Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 static int __init disable_randmaps(char *s)
138 {
139         randomize_va_space = 0;
140         return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146
147 unsigned long highest_memmap_pfn __read_mostly;
148
149 /*
150  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151  */
152 static int __init init_zero_pfn(void)
153 {
154         zero_pfn = page_to_pfn(ZERO_PAGE(0));
155         return 0;
156 }
157 core_initcall(init_zero_pfn);
158
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161         trace_rss_stat(mm, member, count);
162 }
163
164 #if defined(SPLIT_RSS_COUNTING)
165
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168         int i;
169
170         for (i = 0; i < NR_MM_COUNTERS; i++) {
171                 if (current->rss_stat.count[i]) {
172                         add_mm_counter(mm, i, current->rss_stat.count[i]);
173                         current->rss_stat.count[i] = 0;
174                 }
175         }
176         current->rss_stat.events = 0;
177 }
178
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181         struct task_struct *task = current;
182
183         if (likely(task->mm == mm))
184                 task->rss_stat.count[member] += val;
185         else
186                 add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH  (64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195         if (unlikely(task != current))
196                 return;
197         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198                 sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208
209 #endif /* SPLIT_RSS_COUNTING */
210
211 /*
212  * Note: this doesn't free the actual pages themselves. That
213  * has been handled earlier when unmapping all the memory regions.
214  */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216                            unsigned long addr)
217 {
218         pgtable_t token = pmd_pgtable(*pmd);
219         pmd_clear(pmd);
220         pte_free_tlb(tlb, token, addr);
221         mm_dec_nr_ptes(tlb->mm);
222 }
223
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225                                 unsigned long addr, unsigned long end,
226                                 unsigned long floor, unsigned long ceiling)
227 {
228         pmd_t *pmd;
229         unsigned long next;
230         unsigned long start;
231
232         start = addr;
233         pmd = pmd_offset(pud, addr);
234         do {
235                 next = pmd_addr_end(addr, end);
236                 if (pmd_none_or_clear_bad(pmd))
237                         continue;
238                 free_pte_range(tlb, pmd, addr);
239         } while (pmd++, addr = next, addr != end);
240
241         start &= PUD_MASK;
242         if (start < floor)
243                 return;
244         if (ceiling) {
245                 ceiling &= PUD_MASK;
246                 if (!ceiling)
247                         return;
248         }
249         if (end - 1 > ceiling - 1)
250                 return;
251
252         pmd = pmd_offset(pud, start);
253         pud_clear(pud);
254         pmd_free_tlb(tlb, pmd, start);
255         mm_dec_nr_pmds(tlb->mm);
256 }
257
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259                                 unsigned long addr, unsigned long end,
260                                 unsigned long floor, unsigned long ceiling)
261 {
262         pud_t *pud;
263         unsigned long next;
264         unsigned long start;
265
266         start = addr;
267         pud = pud_offset(p4d, addr);
268         do {
269                 next = pud_addr_end(addr, end);
270                 if (pud_none_or_clear_bad(pud))
271                         continue;
272                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273         } while (pud++, addr = next, addr != end);
274
275         start &= P4D_MASK;
276         if (start < floor)
277                 return;
278         if (ceiling) {
279                 ceiling &= P4D_MASK;
280                 if (!ceiling)
281                         return;
282         }
283         if (end - 1 > ceiling - 1)
284                 return;
285
286         pud = pud_offset(p4d, start);
287         p4d_clear(p4d);
288         pud_free_tlb(tlb, pud, start);
289         mm_dec_nr_puds(tlb->mm);
290 }
291
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293                                 unsigned long addr, unsigned long end,
294                                 unsigned long floor, unsigned long ceiling)
295 {
296         p4d_t *p4d;
297         unsigned long next;
298         unsigned long start;
299
300         start = addr;
301         p4d = p4d_offset(pgd, addr);
302         do {
303                 next = p4d_addr_end(addr, end);
304                 if (p4d_none_or_clear_bad(p4d))
305                         continue;
306                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307         } while (p4d++, addr = next, addr != end);
308
309         start &= PGDIR_MASK;
310         if (start < floor)
311                 return;
312         if (ceiling) {
313                 ceiling &= PGDIR_MASK;
314                 if (!ceiling)
315                         return;
316         }
317         if (end - 1 > ceiling - 1)
318                 return;
319
320         p4d = p4d_offset(pgd, start);
321         pgd_clear(pgd);
322         p4d_free_tlb(tlb, p4d, start);
323 }
324
325 /*
326  * This function frees user-level page tables of a process.
327  */
328 void free_pgd_range(struct mmu_gather *tlb,
329                         unsigned long addr, unsigned long end,
330                         unsigned long floor, unsigned long ceiling)
331 {
332         pgd_t *pgd;
333         unsigned long next;
334
335         /*
336          * The next few lines have given us lots of grief...
337          *
338          * Why are we testing PMD* at this top level?  Because often
339          * there will be no work to do at all, and we'd prefer not to
340          * go all the way down to the bottom just to discover that.
341          *
342          * Why all these "- 1"s?  Because 0 represents both the bottom
343          * of the address space and the top of it (using -1 for the
344          * top wouldn't help much: the masks would do the wrong thing).
345          * The rule is that addr 0 and floor 0 refer to the bottom of
346          * the address space, but end 0 and ceiling 0 refer to the top
347          * Comparisons need to use "end - 1" and "ceiling - 1" (though
348          * that end 0 case should be mythical).
349          *
350          * Wherever addr is brought up or ceiling brought down, we must
351          * be careful to reject "the opposite 0" before it confuses the
352          * subsequent tests.  But what about where end is brought down
353          * by PMD_SIZE below? no, end can't go down to 0 there.
354          *
355          * Whereas we round start (addr) and ceiling down, by different
356          * masks at different levels, in order to test whether a table
357          * now has no other vmas using it, so can be freed, we don't
358          * bother to round floor or end up - the tests don't need that.
359          */
360
361         addr &= PMD_MASK;
362         if (addr < floor) {
363                 addr += PMD_SIZE;
364                 if (!addr)
365                         return;
366         }
367         if (ceiling) {
368                 ceiling &= PMD_MASK;
369                 if (!ceiling)
370                         return;
371         }
372         if (end - 1 > ceiling - 1)
373                 end -= PMD_SIZE;
374         if (addr > end - 1)
375                 return;
376         /*
377          * We add page table cache pages with PAGE_SIZE,
378          * (see pte_free_tlb()), flush the tlb if we need
379          */
380         tlb_change_page_size(tlb, PAGE_SIZE);
381         pgd = pgd_offset(tlb->mm, addr);
382         do {
383                 next = pgd_addr_end(addr, end);
384                 if (pgd_none_or_clear_bad(pgd))
385                         continue;
386                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387         } while (pgd++, addr = next, addr != end);
388 }
389
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391                 unsigned long floor, unsigned long ceiling)
392 {
393         while (vma) {
394                 struct vm_area_struct *next = vma->vm_next;
395                 unsigned long addr = vma->vm_start;
396
397                 /*
398                  * Hide vma from rmap and truncate_pagecache before freeing
399                  * pgtables
400                  */
401                 unlink_anon_vmas(vma);
402                 unlink_file_vma(vma);
403
404                 if (is_vm_hugetlb_page(vma)) {
405                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406                                 floor, next ? next->vm_start : ceiling);
407                 } else {
408                         /*
409                          * Optimization: gather nearby vmas into one call down
410                          */
411                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412                                && !is_vm_hugetlb_page(next)) {
413                                 vma = next;
414                                 next = vma->vm_next;
415                                 unlink_anon_vmas(vma);
416                                 unlink_file_vma(vma);
417                         }
418                         free_pgd_range(tlb, addr, vma->vm_end,
419                                 floor, next ? next->vm_start : ceiling);
420                 }
421                 vma = next;
422         }
423 }
424
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427         spinlock_t *ptl;
428         pgtable_t new = pte_alloc_one(mm);
429         if (!new)
430                 return -ENOMEM;
431
432         /*
433          * Ensure all pte setup (eg. pte page lock and page clearing) are
434          * visible before the pte is made visible to other CPUs by being
435          * put into page tables.
436          *
437          * The other side of the story is the pointer chasing in the page
438          * table walking code (when walking the page table without locking;
439          * ie. most of the time). Fortunately, these data accesses consist
440          * of a chain of data-dependent loads, meaning most CPUs (alpha
441          * being the notable exception) will already guarantee loads are
442          * seen in-order. See the alpha page table accessors for the
443          * smp_rmb() barriers in page table walking code.
444          */
445         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
447         ptl = pmd_lock(mm, pmd);
448         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
449                 mm_inc_nr_ptes(mm);
450                 pmd_populate(mm, pmd, new);
451                 new = NULL;
452         }
453         spin_unlock(ptl);
454         if (new)
455                 pte_free(mm, new);
456         return 0;
457 }
458
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461         pte_t *new = pte_alloc_one_kernel(&init_mm);
462         if (!new)
463                 return -ENOMEM;
464
465         smp_wmb(); /* See comment in __pte_alloc */
466
467         spin_lock(&init_mm.page_table_lock);
468         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
469                 pmd_populate_kernel(&init_mm, pmd, new);
470                 new = NULL;
471         }
472         spin_unlock(&init_mm.page_table_lock);
473         if (new)
474                 pte_free_kernel(&init_mm, new);
475         return 0;
476 }
477
478 static inline void init_rss_vec(int *rss)
479 {
480         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485         int i;
486
487         if (current->mm == mm)
488                 sync_mm_rss(mm);
489         for (i = 0; i < NR_MM_COUNTERS; i++)
490                 if (rss[i])
491                         add_mm_counter(mm, i, rss[i]);
492 }
493
494 /*
495  * This function is called to print an error when a bad pte
496  * is found. For example, we might have a PFN-mapped pte in
497  * a region that doesn't allow it.
498  *
499  * The calling function must still handle the error.
