continue;
1457                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1458         } while (pgd++, addr = next, addr != end);
1459         tlb_end_vma(tlb, vma);
1460 }
1461
1462
1463 static void unmap_single_vma(struct mmu_gather *tlb,
1464                 struct vm_area_struct *vma, unsigned long start_addr,
1465                 unsigned long end_addr,
1466                 struct zap_details *details)
1467 {
1468         unsigned long start = max(vma->vm_start, start_addr);
1469         unsigned long end;
1470
1471         if (start >= vma->vm_end)
1472                 return;
1473         end = min(vma->vm_end, end_addr);
1474         if (end <= vma->vm_start)
1475                 return;
1476
1477         if (vma->vm_file)
1478                 uprobe_munmap(vma, start, end);
1479
1480         if (unlikely(vma->vm_flags & VM_PFNMAP))
1481                 untrack_pfn(vma, 0, 0);
1482
1483         if (start != end) {
1484                 if (unlikely(is_vm_hugetlb_page(vma))) {
1485                         /*
1486                          * It is undesirable to test vma->vm_file as it
1487                          * should be non-null for valid hugetlb area.
1488                          * However, vm_file will be NULL in the error
1489                          * cleanup path of mmap_region. When
1490                          * hugetlbfs ->mmap method fails,
1491                          * mmap_region() nullifies vma->vm_file
1492                          * before calling this function to clean up.
1493                          * Since no pte has actually been setup, it is
1494                          * safe to do nothing in this case.
1495                          */
1496                         if (vma->vm_file) {
1497                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1498                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1499                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1500                         }
1501                 } else
1502                         unmap_page_range(tlb, vma, start, end, details);
1503         }
1504 }
1505
1506 /**
1507  * unmap_vmas - unmap a range of memory covered by a list of vma's
1508  * @tlb: address of the caller's struct mmu_gather
1509  * @vma: the starting vma
1510  * @start_addr: virtual address at which to start unmapping
1511  * @end_addr: virtual address at which to end unmapping
1512  *
1513  * Unmap all pages in the vma list.
1514  *
1515  * Only addresses between `start' and `end' will be unmapped.
1516  *
1517  * The VMA list must be sorted in ascending virtual address order.
1518  *
1519  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1520  * range after unmap_vmas() returns.  So the only responsibility here is to
1521  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1522  * drops the lock and schedules.
1523  */
1524 void unmap_vmas(struct mmu_gather *tlb,
1525                 struct vm_area_struct *vma, unsigned long start_addr,
1526                 unsigned long end_addr)
1527 {
1528         struct mmu_notifier_range range;
1529
1530         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1531                                 start_addr, end_addr);
1532         mmu_notifier_invalidate_range_start(&range);
1533         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1534                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1535         mmu_notifier_invalidate_range_end(&range);
1536 }
1537
1538 /**
1539  * zap_page_range - remove user pages in a given range
1540  * @vma: vm_area_struct holding the applicable pages
1541  * @start: starting address of pages to zap
1542  * @size: number of bytes to zap
1543  *
1544  * Caller must protect the VMA list
1545  */
1546 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1547                 unsigned long size)
1548 {
1549         struct mmu_notifier_range range;
1550         struct mmu_gather tlb;
1551
1552         lru_add_drain();
1553         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1554                                 start, start + size);
1555         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1556         update_hiwater_rss(vma->vm_mm);
1557         mmu_notifier_invalidate_range_start(&range);
1558         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1559                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1560         mmu_notifier_invalidate_range_end(&range);
1561         tlb_finish_mmu(&tlb, start, range.end);
1562 }
1563
1564 /**
1565  * zap_page_range_single - remove user pages in a given range
1566  * @vma: vm_area_struct holding the applicable pages
1567  * @address: starting address of pages to zap
1568  * @size: number of bytes to zap
1569  * @details: details of shared cache invalidation
1570  *
1571  * The range must fit into one VMA.
1572  */
1573 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1574                 unsigned long size, struct zap_details *details)
1575 {
1576         struct mmu_notifier_range range;
1577         struct mmu_gather tlb;
1578
1579         lru_add_drain();
1580         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1581                                 address, address + size);
1582         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1583         update_hiwater_rss(vma->vm_mm);
1584         mmu_notifier_invalidate_range_start(&range);
1585         unmap_single_vma(&tlb, vma, address, range.end, details);
1586         mmu_notifier_invalidate_range_end(&range);
1587         tlb_finish_mmu(&tlb, address, range.end);
1588 }
1589
1590 /**
1591  * zap_vma_ptes - remove ptes mapping the vma
1592  * @vma: vm_area_struct holding ptes to be zapped
1593  * @address: starting address of pages to zap
1594  * @size: number of bytes to zap
1595  *
1596  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1597  *
1598  * The entire address range must be fully contained within the vma.
1599  *
1600  */
1601 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1602                 unsigned long size)
1603 {
1604         if (address < vma->vm_start || address + size > vma->vm_end ||
1605                         !(vma->vm_flags & VM_PFNMAP))
1606                 return;
1607
1608         zap_page_range_single(vma, address, size, NULL);
1609 }
1610 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1611
1612 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1613 {
1614         pgd_t *pgd;
1615         p4d_t *p4d;
1616         pud_t *pud;
1617         pmd_t *pmd;
1618
1619         pgd = pgd_offset(mm, addr);
1620         p4d = p4d_alloc(mm, pgd, addr);
1621         if (!p4d)
1622                 return NULL;
1623         pud = pud_alloc(mm, p4d, addr);
1624         if (!pud)
1625                 return NULL;
1626         pmd = pmd_alloc(mm, pud, addr);
1627         if (!pmd)
1628                 return NULL;
1629
1630         VM_BUG_ON(pmd_trans_huge(*pmd));
1631         return pmd;
1632 }
1633
1634 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1635                         spinlock_t **ptl)
1636 {
1637         pmd_t *pmd = walk_to_pmd(mm, addr);
1638
1639         if (!pmd)
1640                 return NULL;
1641         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1642 }
1643
1644 static int validate_page_before_insert(struct page *page)
1645 {
1646         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1647                 return -EINVAL;
1648         flush_dcache_page(page);
1649         return 0;
1650 }
1651
1652 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1653                         unsigned long addr, struct page *page, pgprot_t prot)
1654 {
1655         if (!pte_none(*pte))
1656                 return -EBUSY;
1657         /* Ok, finally just insert the thing.. */
1658         get_page(page);
1659         inc_mm_counter_fast(mm, mm_counter_file(page));
1660         page_add_file_rmap(page, false);
1661         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1662         return 0;
1663 }
1664
1665 /*
1666  * This is the old fallback for page remapping.
1667  *
1668  * For historical reasons, it only allows reserved pages. Only
1669  * old drivers should use this, and they needed to mark their
1670  * pages reserved for the old functions anyway.
1671  */
1672 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1673                         struct page *page, pgprot_t prot)
1674 {
1675         struct mm_struct *mm = vma->vm_mm;
1676         int retval;
1677         pte_t *pte;
1678         spinlock_t *ptl;
1679
1680         retval = validate_page_before_insert(page);
1681         if (retval)
1682                 goto out;
1683         retval = -ENOMEM;
1684         pte = get_locked_pte(mm, addr, &ptl);
1685         if (!pte)
1686                 goto out;
1687         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1688         pte_unmap_unlock(pte, ptl);
1689 out:
1690         return retval;
1691 }
1692
1693 #ifdef pte_index
1694 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1695                         unsigned long addr, struct page *page, pgprot_t prot)
1696 {
1697         int err;
1698
1699         if (!page_count(page))
1700                 return -EINVAL;
1701         err = validate_page_before_insert(page);
1702         if (err)
1703                 return err;
1704         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1705 }
1706
1707 /* insert_pages() amortizes the cost of spinlock operations
1708  * when inserting pages in a loop. Arch *must* define pte_index.
1709  */
1710 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1711                         struct page **pages, unsigned long *num, pgprot_t prot)
1712 {
1713         pmd_t *pmd = NULL;
1714         pte_t *start_pte, *pte;
1715         spinlock_t *pte_lock;
1716         struct mm_struct *const mm = vma->vm_mm;
1717         unsigned long curr_page_idx = 0;
1718         unsigned long remaining_pages_total = *num;
1719         unsigned long pages_to_write_in_pmd;
1720         int ret;
1721 more:
1722         ret = -EFAULT;
1723         pmd = walk_to_pmd(mm, addr);
1724         if (!pmd)
1725                 goto out;
1726
1727         pages_to_write_in_pmd = min_t(unsigned long,
1728                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1729
1730         /* Allocate the PTE if necessary; takes PMD lock once only. */
1731         ret = -ENOMEM;
1732         if (pte_alloc(mm, pmd))
1733                 goto out;
1734
1735         while (pages_to_write_in_pmd) {
1736                 int pte_idx = 0;
1737                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1738
1739                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1740                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1741                         int err = insert_page_in_batch_locked(mm, pte,
1742                                 addr, pages[curr_page_idx], prot);
1743                         if (unlikely(err)) {
1744                                 pte_unmap_unlock(start_pte, pte_lock);
1745                                 ret = err;
1746                                 remaining_pages_total -= pte_idx;
1747                                 goto out;
1748                         }
1749                         addr += PAGE_SIZE;
1750                         ++curr_page_idx;
1751                 }
1752                 pte_unmap_unlock(start_pte, pte_lock);
1753                 pages_to_write_in_pmd -= batch_size;
1754                 remaining_pages_total -= batch_size;
1755         }
1756         if (remaining_pages_total)
1757                 goto more;
1758         ret = 0;
1759 out:
1760         *num = remaining_pages_total;
1761         return ret;
1762 }
1763 #endif  /* ifdef pte_index */
1764
1765 /**
1766  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1767  * @vma: user vma to map to
1768  * @addr: target start user address of these pages
1769  * @pages: source kernel pages
1770  * @num: in: number of pages to map. out: number of pages that were *not*
1771  * mapped. (0 means all pages were successfully mapped).
1772  *
1773  * Preferred over vm_insert_page() when inserting multiple pages.
1774  *
1775  * In case of error, we may have mapped a subset of the provided
1776  * pages. It is the caller's responsibility to account for this case.
1777  *
1778  * The same restrictions apply as in vm_insert_page().
1779  */
1780 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1781                         struct page **pages, unsigned long *num)
1782 {
1783 #ifdef pte_index
1784         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1785
1786         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1787                 return -EFAULT;
1788         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1789                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1790                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1791                 vma->vm_flags |= VM_MIXEDMAP;
1792         }
1793         /* Defer page refcount checking till we're about to map that page. */
1794         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1795 #else
1796         unsigned long idx = 0, pgcount = *num;
1797         int err = -EINVAL;
1798
1799         for (; idx < pgcount; ++idx) {
1800                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1801                 if (err)
1802                         break;
1803         }
1804         *num = pgcount - idx;
1805         return err;
1806 #endif  /* ifdef pte_index */
1807 }
1808 EXPORT_SYMBOL(vm_insert_pages);
1809
1810 /**
1811  * vm_insert_page - insert single page into user vma
1812  * @vma: user vma to map to
1813  * @addr: target user address of this page
1814  * @page: source kernel page
1815  *
1816  * This allows drivers to insert individual pages they've allocated
1817  * into a user vma.
1818  *
1819  * The page has to be a nice clean _individual_ kernel allocation.
1820  * If you allocate a compound page, you need to have marked it as
1821  * such (__GFP_COMP), or manually just split the page up yourself
1822  * (see split_page()).
1823  *
1824  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1825  * took an arbitrary page protection parameter. This doesn't allow
1826  * that. Your vma protection will have to be set up correctly, which
1827  * means that if you want a shared writable mapping, you'd better
1828  * ask for a shared writable mapping!
1829  *
1830  * The page does not need to be reserved.
1831  *
1832  * Usually this function is called from f_op->mmap() handler
1833  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1834  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1835  * function from other places, for example from page-fault handler.
1836  *
1837  * Return: %0 on success, negative error code otherwise.
1838  */
1839 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1840                         struct page *page)
1841 {
1842         if (addr < vma->vm_start || addr >= vma->vm_end)
1843                 return -EFAULT;
1844         if (!page_count(page))
1845                 return -EINVAL;
1846         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1847                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1848                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1849                 vma->vm_flags |= VM_MIXEDMAP;
1850         }
1851         return insert_page(vma, addr, page, vma->vm_page_prot);
1852 }
1853 EXPORT_SYMBOL(vm_insert_page);
1854
1855 /*
1856  * __vm_map_pages - maps range of kernel pages into user vma
1857  * @vma: user vma to map to
1858  * @pages: pointer to array of source kernel pages
1859  * @num: number of pages in page array
1860  * @offset: user's requested vm_pgoff
1861  *
1862  * This allows drivers to map range of kernel pages into a user vma.
1863  *
1864  * Return: 0 on success and error code otherwise.
1865  */
1866 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1867                                 unsigned long num, unsigned long offset)
1868 {
1869         unsigned long count = vma_pages(vma);
1870         unsigned long uaddr = vma->vm_start;
1871         int ret, i;
1872
1873         /* Fail if the user requested offset is beyond the end of the object */
1874         if (offset >= num)
1875                 return -ENXIO;
1876
1877         /* Fail if the user requested size exceeds available object size */
1878         if (count > num - offset)
1879                 return -ENXIO;
1880
1881         for (i = 0; i < count; i++) {
1882                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1883                 if (ret < 0)
1884                         return ret;
1885                 uaddr += PAGE_SIZE;
1886         }
1887
1888         return 0;
1889 }
1890
1891 /**
1892  * vm_map_pages - maps range of kernel pages starts with non zero offset
1893  * @vma: user vma to map to
1894  * @pages: pointer to array of source kernel pages
1895  * @num: number of pages in page array
1896  *
1897  * Maps an object consisting of @num pages, catering for the user's
1898  * requested vm_pgoff
1899  *
1900  * If we fail to insert any page into the vma, the function will return
1901  * immediately leaving any previously inserted pages present.  Callers
1902  * from the mmap handler may immediately return the error as their caller
1903  * will destroy the vma, removing any successfully inserted pages. Other
1904  * callers should make their own arrangements for calling unmap_region().
1905  *
1906  * Context: Process context. Called by mmap handlers.
1907  * Return: 0 on success and error code otherwise.
1908  */
1909 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1910                                 unsigned long num)
1911 {
1912         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1913 }
1914 EXPORT_SYMBOL(vm_map_pages);
1915
1916 /**
1917  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1918  * @vma: user vma to map to
1919  * @pages: pointer to array of source kernel pages
1920  * @num: number of pages in page array
1921  *
1922  * Similar to vm_map_pages(), except that it explicitly sets the offset
1923  * to 0. This function is intended for the drivers that did not consider
1924  * vm_pgoff.
