delayacct: support swapin delay accounting for swapping without blkio
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NUMA
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100
101 /*
102  * A number of key systems in x86 including ioremap() rely on the assumption
103  * that high_memory defines the upper bound on direct map memory, then end
104  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106  * and ZONE_HIGHMEM.
107  */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110
111 /*
112  * Randomize the address space (stacks, mmaps, brk, etc.).
113  *
114  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115  *   as ancient (libc5 based) binaries can segfault. )
116  */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119                                         1;
120 #else
121                                         2;
122 #endif
123
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127         /*
128          * Those arches which don't have hw access flag feature need to
129          * implement their own helper. By default, "true" means pagefault
130          * will be hit on old pte.
131          */
132         return true;
133 }
134 #endif
135
136 #ifndef arch_wants_old_prefaulted_pte
137 static inline bool arch_wants_old_prefaulted_pte(void)
138 {
139         /*
140          * Transitioning a PTE from 'old' to 'young' can be expensive on
141          * some architectures, even if it's performed in hardware. By
142          * default, "false" means prefaulted entries will be 'young'.
143          */
144         return false;
145 }
146 #endif
147
148 static int __init disable_randmaps(char *s)
149 {
150         randomize_va_space = 0;
151         return 1;
152 }
153 __setup("norandmaps", disable_randmaps);
154
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
157
158 unsigned long highest_memmap_pfn __read_mostly;
159
160 /*
161  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162  */
163 static int __init init_zero_pfn(void)
164 {
165         zero_pfn = page_to_pfn(ZERO_PAGE(0));
166         return 0;
167 }
168 early_initcall(init_zero_pfn);
169
170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171 {
172         trace_rss_stat(mm, member, count);
173 }
174
175 #if defined(SPLIT_RSS_COUNTING)
176
177 void sync_mm_rss(struct mm_struct *mm)
178 {
179         int i;
180
181         for (i = 0; i < NR_MM_COUNTERS; i++) {
182                 if (current->rss_stat.count[i]) {
183                         add_mm_counter(mm, i, current->rss_stat.count[i]);
184                         current->rss_stat.count[i] = 0;
185                 }
186         }
187         current->rss_stat.events = 0;
188 }
189
190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192         struct task_struct *task = current;
193
194         if (likely(task->mm == mm))
195                 task->rss_stat.count[member] += val;
196         else
197                 add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH  (64)
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206         if (unlikely(task != current))
207                 return;
208         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209                 sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219
220 #endif /* SPLIT_RSS_COUNTING */
221
222 /*
223  * Note: this doesn't free the actual pages themselves. That
224  * has been handled earlier when unmapping all the memory regions.
225  */
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227                            unsigned long addr)
228 {
229         pgtable_t token = pmd_pgtable(*pmd);
230         pmd_clear(pmd);
231         pte_free_tlb(tlb, token, addr);
232         mm_dec_nr_ptes(tlb->mm);
233 }
234
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236                                 unsigned long addr, unsigned long end,
237                                 unsigned long floor, unsigned long ceiling)
238 {
239         pmd_t *pmd;
240         unsigned long next;
241         unsigned long start;
242
243         start = addr;
244         pmd = pmd_offset(pud, addr);
245         do {
246                 next = pmd_addr_end(addr, end);
247                 if (pmd_none_or_clear_bad(pmd))
248                         continue;
249                 free_pte_range(tlb, pmd, addr);
250         } while (pmd++, addr = next, addr != end);
251
252         start &= PUD_MASK;
253         if (start < floor)
254                 return;
255         if (ceiling) {
256                 ceiling &= PUD_MASK;
257                 if (!ceiling)
258                         return;
259         }
260         if (end - 1 > ceiling - 1)
261                 return;
262
263         pmd = pmd_offset(pud, start);
264         pud_clear(pud);
265         pmd_free_tlb(tlb, pmd, start);
266         mm_dec_nr_pmds(tlb->mm);
267 }
268
269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270                                 unsigned long addr, unsigned long end,
271                                 unsigned long floor, unsigned long ceiling)
272 {
273         pud_t *pud;
274         unsigned long next;
275         unsigned long start;
276
277         start = addr;
278         pud = pud_offset(p4d, addr);
279         do {
280                 next = pud_addr_end(addr, end);
281                 if (pud_none_or_clear_bad(pud))
282                         continue;
283                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284         } while (pud++, addr = next, addr != end);
285
286         start &= P4D_MASK;
287         if (start < floor)
288                 return;
289         if (ceiling) {
290                 ceiling &= P4D_MASK;
291                 if (!ceiling)
292                         return;
293         }
294         if (end - 1 > ceiling - 1)
295                 return;
296
297         pud = pud_offset(p4d, start);
298         p4d_clear(p4d);
299         pud_free_tlb(tlb, pud, start);
300         mm_dec_nr_puds(tlb->mm);
301 }
302
303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304                                 unsigned long addr, unsigned long end,
305                                 unsigned long floor, unsigned long ceiling)
306 {
307         p4d_t *p4d;
308         unsigned long next;
309         unsigned long start;
310
311         start = addr;
312         p4d = p4d_offset(pgd, addr);
313         do {
314                 next = p4d_addr_end(addr, end);
315                 if (p4d_none_or_clear_bad(p4d))
316                         continue;
317                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318         } while (p4d++, addr = next, addr != end);
319
320         start &= PGDIR_MASK;
321         if (start < floor)
322                 return;
323         if (ceiling) {
324                 ceiling &= PGDIR_MASK;
325                 if (!ceiling)
326                         return;
327         }
328         if (end - 1 > ceiling - 1)
329                 return;
330
331         p4d = p4d_offset(pgd, start);
332         pgd_clear(pgd);
333         p4d_free_tlb(tlb, p4d, start);
334 }
335
336 /*
337  * This function frees user-level page tables of a process.
338  */
339 void free_pgd_range(struct mmu_gather *tlb,
340                         unsigned long addr, unsigned long end,
341                         unsigned long floor, unsigned long ceiling)
342 {
343         pgd_t *pgd;
344         unsigned long next;
345
346         /*
347          * The next few lines have given us lots of grief...
348          *
349          * Why are we testing PMD* at this top level?  Because often
350          * there will be no work to do at all, and we'd prefer not to
351          * go all the way down to the bottom just to discover that.
352          *
353          * Why all these "- 1"s?  Because 0 represents both the bottom
354          * of the address space and the top of it (using -1 for the
355          * top wouldn't help much: the masks would do the wrong thing).
356          * The rule is that addr 0 and floor 0 refer to the bottom of
357          * the address space, but end 0 and ceiling 0 refer to the top
358          * Comparisons need to use "end - 1" and "ceiling - 1" (though
359          * that end 0 case should be mythical).
360          *
361          * Wherever addr is brought up or ceiling brought down, we must
362          * be careful to reject "the opposite 0" before it confuses the
363          * subsequent tests.  But what about where end is brought down
364          * by PMD_SIZE below? no, end can't go down to 0 there.
365          *
366          * Whereas we round start (addr) and ceiling down, by different
367          * masks at different levels, in order to test whether a table
368          * now has no other vmas using it, so can be freed, we don't
369          * bother to round floor or end up - the tests don't need that.
370          */
371
372         addr &= PMD_MASK;
373         if (addr < floor) {
374                 addr += PMD_SIZE;
375                 if (!addr)
376                         return;
377         }
378         if (ceiling) {
379                 ceiling &= PMD_MASK;
380                 if (!ceiling)
381                         return;
382         }
383         if (end - 1 > ceiling - 1)
384                 end -= PMD_SIZE;
385         if (addr > end - 1)
386                 return;
387         /*
388          * We add page table cache pages with PAGE_SIZE,
389          * (see pte_free_tlb()), flush the tlb if we need
390          */
391         tlb_change_page_size(tlb, PAGE_SIZE);
392         pgd = pgd_offset(tlb->mm, addr);
393         do {
394                 next = pgd_addr_end(addr, end);
395                 if (pgd_none_or_clear_bad(pgd))
396                         continue;
397                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398         } while (pgd++, addr = next, addr != end);
399 }
400
401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402                 unsigned long floor, unsigned long ceiling)
403 {
404         while (vma) {
405                 struct vm_area_struct *next = vma->vm_next;
406                 unsigned long addr = vma->vm_start;
407
408                 /*
409                  * Hide vma from rmap and truncate_pagecache before freeing
410                  * pgtables
411                  */
412                 unlink_anon_vmas(vma);
413                 unlink_file_vma(vma);
414
415                 if (is_vm_hugetlb_page(vma)) {
416                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 } else {
419                         /*
420                          * Optimization: gather nearby vmas into one call down
421                          */
422                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423                                && !is_vm_hugetlb_page(next)) {
424                                 vma = next;
425                                 next = vma->vm_next;
426                                 unlink_anon_vmas(vma);
427                                 unlink_file_vma(vma);
428                         }
429                         free_pgd_range(tlb, addr, vma->vm_end,
430                                 floor, next ? next->vm_start : ceiling);
431                 }
432                 vma = next;
433         }
434 }
435
436 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
437 {
438         spinlock_t *ptl = pmd_lock(mm, pmd);
439
440         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
441                 mm_inc_nr_ptes(mm);
442                 /*
443                  * Ensure all pte setup (eg. pte page lock and page clearing) are
444                  * visible before the pte is made visible to other CPUs by being
445                  * put into page tables.
446                  *
447                  * The other side of the story is the pointer chasing in the page
448                  * table walking code (when walking the page table without locking;
449                  * ie. most of the time). Fortunately, these data accesses consist
450                  * of a chain of data-dependent loads, meaning most CPUs (alpha
451                  * being the notable exception) will already guarantee loads are
452                  * seen in-order. See the alpha page table accessors for the
453                  * smp_rmb() barriers in page table walking code.
454                  */
455                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
456                 pmd_populate(mm, pmd, *pte);
457                 *pte = NULL;
458         }
459         spin_unlock(ptl);
460 }
461
462 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
463 {
464         pgtable_t new = pte_alloc_one(mm);
465         if (!new)
466                 return -ENOMEM;
467
468         pmd_install(mm, pmd, &new);
469         if (new)
470                 pte_free(mm, new);
471         return 0;
472 }
473
474 int __pte_alloc_kernel(pmd_t *pmd)
475 {
476         pte_t *new = pte_alloc_one_kernel(&init_mm);
477         if (!new)
478                 return -ENOMEM;
479
480         spin_lock(&init_mm.page_table_lock);
481         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
482                 smp_wmb(); /* See comment in pmd_install() */
483                 pmd_populate_kernel(&init_mm, pmd, new);
484                 new = NULL;
485         }
486         spin_unlock(&init_mm.page_table_lock);
487         if (new)
488                 pte_free_kernel(&init_mm, new);
489         return 0;
490 }
491
492 static inline void init_rss_vec(int *rss)
493 {
494         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
495 }
496
497 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
498 {
499         int i;
500
501         if (current->mm == mm)
502                 sync_mm_rss(mm);
503         for (i = 0; i < NR_MM_COUNTERS; i++)
504                 if (rss[i])
505                         add_mm_counter(mm, i, rss[i]);
506 }
507
508 /*
509  * This function is called to print an error when a bad pte
510  * is found. For example, we might have a PFN-mapped pte in
511  * a region that doesn't allow it.
512  *
513  * The calling function must still handle the error.
514  */
515 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
516                           pte_t pte, struct page *page)
517 {
518         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
519         p4d_t *p4d = p4d_offset(pgd, addr);
520         pud_t *pud = pud_offset(p4d, addr);
521         pmd_t *pmd = pmd_offset(pud, addr);
522         struct address_space *mapping;
523         pgoff_t index;
524         static unsigned long resume;
525         static unsigned long nr_shown;
526         static unsigned long nr_unshown;
527
528         /*
529          * Allow a burst of 60 reports, then keep quiet for that minute;
530          * or allow a steady drip of one report per second.
531          */
532         if (nr_shown == 60) {
533                 if (time_before(jiffies, resume)) {
534                         nr_unshown++;
535                         return;
536                 }
537                 if (nr_unshown) {
538                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
539                                  nr_unshown);
540                         nr_unshown = 0;
541                 }
542                 nr_shown = 0;
543         }
544         if (nr_shown++ == 0)
545                 resume = jiffies + 60 * HZ;
546
547         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
548         index = linear_page_index(vma, addr);
549
550         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
551                  current->comm,
552                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
553         if (page)
554                 dump_page(page, "bad pte");
555         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
556                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
557         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
558                  vma->vm_file,
559                  vma->vm_ops ? vma->vm_ops->fault : NULL,
560                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
561                  mapping ? mapping->a_ops->readpage : NULL);
562         dump_stack();
563         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
564 }
565
566 /*
567  * vm_normal_page -- This function gets the "struct page" associated with a pte.
568  *
569  * "Special" mappings do not wish to be associated with a "struct page" (either
570  * it doesn't exist, or it exists but they don't want to touch it). In this
571  * case, NULL is returned here. "Normal" mappings do have a struct page.
572  *
573  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
574  * pte bit, in which case this function is trivial. Secondly, an architecture
575  * may not have a spare pte bit, which requires a more complicated scheme,
576  * described below.
577  *
578  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
579  * special mapping (even if there are underlying and valid "struct pages").
580  * COWed pages of a VM_PFNMAP are always normal.
581  *
582  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
583  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
584  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
585  * mapping will always honor the rule
586  *
587  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
588  *
589  * And for normal mappings this is false.
590  *
591  * This restricts such mappings to be a linear translation from virtual address
592  * to pfn. To get around this restriction, we allow arbitrary mappings so long
593  * as the vma is not a COW mapping; in that case, we know that all ptes are
594  * special (because none can have been COWed).
595  *
596  *
597  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
598  *
599  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
600  * page" backing, however the difference is that _all_ pages with a struct
601  * page (that is, those where pfn_valid is true) are refcounted and considered
602  * normal pages by the VM. The disadvantage is that pages are refcounted
603  * (which can be slower and simply not an option for some PFNMAP users). The
604  * advantage is that we don't have to follow the strict linearity rule of
605  * PFNMAP mappings in order to support COWable mappings.
606  *
607  */
608 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
609                             pte_t pte)
610 {
611         unsigned long pfn = pte_pfn(pte);
612
613         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
614                 if (likely(!pte_special(pte)))
615                         goto check_pfn;
616                 if (vma->vm_ops && vma->vm_ops->find_special_page)
617                         return vma->vm_ops->find_special_page(vma, addr);
618                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
619                         return NULL;
620                 if (is_zero_pfn(pfn))
621                         return NULL;
622                 if (pte_devmap(pte))
623                         return NULL;
624
625                 print_bad_pte(vma, addr, pte, NULL);
626                 return NULL;
627         }
628
629         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
630
631         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
632                 if (vma->vm_flags & VM_MIXEDMAP) {
633                         if (!pfn_valid(pfn))
634                                 return NULL;
635                         goto out;
636                 } else {
637                         unsigned long off;
638                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
639                         if (pfn == vma->vm_pgoff + off)
640                                 return NULL;
641                         if (!is_cow_mapping(vma->vm_flags))
642                                 return NULL;
643                 }
644         }
645
646         if (is_zero_pfn(pfn))
647                 return NULL;
648
649 check_pfn:
650         if (unlikely(pfn > highest_memmap_pfn)) {
651                 print_bad_pte(vma, addr, pte, NULL);
652                 return NULL;
653         }
654
655         /*
656          * NOTE! We still have PageReserved() pages in the page tables.
657          * eg. VDSO mappings can cause them to exist.
658          */
659 out:
660         return pfn_to_page(pfn);
661 }
662
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
665                                 pmd_t pmd)
666 {
667         unsigned long pfn = pmd_pfn(pmd);
668
669         /*
670          * There is no pmd_special() but there may be special pmds, e.g.
671          * in a direct-access (dax) mapping, so let's just replicate the
672          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
673          */
674         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
675                 if (vma->vm_flags & VM_MIXEDMAP) {
676                         if (!pfn_valid(pfn))
677                                 return NULL;
678                         goto out;
679                 } else {
680                         unsigned long off;
681                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
682                         if (pfn == vma->vm_pgoff + off)
683                                 return NULL;
684                         if (!is_cow_mapping(vma->vm_flags))
685                                 return NULL;
686                 }
687         }
688
689         if (pmd_devmap(pmd))
690                 return NULL;
691         if (is_huge_zero_pmd(pmd))
692                 return NULL;
693         if (unlikely(pfn > highest_memmap_pfn))
694                 return NULL;
695
696         /*
697          * NOTE! We still have PageReserved() pages in the page tables.
698          * eg. VDSO mappings can cause them to exist.
699          */
700 out:
701         return pfn_to_page(pfn);
702 }
703 #endif
704
705 static void restore_exclusive_pte(struct vm_area_struct *vma,
706                                   struct page *page, unsigned long address,
707                                   pte_t *ptep)
708 {
709         pte_t pte;
710         swp_entry_t entry;
711
712         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
713         if (pte_swp_soft_dirty(*ptep))
714                 pte = pte_mksoft_dirty(pte);
715
716         entry = pte_to_swp_entry(*ptep);
717         if (pte_swp_uffd_wp(*ptep))
718                 pte = pte_mkuffd_wp(pte);
719         else if (is_writable_device_exclusive_entry(entry))
720                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
721
722         set_pte_at(vma->vm_mm, address, ptep, pte);
723
724         /*
725          * No need to take a page reference as one was already
726          * created when the swap entry was made.
727          */
728         if (PageAnon(page))
729                 page_add_anon_rmap(page, vma, address, false);
730         else
731                 /*
732                  * Currently device exclusive access only supports anonymous
733                  * memory so the entry shouldn't point to a filebacked page.
734                  */
735                 WARN_ON_ONCE(!PageAnon(page));
736
737         if (vma->vm_flags & VM_LOCKED)
738                 mlock_vma_page(page);
739
740         /*
741          * No need to invalidate - it was non-present before. However
742          * secondary CPUs may have mappings that need invalidating.
743          */
744         update_mmu_cache(vma, address, ptep);
745 }
746
747 /*
748  * Tries to restore an exclusive pte if the page lock can be acquired without
749  * sleeping.
750  */
751 static int
752 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
753                         unsigned long addr)
754 {
755         swp_entry_t entry = pte_to_swp_entry(*src_pte);
756         struct page *page = pfn_swap_entry_to_page(entry);
757
758         if (trylock_page(page)) {
759                 restore_exclusive_pte(vma, page, addr, src_pte);
760                 unlock_page(page);
761                 return 0;
762         }
763
764         return -EBUSY;
765 }
766
767 /*
768  * copy one vm_area from one task to the other. Assumes the page tables
769  * already present in the new task to be cleared in the whole range
770  * covered by this vma.
771  */
772
773 static unsigned long
774 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
775                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
776                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
777 {
778         unsigned long vm_flags = dst_vma->vm_flags;
779         pte_t pte = *src_pte;
780         struct page *page;
781         swp_entry_t entry = pte_to_swp_entry(pte);
782
783         if (likely(!non_swap_entry(entry))) {
784                 if (swap_duplicate(entry) < 0)
785                         return -EIO;
786
787                 /* make sure dst_mm is on swapoff's mmlist. */
788                 if (unlikely(list_empty(&dst_mm->mmlist))) {
789                         spin_lock(&mmlist_lock);
790                         if (list_empty(&dst_mm->mmlist))
791                                 list_add(&dst_mm->mmlist,
792                                                 &src_mm->mmlist);
793                         spin_unlock(&mmlist_lock);
794                 }
795                 rss[MM_SWAPENTS]++;
796         } else if (is_migration_entry(entry)) {
797                 page = pfn_swap_entry_to_page(entry);
798
799                 rss[mm_counter(page)]++;
800
801                 if (is_writable_migration_entry(entry) &&
802                                 is_cow_mapping(vm_flags)) {
803                         /*
804                          * COW mappings require pages in both
805                          * parent and child to be set to read.
806                          */
807                         entry = make_readable_migration_entry(
808                                                         swp_offset(entry));
809                         pte = swp_entry_to_pte(entry);
810                         if (pte_swp_soft_dirty(*src_pte))
811                                 pte = pte_swp_mksoft_dirty(pte);
812                         if (pte_swp_uffd_wp(*src_pte))
813                                 pte = pte_swp_mkuffd_wp(pte);
814                         set_pte_at(src_mm, addr, src_pte, pte);
815                 }
816         } else if (is_device_private_entry(entry)) {
817                 page = pfn_swap_entry_to_page(entry);
818
819                 /*
820                  * Update rss count even for unaddressable pages, as
821                  * they should treated just like normal pages in this
822                  * respect.