500  */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502                           pte_t pte, struct page *page)
503 {
504         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505         p4d_t *p4d = p4d_offset(pgd, addr);
506         pud_t *pud = pud_offset(p4d, addr);
507         pmd_t *pmd = pmd_offset(pud, addr);
508         struct address_space *mapping;
509         pgoff_t index;
510         static unsigned long resume;
511         static unsigned long nr_shown;
512         static unsigned long nr_unshown;
513
514         /*
515          * Allow a burst of 60 reports, then keep quiet for that minute;
516          * or allow a steady drip of one report per second.
517          */
518         if (nr_shown == 60) {
519                 if (time_before(jiffies, resume)) {
520                         nr_unshown++;
521                         return;
522                 }
523                 if (nr_unshown) {
524                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525                                  nr_unshown);
526                         nr_unshown = 0;
527                 }
528                 nr_shown = 0;
529         }
530         if (nr_shown++ == 0)
531                 resume = jiffies + 60 * HZ;
532
533         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534         index = linear_page_index(vma, addr);
535
536         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
537                  current->comm,
538                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
539         if (page)
540                 dump_page(page, "bad pte");
541         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544                  vma->vm_file,
545                  vma->vm_ops ? vma->vm_ops->fault : NULL,
546                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547                  mapping ? mapping->a_ops->readpage : NULL);
548         dump_stack();
549         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553  * vm_normal_page -- This function gets the "struct page" associated with a pte.
554  *
555  * "Special" mappings do not wish to be associated with a "struct page" (either
556  * it doesn't exist, or it exists but they don't want to touch it). In this
557  * case, NULL is returned here. "Normal" mappings do have a struct page.
558  *
559  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560  * pte bit, in which case this function is trivial. Secondly, an architecture
561  * may not have a spare pte bit, which requires a more complicated scheme,
562  * described below.
563  *
564  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565  * special mapping (even if there are underlying and valid "struct pages").
566  * COWed pages of a VM_PFNMAP are always normal.
567  *
568  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571  * mapping will always honor the rule
572  *
573  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574  *
575  * And for normal mappings this is false.
576  *
577  * This restricts such mappings to be a linear translation from virtual address
578  * to pfn. To get around this restriction, we allow arbitrary mappings so long
579  * as the vma is not a COW mapping; in that case, we know that all ptes are
580  * special (because none can have been COWed).
581  *
582  *
583  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584  *
585  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586  * page" backing, however the difference is that _all_ pages with a struct
587  * page (that is, those where pfn_valid is true) are refcounted and considered
588  * normal pages by the VM. The disadvantage is that pages are refcounted
589  * (which can be slower and simply not an option for some PFNMAP users). The
590  * advantage is that we don't have to follow the strict linearity rule of
591  * PFNMAP mappings in order to support COWable mappings.
592  *
593  */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595                             pte_t pte)
596 {
597         unsigned long pfn = pte_pfn(pte);
598
599         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600                 if (likely(!pte_special(pte)))
601                         goto check_pfn;
602                 if (vma->vm_ops && vma->vm_ops->find_special_page)
603                         return vma->vm_ops->find_special_page(vma, addr);
604                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605                         return NULL;
606                 if (is_zero_pfn(pfn))
607                         return NULL;
608                 if (pte_devmap(pte))
609                         return NULL;
610
611                 print_bad_pte(vma, addr, pte, NULL);
612                 return NULL;
613         }
614
615         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616
617         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618                 if (vma->vm_flags & VM_MIXEDMAP) {
619                         if (!pfn_valid(pfn))
620                                 return NULL;
621                         goto out;
622                 } else {
623                         unsigned long off;
624                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
625                         if (pfn == vma->vm_pgoff + off)
626                                 return NULL;
627                         if (!is_cow_mapping(vma->vm_flags))
628                                 return NULL;
629                 }
630         }
631
632         if (is_zero_pfn(pfn))
633                 return NULL;
634
635 check_pfn:
636         if (unlikely(pfn > highest_memmap_pfn)) {
637                 print_bad_pte(vma, addr, pte, NULL);
638                 return NULL;
639         }
640
641         /*
642          * NOTE! We still have PageReserved() pages in the page tables.
643          * eg. VDSO mappings can cause them to exist.
644          */
645 out:
646         return pfn_to_page(pfn);
647 }
648
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651                                 pmd_t pmd)
652 {
653         unsigned long pfn = pmd_pfn(pmd);
654
655         /*
656          * There is no pmd_special() but there may be special pmds, e.g.
657          * in a direct-access (dax) mapping, so let's just replicate the
658          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659          */
660         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661                 if (vma->vm_flags & VM_MIXEDMAP) {
662                         if (!pfn_valid(pfn))
663                                 return NULL;
664                         goto out;
665                 } else {
666                         unsigned long off;
667                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
668                         if (pfn == vma->vm_pgoff + off)
669                                 return NULL;
670                         if (!is_cow_mapping(vma->vm_flags))
671                                 return NULL;
672                 }
673         }
674
675         if (pmd_devmap(pmd))
676                 return NULL;
677         if (is_huge_zero_pmd(pmd))
678                 return NULL;
679         if (unlikely(pfn > highest_memmap_pfn))
680                 return NULL;
681
682         /*
683          * NOTE! We still have PageReserved() pages in the page tables.
684          * eg. VDSO mappings can cause them to exist.
685          */
686 out:
687         return pfn_to_page(pfn);
688 }
689 #endif
690
691 /*
692  * copy one vm_area from one task to the other. Assumes the page tables
693  * already present in the new task to be cleared in the whole range
694  * covered by this vma.
695  */
696
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
700                 unsigned long addr, int *rss)
701 {
702         unsigned long vm_flags = vma->vm_flags;
703         pte_t pte = *src_pte;
704         struct page *page;
705         swp_entry_t entry = pte_to_swp_entry(pte);
706
707         if (likely(!non_swap_entry(entry))) {
708                 if (swap_duplicate(entry) < 0)
709                         return entry.val;
710
711                 /* make sure dst_mm is on swapoff's mmlist. */
712                 if (unlikely(list_empty(&dst_mm->mmlist))) {
713                         spin_lock(&mmlist_lock);
714                         if (list_empty(&dst_mm->mmlist))
715                                 list_add(&dst_mm->mmlist,
716                                                 &src_mm->mmlist);
717                         spin_unlock(&mmlist_lock);
718                 }
719                 rss[MM_SWAPENTS]++;
720         } else if (is_migration_entry(entry)) {
721                 page = migration_entry_to_page(entry);
722
723                 rss[mm_counter(page)]++;
724
725                 if (is_write_migration_entry(entry) &&
726                                 is_cow_mapping(vm_flags)) {
727                         /*
728                          * COW mappings require pages in both
729                          * parent and child to be set to read.
730                          */
731                         make_migration_entry_read(&entry);
732                         pte = swp_entry_to_pte(entry);
733                         if (pte_swp_soft_dirty(*src_pte))
734                                 pte = pte_swp_mksoft_dirty(pte);
735                         if (pte_swp_uffd_wp(*src_pte))
736                                 pte = pte_swp_mkuffd_wp(pte);
737                         set_pte_at(src_mm, addr, src_pte, pte);
738                 }
739         } else if (is_device_private_entry(entry)) {
740                 page = device_private_entry_to_page(entry);
741
742                 /*
743                  * Update rss count even for unaddressable pages, as
744                  * they should treated just like normal pages in this
745                  * respect.
746                  *
747                  * We will likely want to have some new rss counters
748                  * for unaddressable pages, at some point. But for now
749                  * keep things as they are.
750                  */
751                 get_page(page);
752                 rss[mm_counter(page)]++;
753                 page_dup_rmap(page, false);
754
755                 /*
756                  * We do not preserve soft-dirty information, because so
757                  * far, checkpoint/restore is the only feature that
758                  * requires that. And checkpoint/restore does not work
759                  * when a device driver is involved (you cannot easily
760                  * save and restore device driver state).
761                  */
762                 if (is_write_device_private_entry(entry) &&
763                     is_cow_mapping(vm_flags)) {
764                         make_device_private_entry_read(&entry);
765                         pte = swp_entry_to_pte(entry);
766                         if (pte_swp_uffd_wp(*src_pte))
767                                 pte = pte_swp_mkuffd_wp(pte);
768                         set_pte_at(src_mm, addr, src_pte, pte);
769                 }
770         }
771         set_pte_at(dst_mm, addr, dst_pte, pte);
772         return 0;
773 }
774
775 /*
776  * Copy a present and normal page if necessary.
777  *
778  * NOTE! The usual case is that this doesn't need to do
779  * anything, and can just return a positive value. That
780  * will let the caller know that it can just increase
781  * the page refcount and re-use the pte the traditional
782  * way.
783  *
784  * But _if_ we need to copy it because it needs to be
785  * pinned in the parent (and the child should get its own
786  * copy rather than just a reference to the same page),
787  * we'll do that here and return zero to let the caller
788  * know we're done.
789  *
790  * And if we need a pre-allocated page but don't yet have
791  * one, return a negative error to let the preallocation
792  * code know so that it can do so outside the page table
793  * lock.
794  */
795 static inline int
796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798                   struct page **prealloc, pte_t pte, struct page *page)
799 {
800         struct mm_struct *src_mm = src_vma->vm_mm;
801         struct page *new_page;
802
803         if (!is_cow_mapping(src_vma->vm_flags))
804                 return 1;
805
806         /*
807          * What we want to do is to check whether this page may
808          * have been pinned by the parent process.  If so,
809          * instead of wrprotect the pte on both sides, we copy
810          * the page immediately so that we'll always guarantee
811          * the pinned page won't be randomly replaced in the
812          * future.
813          *
814          * The page pinning checks are just "has this mm ever
815          * seen pinning", along with the (inexact) check of
816          * the page count. That might give false positives for
817          * for pinning, but it will work correctly.
818          */
819         if (likely(!atomic_read(&src_mm->has_pinned)))
820                 return 1;
821         if (likely(!page_maybe_dma_pinned(page)))
822                 return 1;
823
824         new_page = *prealloc;
825         if (!new_page)
826                 return -EAGAIN;
827
828         /*
829          * We have a prealloc page, all good!  Take it
830          * over and copy the page & arm it.