1925  *
1926  * Context: Process context. Called by mmap handlers.
1927  * Return: 0 on success and error code otherwise.
1928  */
1929 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1930                                 unsigned long num)
1931 {
1932         return __vm_map_pages(vma, pages, num, 0);
1933 }
1934 EXPORT_SYMBOL(vm_map_pages_zero);
1935
1936 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1937                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1938 {
1939         struct mm_struct *mm = vma->vm_mm;
1940         pte_t *pte, entry;
1941         spinlock_t *ptl;
1942
1943         pte = get_locked_pte(mm, addr, &ptl);
1944         if (!pte)
1945                 return VM_FAULT_OOM;
1946         if (!pte_none(*pte)) {
1947                 if (mkwrite) {
1948                         /*
1949                          * For read faults on private mappings the PFN passed
1950                          * in may not match the PFN we have mapped if the
1951                          * mapped PFN is a writeable COW page.  In the mkwrite
1952                          * case we are creating a writable PTE for a shared
1953                          * mapping and we expect the PFNs to match. If they
1954                          * don't match, we are likely racing with block
1955                          * allocation and mapping invalidation so just skip the
1956                          * update.
1957                          */
1958                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1959                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1960                                 goto out_unlock;
1961                         }
1962                         entry = pte_mkyoung(*pte);
1963                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1964                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1965                                 update_mmu_cache(vma, addr, pte);
1966                 }
1967                 goto out_unlock;
1968         }
1969
1970         /* Ok, finally just insert the thing.. */
1971         if (pfn_t_devmap(pfn))
1972                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1973         else
1974                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1975
1976         if (mkwrite) {
1977                 entry = pte_mkyoung(entry);
1978                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1979         }
1980
1981         set_pte_at(mm, addr, pte, entry);
1982         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1983
1984 out_unlock:
1985         pte_unmap_unlock(pte, ptl);
1986         return VM_FAULT_NOPAGE;
1987 }
1988
1989 /**
1990  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1991  * @vma: user vma to map to
1992  * @addr: target user address of this page
1993  * @pfn: source kernel pfn
1994  * @pgprot: pgprot flags for the inserted page
1995  *
1996  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1997  * to override pgprot on a per-page basis.
1998  *
1999  * This only makes sense for IO mappings, and it makes no sense for
2000  * COW mappings.  In general, using multiple vmas is preferable;
2001  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2002  * impractical.
2003  *
2004  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2005  * a value of @pgprot different from that of @vma->vm_page_prot.
2006  *
2007  * Context: Process context.  May allocate using %GFP_KERNEL.
2008  * Return: vm_fault_t value.
2009  */
2010 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2011                         unsigned long pfn, pgprot_t pgprot)
2012 {
2013         /*
2014          * Technically, architectures with pte_special can avoid all these
2015          * restrictions (same for remap_pfn_range).  However we would like
2016          * consistency in testing and feature parity among all, so we should
2017          * try to keep these invariants in place for everybody.
2018          */
2019         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2020         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2021                                                 (VM_PFNMAP|VM_MIXEDMAP));
2022         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2023         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2024
2025         if (addr < vma->vm_start || addr >= vma->vm_end)
2026                 return VM_FAULT_SIGBUS;
2027
2028         if (!pfn_modify_allowed(pfn, pgprot))
2029                 return VM_FAULT_SIGBUS;
2030
2031         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2032
2033         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2034                         false);
2035 }
2036 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2037
2038 /**
2039  * vmf_insert_pfn - insert single pfn into user vma
2040  * @vma: user vma to map to
2041  * @addr: target user address of this page
2042  * @pfn: source kernel pfn
2043  *
2044  * Similar to vm_insert_page, this allows drivers to insert individual pages
2045  * they've allocated into a user vma. Same comments apply.
2046  *
2047  * This function should only be called from a vm_ops->fault handler, and
2048  * in that case the handler should return the result of this function.
2049  *
2050  * vma cannot be a COW mapping.
2051  *
2052  * As this is called only for pages that do not currently exist, we
2053  * do not need to flush old virtual caches or the TLB.
2054  *
2055  * Context: Process context.  May allocate using %GFP_KERNEL.
2056  * Return: vm_fault_t value.
2057  */
2058 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2059                         unsigned long pfn)
2060 {
2061         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2062 }
2063 EXPORT_SYMBOL(vmf_insert_pfn);
2064
2065 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2066 {
2067         /* these checks mirror the abort conditions in vm_normal_page */
2068         if (vma->vm_flags & VM_MIXEDMAP)
2069                 return true;
2070         if (pfn_t_devmap(pfn))
2071                 return true;
2072         if (pfn_t_special(pfn))
2073                 return true;
2074         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2075                 return true;
2076         return false;
2077 }
2078
2079 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2080                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2081                 bool mkwrite)
2082 {
2083         int err;
2084
2085         BUG_ON(!vm_mixed_ok(vma, pfn));
2086
2087         if (addr < vma->vm_start || addr >= vma->vm_end)
2088                 return VM_FAULT_SIGBUS;
2089
2090         track_pfn_insert(vma, &pgprot, pfn);
2091
2092         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2093                 return VM_FAULT_SIGBUS;
2094
2095         /*
2096          * If we don't have pte special, then we have to use the pfn_valid()
2097          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2098          * refcount the page if pfn_valid is true (hence insert_page rather
2099          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2100          * without pte special, it would there be refcounted as a normal page.
2101          */
2102         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2103             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2104                 struct page *page;
2105
2106                 /*
2107                  * At this point we are committed to insert_page()
2108                  * regardless of whether the caller specified flags that
2109                  * result in pfn_t_has_page() == false.
2110                  */
2111                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2112                 err = insert_page(vma, addr, page, pgprot);
2113         } else {
2114                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2115         }
2116
2117         if (err == -ENOMEM)
2118                 return VM_FAULT_OOM;
2119         if (err < 0 && err != -EBUSY)
2120                 return VM_FAULT_SIGBUS;
2121
2122         return VM_FAULT_NOPAGE;
2123 }
2124
2125 /**
2126  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2127  * @vma: user vma to map to
2128  * @addr: target user address of this page
2129  * @pfn: source kernel pfn
2130  * @pgprot: pgprot flags for the inserted page
2131  *
2132  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2133  * to override pgprot on a per-page basis.
2134  *
2135  * Typically this function should be used by drivers to set caching- and
2136  * encryption bits different than those of @vma->vm_page_prot, because
2137  * the caching- or encryption mode may not be known at mmap() time.
2138  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2139  * to set caching and encryption bits for those vmas (except for COW pages).
2140  * This is ensured by core vm only modifying these page table entries using
2141  * functions that don't touch caching- or encryption bits, using pte_modify()
2142  * if needed. (See for example mprotect()).
2143  * Also when new page-table entries are created, this is only done using the
2144  * fault() callback, and never using the value of vma->vm_page_prot,
2145  * except for page-table entries that point to anonymous pages as the result
2146  * of COW.
2147  *
2148  * Context: Process context.  May allocate using %GFP_KERNEL.
2149  * Return: vm_fault_t value.
2150  */
2151 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2152                                  pfn_t pfn, pgprot_t pgprot)
2153 {
2154         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2155 }
2156 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2157
2158 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2159                 pfn_t pfn)
2160 {
2161         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2162 }
2163 EXPORT_SYMBOL(vmf_insert_mixed);
2164
2165 /*
2166  *  If the insertion of PTE failed because someone else already added a
2167  *  different entry in the mean time, we treat that as success as we assume
2168  *  the same entry was actually inserted.
2169  */
2170 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2171                 unsigned long addr, pfn_t pfn)
2172 {
2173         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2174 }
2175 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2176
2177 /*
2178  * maps a range of physical memory into the requested pages. the old
2179  * mappings are removed. any references to nonexistent pages results
2180  * in null mappings (currently treated as "copy-on-access")
2181  */
2182 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2183                         unsigned long addr, unsigned long end,
2184                         unsigned long pfn, pgprot_t prot)
2185 {
2186         pte_t *pte;
2187         spinlock_t *ptl;
2188         int err = 0;
2189
2190         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2191         if (!pte)
2192                 return -ENOMEM;
2193         arch_enter_lazy_mmu_mode();
2194         do {
2195                 BUG_ON(!pte_none(*pte));
2196                 if (!pfn_modify_allowed(pfn, prot)) {
2197                         err = -EACCES;
2198                         break;
2199                 }
2200                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2201                 pfn++;
2202         } while (pte++, addr += PAGE_SIZE, addr != end);
2203         arch_leave_lazy_mmu_mode();
2204         pte_unmap_unlock(pte - 1, ptl);
2205         return err;
2206 }
2207
2208 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2209                         unsigned long addr, unsigned long end,
2210                         unsigned long pfn, pgprot_t prot)
2211 {
2212         pmd_t *pmd;
2213         unsigned long next;
2214         int err;
2215
2216         pfn -= addr >> PAGE_SHIFT;
2217         pmd = pmd_alloc(mm, pud, addr);
2218         if (!pmd)
2219                 return -ENOMEM;
2220         VM_BUG_ON(pmd_trans_huge(*pmd));
2221         do {
2222                 next = pmd_addr_end(addr, end);
2223                 err = remap_pte_range(mm, pmd, addr, next,
2224                                 pfn + (addr >> PAGE_SHIFT), prot);
2225                 if (err)
2226                         return err;
2227         } while (pmd++, addr = next, addr != end);
2228         return 0;
2229 }
2230
2231 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2232                         unsigned long addr, unsigned long end,
2233                         unsigned long pfn, pgprot_t prot)
2234 {
2235         pud_t *pud;
2236         unsigned long next;
2237         int err;
2238
2239         pfn -= addr >> PAGE_SHIFT;
2240         pud = pud_alloc(mm, p4d, addr);
2241         if (!pud)
2242                 return -ENOMEM;
2243         do {
2244                 next = pud_addr_end(addr, end);
2245                 err = remap_pmd_range(mm, pud, addr, next,
2246                                 pfn + (addr >> PAGE_SHIFT), prot);
2247                 if (err)
2248                         return err;
2249         } while (pud++, addr = next, addr != end);
2250         return 0;
2251 }
2252
2253 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2254                         unsigned long addr, unsigned long end,
2255                         unsigned long pfn, pgprot_t prot)
2256 {
2257         p4d_t *p4d;
2258         unsigned long next;
2259         int err;
2260
2261         pfn -= addr >> PAGE_SHIFT;
2262         p4d = p4d_alloc(mm, pgd, addr);
2263         if (!p4d)
2264                 return -ENOMEM;
2265         do {
2266                 next = p4d_addr_end(addr, end);
2267                 err = remap_pud_range(mm, p4d, addr, next,
2268                                 pfn + (addr >> PAGE_SHIFT), prot);
2269                 if (err)
2270                         return err;
2271         } while (p4d++, addr = next, addr != end);
2272         return 0;
2273 }
2274
2275 /**
2276  * remap_pfn_range - remap kernel memory to userspace
2277  * @vma: user vma to map to
2278  * @addr: target page aligned user address to start at
2279  * @pfn: page frame number of kernel physical memory address
2280  * @size: size of mapping area
2281  * @prot: page protection flags for this mapping
2282  *
2283  * Note: this is only safe if the mm semaphore is held when called.
2284  *
2285  * Return: %0 on success, negative error code otherwise.
2286  */
2287 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2288                     unsigned long pfn, unsigned long size, pgprot_t prot)
2289 {
2290         pgd_t *pgd;
2291         unsigned long next;
2292         unsigned long end = addr + PAGE_ALIGN(size);
2293         struct mm_struct *mm = vma->vm_mm;
2294         unsigned long remap_pfn = pfn;
2295         int err;
2296
2297         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2298                 return -EINVAL;
2299
2300         /*
2301          * Physically remapped pages are special. Tell the
2302          * rest of the world about it:
2303          *   VM_IO tells people not to look at these pages
2304          *      (accesses can have side effects).
2305          *   VM_PFNMAP tells the core MM that the base pages are just
2306          *      raw PFN mappings, and do not have a "struct page" associated
2307          *      with them.
2308          *   VM_DONTEXPAND
2309          *      Disable vma merging and expanding with mremap().
2310          *   VM_DONTDUMP
2311          *      Omit vma from core dump, even when VM_IO turned off.
2312          *
2313          * There's a horrible special case to handle copy-on-write
2314          * behaviour that some programs depend on. We mark the "original"
2315          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2316          * See vm_normal_page() for details.
2317          */
2318         if (is_cow_mapping(vma->vm_flags)) {
2319                 if (addr != vma->vm_start || end != vma->vm_end)
2320                         return -EINVAL;
2321                 vma->vm_pgoff = pfn;
2322         }
2323
2324         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2325         if (err)
2326                 return -EINVAL;
2327
2328         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2329
2330         BUG_ON(addr >= end);
2331         pfn -= addr >> PAGE_SHIFT;
2332         pgd = pgd_offset(mm, addr);
2333         flush_cache_range(vma, addr, end);
2334         do {
2335                 next = pgd_addr_end(addr, end);
2336                 err = remap_p4d_range(mm, pgd, addr, next,
2337                                 pfn + (addr >> PAGE_SHIFT), prot);
2338                 if (err)
2339                         break;
2340         } while (pgd++, addr = next, addr != end);
2341
2342         if (err)
2343                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2344
2345         return err;
2346 }
2347 EXPORT_SYMBOL(remap_pfn_range);
2348
2349 /**
2350  * vm_iomap_memory - remap memory to userspace
2351  * @vma: user vma to map to
2352  * @start: start of the physical memory to be mapped
2353  * @len: size of area
2354  *
2355  * This is a simplified io_remap_pfn_range() for common driver use. The
2356  * driver just needs to give us the physical memory range to be mapped,
2357  * we'll figure out the rest from the vma information.
2358  *
2359  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2360  * whatever write-combining details or similar.
2361  *
2362  * Return: %0 on success, negative error code otherwise.
2363  */
2364 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2365 {
2366         unsigned long vm_len, pfn, pages;
2367
2368         /* Check that the physical memory area passed in looks valid */
2369         if (start + len < start)
2370                 return -EINVAL;
2371         /*
2372          * You *really* shouldn't map things that aren't page-aligned,
2373          * but we've historically allowed it because IO memory might
2374          * just have smaller alignment.