823                  *
824                  * We will likely want to have some new rss counters
825                  * for unaddressable pages, at some point. But for now
826                  * keep things as they are.
827                  */
828                 get_page(page);
829                 rss[mm_counter(page)]++;
830                 page_dup_rmap(page, false);
831
832                 /*
833                  * We do not preserve soft-dirty information, because so
834                  * far, checkpoint/restore is the only feature that
835                  * requires that. And checkpoint/restore does not work
836                  * when a device driver is involved (you cannot easily
837                  * save and restore device driver state).
838                  */
839                 if (is_writable_device_private_entry(entry) &&
840                     is_cow_mapping(vm_flags)) {
841                         entry = make_readable_device_private_entry(
842                                                         swp_offset(entry));
843                         pte = swp_entry_to_pte(entry);
844                         if (pte_swp_uffd_wp(*src_pte))
845                                 pte = pte_swp_mkuffd_wp(pte);
846                         set_pte_at(src_mm, addr, src_pte, pte);
847                 }
848         } else if (is_device_exclusive_entry(entry)) {
849                 /*
850                  * Make device exclusive entries present by restoring the
851                  * original entry then copying as for a present pte. Device
852                  * exclusive entries currently only support private writable
853                  * (ie. COW) mappings.
854                  */
855                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857                         return -EBUSY;
858                 return -ENOENT;
859         }
860         if (!userfaultfd_wp(dst_vma))
861                 pte = pte_swp_clear_uffd_wp(pte);
862         set_pte_at(dst_mm, addr, dst_pte, pte);
863         return 0;
864 }
865
866 /*
867  * Copy a present and normal page if necessary.
868  *
869  * NOTE! The usual case is that this doesn't need to do
870  * anything, and can just return a positive value. That
871  * will let the caller know that it can just increase
872  * the page refcount and re-use the pte the traditional
873  * way.
874  *
875  * But _if_ we need to copy it because it needs to be
876  * pinned in the parent (and the child should get its own
877  * copy rather than just a reference to the same page),
878  * we'll do that here and return zero to let the caller
879  * know we're done.
880  *
881  * And if we need a pre-allocated page but don't yet have
882  * one, return a negative error to let the preallocation
883  * code know so that it can do so outside the page table
884  * lock.
885  */
886 static inline int
887 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
888                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
889                   struct page **prealloc, pte_t pte, struct page *page)
890 {
891         struct page *new_page;
892
893         /*
894          * What we want to do is to check whether this page may
895          * have been pinned by the parent process.  If so,
896          * instead of wrprotect the pte on both sides, we copy
897          * the page immediately so that we'll always guarantee
898          * the pinned page won't be randomly replaced in the
899          * future.
900          *
901          * The page pinning checks are just "has this mm ever
902          * seen pinning", along with the (inexact) check of
903          * the page count. That might give false positives for
904          * for pinning, but it will work correctly.
905          */
906         if (likely(!page_needs_cow_for_dma(src_vma, page)))
907                 return 1;
908
909         new_page = *prealloc;
910         if (!new_page)
911                 return -EAGAIN;
912
913         /*
914          * We have a prealloc page, all good!  Take it
915          * over and copy the page & arm it.
916          */
917         *prealloc = NULL;
918         copy_user_highpage(new_page, page, addr, src_vma);
919         __SetPageUptodate(new_page);
920         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
921         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
922         rss[mm_counter(new_page)]++;
923
924         /* All done, just insert the new page copy in the child */
925         pte = mk_pte(new_page, dst_vma->vm_page_prot);
926         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
927         if (userfaultfd_pte_wp(dst_vma, *src_pte))
928                 /* Uffd-wp needs to be delivered to dest pte as well */
929                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
930         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
931         return 0;
932 }
933
934 /*
935  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
936  * is required to copy this pte.
937  */
938 static inline int
939 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
940                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
941                  struct page **prealloc)
942 {
943         struct mm_struct *src_mm = src_vma->vm_mm;
944         unsigned long vm_flags = src_vma->vm_flags;
945         pte_t pte = *src_pte;
946         struct page *page;
947
948         page = vm_normal_page(src_vma, addr, pte);
949         if (page) {
950                 int retval;
951
952                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
953                                            addr, rss, prealloc, pte, page);
954                 if (retval <= 0)
955                         return retval;
956
957                 get_page(page);
958                 page_dup_rmap(page, false);
959                 rss[mm_counter(page)]++;
960         }
961
962         /*
963          * If it's a COW mapping, write protect it both
964          * in the parent and the child
965          */
966         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
967                 ptep_set_wrprotect(src_mm, addr, src_pte);
968                 pte = pte_wrprotect(pte);
969         }
970
971         /*
972          * If it's a shared mapping, mark it clean in
973          * the child
974          */
975         if (vm_flags & VM_SHARED)
976                 pte = pte_mkclean(pte);
977         pte = pte_mkold(pte);
978
979         if (!userfaultfd_wp(dst_vma))
980                 pte = pte_clear_uffd_wp(pte);
981
982         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
983         return 0;
984 }
985
986 static inline struct page *
987 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
988                    unsigned long addr)
989 {
990         struct page *new_page;
991
992         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
993         if (!new_page)
994                 return NULL;
995
996         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
997                 put_page(new_page);
998                 return NULL;
999         }
1000         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1001
1002         return new_page;
1003 }
1004
1005 static int
1006 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1007                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1008                unsigned long end)
1009 {
1010         struct mm_struct *dst_mm = dst_vma->vm_mm;
1011         struct mm_struct *src_mm = src_vma->vm_mm;
1012         pte_t *orig_src_pte, *orig_dst_pte;
1013         pte_t *src_pte, *dst_pte;
1014         spinlock_t *src_ptl, *dst_ptl;
1015         int progress, ret = 0;
1016         int rss[NR_MM_COUNTERS];
1017         swp_entry_t entry = (swp_entry_t){0};
1018         struct page *prealloc = NULL;
1019
1020 again:
1021         progress = 0;
1022         init_rss_vec(rss);
1023
1024         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1025         if (!dst_pte) {
1026                 ret = -ENOMEM;
1027                 goto out;
1028         }
1029         src_pte = pte_offset_map(src_pmd, addr);
1030         src_ptl = pte_lockptr(src_mm, src_pmd);
1031         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1032         orig_src_pte = src_pte;
1033         orig_dst_pte = dst_pte;
1034         arch_enter_lazy_mmu_mode();
1035
1036         do {
1037                 /*
1038                  * We are holding two locks at this point - either of them
1039                  * could generate latencies in another task on another CPU.
1040                  */
1041                 if (progress >= 32) {
1042                         progress = 0;
1043                         if (need_resched() ||
1044                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1045                                 break;
1046                 }
1047                 if (pte_none(*src_pte)) {
1048                         progress++;
1049                         continue;
1050                 }
1051                 if (unlikely(!pte_present(*src_pte))) {
1052                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1053                                                   dst_pte, src_pte,
1054                                                   dst_vma, src_vma,
1055                                                   addr, rss);
1056                         if (ret == -EIO) {
1057                                 entry = pte_to_swp_entry(*src_pte);
1058                                 break;
1059                         } else if (ret == -EBUSY) {
1060                                 break;
1061                         } else if (!ret) {
1062                                 progress += 8;
1063                                 continue;
1064                         }
1065
1066                         /*
1067                          * Device exclusive entry restored, continue by copying
1068                          * the now present pte.
1069                          */
1070                         WARN_ON_ONCE(ret != -ENOENT);
1071                 }
1072                 /* copy_present_pte() will clear `*prealloc' if consumed */
1073                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1074                                        addr, rss, &prealloc);
1075                 /*
1076                  * If we need a pre-allocated page for this pte, drop the
1077                  * locks, allocate, and try again.
1078                  */
1079                 if (unlikely(ret == -EAGAIN))
1080                         break;
1081                 if (unlikely(prealloc)) {
1082                         /*
1083                          * pre-alloc page cannot be reused by next time so as
1084                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1085                          * will allocate page according to address).  This
1086                          * could only happen if one pinned pte changed.
1087                          */
1088                         put_page(prealloc);
1089                         prealloc = NULL;
1090                 }
1091                 progress += 8;
1092         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1093
1094         arch_leave_lazy_mmu_mode();
1095         spin_unlock(src_ptl);
1096         pte_unmap(orig_src_pte);
1097         add_mm_rss_vec(dst_mm, rss);
1098         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1099         cond_resched();
1100
1101         if (ret == -EIO) {
1102                 VM_WARN_ON_ONCE(!entry.val);
1103                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1104                         ret = -ENOMEM;
1105                         goto out;
1106                 }
1107                 entry.val = 0;
1108         } else if (ret == -EBUSY) {
1109                 goto out;
1110         } else if (ret ==  -EAGAIN) {
1111                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1112                 if (!prealloc)
1113                         return -ENOMEM;
1114         } else if (ret) {
1115                 VM_WARN_ON_ONCE(1);
1116         }
1117
1118         /* We've captured and resolved the error. Reset, try again. */
1119         ret = 0;
1120
1121         if (addr != end)
1122                 goto again;
1123 out:
1124         if (unlikely(prealloc))
1125                 put_page(prealloc);
1126         return ret;
1127 }
1128
1129 static inline int
1130 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1131                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1132                unsigned long end)
1133 {
1134         struct mm_struct *dst_mm = dst_vma->vm_mm;
1135         struct mm_struct *src_mm = src_vma->vm_mm;
1136         pmd_t *src_pmd, *dst_pmd;
1137         unsigned long next;
1138
1139         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1140         if (!dst_pmd)
1141                 return -ENOMEM;
1142         src_pmd = pmd_offset(src_pud, addr);
1143         do {
1144                 next = pmd_addr_end(addr, end);
1145                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1146                         || pmd_devmap(*src_pmd)) {
1147                         int err;
1148                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1149                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1150                                             addr, dst_vma, src_vma);
1151                         if (err == -ENOMEM)
1152                                 return -ENOMEM;
1153                         if (!err)
1154                                 continue;
1155                         /* fall through */
1156                 }
1157                 if (pmd_none_or_clear_bad(src_pmd))
1158                         continue;
1159                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1160                                    addr, next))
1161                         return -ENOMEM;
1162         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1163         return 0;
1164 }
1165
1166 static inline int
1167 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1168                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1169                unsigned long end)
1170 {
1171         struct mm_struct *dst_mm = dst_vma->vm_mm;
1172         struct mm_struct *src_mm = src_vma->vm_mm;
1173         pud_t *src_pud, *dst_pud;
1174         unsigned long next;
1175
1176         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1177         if (!dst_pud)
1178                 return -ENOMEM;
1179         src_pud = pud_offset(src_p4d, addr);
1180         do {
1181                 next = pud_addr_end(addr, end);
1182                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1183                         int err;
1184
1185                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1186                         err = copy_huge_pud(dst_mm, src_mm,
1187                                             dst_pud, src_pud, addr, src_vma);
1188                         if (err == -ENOMEM)
1189                                 return -ENOMEM;
1190                         if (!err)
1191                                 continue;
1192                         /* fall through */
1193                 }
1194                 if (pud_none_or_clear_bad(src_pud))
1195                         continue;
1196                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1197                                    addr, next))
1198                         return -ENOMEM;
1199         } while (dst_pud++, src_pud++, addr = next, addr != end);
1200         return 0;
1201 }
1202
1203 static inline int
1204 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1205                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1206                unsigned long end)
1207 {
1208         struct mm_struct *dst_mm = dst_vma->vm_mm;
1209         p4d_t *src_p4d, *dst_p4d;
1210         unsigned long next;
1211
1212         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1213         if (!dst_p4d)
1214                 return -ENOMEM;
1215         src_p4d = p4d_offset(src_pgd, addr);
1216         do {
1217                 next = p4d_addr_end(addr, end);
1218                 if (p4d_none_or_clear_bad(src_p4d))
1219                         continue;
1220                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1221                                    addr, next))
1222                         return -ENOMEM;
1223         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1224         return 0;
1225 }
1226
1227 int
1228 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1229 {
1230         pgd_t *src_pgd, *dst_pgd;
1231         unsigned long next;
1232         unsigned long addr = src_vma->vm_start;
1233         unsigned long end = src_vma->vm_end;
1234         struct mm_struct *dst_mm = dst_vma->vm_mm;
1235         struct mm_struct *src_mm = src_vma->vm_mm;
1236         struct mmu_notifier_range range;
1237         bool is_cow;
1238         int ret;
1239
1240         /*
1241          * Don't copy ptes where a page fault will fill them correctly.
1242          * Fork becomes much lighter when there are big shared or private
1243          * readonly mappings. The tradeoff is that copy_page_range is more
1244          * efficient than faulting.
1245          */
1246         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1247             !src_vma->anon_vma)
1248                 return 0;
1249
1250         if (is_vm_hugetlb_page(src_vma))
1251                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1252
1253         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1254                 /*
1255                  * We do not free on error cases below as remove_vma
1256                  * gets called on error from higher level routine
1257                  */
1258                 ret = track_pfn_copy(src_vma);
1259                 if (ret)
1260                         return ret;
1261         }
1262
1263         /*
1264          * We need to invalidate the secondary MMU mappings only when
1265          * there could be a permission downgrade on the ptes of the
1266          * parent mm. And a permission downgrade will only happen if
1267          * is_cow_mapping() returns true.
1268          */
1269         is_cow = is_cow_mapping(src_vma->vm_flags);
1270
1271         if (is_cow) {
1272                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1273                                         0, src_vma, src_mm, addr, end);
1274                 mmu_notifier_invalidate_range_start(&range);
1275                 /*
1276                  * Disabling preemption is not needed for the write side, as
1277                  * the read side doesn't spin, but goes to the mmap_lock.
1278                  *
1279                  * Use the raw variant of the seqcount_t write API to avoid
1280                  * lockdep complaining about preemptibility.
1281                  */
1282                 mmap_assert_write_locked(src_mm);
1283                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1284         }
1285
1286         ret = 0;
1287         dst_pgd = pgd_offset(dst_mm, addr);
1288         src_pgd = pgd_offset(src_mm, addr);
1289         do {
1290                 next = pgd_addr_end(addr, end);
1291                 if (pgd_none_or_clear_bad(src_pgd))
1292                         continue;
1293                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1294                                             addr, next))) {
1295                         ret = -ENOMEM;
1296                         break;
1297                 }
1298         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1299
1300         if (is_cow) {
1301                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1302                 mmu_notifier_invalidate_range_end(&range);
1303         }
1304         return ret;
1305 }
1306
1307 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1308                                 struct vm_area_struct *vma, pmd_t *pmd,
1309                                 unsigned long addr, unsigned long end,
1310                                 struct zap_details *details)
1311 {
1312         struct mm_struct *mm = tlb->mm;
1313         int force_flush = 0;
1314         int rss[NR_MM_COUNTERS];
1315         spinlock_t *ptl;
1316         pte_t *start_pte;
1317         pte_t *pte;
1318         swp_entry_t entry;
1319
1320         tlb_change_page_size(tlb, PAGE_SIZE);
1321 again:
1322         init_rss_vec(rss);
1323         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1324         pte = start_pte;
1325         flush_tlb_batched_pending(mm);
1326         arch_enter_lazy_mmu_mode();
1327         do {
1328                 pte_t ptent = *pte;
1329                 if (pte_none(ptent))
1330                         continue;
1331
1332                 if (need_resched())
1333                         break;
1334
1335                 if (pte_present(ptent)) {
1336                         struct page *page;
1337
1338                         page = vm_normal_page(vma, addr, ptent);
1339                         if (unlikely(zap_skip_check_mapping(details, page)))
1340                                 continue;
1341                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1342                                                         tlb->fullmm);
1343                         tlb_remove_tlb_entry(tlb, pte, addr);
1344                         if (unlikely(!page))
1345                                 continue;
1346
1347                         if (!PageAnon(page)) {
1348                                 if (pte_dirty(ptent)) {
1349                                         force_flush = 1;
1350                                         set_page_dirty(page);
1351                                 }
1352                                 if (pte_young(ptent) &&
1353                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1354                                         mark_page_accessed(page);
1355                         }
1356                         rss[mm_counter(page)]--;
1357                         page_remove_rmap(page, false);
1358                         if (unlikely(page_mapcount(page) < 0))
1359                                 print_bad_pte(vma, addr, ptent, page);
1360                         if (unlikely(__tlb_remove_page(tlb, page))) {
1361                                 force_flush = 1;
1362                                 addr += PAGE_SIZE;
1363                                 break;
1364                         }
1365                         continue;
1366                 }
1367
1368                 entry = pte_to_swp_entry(ptent);
1369                 if (is_device_private_entry(entry) ||
1370                     is_device_exclusive_entry(entry)) {
1371                         struct page *page = pfn_swap_entry_to_page(entry);
1372
1373                         if (unlikely(zap_skip_check_mapping(details, page)))
1374                                 continue;
1375                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1376                         rss[mm_counter(page)]--;
1377
1378                         if (is_device_private_entry(entry))
1379                                 page_remove_rmap(page, false);
1380
1381                         put_page(page);
1382                         continue;
1383                 }
1384
1385                 /* If details->check_mapping, we leave swap entries. */
1386                 if (unlikely(details))
1387                         continue;
1388
1389                 if (!non_swap_entry(entry))
1390                         rss[MM_SWAPENTS]--;
1391                 else if (is_migration_entry(entry)) {
1392                         struct page *page;
1393
1394                         page = pfn_swap_entry_to_page(entry);
1395                         rss[mm_counter(page)]--;
1396                 }
1397                 if (unlikely(!free_swap_and_cache(entry)))
1398                         print_bad_pte(vma, addr, ptent, NULL);
1399                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1400         } while (pte++, addr += PAGE_SIZE, addr != end);
1401
1402         add_mm_rss_vec(mm, rss);
1403         arch_leave_lazy_mmu_mode();
1404
1405         /* Do the actual TLB flush before dropping ptl */
1406         if (force_flush)
1407                 tlb_flush_mmu_tlbonly(tlb);
1408         pte_unmap_unlock(start_pte, ptl);
1409
1410         /*
1411          * If we forced a TLB flush (either due to running out of
1412          * batch buffers or because we needed to flush dirty TLB
1413          * entries before releasing the ptl), free the batched
1414          * memory too. Restart if we didn't do everything.
1415          */
1416         if (force_flush) {
1417                 force_flush = 0;
1418                 tlb_flush_mmu(tlb);
1419         }
1420
1421         if (addr != end) {
1422                 cond_resched();
1423                 goto again;
1424         }
1425
1426         return addr;
1427 }
1428
1429 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1430                                 struct vm_area_struct *vma, pud_t *pud,
1431                                 unsigned long addr, unsigned long end,
1432                                 struct zap_details *details)
1433 {
1434         pmd_t *pmd;
1435         unsigned long next;
1436
1437         pmd = pmd_offset(pud, addr);
1438         do {
1439                 next = pmd_addr_end(addr, end);
1440                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1441                         if (next - addr != HPAGE_PMD_SIZE)
1442                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1443                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1444                                 goto next;
1445                         /* fall through */
1446                 } else if (details && details->single_page &&
1447                            PageTransCompound(details->single_page) &&
1448                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1449                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1450                         /*
1451                          * Take and drop THP pmd lock so that we cannot return
1452                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1453                          * but not yet decremented compound_mapcount().
1454                          */
1455                         spin_unlock(ptl);
1456                 }
1457
1458                 /*
1459                  * Here there can be other concurrent MADV_DONTNEED or
1460                  * trans huge page faults running, and if the pmd is
1461                  * none or trans huge it can change under us. This is
1462                  * because MADV_DONTNEED holds the mmap_lock in read
1463                  * mode.