831          */
832         *prealloc = NULL;
833         copy_user_highpage(new_page, page, addr, src_vma);
834         __SetPageUptodate(new_page);
835         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
837         rss[mm_counter(new_page)]++;
838
839         /* All done, just insert the new page copy in the child */
840         pte = mk_pte(new_page, dst_vma->vm_page_prot);
841         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
843         return 0;
844 }
845
846 /*
847  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
848  * is required to copy this pte.
849  */
850 static inline int
851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853                  struct page **prealloc)
854 {
855         struct mm_struct *src_mm = src_vma->vm_mm;
856         unsigned long vm_flags = src_vma->vm_flags;
857         pte_t pte = *src_pte;
858         struct page *page;
859
860         page = vm_normal_page(src_vma, addr, pte);
861         if (page) {
862                 int retval;
863
864                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865                                            addr, rss, prealloc, pte, page);
866                 if (retval <= 0)
867                         return retval;
868
869                 get_page(page);
870                 page_dup_rmap(page, false);
871                 rss[mm_counter(page)]++;
872         }
873
874         /*
875          * If it's a COW mapping, write protect it both
876          * in the parent and the child
877          */
878         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
879                 ptep_set_wrprotect(src_mm, addr, src_pte);
880                 pte = pte_wrprotect(pte);
881         }
882
883         /*
884          * If it's a shared mapping, mark it clean in
885          * the child
886          */
887         if (vm_flags & VM_SHARED)
888                 pte = pte_mkclean(pte);
889         pte = pte_mkold(pte);
890
891         /*
892          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893          * does not have the VM_UFFD_WP, which means that the uffd
894          * fork event is not enabled.
895          */
896         if (!(vm_flags & VM_UFFD_WP))
897                 pte = pte_clear_uffd_wp(pte);
898
899         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900         return 0;
901 }
902
903 static inline struct page *
904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905                    unsigned long addr)
906 {
907         struct page *new_page;
908
909         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910         if (!new_page)
911                 return NULL;
912
913         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914                 put_page(new_page);
915                 return NULL;
916         }
917         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918
919         return new_page;
920 }
921
922 static int
923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925                unsigned long end)
926 {
927         struct mm_struct *dst_mm = dst_vma->vm_mm;
928         struct mm_struct *src_mm = src_vma->vm_mm;
929         pte_t *orig_src_pte, *orig_dst_pte;
930         pte_t *src_pte, *dst_pte;
931         spinlock_t *src_ptl, *dst_ptl;
932         int progress, ret = 0;
933         int rss[NR_MM_COUNTERS];
934         swp_entry_t entry = (swp_entry_t){0};
935         struct page *prealloc = NULL;
936
937 again:
938         progress = 0;
939         init_rss_vec(rss);
940
941         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942         if (!dst_pte) {
943                 ret = -ENOMEM;
944                 goto out;
945         }
946         src_pte = pte_offset_map(src_pmd, addr);
947         src_ptl = pte_lockptr(src_mm, src_pmd);
948         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949         orig_src_pte = src_pte;
950         orig_dst_pte = dst_pte;
951         arch_enter_lazy_mmu_mode();
952
953         do {
954                 /*
955                  * We are holding two locks at this point - either of them
956                  * could generate latencies in another task on another CPU.
957                  */
958                 if (progress >= 32) {
959                         progress = 0;
960                         if (need_resched() ||
961                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962                                 break;
963                 }
964                 if (pte_none(*src_pte)) {
965                         progress++;
966                         continue;
967                 }
968                 if (unlikely(!pte_present(*src_pte))) {
969                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970                                                         dst_pte, src_pte,
971                                                         src_vma, addr, rss);
972                         if (entry.val)
973                                 break;
974                         progress += 8;
975                         continue;
976                 }
977                 /* copy_present_pte() will clear `*prealloc' if consumed */
978                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979                                        addr, rss, &prealloc);
980                 /*
981                  * If we need a pre-allocated page for this pte, drop the
982                  * locks, allocate, and try again.
983                  */
984                 if (unlikely(ret == -EAGAIN))
985                         break;
986                 if (unlikely(prealloc)) {
987                         /*
988                          * pre-alloc page cannot be reused by next time so as
989                          * to strictly follow mempolicy (e.g., alloc_page_vma()
990                          * will allocate page according to address).  This
991                          * could only happen if one pinned pte changed.
992                          */
993                         put_page(prealloc);
994                         prealloc = NULL;
995                 }
996                 progress += 8;
997         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
998
999         arch_leave_lazy_mmu_mode();
1000         spin_unlock(src_ptl);
1001         pte_unmap(orig_src_pte);
1002         add_mm_rss_vec(dst_mm, rss);
1003         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1004         cond_resched();
1005
1006         if (entry.val) {
1007                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008                         ret = -ENOMEM;
1009                         goto out;
1010                 }
1011                 entry.val = 0;
1012         } else if (ret) {
1013                 WARN_ON_ONCE(ret != -EAGAIN);
1014                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1015                 if (!prealloc)
1016                         return -ENOMEM;
1017                 /* We've captured and resolved the error. Reset, try again. */
1018                 ret = 0;
1019         }
1020         if (addr != end)
1021                 goto again;
1022 out:
1023         if (unlikely(prealloc))
1024                 put_page(prealloc);
1025         return ret;
1026 }
1027
1028 static inline int
1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031                unsigned long end)
1032 {
1033         struct mm_struct *dst_mm = dst_vma->vm_mm;
1034         struct mm_struct *src_mm = src_vma->vm_mm;
1035         pmd_t *src_pmd, *dst_pmd;
1036         unsigned long next;
1037
1038         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039         if (!dst_pmd)
1040                 return -ENOMEM;
1041         src_pmd = pmd_offset(src_pud, addr);
1042         do {
1043                 next = pmd_addr_end(addr, end);
1044                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045                         || pmd_devmap(*src_pmd)) {
1046                         int err;
1047                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1048                         err = copy_huge_pmd(dst_mm, src_mm,
1049                                             dst_pmd, src_pmd, addr, src_vma);
1050                         if (err == -ENOMEM)
1051                                 return -ENOMEM;
1052                         if (!err)
1053                                 continue;
1054                         /* fall through */
1055                 }
1056                 if (pmd_none_or_clear_bad(src_pmd))
1057                         continue;
1058                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059                                    addr, next))
1060                         return -ENOMEM;
1061         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062         return 0;
1063 }
1064
1065 static inline int
1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068                unsigned long end)
1069 {
1070         struct mm_struct *dst_mm = dst_vma->vm_mm;
1071         struct mm_struct *src_mm = src_vma->vm_mm;
1072         pud_t *src_pud, *dst_pud;
1073         unsigned long next;
1074
1075         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1076         if (!dst_pud)
1077                 return -ENOMEM;
1078         src_pud = pud_offset(src_p4d, addr);
1079         do {
1080                 next = pud_addr_end(addr, end);
1081                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082                         int err;
1083
1084                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1085                         err = copy_huge_pud(dst_mm, src_mm,
1086                                             dst_pud, src_pud, addr, src_vma);
1087                         if (err == -ENOMEM)
1088                                 return -ENOMEM;
1089                         if (!err)
1090                                 continue;
1091                         /* fall through */
1092                 }
1093                 if (pud_none_or_clear_bad(src_pud))
1094                         continue;
1095                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096                                    addr, next))
1097                         return -ENOMEM;
1098         } while (dst_pud++, src_pud++, addr = next, addr != end);
1099         return 0;
1100 }
1101
1102 static inline int
1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105                unsigned long end)
1106 {
1107         struct mm_struct *dst_mm = dst_vma->vm_mm;
1108         p4d_t *src_p4d, *dst_p4d;
1109         unsigned long next;
1110
1111         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112         if (!dst_p4d)
1113                 return -ENOMEM;
1114         src_p4d = p4d_offset(src_pgd, addr);
1115         do {
1116                 next = p4d_addr_end(addr, end);
1117                 if (p4d_none_or_clear_bad(src_p4d))
1118                         continue;
1119                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120                                    addr, next))
1121                         return -ENOMEM;
1122         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123         return 0;
1124 }
1125
1126 int
1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1128 {
1129         pgd_t *src_pgd, *dst_pgd;
1130         unsigned long next;
1131         unsigned long addr = src_vma->vm_start;
1132         unsigned long end = src_vma->vm_end;
1133         struct mm_struct *dst_mm = dst_vma->vm_mm;
1134         struct mm_struct *src_mm = src_vma->vm_mm;
1135         struct mmu_notifier_range range;
1136         bool is_cow;
1137         int ret;
1138
1139         /*
1140          * Don't copy ptes where a page fault will fill them correctly.
1141          * Fork becomes much lighter when there are big shared or private
1142          * readonly mappings. The tradeoff is that copy_page_range is more
1143          * efficient than faulting.
1144          */
1145         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146             !src_vma->anon_vma)
1147                 return 0;
1148
1149         if (is_vm_hugetlb_page(src_vma))
1150                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1151
1152         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1153                 /*
1154                  * We do not free on error cases below as remove_vma
1155                  * gets called on error from higher level routine
1156                  */
1157                 ret = track_pfn_copy(src_vma);
1158                 if (ret)
1159                         return ret;
1160         }
1161
1162         /*
1163          * We need to invalidate the secondary MMU mappings only when
1164          * there could be a permission downgrade on the ptes of the
1165          * parent mm. And a permission downgrade will only happen if
1166          * is_cow_mapping() returns true.