2375          */
2376         len += start & ~PAGE_MASK;
2377         pfn = start >> PAGE_SHIFT;
2378         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2379         if (pfn + pages < pfn)
2380                 return -EINVAL;
2381
2382         /* We start the mapping 'vm_pgoff' pages into the area */
2383         if (vma->vm_pgoff > pages)
2384                 return -EINVAL;
2385         pfn += vma->vm_pgoff;
2386         pages -= vma->vm_pgoff;
2387
2388         /* Can we fit all of the mapping? */
2389         vm_len = vma->vm_end - vma->vm_start;
2390         if (vm_len >> PAGE_SHIFT > pages)
2391                 return -EINVAL;
2392
2393         /* Ok, let it rip */
2394         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2395 }
2396 EXPORT_SYMBOL(vm_iomap_memory);
2397
2398 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2399                                      unsigned long addr, unsigned long end,
2400                                      pte_fn_t fn, void *data, bool create,
2401                                      pgtbl_mod_mask *mask)
2402 {
2403         pte_t *pte;
2404         int err = 0;
2405         spinlock_t *ptl;
2406
2407         if (create) {
2408                 pte = (mm == &init_mm) ?
2409                         pte_alloc_kernel_track(pmd, addr, mask) :
2410                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2411                 if (!pte)
2412                         return -ENOMEM;
2413         } else {
2414                 pte = (mm == &init_mm) ?
2415                         pte_offset_kernel(pmd, addr) :
2416                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2417         }
2418
2419         BUG_ON(pmd_huge(*pmd));
2420
2421         arch_enter_lazy_mmu_mode();
2422
2423         do {
2424                 if (create || !pte_none(*pte)) {
2425                         err = fn(pte++, addr, data);
2426                         if (err)
2427                                 break;
2428                 }
2429         } while (addr += PAGE_SIZE, addr != end);
2430         *mask |= PGTBL_PTE_MODIFIED;
2431
2432         arch_leave_lazy_mmu_mode();
2433
2434         if (mm != &init_mm)
2435                 pte_unmap_unlock(pte-1, ptl);
2436         return err;
2437 }
2438
2439 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2440                                      unsigned long addr, unsigned long end,
2441                                      pte_fn_t fn, void *data, bool create,
2442                                      pgtbl_mod_mask *mask)
2443 {
2444         pmd_t *pmd;
2445         unsigned long next;
2446         int err = 0;
2447
2448         BUG_ON(pud_huge(*pud));
2449
2450         if (create) {
2451                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2452                 if (!pmd)
2453                         return -ENOMEM;
2454         } else {
2455                 pmd = pmd_offset(pud, addr);
2456         }
2457         do {
2458                 next = pmd_addr_end(addr, end);
2459                 if (create || !pmd_none_or_clear_bad(pmd)) {
2460                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2461                                                  create, mask);
2462                         if (err)
2463                                 break;
2464                 }
2465         } while (pmd++, addr = next, addr != end);
2466         return err;
2467 }
2468
2469 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2470                                      unsigned long addr, unsigned long end,
2471                                      pte_fn_t fn, void *data, bool create,
2472                                      pgtbl_mod_mask *mask)
2473 {
2474         pud_t *pud;
2475         unsigned long next;
2476         int err = 0;
2477
2478         if (create) {
2479                 pud = pud_alloc_track(mm, p4d, addr, mask);
2480                 if (!pud)
2481                         return -ENOMEM;
2482         } else {
2483                 pud = pud_offset(p4d, addr);
2484         }
2485         do {
2486                 next = pud_addr_end(addr, end);
2487                 if (create || !pud_none_or_clear_bad(pud)) {
2488                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2489                                                  create, mask);
2490                         if (err)
2491                                 break;
2492                 }
2493         } while (pud++, addr = next, addr != end);
2494         return err;
2495 }
2496
2497 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2498                                      unsigned long addr, unsigned long end,
2499                                      pte_fn_t fn, void *data, bool create,
2500                                      pgtbl_mod_mask *mask)
2501 {
2502         p4d_t *p4d;
2503         unsigned long next;
2504         int err = 0;
2505
2506         if (create) {
2507                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2508                 if (!p4d)
2509                         return -ENOMEM;
2510         } else {
2511                 p4d = p4d_offset(pgd, addr);
2512         }
2513         do {
2514                 next = p4d_addr_end(addr, end);
2515                 if (create || !p4d_none_or_clear_bad(p4d)) {
2516                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2517                                                  create, mask);
2518                         if (err)
2519                                 break;
2520                 }
2521         } while (p4d++, addr = next, addr != end);
2522         return err;
2523 }
2524
2525 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2526                                  unsigned long size, pte_fn_t fn,
2527                                  void *data, bool create)
2528 {
2529         pgd_t *pgd;
2530         unsigned long start = addr, next;
2531         unsigned long end = addr + size;
2532         pgtbl_mod_mask mask = 0;
2533         int err = 0;
2534
2535         if (WARN_ON(addr >= end))
2536                 return -EINVAL;
2537
2538         pgd = pgd_offset(mm, addr);
2539         do {
2540                 next = pgd_addr_end(addr, end);
2541                 if (!create && pgd_none_or_clear_bad(pgd))
2542                         continue;
2543                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2544                 if (err)
2545                         break;
2546         } while (pgd++, addr = next, addr != end);
2547
2548         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2549                 arch_sync_kernel_mappings(start, start + size);
2550
2551         return err;
2552 }
2553
2554 /*
2555  * Scan a region of virtual memory, filling in page tables as necessary
2556  * and calling a provided function on each leaf page table.
2557  */
2558 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2559                         unsigned long size, pte_fn_t fn, void *data)
2560 {
2561         return __apply_to_page_range(mm, addr, size, fn, data, true);
2562 }
2563 EXPORT_SYMBOL_GPL(apply_to_page_range);
2564
2565 /*
2566  * Scan a region of virtual memory, calling a provided function on
2567  * each leaf page table where it exists.
2568  *
2569  * Unlike apply_to_page_range, this does _not_ fill in page tables
2570  * where they are absent.
2571  */
2572 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2573                                  unsigned long size, pte_fn_t fn, void *data)
2574 {
2575         return __apply_to_page_range(mm, addr, size, fn, data, false);
2576 }
2577 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2578
2579 /*
2580  * handle_pte_fault chooses page fault handler according to an entry which was
2581  * read non-atomically.  Before making any commitment, on those architectures
2582  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2583  * parts, do_swap_page must check under lock before unmapping the pte and
2584  * proceeding (but do_wp_page is only called after already making such a check;
2585  * and do_anonymous_page can safely check later on).
2586  */
2587 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2588                                 pte_t *page_table, pte_t orig_pte)
2589 {
2590         int same = 1;
2591 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2592         if (sizeof(pte_t) > sizeof(unsigned long)) {
2593                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2594                 spin_lock(ptl);
2595                 same = pte_same(*page_table, orig_pte);
2596                 spin_unlock(ptl);
2597         }
2598 #endif
2599         pte_unmap(page_table);
2600         return same;
2601 }
2602
2603 static inline bool cow_user_page(struct page *dst, struct page *src,
2604                                  struct vm_fault *vmf)
2605 {
2606         bool ret;
2607         void *kaddr;
2608         void __user *uaddr;
2609         bool locked = false;
2610         struct vm_area_struct *vma = vmf->vma;
2611         struct mm_struct *mm = vma->vm_mm;
2612         unsigned long addr = vmf->address;
2613
2614         if (likely(src)) {
2615                 copy_user_highpage(dst, src, addr, vma);
2616                 return true;
2617         }
2618
2619         /*
2620          * If the source page was a PFN mapping, we don't have
2621          * a "struct page" for it. We do a best-effort copy by
2622          * just copying from the original user address. If that
2623          * fails, we just zero-fill it. Live with it.
2624          */
2625         kaddr = kmap_atomic(dst);
2626         uaddr = (void __user *)(addr & PAGE_MASK);
2627
2628         /*
2629          * On architectures with software "accessed" bits, we would
2630          * take a double page fault, so mark it accessed here.
2631          */
2632         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2633                 pte_t entry;
2634
2635                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2636                 locked = true;
2637                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2638                         /*
2639                          * Other thread has already handled the fault
2640                          * and update local tlb only
2641                          */
2642                         update_mmu_tlb(vma, addr, vmf->pte);
2643                         ret = false;
2644                         goto pte_unlock;
2645                 }
2646
2647                 entry = pte_mkyoung(vmf->orig_pte);
2648                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2649                         update_mmu_cache(vma, addr, vmf->pte);
2650         }
2651
2652         /*
2653          * This really shouldn't fail, because the page is there
2654          * in the page tables. But it might just be unreadable,
2655          * in which case we just give up and fill the result with
2656          * zeroes.
2657          */
2658         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2659                 if (locked)
2660                         goto warn;
2661
2662                 /* Re-validate under PTL if the page is still mapped */
2663                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2664                 locked = true;
2665                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2666                         /* The PTE changed under us, update local tlb */
2667                         update_mmu_tlb(vma, addr, vmf->pte);
2668                         ret = false;
2669                         goto pte_unlock;
2670                 }
2671
2672                 /*
2673                  * The same page can be mapped back since last copy attempt.
2674                  * Try to copy again under PTL.
2675                  */
2676                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2677                         /*
2678                          * Give a warn in case there can be some obscure
2679                          * use-case
2680                          */
2681 warn:
2682                         WARN_ON_ONCE(1);
2683                         clear_page(kaddr);
2684                 }
2685         }
2686
2687         ret = true;
2688
2689 pte_unlock:
2690         if (locked)
2691                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2692         kunmap_atomic(kaddr);
2693         flush_dcache_page(dst);
2694
2695         return ret;
2696 }
2697
2698 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2699 {
2700         struct file *vm_file = vma->vm_file;
2701
2702         if (vm_file)
2703                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2704
2705         /*
2706          * Special mappings (e.g. VDSO) do not have any file so fake
2707          * a default GFP_KERNEL for them.
2708          */
2709         return GFP_KERNEL;
2710 }
2711
2712 /*
2713  * Notify the address space that the page is about to become writable so that
2714  * it can prohibit this or wait for the page to get into an appropriate state.
2715  *
2716  * We do this without the lock held, so that it can sleep if it needs to.
2717  */
2718 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2719 {
2720         vm_fault_t ret;
2721         struct page *page = vmf->page;
2722         unsigned int old_flags = vmf->flags;
2723
2724         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2725
2726         if (vmf->vma->vm_file &&
2727             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2728                 return VM_FAULT_SIGBUS;
2729
2730         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2731         /* Restore original flags so that caller is not surprised */
2732         vmf->flags = old_flags;
2733         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2734                 return ret;
2735         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2736                 lock_page(page);
2737                 if (!page->mapping) {
2738                         unlock_page(page);
2739                         return 0; /* retry */
2740                 }
2741                 ret |= VM_FAULT_LOCKED;
2742         } else
2743                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2744         return ret;
2745 }
2746
2747 /*
2748  * Handle dirtying of a page in shared file mapping on a write fault.
2749  *
2750  * The function expects the page to be locked and unlocks it.
2751  */
2752 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2753 {
2754         struct vm_area_struct *vma = vmf->vma;
2755         struct address_space *mapping;
2756         struct page *page = vmf->page;
2757         bool dirtied;
2758         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2759
2760         dirtied = set_page_dirty(page);
2761         VM_BUG_ON_PAGE(PageAnon(page), page);
2762         /*
2763          * Take a local copy of the address_space - page.mapping may be zeroed
2764          * by truncate after unlock_page().   The address_space itself remains
2765          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2766          * release semantics to prevent the compiler from undoing this copying.
2767          */
2768         mapping = page_rmapping(page);
2769         unlock_page(page);
2770
2771         if (!page_mkwrite)
2772                 file_update_time(vma->vm_file);
2773
2774         /*
2775          * Throttle page dirtying rate down to writeback speed.
2776          *
2777          * mapping may be NULL here because some device drivers do not
2778          * set page.mapping but still dirty their pages
2779          *
2780          * Drop the mmap_lock before waiting on IO, if we can. The file
2781          * is pinning the mapping, as per above.
2782          */
2783         if ((dirtied || page_mkwrite) && mapping) {
2784                 struct file *fpin;
2785
2786                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2787                 balance_dirty_pages_ratelimited(mapping);
2788                 if (fpin) {
2789                         fput(fpin);
2790                         return VM_FAULT_RETRY;
2791                 }
2792         }
2793
2794         return 0;
2795 }
2796
2797 /*
2798  * Handle write page faults for pages that can be reused in the current vma
2799  *
2800  * This can happen either due to the mapping being with the VM_SHARED flag,
2801  * or due to us being the last reference standing to the page. In either
2802  * case, all we need to do here is to mark the page as writable and update
2803  * any related book-keeping.
2804  */
2805 static inline void wp_page_reuse(struct vm_fault *vmf)
2806         __releases(vmf->ptl)
2807 {
2808         struct vm_area_struct *vma = vmf->vma;
2809         struct page *page = vmf->page;
2810         pte_t entry;
2811         /*
2812          * Clear the pages cpupid information as the existing
2813          * information potentially belongs to a now completely
2814          * unrelated process.
2815          */
2816         if (page)
2817                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2818
2819         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2820         entry = pte_mkyoung(vmf->orig_pte);
2821         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2822         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2823                 update_mmu_cache(vma, vmf->address, vmf->pte);
2824         pte_unmap_unlock(vmf->pte, vmf->ptl);
2825         count_vm_event(PGREUSE);
2826 }
2827
2828 /*
2829  * Handle the case of a page which we actually need to copy to a new page.
2830  *
2831  * Called with mmap_lock locked and the old page referenced, but
2832  * without the ptl held.
2833  *
2834  * High level logic flow:
2835  *
2836  * - Allocate a page, copy the content of the old page to the new one.
2837  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2838  * - Take the PTL. If the pte changed, bail out and release the allocated page
2839  * - If the pte is still the way we remember it, update the page table and all
2840  *   relevant references. This includes dropping the reference the page-table
2841  *   held to the old page, as well as updating the rmap.
2842  * - In any case, unlock the PTL and drop the reference we took to the old page.
2843  */
2844 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2845 {
2846         struct vm_area_struct *vma = vmf->vma;
2847         struct mm_struct *mm = vma->vm_mm;
2848         struct page *old_page = vmf->page;
2849         struct page *new_page = NULL;
2850         pte_t entry;
2851         int page_copied = 0;
2852         struct mmu_notifier_range range;
2853
2854         if (unlikely(anon_vma_prepare(vma)))
2855                 goto oom;
2856
2857         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2858                 new_page = alloc_zeroed_user_highpage_movable(vma,
2859                                                               vmf->address);
2860                 if (!new_page)
2861                         goto oom;
2862         } else {
2863                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2864                                 vmf->address);
2865                 if (!new_page)
2866                         goto oom;
2867
2868                 if (!cow_user_page(new_page, old_page, vmf)) {
2869                         /*
2870                          * COW failed, if the fault was solved by other,
2871                          * it's fine. If not, userspace would re-fault on
2872                          * the same address and we will handle the fault
2873                          * from the second attempt.