1464                  */
1465                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1466                         goto next;
1467                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1468 next:
1469                 cond_resched();
1470         } while (pmd++, addr = next, addr != end);
1471
1472         return addr;
1473 }
1474
1475 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1476                                 struct vm_area_struct *vma, p4d_t *p4d,
1477                                 unsigned long addr, unsigned long end,
1478                                 struct zap_details *details)
1479 {
1480         pud_t *pud;
1481         unsigned long next;
1482
1483         pud = pud_offset(p4d, addr);
1484         do {
1485                 next = pud_addr_end(addr, end);
1486                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1487                         if (next - addr != HPAGE_PUD_SIZE) {
1488                                 mmap_assert_locked(tlb->mm);
1489                                 split_huge_pud(vma, pud, addr);
1490                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1491                                 goto next;
1492                         /* fall through */
1493                 }
1494                 if (pud_none_or_clear_bad(pud))
1495                         continue;
1496                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1497 next:
1498                 cond_resched();
1499         } while (pud++, addr = next, addr != end);
1500
1501         return addr;
1502 }
1503
1504 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1505                                 struct vm_area_struct *vma, pgd_t *pgd,
1506                                 unsigned long addr, unsigned long end,
1507                                 struct zap_details *details)
1508 {
1509         p4d_t *p4d;
1510         unsigned long next;
1511
1512         p4d = p4d_offset(pgd, addr);
1513         do {
1514                 next = p4d_addr_end(addr, end);
1515                 if (p4d_none_or_clear_bad(p4d))
1516                         continue;
1517                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1518         } while (p4d++, addr = next, addr != end);
1519
1520         return addr;
1521 }
1522
1523 void unmap_page_range(struct mmu_gather *tlb,
1524                              struct vm_area_struct *vma,
1525                              unsigned long addr, unsigned long end,
1526                              struct zap_details *details)
1527 {
1528         pgd_t *pgd;
1529         unsigned long next;
1530
1531         BUG_ON(addr >= end);
1532         tlb_start_vma(tlb, vma);
1533         pgd = pgd_offset(vma->vm_mm, addr);
1534         do {
1535                 next = pgd_addr_end(addr, end);
1536                 if (pgd_none_or_clear_bad(pgd))
1537                         continue;
1538                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1539         } while (pgd++, addr = next, addr != end);
1540         tlb_end_vma(tlb, vma);
1541 }
1542
1543
1544 static void unmap_single_vma(struct mmu_gather *tlb,
1545                 struct vm_area_struct *vma, unsigned long start_addr,
1546                 unsigned long end_addr,
1547                 struct zap_details *details)
1548 {
1549         unsigned long start = max(vma->vm_start, start_addr);
1550         unsigned long end;
1551
1552         if (start >= vma->vm_end)
1553                 return;
1554         end = min(vma->vm_end, end_addr);
1555         if (end <= vma->vm_start)
1556                 return;
1557
1558         if (vma->vm_file)
1559                 uprobe_munmap(vma, start, end);
1560
1561         if (unlikely(vma->vm_flags & VM_PFNMAP))
1562                 untrack_pfn(vma, 0, 0);
1563
1564         if (start != end) {
1565                 if (unlikely(is_vm_hugetlb_page(vma))) {
1566                         /*
1567                          * It is undesirable to test vma->vm_file as it
1568                          * should be non-null for valid hugetlb area.
1569                          * However, vm_file will be NULL in the error
1570                          * cleanup path of mmap_region. When
1571                          * hugetlbfs ->mmap method fails,
1572                          * mmap_region() nullifies vma->vm_file
1573                          * before calling this function to clean up.
1574                          * Since no pte has actually been setup, it is
1575                          * safe to do nothing in this case.
1576                          */
1577                         if (vma->vm_file) {
1578                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1579                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1580                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1581                         }
1582                 } else
1583                         unmap_page_range(tlb, vma, start, end, details);
1584         }
1585 }
1586
1587 /**
1588  * unmap_vmas - unmap a range of memory covered by a list of vma's
1589  * @tlb: address of the caller's struct mmu_gather
1590  * @vma: the starting vma
1591  * @start_addr: virtual address at which to start unmapping
1592  * @end_addr: virtual address at which to end unmapping
1593  *
1594  * Unmap all pages in the vma list.
1595  *
1596  * Only addresses between `start' and `end' will be unmapped.
1597  *
1598  * The VMA list must be sorted in ascending virtual address order.
1599  *
1600  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1601  * range after unmap_vmas() returns.  So the only responsibility here is to
1602  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1603  * drops the lock and schedules.
1604  */
1605 void unmap_vmas(struct mmu_gather *tlb,
1606                 struct vm_area_struct *vma, unsigned long start_addr,
1607                 unsigned long end_addr)
1608 {
1609         struct mmu_notifier_range range;
1610
1611         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1612                                 start_addr, end_addr);
1613         mmu_notifier_invalidate_range_start(&range);
1614         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1615                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1616         mmu_notifier_invalidate_range_end(&range);
1617 }
1618
1619 /**
1620  * zap_page_range - remove user pages in a given range
1621  * @vma: vm_area_struct holding the applicable pages
1622  * @start: starting address of pages to zap
1623  * @size: number of bytes to zap
1624  *
1625  * Caller must protect the VMA list
1626  */
1627 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1628                 unsigned long size)
1629 {
1630         struct mmu_notifier_range range;
1631         struct mmu_gather tlb;
1632
1633         lru_add_drain();
1634         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1635                                 start, start + size);
1636         tlb_gather_mmu(&tlb, vma->vm_mm);
1637         update_hiwater_rss(vma->vm_mm);
1638         mmu_notifier_invalidate_range_start(&range);
1639         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1640                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1641         mmu_notifier_invalidate_range_end(&range);
1642         tlb_finish_mmu(&tlb);
1643 }
1644
1645 /**
1646  * zap_page_range_single - remove user pages in a given range
1647  * @vma: vm_area_struct holding the applicable pages
1648  * @address: starting address of pages to zap
1649  * @size: number of bytes to zap
1650  * @details: details of shared cache invalidation
1651  *
1652  * The range must fit into one VMA.
1653  */
1654 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1655                 unsigned long size, struct zap_details *details)
1656 {
1657         struct mmu_notifier_range range;
1658         struct mmu_gather tlb;
1659
1660         lru_add_drain();
1661         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1662                                 address, address + size);
1663         tlb_gather_mmu(&tlb, vma->vm_mm);
1664         update_hiwater_rss(vma->vm_mm);
1665         mmu_notifier_invalidate_range_start(&range);
1666         unmap_single_vma(&tlb, vma, address, range.end, details);
1667         mmu_notifier_invalidate_range_end(&range);
1668         tlb_finish_mmu(&tlb);
1669 }
1670
1671 /**
1672  * zap_vma_ptes - remove ptes mapping the vma
1673  * @vma: vm_area_struct holding ptes to be zapped
1674  * @address: starting address of pages to zap
1675  * @size: number of bytes to zap
1676  *
1677  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1678  *
1679  * The entire address range must be fully contained within the vma.
1680  *
1681  */
1682 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1683                 unsigned long size)
1684 {
1685         if (address < vma->vm_start || address + size > vma->vm_end ||
1686                         !(vma->vm_flags & VM_PFNMAP))
1687                 return;
1688
1689         zap_page_range_single(vma, address, size, NULL);
1690 }
1691 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1692
1693 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1694 {
1695         pgd_t *pgd;
1696         p4d_t *p4d;
1697         pud_t *pud;
1698         pmd_t *pmd;
1699
1700         pgd = pgd_offset(mm, addr);
1701         p4d = p4d_alloc(mm, pgd, addr);
1702         if (!p4d)
1703                 return NULL;
1704         pud = pud_alloc(mm, p4d, addr);
1705         if (!pud)
1706                 return NULL;
1707         pmd = pmd_alloc(mm, pud, addr);
1708         if (!pmd)
1709                 return NULL;
1710
1711         VM_BUG_ON(pmd_trans_huge(*pmd));
1712         return pmd;
1713 }
1714
1715 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1716                         spinlock_t **ptl)
1717 {
1718         pmd_t *pmd = walk_to_pmd(mm, addr);
1719
1720         if (!pmd)
1721                 return NULL;
1722         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1723 }
1724
1725 static int validate_page_before_insert(struct page *page)
1726 {
1727         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1728                 return -EINVAL;
1729         flush_dcache_page(page);
1730         return 0;
1731 }
1732
1733 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1734                         unsigned long addr, struct page *page, pgprot_t prot)
1735 {
1736         if (!pte_none(*pte))
1737                 return -EBUSY;
1738         /* Ok, finally just insert the thing.. */
1739         get_page(page);
1740         inc_mm_counter_fast(mm, mm_counter_file(page));
1741         page_add_file_rmap(page, false);
1742         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1743         return 0;
1744 }
1745
1746 /*
1747  * This is the old fallback for page remapping.
1748  *
1749  * For historical reasons, it only allows reserved pages. Only
1750  * old drivers should use this, and they needed to mark their
1751  * pages reserved for the old functions anyway.
1752  */
1753 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1754                         struct page *page, pgprot_t prot)
1755 {
1756         struct mm_struct *mm = vma->vm_mm;
1757         int retval;
1758         pte_t *pte;
1759         spinlock_t *ptl;
1760
1761         retval = validate_page_before_insert(page);
1762         if (retval)
1763                 goto out;
1764         retval = -ENOMEM;
1765         pte = get_locked_pte(mm, addr, &ptl);
1766         if (!pte)
1767                 goto out;
1768         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1769         pte_unmap_unlock(pte, ptl);
1770 out:
1771         return retval;
1772 }
1773
1774 #ifdef pte_index
1775 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1776                         unsigned long addr, struct page *page, pgprot_t prot)
1777 {
1778         int err;
1779
1780         if (!page_count(page))
1781                 return -EINVAL;
1782         err = validate_page_before_insert(page);
1783         if (err)
1784                 return err;
1785         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1786 }
1787
1788 /* insert_pages() amortizes the cost of spinlock operations
1789  * when inserting pages in a loop. Arch *must* define pte_index.
1790  */
1791 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1792                         struct page **pages, unsigned long *num, pgprot_t prot)
1793 {
1794         pmd_t *pmd = NULL;
1795         pte_t *start_pte, *pte;
1796         spinlock_t *pte_lock;
1797         struct mm_struct *const mm = vma->vm_mm;
1798         unsigned long curr_page_idx = 0;
1799         unsigned long remaining_pages_total = *num;
1800         unsigned long pages_to_write_in_pmd;
1801         int ret;
1802 more:
1803         ret = -EFAULT;
1804         pmd = walk_to_pmd(mm, addr);
1805         if (!pmd)
1806                 goto out;
1807
1808         pages_to_write_in_pmd = min_t(unsigned long,
1809                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1810
1811         /* Allocate the PTE if necessary; takes PMD lock once only. */
1812         ret = -ENOMEM;
1813         if (pte_alloc(mm, pmd))
1814                 goto out;
1815
1816         while (pages_to_write_in_pmd) {
1817                 int pte_idx = 0;
1818                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1819
1820                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1821                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1822                         int err = insert_page_in_batch_locked(mm, pte,
1823                                 addr, pages[curr_page_idx], prot);
1824                         if (unlikely(err)) {
1825                                 pte_unmap_unlock(start_pte, pte_lock);
1826                                 ret = err;
1827                                 remaining_pages_total -= pte_idx;
1828                                 goto out;
1829                         }
1830                         addr += PAGE_SIZE;
1831                         ++curr_page_idx;
1832                 }
1833                 pte_unmap_unlock(start_pte, pte_lock);
1834                 pages_to_write_in_pmd -= batch_size;
1835                 remaining_pages_total -= batch_size;
1836         }
1837         if (remaining_pages_total)
1838                 goto more;
1839         ret = 0;
1840 out:
1841         *num = remaining_pages_total;
1842         return ret;
1843 }
1844 #endif  /* ifdef pte_index */
1845
1846 /**
1847  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1848  * @vma: user vma to map to
1849  * @addr: target start user address of these pages
1850  * @pages: source kernel pages
1851  * @num: in: number of pages to map. out: number of pages that were *not*
1852  * mapped. (0 means all pages were successfully mapped).
1853  *
1854  * Preferred over vm_insert_page() when inserting multiple pages.
1855  *
1856  * In case of error, we may have mapped a subset of the provided
1857  * pages. It is the caller's responsibility to account for this case.
1858  *
1859  * The same restrictions apply as in vm_insert_page().
1860  */
1861 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1862                         struct page **pages, unsigned long *num)
1863 {
1864 #ifdef pte_index
1865         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1866
1867         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1868                 return -EFAULT;
1869         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1870                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1871                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1872                 vma->vm_flags |= VM_MIXEDMAP;
1873         }
1874         /* Defer page refcount checking till we're about to map that page. */
1875         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1876 #else
1877         unsigned long idx = 0, pgcount = *num;
1878         int err = -EINVAL;
1879
1880         for (; idx < pgcount; ++idx) {
1881                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1882                 if (err)
1883                         break;
1884         }
1885         *num = pgcount - idx;
1886         return err;
1887 #endif  /* ifdef pte_index */
1888 }
1889 EXPORT_SYMBOL(vm_insert_pages);
1890
1891 /**
1892  * vm_insert_page - insert single page into user vma
1893  * @vma: user vma to map to
1894  * @addr: target user address of this page
1895  * @page: source kernel page
1896  *
1897  * This allows drivers to insert individual pages they've allocated
1898  * into a user vma.
1899  *
1900  * The page has to be a nice clean _individual_ kernel allocation.
1901  * If you allocate a compound page, you need to have marked it as
1902  * such (__GFP_COMP), or manually just split the page up yourself
1903  * (see split_page()).
1904  *
1905  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1906  * took an arbitrary page protection parameter. This doesn't allow
1907  * that. Your vma protection will have to be set up correctly, which
1908  * means that if you want a shared writable mapping, you'd better
1909  * ask for a shared writable mapping!
1910  *
1911  * The page does not need to be reserved.
1912  *
1913  * Usually this function is called from f_op->mmap() handler
1914  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1915  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1916  * function from other places, for example from page-fault handler.
1917  *
1918  * Return: %0 on success, negative error code otherwise.
1919  */
1920 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1921                         struct page *page)
1922 {
1923         if (addr < vma->vm_start || addr >= vma->vm_end)
1924                 return -EFAULT;
1925         if (!page_count(page))
1926                 return -EINVAL;
1927         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1928                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1929                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1930                 vma->vm_flags |= VM_MIXEDMAP;
1931         }
1932         return insert_page(vma, addr, page, vma->vm_page_prot);
1933 }
1934 EXPORT_SYMBOL(vm_insert_page);
1935
1936 /*
1937  * __vm_map_pages - maps range of kernel pages into user vma
1938  * @vma: user vma to map to
1939  * @pages: pointer to array of source kernel pages
1940  * @num: number of pages in page array
1941  * @offset: user's requested vm_pgoff
1942  *
1943  * This allows drivers to map range of kernel pages into a user vma.
1944  *
1945  * Return: 0 on success and error code otherwise.
1946  */
1947 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1948                                 unsigned long num, unsigned long offset)
1949 {
1950         unsigned long count = vma_pages(vma);
1951         unsigned long uaddr = vma->vm_start;
1952         int ret, i;
1953
1954         /* Fail if the user requested offset is beyond the end of the object */
1955         if (offset >= num)
1956                 return -ENXIO;
1957
1958         /* Fail if the user requested size exceeds available object size */
1959         if (count > num - offset)
1960                 return -ENXIO;
1961
1962         for (i = 0; i < count; i++) {
1963                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1964                 if (ret < 0)
1965                         return ret;
1966                 uaddr += PAGE_SIZE;
1967         }
1968
1969         return 0;
1970 }
1971
1972 /**
1973  * vm_map_pages - maps range of kernel pages starts with non zero offset
1974  * @vma: user vma to map to
1975  * @pages: pointer to array of source kernel pages
1976  * @num: number of pages in page array
1977  *
1978  * Maps an object consisting of @num pages, catering for the user's
1979  * requested vm_pgoff
1980  *
1981  * If we fail to insert any page into the vma, the function will return
1982  * immediately leaving any previously inserted pages present.  Callers
1983  * from the mmap handler may immediately return the error as their caller
1984  * will destroy the vma, removing any successfully inserted pages. Other
1985  * callers should make their own arrangements for calling unmap_region().
1986  *
1987  * Context: Process context. Called by mmap handlers.
1988  * Return: 0 on success and error code otherwise.
1989  */
1990 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1991                                 unsigned long num)
1992 {
1993         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1994 }
1995 EXPORT_SYMBOL(vm_map_pages);
1996
1997 /**
1998  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1999  * @vma: user vma to map to
2000  * @pages: pointer to array of source kernel pages
2001  * @num: number of pages in page array
2002  *
2003  * Similar to vm_map_pages(), except that it explicitly sets the offset
2004  * to 0. This function is intended for the drivers that did not consider
2005  * vm_pgoff.
2006  *
2007  * Context: Process context. Called by mmap handlers.
2008  * Return: 0 on success and error code otherwise.
2009  */
2010 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2011                                 unsigned long num)
2012 {
2013         return __vm_map_pages(vma, pages, num, 0);
2014 }
2015 EXPORT_SYMBOL(vm_map_pages_zero);
2016
2017 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2018                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2019 {
2020         struct mm_struct *mm = vma->vm_mm;
2021         pte_t *pte, entry;
2022         spinlock_t *ptl;
2023
2024         pte = get_locked_pte(mm, addr, &ptl);
2025         if (!pte)
2026                 return VM_FAULT_OOM;
2027         if (!pte_none(*pte)) {
2028                 if (mkwrite) {
2029                         /*
2030                          * For read faults on private mappings the PFN passed
2031                          * in may not match the PFN we have mapped if the
2032                          * mapped PFN is a writeable COW page.  In the mkwrite
2033                          * case we are creating a writable PTE for a shared
2034                          * mapping and we expect the PFNs to match. If they
2035                          * don't match, we are likely racing with block
2036                          * allocation and mapping invalidation so just skip the
2037                          * update.
2038                          */
2039                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2040                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2041                                 goto out_unlock;
2042                         }
2043                         entry = pte_mkyoung(*pte);
2044                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2045                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2046                                 update_mmu_cache(vma, addr, pte);
2047                 }
2048                 goto out_unlock;
2049         }
2050
2051         /* Ok, finally just insert the thing.. */
2052         if (pfn_t_devmap(pfn))
2053                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2054         else
2055                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2056
2057         if (mkwrite) {
2058                 entry = pte_mkyoung(entry);
2059                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2060         }
2061
2062         set_pte_at(mm, addr, pte, entry);
2063         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2064
2065 out_unlock:
2066         pte_unmap_unlock(pte, ptl);
2067         return VM_FAULT_NOPAGE;
2068 }
2069
2070 /**
2071  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2072  * @vma: user vma to map to
2073  * @addr: target user address of this page
2074  * @pfn: source kernel pfn
2075  * @pgprot: pgprot flags for the inserted page
2076  *
2077  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2078  * to override pgprot on a per-page basis.
2079  *
2080  * This only makes sense for IO mappings, and it makes no sense for
2081  * COW mappings.  In general, using multiple vmas is preferable;
2082  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2083  * impractical.
2084  *
2085  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2086  * a value of @pgprot different from that of @vma->vm_page_prot.
2087  *
2088  * Context: Process context.  May allocate using %GFP_KERNEL.
2089  * Return: vm_fault_t value.
2090  */
2091 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2092                         unsigned long pfn, pgprot_t pgprot)
2093 {
2094         /*
2095          * Technically, architectures with pte_special can avoid all these
2096          * restrictions (same for remap_pfn_range).  However we would like
2097          * consistency in testing and feature parity among all, so we should
2098          * try to keep these invariants in place for everybody.
2099          */
2100         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2101         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2102                                                 (VM_PFNMAP|VM_MIXEDMAP));
2103         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2104         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2105
2106         if (addr < vma->vm_start || addr >= vma->vm_end)
2107                 return VM_FAULT_SIGBUS;
2108
2109         if (!pfn_modify_allowed(pfn, pgprot))
2110                 return VM_FAULT_SIGBUS;
2111
2112         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2113
2114         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2115                         false);
2116 }
2117 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2118
2119 /**
2120  * vmf_insert_pfn - insert single pfn into user vma
2121  * @vma: user vma to map to
2122  * @addr: target user address of this page
2123  * @pfn: source kernel pfn
2124  *
2125  * Similar to vm_insert_page, this allows drivers to insert individual pages
2126  * they've allocated into a user vma. Same comments apply.
2127  *
2128  * This function should only be called from a vm_ops->fault handler, and
2129  * in that case the handler should return the result of this function.
2130  *
2131  * vma cannot be a COW mapping.
2132  *
2133  * As this is called only for pages that do not currently exist, we
2134  * do not need to flush old virtual caches or the TLB.
2135  *
2136  * Context: Process context.  May allocate using %GFP_KERNEL.
2137  * Return: vm_fault_t value.