1167          */
1168         is_cow = is_cow_mapping(src_vma->vm_flags);
1169
1170         if (is_cow) {
1171                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1172                                         0, src_vma, src_mm, addr, end);
1173                 mmu_notifier_invalidate_range_start(&range);
1174         }
1175
1176         ret = 0;
1177         dst_pgd = pgd_offset(dst_mm, addr);
1178         src_pgd = pgd_offset(src_mm, addr);
1179         do {
1180                 next = pgd_addr_end(addr, end);
1181                 if (pgd_none_or_clear_bad(src_pgd))
1182                         continue;
1183                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1184                                             addr, next))) {
1185                         ret = -ENOMEM;
1186                         break;
1187                 }
1188         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1189
1190         if (is_cow)
1191                 mmu_notifier_invalidate_range_end(&range);
1192         return ret;
1193 }
1194
1195 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1196                                 struct vm_area_struct *vma, pmd_t *pmd,
1197                                 unsigned long addr, unsigned long end,
1198                                 struct zap_details *details)
1199 {
1200         struct mm_struct *mm = tlb->mm;
1201         int force_flush = 0;
1202         int rss[NR_MM_COUNTERS];
1203         spinlock_t *ptl;
1204         pte_t *start_pte;
1205         pte_t *pte;
1206         swp_entry_t entry;
1207
1208         tlb_change_page_size(tlb, PAGE_SIZE);
1209 again:
1210         init_rss_vec(rss);
1211         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1212         pte = start_pte;
1213         flush_tlb_batched_pending(mm);
1214         arch_enter_lazy_mmu_mode();
1215         do {
1216                 pte_t ptent = *pte;
1217                 if (pte_none(ptent))
1218                         continue;
1219
1220                 if (need_resched())
1221                         break;
1222
1223                 if (pte_present(ptent)) {
1224                         struct page *page;
1225
1226                         page = vm_normal_page(vma, addr, ptent);
1227                         if (unlikely(details) && page) {
1228                                 /*
1229                                  * unmap_shared_mapping_pages() wants to
1230                                  * invalidate cache without truncating:
1231                                  * unmap shared but keep private pages.
1232                                  */
1233                                 if (details->check_mapping &&
1234                                     details->check_mapping != page_rmapping(page))
1235                                         continue;
1236                         }
1237                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1238                                                         tlb->fullmm);
1239                         tlb_remove_tlb_entry(tlb, pte, addr);
1240                         if (unlikely(!page))
1241                                 continue;
1242
1243                         if (!PageAnon(page)) {
1244                                 if (pte_dirty(ptent)) {
1245                                         force_flush = 1;
1246                                         set_page_dirty(page);
1247                                 }
1248                                 if (pte_young(ptent) &&
1249                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1250                                         mark_page_accessed(page);
1251                         }
1252                         rss[mm_counter(page)]--;
1253                         page_remove_rmap(page, false);
1254                         if (unlikely(page_mapcount(page) < 0))
1255                                 print_bad_pte(vma, addr, ptent, page);
1256                         if (unlikely(__tlb_remove_page(tlb, page))) {
1257                                 force_flush = 1;
1258                                 addr += PAGE_SIZE;
1259                                 break;
1260                         }
1261                         continue;
1262                 }
1263
1264                 entry = pte_to_swp_entry(ptent);
1265                 if (is_device_private_entry(entry)) {
1266                         struct page *page = device_private_entry_to_page(entry);
1267
1268                         if (unlikely(details && details->check_mapping)) {
1269                                 /*
1270                                  * unmap_shared_mapping_pages() wants to
1271                                  * invalidate cache without truncating:
1272                                  * unmap shared but keep private pages.
1273                                  */
1274                                 if (details->check_mapping !=
1275                                     page_rmapping(page))
1276                                         continue;
1277                         }
1278
1279                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1280                         rss[mm_counter(page)]--;
1281                         page_remove_rmap(page, false);
1282                         put_page(page);
1283                         continue;
1284                 }
1285
1286                 /* If details->check_mapping, we leave swap entries. */
1287                 if (unlikely(details))
1288                         continue;
1289
1290                 if (!non_swap_entry(entry))
1291                         rss[MM_SWAPENTS]--;
1292                 else if (is_migration_entry(entry)) {
1293                         struct page *page;
1294
1295                         page = migration_entry_to_page(entry);
1296                         rss[mm_counter(page)]--;
1297                 }
1298                 if (unlikely(!free_swap_and_cache(entry)))
1299                         print_bad_pte(vma, addr, ptent, NULL);
1300                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1301         } while (pte++, addr += PAGE_SIZE, addr != end);
1302
1303         add_mm_rss_vec(mm, rss);
1304         arch_leave_lazy_mmu_mode();
1305
1306         /* Do the actual TLB flush before dropping ptl */
1307         if (force_flush)
1308                 tlb_flush_mmu_tlbonly(tlb);
1309         pte_unmap_unlock(start_pte, ptl);
1310
1311         /*
1312          * If we forced a TLB flush (either due to running out of
1313          * batch buffers or because we needed to flush dirty TLB
1314          * entries before releasing the ptl), free the batched
1315          * memory too. Restart if we didn't do everything.
1316          */
1317         if (force_flush) {
1318                 force_flush = 0;
1319                 tlb_flush_mmu(tlb);
1320         }
1321
1322         if (addr != end) {
1323                 cond_resched();
1324                 goto again;
1325         }
1326
1327         return addr;
1328 }
1329
1330 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1331                                 struct vm_area_struct *vma, pud_t *pud,
1332                                 unsigned long addr, unsigned long end,
1333                                 struct zap_details *details)
1334 {
1335         pmd_t *pmd;
1336         unsigned long next;
1337
1338         pmd = pmd_offset(pud, addr);
1339         do {
1340                 next = pmd_addr_end(addr, end);
1341                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1342                         if (next - addr != HPAGE_PMD_SIZE)
1343                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1344                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1345                                 goto next;
1346                         /* fall through */
1347                 }
1348                 /*
1349                  * Here there can be other concurrent MADV_DONTNEED or
1350                  * trans huge page faults running, and if the pmd is
1351                  * none or trans huge it can change under us. This is
1352                  * because MADV_DONTNEED holds the mmap_lock in read
1353                  * mode.
1354                  */
1355                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1356                         goto next;
1357                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1358 next:
1359                 cond_resched();
1360         } while (pmd++, addr = next, addr != end);
1361
1362         return addr;
1363 }
1364
1365 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1366                                 struct vm_area_struct *vma, p4d_t *p4d,
1367                                 unsigned long addr, unsigned long end,
1368                                 struct zap_details *details)
1369 {
1370         pud_t *pud;
1371         unsigned long next;
1372
1373         pud = pud_offset(p4d, addr);
1374         do {
1375                 next = pud_addr_end(addr, end);
1376                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1377                         if (next - addr != HPAGE_PUD_SIZE) {
1378                                 mmap_assert_locked(tlb->mm);
1379                                 split_huge_pud(vma, pud, addr);
1380                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1381                                 goto next;
1382                         /* fall through */
1383                 }
1384                 if (pud_none_or_clear_bad(pud))
1385                         continue;
1386                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1387 next:
1388                 cond_resched();
1389         } while (pud++, addr = next, addr != end);
1390
1391         return addr;
1392 }
1393
1394 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1395                                 struct vm_area_struct *vma, pgd_t *pgd,
1396                                 unsigned long addr, unsigned long end,
1397                                 struct zap_details *details)
1398 {
1399         p4d_t *p4d;
1400         unsigned long next;
1401
1402         p4d = p4d_offset(pgd, addr);
1403         do {
1404                 next = p4d_addr_end(addr, end);
1405                 if (p4d_none_or_clear_bad(p4d))
1406                         continue;
1407                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1408         } while (p4d++, addr = next, addr != end);
1409
1410         return addr;
1411 }
1412
1413 void unmap_page_range(struct mmu_gather *tlb,
1414                              struct vm_area_struct *vma,
1415                              unsigned long addr, unsigned long end,
1416                              struct zap_details *details)
1417 {
1418         pgd_t *pgd;
1419         unsigned long next;
1420
1421         BUG_ON(addr >= end);
1422         tlb_start_vma(tlb, vma);
1423         pgd = pgd_offset(vma->vm_mm, addr);
1424         do {
1425                 next = pgd_addr_end(addr, end);
1426                 if (pgd_none_or_clear_bad(pgd))
1427                         continue;
1428                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1429         } while (pgd++, addr = next, addr != end);
1430         tlb_end_vma(tlb, vma);
1431 }
1432
1433
1434 static void unmap_single_vma(struct mmu_gather *tlb,
1435                 struct vm_area_struct *vma, unsigned long start_addr,
1436                 unsigned long end_addr,
1437                 struct zap_details *details)
1438 {
1439         unsigned long start = max(vma->vm_start, start_addr);
1440         unsigned long end;
1441
1442         if (start >= vma->vm_end)
1443                 return;
1444         end = min(vma->vm_end, end_addr);
1445         if (end <= vma->vm_start)
1446                 return;
1447
1448         if (vma->vm_file)
1449                 uprobe_munmap(vma, start, end);
1450
1451         if (unlikely(vma->vm_flags & VM_PFNMAP))
1452                 untrack_pfn(vma, 0, 0);
1453
1454         if (start != end) {
1455                 if (unlikely(is_vm_hugetlb_page(vma))) {
1456                         /*
1457                          * It is undesirable to test vma->vm_file as it
1458                          * should be non-null for valid hugetlb area.
1459                          * However, vm_file will be NULL in the error
1460                          * cleanup path of mmap_region. When
1461                          * hugetlbfs ->mmap method fails,
1462                          * mmap_region() nullifies vma->vm_file
1463                          * before calling this function to clean up.
1464                          * Since no pte has actually been setup, it is
1465                          * safe to do nothing in this case.
1466                          */
1467                         if (vma->vm_file) {
1468                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1469                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1470                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1471                         }
1472                 } else
1473                         unmap_page_range(tlb, vma, start, end, details);
1474         }
1475 }
1476
1477 /**
1478  * unmap_vmas - unmap a range of memory covered by a list of vma's
1479  * @tlb: address of the caller's struct mmu_gather
1480  * @vma: the starting vma
1481  * @start_addr: virtual address at which to start unmapping
1482  * @end_addr: virtual address at which to end unmapping
1483  *
1484  * Unmap all pages in the vma list.
1485  *
1486  * Only addresses between `start' and `end' will be unmapped.
1487  *
1488  * The VMA list must be sorted in ascending virtual address order.
1489  *
1490  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1491  * range after unmap_vmas() returns.  So the only responsibility here is to
1492  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1493  * drops the lock and schedules.