2874                          */
2875                         put_page(new_page);
2876                         if (old_page)
2877                                 put_page(old_page);
2878                         return 0;
2879                 }
2880         }
2881
2882         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2883                 goto oom_free_new;
2884         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2885
2886         __SetPageUptodate(new_page);
2887
2888         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2889                                 vmf->address & PAGE_MASK,
2890                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2891         mmu_notifier_invalidate_range_start(&range);
2892
2893         /*
2894          * Re-check the pte - we dropped the lock
2895          */
2896         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2897         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2898                 if (old_page) {
2899                         if (!PageAnon(old_page)) {
2900                                 dec_mm_counter_fast(mm,
2901                                                 mm_counter_file(old_page));
2902                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2903                         }
2904                 } else {
2905                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2906                 }
2907                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2908                 entry = mk_pte(new_page, vma->vm_page_prot);
2909                 entry = pte_sw_mkyoung(entry);
2910                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2911                 /*
2912                  * Clear the pte entry and flush it first, before updating the
2913                  * pte with the new entry. This will avoid a race condition
2914                  * seen in the presence of one thread doing SMC and another
2915                  * thread doing COW.
2916                  */
2917                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2918                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2919                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2920                 /*
2921                  * We call the notify macro here because, when using secondary
2922                  * mmu page tables (such as kvm shadow page tables), we want the
2923                  * new page to be mapped directly into the secondary page table.
2924                  */
2925                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2926                 update_mmu_cache(vma, vmf->address, vmf->pte);
2927                 if (old_page) {
2928                         /*
2929                          * Only after switching the pte to the new page may
2930                          * we remove the mapcount here. Otherwise another
2931                          * process may come and find the rmap count decremented
2932                          * before the pte is switched to the new page, and
2933                          * "reuse" the old page writing into it while our pte
2934                          * here still points into it and can be read by other
2935                          * threads.
2936                          *
2937                          * The critical issue is to order this
2938                          * page_remove_rmap with the ptp_clear_flush above.
2939                          * Those stores are ordered by (if nothing else,)
2940                          * the barrier present in the atomic_add_negative
2941                          * in page_remove_rmap.
2942                          *
2943                          * Then the TLB flush in ptep_clear_flush ensures that
2944                          * no process can access the old page before the
2945                          * decremented mapcount is visible. And the old page
2946                          * cannot be reused until after the decremented
2947                          * mapcount is visible. So transitively, TLBs to
2948                          * old page will be flushed before it can be reused.
2949                          */
2950                         page_remove_rmap(old_page, false);
2951                 }
2952
2953                 /* Free the old page.. */
2954                 new_page = old_page;
2955                 page_copied = 1;
2956         } else {
2957                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2958         }
2959
2960         if (new_page)
2961                 put_page(new_page);
2962
2963         pte_unmap_unlock(vmf->pte, vmf->ptl);
2964         /*
2965          * No need to double call mmu_notifier->invalidate_range() callback as
2966          * the above ptep_clear_flush_notify() did already call it.
2967          */
2968         mmu_notifier_invalidate_range_only_end(&range);
2969         if (old_page) {
2970                 /*
2971                  * Don't let another task, with possibly unlocked vma,
2972                  * keep the mlocked page.
2973                  */
2974                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2975                         lock_page(old_page);    /* LRU manipulation */
2976                         if (PageMlocked(old_page))
2977                                 munlock_vma_page(old_page);
2978                         unlock_page(old_page);
2979                 }
2980                 put_page(old_page);
2981         }
2982         return page_copied ? VM_FAULT_WRITE : 0;
2983 oom_free_new:
2984         put_page(new_page);
2985 oom:
2986         if (old_page)
2987                 put_page(old_page);
2988         return VM_FAULT_OOM;
2989 }
2990
2991 /**
2992  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2993  *                        writeable once the page is prepared
2994  *
2995  * @vmf: structure describing the fault
2996  *
2997  * This function handles all that is needed to finish a write page fault in a
2998  * shared mapping due to PTE being read-only once the mapped page is prepared.
2999  * It handles locking of PTE and modifying it.
3000  *
3001  * The function expects the page to be locked or other protection against
3002  * concurrent faults / writeback (such as DAX radix tree locks).
3003  *
3004  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3005  * we acquired PTE lock.
3006  */
3007 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3008 {
3009         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3010         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3011                                        &vmf->ptl);
3012         /*
3013          * We might have raced with another page fault while we released the
3014          * pte_offset_map_lock.
3015          */
3016         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3017                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3018                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3019                 return VM_FAULT_NOPAGE;
3020         }
3021         wp_page_reuse(vmf);
3022         return 0;
3023 }
3024
3025 /*
3026  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3027  * mapping
3028  */
3029 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3030 {
3031         struct vm_area_struct *vma = vmf->vma;
3032
3033         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3034                 vm_fault_t ret;
3035
3036                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3037                 vmf->flags |= FAULT_FLAG_MKWRITE;
3038                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3039                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3040                         return ret;
3041                 return finish_mkwrite_fault(vmf);
3042         }
3043         wp_page_reuse(vmf);
3044         return VM_FAULT_WRITE;
3045 }
3046
3047 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3048         __releases(vmf->ptl)
3049 {
3050         struct vm_area_struct *vma = vmf->vma;
3051         vm_fault_t ret = VM_FAULT_WRITE;
3052
3053         get_page(vmf->page);
3054
3055         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3056                 vm_fault_t tmp;
3057
3058                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3059                 tmp = do_page_mkwrite(vmf);
3060                 if (unlikely(!tmp || (tmp &
3061                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3062                         put_page(vmf->page);
3063                         return tmp;
3064                 }
3065                 tmp = finish_mkwrite_fault(vmf);
3066                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3067                         unlock_page(vmf->page);
3068                         put_page(vmf->page);
3069                         return tmp;
3070                 }
3071         } else {
3072                 wp_page_reuse(vmf);
3073                 lock_page(vmf->page);
3074         }
3075         ret |= fault_dirty_shared_page(vmf);
3076         put_page(vmf->page);
3077
3078         return ret;
3079 }
3080
3081 /*
3082  * This routine handles present pages, when users try to write
3083  * to a shared page. It is done by copying the page to a new address
3084  * and decrementing the shared-page counter for the old page.
3085  *
3086  * Note that this routine assumes that the protection checks have been
3087  * done by the caller (the low-level page fault routine in most cases).
3088  * Thus we can safely just mark it writable once we've done any necessary
3089  * COW.
3090  *
3091  * We also mark the page dirty at this point even though the page will
3092  * change only once the write actually happens. This avoids a few races,
3093  * and potentially makes it more efficient.
3094  *
3095  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3096  * but allow concurrent faults), with pte both mapped and locked.
3097  * We return with mmap_lock still held, but pte unmapped and unlocked.
3098  */
3099 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3100         __releases(vmf->ptl)
3101 {
3102         struct vm_area_struct *vma = vmf->vma;
3103
3104         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3105                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3106                 return handle_userfault(vmf, VM_UFFD_WP);
3107         }
3108
3109         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3110         if (!vmf->page) {
3111                 /*
3112                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3113                  * VM_PFNMAP VMA.
3114                  *
3115                  * We should not cow pages in a shared writeable mapping.
3116                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3117                  */
3118                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3119                                      (VM_WRITE|VM_SHARED))
3120                         return wp_pfn_shared(vmf);
3121
3122                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3123                 return wp_page_copy(vmf);
3124         }
3125
3126         /*
3127          * Take out anonymous pages first, anonymous shared vmas are
3128          * not dirty accountable.
3129          */
3130         if (PageAnon(vmf->page)) {
3131                 struct page *page = vmf->page;
3132
3133                 /* PageKsm() doesn't necessarily raise the page refcount */
3134                 if (PageKsm(page) || page_count(page) != 1)
3135                         goto copy;
3136                 if (!trylock_page(page))
3137                         goto copy;
3138                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3139                         unlock_page(page);
3140                         goto copy;
3141                 }
3142                 /*
3143                  * Ok, we've got the only map reference, and the only
3144                  * page count reference, and the page is locked,
3145                  * it's dark out, and we're wearing sunglasses. Hit it.
3146                  */
3147                 unlock_page(page);
3148                 wp_page_reuse(vmf);
3149                 return VM_FAULT_WRITE;
3150         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3151                                         (VM_WRITE|VM_SHARED))) {
3152                 return wp_page_shared(vmf);
3153         }
3154 copy:
3155         /*
3156          * Ok, we need to copy. Oh, well..
3157          */
3158         get_page(vmf->page);
3159
3160         pte_unmap_unlock(vmf->pte, vmf->ptl);
3161         return wp_page_copy(vmf);
3162 }
3163
3164 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3165                 unsigned long start_addr, unsigned long end_addr,
3166                 struct zap_details *details)
3167 {
3168         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3169 }
3170
3171 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3172                                             struct zap_details *details)
3173 {
3174         struct vm_area_struct *vma;
3175         pgoff_t vba, vea, zba, zea;
3176
3177         vma_interval_tree_foreach(vma, root,
3178                         details->first_index, details->last_index) {
3179
3180                 vba = vma->vm_pgoff;
3181                 vea = vba + vma_pages(vma) - 1;
3182                 zba = details->first_index;
3183                 if (zba < vba)
3184                         zba = vba;
3185                 zea = details->last_index;
3186                 if (zea > vea)
3187                         zea = vea;
3188
3189                 unmap_mapping_range_vma(vma,
3190                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3191                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3192                                 details);
3193         }
3194 }
3195
3196 /**
3197  * unmap_mapping_pages() - Unmap pages from processes.
3198  * @mapping: The address space containing pages to be unmapped.
3199  * @start: Index of first page to be unmapped.
3200  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3201  * @even_cows: Whether to unmap even private COWed pages.
3202  *
3203  * Unmap the pages in this address space from any userspace process which
3204  * has them mmaped.  Generally, you want to remove COWed pages as well when
3205  * a file is being truncated, but not when invalidating pages from the page
3206  * cache.
3207  */
3208 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3209                 pgoff_t nr, bool even_cows)
3210 {
3211         struct zap_details details = { };
3212
3213         details.check_mapping = even_cows ? NULL : mapping;
3214         details.first_index = start;
3215         details.last_index = start + nr - 1;
3216         if (details.last_index < details.first_index)
3217                 details.last_index = ULONG_MAX;
3218
3219         i_mmap_lock_write(mapping);
3220         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3221                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3222         i_mmap_unlock_write(mapping);
3223 }
3224
3225 /**
3226  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3227  * address_space corresponding to the specified byte range in the underlying
3228  * file.
3229  *
3230  * @mapping: the address space containing mmaps to be unmapped.
3231  * @holebegin: byte in first page to unmap, relative to the start of
3232  * the underlying file.  This will be rounded down to a PAGE_SIZE
3233  * boundary.  Note that this is different from truncate_pagecache(), which
3234  * must keep the partial page.  In contrast, we must get rid of
3235  * partial pages.
3236  * @holelen: size of prospective hole in bytes.  This will be rounded
3237  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3238  * end of the file.
3239  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3240  * but 0 when invalidating pagecache, don't throw away private data.
3241  */
3242 void unmap_mapping_range(struct address_space *mapping,
3243                 loff_t const holebegin, loff_t const holelen, int even_cows)
3244 {
3245         pgoff_t hba = holebegin >> PAGE_SHIFT;
3246         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3247
3248         /* Check for overflow. */
3249         if (sizeof(holelen) > sizeof(hlen)) {
3250                 long long holeend =
3251                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3252                 if (holeend & ~(long long)ULONG_MAX)
3253                         hlen = ULONG_MAX - hba + 1;
3254         }
3255
3256         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3257 }
3258 EXPORT_SYMBOL(unmap_mapping_range);
3259
3260 /*
3261  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3262  * but allow concurrent faults), and pte mapped but not yet locked.
3263  * We return with pte unmapped and unlocked.
3264  *
3265  * We return with the mmap_lock locked or unlocked in the same cases
3266  * as does filemap_fault().
3267  */
3268 vm_fault_t do_swap_page(struct vm_fault *vmf)
3269 {
3270         struct vm_area_struct *vma = vmf->vma;
3271         struct page *page = NULL, *swapcache;
3272         swp_entry_t entry;
3273         pte_t pte;
3274         int locked;
3275         int exclusive = 0;
3276         vm_fault_t ret = 0;
3277         void *shadow = NULL;
3278
3279         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3280                 goto out;
3281
3282         entry = pte_to_swp_entry(vmf->orig_pte);
3283         if (unlikely(non_swap_entry(entry))) {
3284                 if (is_migration_entry(entry)) {
3285                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3286                                              vmf->address);
3287                 } else if (is_device_private_entry(entry)) {
3288                         vmf->page = device_private_entry_to_page(entry);
3289                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3290                 } else if (is_hwpoison_entry(entry)) {
3291                         ret = VM_FAULT_HWPOISON;
3292                 } else {
3293                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3294                         ret = VM_FAULT_SIGBUS;
3295                 }
3296                 goto out;
3297         }
3298
3299
3300         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3301         page = lookup_swap_cache(entry, vma, vmf->address);
3302         swapcache = page;
3303
3304         if (!page) {
3305                 struct swap_info_struct *si = swp_swap_info(entry);
3306
3307                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3308                     __swap_count(entry) == 1) {
3309                         /* skip swapcache */
3310                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3311                                                         vmf->address);
3312                         if (page) {
3313                                 int err;
3314
3315                                 __SetPageLocked(page);
3316                                 __SetPageSwapBacked(page);
3317                                 set_page_private(page, entry.val);
3318
3319                                 /* Tell memcg to use swap ownership records */
3320                                 SetPageSwapCache(page);
3321                                 err = mem_cgroup_charge(page, vma->vm_mm,
3322                                                         GFP_KERNEL);
3323                                 ClearPageSwapCache(page);
3324                                 if (err) {
3325                                         ret = VM_FAULT_OOM;
3326                                         goto out_page;
3327                                 }
3328
3329                                 shadow = get_shadow_from_swap_cache(entry);
3330                                 if (shadow)
3331                                         workingset_refault(page, shadow);
3332
3333                                 lru_cache_add(page);
3334                                 swap_readpage(page, true);
3335                         }
3336                 } else {
3337                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3338                                                 vmf);
3339                         swapcache = page;
3340                 }
3341
3342                 if (!page) {
3343                         /*
3344                          * Back out if somebody else faulted in this pte
3345                          * while we released the pte lock.