2138  */
2139 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2140                         unsigned long pfn)
2141 {
2142         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2143 }
2144 EXPORT_SYMBOL(vmf_insert_pfn);
2145
2146 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2147 {
2148         /* these checks mirror the abort conditions in vm_normal_page */
2149         if (vma->vm_flags & VM_MIXEDMAP)
2150                 return true;
2151         if (pfn_t_devmap(pfn))
2152                 return true;
2153         if (pfn_t_special(pfn))
2154                 return true;
2155         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2156                 return true;
2157         return false;
2158 }
2159
2160 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2161                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2162                 bool mkwrite)
2163 {
2164         int err;
2165
2166         BUG_ON(!vm_mixed_ok(vma, pfn));
2167
2168         if (addr < vma->vm_start || addr >= vma->vm_end)
2169                 return VM_FAULT_SIGBUS;
2170
2171         track_pfn_insert(vma, &pgprot, pfn);
2172
2173         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2174                 return VM_FAULT_SIGBUS;
2175
2176         /*
2177          * If we don't have pte special, then we have to use the pfn_valid()
2178          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2179          * refcount the page if pfn_valid is true (hence insert_page rather
2180          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2181          * without pte special, it would there be refcounted as a normal page.
2182          */
2183         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2184             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2185                 struct page *page;
2186
2187                 /*
2188                  * At this point we are committed to insert_page()
2189                  * regardless of whether the caller specified flags that
2190                  * result in pfn_t_has_page() == false.
2191                  */
2192                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2193                 err = insert_page(vma, addr, page, pgprot);
2194         } else {
2195                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2196         }
2197
2198         if (err == -ENOMEM)
2199                 return VM_FAULT_OOM;
2200         if (err < 0 && err != -EBUSY)
2201                 return VM_FAULT_SIGBUS;
2202
2203         return VM_FAULT_NOPAGE;
2204 }
2205
2206 /**
2207  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2208  * @vma: user vma to map to
2209  * @addr: target user address of this page
2210  * @pfn: source kernel pfn
2211  * @pgprot: pgprot flags for the inserted page
2212  *
2213  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2214  * to override pgprot on a per-page basis.
2215  *
2216  * Typically this function should be used by drivers to set caching- and
2217  * encryption bits different than those of @vma->vm_page_prot, because
2218  * the caching- or encryption mode may not be known at mmap() time.
2219  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2220  * to set caching and encryption bits for those vmas (except for COW pages).
2221  * This is ensured by core vm only modifying these page table entries using
2222  * functions that don't touch caching- or encryption bits, using pte_modify()
2223  * if needed. (See for example mprotect()).
2224  * Also when new page-table entries are created, this is only done using the
2225  * fault() callback, and never using the value of vma->vm_page_prot,
2226  * except for page-table entries that point to anonymous pages as the result
2227  * of COW.
2228  *
2229  * Context: Process context.  May allocate using %GFP_KERNEL.
2230  * Return: vm_fault_t value.
2231  */
2232 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2233                                  pfn_t pfn, pgprot_t pgprot)
2234 {
2235         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2236 }
2237 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2238
2239 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2240                 pfn_t pfn)
2241 {
2242         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2243 }
2244 EXPORT_SYMBOL(vmf_insert_mixed);
2245
2246 /*
2247  *  If the insertion of PTE failed because someone else already added a
2248  *  different entry in the mean time, we treat that as success as we assume
2249  *  the same entry was actually inserted.
2250  */
2251 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2252                 unsigned long addr, pfn_t pfn)
2253 {
2254         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2255 }
2256 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2257
2258 /*
2259  * maps a range of physical memory into the requested pages. the old
2260  * mappings are removed. any references to nonexistent pages results
2261  * in null mappings (currently treated as "copy-on-access")
2262  */
2263 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2264                         unsigned long addr, unsigned long end,
2265                         unsigned long pfn, pgprot_t prot)
2266 {
2267         pte_t *pte, *mapped_pte;
2268         spinlock_t *ptl;
2269         int err = 0;
2270
2271         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2272         if (!pte)
2273                 return -ENOMEM;
2274         arch_enter_lazy_mmu_mode();
2275         do {
2276                 BUG_ON(!pte_none(*pte));
2277                 if (!pfn_modify_allowed(pfn, prot)) {
2278                         err = -EACCES;
2279                         break;
2280                 }
2281                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2282                 pfn++;
2283         } while (pte++, addr += PAGE_SIZE, addr != end);
2284         arch_leave_lazy_mmu_mode();
2285         pte_unmap_unlock(mapped_pte, ptl);
2286         return err;
2287 }
2288
2289 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2290                         unsigned long addr, unsigned long end,
2291                         unsigned long pfn, pgprot_t prot)
2292 {
2293         pmd_t *pmd;
2294         unsigned long next;
2295         int err;
2296
2297         pfn -= addr >> PAGE_SHIFT;
2298         pmd = pmd_alloc(mm, pud, addr);
2299         if (!pmd)
2300                 return -ENOMEM;
2301         VM_BUG_ON(pmd_trans_huge(*pmd));
2302         do {
2303                 next = pmd_addr_end(addr, end);
2304                 err = remap_pte_range(mm, pmd, addr, next,
2305                                 pfn + (addr >> PAGE_SHIFT), prot);
2306                 if (err)
2307                         return err;
2308         } while (pmd++, addr = next, addr != end);
2309         return 0;
2310 }
2311
2312 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2313                         unsigned long addr, unsigned long end,
2314                         unsigned long pfn, pgprot_t prot)
2315 {
2316         pud_t *pud;
2317         unsigned long next;
2318         int err;
2319
2320         pfn -= addr >> PAGE_SHIFT;
2321         pud = pud_alloc(mm, p4d, addr);
2322         if (!pud)
2323                 return -ENOMEM;
2324         do {
2325                 next = pud_addr_end(addr, end);
2326                 err = remap_pmd_range(mm, pud, addr, next,
2327                                 pfn + (addr >> PAGE_SHIFT), prot);
2328                 if (err)
2329                         return err;
2330         } while (pud++, addr = next, addr != end);
2331         return 0;
2332 }
2333
2334 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2335                         unsigned long addr, unsigned long end,
2336                         unsigned long pfn, pgprot_t prot)
2337 {
2338         p4d_t *p4d;
2339         unsigned long next;
2340         int err;
2341
2342         pfn -= addr >> PAGE_SHIFT;
2343         p4d = p4d_alloc(mm, pgd, addr);
2344         if (!p4d)
2345                 return -ENOMEM;
2346         do {
2347                 next = p4d_addr_end(addr, end);
2348                 err = remap_pud_range(mm, p4d, addr, next,
2349                                 pfn + (addr >> PAGE_SHIFT), prot);
2350                 if (err)
2351                         return err;
2352         } while (p4d++, addr = next, addr != end);
2353         return 0;
2354 }
2355
2356 /*
2357  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2358  * must have pre-validated the caching bits of the pgprot_t.
2359  */
2360 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2361                 unsigned long pfn, unsigned long size, pgprot_t prot)
2362 {
2363         pgd_t *pgd;
2364         unsigned long next;
2365         unsigned long end = addr + PAGE_ALIGN(size);
2366         struct mm_struct *mm = vma->vm_mm;
2367         int err;
2368
2369         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2370                 return -EINVAL;
2371
2372         /*
2373          * Physically remapped pages are special. Tell the
2374          * rest of the world about it:
2375          *   VM_IO tells people not to look at these pages
2376          *      (accesses can have side effects).
2377          *   VM_PFNMAP tells the core MM that the base pages are just
2378          *      raw PFN mappings, and do not have a "struct page" associated
2379          *      with them.
2380          *   VM_DONTEXPAND
2381          *      Disable vma merging and expanding with mremap().
2382          *   VM_DONTDUMP
2383          *      Omit vma from core dump, even when VM_IO turned off.
2384          *
2385          * There's a horrible special case to handle copy-on-write
2386          * behaviour that some programs depend on. We mark the "original"
2387          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2388          * See vm_normal_page() for details.
2389          */
2390         if (is_cow_mapping(vma->vm_flags)) {
2391                 if (addr != vma->vm_start || end != vma->vm_end)
2392                         return -EINVAL;
2393                 vma->vm_pgoff = pfn;
2394         }
2395
2396         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2397
2398         BUG_ON(addr >= end);
2399         pfn -= addr >> PAGE_SHIFT;
2400         pgd = pgd_offset(mm, addr);
2401         flush_cache_range(vma, addr, end);
2402         do {
2403                 next = pgd_addr_end(addr, end);
2404                 err = remap_p4d_range(mm, pgd, addr, next,
2405                                 pfn + (addr >> PAGE_SHIFT), prot);
2406                 if (err)
2407                         return err;
2408         } while (pgd++, addr = next, addr != end);
2409
2410         return 0;
2411 }
2412
2413 /**
2414  * remap_pfn_range - remap kernel memory to userspace
2415  * @vma: user vma to map to
2416  * @addr: target page aligned user address to start at
2417  * @pfn: page frame number of kernel physical memory address
2418  * @size: size of mapping area
2419  * @prot: page protection flags for this mapping
2420  *
2421  * Note: this is only safe if the mm semaphore is held when called.
2422  *
2423  * Return: %0 on success, negative error code otherwise.
2424  */
2425 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2426                     unsigned long pfn, unsigned long size, pgprot_t prot)
2427 {
2428         int err;
2429
2430         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2431         if (err)
2432                 return -EINVAL;
2433
2434         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2435         if (err)
2436                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2437         return err;
2438 }
2439 EXPORT_SYMBOL(remap_pfn_range);
2440
2441 /**
2442  * vm_iomap_memory - remap memory to userspace
2443  * @vma: user vma to map to
2444  * @start: start of the physical memory to be mapped
2445  * @len: size of area
2446  *
2447  * This is a simplified io_remap_pfn_range() for common driver use. The
2448  * driver just needs to give us the physical memory range to be mapped,
2449  * we'll figure out the rest from the vma information.
2450  *
2451  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2452  * whatever write-combining details or similar.
2453  *
2454  * Return: %0 on success, negative error code otherwise.
2455  */
2456 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2457 {
2458         unsigned long vm_len, pfn, pages;
2459
2460         /* Check that the physical memory area passed in looks valid */
2461         if (start + len < start)
2462                 return -EINVAL;
2463         /*
2464          * You *really* shouldn't map things that aren't page-aligned,
2465          * but we've historically allowed it because IO memory might
2466          * just have smaller alignment.
2467          */
2468         len += start & ~PAGE_MASK;
2469         pfn = start >> PAGE_SHIFT;
2470         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2471         if (pfn + pages < pfn)
2472                 return -EINVAL;
2473
2474         /* We start the mapping 'vm_pgoff' pages into the area */
2475         if (vma->vm_pgoff > pages)
2476                 return -EINVAL;
2477         pfn += vma->vm_pgoff;
2478         pages -= vma->vm_pgoff;
2479
2480         /* Can we fit all of the mapping? */
2481         vm_len = vma->vm_end - vma->vm_start;
2482         if (vm_len >> PAGE_SHIFT > pages)
2483                 return -EINVAL;
2484
2485         /* Ok, let it rip */
2486         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2487 }
2488 EXPORT_SYMBOL(vm_iomap_memory);
2489
2490 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2491                                      unsigned long addr, unsigned long end,
2492                                      pte_fn_t fn, void *data, bool create,
2493                                      pgtbl_mod_mask *mask)
2494 {
2495         pte_t *pte, *mapped_pte;
2496         int err = 0;
2497         spinlock_t *ptl;
2498
2499         if (create) {
2500                 mapped_pte = pte = (mm == &init_mm) ?
2501                         pte_alloc_kernel_track(pmd, addr, mask) :
2502                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2503                 if (!pte)
2504                         return -ENOMEM;
2505         } else {
2506                 mapped_pte = pte = (mm == &init_mm) ?
2507                         pte_offset_kernel(pmd, addr) :
2508                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2509         }
2510
2511         BUG_ON(pmd_huge(*pmd));
2512
2513         arch_enter_lazy_mmu_mode();
2514
2515         if (fn) {
2516                 do {
2517                         if (create || !pte_none(*pte)) {
2518                                 err = fn(pte++, addr, data);
2519                                 if (err)
2520                                         break;
2521                         }
2522                 } while (addr += PAGE_SIZE, addr != end);
2523         }
2524         *mask |= PGTBL_PTE_MODIFIED;
2525
2526         arch_leave_lazy_mmu_mode();
2527
2528         if (mm != &init_mm)
2529                 pte_unmap_unlock(mapped_pte, ptl);
2530         return err;
2531 }
2532
2533 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2534                                      unsigned long addr, unsigned long end,
2535                                      pte_fn_t fn, void *data, bool create,
2536                                      pgtbl_mod_mask *mask)
2537 {
2538         pmd_t *pmd;
2539         unsigned long next;
2540         int err = 0;
2541
2542         BUG_ON(pud_huge(*pud));
2543
2544         if (create) {
2545                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2546                 if (!pmd)
2547                         return -ENOMEM;
2548         } else {
2549                 pmd = pmd_offset(pud, addr);
2550         }
2551         do {
2552                 next = pmd_addr_end(addr, end);
2553                 if (pmd_none(*pmd) && !create)
2554                         continue;
2555                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2556                         return -EINVAL;
2557                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2558                         if (!create)
2559                                 continue;
2560                         pmd_clear_bad(pmd);
2561                 }
2562                 err = apply_to_pte_range(mm, pmd, addr, next,
2563                                          fn, data, create, mask);
2564                 if (err)
2565                         break;
2566         } while (pmd++, addr = next, addr != end);
2567
2568         return err;
2569 }
2570
2571 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2572                                      unsigned long addr, unsigned long end,
2573                                      pte_fn_t fn, void *data, bool create,
2574                                      pgtbl_mod_mask *mask)
2575 {
2576         pud_t *pud;
2577         unsigned long next;
2578         int err = 0;
2579
2580         if (create) {
2581                 pud = pud_alloc_track(mm, p4d, addr, mask);
2582                 if (!pud)
2583                         return -ENOMEM;
2584         } else {
2585                 pud = pud_offset(p4d, addr);
2586         }
2587         do {
2588                 next = pud_addr_end(addr, end);
2589                 if (pud_none(*pud) && !create)
2590                         continue;
2591                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2592                         return -EINVAL;
2593                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2594                         if (!create)
2595                                 continue;
2596                         pud_clear_bad(pud);
2597                 }
2598                 err = apply_to_pmd_range(mm, pud, addr, next,
2599                                          fn, data, create, mask);
2600                 if (err)
2601                         break;
2602         } while (pud++, addr = next, addr != end);
2603
2604         return err;
2605 }
2606
2607 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2608                                      unsigned long addr, unsigned long end,
2609                                      pte_fn_t fn, void *data, bool create,
2610                                      pgtbl_mod_mask *mask)
2611 {
2612         p4d_t *p4d;
2613         unsigned long next;
2614         int err = 0;
2615
2616         if (create) {
2617                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2618                 if (!p4d)
2619                         return -ENOMEM;
2620         } else {
2621                 p4d = p4d_offset(pgd, addr);
2622         }
2623         do {
2624                 next = p4d_addr_end(addr, end);
2625                 if (p4d_none(*p4d) && !create)
2626                         continue;
2627                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2628                         return -EINVAL;
2629                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2630                         if (!create)
2631                                 continue;
2632                         p4d_clear_bad(p4d);
2633                 }
2634                 err = apply_to_pud_range(mm, p4d, addr, next,
2635                                          fn, data, create, mask);
2636                 if (err)
2637                         break;
2638         } while (p4d++, addr = next, addr != end);
2639
2640         return err;
2641 }
2642
2643 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2644                                  unsigned long size, pte_fn_t fn,
2645                                  void *data, bool create)
2646 {
2647         pgd_t *pgd;
2648         unsigned long start = addr, next;
2649         unsigned long end = addr + size;
2650         pgtbl_mod_mask mask = 0;
2651         int err = 0;
2652
2653         if (WARN_ON(addr >= end))
2654                 return -EINVAL;
2655
2656         pgd = pgd_offset(mm, addr);
2657         do {
2658                 next = pgd_addr_end(addr, end);
2659                 if (pgd_none(*pgd) && !create)
2660                         continue;
2661                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2662                         return -EINVAL;
2663                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2664                         if (!create)
2665                                 continue;
2666                         pgd_clear_bad(pgd);
2667                 }
2668                 err = apply_to_p4d_range(mm, pgd, addr, next,
2669                                          fn, data, create, &mask);
2670                 if (err)
2671                         break;
2672         } while (pgd++, addr = next, addr != end);
2673
2674         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2675                 arch_sync_kernel_mappings(start, start + size);
2676
2677         return err;
2678 }
2679
2680 /*
2681  * Scan a region of virtual memory, filling in page tables as necessary
2682  * and calling a provided function on each leaf page table.
2683  */
2684 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2685                         unsigned long size, pte_fn_t fn, void *data)
2686 {
2687         return __apply_to_page_range(mm, addr, size, fn, data, true);
2688 }
2689 EXPORT_SYMBOL_GPL(apply_to_page_range);
2690
2691 /*
2692  * Scan a region of virtual memory, calling a provided function on
2693  * each leaf page table where it exists.
2694  *
2695  * Unlike apply_to_page_range, this does _not_ fill in page tables
2696  * where they are absent.
2697  */
2698 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2699                                  unsigned long size, pte_fn_t fn, void *data)
2700 {
2701         return __apply_to_page_range(mm, addr, size, fn, data, false);
2702 }
2703 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2704
2705 /*
2706  * handle_pte_fault chooses page fault handler according to an entry which was
2707  * read non-atomically.  Before making any commitment, on those architectures
2708  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2709  * parts, do_swap_page must check under lock before unmapping the pte and
2710  * proceeding (but do_wp_page is only called after already making such a check;
2711  * and do_anonymous_page can safely check later on).
2712  */
2713 static inline int pte_unmap_same(struct vm_fault *vmf)
2714 {
2715         int same = 1;
2716 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2717         if (sizeof(pte_t) > sizeof(unsigned long)) {
2718                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2719                 spin_lock(ptl);
2720                 same = pte_same(*vmf->pte, vmf->orig_pte);
2721                 spin_unlock(ptl);
2722         }
2723 #endif
2724         pte_unmap(vmf->pte);
2725         vmf->pte = NULL;
2726         return same;
2727 }
2728
2729 static inline bool cow_user_page(struct page *dst, struct page *src,
2730                                  struct vm_fault *vmf)
2731 {
2732         bool ret;
2733         void *kaddr;
2734         void __user *uaddr;
2735         bool locked = false;
2736         struct vm_area_struct *vma = vmf->vma;
2737         struct mm_struct *mm = vma->vm_mm;
2738         unsigned long addr = vmf->address;
2739
2740         if (likely(src)) {
2741                 copy_user_highpage(dst, src, addr, vma);
2742                 return true;
2743         }
2744
2745         /*
2746          * If the source page was a PFN mapping, we don't have
2747          * a "struct page" for it. We do a best-effort copy by
2748          * just copying from the original user address. If that
2749          * fails, we just zero-fill it. Live with it.
2750          */
2751         kaddr = kmap_atomic(dst);
2752         uaddr = (void __user *)(addr & PAGE_MASK);
2753
2754         /*
2755          * On architectures with software "accessed" bits, we would
2756          * take a double page fault, so mark it accessed here.
2757          */
2758         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2759                 pte_t entry;
2760
2761                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2762                 locked = true;
2763                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2764                         /*
2765                          * Other thread has already handled the fault
2766                          * and update local tlb only
2767                          */
2768                         update_mmu_tlb(vma, addr, vmf->pte);
2769                         ret = false;
2770                         goto pte_unlock;
2771                 }
2772
2773                 entry = pte_mkyoung(vmf->orig_pte);
2774                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2775                         update_mmu_cache(vma, addr, vmf->pte);
2776         }
2777
2778         /*
2779          * This really shouldn't fail, because the page is there
2780          * in the page tables. But it might just be unreadable,
2781          * in which case we just give up and fill the result with
2782          * zeroes.
2783          */
2784         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2785                 if (locked)
2786                         goto warn;
2787
2788                 /* Re-validate under PTL if the page is still mapped */
2789                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2790                 locked = true;
2791                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2792                         /* The PTE changed under us, update local tlb */
2793                         update_mmu_tlb(vma, addr, vmf->pte);
2794                         ret = false;
2795                         goto pte_unlock;
2796                 }
2797
2798                 /*
2799                  * The same page can be mapped back since last copy attempt.