1494  */
1495 void unmap_vmas(struct mmu_gather *tlb,
1496                 struct vm_area_struct *vma, unsigned long start_addr,
1497                 unsigned long end_addr)
1498 {
1499         struct mmu_notifier_range range;
1500
1501         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1502                                 start_addr, end_addr);
1503         mmu_notifier_invalidate_range_start(&range);
1504         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1505                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1506         mmu_notifier_invalidate_range_end(&range);
1507 }
1508
1509 /**
1510  * zap_page_range - remove user pages in a given range
1511  * @vma: vm_area_struct holding the applicable pages
1512  * @start: starting address of pages to zap
1513  * @size: number of bytes to zap
1514  *
1515  * Caller must protect the VMA list
1516  */
1517 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1518                 unsigned long size)
1519 {
1520         struct mmu_notifier_range range;
1521         struct mmu_gather tlb;
1522
1523         lru_add_drain();
1524         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1525                                 start, start + size);
1526         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1527         update_hiwater_rss(vma->vm_mm);
1528         mmu_notifier_invalidate_range_start(&range);
1529         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1530                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1531         mmu_notifier_invalidate_range_end(&range);
1532         tlb_finish_mmu(&tlb, start, range.end);
1533 }
1534
1535 /**
1536  * zap_page_range_single - remove user pages in a given range
1537  * @vma: vm_area_struct holding the applicable pages
1538  * @address: starting address of pages to zap
1539  * @size: number of bytes to zap
1540  * @details: details of shared cache invalidation
1541  *
1542  * The range must fit into one VMA.
1543  */
1544 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1545                 unsigned long size, struct zap_details *details)
1546 {
1547         struct mmu_notifier_range range;
1548         struct mmu_gather tlb;
1549
1550         lru_add_drain();
1551         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1552                                 address, address + size);
1553         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1554         update_hiwater_rss(vma->vm_mm);
1555         mmu_notifier_invalidate_range_start(&range);
1556         unmap_single_vma(&tlb, vma, address, range.end, details);
1557         mmu_notifier_invalidate_range_end(&range);
1558         tlb_finish_mmu(&tlb, address, range.end);
1559 }
1560
1561 /**
1562  * zap_vma_ptes - remove ptes mapping the vma
1563  * @vma: vm_area_struct holding ptes to be zapped
1564  * @address: starting address of pages to zap
1565  * @size: number of bytes to zap
1566  *
1567  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1568  *
1569  * The entire address range must be fully contained within the vma.
1570  *
1571  */
1572 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1573                 unsigned long size)
1574 {
1575         if (address < vma->vm_start || address + size > vma->vm_end ||
1576                         !(vma->vm_flags & VM_PFNMAP))
1577                 return;
1578
1579         zap_page_range_single(vma, address, size, NULL);
1580 }
1581 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1582
1583 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1584 {
1585         pgd_t *pgd;
1586         p4d_t *p4d;
1587         pud_t *pud;
1588         pmd_t *pmd;
1589
1590         pgd = pgd_offset(mm, addr);
1591         p4d = p4d_alloc(mm, pgd, addr);
1592         if (!p4d)
1593                 return NULL;
1594         pud = pud_alloc(mm, p4d, addr);
1595         if (!pud)
1596                 return NULL;
1597         pmd = pmd_alloc(mm, pud, addr);
1598         if (!pmd)
1599                 return NULL;
1600
1601         VM_BUG_ON(pmd_trans_huge(*pmd));
1602         return pmd;
1603 }
1604
1605 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1606                         spinlock_t **ptl)
1607 {
1608         pmd_t *pmd = walk_to_pmd(mm, addr);
1609
1610         if (!pmd)
1611                 return NULL;
1612         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1613 }
1614
1615 static int validate_page_before_insert(struct page *page)
1616 {
1617         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1618                 return -EINVAL;
1619         flush_dcache_page(page);
1620         return 0;
1621 }
1622
1623 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1624                         unsigned long addr, struct page *page, pgprot_t prot)
1625 {
1626         if (!pte_none(*pte))
1627                 return -EBUSY;
1628         /* Ok, finally just insert the thing.. */
1629         get_page(page);
1630         inc_mm_counter_fast(mm, mm_counter_file(page));
1631         page_add_file_rmap(page, false);
1632         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1633         return 0;
1634 }
1635
1636 /*
1637  * This is the old fallback for page remapping.
1638  *
1639  * For historical reasons, it only allows reserved pages. Only
1640  * old drivers should use this, and they needed to mark their
1641  * pages reserved for the old functions anyway.
1642  */
1643 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1644                         struct page *page, pgprot_t prot)
1645 {
1646         struct mm_struct *mm = vma->vm_mm;
1647         int retval;
1648         pte_t *pte;
1649         spinlock_t *ptl;
1650
1651         retval = validate_page_before_insert(page);
1652         if (retval)
1653                 goto out;
1654         retval = -ENOMEM;
1655         pte = get_locked_pte(mm, addr, &ptl);
1656         if (!pte)
1657                 goto out;
1658         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1659         pte_unmap_unlock(pte, ptl);
1660 out:
1661         return retval;
1662 }
1663
1664 #ifdef pte_index
1665 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1666                         unsigned long addr, struct page *page, pgprot_t prot)
1667 {
1668         int err;
1669
1670         if (!page_count(page))
1671                 return -EINVAL;
1672         err = validate_page_before_insert(page);
1673         if (err)
1674                 return err;
1675         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1676 }
1677
1678 /* insert_pages() amortizes the cost of spinlock operations
1679  * when inserting pages in a loop. Arch *must* define pte_index.
1680  */
1681 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1682                         struct page **pages, unsigned long *num, pgprot_t prot)
1683 {
1684         pmd_t *pmd = NULL;
1685         pte_t *start_pte, *pte;
1686         spinlock_t *pte_lock;
1687         struct mm_struct *const mm = vma->vm_mm;
1688         unsigned long curr_page_idx = 0;
1689         unsigned long remaining_pages_total = *num;
1690         unsigned long pages_to_write_in_pmd;
1691         int ret;
1692 more:
1693         ret = -EFAULT;
1694         pmd = walk_to_pmd(mm, addr);
1695         if (!pmd)
1696                 goto out;
1697
1698         pages_to_write_in_pmd = min_t(unsigned long,
1699                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1700
1701         /* Allocate the PTE if necessary; takes PMD lock once only. */
1702         ret = -ENOMEM;
1703         if (pte_alloc(mm, pmd))
1704                 goto out;
1705
1706         while (pages_to_write_in_pmd) {
1707                 int pte_idx = 0;
1708                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1709
1710                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1711                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1712                         int err = insert_page_in_batch_locked(mm, pte,
1713                                 addr, pages[curr_page_idx], prot);
1714                         if (unlikely(err)) {
1715                                 pte_unmap_unlock(start_pte, pte_lock);
1716                                 ret = err;
1717                                 remaining_pages_total -= pte_idx;
1718                                 goto out;
1719                         }
1720                         addr += PAGE_SIZE;
1721                         ++curr_page_idx;
1722                 }
1723                 pte_unmap_unlock(start_pte, pte_lock);
1724                 pages_to_write_in_pmd -= batch_size;
1725                 remaining_pages_total -= batch_size;
1726         }
1727         if (remaining_pages_total)
1728                 goto more;
1729         ret = 0;
1730 out:
1731         *num = remaining_pages_total;
1732         return ret;
1733 }
1734 #endif  /* ifdef pte_index */
1735
1736 /**
1737  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1738  * @vma: user vma to map to
1739  * @addr: target start user address of these pages
1740  * @pages: source kernel pages
1741  * @num: in: number of pages to map. out: number of pages that were *not*
1742  * mapped. (0 means all pages were successfully mapped).
1743  *
1744  * Preferred over vm_insert_page() when inserting multiple pages.
1745  *
1746  * In case of error, we may have mapped a subset of the provided
1747  * pages. It is the caller's responsibility to account for this case.
1748  *
1749  * The same restrictions apply as in vm_insert_page().
1750  */
1751 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1752                         struct page **pages, unsigned long *num)
1753 {
1754 #ifdef pte_index
1755         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1756
1757         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1758                 return -EFAULT;
1759         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1760                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1761                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1762                 vma->vm_flags |= VM_MIXEDMAP;
1763         }
1764         /* Defer page refcount checking till we're about to map that page. */
1765         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1766 #else
1767         unsigned long idx = 0, pgcount = *num;
1768         int err = -EINVAL;
1769
1770         for (; idx < pgcount; ++idx) {
1771                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1772                 if (err)
1773                         break;
1774         }
1775         *num = pgcount - idx;
1776         return err;
1777 #endif  /* ifdef pte_index */
1778 }
1779 EXPORT_SYMBOL(vm_insert_pages);
1780
1781 /**
1782  * vm_insert_page - insert single page into user vma
1783  * @vma: user vma to map to
1784  * @addr: target user address of this page
1785  * @page: source kernel page
1786  *
1787  * This allows drivers to insert individual pages they've allocated
1788  * into a user vma.
1789  *
1790  * The page has to be a nice clean _individual_ kernel allocation.
1791  * If you allocate a compound page, you need to have marked it as
1792  * such (__GFP_COMP), or manually just split the page up yourself
1793  * (see split_page()).
1794  *
1795  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1796  * took an arbitrary page protection parameter. This doesn't allow
1797  * that. Your vma protection will have to be set up correctly, which
1798  * means that if you want a shared writable mapping, you'd better
1799  * ask for a shared writable mapping!
1800  *
1801  * The page does not need to be reserved.
1802  *
1803  * Usually this function is called from f_op->mmap() handler
1804  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1805  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1806  * function from other places, for example from page-fault handler.
1807  *
1808  * Return: %0 on success, negative error code otherwise.
1809  */
1810 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1811                         struct page *page)
1812 {
1813         if (addr < vma->vm_start || addr >= vma->vm_end)
1814                 return -EFAULT;
1815         if (!page_count(page))
1816                 return -EINVAL;
1817         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1818                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1819                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1820                 vma->vm_flags |= VM_MIXEDMAP;
1821         }
1822         return insert_page(vma, addr, page, vma->vm_page_prot);
1823 }
1824 EXPORT_SYMBOL(vm_insert_page);
1825
1826 /*
1827  * __vm_map_pages - maps range of kernel pages into user vma
1828  * @vma: user vma to map to
1829  * @pages: pointer to array of source kernel pages
1830  * @num: number of pages in page array
1831  * @offset: user's requested vm_pgoff
1832  *
1833  * This allows drivers to map range of kernel pages into a user vma.