3346                          */
3347                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3348                                         vmf->address, &vmf->ptl);
3349                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3350                                 ret = VM_FAULT_OOM;
3351                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3352                         goto unlock;
3353                 }
3354
3355                 /* Had to read the page from swap area: Major fault */
3356                 ret = VM_FAULT_MAJOR;
3357                 count_vm_event(PGMAJFAULT);
3358                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3359         } else if (PageHWPoison(page)) {
3360                 /*
3361                  * hwpoisoned dirty swapcache pages are kept for killing
3362                  * owner processes (which may be unknown at hwpoison time)
3363                  */
3364                 ret = VM_FAULT_HWPOISON;
3365                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3366                 goto out_release;
3367         }
3368
3369         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3370
3371         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3372         if (!locked) {
3373                 ret |= VM_FAULT_RETRY;
3374                 goto out_release;
3375         }
3376
3377         /*
3378          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3379          * release the swapcache from under us.  The page pin, and pte_same
3380          * test below, are not enough to exclude that.  Even if it is still
3381          * swapcache, we need to check that the page's swap has not changed.
3382          */
3383         if (unlikely((!PageSwapCache(page) ||
3384                         page_private(page) != entry.val)) && swapcache)
3385                 goto out_page;
3386
3387         page = ksm_might_need_to_copy(page, vma, vmf->address);
3388         if (unlikely(!page)) {
3389                 ret = VM_FAULT_OOM;
3390                 page = swapcache;
3391                 goto out_page;
3392         }
3393
3394         cgroup_throttle_swaprate(page, GFP_KERNEL);
3395
3396         /*
3397          * Back out if somebody else already faulted in this pte.
3398          */
3399         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3400                         &vmf->ptl);
3401         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3402                 goto out_nomap;
3403
3404         if (unlikely(!PageUptodate(page))) {
3405                 ret = VM_FAULT_SIGBUS;
3406                 goto out_nomap;
3407         }
3408
3409         /*
3410          * The page isn't present yet, go ahead with the fault.
3411          *
3412          * Be careful about the sequence of operations here.
3413          * To get its accounting right, reuse_swap_page() must be called
3414          * while the page is counted on swap but not yet in mapcount i.e.
3415          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3416          * must be called after the swap_free(), or it will never succeed.
3417          */
3418
3419         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3420         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3421         pte = mk_pte(page, vma->vm_page_prot);
3422         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3423                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3424                 vmf->flags &= ~FAULT_FLAG_WRITE;
3425                 ret |= VM_FAULT_WRITE;
3426                 exclusive = RMAP_EXCLUSIVE;
3427         }
3428         flush_icache_page(vma, page);
3429         if (pte_swp_soft_dirty(vmf->orig_pte))
3430                 pte = pte_mksoft_dirty(pte);
3431         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3432                 pte = pte_mkuffd_wp(pte);
3433                 pte = pte_wrprotect(pte);
3434         }
3435         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3436         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3437         vmf->orig_pte = pte;
3438
3439         /* ksm created a completely new copy */
3440         if (unlikely(page != swapcache && swapcache)) {
3441                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3442                 lru_cache_add_inactive_or_unevictable(page, vma);
3443         } else {
3444                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3445         }
3446
3447         swap_free(entry);
3448         if (mem_cgroup_swap_full(page) ||
3449             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3450                 try_to_free_swap(page);
3451         unlock_page(page);
3452         if (page != swapcache && swapcache) {
3453                 /*
3454                  * Hold the lock to avoid the swap entry to be reused
3455                  * until we take the PT lock for the pte_same() check
3456                  * (to avoid false positives from pte_same). For
3457                  * further safety release the lock after the swap_free
3458                  * so that the swap count won't change under a
3459                  * parallel locked swapcache.
3460                  */
3461                 unlock_page(swapcache);
3462                 put_page(swapcache);
3463         }
3464
3465         if (vmf->flags & FAULT_FLAG_WRITE) {
3466                 ret |= do_wp_page(vmf);
3467                 if (ret & VM_FAULT_ERROR)
3468                         ret &= VM_FAULT_ERROR;
3469                 goto out;
3470         }
3471
3472         /* No need to invalidate - it was non-present before */
3473         update_mmu_cache(vma, vmf->address, vmf->pte);
3474 unlock:
3475         pte_unmap_unlock(vmf->pte, vmf->ptl);
3476 out:
3477         return ret;
3478 out_nomap:
3479         pte_unmap_unlock(vmf->pte, vmf->ptl);
3480 out_page:
3481         unlock_page(page);
3482 out_release:
3483         put_page(page);
3484         if (page != swapcache && swapcache) {
3485                 unlock_page(swapcache);
3486                 put_page(swapcache);
3487         }
3488         return ret;
3489 }
3490
3491 /*
3492  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3493  * but allow concurrent faults), and pte mapped but not yet locked.
3494  * We return with mmap_lock still held, but pte unmapped and unlocked.
3495  */
3496 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3497 {
3498         struct vm_area_struct *vma = vmf->vma;
3499         struct page *page;
3500         vm_fault_t ret = 0;
3501         pte_t entry;
3502
3503         /* File mapping without ->vm_ops ? */
3504         if (vma->vm_flags & VM_SHARED)
3505                 return VM_FAULT_SIGBUS;
3506
3507         /*
3508          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3509          * pte_offset_map() on pmds where a huge pmd might be created
3510          * from a different thread.
3511          *
3512          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3513          * parallel threads are excluded by other means.
3514          *
3515          * Here we only have mmap_read_lock(mm).
3516          */
3517         if (pte_alloc(vma->vm_mm, vmf->pmd))
3518                 return VM_FAULT_OOM;
3519
3520         /* See the comment in pte_alloc_one_map() */
3521         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3522                 return 0;
3523
3524         /* Use the zero-page for reads */
3525         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3526                         !mm_forbids_zeropage(vma->vm_mm)) {
3527                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3528                                                 vma->vm_page_prot));
3529                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3530                                 vmf->address, &vmf->ptl);
3531                 if (!pte_none(*vmf->pte)) {
3532                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3533                         goto unlock;
3534                 }
3535                 ret = check_stable_address_space(vma->vm_mm);
3536                 if (ret)
3537                         goto unlock;
3538                 /* Deliver the page fault to userland, check inside PT lock */
3539                 if (userfaultfd_missing(vma)) {
3540                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3541                         return handle_userfault(vmf, VM_UFFD_MISSING);
3542                 }
3543                 goto setpte;
3544         }
3545
3546         /* Allocate our own private page. */
3547         if (unlikely(anon_vma_prepare(vma)))
3548                 goto oom;
3549         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3550         if (!page)
3551                 goto oom;
3552
3553         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3554                 goto oom_free_page;
3555         cgroup_throttle_swaprate(page, GFP_KERNEL);
3556
3557         /*
3558          * The memory barrier inside __SetPageUptodate makes sure that
3559          * preceding stores to the page contents become visible before
3560          * the set_pte_at() write.
3561          */
3562         __SetPageUptodate(page);
3563
3564         entry = mk_pte(page, vma->vm_page_prot);
3565         entry = pte_sw_mkyoung(entry);
3566         if (vma->vm_flags & VM_WRITE)
3567                 entry = pte_mkwrite(pte_mkdirty(entry));
3568
3569         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3570                         &vmf->ptl);
3571         if (!pte_none(*vmf->pte)) {
3572                 update_mmu_cache(vma, vmf->address, vmf->pte);
3573                 goto release;
3574         }
3575
3576         ret = check_stable_address_space(vma->vm_mm);
3577         if (ret)
3578                 goto release;
3579
3580         /* Deliver the page fault to userland, check inside PT lock */
3581         if (userfaultfd_missing(vma)) {
3582                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3583                 put_page(page);
3584                 return handle_userfault(vmf, VM_UFFD_MISSING);
3585         }
3586
3587         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3588         page_add_new_anon_rmap(page, vma, vmf->address, false);
3589         lru_cache_add_inactive_or_unevictable(page, vma);
3590 setpte:
3591         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3592
3593         /* No need to invalidate - it was non-present before */
3594         update_mmu_cache(vma, vmf->address, vmf->pte);
3595 unlock:
3596         pte_unmap_unlock(vmf->pte, vmf->ptl);
3597         return ret;
3598 release:
3599         put_page(page);
3600         goto unlock;
3601 oom_free_page:
3602         put_page(page);
3603 oom:
3604         return VM_FAULT_OOM;
3605 }
3606
3607 /*
3608  * The mmap_lock must have been held on entry, and may have been
3609  * released depending on flags and vma->vm_ops->fault() return value.
3610  * See filemap_fault() and __lock_page_retry().
3611  */
3612 static vm_fault_t __do_fault(struct vm_fault *vmf)
3613 {
3614         struct vm_area_struct *vma = vmf->vma;
3615         vm_fault_t ret;
3616
3617         /*
3618          * Preallocate pte before we take page_lock because this might lead to
3619          * deadlocks for memcg reclaim which waits for pages under writeback:
3620          *                              lock_page(A)
3621          *                              SetPageWriteback(A)
3622          *                              unlock_page(A)
3623          * lock_page(B)
3624          *                              lock_page(B)
3625          * pte_alloc_pne
3626          *   shrink_page_list
3627          *     wait_on_page_writeback(A)
3628          *                              SetPageWriteback(B)
3629          *                              unlock_page(B)
3630          *                              # flush A, B to clear the writeback
3631          */
3632         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3633                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3634                 if (!vmf->prealloc_pte)
3635                         return VM_FAULT_OOM;
3636                 smp_wmb(); /* See comment in __pte_alloc() */
3637         }
3638
3639         ret = vma->vm_ops->fault(vmf);
3640         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3641                             VM_FAULT_DONE_COW)))
3642                 return ret;
3643
3644         if (unlikely(PageHWPoison(vmf->page))) {
3645                 if (ret & VM_FAULT_LOCKED)
3646                         unlock_page(vmf->page);
3647                 put_page(vmf->page);
3648                 vmf->page = NULL;
3649                 return VM_FAULT_HWPOISON;
3650         }
3651
3652         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3653                 lock_page(vmf->page);
3654         else
3655                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3656
3657         return ret;
3658 }
3659
3660 /*
3661  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3662  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3663  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3664  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3665  */
3666 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3667 {
3668         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3669 }
3670
3671 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3672 {
3673         struct vm_area_struct *vma = vmf->vma;
3674
3675         if (!pmd_none(*vmf->pmd))
3676                 goto map_pte;
3677         if (vmf->prealloc_pte) {
3678                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3679                 if (unlikely(!pmd_none(*vmf->pmd))) {
3680                         spin_unlock(vmf->ptl);
3681                         goto map_pte;
3682                 }
3683
3684                 mm_inc_nr_ptes(vma->vm_mm);
3685                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3686                 spin_unlock(vmf->ptl);
3687                 vmf->prealloc_pte = NULL;
3688         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3689                 return VM_FAULT_OOM;
3690         }
3691 map_pte:
3692         /*
3693          * If a huge pmd materialized under us just retry later.  Use
3694          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3695          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3696          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3697          * running immediately after a huge pmd fault in a different thread of
3698          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3699          * All we have to ensure is that it is a regular pmd that we can walk
3700          * with pte_offset_map() and we can do that through an atomic read in
3701          * C, which is what pmd_trans_unstable() provides.
3702          */
3703         if (pmd_devmap_trans_unstable(vmf->pmd))
3704                 return VM_FAULT_NOPAGE;
3705
3706         /*
3707          * At this point we know that our vmf->pmd points to a page of ptes
3708          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3709          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3710          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3711          * be valid and we will re-check to make sure the vmf->pte isn't
3712          * pte_none() under vmf->ptl protection when we return to
3713          * alloc_set_pte().
3714          */
3715         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3716                         &vmf->ptl);
3717         return 0;
3718 }
3719
3720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3721 static void deposit_prealloc_pte(struct vm_fault *vmf)
3722 {
3723         struct vm_area_struct *vma = vmf->vma;
3724
3725         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3726         /*
3727          * We are going to consume the prealloc table,
3728          * count that as nr_ptes.
3729          */
3730         mm_inc_nr_ptes(vma->vm_mm);
3731         vmf->prealloc_pte = NULL;
3732 }
3733
3734 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3735 {
3736         struct vm_area_struct *vma = vmf->vma;
3737         bool write = vmf->flags & FAULT_FLAG_WRITE;
3738         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3739         pmd_t entry;
3740         int i;
3741         vm_fault_t ret;
3742
3743         if (!transhuge_vma_suitable(vma, haddr))
3744                 return VM_FAULT_FALLBACK;
3745
3746         ret = VM_FAULT_FALLBACK;
3747         page = compound_head(page);
3748
3749         /*
3750          * Archs like ppc64 need additonal space to store information
3751          * related to pte entry. Use the preallocated table for that.
3752          */
3753         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3754                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3755                 if (!vmf->prealloc_pte)
3756                         return VM_FAULT_OOM;
3757                 smp_wmb(); /* See comment in __pte_alloc() */
3758         }
3759
3760         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3761         if (unlikely(!pmd_none(*vmf->pmd)))
3762                 goto out;
3763
3764         for (i = 0; i < HPAGE_PMD_NR; i++)
3765                 flush_icache_page(vma, page + i);
3766
3767         entry = mk_huge_pmd(page, vma->vm_page_prot);
3768         if (write)
3769                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3770
3771         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3772         page_add_file_rmap(page, true);
3773         /*
3774          * deposit and withdraw with pmd lock held
3775          */
3776         if (arch_needs_pgtable_deposit())
3777                 deposit_prealloc_pte(vmf);
3778
3779         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3780
3781         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3782
3783         /* fault is handled */
3784         ret = 0;
3785         count_vm_event(THP_FILE_MAPPED);
3786 out:
3787         spin_unlock(vmf->ptl);
3788         return ret;
3789 }
3790 #else
3791 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3792 {
3793         BUILD_BUG();
3794         return 0;
3795 }
3796 #endif
3797
3798 /**
3799  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3800  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3801  *
3802  * @vmf: fault environment
3803  * @page: page to map
3804  *
3805  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3806  * return.
3807  *
3808  * Target users are page handler itself and implementations of
3809  * vm_ops->map_pages.
3810  *
3811  * Return: %0 on success, %VM_FAULT_ code in case of error.