2800                  * Try to copy again under PTL.
2801                  */
2802                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2803                         /*
2804                          * Give a warn in case there can be some obscure
2805                          * use-case
2806                          */
2807 warn:
2808                         WARN_ON_ONCE(1);
2809                         clear_page(kaddr);
2810                 }
2811         }
2812
2813         ret = true;
2814
2815 pte_unlock:
2816         if (locked)
2817                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2818         kunmap_atomic(kaddr);
2819         flush_dcache_page(dst);
2820
2821         return ret;
2822 }
2823
2824 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2825 {
2826         struct file *vm_file = vma->vm_file;
2827
2828         if (vm_file)
2829                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2830
2831         /*
2832          * Special mappings (e.g. VDSO) do not have any file so fake
2833          * a default GFP_KERNEL for them.
2834          */
2835         return GFP_KERNEL;
2836 }
2837
2838 /*
2839  * Notify the address space that the page is about to become writable so that
2840  * it can prohibit this or wait for the page to get into an appropriate state.
2841  *
2842  * We do this without the lock held, so that it can sleep if it needs to.
2843  */
2844 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2845 {
2846         vm_fault_t ret;
2847         struct page *page = vmf->page;
2848         unsigned int old_flags = vmf->flags;
2849
2850         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2851
2852         if (vmf->vma->vm_file &&
2853             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2854                 return VM_FAULT_SIGBUS;
2855
2856         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2857         /* Restore original flags so that caller is not surprised */
2858         vmf->flags = old_flags;
2859         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2860                 return ret;
2861         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2862                 lock_page(page);
2863                 if (!page->mapping) {
2864                         unlock_page(page);
2865                         return 0; /* retry */
2866                 }
2867                 ret |= VM_FAULT_LOCKED;
2868         } else
2869                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2870         return ret;
2871 }
2872
2873 /*
2874  * Handle dirtying of a page in shared file mapping on a write fault.
2875  *
2876  * The function expects the page to be locked and unlocks it.
2877  */
2878 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2879 {
2880         struct vm_area_struct *vma = vmf->vma;
2881         struct address_space *mapping;
2882         struct page *page = vmf->page;
2883         bool dirtied;
2884         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2885
2886         dirtied = set_page_dirty(page);
2887         VM_BUG_ON_PAGE(PageAnon(page), page);
2888         /*
2889          * Take a local copy of the address_space - page.mapping may be zeroed
2890          * by truncate after unlock_page().   The address_space itself remains
2891          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2892          * release semantics to prevent the compiler from undoing this copying.
2893          */
2894         mapping = page_rmapping(page);
2895         unlock_page(page);
2896
2897         if (!page_mkwrite)
2898                 file_update_time(vma->vm_file);
2899
2900         /*
2901          * Throttle page dirtying rate down to writeback speed.
2902          *
2903          * mapping may be NULL here because some device drivers do not
2904          * set page.mapping but still dirty their pages
2905          *
2906          * Drop the mmap_lock before waiting on IO, if we can. The file
2907          * is pinning the mapping, as per above.
2908          */
2909         if ((dirtied || page_mkwrite) && mapping) {
2910                 struct file *fpin;
2911
2912                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2913                 balance_dirty_pages_ratelimited(mapping);
2914                 if (fpin) {
2915                         fput(fpin);
2916                         return VM_FAULT_RETRY;
2917                 }
2918         }
2919
2920         return 0;
2921 }
2922
2923 /*
2924  * Handle write page faults for pages that can be reused in the current vma
2925  *
2926  * This can happen either due to the mapping being with the VM_SHARED flag,
2927  * or due to us being the last reference standing to the page. In either
2928  * case, all we need to do here is to mark the page as writable and update
2929  * any related book-keeping.
2930  */
2931 static inline void wp_page_reuse(struct vm_fault *vmf)
2932         __releases(vmf->ptl)
2933 {
2934         struct vm_area_struct *vma = vmf->vma;
2935         struct page *page = vmf->page;
2936         pte_t entry;
2937         /*
2938          * Clear the pages cpupid information as the existing
2939          * information potentially belongs to a now completely
2940          * unrelated process.
2941          */
2942         if (page)
2943                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2944
2945         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2946         entry = pte_mkyoung(vmf->orig_pte);
2947         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2948         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2949                 update_mmu_cache(vma, vmf->address, vmf->pte);
2950         pte_unmap_unlock(vmf->pte, vmf->ptl);
2951         count_vm_event(PGREUSE);
2952 }
2953
2954 /*
2955  * Handle the case of a page which we actually need to copy to a new page.
2956  *
2957  * Called with mmap_lock locked and the old page referenced, but
2958  * without the ptl held.
2959  *
2960  * High level logic flow:
2961  *
2962  * - Allocate a page, copy the content of the old page to the new one.
2963  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2964  * - Take the PTL. If the pte changed, bail out and release the allocated page
2965  * - If the pte is still the way we remember it, update the page table and all
2966  *   relevant references. This includes dropping the reference the page-table
2967  *   held to the old page, as well as updating the rmap.
2968  * - In any case, unlock the PTL and drop the reference we took to the old page.
2969  */
2970 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2971 {
2972         struct vm_area_struct *vma = vmf->vma;
2973         struct mm_struct *mm = vma->vm_mm;
2974         struct page *old_page = vmf->page;
2975         struct page *new_page = NULL;
2976         pte_t entry;
2977         int page_copied = 0;
2978         struct mmu_notifier_range range;
2979
2980         if (unlikely(anon_vma_prepare(vma)))
2981                 goto oom;
2982
2983         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2984                 new_page = alloc_zeroed_user_highpage_movable(vma,
2985                                                               vmf->address);
2986                 if (!new_page)
2987                         goto oom;
2988         } else {
2989                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2990                                 vmf->address);
2991                 if (!new_page)
2992                         goto oom;
2993
2994                 if (!cow_user_page(new_page, old_page, vmf)) {
2995                         /*
2996                          * COW failed, if the fault was solved by other,
2997                          * it's fine. If not, userspace would re-fault on
2998                          * the same address and we will handle the fault
2999                          * from the second attempt.
3000                          */
3001                         put_page(new_page);
3002                         if (old_page)
3003                                 put_page(old_page);
3004                         return 0;
3005                 }
3006         }
3007
3008         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3009                 goto oom_free_new;
3010         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3011
3012         __SetPageUptodate(new_page);
3013
3014         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3015                                 vmf->address & PAGE_MASK,
3016                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3017         mmu_notifier_invalidate_range_start(&range);
3018
3019         /*
3020          * Re-check the pte - we dropped the lock
3021          */
3022         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3023         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3024                 if (old_page) {
3025                         if (!PageAnon(old_page)) {
3026                                 dec_mm_counter_fast(mm,
3027                                                 mm_counter_file(old_page));
3028                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3029                         }
3030                 } else {
3031                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3032                 }
3033                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3034                 entry = mk_pte(new_page, vma->vm_page_prot);
3035                 entry = pte_sw_mkyoung(entry);
3036                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3037
3038                 /*
3039                  * Clear the pte entry and flush it first, before updating the
3040                  * pte with the new entry, to keep TLBs on different CPUs in
3041                  * sync. This code used to set the new PTE then flush TLBs, but
3042                  * that left a window where the new PTE could be loaded into
3043                  * some TLBs while the old PTE remains in others.
3044                  */
3045                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3046                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3047                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3048                 /*
3049                  * We call the notify macro here because, when using secondary
3050                  * mmu page tables (such as kvm shadow page tables), we want the
3051                  * new page to be mapped directly into the secondary page table.
3052                  */
3053                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3054                 update_mmu_cache(vma, vmf->address, vmf->pte);
3055                 if (old_page) {
3056                         /*
3057                          * Only after switching the pte to the new page may
3058                          * we remove the mapcount here. Otherwise another
3059                          * process may come and find the rmap count decremented
3060                          * before the pte is switched to the new page, and
3061                          * "reuse" the old page writing into it while our pte
3062                          * here still points into it and can be read by other
3063                          * threads.
3064                          *
3065                          * The critical issue is to order this
3066                          * page_remove_rmap with the ptp_clear_flush above.
3067                          * Those stores are ordered by (if nothing else,)
3068                          * the barrier present in the atomic_add_negative
3069                          * in page_remove_rmap.
3070                          *
3071                          * Then the TLB flush in ptep_clear_flush ensures that
3072                          * no process can access the old page before the
3073                          * decremented mapcount is visible. And the old page
3074                          * cannot be reused until after the decremented
3075                          * mapcount is visible. So transitively, TLBs to
3076                          * old page will be flushed before it can be reused.
3077                          */
3078                         page_remove_rmap(old_page, false);
3079                 }
3080
3081                 /* Free the old page.. */
3082                 new_page = old_page;
3083                 page_copied = 1;
3084         } else {
3085                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3086         }
3087
3088         if (new_page)
3089                 put_page(new_page);
3090
3091         pte_unmap_unlock(vmf->pte, vmf->ptl);
3092         /*
3093          * No need to double call mmu_notifier->invalidate_range() callback as
3094          * the above ptep_clear_flush_notify() did already call it.
3095          */
3096         mmu_notifier_invalidate_range_only_end(&range);
3097         if (old_page) {
3098                 /*
3099                  * Don't let another task, with possibly unlocked vma,
3100                  * keep the mlocked page.
3101                  */
3102                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3103                         lock_page(old_page);    /* LRU manipulation */
3104                         if (PageMlocked(old_page))
3105                                 munlock_vma_page(old_page);
3106                         unlock_page(old_page);
3107                 }
3108                 if (page_copied)
3109                         free_swap_cache(old_page);
3110                 put_page(old_page);
3111         }
3112         return page_copied ? VM_FAULT_WRITE : 0;
3113 oom_free_new:
3114         put_page(new_page);
3115 oom:
3116         if (old_page)
3117                 put_page(old_page);
3118         return VM_FAULT_OOM;
3119 }
3120
3121 /**
3122  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3123  *                        writeable once the page is prepared
3124  *
3125  * @vmf: structure describing the fault
3126  *
3127  * This function handles all that is needed to finish a write page fault in a
3128  * shared mapping due to PTE being read-only once the mapped page is prepared.
3129  * It handles locking of PTE and modifying it.
3130  *
3131  * The function expects the page to be locked or other protection against
3132  * concurrent faults / writeback (such as DAX radix tree locks).
3133  *
3134  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3135  * we acquired PTE lock.
3136  */
3137 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3138 {
3139         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3140         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3141                                        &vmf->ptl);
3142         /*
3143          * We might have raced with another page fault while we released the
3144          * pte_offset_map_lock.
3145          */
3146         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3147                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3148                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3149                 return VM_FAULT_NOPAGE;
3150         }
3151         wp_page_reuse(vmf);
3152         return 0;
3153 }
3154
3155 /*
3156  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3157  * mapping
3158  */
3159 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3160 {
3161         struct vm_area_struct *vma = vmf->vma;
3162
3163         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3164                 vm_fault_t ret;
3165
3166                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3167                 vmf->flags |= FAULT_FLAG_MKWRITE;
3168                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3169                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3170                         return ret;
3171                 return finish_mkwrite_fault(vmf);
3172         }
3173         wp_page_reuse(vmf);
3174         return VM_FAULT_WRITE;
3175 }
3176
3177 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3178         __releases(vmf->ptl)
3179 {
3180         struct vm_area_struct *vma = vmf->vma;
3181         vm_fault_t ret = VM_FAULT_WRITE;
3182
3183         get_page(vmf->page);
3184
3185         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3186                 vm_fault_t tmp;
3187
3188                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3189                 tmp = do_page_mkwrite(vmf);
3190                 if (unlikely(!tmp || (tmp &
3191                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3192                         put_page(vmf->page);
3193                         return tmp;
3194                 }
3195                 tmp = finish_mkwrite_fault(vmf);
3196                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3197                         unlock_page(vmf->page);
3198                         put_page(vmf->page);
3199                         return tmp;
3200                 }
3201         } else {
3202                 wp_page_reuse(vmf);
3203                 lock_page(vmf->page);
3204         }
3205         ret |= fault_dirty_shared_page(vmf);
3206         put_page(vmf->page);
3207
3208         return ret;
3209 }
3210
3211 /*
3212  * This routine handles present pages, when users try to write
3213  * to a shared page. It is done by copying the page to a new address
3214  * and decrementing the shared-page counter for the old page.
3215  *
3216  * Note that this routine assumes that the protection checks have been
3217  * done by the caller (the low-level page fault routine in most cases).
3218  * Thus we can safely just mark it writable once we've done any necessary
3219  * COW.
3220  *
3221  * We also mark the page dirty at this point even though the page will
3222  * change only once the write actually happens. This avoids a few races,
3223  * and potentially makes it more efficient.
3224  *
3225  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3226  * but allow concurrent faults), with pte both mapped and locked.
3227  * We return with mmap_lock still held, but pte unmapped and unlocked.
3228  */
3229 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3230         __releases(vmf->ptl)
3231 {
3232         struct vm_area_struct *vma = vmf->vma;
3233
3234         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3235                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3236                 return handle_userfault(vmf, VM_UFFD_WP);
3237         }
3238
3239         /*
3240          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3241          * is flushed in this case before copying.
3242          */
3243         if (unlikely(userfaultfd_wp(vmf->vma) &&
3244                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3245                 flush_tlb_page(vmf->vma, vmf->address);
3246
3247         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3248         if (!vmf->page) {
3249                 /*
3250                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3251                  * VM_PFNMAP VMA.
3252                  *
3253                  * We should not cow pages in a shared writeable mapping.
3254                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3255                  */
3256                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3257                                      (VM_WRITE|VM_SHARED))
3258                         return wp_pfn_shared(vmf);
3259
3260                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3261                 return wp_page_copy(vmf);
3262         }
3263
3264         /*
3265          * Take out anonymous pages first, anonymous shared vmas are
3266          * not dirty accountable.
3267          */
3268         if (PageAnon(vmf->page)) {
3269                 struct page *page = vmf->page;
3270
3271                 /* PageKsm() doesn't necessarily raise the page refcount */
3272                 if (PageKsm(page) || page_count(page) != 1)
3273                         goto copy;
3274                 if (!trylock_page(page))
3275                         goto copy;
3276                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3277                         unlock_page(page);
3278                         goto copy;
3279                 }
3280                 /*
3281                  * Ok, we've got the only map reference, and the only
3282                  * page count reference, and the page is locked,
3283                  * it's dark out, and we're wearing sunglasses. Hit it.
3284                  */
3285                 unlock_page(page);
3286                 wp_page_reuse(vmf);
3287                 return VM_FAULT_WRITE;
3288         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3289                                         (VM_WRITE|VM_SHARED))) {
3290                 return wp_page_shared(vmf);
3291         }
3292 copy:
3293         /*
3294          * Ok, we need to copy. Oh, well..
3295          */
3296         get_page(vmf->page);
3297
3298         pte_unmap_unlock(vmf->pte, vmf->ptl);
3299         return wp_page_copy(vmf);
3300 }
3301
3302 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3303                 unsigned long start_addr, unsigned long end_addr,
3304                 struct zap_details *details)
3305 {
3306         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3307 }
3308
3309 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3310                                             pgoff_t first_index,
3311                                             pgoff_t last_index,
3312                                             struct zap_details *details)
3313 {
3314         struct vm_area_struct *vma;
3315         pgoff_t vba, vea, zba, zea;
3316
3317         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3318                 vba = vma->vm_pgoff;
3319                 vea = vba + vma_pages(vma) - 1;
3320                 zba = first_index;
3321                 if (zba < vba)
3322                         zba = vba;
3323                 zea = last_index;
3324                 if (zea > vea)
3325                         zea = vea;
3326
3327                 unmap_mapping_range_vma(vma,
3328                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3329                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3330                                 details);
3331         }
3332 }
3333
3334 /**
3335  * unmap_mapping_page() - Unmap single page from processes.
3336  * @page: The locked page to be unmapped.
3337  *
3338  * Unmap this page from any userspace process which still has it mmaped.
3339  * Typically, for efficiency, the range of nearby pages has already been
3340  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3341  * truncation or invalidation holds the lock on a page, it may find that
3342  * the page has been remapped again: and then uses unmap_mapping_page()
3343  * to unmap it finally.
3344  */
3345 void unmap_mapping_page(struct page *page)
3346 {
3347         struct address_space *mapping = page->mapping;
3348         struct zap_details details = { };
3349         pgoff_t first_index;
3350         pgoff_t last_index;
3351
3352         VM_BUG_ON(!PageLocked(page));
3353         VM_BUG_ON(PageTail(page));
3354
3355         first_index = page->index;
3356         last_index = page->index + thp_nr_pages(page) - 1;
3357
3358         details.zap_mapping = mapping;
3359         details.single_page = page;
3360
3361         i_mmap_lock_write(mapping);
3362         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3363                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3364                                          last_index, &details);
3365         i_mmap_unlock_write(mapping);
3366 }
3367
3368 /**
3369  * unmap_mapping_pages() - Unmap pages from processes.
3370  * @mapping: The address space containing pages to be unmapped.
3371  * @start: Index of first page to be unmapped.
3372  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3373  * @even_cows: Whether to unmap even private COWed pages.
3374  *
3375  * Unmap the pages in this address space from any userspace process which
3376  * has them mmaped.  Generally, you want to remove COWed pages as well when
3377  * a file is being truncated, but not when invalidating pages from the page
3378  * cache.
3379  */
3380 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3381                 pgoff_t nr, bool even_cows)
3382 {
3383         struct zap_details details = { };
3384         pgoff_t first_index = start;
3385         pgoff_t last_index = start + nr - 1;
3386
3387         details.zap_mapping = even_cows ? NULL : mapping;
3388         if (last_index < first_index)
3389                 last_index = ULONG_MAX;
3390
3391         i_mmap_lock_write(mapping);
3392         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3393                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3394                                          last_index, &details);
3395         i_mmap_unlock_write(mapping);
3396 }
3397 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3398
3399 /**
3400  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3401  * address_space corresponding to the specified byte range in the underlying
3402  * file.
3403  *
3404  * @mapping: the address space containing mmaps to be unmapped.
3405  * @holebegin: byte in first page to unmap, relative to the start of
3406  * the underlying file.  This will be rounded down to a PAGE_SIZE
3407  * boundary.  Note that this is different from truncate_pagecache(), which
3408  * must keep the partial page.  In contrast, we must get rid of
3409  * partial pages.
3410  * @holelen: size of prospective hole in bytes.  This will be rounded
3411  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3412  * end of the file.
3413  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3414  * but 0 when invalidating pagecache, don't throw away private data.
3415  */
3416 void unmap_mapping_range(struct address_space *mapping,
3417                 loff_t const holebegin, loff_t const holelen, int even_cows)
3418 {
3419         pgoff_t hba = holebegin >> PAGE_SHIFT;
3420         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3421
3422         /* Check for overflow. */
3423         if (sizeof(holelen) > sizeof(hlen)) {
3424                 long long holeend =
3425                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3426                 if (holeend & ~(long long)ULONG_MAX)
3427                         hlen = ULONG_MAX - hba + 1;
3428         }
3429
3430         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3431 }
3432 EXPORT_SYMBOL(unmap_mapping_range);
3433
3434 /*
3435  * Restore a potential device exclusive pte to a working pte entry
3436  */
3437 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3438 {
3439         struct page *page = vmf->page;
3440         struct vm_area_struct *vma = vmf->vma;
3441         struct mmu_notifier_range range;
3442
3443         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3444                 return VM_FAULT_RETRY;
3445         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3446                                 vma->vm_mm, vmf->address & PAGE_MASK,
3447                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3448         mmu_notifier_invalidate_range_start(&range);
3449
3450         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3451                                 &vmf->ptl);
3452         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3453                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3454
3455         pte_unmap_unlock(vmf->pte, vmf->ptl);
3456         unlock_page(page);
3457
3458         mmu_notifier_invalidate_range_end(&range);
3459         return 0;
3460 }
3461
3462 /*
3463  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3464  * but allow concurrent faults), and pte mapped but not yet locked.
3465  * We return with pte unmapped and unlocked.
3466  *
3467  * We return with the mmap_lock locked or unlocked in the same cases
3468  * as does filemap_fault().