1834  *
1835  * Return: 0 on success and error code otherwise.
1836  */
1837 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1838                                 unsigned long num, unsigned long offset)
1839 {
1840         unsigned long count = vma_pages(vma);
1841         unsigned long uaddr = vma->vm_start;
1842         int ret, i;
1843
1844         /* Fail if the user requested offset is beyond the end of the object */
1845         if (offset >= num)
1846                 return -ENXIO;
1847
1848         /* Fail if the user requested size exceeds available object size */
1849         if (count > num - offset)
1850                 return -ENXIO;
1851
1852         for (i = 0; i < count; i++) {
1853                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1854                 if (ret < 0)
1855                         return ret;
1856                 uaddr += PAGE_SIZE;
1857         }
1858
1859         return 0;
1860 }
1861
1862 /**
1863  * vm_map_pages - maps range of kernel pages starts with non zero offset
1864  * @vma: user vma to map to
1865  * @pages: pointer to array of source kernel pages
1866  * @num: number of pages in page array
1867  *
1868  * Maps an object consisting of @num pages, catering for the user's
1869  * requested vm_pgoff
1870  *
1871  * If we fail to insert any page into the vma, the function will return
1872  * immediately leaving any previously inserted pages present.  Callers
1873  * from the mmap handler may immediately return the error as their caller
1874  * will destroy the vma, removing any successfully inserted pages. Other
1875  * callers should make their own arrangements for calling unmap_region().
1876  *
1877  * Context: Process context. Called by mmap handlers.
1878  * Return: 0 on success and error code otherwise.
1879  */
1880 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1881                                 unsigned long num)
1882 {
1883         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1884 }
1885 EXPORT_SYMBOL(vm_map_pages);
1886
1887 /**
1888  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1889  * @vma: user vma to map to
1890  * @pages: pointer to array of source kernel pages
1891  * @num: number of pages in page array
1892  *
1893  * Similar to vm_map_pages(), except that it explicitly sets the offset
1894  * to 0. This function is intended for the drivers that did not consider
1895  * vm_pgoff.
1896  *
1897  * Context: Process context. Called by mmap handlers.
1898  * Return: 0 on success and error code otherwise.
1899  */
1900 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1901                                 unsigned long num)
1902 {
1903         return __vm_map_pages(vma, pages, num, 0);
1904 }
1905 EXPORT_SYMBOL(vm_map_pages_zero);
1906
1907 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1908                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1909 {
1910         struct mm_struct *mm = vma->vm_mm;
1911         pte_t *pte, entry;
1912         spinlock_t *ptl;
1913
1914         pte = get_locked_pte(mm, addr, &ptl);
1915         if (!pte)
1916                 return VM_FAULT_OOM;
1917         if (!pte_none(*pte)) {
1918                 if (mkwrite) {
1919                         /*
1920                          * For read faults on private mappings the PFN passed
1921                          * in may not match the PFN we have mapped if the
1922                          * mapped PFN is a writeable COW page.  In the mkwrite
1923                          * case we are creating a writable PTE for a shared
1924                          * mapping and we expect the PFNs to match. If they
1925                          * don't match, we are likely racing with block
1926                          * allocation and mapping invalidation so just skip the
1927                          * update.
1928                          */
1929                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1930                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1931                                 goto out_unlock;
1932                         }
1933                         entry = pte_mkyoung(*pte);
1934                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1935                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1936                                 update_mmu_cache(vma, addr, pte);
1937                 }
1938                 goto out_unlock;
1939         }
1940
1941         /* Ok, finally just insert the thing.. */
1942         if (pfn_t_devmap(pfn))
1943                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1944         else
1945                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1946
1947         if (mkwrite) {
1948                 entry = pte_mkyoung(entry);
1949                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1950         }
1951
1952         set_pte_at(mm, addr, pte, entry);
1953         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1954
1955 out_unlock:
1956         pte_unmap_unlock(pte, ptl);
1957         return VM_FAULT_NOPAGE;
1958 }
1959
1960 /**
1961  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1962  * @vma: user vma to map to
1963  * @addr: target user address of this page
1964  * @pfn: source kernel pfn
1965  * @pgprot: pgprot flags for the inserted page
1966  *
1967  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1968  * to override pgprot on a per-page basis.
1969  *
1970  * This only makes sense for IO mappings, and it makes no sense for
1971  * COW mappings.  In general, using multiple vmas is preferable;
1972  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1973  * impractical.
1974  *
1975  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1976  * a value of @pgprot different from that of @vma->vm_page_prot.
1977  *
1978  * Context: Process context.  May allocate using %GFP_KERNEL.
1979  * Return: vm_fault_t value.
1980  */
1981 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1982                         unsigned long pfn, pgprot_t pgprot)
1983 {
1984         /*
1985          * Technically, architectures with pte_special can avoid all these
1986          * restrictions (same for remap_pfn_range).  However we would like
1987          * consistency in testing and feature parity among all, so we should
1988          * try to keep these invariants in place for everybody.
1989          */
1990         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1991         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1992                                                 (VM_PFNMAP|VM_MIXEDMAP));
1993         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1994         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1995
1996         if (addr < vma->vm_start || addr >= vma->vm_end)
1997                 return VM_FAULT_SIGBUS;
1998
1999         if (!pfn_modify_allowed(pfn, pgprot))
2000                 return VM_FAULT_SIGBUS;
2001
2002         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2003
2004         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2005                         false);
2006 }
2007 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2008
2009 /**
2010  * vmf_insert_pfn - insert single pfn into user vma
2011  * @vma: user vma to map to
2012  * @addr: target user address of this page
2013  * @pfn: source kernel pfn
2014  *
2015  * Similar to vm_insert_page, this allows drivers to insert individual pages
2016  * they've allocated into a user vma. Same comments apply.
2017  *
2018  * This function should only be called from a vm_ops->fault handler, and
2019  * in that case the handler should return the result of this function.
2020  *
2021  * vma cannot be a COW mapping.
2022  *
2023  * As this is called only for pages that do not currently exist, we
2024  * do not need to flush old virtual caches or the TLB.
2025  *
2026  * Context: Process context.  May allocate using %GFP_KERNEL.
2027  * Return: vm_fault_t value.
2028  */
2029 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2030                         unsigned long pfn)
2031 {
2032         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2033 }
2034 EXPORT_SYMBOL(vmf_insert_pfn);
2035
2036 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2037 {
2038         /* these checks mirror the abort conditions in vm_normal_page */
2039         if (vma->vm_flags & VM_MIXEDMAP)
2040                 return true;
2041         if (pfn_t_devmap(pfn))
2042                 return true;
2043         if (pfn_t_special(pfn))
2044                 return true;
2045         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2046                 return true;
2047         return false;
2048 }
2049
2050 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2051                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2052                 bool mkwrite)
2053 {
2054         int err;
2055
2056         BUG_ON(!vm_mixed_ok(vma, pfn));
2057
2058         if (addr < vma->vm_start || addr >= vma->vm_end)
2059                 return VM_FAULT_SIGBUS;
2060
2061         track_pfn_insert(vma, &pgprot, pfn);
2062
2063         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2064                 return VM_FAULT_SIGBUS;
2065
2066         /*
2067          * If we don't have pte special, then we have to use the pfn_valid()
2068          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2069          * refcount the page if pfn_valid is true (hence insert_page rather
2070          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2071          * without pte special, it would there be refcounted as a normal page.
2072          */
2073         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2074             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2075                 struct page *page;
2076
2077                 /*
2078                  * At this point we are committed to insert_page()
2079                  * regardless of whether the caller specified flags that
2080                  * result in pfn_t_has_page() == false.
2081                  */
2082                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2083                 err = insert_page(vma, addr, page, pgprot);
2084         } else {
2085                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2086         }
2087
2088         if (err == -ENOMEM)
2089                 return VM_FAULT_OOM;
2090         if (err < 0 && err != -EBUSY)
2091                 return VM_FAULT_SIGBUS;
2092
2093         return VM_FAULT_NOPAGE;
2094 }
2095
2096 /**
2097  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2098  * @vma: user vma to map to
2099  * @addr: target user address of this page
2100  * @pfn: source kernel pfn
2101  * @pgprot: pgprot flags for the inserted page
2102  *
2103  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2104  * to override pgprot on a per-page basis.
2105  *
2106  * Typically this function should be used by drivers to set caching- and
2107  * encryption bits different than those of @vma->vm_page_prot, because
2108  * the caching- or encryption mode may not be known at mmap() time.
2109  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2110  * to set caching and encryption bits for those vmas (except for COW pages).
2111  * This is ensured by core vm only modifying these page table entries using
2112  * functions that don't touch caching- or encryption bits, using pte_modify()
2113  * if needed. (See for example mprotect()).
2114  * Also when new page-table entries are created, this is only done using the
2115  * fault() callback, and never using the value of vma->vm_page_prot,
2116  * except for page-table entries that point to anonymous pages as the result
2117  * of COW.
2118  *
2119  * Context: Process context.  May allocate using %GFP_KERNEL.
2120  * Return: vm_fault_t value.
2121  */
2122 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2123                                  pfn_t pfn, pgprot_t pgprot)
2124 {
2125         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2126 }
2127 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2128
2129 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2130                 pfn_t pfn)
2131 {
2132         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2133 }
2134 EXPORT_SYMBOL(vmf_insert_mixed);
2135
2136 /*
2137  *  If the insertion of PTE failed because someone else already added a
2138  *  different entry in the mean time, we treat that as success as we assume
2139  *  the same entry was actually inserted.