3812  */
3813 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3814 {
3815         struct vm_area_struct *vma = vmf->vma;
3816         bool write = vmf->flags & FAULT_FLAG_WRITE;
3817         pte_t entry;
3818         vm_fault_t ret;
3819
3820         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3821                 ret = do_set_pmd(vmf, page);
3822                 if (ret != VM_FAULT_FALLBACK)
3823                         return ret;
3824         }
3825
3826         if (!vmf->pte) {
3827                 ret = pte_alloc_one_map(vmf);
3828                 if (ret)
3829                         return ret;
3830         }
3831
3832         /* Re-check under ptl */
3833         if (unlikely(!pte_none(*vmf->pte))) {
3834                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3835                 return VM_FAULT_NOPAGE;
3836         }
3837
3838         flush_icache_page(vma, page);
3839         entry = mk_pte(page, vma->vm_page_prot);
3840         entry = pte_sw_mkyoung(entry);
3841         if (write)
3842                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3843         /* copy-on-write page */
3844         if (write && !(vma->vm_flags & VM_SHARED)) {
3845                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3846                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3847                 lru_cache_add_inactive_or_unevictable(page, vma);
3848         } else {
3849                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3850                 page_add_file_rmap(page, false);
3851         }
3852         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3853
3854         /* no need to invalidate: a not-present page won't be cached */
3855         update_mmu_cache(vma, vmf->address, vmf->pte);
3856
3857         return 0;
3858 }
3859
3860
3861 /**
3862  * finish_fault - finish page fault once we have prepared the page to fault
3863  *
3864  * @vmf: structure describing the fault
3865  *
3866  * This function handles all that is needed to finish a page fault once the
3867  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3868  * given page, adds reverse page mapping, handles memcg charges and LRU
3869  * addition.
3870  *
3871  * The function expects the page to be locked and on success it consumes a
3872  * reference of a page being mapped (for the PTE which maps it).
3873  *
3874  * Return: %0 on success, %VM_FAULT_ code in case of error.
3875  */
3876 vm_fault_t finish_fault(struct vm_fault *vmf)
3877 {
3878         struct page *page;
3879         vm_fault_t ret = 0;
3880
3881         /* Did we COW the page? */
3882         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3883             !(vmf->vma->vm_flags & VM_SHARED))
3884                 page = vmf->cow_page;
3885         else
3886                 page = vmf->page;
3887
3888         /*
3889          * check even for read faults because we might have lost our CoWed
3890          * page
3891          */
3892         if (!(vmf->vma->vm_flags & VM_SHARED))
3893                 ret = check_stable_address_space(vmf->vma->vm_mm);
3894         if (!ret)
3895                 ret = alloc_set_pte(vmf, page);
3896         if (vmf->pte)
3897                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3898         return ret;
3899 }
3900
3901 static unsigned long fault_around_bytes __read_mostly =
3902         rounddown_pow_of_two(65536);
3903
3904 #ifdef CONFIG_DEBUG_FS
3905 static int fault_around_bytes_get(void *data, u64 *val)
3906 {
3907         *val = fault_around_bytes;
3908         return 0;
3909 }
3910
3911 /*
3912  * fault_around_bytes must be rounded down to the nearest page order as it's
3913  * what do_fault_around() expects to see.
3914  */
3915 static int fault_around_bytes_set(void *data, u64 val)
3916 {
3917         if (val / PAGE_SIZE > PTRS_PER_PTE)
3918                 return -EINVAL;
3919         if (val > PAGE_SIZE)
3920                 fault_around_bytes = rounddown_pow_of_two(val);
3921         else
3922                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3923         return 0;
3924 }
3925 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3926                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3927
3928 static int __init fault_around_debugfs(void)
3929 {
3930         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3931                                    &fault_around_bytes_fops);
3932         return 0;
3933 }
3934 late_initcall(fault_around_debugfs);
3935 #endif
3936
3937 /*
3938  * do_fault_around() tries to map few pages around the fault address. The hope
3939  * is that the pages will be needed soon and this will lower the number of
3940  * faults to handle.
3941  *
3942  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3943  * not ready to be mapped: not up-to-date, locked, etc.
3944  *
3945  * This function is called with the page table lock taken. In the split ptlock
3946  * case the page table lock only protects only those entries which belong to
3947  * the page table corresponding to the fault address.
3948  *
3949  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3950  * only once.
3951  *
3952  * fault_around_bytes defines how many bytes we'll try to map.
3953  * do_fault_around() expects it to be set to a power of two less than or equal
3954  * to PTRS_PER_PTE.
3955  *
3956  * The virtual address of the area that we map is naturally aligned to
3957  * fault_around_bytes rounded down to the machine page size
3958  * (and therefore to page order).  This way it's easier to guarantee
3959  * that we don't cross page table boundaries.
3960  */
3961 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3962 {
3963         unsigned long address = vmf->address, nr_pages, mask;
3964         pgoff_t start_pgoff = vmf->pgoff;
3965         pgoff_t end_pgoff;
3966         int off;
3967         vm_fault_t ret = 0;
3968
3969         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3970         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3971
3972         vmf->address = max(address & mask, vmf->vma->vm_start);
3973         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3974         start_pgoff -= off;
3975
3976         /*
3977          *  end_pgoff is either the end of the page table, the end of
3978          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3979          */
3980         end_pgoff = start_pgoff -
3981                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3982                 PTRS_PER_PTE - 1;
3983         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3984                         start_pgoff + nr_pages - 1);
3985
3986         if (pmd_none(*vmf->pmd)) {
3987                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3988                 if (!vmf->prealloc_pte)
3989                         goto out;
3990                 smp_wmb(); /* See comment in __pte_alloc() */
3991         }
3992
3993         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3994
3995         /* Huge page is mapped? Page fault is solved */
3996         if (pmd_trans_huge(*vmf->pmd)) {
3997                 ret = VM_FAULT_NOPAGE;
3998                 goto out;
3999         }
4000
4001         /* ->map_pages() haven't done anything useful. Cold page cache? */
4002         if (!vmf->pte)
4003                 goto out;
4004
4005         /* check if the page fault is solved */
4006         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
4007         if (!pte_none(*vmf->pte))
4008                 ret = VM_FAULT_NOPAGE;
4009         pte_unmap_unlock(vmf->pte, vmf->ptl);
4010 out:
4011         vmf->address = address;
4012         vmf->pte = NULL;
4013         return ret;
4014 }
4015
4016 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4017 {
4018         struct vm_area_struct *vma = vmf->vma;
4019         vm_fault_t ret = 0;
4020
4021         /*
4022          * Let's call ->map_pages() first and use ->fault() as fallback
4023          * if page by the offset is not ready to be mapped (cold cache or
4024          * something).
4025          */
4026         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4027                 ret = do_fault_around(vmf);
4028                 if (ret)
4029                         return ret;
4030         }
4031
4032         ret = __do_fault(vmf);
4033         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4034                 return ret;
4035
4036         ret |= finish_fault(vmf);
4037         unlock_page(vmf->page);
4038         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4039                 put_page(vmf->page);
4040         return ret;
4041 }
4042
4043 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4044 {
4045         struct vm_area_struct *vma = vmf->vma;
4046         vm_fault_t ret;
4047
4048         if (unlikely(anon_vma_prepare(vma)))
4049                 return VM_FAULT_OOM;
4050
4051         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4052         if (!vmf->cow_page)
4053                 return VM_FAULT_OOM;
4054
4055         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4056                 put_page(vmf->cow_page);
4057                 return VM_FAULT_OOM;
4058         }
4059         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4060
4061         ret = __do_fault(vmf);
4062         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4063                 goto uncharge_out;
4064         if (ret & VM_FAULT_DONE_COW)
4065                 return ret;
4066
4067         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4068         __SetPageUptodate(vmf->cow_page);
4069
4070         ret |= finish_fault(vmf);
4071         unlock_page(vmf->page);
4072         put_page(vmf->page);
4073         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4074                 goto uncharge_out;
4075         return ret;
4076 uncharge_out:
4077         put_page(vmf->cow_page);
4078         return ret;
4079 }
4080
4081 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4082 {
4083         struct vm_area_struct *vma = vmf->vma;
4084         vm_fault_t ret, tmp;
4085
4086         ret = __do_fault(vmf);
4087         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4088                 return ret;
4089
4090         /*
4091          * Check if the backing address space wants to know that the page is
4092          * about to become writable
4093          */
4094         if (vma->vm_ops->page_mkwrite) {
4095                 unlock_page(vmf->page);
4096                 tmp = do_page_mkwrite(vmf);
4097                 if (unlikely(!tmp ||
4098                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4099                         put_page(vmf->page);
4100                         return tmp;
4101                 }
4102         }
4103
4104         ret |= finish_fault(vmf);
4105         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4106                                         VM_FAULT_RETRY))) {
4107                 unlock_page(vmf->page);
4108                 put_page(vmf->page);
4109                 return ret;
4110         }
4111
4112         ret |= fault_dirty_shared_page(vmf);
4113         return ret;
4114 }
4115
4116 /*
4117  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4118  * but allow concurrent faults).
4119  * The mmap_lock may have been released depending on flags and our
4120  * return value.  See filemap_fault() and __lock_page_or_retry().
4121  * If mmap_lock is released, vma may become invalid (for example
4122  * by other thread calling munmap()).
4123  */
4124 static vm_fault_t do_fault(struct vm_fault *vmf)
4125 {
4126         struct vm_area_struct *vma = vmf->vma;
4127         struct mm_struct *vm_mm = vma->vm_mm;
4128         vm_fault_t ret;
4129
4130         /*
4131          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4132          */
4133         if (!vma->vm_ops->fault) {
4134                 /*
4135                  * If we find a migration pmd entry or a none pmd entry, which
4136                  * should never happen, return SIGBUS
4137                  */
4138                 if (unlikely(!pmd_present(*vmf->pmd)))
4139                         ret = VM_FAULT_SIGBUS;
4140                 else {
4141                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4142                                                        vmf->pmd,
4143                                                        vmf->address,
4144                                                        &vmf->ptl);
4145                         /*
4146                          * Make sure this is not a temporary clearing of pte
4147                          * by holding ptl and checking again. A R/M/W update
4148                          * of pte involves: take ptl, clearing the pte so that
4149                          * we don't have concurrent modification by hardware
4150                          * followed by an update.
4151                          */
4152                         if (unlikely(pte_none(*vmf->pte)))
4153                                 ret = VM_FAULT_SIGBUS;
4154                         else
4155                                 ret = VM_FAULT_NOPAGE;
4156
4157                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4158                 }
4159         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4160                 ret = do_read_fault(vmf);
4161         else if (!(vma->vm_flags & VM_SHARED))
4162                 ret = do_cow_fault(vmf);
4163         else
4164                 ret = do_shared_fault(vmf);
4165
4166         /* preallocated pagetable is unused: free it */
4167         if (vmf->prealloc_pte) {
4168                 pte_free(vm_mm, vmf->prealloc_pte);
4169                 vmf->prealloc_pte = NULL;
4170         }
4171         return ret;
4172 }
4173
4174 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4175                                 unsigned long addr, int page_nid,
4176                                 int *flags)
4177 {
4178         get_page(page);
4179
4180         count_vm_numa_event(NUMA_HINT_FAULTS);
4181         if (page_nid == numa_node_id()) {
4182                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4183                 *flags |= TNF_FAULT_LOCAL;
4184         }
4185
4186         return mpol_misplaced(page, vma, addr);
4187 }
4188
4189 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4190 {
4191         struct vm_area_struct *vma = vmf->vma;
4192         struct page *page = NULL;
4193         int page_nid = NUMA_NO_NODE;
4194         int last_cpupid;
4195         int target_nid;
4196         bool migrated = false;
4197         pte_t pte, old_pte;
4198         bool was_writable = pte_savedwrite(vmf->orig_pte);
4199         int flags = 0;
4200
4201         /*
4202          * The "pte" at this point cannot be used safely without
4203          * validation through pte_unmap_same(). It's of NUMA type but
4204          * the pfn may be screwed if the read is non atomic.
4205          */
4206         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4207         spin_lock(vmf->ptl);
4208         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4209                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4210                 goto out;
4211         }
4212
4213         /*
4214          * Make it present again, Depending on how arch implementes non
4215          * accessible ptes, some can allow access by kernel mode.
4216          */
4217         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4218         pte = pte_modify(old_pte, vma->vm_page_prot);
4219         pte = pte_mkyoung(pte);
4220         if (was_writable)
4221                 pte = pte_mkwrite(pte);
4222         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4223         update_mmu_cache(vma, vmf->address, vmf->pte);
4224
4225         page = vm_normal_page(vma, vmf->address, pte);
4226         if (!page) {
4227                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4228                 return 0;
4229         }
4230
4231         /* TODO: handle PTE-mapped THP */
4232         if (PageCompound(page)) {
4233                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4234                 return 0;
4235         }
4236
4237         /*
4238          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4239          * much anyway since they can be in shared cache state. This misses
4240          * the case where a mapping is writable but the process never writes
4241          * to it but pte_write gets cleared during protection updates and
4242          * pte_dirty has unpredictable behaviour between PTE scan updates,
4243          * background writeback, dirty balancing and application behaviour.
4244          */
4245         if (!pte_write(pte))
4246                 flags |= TNF_NO_GROUP;
4247
4248         /*
4249          * Flag if the page is shared between multiple address spaces. This
4250          * is later used when determining whether to group tasks together
4251          */
4252         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4253                 flags |= TNF_SHARED;
4254
4255         last_cpupid = page_cpupid_last(page);
4256         page_nid = page_to_nid(page);
4257         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4258                         &flags);
4259         pte_unmap_unlock(vmf->pte, vmf->ptl);
4260         if (target_nid == NUMA_NO_NODE) {
4261                 put_page(page);
4262                 goto out;
4263         }
4264
4265         /* Migrate to the requested node */
4266         migrated = migrate_misplaced_page(page, vma, target_nid);
4267         if (migrated) {
4268                 page_nid = target_nid;
4269                 flags |= TNF_MIGRATED;
4270         } else
4271                 flags |= TNF_MIGRATE_FAIL;
4272
4273 out:
4274         if (page_nid != NUMA_NO_NODE)
4275                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4276         return 0;
4277 }
4278
4279 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4280 {
4281         if (vma_is_anonymous(vmf->vma))
4282                 return do_huge_pmd_anonymous_page(vmf);
4283         if (vmf->vma->vm_ops->huge_fault)
4284                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4285         return VM_FAULT_FALLBACK;
4286 }
4287
4288 /* `inline' is required to avoid gcc 4.1.2 build error */
4289 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4290 {
4291         if (vma_is_anonymous(vmf->vma)) {
4292                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4293                         return handle_userfault(vmf, VM_UFFD_WP);
4294                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4295         }
4296         if (vmf->vma->vm_ops->huge_fault) {
4297                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4298
4299                 if (!(ret & VM_FAULT_FALLBACK))
4300                         return ret;
4301         }
4302
4303         /* COW or write-notify handled on pte level: split pmd. */
4304         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4305
4306         return VM_FAULT_FALLBACK;
4307 }
4308
4309 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4310 {
4311 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4312         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4313         /* No support for anonymous transparent PUD pages yet */
4314         if (vma_is_anonymous(vmf->vma))
4315                 goto split;
4316         if (vmf->vma->vm_ops->huge_fault) {
4317                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4318
4319                 if (!(ret & VM_FAULT_FALLBACK))
4320                         return ret;
4321         }
4322 split:
4323         /* COW or write-notify not handled on PUD level: split pud.*/
4324         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4325 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4326         return VM_FAULT_FALLBACK;
4327 }
4328
4329 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4330 {
4331 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4332         /* No support for anonymous transparent PUD pages yet */
4333         if (vma_is_anonymous(vmf->vma))
4334                 return VM_FAULT_FALLBACK;
4335         if (vmf->vma->vm_ops->huge_fault)
4336                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4337 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4338         return VM_FAULT_FALLBACK;
4339 }
4340
4341 /*
4342  * These routines also need to handle stuff like marking pages dirty
4343  * and/or accessed for architectures that don't do it in hardware (most
4344  * RISC architectures).  The early dirtying is also good on the i386.