3469  */
3470 vm_fault_t do_swap_page(struct vm_fault *vmf)
3471 {
3472         struct vm_area_struct *vma = vmf->vma;
3473         struct page *page = NULL, *swapcache;
3474         struct swap_info_struct *si = NULL;
3475         swp_entry_t entry;
3476         pte_t pte;
3477         int locked;
3478         int exclusive = 0;
3479         vm_fault_t ret = 0;
3480         void *shadow = NULL;
3481
3482         if (!pte_unmap_same(vmf))
3483                 goto out;
3484
3485         entry = pte_to_swp_entry(vmf->orig_pte);
3486         if (unlikely(non_swap_entry(entry))) {
3487                 if (is_migration_entry(entry)) {
3488                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3489                                              vmf->address);
3490                 } else if (is_device_exclusive_entry(entry)) {
3491                         vmf->page = pfn_swap_entry_to_page(entry);
3492                         ret = remove_device_exclusive_entry(vmf);
3493                 } else if (is_device_private_entry(entry)) {
3494                         vmf->page = pfn_swap_entry_to_page(entry);
3495                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3496                 } else if (is_hwpoison_entry(entry)) {
3497                         ret = VM_FAULT_HWPOISON;
3498                 } else {
3499                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3500                         ret = VM_FAULT_SIGBUS;
3501                 }
3502                 goto out;
3503         }
3504
3505         /* Prevent swapoff from happening to us. */
3506         si = get_swap_device(entry);
3507         if (unlikely(!si))
3508                 goto out;
3509
3510         page = lookup_swap_cache(entry, vma, vmf->address);
3511         swapcache = page;
3512
3513         if (!page) {
3514                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3515                     __swap_count(entry) == 1) {
3516                         /* skip swapcache */
3517                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3518                                                         vmf->address);
3519                         if (page) {
3520                                 __SetPageLocked(page);
3521                                 __SetPageSwapBacked(page);
3522
3523                                 if (mem_cgroup_swapin_charge_page(page,
3524                                         vma->vm_mm, GFP_KERNEL, entry)) {
3525                                         ret = VM_FAULT_OOM;
3526                                         goto out_page;
3527                                 }
3528                                 mem_cgroup_swapin_uncharge_swap(entry);
3529
3530                                 shadow = get_shadow_from_swap_cache(entry);
3531                                 if (shadow)
3532                                         workingset_refault(page_folio(page),
3533                                                                 shadow);
3534
3535                                 lru_cache_add(page);
3536
3537                                 /* To provide entry to swap_readpage() */
3538                                 set_page_private(page, entry.val);
3539                                 swap_readpage(page, true);
3540                                 set_page_private(page, 0);
3541                         }
3542                 } else {
3543                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3544                                                 vmf);
3545                         swapcache = page;
3546                 }
3547
3548                 if (!page) {
3549                         /*
3550                          * Back out if somebody else faulted in this pte
3551                          * while we released the pte lock.
3552                          */
3553                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3554                                         vmf->address, &vmf->ptl);
3555                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3556                                 ret = VM_FAULT_OOM;
3557                         goto unlock;
3558                 }
3559
3560                 /* Had to read the page from swap area: Major fault */
3561                 ret = VM_FAULT_MAJOR;
3562                 count_vm_event(PGMAJFAULT);
3563                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3564         } else if (PageHWPoison(page)) {
3565                 /*
3566                  * hwpoisoned dirty swapcache pages are kept for killing
3567                  * owner processes (which may be unknown at hwpoison time)
3568                  */
3569                 ret = VM_FAULT_HWPOISON;
3570                 goto out_release;
3571         }
3572
3573         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3574
3575         if (!locked) {
3576                 ret |= VM_FAULT_RETRY;
3577                 goto out_release;
3578         }
3579
3580         /*
3581          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3582          * release the swapcache from under us.  The page pin, and pte_same
3583          * test below, are not enough to exclude that.  Even if it is still
3584          * swapcache, we need to check that the page's swap has not changed.
3585          */
3586         if (unlikely((!PageSwapCache(page) ||
3587                         page_private(page) != entry.val)) && swapcache)
3588                 goto out_page;
3589
3590         page = ksm_might_need_to_copy(page, vma, vmf->address);
3591         if (unlikely(!page)) {
3592                 ret = VM_FAULT_OOM;
3593                 page = swapcache;
3594                 goto out_page;
3595         }
3596
3597         cgroup_throttle_swaprate(page, GFP_KERNEL);
3598
3599         /*
3600          * Back out if somebody else already faulted in this pte.
3601          */
3602         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3603                         &vmf->ptl);
3604         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3605                 goto out_nomap;
3606
3607         if (unlikely(!PageUptodate(page))) {
3608                 ret = VM_FAULT_SIGBUS;
3609                 goto out_nomap;
3610         }
3611
3612         /*
3613          * The page isn't present yet, go ahead with the fault.
3614          *
3615          * Be careful about the sequence of operations here.
3616          * To get its accounting right, reuse_swap_page() must be called
3617          * while the page is counted on swap but not yet in mapcount i.e.
3618          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3619          * must be called after the swap_free(), or it will never succeed.
3620          */
3621
3622         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3623         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3624         pte = mk_pte(page, vma->vm_page_prot);
3625         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3626                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3627                 vmf->flags &= ~FAULT_FLAG_WRITE;
3628                 ret |= VM_FAULT_WRITE;
3629                 exclusive = RMAP_EXCLUSIVE;
3630         }
3631         flush_icache_page(vma, page);
3632         if (pte_swp_soft_dirty(vmf->orig_pte))
3633                 pte = pte_mksoft_dirty(pte);
3634         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3635                 pte = pte_mkuffd_wp(pte);
3636                 pte = pte_wrprotect(pte);
3637         }
3638         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3639         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3640         vmf->orig_pte = pte;
3641
3642         /* ksm created a completely new copy */
3643         if (unlikely(page != swapcache && swapcache)) {
3644                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3645                 lru_cache_add_inactive_or_unevictable(page, vma);
3646         } else {
3647                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3648         }
3649
3650         swap_free(entry);
3651         if (mem_cgroup_swap_full(page) ||
3652             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3653                 try_to_free_swap(page);
3654         unlock_page(page);
3655         if (page != swapcache && swapcache) {
3656                 /*
3657                  * Hold the lock to avoid the swap entry to be reused
3658                  * until we take the PT lock for the pte_same() check
3659                  * (to avoid false positives from pte_same). For
3660                  * further safety release the lock after the swap_free
3661                  * so that the swap count won't change under a
3662                  * parallel locked swapcache.
3663                  */
3664                 unlock_page(swapcache);
3665                 put_page(swapcache);
3666         }
3667
3668         if (vmf->flags & FAULT_FLAG_WRITE) {
3669                 ret |= do_wp_page(vmf);
3670                 if (ret & VM_FAULT_ERROR)
3671                         ret &= VM_FAULT_ERROR;
3672                 goto out;
3673         }
3674
3675         /* No need to invalidate - it was non-present before */
3676         update_mmu_cache(vma, vmf->address, vmf->pte);
3677 unlock:
3678         pte_unmap_unlock(vmf->pte, vmf->ptl);
3679 out:
3680         if (si)
3681                 put_swap_device(si);
3682         return ret;
3683 out_nomap:
3684         pte_unmap_unlock(vmf->pte, vmf->ptl);
3685 out_page:
3686         unlock_page(page);
3687 out_release:
3688         put_page(page);
3689         if (page != swapcache && swapcache) {
3690                 unlock_page(swapcache);
3691                 put_page(swapcache);
3692         }
3693         if (si)
3694                 put_swap_device(si);
3695         return ret;
3696 }
3697
3698 /*
3699  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3700  * but allow concurrent faults), and pte mapped but not yet locked.
3701  * We return with mmap_lock still held, but pte unmapped and unlocked.
3702  */
3703 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3704 {
3705         struct vm_area_struct *vma = vmf->vma;
3706         struct page *page;
3707         vm_fault_t ret = 0;
3708         pte_t entry;
3709
3710         /* File mapping without ->vm_ops ? */
3711         if (vma->vm_flags & VM_SHARED)
3712                 return VM_FAULT_SIGBUS;
3713
3714         /*
3715          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3716          * pte_offset_map() on pmds where a huge pmd might be created
3717          * from a different thread.
3718          *
3719          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3720          * parallel threads are excluded by other means.
3721          *
3722          * Here we only have mmap_read_lock(mm).
3723          */
3724         if (pte_alloc(vma->vm_mm, vmf->pmd))
3725                 return VM_FAULT_OOM;
3726
3727         /* See comment in handle_pte_fault() */
3728         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3729                 return 0;
3730
3731         /* Use the zero-page for reads */
3732         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3733                         !mm_forbids_zeropage(vma->vm_mm)) {
3734                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3735                                                 vma->vm_page_prot));
3736                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3737                                 vmf->address, &vmf->ptl);
3738                 if (!pte_none(*vmf->pte)) {
3739                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3740                         goto unlock;
3741                 }
3742                 ret = check_stable_address_space(vma->vm_mm);
3743                 if (ret)
3744                         goto unlock;
3745                 /* Deliver the page fault to userland, check inside PT lock */
3746                 if (userfaultfd_missing(vma)) {
3747                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3748                         return handle_userfault(vmf, VM_UFFD_MISSING);
3749                 }
3750                 goto setpte;
3751         }
3752
3753         /* Allocate our own private page. */
3754         if (unlikely(anon_vma_prepare(vma)))
3755                 goto oom;
3756         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3757         if (!page)
3758                 goto oom;
3759
3760         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3761                 goto oom_free_page;
3762         cgroup_throttle_swaprate(page, GFP_KERNEL);
3763
3764         /*
3765          * The memory barrier inside __SetPageUptodate makes sure that
3766          * preceding stores to the page contents become visible before
3767          * the set_pte_at() write.
3768          */
3769         __SetPageUptodate(page);
3770
3771         entry = mk_pte(page, vma->vm_page_prot);
3772         entry = pte_sw_mkyoung(entry);
3773         if (vma->vm_flags & VM_WRITE)
3774                 entry = pte_mkwrite(pte_mkdirty(entry));
3775
3776         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3777                         &vmf->ptl);
3778         if (!pte_none(*vmf->pte)) {
3779                 update_mmu_cache(vma, vmf->address, vmf->pte);
3780                 goto release;
3781         }
3782
3783         ret = check_stable_address_space(vma->vm_mm);
3784         if (ret)
3785                 goto release;
3786
3787         /* Deliver the page fault to userland, check inside PT lock */
3788         if (userfaultfd_missing(vma)) {
3789                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3790                 put_page(page);
3791                 return handle_userfault(vmf, VM_UFFD_MISSING);
3792         }
3793
3794         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3795         page_add_new_anon_rmap(page, vma, vmf->address, false);
3796         lru_cache_add_inactive_or_unevictable(page, vma);
3797 setpte:
3798         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3799
3800         /* No need to invalidate - it was non-present before */
3801         update_mmu_cache(vma, vmf->address, vmf->pte);
3802 unlock:
3803         pte_unmap_unlock(vmf->pte, vmf->ptl);
3804         return ret;
3805 release:
3806         put_page(page);
3807         goto unlock;
3808 oom_free_page:
3809         put_page(page);
3810 oom:
3811         return VM_FAULT_OOM;
3812 }
3813
3814 /*
3815  * The mmap_lock must have been held on entry, and may have been
3816  * released depending on flags and vma->vm_ops->fault() return value.
3817  * See filemap_fault() and __lock_page_retry().
3818  */
3819 static vm_fault_t __do_fault(struct vm_fault *vmf)
3820 {
3821         struct vm_area_struct *vma = vmf->vma;
3822         vm_fault_t ret;
3823
3824         /*
3825          * Preallocate pte before we take page_lock because this might lead to
3826          * deadlocks for memcg reclaim which waits for pages under writeback:
3827          *                              lock_page(A)
3828          *                              SetPageWriteback(A)
3829          *                              unlock_page(A)
3830          * lock_page(B)
3831          *                              lock_page(B)
3832          * pte_alloc_one
3833          *   shrink_page_list
3834          *     wait_on_page_writeback(A)
3835          *                              SetPageWriteback(B)
3836          *                              unlock_page(B)
3837          *                              # flush A, B to clear the writeback
3838          */
3839         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3840                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3841                 if (!vmf->prealloc_pte)
3842                         return VM_FAULT_OOM;
3843         }
3844
3845         ret = vma->vm_ops->fault(vmf);
3846         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3847                             VM_FAULT_DONE_COW)))
3848                 return ret;
3849
3850         if (unlikely(PageHWPoison(vmf->page))) {
3851                 if (ret & VM_FAULT_LOCKED)
3852                         unlock_page(vmf->page);
3853                 put_page(vmf->page);
3854                 vmf->page = NULL;
3855                 return VM_FAULT_HWPOISON;
3856         }
3857
3858         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3859                 lock_page(vmf->page);
3860         else
3861                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3862
3863         return ret;
3864 }
3865
3866 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3867 static void deposit_prealloc_pte(struct vm_fault *vmf)
3868 {
3869         struct vm_area_struct *vma = vmf->vma;
3870
3871         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3872         /*
3873          * We are going to consume the prealloc table,
3874          * count that as nr_ptes.
3875          */
3876         mm_inc_nr_ptes(vma->vm_mm);
3877         vmf->prealloc_pte = NULL;
3878 }
3879
3880 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3881 {
3882         struct vm_area_struct *vma = vmf->vma;
3883         bool write = vmf->flags & FAULT_FLAG_WRITE;
3884         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3885         pmd_t entry;
3886         int i;
3887         vm_fault_t ret = VM_FAULT_FALLBACK;
3888
3889         if (!transhuge_vma_suitable(vma, haddr))
3890                 return ret;
3891
3892         page = compound_head(page);
3893         if (compound_order(page) != HPAGE_PMD_ORDER)
3894                 return ret;
3895
3896         /*
3897          * Just backoff if any subpage of a THP is corrupted otherwise
3898          * the corrupted page may mapped by PMD silently to escape the
3899          * check.  This kind of THP just can be PTE mapped.  Access to
3900          * the corrupted subpage should trigger SIGBUS as expected.
3901          */
3902         if (unlikely(PageHasHWPoisoned(page)))
3903                 return ret;
3904
3905         /*
3906          * Archs like ppc64 need additional space to store information
3907          * related to pte entry. Use the preallocated table for that.
3908          */
3909         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3910                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3911                 if (!vmf->prealloc_pte)
3912                         return VM_FAULT_OOM;
3913         }
3914
3915         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3916         if (unlikely(!pmd_none(*vmf->pmd)))
3917                 goto out;
3918
3919         for (i = 0; i < HPAGE_PMD_NR; i++)
3920                 flush_icache_page(vma, page + i);
3921
3922         entry = mk_huge_pmd(page, vma->vm_page_prot);
3923         if (write)
3924                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3925
3926         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3927         page_add_file_rmap(page, true);
3928         /*
3929          * deposit and withdraw with pmd lock held
3930          */
3931         if (arch_needs_pgtable_deposit())
3932                 deposit_prealloc_pte(vmf);
3933
3934         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3935
3936         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3937
3938         /* fault is handled */
3939         ret = 0;
3940         count_vm_event(THP_FILE_MAPPED);
3941 out:
3942         spin_unlock(vmf->ptl);
3943         return ret;
3944 }
3945 #else
3946 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3947 {
3948         return VM_FAULT_FALLBACK;
3949 }
3950 #endif
3951
3952 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3953 {
3954         struct vm_area_struct *vma = vmf->vma;
3955         bool write = vmf->flags & FAULT_FLAG_WRITE;
3956         bool prefault = vmf->address != addr;
3957         pte_t entry;
3958
3959         flush_icache_page(vma, page);
3960         entry = mk_pte(page, vma->vm_page_prot);
3961
3962         if (prefault && arch_wants_old_prefaulted_pte())
3963                 entry = pte_mkold(entry);
3964         else
3965                 entry = pte_sw_mkyoung(entry);
3966
3967         if (write)
3968                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3969         /* copy-on-write page */
3970         if (write && !(vma->vm_flags & VM_SHARED)) {
3971                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3972                 page_add_new_anon_rmap(page, vma, addr, false);
3973                 lru_cache_add_inactive_or_unevictable(page, vma);
3974         } else {
3975                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3976                 page_add_file_rmap(page, false);
3977         }
3978         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3979 }
3980
3981 /**
3982  * finish_fault - finish page fault once we have prepared the page to fault
3983  *
3984  * @vmf: structure describing the fault
3985  *
3986  * This function handles all that is needed to finish a page fault once the
3987  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3988  * given page, adds reverse page mapping, handles memcg charges and LRU
3989  * addition.
3990  *
3991  * The function expects the page to be locked and on success it consumes a
3992  * reference of a page being mapped (for the PTE which maps it).
3993  *
3994  * Return: %0 on success, %VM_FAULT_ code in case of error.
3995  */
3996 vm_fault_t finish_fault(struct vm_fault *vmf)
3997 {
3998         struct vm_area_struct *vma = vmf->vma;
3999         struct page *page;
4000         vm_fault_t ret;
4001
4002         /* Did we COW the page? */
4003         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4004                 page = vmf->cow_page;
4005         else
4006                 page = vmf->page;
4007
4008         /*
4009          * check even for read faults because we might have lost our CoWed
4010          * page
4011          */
4012         if (!(vma->vm_flags & VM_SHARED)) {
4013                 ret = check_stable_address_space(vma->vm_mm);
4014                 if (ret)
4015                         return ret;
4016         }
4017
4018         if (pmd_none(*vmf->pmd)) {
4019                 if (PageTransCompound(page)) {
4020                         ret = do_set_pmd(vmf, page);
4021                         if (ret != VM_FAULT_FALLBACK)
4022                                 return ret;
4023                 }
4024
4025                 if (vmf->prealloc_pte)
4026                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4027                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4028                         return VM_FAULT_OOM;
4029         }
4030
4031         /* See comment in handle_pte_fault() */
4032         if (pmd_devmap_trans_unstable(vmf->pmd))
4033                 return 0;
4034
4035         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4036                                       vmf->address, &vmf->ptl);
4037         ret = 0;
4038         /* Re-check under ptl */
4039         if (likely(pte_none(*vmf->pte)))
4040                 do_set_pte(vmf, page, vmf->address);
4041         else
4042                 ret = VM_FAULT_NOPAGE;
4043
4044         update_mmu_tlb(vma, vmf->address, vmf->pte);
4045         pte_unmap_unlock(vmf->pte, vmf->ptl);
4046         return ret;
4047 }
4048
4049 static unsigned long fault_around_bytes __read_mostly =
4050         rounddown_pow_of_two(65536);
4051
4052 #ifdef CONFIG_DEBUG_FS
4053 static int fault_around_bytes_get(void *data, u64 *val)
4054 {
4055         *val = fault_around_bytes;
4056         return 0;
4057 }
4058
4059 /*
4060  * fault_around_bytes must be rounded down to the nearest page order as it's
4061  * what do_fault_around() expects to see.
4062  */
4063 static int fault_around_bytes_set(void *data, u64 val)
4064 {
4065         if (val / PAGE_SIZE > PTRS_PER_PTE)
4066                 return -EINVAL;
4067         if (val > PAGE_SIZE)
4068                 fault_around_bytes = rounddown_pow_of_two(val);
4069         else
4070                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4071         return 0;
4072 }
4073 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4074                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4075
4076 static int __init fault_around_debugfs(void)
4077 {
4078         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4079                                    &fault_around_bytes_fops);
4080         return 0;
4081 }
4082 late_initcall(fault_around_debugfs);
4083 #endif
4084
4085 /*
4086  * do_fault_around() tries to map few pages around the fault address. The hope
4087  * is that the pages will be needed soon and this will lower the number of
4088  * faults to handle.
4089  *
4090  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4091  * not ready to be mapped: not up-to-date, locked, etc.
4092  *
4093  * This function is called with the page table lock taken. In the split ptlock
4094  * case the page table lock only protects only those entries which belong to
4095  * the page table corresponding to the fault address.
4096  *
4097  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4098  * only once.
4099  *
4100  * fault_around_bytes defines how many bytes we'll try to map.
4101  * do_fault_around() expects it to be set to a power of two less than or equal
4102  * to PTRS_PER_PTE.
4103  *
4104  * The virtual address of the area that we map is naturally aligned to
4105  * fault_around_bytes rounded down to the machine page size
4106  * (and therefore to page order).  This way it's easier to guarantee
4107  * that we don't cross page table boundaries.