2140  */
2141 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2142                 unsigned long addr, pfn_t pfn)
2143 {
2144         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2145 }
2146 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2147
2148 /*
2149  * maps a range of physical memory into the requested pages. the old
2150  * mappings are removed. any references to nonexistent pages results
2151  * in null mappings (currently treated as "copy-on-access")
2152  */
2153 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2154                         unsigned long addr, unsigned long end,
2155                         unsigned long pfn, pgprot_t prot)
2156 {
2157         pte_t *pte;
2158         spinlock_t *ptl;
2159         int err = 0;
2160
2161         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2162         if (!pte)
2163                 return -ENOMEM;
2164         arch_enter_lazy_mmu_mode();
2165         do {
2166                 BUG_ON(!pte_none(*pte));
2167                 if (!pfn_modify_allowed(pfn, prot)) {
2168                         err = -EACCES;
2169                         break;
2170                 }
2171                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2172                 pfn++;
2173         } while (pte++, addr += PAGE_SIZE, addr != end);
2174         arch_leave_lazy_mmu_mode();
2175         pte_unmap_unlock(pte - 1, ptl);
2176         return err;
2177 }
2178
2179 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2180                         unsigned long addr, unsigned long end,
2181                         unsigned long pfn, pgprot_t prot)
2182 {
2183         pmd_t *pmd;
2184         unsigned long next;
2185         int err;
2186
2187         pfn -= addr >> PAGE_SHIFT;
2188         pmd = pmd_alloc(mm, pud, addr);
2189         if (!pmd)
2190                 return -ENOMEM;
2191         VM_BUG_ON(pmd_trans_huge(*pmd));
2192         do {
2193                 next = pmd_addr_end(addr, end);
2194                 err = remap_pte_range(mm, pmd, addr, next,
2195                                 pfn + (addr >> PAGE_SHIFT), prot);
2196                 if (err)
2197                         return err;
2198         } while (pmd++, addr = next, addr != end);
2199         return 0;
2200 }
2201
2202 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2203                         unsigned long addr, unsigned long end,
2204                         unsigned long pfn, pgprot_t prot)
2205 {
2206         pud_t *pud;
2207         unsigned long next;
2208         int err;
2209
2210         pfn -= addr >> PAGE_SHIFT;
2211         pud = pud_alloc(mm, p4d, addr);
2212         if (!pud)
2213                 return -ENOMEM;
2214         do {
2215                 next = pud_addr_end(addr, end);
2216                 err = remap_pmd_range(mm, pud, addr, next,
2217                                 pfn + (addr >> PAGE_SHIFT), prot);
2218                 if (err)
2219                         return err;
2220         } while (pud++, addr = next, addr != end);
2221         return 0;
2222 }
2223
2224 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2225                         unsigned long addr, unsigned long end,
2226                         unsigned long pfn, pgprot_t prot)
2227 {
2228         p4d_t *p4d;
2229         unsigned long next;
2230         int err;
2231
2232         pfn -= addr >> PAGE_SHIFT;
2233         p4d = p4d_alloc(mm, pgd, addr);
2234         if (!p4d)
2235                 return -ENOMEM;
2236         do {
2237                 next = p4d_addr_end(addr, end);
2238                 err = remap_pud_range(mm, p4d, addr, next,
2239                                 pfn + (addr >> PAGE_SHIFT), prot);
2240                 if (err)
2241                         return err;
2242         } while (p4d++, addr = next, addr != end);
2243         return 0;
2244 }
2245
2246 /**
2247  * remap_pfn_range - remap kernel memory to userspace
2248  * @vma: user vma to map to
2249  * @addr: target page aligned user address to start at
2250  * @pfn: page frame number of kernel physical memory address
2251  * @size: size of mapping area
2252  * @prot: page protection flags for this mapping
2253  *
2254  * Note: this is only safe if the mm semaphore is held when called.
2255  *
2256  * Return: %0 on success, negative error code otherwise.
2257  */
2258 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2259                     unsigned long pfn, unsigned long size, pgprot_t prot)
2260 {
2261         pgd_t *pgd;
2262         unsigned long next;
2263         unsigned long end = addr + PAGE_ALIGN(size);
2264         struct mm_struct *mm = vma->vm_mm;
2265         unsigned long remap_pfn = pfn;
2266         int err;
2267
2268         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2269                 return -EINVAL;
2270
2271         /*
2272          * Physically remapped pages are special. Tell the
2273          * rest of the world about it:
2274          *   VM_IO tells people not to look at these pages
2275          *      (accesses can have side effects).
2276          *   VM_PFNMAP tells the core MM that the base pages are just
2277          *      raw PFN mappings, and do not have a "struct page" associated
2278          *      with them.
2279          *   VM_DONTEXPAND
2280          *      Disable vma merging and expanding with mremap().
2281          *   VM_DONTDUMP
2282          *      Omit vma from core dump, even when VM_IO turned off.
2283          *
2284          * There's a horrible special case to handle copy-on-write
2285          * behaviour that some programs depend on. We mark the "original"
2286          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2287          * See vm_normal_page() for details.
2288          */
2289         if (is_cow_mapping(vma->vm_flags)) {
2290                 if (addr != vma->vm_start || end != vma->vm_end)
2291                         return -EINVAL;
2292                 vma->vm_pgoff = pfn;
2293         }
2294
2295         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2296         if (err)
2297                 return -EINVAL;
2298
2299         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2300
2301         BUG_ON(addr >= end);
2302         pfn -= addr >> PAGE_SHIFT;
2303         pgd = pgd_offset(mm, addr);
2304         flush_cache_range(vma, addr, end);
2305         do {
2306                 next = pgd_addr_end(addr, end);
2307                 err = remap_p4d_range(mm, pgd, addr, next,
2308                                 pfn + (addr >> PAGE_SHIFT), prot);
2309                 if (err)
2310                         break;
2311         } while (pgd++, addr = next, addr != end);
2312
2313         if (err)
2314                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2315
2316         return err;
2317 }
2318 EXPORT_SYMBOL(remap_pfn_range);
2319
2320 /**
2321  * vm_iomap_memory - remap memory to userspace
2322  * @vma: user vma to map to
2323  * @start: start of the physical memory to be mapped
2324  * @len: size of area
2325  *
2326  * This is a simplified io_remap_pfn_range() for common driver use. The
2327  * driver just needs to give us the physical memory range to be mapped,
2328  * we'll figure out the rest from the vma information.
2329  *
2330  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2331  * whatever write-combining details or similar.
2332  *
2333  * Return: %0 on success, negative error code otherwise.
2334  */
2335 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2336 {
2337         unsigned long vm_len, pfn, pages;
2338
2339         /* Check that the physical memory area passed in looks valid */
2340         if (start + len < start)
2341                 return -EINVAL;
2342         /*
2343          * You *really* shouldn't map things that aren't page-aligned,
2344          * but we've historically allowed it because IO memory might
2345          * just have smaller alignment.
2346          */
2347         len += start & ~PAGE_MASK;
2348         pfn = start >> PAGE_SHIFT;
2349         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2350         if (pfn + pages < pfn)
2351                 return -EINVAL;
2352
2353         /* We start the mapping 'vm_pgoff' pages into the area */
2354         if (vma->vm_pgoff > pages)
2355                 return -EINVAL;
2356         pfn += vma->vm_pgoff;
2357         pages -= vma->vm_pgoff;
2358
2359         /* Can we fit all of the mapping? */
2360         vm_len = vma->vm_end - vma->vm_start;
2361         if (vm_len >> PAGE_SHIFT > pages)
2362                 return -EINVAL;
2363
2364         /* Ok, let it rip */
2365         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2366 }
2367 EXPORT_SYMBOL(vm_iomap_memory);
2368
2369 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2370                                      unsigned long addr, unsigned long end,
2371                                      pte_fn_t fn, void *data, bool create,
2372                                      pgtbl_mod_mask *mask)
2373 {
2374         pte_t *pte;
2375         int err = 0;
2376         spinlock_t *ptl;
2377
2378         if (create) {
2379                 pte = (mm == &init_mm) ?
2380                         pte_alloc_kernel_track(pmd, addr, mask) :
2381                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2382                 if (!pte)
2383                         return -ENOMEM;
2384         } else {
2385                 pte = (mm == &init_mm) ?
2386                         pte_offset_kernel(pmd, addr) :
2387                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2388         }
2389
2390         BUG_ON(pmd_huge(*pmd));
2391
2392         arch_enter_lazy_mmu_mode();
2393
2394         do {
2395                 if (create || !pte_none(*pte)) {
2396                         err = fn(pte++, addr, data);
2397                         if (err)
2398                                 break;
2399                 }
2400         } while (addr += PAGE_SIZE, addr != end);
2401         *mask |= PGTBL_PTE_MODIFIED;
2402
2403         arch_leave_lazy_mmu_mode();
2404
2405         if (mm != &init_mm)
2406                 pte_unmap_unlock(pte-1, ptl);
2407         return err;
2408 }
2409
2410 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2411                                      unsigned long addr, unsigned long end,
2412                                      pte_fn_t fn, void *data, bool create,
2413                                      pgtbl_mod_mask *mask)
2414 {
2415         pmd_t *pmd;
2416         unsigned long next;
2417         int err = 0;
2418
2419         BUG_ON(pud_huge(*pud));
2420
2421         if (create) {
2422                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2423                 if (!pmd)
2424                         return -ENOMEM;
2425         } else {
2426                 pmd = pmd_offset(pud, addr);
2427         }
2428         do {
2429                 next = pmd_addr_end(addr, end);
2430                 if (create || !pmd_none_or_clear_bad(pmd)) {
2431                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2432                                                  create, mask);
2433                         if (err)
2434                                 break;
2435                 }
2436         } while (pmd++, addr = next, addr != end);
2437         return err;
2438 }
2439
2440 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2441                                      unsigned long addr, unsigned long end,
2442                                      pte_fn_t fn, void *data, bool create,
2443                                      pgtbl_mod_mask *mask)
2444 {
2445         pud_t *pud;
2446         unsigned long next;
2447         int err = 0;
2448
2449         if (create) {
2450                 pud = pud_alloc_track(mm, p4d, addr, mask);
2451                 if (!pud)
2452                         return -ENOMEM;
2453         } else {
2454                 pud = pud_offset(p4d, addr);
2455         }
2456         do {
2457                 next = pud_addr_end(addr, end);
2458                 if (create || !pud_none_or_clear_bad(pud)) {
2459                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2460                                                  create, mask);
2461                         if (err)
2462                                 break;
2463                 }
2464         } while (pud++, addr = next, addr != end);
2465         return err;
2466 }
2467
2468 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2469                                      unsigned long addr, unsigned long end,
2470                                      pte_fn_t fn, void *data, bool create,
2471                                      pgtbl_mod_mask *mask)
2472 {
2473         p4d_t *p4d;
2474         unsigned long next;
2475         int err = 0;
2476
2477         if (create) {
2478                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2479                 if (!p4d)
2480                         return -ENOMEM;
2481         } else {
2482                 p4d = p4d_offset(pgd, addr);
2483         }
2484         do {
2485                 next = p4d_addr_end(addr, end);
2486                 if (create || !p4d_none_or_clear_bad(p4d)) {
2487                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2488                                                  create, mask);
2489                         if (err)
2490                                 break;
2491                 }
2492         } while (p4d++, addr = next, addr != end);
2493         return err;
2494 }
2495
2496 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2497                                  unsigned long size, pte_fn_t fn,
2498                                  void *data, bool create)
2499 {
2500         pgd_t *pgd;
2501         unsigned long start = addr, next;
2502         unsigned long end = addr + size;
2503         pgtbl_mod_mask mask = 0;
2504         int err = 0;
2505
2506         if (WARN_ON(addr >= end))
2507                 return -EINVAL;
2508
2509         pgd = pgd_offset(mm, addr);
2510         do {
2511                 next = pgd_addr_end(addr, end);
2512                 if (!create && pgd_none_or_clear_bad(pgd))
2513                         continue;
2514                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2515                 if (err)
2516                         break;
2517         } while (pgd++, addr = next, addr != end);
2518
2519         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2520                 arch_sync_kernel_mappings(start, start + size);
2521
2522         return err;
2523 }
2524
2525 /*
2526  * Scan a region of virtual memory, filling in page tables as necessary
2527  * and calling a provided function on each leaf page table.