4345  *
4346  * There is also a hook called "update_mmu_cache()" that architectures
4347  * with external mmu caches can use to update those (ie the Sparc or
4348  * PowerPC hashed page tables that act as extended TLBs).
4349  *
4350  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4351  * concurrent faults).
4352  *
4353  * The mmap_lock may have been released depending on flags and our return value.
4354  * See filemap_fault() and __lock_page_or_retry().
4355  */
4356 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4357 {
4358         pte_t entry;
4359
4360         if (unlikely(pmd_none(*vmf->pmd))) {
4361                 /*
4362                  * Leave __pte_alloc() until later: because vm_ops->fault may
4363                  * want to allocate huge page, and if we expose page table
4364                  * for an instant, it will be difficult to retract from
4365                  * concurrent faults and from rmap lookups.
4366                  */
4367                 vmf->pte = NULL;
4368         } else {
4369                 /* See comment in pte_alloc_one_map() */
4370                 if (pmd_devmap_trans_unstable(vmf->pmd))
4371                         return 0;
4372                 /*
4373                  * A regular pmd is established and it can't morph into a huge
4374                  * pmd from under us anymore at this point because we hold the
4375                  * mmap_lock read mode and khugepaged takes it in write mode.
4376                  * So now it's safe to run pte_offset_map().
4377                  */
4378                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4379                 vmf->orig_pte = *vmf->pte;
4380
4381                 /*
4382                  * some architectures can have larger ptes than wordsize,
4383                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4384                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4385                  * accesses.  The code below just needs a consistent view
4386                  * for the ifs and we later double check anyway with the
4387                  * ptl lock held. So here a barrier will do.
4388                  */
4389                 barrier();
4390                 if (pte_none(vmf->orig_pte)) {
4391                         pte_unmap(vmf->pte);
4392                         vmf->pte = NULL;
4393                 }
4394         }
4395
4396         if (!vmf->pte) {
4397                 if (vma_is_anonymous(vmf->vma))
4398                         return do_anonymous_page(vmf);
4399                 else
4400                         return do_fault(vmf);
4401         }
4402
4403         if (!pte_present(vmf->orig_pte))
4404                 return do_swap_page(vmf);
4405
4406         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4407                 return do_numa_page(vmf);
4408
4409         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4410         spin_lock(vmf->ptl);
4411         entry = vmf->orig_pte;
4412         if (unlikely(!pte_same(*vmf->pte, entry))) {
4413                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4414                 goto unlock;
4415         }
4416         if (vmf->flags & FAULT_FLAG_WRITE) {
4417                 if (!pte_write(entry))
4418                         return do_wp_page(vmf);
4419                 entry = pte_mkdirty(entry);
4420         }
4421         entry = pte_mkyoung(entry);
4422         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4423                                 vmf->flags & FAULT_FLAG_WRITE)) {
4424                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4425         } else {
4426                 /* Skip spurious TLB flush for retried page fault */
4427                 if (vmf->flags & FAULT_FLAG_TRIED)
4428                         goto unlock;
4429                 /*
4430                  * This is needed only for protection faults but the arch code
4431                  * is not yet telling us if this is a protection fault or not.
4432                  * This still avoids useless tlb flushes for .text page faults
4433                  * with threads.
4434                  */
4435                 if (vmf->flags & FAULT_FLAG_WRITE)
4436                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4437         }
4438 unlock:
4439         pte_unmap_unlock(vmf->pte, vmf->ptl);
4440         return 0;
4441 }
4442
4443 /*
4444  * By the time we get here, we already hold the mm semaphore
4445  *
4446  * The mmap_lock may have been released depending on flags and our
4447  * return value.  See filemap_fault() and __lock_page_or_retry().
4448  */
4449 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4450                 unsigned long address, unsigned int flags)
4451 {
4452         struct vm_fault vmf = {
4453                 .vma = vma,
4454                 .address = address & PAGE_MASK,
4455                 .flags = flags,
4456                 .pgoff = linear_page_index(vma, address),
4457                 .gfp_mask = __get_fault_gfp_mask(vma),
4458         };
4459         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4460         struct mm_struct *mm = vma->vm_mm;
4461         pgd_t *pgd;
4462         p4d_t *p4d;
4463         vm_fault_t ret;
4464
4465         pgd = pgd_offset(mm, address);
4466         p4d = p4d_alloc(mm, pgd, address);
4467         if (!p4d)
4468                 return VM_FAULT_OOM;
4469
4470         vmf.pud = pud_alloc(mm, p4d, address);
4471         if (!vmf.pud)
4472                 return VM_FAULT_OOM;
4473 retry_pud:
4474         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4475                 ret = create_huge_pud(&vmf);
4476                 if (!(ret & VM_FAULT_FALLBACK))
4477                         return ret;
4478         } else {
4479                 pud_t orig_pud = *vmf.pud;
4480
4481                 barrier();
4482                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4483
4484                         /* NUMA case for anonymous PUDs would go here */
4485
4486                         if (dirty && !pud_write(orig_pud)) {
4487                                 ret = wp_huge_pud(&vmf, orig_pud);
4488                                 if (!(ret & VM_FAULT_FALLBACK))
4489                                         return ret;
4490                         } else {
4491                                 huge_pud_set_accessed(&vmf, orig_pud);
4492                                 return 0;
4493                         }
4494                 }
4495         }
4496
4497         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4498         if (!vmf.pmd)
4499                 return VM_FAULT_OOM;
4500
4501         /* Huge pud page fault raced with pmd_alloc? */
4502         if (pud_trans_unstable(vmf.pud))
4503                 goto retry_pud;
4504
4505         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4506                 ret = create_huge_pmd(&vmf);
4507                 if (!(ret & VM_FAULT_FALLBACK))
4508                         return ret;
4509         } else {
4510                 pmd_t orig_pmd = *vmf.pmd;
4511
4512                 barrier();
4513                 if (unlikely(is_swap_pmd(orig_pmd))) {
4514                         VM_BUG_ON(thp_migration_supported() &&
4515                                           !is_pmd_migration_entry(orig_pmd));
4516                         if (is_pmd_migration_entry(orig_pmd))
4517                                 pmd_migration_entry_wait(mm, vmf.pmd);
4518                         return 0;
4519                 }
4520                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4521                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4522                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4523
4524                         if (dirty && !pmd_write(orig_pmd)) {
4525                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4526                                 if (!(ret & VM_FAULT_FALLBACK))
4527                                         return ret;
4528                         } else {
4529                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4530                                 return 0;
4531                         }
4532                 }
4533         }
4534
4535         return handle_pte_fault(&vmf);
4536 }
4537
4538 /**
4539  * mm_account_fault - Do page fault accountings
4540  *
4541  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4542  *        of perf event counters, but we'll still do the per-task accounting to
4543  *        the task who triggered this page fault.
4544  * @address: the faulted address.
4545  * @flags: the fault flags.
4546  * @ret: the fault retcode.
4547  *
4548  * This will take care of most of the page fault accountings.  Meanwhile, it
4549  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4550  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4551  * still be in per-arch page fault handlers at the entry of page fault.
4552  */
4553 static inline void mm_account_fault(struct pt_regs *regs,
4554                                     unsigned long address, unsigned int flags,
4555                                     vm_fault_t ret)
4556 {
4557         bool major;
4558
4559         /*
4560          * We don't do accounting for some specific faults:
4561          *
4562          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4563          *   includes arch_vma_access_permitted() failing before reaching here.
4564          *   So this is not a "this many hardware page faults" counter.  We
4565          *   should use the hw profiling for that.
4566          *
4567          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4568          *   once they're completed.
4569          */
4570         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4571                 return;
4572
4573         /*
4574          * We define the fault as a major fault when the final successful fault
4575          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4576          * handle it immediately previously).
4577          */
4578         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4579
4580         if (major)
4581                 current->maj_flt++;
4582         else
4583                 current->min_flt++;
4584
4585         /*
4586          * If the fault is done for GUP, regs will be NULL.  We only do the
4587          * accounting for the per thread fault counters who triggered the
4588          * fault, and we skip the perf event updates.
4589          */
4590         if (!regs)
4591                 return;
4592
4593         if (major)
4594                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4595         else
4596                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4597 }
4598
4599 /*
4600  * By the time we get here, we already hold the mm semaphore
4601  *
4602  * The mmap_lock may have been released depending on flags and our
4603  * return value.  See filemap_fault() and __lock_page_or_retry().
4604  */
4605 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4606                            unsigned int flags, struct pt_regs *regs)
4607 {
4608         vm_fault_t ret;
4609
4610         __set_current_state(TASK_RUNNING);
4611
4612         count_vm_event(PGFAULT);
4613         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4614
4615         /* do counter updates before entering really critical section. */
4616         check_sync_rss_stat(current);
4617
4618         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4619                                             flags & FAULT_FLAG_INSTRUCTION,
4620                                             flags & FAULT_FLAG_REMOTE))
4621                 return VM_FAULT_SIGSEGV;
4622
4623         /*
4624          * Enable the memcg OOM handling for faults triggered in user
4625          * space.  Kernel faults are handled more gracefully.
4626          */
4627         if (flags & FAULT_FLAG_USER)
4628                 mem_cgroup_enter_user_fault();
4629
4630         if (unlikely(is_vm_hugetlb_page(vma)))
4631                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4632         else
4633                 ret = __handle_mm_fault(vma, address, flags);
4634
4635         if (flags & FAULT_FLAG_USER) {
4636                 mem_cgroup_exit_user_fault();
4637                 /*
4638                  * The task may have entered a memcg OOM situation but
4639                  * if the allocation error was handled gracefully (no
4640                  * VM_FAULT_OOM), there is no need to kill anything.
4641                  * Just clean up the OOM state peacefully.
4642                  */
4643                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4644                         mem_cgroup_oom_synchronize(false);
4645         }
4646
4647         mm_account_fault(regs, address, flags, ret);
4648
4649         return ret;
4650 }
4651 EXPORT_SYMBOL_GPL(handle_mm_fault);
4652
4653 #ifndef __PAGETABLE_P4D_FOLDED
4654 /*
4655  * Allocate p4d page table.
4656  * We've already handled the fast-path in-line.
4657  */
4658 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4659 {
4660         p4d_t *new = p4d_alloc_one(mm, address);
4661         if (!new)
4662                 return -ENOMEM;
4663
4664         smp_wmb(); /* See comment in __pte_alloc */
4665
4666         spin_lock(&mm->page_table_lock);
4667         if (pgd_present(*pgd))          /* Another has populated it */
4668                 p4d_free(mm, new);
4669         else
4670                 pgd_populate(mm, pgd, new);
4671         spin_unlock(&mm->page_table_lock);
4672         return 0;
4673 }
4674 #endif /* __PAGETABLE_P4D_FOLDED */
4675
4676 #ifndef __PAGETABLE_PUD_FOLDED
4677 /*
4678  * Allocate page upper directory.
4679  * We've already handled the fast-path in-line.
4680  */
4681 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4682 {
4683         pud_t *new = pud_alloc_one(mm, address);
4684         if (!new)
4685                 return -ENOMEM;
4686
4687         smp_wmb(); /* See comment in __pte_alloc */
4688
4689         spin_lock(&mm->page_table_lock);
4690         if (!p4d_present(*p4d)) {
4691                 mm_inc_nr_puds(mm);
4692                 p4d_populate(mm, p4d, new);
4693         } else  /* Another has populated it */
4694                 pud_free(mm, new);
4695         spin_unlock(&mm->page_table_lock);
4696         return 0;
4697 }
4698 #endif /* __PAGETABLE_PUD_FOLDED */
4699
4700 #ifndef __PAGETABLE_PMD_FOLDED
4701 /*
4702  * Allocate page middle directory.
4703  * We've already handled the fast-path in-line.