4108  */
4109 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4110 {
4111         unsigned long address = vmf->address, nr_pages, mask;
4112         pgoff_t start_pgoff = vmf->pgoff;
4113         pgoff_t end_pgoff;
4114         int off;
4115
4116         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4117         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4118
4119         address = max(address & mask, vmf->vma->vm_start);
4120         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4121         start_pgoff -= off;
4122
4123         /*
4124          *  end_pgoff is either the end of the page table, the end of
4125          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4126          */
4127         end_pgoff = start_pgoff -
4128                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4129                 PTRS_PER_PTE - 1;
4130         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4131                         start_pgoff + nr_pages - 1);
4132
4133         if (pmd_none(*vmf->pmd)) {
4134                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4135                 if (!vmf->prealloc_pte)
4136                         return VM_FAULT_OOM;
4137         }
4138
4139         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4140 }
4141
4142 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4143 {
4144         struct vm_area_struct *vma = vmf->vma;
4145         vm_fault_t ret = 0;
4146
4147         /*
4148          * Let's call ->map_pages() first and use ->fault() as fallback
4149          * if page by the offset is not ready to be mapped (cold cache or
4150          * something).
4151          */
4152         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4153                 if (likely(!userfaultfd_minor(vmf->vma))) {
4154                         ret = do_fault_around(vmf);
4155                         if (ret)
4156                                 return ret;
4157                 }
4158         }
4159
4160         ret = __do_fault(vmf);
4161         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4162                 return ret;
4163
4164         ret |= finish_fault(vmf);
4165         unlock_page(vmf->page);
4166         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4167                 put_page(vmf->page);
4168         return ret;
4169 }
4170
4171 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4172 {
4173         struct vm_area_struct *vma = vmf->vma;
4174         vm_fault_t ret;
4175
4176         if (unlikely(anon_vma_prepare(vma)))
4177                 return VM_FAULT_OOM;
4178
4179         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4180         if (!vmf->cow_page)
4181                 return VM_FAULT_OOM;
4182
4183         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4184                                 GFP_KERNEL)) {
4185                 put_page(vmf->cow_page);
4186                 return VM_FAULT_OOM;
4187         }
4188         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4189
4190         ret = __do_fault(vmf);
4191         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4192                 goto uncharge_out;
4193         if (ret & VM_FAULT_DONE_COW)
4194                 return ret;
4195
4196         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4197         __SetPageUptodate(vmf->cow_page);
4198
4199         ret |= finish_fault(vmf);
4200         unlock_page(vmf->page);
4201         put_page(vmf->page);
4202         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4203                 goto uncharge_out;
4204         return ret;
4205 uncharge_out:
4206         put_page(vmf->cow_page);
4207         return ret;
4208 }
4209
4210 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4211 {
4212         struct vm_area_struct *vma = vmf->vma;
4213         vm_fault_t ret, tmp;
4214
4215         ret = __do_fault(vmf);
4216         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4217                 return ret;
4218
4219         /*
4220          * Check if the backing address space wants to know that the page is
4221          * about to become writable
4222          */
4223         if (vma->vm_ops->page_mkwrite) {
4224                 unlock_page(vmf->page);
4225                 tmp = do_page_mkwrite(vmf);
4226                 if (unlikely(!tmp ||
4227                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4228                         put_page(vmf->page);
4229                         return tmp;
4230                 }
4231         }
4232
4233         ret |= finish_fault(vmf);
4234         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4235                                         VM_FAULT_RETRY))) {
4236                 unlock_page(vmf->page);
4237                 put_page(vmf->page);
4238                 return ret;
4239         }
4240
4241         ret |= fault_dirty_shared_page(vmf);
4242         return ret;
4243 }
4244
4245 /*
4246  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4247  * but allow concurrent faults).
4248  * The mmap_lock may have been released depending on flags and our
4249  * return value.  See filemap_fault() and __folio_lock_or_retry().
4250  * If mmap_lock is released, vma may become invalid (for example
4251  * by other thread calling munmap()).
4252  */
4253 static vm_fault_t do_fault(struct vm_fault *vmf)
4254 {
4255         struct vm_area_struct *vma = vmf->vma;
4256         struct mm_struct *vm_mm = vma->vm_mm;
4257         vm_fault_t ret;
4258
4259         /*
4260          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4261          */
4262         if (!vma->vm_ops->fault) {
4263                 /*
4264                  * If we find a migration pmd entry or a none pmd entry, which
4265                  * should never happen, return SIGBUS
4266                  */
4267                 if (unlikely(!pmd_present(*vmf->pmd)))
4268                         ret = VM_FAULT_SIGBUS;
4269                 else {
4270                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4271                                                        vmf->pmd,
4272                                                        vmf->address,
4273                                                        &vmf->ptl);
4274                         /*
4275                          * Make sure this is not a temporary clearing of pte
4276                          * by holding ptl and checking again. A R/M/W update
4277                          * of pte involves: take ptl, clearing the pte so that
4278                          * we don't have concurrent modification by hardware
4279                          * followed by an update.
4280                          */
4281                         if (unlikely(pte_none(*vmf->pte)))
4282                                 ret = VM_FAULT_SIGBUS;
4283                         else
4284                                 ret = VM_FAULT_NOPAGE;
4285
4286                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4287                 }
4288         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4289                 ret = do_read_fault(vmf);
4290         else if (!(vma->vm_flags & VM_SHARED))
4291                 ret = do_cow_fault(vmf);
4292         else
4293                 ret = do_shared_fault(vmf);
4294
4295         /* preallocated pagetable is unused: free it */
4296         if (vmf->prealloc_pte) {
4297                 pte_free(vm_mm, vmf->prealloc_pte);
4298                 vmf->prealloc_pte = NULL;
4299         }
4300         return ret;
4301 }
4302
4303 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4304                       unsigned long addr, int page_nid, int *flags)
4305 {
4306         get_page(page);
4307
4308         count_vm_numa_event(NUMA_HINT_FAULTS);
4309         if (page_nid == numa_node_id()) {
4310                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4311                 *flags |= TNF_FAULT_LOCAL;
4312         }
4313
4314         return mpol_misplaced(page, vma, addr);
4315 }
4316
4317 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4318 {
4319         struct vm_area_struct *vma = vmf->vma;
4320         struct page *page = NULL;
4321         int page_nid = NUMA_NO_NODE;
4322         int last_cpupid;
4323         int target_nid;
4324         pte_t pte, old_pte;
4325         bool was_writable = pte_savedwrite(vmf->orig_pte);
4326         int flags = 0;
4327
4328         /*
4329          * The "pte" at this point cannot be used safely without
4330          * validation through pte_unmap_same(). It's of NUMA type but
4331          * the pfn may be screwed if the read is non atomic.
4332          */
4333         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4334         spin_lock(vmf->ptl);
4335         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4336                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4337                 goto out;
4338         }
4339
4340         /* Get the normal PTE  */
4341         old_pte = ptep_get(vmf->pte);
4342         pte = pte_modify(old_pte, vma->vm_page_prot);
4343
4344         page = vm_normal_page(vma, vmf->address, pte);
4345         if (!page)
4346                 goto out_map;
4347
4348         /* TODO: handle PTE-mapped THP */
4349         if (PageCompound(page))
4350                 goto out_map;
4351
4352         /*
4353          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4354          * much anyway since they can be in shared cache state. This misses
4355          * the case where a mapping is writable but the process never writes
4356          * to it but pte_write gets cleared during protection updates and
4357          * pte_dirty has unpredictable behaviour between PTE scan updates,
4358          * background writeback, dirty balancing and application behaviour.
4359          */
4360         if (!was_writable)
4361                 flags |= TNF_NO_GROUP;
4362
4363         /*
4364          * Flag if the page is shared between multiple address spaces. This
4365          * is later used when determining whether to group tasks together
4366          */
4367         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4368                 flags |= TNF_SHARED;
4369
4370         last_cpupid = page_cpupid_last(page);
4371         page_nid = page_to_nid(page);
4372         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4373                         &flags);
4374         if (target_nid == NUMA_NO_NODE) {
4375                 put_page(page);
4376                 goto out_map;
4377         }
4378         pte_unmap_unlock(vmf->pte, vmf->ptl);
4379
4380         /* Migrate to the requested node */
4381         if (migrate_misplaced_page(page, vma, target_nid)) {
4382                 page_nid = target_nid;
4383                 flags |= TNF_MIGRATED;
4384         } else {
4385                 flags |= TNF_MIGRATE_FAIL;
4386                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4387                 spin_lock(vmf->ptl);
4388                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4389                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4390                         goto out;
4391                 }
4392                 goto out_map;
4393         }
4394
4395 out:
4396         if (page_nid != NUMA_NO_NODE)
4397                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4398         return 0;
4399 out_map:
4400         /*
4401          * Make it present again, depending on how arch implements
4402          * non-accessible ptes, some can allow access by kernel mode.
4403          */
4404         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4405         pte = pte_modify(old_pte, vma->vm_page_prot);
4406         pte = pte_mkyoung(pte);
4407         if (was_writable)
4408                 pte = pte_mkwrite(pte);
4409         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4410         update_mmu_cache(vma, vmf->address, vmf->pte);
4411         pte_unmap_unlock(vmf->pte, vmf->ptl);
4412         goto out;
4413 }
4414
4415 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4416 {
4417         if (vma_is_anonymous(vmf->vma))
4418                 return do_huge_pmd_anonymous_page(vmf);
4419         if (vmf->vma->vm_ops->huge_fault)
4420                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4421         return VM_FAULT_FALLBACK;
4422 }
4423
4424 /* `inline' is required to avoid gcc 4.1.2 build error */
4425 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4426 {
4427         if (vma_is_anonymous(vmf->vma)) {
4428                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4429                         return handle_userfault(vmf, VM_UFFD_WP);
4430                 return do_huge_pmd_wp_page(vmf);
4431         }
4432         if (vmf->vma->vm_ops->huge_fault) {
4433                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4434
4435                 if (!(ret & VM_FAULT_FALLBACK))
4436                         return ret;
4437         }
4438
4439         /* COW or write-notify handled on pte level: split pmd. */
4440         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4441
4442         return VM_FAULT_FALLBACK;
4443 }
4444
4445 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4446 {
4447 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4448         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4449         /* No support for anonymous transparent PUD pages yet */
4450         if (vma_is_anonymous(vmf->vma))
4451                 goto split;
4452         if (vmf->vma->vm_ops->huge_fault) {
4453                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4454
4455                 if (!(ret & VM_FAULT_FALLBACK))
4456                         return ret;
4457         }
4458 split:
4459         /* COW or write-notify not handled on PUD level: split pud.*/
4460         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4461 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4462         return VM_FAULT_FALLBACK;
4463 }
4464
4465 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4466 {
4467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4468         /* No support for anonymous transparent PUD pages yet */
4469         if (vma_is_anonymous(vmf->vma))
4470                 return VM_FAULT_FALLBACK;
4471         if (vmf->vma->vm_ops->huge_fault)
4472                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4473 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4474         return VM_FAULT_FALLBACK;
4475 }
4476
4477 /*
4478  * These routines also need to handle stuff like marking pages dirty
4479  * and/or accessed for architectures that don't do it in hardware (most
4480  * RISC architectures).  The early dirtying is also good on the i386.
4481  *
4482  * There is also a hook called "update_mmu_cache()" that architectures
4483  * with external mmu caches can use to update those (ie the Sparc or
4484  * PowerPC hashed page tables that act as extended TLBs).
4485  *
4486  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4487  * concurrent faults).
4488  *
4489  * The mmap_lock may have been released depending on flags and our return value.
4490  * See filemap_fault() and __folio_lock_or_retry().
4491  */
4492 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4493 {
4494         pte_t entry;
4495
4496         if (unlikely(pmd_none(*vmf->pmd))) {
4497                 /*
4498                  * Leave __pte_alloc() until later: because vm_ops->fault may
4499                  * want to allocate huge page, and if we expose page table
4500                  * for an instant, it will be difficult to retract from
4501                  * concurrent faults and from rmap lookups.
4502                  */
4503                 vmf->pte = NULL;
4504         } else {
4505                 /*
4506                  * If a huge pmd materialized under us just retry later.  Use
4507                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4508                  * of pmd_trans_huge() to ensure the pmd didn't become
4509                  * pmd_trans_huge under us and then back to pmd_none, as a
4510                  * result of MADV_DONTNEED running immediately after a huge pmd
4511                  * fault in a different thread of this mm, in turn leading to a
4512                  * misleading pmd_trans_huge() retval. All we have to ensure is
4513                  * that it is a regular pmd that we can walk with
4514                  * pte_offset_map() and we can do that through an atomic read
4515                  * in C, which is what pmd_trans_unstable() provides.
4516                  */
4517                 if (pmd_devmap_trans_unstable(vmf->pmd))
4518                         return 0;
4519                 /*
4520                  * A regular pmd is established and it can't morph into a huge
4521                  * pmd from under us anymore at this point because we hold the
4522                  * mmap_lock read mode and khugepaged takes it in write mode.
4523                  * So now it's safe to run pte_offset_map().
4524                  */
4525                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4526                 vmf->orig_pte = *vmf->pte;
4527
4528                 /*
4529                  * some architectures can have larger ptes than wordsize,
4530                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4531                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4532                  * accesses.  The code below just needs a consistent view
4533                  * for the ifs and we later double check anyway with the
4534                  * ptl lock held. So here a barrier will do.
4535                  */
4536                 barrier();
4537                 if (pte_none(vmf->orig_pte)) {
4538                         pte_unmap(vmf->pte);
4539                         vmf->pte = NULL;
4540                 }
4541         }
4542
4543         if (!vmf->pte) {
4544                 if (vma_is_anonymous(vmf->vma))
4545                         return do_anonymous_page(vmf);
4546                 else
4547                         return do_fault(vmf);
4548         }
4549
4550         if (!pte_present(vmf->orig_pte))
4551                 return do_swap_page(vmf);
4552
4553         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4554                 return do_numa_page(vmf);
4555
4556         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4557         spin_lock(vmf->ptl);
4558         entry = vmf->orig_pte;
4559         if (unlikely(!pte_same(*vmf->pte, entry))) {
4560                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4561                 goto unlock;
4562         }
4563         if (vmf->flags & FAULT_FLAG_WRITE) {
4564                 if (!pte_write(entry))
4565                         return do_wp_page(vmf);
4566                 entry = pte_mkdirty(entry);
4567         }
4568         entry = pte_mkyoung(entry);
4569         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4570                                 vmf->flags & FAULT_FLAG_WRITE)) {
4571                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4572         } else {
4573                 /* Skip spurious TLB flush for retried page fault */
4574                 if (vmf->flags & FAULT_FLAG_TRIED)
4575                         goto unlock;
4576                 /*
4577                  * This is needed only for protection faults but the arch code
4578                  * is not yet telling us if this is a protection fault or not.
4579                  * This still avoids useless tlb flushes for .text page faults
4580                  * with threads.
4581                  */
4582                 if (vmf->flags & FAULT_FLAG_WRITE)
4583                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4584         }
4585 unlock:
4586         pte_unmap_unlock(vmf->pte, vmf->ptl);
4587         return 0;
4588 }
4589
4590 /*
4591  * By the time we get here, we already hold the mm semaphore
4592  *
4593  * The mmap_lock may have been released depending on flags and our
4594  * return value.  See filemap_fault() and __folio_lock_or_retry().
4595  */
4596 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4597                 unsigned long address, unsigned int flags)
4598 {
4599         struct vm_fault vmf = {
4600                 .vma = vma,
4601                 .address = address & PAGE_MASK,
4602                 .flags = flags,
4603                 .pgoff = linear_page_index(vma, address),
4604                 .gfp_mask = __get_fault_gfp_mask(vma),
4605         };
4606         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4607         struct mm_struct *mm = vma->vm_mm;
4608         pgd_t *pgd;
4609         p4d_t *p4d;
4610         vm_fault_t ret;
4611
4612         pgd = pgd_offset(mm, address);
4613         p4d = p4d_alloc(mm, pgd, address);
4614         if (!p4d)
4615                 return VM_FAULT_OOM;
4616
4617         vmf.pud = pud_alloc(mm, p4d, address);
4618         if (!vmf.pud)
4619                 return VM_FAULT_OOM;
4620 retry_pud:
4621         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4622                 ret = create_huge_pud(&vmf);
4623                 if (!(ret & VM_FAULT_FALLBACK))
4624                         return ret;
4625         } else {
4626                 pud_t orig_pud = *vmf.pud;
4627
4628                 barrier();
4629                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4630
4631                         /* NUMA case for anonymous PUDs would go here */
4632
4633                         if (dirty && !pud_write(orig_pud)) {
4634                                 ret = wp_huge_pud(&vmf, orig_pud);
4635                                 if (!(ret & VM_FAULT_FALLBACK))
4636                                         return ret;
4637                         } else {
4638                                 huge_pud_set_accessed(&vmf, orig_pud);
4639                                 return 0;
4640                         }
4641                 }
4642         }
4643
4644         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4645         if (!vmf.pmd)
4646                 return VM_FAULT_OOM;
4647
4648         /* Huge pud page fault raced with pmd_alloc? */
4649         if (pud_trans_unstable(vmf.pud))
4650                 goto retry_pud;
4651
4652         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4653                 ret = create_huge_pmd(&vmf);
4654                 if (!(ret & VM_FAULT_FALLBACK))
4655                         return ret;
4656         } else {
4657                 vmf.orig_pmd = *vmf.pmd;
4658
4659                 barrier();
4660                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4661                         VM_BUG_ON(thp_migration_supported() &&
4662                                           !is_pmd_migration_entry(vmf.orig_pmd));
4663                         if (is_pmd_migration_entry(vmf.orig_pmd))
4664                                 pmd_migration_entry_wait(mm, vmf.pmd);
4665                         return 0;
4666                 }
4667                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4668                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4669                                 return do_huge_pmd_numa_page(&vmf);
4670
4671                         if (dirty && !pmd_write(vmf.orig_pmd)) {
4672                                 ret = wp_huge_pmd(&vmf);
4673                                 if (!(ret & VM_FAULT_FALLBACK))
4674                                         return ret;
4675                         } else {
4676                                 huge_pmd_set_accessed(&vmf);
4677                                 return 0;
4678                         }
4679                 }
4680         }
4681
4682         return handle_pte_fault(&vmf);
4683 }
4684
4685 /**
4686  * mm_account_fault - Do page fault accounting
4687  *
4688  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4689  *        of perf event counters, but we'll still do the per-task accounting to
4690  *        the task who triggered this page fault.
4691  * @address: the faulted address.
4692  * @flags: the fault flags.
4693  * @ret: the fault retcode.
4694  *
4695  * This will take care of most of the page fault accounting.  Meanwhile, it
4696  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4697  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4698  * still be in per-arch page fault handlers at the entry of page fault.
4699  */
4700 static inline void mm_account_fault(struct pt_regs *regs,
4701                                     unsigned long address, unsigned int flags,
4702                                     vm_fault_t ret)
4703 {
4704         bool major;
4705
4706         /*
4707          * We don't do accounting for some specific faults:
4708          *
4709          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4710          *   includes arch_vma_access_permitted() failing before reaching here.
4711          *   So this is not a "this many hardware page faults" counter.  We
4712          *   should use the hw profiling for that.
4713          *
4714          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4715          *   once they're completed.
4716          */
4717         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4718                 return;
4719
4720         /*
4721          * We define the fault as a major fault when the final successful fault
4722          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4723          * handle it immediately previously).
4724          */
4725         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4726
4727         if (major)
4728                 current->maj_flt++;
4729         else
4730                 current->min_flt++;
4731
4732         /*
4733          * If the fault is done for GUP, regs will be NULL.  We only do the
4734          * accounting for the per thread fault counters who triggered the
4735          * fault, and we skip the perf event updates.
4736          */
4737         if (!regs)
4738                 return;
4739
4740         if (major)
4741                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4742         else
4743                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4744 }
4745
4746 /*
4747  * By the time we get here, we already hold the mm semaphore
4748  *
4749  * The mmap_lock may have been released depending on flags and our
4750  * return value.  See filemap_fault() and __folio_lock_or_retry().
4751  */
4752 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4753                            unsigned int flags, struct pt_regs *regs)
4754 {
4755         vm_fault_t ret;
4756
4757         __set_current_state(TASK_RUNNING);
4758
4759         count_vm_event(PGFAULT);
4760         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4761
4762         /* do counter updates before entering really critical section. */
4763         check_sync_rss_stat(current);
4764
4765         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4766                                             flags & FAULT_FLAG_INSTRUCTION,
4767                                             flags & FAULT_FLAG_REMOTE))
4768                 return VM_FAULT_SIGSEGV;
4769
4770         /*
4771          * Enable the memcg OOM handling for faults triggered in user
4772          * space.  Kernel faults are handled more gracefully.
4773          */
4774         if (flags & FAULT_FLAG_USER)
4775                 mem_cgroup_enter_user_fault();
4776
4777         if (unlikely(is_vm_hugetlb_page(vma)))
4778                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4779         else
4780                 ret = __handle_mm_fault(vma, address, flags);
4781
4782         if (flags & FAULT_FLAG_USER) {
4783                 mem_cgroup_exit_user_fault();
4784                 /*
4785                  * The task may have entered a memcg OOM situation but
4786                  * if the allocation error was handled gracefully (no
4787                  * VM_FAULT_OOM), there is no need to kill anything.
4788                  * Just clean up the OOM state peacefully.
4789                  */
4790                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4791                         mem_cgroup_oom_synchronize(false);
4792         }
4793
4794         mm_account_fault(regs, address, flags, ret);
4795
4796         return ret;
4797 }
4798 EXPORT_SYMBOL_GPL(handle_mm_fault);
4799
4800 #ifndef __PAGETABLE_P4D_FOLDED
4801 /*
4802  * Allocate p4d page table.
4803  * We've already handled the fast-path in-line.
4804  */
4805 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4806 {
4807         p4d_t *new = p4d_alloc_one(mm, address);
4808         if (!new)
4809                 return -ENOMEM;
4810
4811         spin_lock(&mm->page_table_lock);
4812         if (pgd_present(*pgd)) {        /* Another has populated it */
4813                 p4d_free(mm, new);
4814         } else {
4815                 smp_wmb(); /* See comment in pmd_install() */
4816                 pgd_populate(mm, pgd, new);
4817         }
4818         spin_unlock(&mm->page_table_lock);
4819         return 0;
4820 }
4821 #endif /* __PAGETABLE_P4D_FOLDED */
4822
4823 #ifndef __PAGETABLE_PUD_FOLDED
4824 /*
4825  * Allocate page upper directory.
4826  * We've already handled the fast-path in-line.
4827  */
4828 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4829 {
4830         pud_t *new = pud_alloc_one(mm, address);
4831         if (!new)
4832                 return -ENOMEM;
4833
4834         spin_lock(&mm->page_table_lock);
4835         if (!p4d_present(*p4d)) {
4836                 mm_inc_nr_puds(mm);
4837                 smp_wmb(); /* See comment in pmd_install() */
4838                 p4d_populate(mm, p4d, new);
4839         } else  /* Another has populated it */
4840                 pud_free(mm, new);
4841         spin_unlock(&mm->page_table_lock);
4842         return 0;
4843 }
4844 #endif /* __PAGETABLE_PUD_FOLDED */
4845
4846 #ifndef __PAGETABLE_PMD_FOLDED
4847 /*
4848  * Allocate page middle directory.
4849  * We've already handled the fast-path in-line.
4850  */
4851 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4852 {
4853         spinlock_t *ptl;
4854         pmd_t *new = pmd_alloc_one(mm, address);
4855         if (!new)
4856                 return -ENOMEM;
4857
4858         ptl = pud_lock(mm, pud);
4859         if (!pud_present(*pud)) {
4860                 mm_inc_nr_pmds(mm);
4861                 smp_wmb(); /* See comment in pmd_install() */
4862                 pud_populate(mm, pud, new);
4863         } else {        /* Another has populated it */
4864                 pmd_free(mm, new);
4865         }
4866         spin_unlock(ptl);
4867         return 0;
4868 }
4869 #endif /* __PAGETABLE_PMD_FOLDED */
4870
4871 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4872                           struct mmu_notifier_range *range, pte_t **ptepp,
4873                           pmd_t **pmdpp, spinlock_t **ptlp)
4874 {
4875         pgd_t *pgd;
4876         p4d_t *p4d;
4877         pud_t *pud;
4878         pmd_t *pmd;
4879         pte_t *ptep;
4880
4881         pgd = pgd_offset(mm, address);
4882         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4883                 goto out;
4884
4885         p4d = p4d_offset(pgd, address);
4886         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4887                 goto out;
4888
4889         pud = pud_offset(p4d, address);
4890         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4891                 goto out;
4892
4893         pmd = pmd_offset(pud, address);
4894         VM_BUG_ON(pmd_trans_huge(*pmd));
4895
4896         if (pmd_huge(*pmd)) {
4897                 if (!pmdpp)
4898                         goto out;
4899
4900                 if (range) {
4901                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4902                                                 NULL, mm, address & PMD_MASK,
4903                                                 (address & PMD_MASK) + PMD_SIZE);
4904                         mmu_notifier_invalidate_range_start(range);
4905                 }
4906                 *ptlp = pmd_lock(mm, pmd);
4907                 if (pmd_huge(*pmd)) {
4908                         *pmdpp = pmd;
4909                         return 0;
4910                 }
4911                 spin_unlock(*ptlp);
4912                 if (range)
4913                         mmu_notifier_invalidate_range_end(range);
4914         }
4915
4916         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4917                 goto out;
4918
4919         if (range) {
4920                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4921                                         address & PAGE_MASK,
4922                                         (address & PAGE_MASK) + PAGE_SIZE);
4923                 mmu_notifier_invalidate_range_start(range);
4924         }
4925         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4926         if (!pte_present(*ptep))
4927                 goto unlock;
4928         *ptepp = ptep;
4929         return 0;
4930 unlock:
4931         pte_unmap_unlock(ptep, *ptlp);
4932         if (range)
4933                 mmu_notifier_invalidate_range_end(range);
4934 out:
4935         return -EINVAL;
4936 }
4937
4938 /**
4939  * follow_pte - look up PTE at a user virtual address
4940  * @mm: the mm_struct of the target address space
4941  * @address: user virtual address
4942  * @ptepp: location to store found PTE
4943  * @ptlp: location to store the lock for the PTE
4944  *
4945  * On a successful return, the pointer to the PTE is stored in @ptepp;
4946  * the corresponding lock is taken and its location is stored in @ptlp.
4947  * The contents of the PTE are only stable until @ptlp is released;
4948  * any further use, if any, must be protected against invalidation
4949  * with MMU notifiers.
4950  *
4951  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4952  * should be taken for read.
4953  *
4954  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4955  * it is not a good general-purpose API.
4956  *
4957  * Return: zero on success, -ve otherwise.
4958  */
4959 int follow_pte(struct mm_struct *mm, unsigned long address,
4960                pte_t **ptepp, spinlock_t **ptlp)
4961 {
4962         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4963 }
4964 EXPORT_SYMBOL_GPL(follow_pte);
4965
4966 /**
4967  * follow_pfn - look up PFN at a user virtual address
4968  * @vma: memory mapping
4969  * @address: user virtual address
4970  * @pfn: location to store found PFN
4971  *
4972  * Only IO mappings and raw PFN mappings are allowed.
4973  *
4974  * This function does not allow the caller to read the permissions
4975  * of the PTE.  Do not use it.
4976  *
4977  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4978  */
4979 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4980         unsigned long *pfn)
4981 {
4982         int ret = -EINVAL;
4983         spinlock_t *ptl;
4984         pte_t *ptep;
4985
4986         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4987                 return ret;
4988
4989         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4990         if (ret)
4991                 return ret;
4992         *pfn = pte_pfn(*ptep);
4993         pte_unmap_unlock(ptep, ptl);
4994         return 0;
4995 }
4996 EXPORT_SYMBOL(follow_pfn);
4997
4998 #ifdef CONFIG_HAVE_IOREMAP_PROT
4999 int follow_phys(struct vm_area_struct *vma,
5000                 unsigned long address, unsigned int flags,
5001                 unsigned long *prot, resource_size_t *phys)
5002 {
5003         int ret = -EINVAL;
5004         pte_t *ptep, pte;
5005         spinlock_t *ptl;
5006
5007         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5008                 goto out;
5009
5010         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5011                 goto out;
5012         pte = *ptep;
5013
5014         if ((flags & FOLL_WRITE) && !pte_write(pte))
5015                 goto unlock;
5016
5017         *prot = pgprot_val(pte_pgprot(pte));
5018         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5019
5020         ret = 0;
5021 unlock:
5022         pte_unmap_unlock(ptep, ptl);
5023 out:
5024         return ret;
5025 }
5026
5027 /**
5028  * generic_access_phys - generic implementation for iomem mmap access
5029  * @vma: the vma to access
5030  * @addr: userspace address, not relative offset within @vma
5031  * @buf: buffer to read/write
5032  * @len: length of transfer
5033  * @write: set to FOLL_WRITE when writing, otherwise reading
5034  *
5035  * This is a generic implementation for &vm_operations_struct.access for an
5036  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5037  * not page based.
5038  */
5039 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5040                         void *buf, int len, int write)
5041 {
5042         resource_size_t phys_addr;
5043         unsigned long prot = 0;
5044         void __iomem *maddr;
5045         pte_t *ptep, pte;
5046         spinlock_t *ptl;
5047         int offset = offset_in_page(addr);
5048         int ret = -EINVAL;
5049
5050         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5051                 return -EINVAL;
5052
5053 retry:
5054         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5055                 return -EINVAL;
5056         pte = *ptep;
5057         pte_unmap_unlock(ptep, ptl);
5058
5059         prot = pgprot_val(pte_pgprot(pte));
5060         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5061
5062         if ((write & FOLL_WRITE) && !pte_write(pte))
5063                 return -EINVAL;
5064
5065         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5066         if (!maddr)
5067                 return -ENOMEM;
5068
5069         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5070                 goto out_unmap;
5071
5072         if (!pte_same(pte, *ptep)) {
5073                 pte_unmap_unlock(ptep, ptl);
5074                 iounmap(maddr);
5075
5076                 goto retry;
5077         }
5078
5079         if (write)
5080                 memcpy_toio(maddr + offset, buf, len);
5081         else
5082                 memcpy_fromio(buf, maddr + offset, len);
5083         ret = len;
5084         pte_unmap_unlock(ptep, ptl);
5085 out_unmap:
5086         iounmap(maddr);
5087
5088         return ret;
5089 }
5090 EXPORT_SYMBOL_GPL(generic_access_phys);
5091 #endif
5092
5093 /*
5094  * Access another process' address space as given in mm.
5095  */
5096 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5097                        int len, unsigned int gup_flags)
5098 {
5099         struct vm_area_struct *vma;
5100         void *old_buf = buf;
5101         int write = gup_flags & FOLL_WRITE;
5102
5103         if (mmap_read_lock_killable(mm))
5104                 return 0;
5105
5106         /* ignore errors, just check how much was successfully transferred */
5107         while (len) {
5108                 int bytes, ret, offset;
5109                 void *maddr;
5110                 struct page *page = NULL;
5111
5112                 ret = get_user_pages_remote(mm, addr, 1,
5113                                 gup_flags, &page, &vma, NULL);
5114                 if (ret <= 0) {
5115 #ifndef CONFIG_HAVE_IOREMAP_PROT
5116                         break;
5117 #else
5118                         /*
5119                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5120                          * we can access using slightly different code.
5121                          */
5122                         vma = vma_lookup(mm, addr);
5123                         if (!vma)
5124                                 break;
5125                         if (vma->vm_ops && vma->vm_ops->access)
5126                                 ret = vma->vm_ops->access(vma, addr, buf,
5127                                                           len, write);
5128                         if (ret <= 0)
5129                                 break;
5130                         bytes = ret;
5131 #endif
5132                 } else {
5133                         bytes = len;
5134                         offset = addr & (PAGE_SIZE-1);
5135                         if (bytes > PAGE_SIZE-offset)
5136                                 bytes = PAGE_SIZE-offset;
5137
5138                         maddr = kmap(page);
5139                         if (write) {
5140                                 copy_to_user_page(vma, page, addr,
5141                                                   maddr + offset, buf, bytes);
5142                                 set_page_dirty_lock(page);
5143                         } else {
5144                                 copy_from_user_page(vma, page, addr,
5145                                                     buf, maddr + offset, bytes);
5146                         }
5147                         kunmap(page);
5148                         put_page(page);
5149                 }
5150                 len -= bytes;
5151                 buf += bytes;
5152                 addr += bytes;
5153         }
5154         mmap_read_unlock(mm);
5155
5156         return buf - old_buf;
5157 }
5158
5159 /**
5160  * access_remote_vm - access another process' address space
5161  * @mm:         the mm_struct of the target address space
5162  * @addr:       start address to access
5163  * @buf:        source or destination buffer
5164  * @len:        number of bytes to transfer
5165  * @gup_flags:  flags modifying lookup behaviour
5166  *
5167  * The caller must hold a reference on @mm.
5168  *
5169  * Return: number of bytes copied from source to destination.
5170  */
5171 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5172                 void *buf, int len, unsigned int gup_flags)
5173 {
5174         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5175 }
5176
5177 /*
5178  * Access another process' address space.
5179  * Source/target buffer must be kernel space,
5180  * Do not walk the page table directly, use get_user_pages
5181  */
5182 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5183                 void *buf, int len, unsigned int gup_flags)
5184 {
5185         struct mm_struct *mm;
5186         int ret;
5187
5188         mm = get_task_mm(tsk);
5189         if (!mm)
5190                 return 0;
5191
5192         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5193
5194         mmput(mm);
5195
5196         return ret;
5197 }
5198 EXPORT_SYMBOL_GPL(access_process_vm);
5199
5200 /*
5201  * Print the name of a VMA.
5202  */
5203 void print_vma_addr(char *prefix, unsigned long ip)
5204 {
5205         struct mm_struct *mm = current->mm;
5206         struct vm_area_struct *vma;
5207
5208         /*
5209          * we might be running from an atomic context so we cannot sleep
5210          */
5211         if (!mmap_read_trylock(mm))
5212                 return;
5213
5214         vma = find_vma(mm, ip);
5215         if (vma && vma->vm_file) {
5216                 struct file *f = vma->vm_file;
5217                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5218                 if (buf) {
5219                         char *p;
5220
5221                         p = file_path(f, buf, PAGE_SIZE);
5222                         if (IS_ERR(p))
5223                                 p = "?";
5224                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5225                                         vma->vm_start,
5226                                         vma->vm_end - vma->vm_start);
5227                         free_page((unsigned long)buf);
5228                 }
5229         }
5230         mmap_read_unlock(mm);
5231 }
5232
5233 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5234 void __might_fault(const char *file, int line)
5235 {
5236         /*
5237          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5238          * holding the mmap_lock, this is safe because kernel memory doesn't
5239          * get paged out, therefore we'll never actually fault, and the
5240          * below annotations will generate false positives.
5241          */
5242         if (uaccess_kernel())
5243                 return;
5244         if (pagefault_disabled())
5245                 return;
5246         __might_sleep(file, line);
5247 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5248         if (current->mm)
5249                 might_lock_read(&current->mm->mmap_lock);
5250 #endif
5251 }
5252 EXPORT_SYMBOL(__might_fault);
5253 #endif
5254
5255 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5256 /*
5257  * Process all subpages of the specified huge page with the specified
5258  * operation.  The target subpage will be processed last to keep its
5259  * cache lines hot.
5260  */
5261 static inline void process_huge_page(
5262         unsigned long addr_hint, unsigned int pages_per_huge_page,
5263         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5264         void *arg)
5265 {
5266         int i, n, base, l;
5267         unsigned long addr = addr_hint &
5268                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5269
5270         /* Process target subpage last to keep its cache lines hot */
5271         might_sleep();
5272         n = (addr_hint - addr) / PAGE_SIZE;
5273         if (2 * n <= pages_per_huge_page) {
5274                 /* If target subpage in first half of huge page */
5275                 base = 0;
5276                 l = n;
5277                 /* Process subpages at the end of huge page */
5278                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5279                         cond_resched();
5280                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5281                 }
5282         } else {
5283                 /* If target subpage in second half of huge page */
5284                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5285                 l = pages_per_huge_page - n;
5286                 /* Process subpages at the begin of huge page */
5287                 for (i = 0; i < base; i++) {
5288                         cond_resched();
5289                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5290                 }
5291         }
5292         /*
5293          * Process remaining subpages in left-right-left-right pattern
5294          * towards the target subpage
5295          */
5296         for (i = 0; i < l; i++) {
5297                 int left_idx = base + i;
5298                 int right_idx = base + 2 * l - 1 - i;
5299
5300                 cond_resched();
5301                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5302                 cond_resched();
5303                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5304         }
5305 }
5306
5307 static void clear_gigantic_page(struct page *page,
5308                                 unsigned long addr,
5309                                 unsigned int pages_per_huge_page)
5310 {
5311         int i;
5312         struct page *p = page;
5313
5314         might_sleep();
5315         for (i = 0; i < pages_per_huge_page;
5316              i++, p = mem_map_next(p, page, i)) {
5317                 cond_resched();
5318                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5319         }
5320 }
5321
5322 static void clear_subpage(unsigned long addr, int idx, void *arg)
5323 {
5324         struct page *page = arg;
5325
5326         clear_user_highpage(page + idx, addr);
5327 }
5328
5329 void clear_huge_page(struct page *page,
5330                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5331 {
5332         unsigned long addr = addr_hint &
5333                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5334
5335         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5336                 clear_gigantic_page(page, addr, pages_per_huge_page);
5337                 return;
5338         }
5339
5340         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5341 }
5342
5343 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5344                                     unsigned long addr,
5345                                     struct vm_area_struct *vma,
5346                                     unsigned int pages_per_huge_page)
5347 {
5348         int i;
5349         struct page *dst_base = dst;
5350         struct page *src_base = src;
5351
5352         for (i = 0; i < pages_per_huge_page; ) {
5353                 cond_resched();
5354                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5355
5356                 i++;
5357                 dst = mem_map_next(dst, dst_base, i);
5358                 src = mem_map_next(src, src_base, i);
5359         }
5360 }
5361
5362 struct copy_subpage_arg {
5363         struct page *dst;
5364         struct page *src;
5365         struct vm_area_struct *vma;
5366 };
5367
5368 static void copy_subpage(unsigned long addr, int idx, void *arg)
5369 {
5370         struct copy_subpage_arg *copy_arg = arg;
5371
5372         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5373                            addr, copy_arg->vma);
5374 }
5375
5376 void copy_user_huge_page(struct page *dst, struct page *src,
5377                          unsigned long addr_hint, struct vm_area_struct *vma,
5378                          unsigned int pages_per_huge_page)
5379 {
5380         unsigned long addr = addr_hint &
5381                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5382         struct copy_subpage_arg arg = {
5383                 .dst = dst,
5384                 .src = src,
5385                 .vma = vma,
5386         };
5387
5388         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5389                 copy_user_gigantic_page(dst, src, addr, vma,
5390                                         pages_per_huge_page);
5391                 return;
5392         }
5393
5394         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5395 }
5396
5397 long copy_huge_page_from_user(struct page *dst_page,
5398                                 const void __user *usr_src,
5399                                 unsigned int pages_per_huge_page,
5400                                 bool allow_pagefault)
5401 {
5402         void *page_kaddr;
5403         unsigned long i, rc = 0;
5404         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5405         struct page *subpage = dst_page;
5406
5407         for (i = 0; i < pages_per_huge_page;
5408              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5409                 if (allow_pagefault)
5410                         page_kaddr = kmap(subpage);
5411                 else
5412                         page_kaddr = kmap_atomic(subpage);
5413                 rc = copy_from_user(page_kaddr,
5414                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5415                 if (allow_pagefault)
5416                         kunmap(subpage);
5417                 else
5418                         kunmap_atomic(page_kaddr);
5419
5420                 ret_val -= (PAGE_SIZE - rc);
5421                 if (rc)
5422                         break;
5423
5424                 cond_resched();
5425         }
5426         return ret_val;
5427 }
5428 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5429
5430 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5431
5432 static struct kmem_cache *page_ptl_cachep;
5433
5434 void __init ptlock_cache_init(void)
5435 {
5436         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5437                         SLAB_PANIC, NULL);
5438 }
5439
5440 bool ptlock_alloc(struct page *page)
5441 {
5442         spinlock_t *ptl;
5443
5444         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5445         if (!ptl)
5446                 return false;
5447         page->ptl = ptl;
5448         return true;
5449 }
5450
5451 void ptlock_free(struct page *page)
5452 {
5453         kmem_cache_free(page_ptl_cachep, page->ptl);
5454 }
5455 #endif