4704  */
4705 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4706 {
4707         spinlock_t *ptl;
4708         pmd_t *new = pmd_alloc_one(mm, address);
4709         if (!new)
4710                 return -ENOMEM;
4711
4712         smp_wmb(); /* See comment in __pte_alloc */
4713
4714         ptl = pud_lock(mm, pud);
4715         if (!pud_present(*pud)) {
4716                 mm_inc_nr_pmds(mm);
4717                 pud_populate(mm, pud, new);
4718         } else  /* Another has populated it */
4719                 pmd_free(mm, new);
4720         spin_unlock(ptl);
4721         return 0;
4722 }
4723 #endif /* __PAGETABLE_PMD_FOLDED */
4724
4725 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4726                             struct mmu_notifier_range *range,
4727                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4728 {
4729         pgd_t *pgd;
4730         p4d_t *p4d;
4731         pud_t *pud;
4732         pmd_t *pmd;
4733         pte_t *ptep;
4734
4735         pgd = pgd_offset(mm, address);
4736         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4737                 goto out;
4738
4739         p4d = p4d_offset(pgd, address);
4740         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4741                 goto out;
4742
4743         pud = pud_offset(p4d, address);
4744         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4745                 goto out;
4746
4747         pmd = pmd_offset(pud, address);
4748         VM_BUG_ON(pmd_trans_huge(*pmd));
4749
4750         if (pmd_huge(*pmd)) {
4751                 if (!pmdpp)
4752                         goto out;
4753
4754                 if (range) {
4755                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4756                                                 NULL, mm, address & PMD_MASK,
4757                                                 (address & PMD_MASK) + PMD_SIZE);
4758                         mmu_notifier_invalidate_range_start(range);
4759                 }
4760                 *ptlp = pmd_lock(mm, pmd);
4761                 if (pmd_huge(*pmd)) {
4762                         *pmdpp = pmd;
4763                         return 0;
4764                 }
4765                 spin_unlock(*ptlp);
4766                 if (range)
4767                         mmu_notifier_invalidate_range_end(range);
4768         }
4769
4770         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4771                 goto out;
4772
4773         if (range) {
4774                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4775                                         address & PAGE_MASK,
4776                                         (address & PAGE_MASK) + PAGE_SIZE);
4777                 mmu_notifier_invalidate_range_start(range);
4778         }
4779         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4780         if (!pte_present(*ptep))
4781                 goto unlock;
4782         *ptepp = ptep;
4783         return 0;
4784 unlock:
4785         pte_unmap_unlock(ptep, *ptlp);
4786         if (range)
4787                 mmu_notifier_invalidate_range_end(range);
4788 out:
4789         return -EINVAL;
4790 }
4791
4792 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4793                              pte_t **ptepp, spinlock_t **ptlp)
4794 {
4795         int res;
4796
4797         /* (void) is needed to make gcc happy */
4798         (void) __cond_lock(*ptlp,
4799                            !(res = __follow_pte_pmd(mm, address, NULL,
4800                                                     ptepp, NULL, ptlp)));
4801         return res;
4802 }
4803
4804 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4805                    struct mmu_notifier_range *range,
4806                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4807 {
4808         int res;
4809
4810         /* (void) is needed to make gcc happy */
4811         (void) __cond_lock(*ptlp,
4812                            !(res = __follow_pte_pmd(mm, address, range,
4813                                                     ptepp, pmdpp, ptlp)));
4814         return res;
4815 }
4816 EXPORT_SYMBOL(follow_pte_pmd);
4817
4818 /**
4819  * follow_pfn - look up PFN at a user virtual address
4820  * @vma: memory mapping
4821  * @address: user virtual address
4822  * @pfn: location to store found PFN
4823  *
4824  * Only IO mappings and raw PFN mappings are allowed.
4825  *
4826  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4827  */
4828 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4829         unsigned long *pfn)
4830 {
4831         int ret = -EINVAL;
4832         spinlock_t *ptl;
4833         pte_t *ptep;
4834
4835         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4836                 return ret;
4837
4838         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4839         if (ret)
4840                 return ret;
4841         *pfn = pte_pfn(*ptep);
4842         pte_unmap_unlock(ptep, ptl);
4843         return 0;
4844 }
4845 EXPORT_SYMBOL(follow_pfn);
4846
4847 #ifdef CONFIG_HAVE_IOREMAP_PROT
4848 int follow_phys(struct vm_area_struct *vma,
4849                 unsigned long address, unsigned int flags,
4850                 unsigned long *prot, resource_size_t *phys)
4851 {
4852         int ret = -EINVAL;
4853         pte_t *ptep, pte;
4854         spinlock_t *ptl;
4855
4856         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4857                 goto out;
4858
4859         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4860                 goto out;
4861         pte = *ptep;
4862
4863         if ((flags & FOLL_WRITE) && !pte_write(pte))
4864                 goto unlock;
4865
4866         *prot = pgprot_val(pte_pgprot(pte));
4867         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4868
4869         ret = 0;
4870 unlock:
4871         pte_unmap_unlock(ptep, ptl);
4872 out:
4873         return ret;
4874 }
4875
4876 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4877                         void *buf, int len, int write)
4878 {
4879         resource_size_t phys_addr;
4880         unsigned long prot = 0;
4881         void __iomem *maddr;
4882         int offset = addr & (PAGE_SIZE-1);
4883
4884         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4885                 return -EINVAL;
4886
4887         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4888         if (!maddr)
4889                 return -ENOMEM;
4890
4891         if (write)
4892                 memcpy_toio(maddr + offset, buf, len);
4893         else
4894                 memcpy_fromio(buf, maddr + offset, len);
4895         iounmap(maddr);
4896
4897         return len;
4898 }
4899 EXPORT_SYMBOL_GPL(generic_access_phys);
4900 #endif
4901
4902 /*
4903  * Access another process' address space as given in mm.  If non-NULL, use the
4904  * given task for page fault accounting.
4905  */
4906 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4907                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4908 {
4909         struct vm_area_struct *vma;
4910         void *old_buf = buf;
4911         int write = gup_flags & FOLL_WRITE;
4912
4913         if (mmap_read_lock_killable(mm))
4914                 return 0;
4915
4916         /* ignore errors, just check how much was successfully transferred */
4917         while (len) {
4918                 int bytes, ret, offset;
4919                 void *maddr;
4920                 struct page *page = NULL;
4921
4922                 ret = get_user_pages_remote(mm, addr, 1,
4923                                 gup_flags, &page, &vma, NULL);
4924                 if (ret <= 0) {
4925 #ifndef CONFIG_HAVE_IOREMAP_PROT
4926                         break;
4927 #else
4928                         /*
4929                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4930                          * we can access using slightly different code.
4931                          */
4932                         vma = find_vma(mm, addr);
4933                         if (!vma || vma->vm_start > addr)
4934                                 break;
4935                         if (vma->vm_ops && vma->vm_ops->access)
4936                                 ret = vma->vm_ops->access(vma, addr, buf,
4937                                                           len, write);
4938                         if (ret <= 0)
4939                                 break;
4940                         bytes = ret;
4941 #endif
4942                 } else {
4943                         bytes = len;
4944                         offset = addr & (PAGE_SIZE-1);
4945                         if (bytes > PAGE_SIZE-offset)
4946                                 bytes = PAGE_SIZE-offset;
4947
4948                         maddr = kmap(page);
4949                         if (write) {
4950                                 copy_to_user_page(vma, page, addr,
4951                                                   maddr + offset, buf, bytes);
4952                                 set_page_dirty_lock(page);
4953                         } else {
4954                                 copy_from_user_page(vma, page, addr,
4955                                                     buf, maddr + offset, bytes);
4956                         }
4957                         kunmap(page);
4958                         put_page(page);
4959                 }
4960                 len -= bytes;
4961                 buf += bytes;
4962                 addr += bytes;
4963         }
4964         mmap_read_unlock(mm);
4965
4966         return buf - old_buf;
4967 }
4968
4969 /**
4970  * access_remote_vm - access another process' address space
4971  * @mm:         the mm_struct of the target address space
4972  * @addr:       start address to access
4973  * @buf:        source or destination buffer
4974  * @len:        number of bytes to transfer
4975  * @gup_flags:  flags modifying lookup behaviour
4976  *
4977  * The caller must hold a reference on @mm.
4978  *
4979  * Return: number of bytes copied from source to destination.
4980  */
4981 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4982                 void *buf, int len, unsigned int gup_flags)
4983 {
4984         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4985 }
4986
4987 /*
4988  * Access another process' address space.
4989  * Source/target buffer must be kernel space,
4990  * Do not walk the page table directly, use get_user_pages
4991  */
4992 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4993                 void *buf, int len, unsigned int gup_flags)
4994 {
4995         struct mm_struct *mm;
4996         int ret;
4997
4998         mm = get_task_mm(tsk);
4999         if (!mm)
5000                 return 0;
5001
5002         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
5003
5004         mmput(mm);
5005
5006         return ret;
5007 }
5008 EXPORT_SYMBOL_GPL(access_process_vm);
5009
5010 /*
5011  * Print the name of a VMA.
5012  */
5013 void print_vma_addr(char *prefix, unsigned long ip)
5014 {
5015         struct mm_struct *mm = current->mm;
5016         struct vm_area_struct *vma;
5017
5018         /*
5019          * we might be running from an atomic context so we cannot sleep
5020          */
5021         if (!mmap_read_trylock(mm))
5022                 return;
5023
5024         vma = find_vma(mm, ip);
5025         if (vma && vma->vm_file) {
5026                 struct file *f = vma->vm_file;
5027                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5028                 if (buf) {
5029                         char *p;
5030
5031                         p = file_path(f, buf, PAGE_SIZE);
5032                         if (IS_ERR(p))
5033                                 p = "?";
5034                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5035                                         vma->vm_start,
5036                                         vma->vm_end - vma->vm_start);
5037                         free_page((unsigned long)buf);
5038                 }
5039         }
5040         mmap_read_unlock(mm);
5041 }
5042
5043 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5044 void __might_fault(const char *file, int line)
5045 {
5046         /*
5047          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5048          * holding the mmap_lock, this is safe because kernel memory doesn't
5049          * get paged out, therefore we'll never actually fault, and the
5050          * below annotations will generate false positives.
5051          */
5052         if (uaccess_kernel())
5053                 return;
5054         if (pagefault_disabled())
5055                 return;
5056         __might_sleep(file, line, 0);
5057 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5058         if (current->mm)
5059                 might_lock_read(&current->mm->mmap_lock);
5060 #endif
5061 }
5062 EXPORT_SYMBOL(__might_fault);
5063 #endif
5064
5065 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5066 /*
5067  * Process all subpages of the specified huge page with the specified
5068  * operation.  The target subpage will be processed last to keep its
5069  * cache lines hot.
5070  */
5071 static inline void process_huge_page(
5072         unsigned long addr_hint, unsigned int pages_per_huge_page,
5073         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5074         void *arg)
5075 {
5076         int i, n, base, l;
5077         unsigned long addr = addr_hint &
5078                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5079
5080         /* Process target subpage last to keep its cache lines hot */
5081         might_sleep();
5082         n = (addr_hint - addr) / PAGE_SIZE;
5083         if (2 * n <= pages_per_huge_page) {
5084                 /* If target subpage in first half of huge page */
5085                 base = 0;
5086                 l = n;
5087                 /* Process subpages at the end of huge page */
5088                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5089                         cond_resched();
5090                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5091                 }
5092         } else {
5093                 /* If target subpage in second half of huge page */
5094                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5095                 l = pages_per_huge_page - n;
5096                 /* Process subpages at the begin of huge page */
5097                 for (i = 0; i < base; i++) {
5098                         cond_resched();
5099                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5100                 }
5101         }
5102         /*
5103          * Process remaining subpages in left-right-left-right pattern
5104          * towards the target subpage
5105          */
5106         for (i = 0; i < l; i++) {
5107                 int left_idx = base + i;
5108                 int right_idx = base + 2 * l - 1 - i;
5109
5110                 cond_resched();
5111                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5112                 cond_resched();
5113                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5114         }
5115 }
5116
5117 static void clear_gigantic_page(struct page *page,
5118                                 unsigned long addr,
5119                                 unsigned int pages_per_huge_page)
5120 {
5121         int i;
5122         struct page *p = page;
5123
5124         might_sleep();
5125         for (i = 0; i < pages_per_huge_page;
5126              i++, p = mem_map_next(p, page, i)) {
5127                 cond_resched();
5128                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5129         }
5130 }
5131
5132 static void clear_subpage(unsigned long addr, int idx, void *arg)
5133 {
5134         struct page *page = arg;
5135
5136         clear_user_highpage(page + idx, addr);
5137 }
5138
5139 void clear_huge_page(struct page *page,
5140                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5141 {
5142         unsigned long addr = addr_hint &
5143                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5144
5145         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5146                 clear_gigantic_page(page, addr, pages_per_huge_page);
5147                 return;
5148         }
5149
5150         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5151 }
5152
5153 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5154                                     unsigned long addr,
5155                                     struct vm_area_struct *vma,
5156                                     unsigned int pages_per_huge_page)
5157 {
5158         int i;
5159         struct page *dst_base = dst;
5160         struct page *src_base = src;
5161
5162         for (i = 0; i < pages_per_huge_page; ) {
5163                 cond_resched();
5164                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5165
5166                 i++;
5167                 dst = mem_map_next(dst, dst_base, i);
5168                 src = mem_map_next(src, src_base, i);
5169         }
5170 }
5171
5172 struct copy_subpage_arg {
5173         struct page *dst;
5174         struct page *src;
5175         struct vm_area_struct *vma;
5176 };
5177
5178 static void copy_subpage(unsigned long addr, int idx, void *arg)
5179 {
5180         struct copy_subpage_arg *copy_arg = arg;
5181
5182         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5183                            addr, copy_arg->vma);
5184 }
5185
5186 void copy_user_huge_page(struct page *dst, struct page *src,
5187                          unsigned long addr_hint, struct vm_area_struct *vma,
5188                          unsigned int pages_per_huge_page)
5189 {
5190         unsigned long addr = addr_hint &
5191                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5192         struct copy_subpage_arg arg = {
5193                 .dst = dst,
5194                 .src = src,
5195                 .vma = vma,
5196         };
5197
5198         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5199                 copy_user_gigantic_page(dst, src, addr, vma,
5200                                         pages_per_huge_page);
5201                 return;
5202         }
5203
5204         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5205 }
5206
5207 long copy_huge_page_from_user(struct page *dst_page,
5208                                 const void __user *usr_src,
5209                                 unsigned int pages_per_huge_page,
5210                                 bool allow_pagefault)
5211 {
5212         void *src = (void *)usr_src;
5213         void *page_kaddr;
5214         unsigned long i, rc = 0;
5215         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5216
5217         for (i = 0; i < pages_per_huge_page; i++) {
5218                 if (allow_pagefault)
5219                         page_kaddr = kmap(dst_page + i);
5220                 else
5221                         page_kaddr = kmap_atomic(dst_page + i);
5222                 rc = copy_from_user(page_kaddr,
5223                                 (const void __user *)(src + i * PAGE_SIZE),
5224                                 PAGE_SIZE);
5225                 if (allow_pagefault)
5226                         kunmap(dst_page + i);
5227                 else
5228                         kunmap_atomic(page_kaddr);
5229
5230                 ret_val -= (PAGE_SIZE - rc);
5231                 if (rc)
5232                         break;
5233
5234                 cond_resched();
5235         }
5236         return ret_val;
5237 }
5238 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5239
5240 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5241
5242 static struct kmem_cache *page_ptl_cachep;
5243
5244 void __init ptlock_cache_init(void)
5245 {
5246         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5247                         SLAB_PANIC, NULL);
5248 }
5249
5250 bool ptlock_alloc(struct page *page)
5251 {
5252         spinlock_t *ptl;
5253
5254         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5255         if (!ptl)
5256                 return false;
5257         page->ptl = ptl;
5258         return true;
5259 }
5260
5261 void ptlock_free(struct page *page)
5262 {
5263         kmem_cache_free(page_ptl_cachep, page->ptl);
5264 }
5265 #endif