2528  */
2529 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2530                         unsigned long size, pte_fn_t fn, void *data)
2531 {
2532         return __apply_to_page_range(mm, addr, size, fn, data, true);
2533 }
2534 EXPORT_SYMBOL_GPL(apply_to_page_range);
2535
2536 /*
2537  * Scan a region of virtual memory, calling a provided function on
2538  * each leaf page table where it exists.
2539  *
2540  * Unlike apply_to_page_range, this does _not_ fill in page tables
2541  * where they are absent.
2542  */
2543 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2544                                  unsigned long size, pte_fn_t fn, void *data)
2545 {
2546         return __apply_to_page_range(mm, addr, size, fn, data, false);
2547 }
2548 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2549
2550 /*
2551  * handle_pte_fault chooses page fault handler according to an entry which was
2552  * read non-atomically.  Before making any commitment, on those architectures
2553  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2554  * parts, do_swap_page must check under lock before unmapping the pte and
2555  * proceeding (but do_wp_page is only called after already making such a check;
2556  * and do_anonymous_page can safely check later on).
2557  */
2558 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2559                                 pte_t *page_table, pte_t orig_pte)
2560 {
2561         int same = 1;
2562 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2563         if (sizeof(pte_t) > sizeof(unsigned long)) {
2564                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2565                 spin_lock(ptl);
2566                 same = pte_same(*page_table, orig_pte);
2567                 spin_unlock(ptl);
2568         }
2569 #endif
2570         pte_unmap(page_table);
2571         return same;
2572 }
2573
2574 static inline bool cow_user_page(struct page *dst, struct page *src,
2575                                  struct vm_fault *vmf)
2576 {
2577         bool ret;
2578         void *kaddr;
2579         void __user *uaddr;
2580         bool locked = false;
2581         struct vm_area_struct *vma = vmf->vma;
2582         struct mm_struct *mm = vma->vm_mm;
2583         unsigned long addr = vmf->address;
2584
2585         if (likely(src)) {
2586                 copy_user_highpage(dst, src, addr, vma);
2587                 return true;
2588         }
2589
2590         /*
2591          * If the source page was a PFN mapping, we don't have
2592          * a "struct page" for it. We do a best-effort copy by
2593          * just copying from the original user address. If that
2594          * fails, we just zero-fill it. Live with it.
2595          */
2596         kaddr = kmap_atomic(dst);
2597         uaddr = (void __user *)(addr & PAGE_MASK);
2598
2599         /*
2600          * On architectures with software "accessed" bits, we would
2601          * take a double page fault, so mark it accessed here.
2602          */
2603         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2604                 pte_t entry;
2605
2606                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2607                 locked = true;
2608                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2609                         /*
2610                          * Other thread has already handled the fault
2611                          * and update local tlb only
2612                          */
2613                         update_mmu_tlb(vma, addr, vmf->pte);
2614                         ret = false;
2615                         goto pte_unlock;
2616                 }
2617
2618                 entry = pte_mkyoung(vmf->orig_pte);
2619                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2620                         update_mmu_cache(vma, addr, vmf->pte);
2621         }
2622
2623         /*
2624          * This really shouldn't fail, because the page is there
2625          * in the page tables. But it might just be unreadable,
2626          * in which case we just give up and fill the result with
2627          * zeroes.
2628          */
2629         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2630                 if (locked)
2631                         goto warn;
2632
2633                 /* Re-validate under PTL if the page is still mapped */
2634                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2635                 locked = true;
2636                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2637                         /* The PTE changed under us, update local tlb */
2638                         update_mmu_tlb(vma, addr, vmf->pte);
2639                         ret = false;
2640                         goto pte_unlock;
2641                 }
2642
2643                 /*
2644                  * The same page can be mapped back since last copy attempt.
2645                  * Try to copy again under PTL.
2646                  */
2647                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2648                         /*
2649                          * Give a warn in case there can be some obscure
2650                          * use-case
2651                          */
2652 warn:
2653                         WARN_ON_ONCE(1);
2654                         clear_page(kaddr);
2655                 }
2656         }
2657
2658         ret = true;
2659
2660 pte_unlock:
2661         if (locked)
2662                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2663         kunmap_atomic(kaddr);
2664         flush_dcache_page(dst);
2665
2666         return ret;
2667 }
2668
2669 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2670 {
2671         struct file *vm_file = vma->vm_file;
2672
2673         if (vm_file)
2674                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2675
2676         /*
2677          * Special mappings (e.g. VDSO) do not have any file so fake
2678          * a default GFP_KERNEL for them.
2679          */
2680         return GFP_KERNEL;
2681 }
2682
2683 /*
2684  * Notify the address space that the page is about to become writable so that
2685  * it can prohibit this or wait for the page to get into an appropriate state.
2686  *
2687  * We do this without the lock held, so that it can sleep if it needs to.
2688  */
2689 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2690 {
2691         vm_fault_t ret;
2692         struct page *page = vmf->page;
2693         unsigned int old_flags = vmf->flags;
2694
2695         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2696
2697         if (vmf->vma->vm_file &&
2698             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2699                 return VM_FAULT_SIGBUS;
2700
2701         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2702         /* Restore original flags so that caller is not surprised */
2703         vmf->flags = old_flags;
2704         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2705                 return ret;
2706         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2707                 lock_page(page);
2708                 if (!page->mapping) {
2709                         unlock_page(page);
2710                         return 0; /* retry */
2711                 }
2712                 ret |= VM_FAULT_LOCKED;
2713         } else
2714                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2715         return ret;
2716 }
2717
2718 /*
2719  * Handle dirtying of a page in shared file mapping on a write fault.
2720  *
2721  * The function expects the page to be locked and unlocks it.
2722  */
2723 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2724 {
2725         struct vm_area_struct *vma = vmf->vma;
2726         struct address_space *mapping;
2727         struct page *page = vmf->page;
2728         bool dirtied;
2729         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2730
2731         dirtied = set_page_dirty(page);
2732         VM_BUG_ON_PAGE(PageAnon(page), page);
2733         /*
2734          * Take a local copy of the address_space - page.mapping may be zeroed
2735          * by truncate after unlock_page().   The address_space itself remains
2736          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2737          * release semantics to prevent the compiler from undoing this copying.
2738          */
2739         mapping = page_rmapping(page);
2740         unlock_page(page);
2741
2742         if (!page_mkwrite)
2743                 file_update_time(vma->vm_file);
2744
2745         /*
2746          * Throttle page dirtying rate down to writeback speed.
2747          *
2748          * mapping may be NULL here because some device drivers do not
2749          * set page.mapping but still dirty their pages
2750          *
2751          * Drop the mmap_lock before waiting on IO, if we can. The file
2752          * is pinning the mapping, as per above.
2753          */
2754         if ((dirtied || page_mkwrite) && mapping) {
2755                 struct file *fpin;
2756
2757                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2758                 balance_dirty_pages_ratelimited(mapping);
2759                 if (fpin) {
2760                         fput(fpin);
2761                         return VM_FAULT_RETRY;
2762                 }
2763         }
2764
2765         return 0;
2766 }
2767
2768 /*
2769  * Handle write page faults for pages that can be reused in the current vma
2770  *
2771  * This can happen either due to the mapping being with the VM_SHARED flag,
2772  * or due to us being the last reference standing to the page. In either
2773  * case, all we need to do here is to mark the page as writable and update
2774  * any related book-keeping.
2775  */
2776 static inline void wp_page_reuse(struct vm_fault *vmf)
2777         __releases(vmf->ptl)
2778 {
2779         struct vm_area_struct *vma = vmf->vma;
2780         struct page *page = vmf->page;
2781         pte_t entry;
2782         /*
2783          * Clear the pages cpupid information as the existing
2784          * information potentially belongs to a now completely
2785          * unrelated process.
2786          */
2787         if (page)
2788                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2789
2790         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2791         entry = pte_mkyoung(vmf->orig_pte);
2792         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2793         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2794                 update_mmu_cache(vma, vmf->address, vmf->pte);
2795         pte_unmap_unlock(vmf->pte, vmf->ptl);
2796         count_vm_event(PGREUSE);
2797 }
2798
2799 /*
2800  * Handle the case of a page which we actually need to copy to a new page.
2801  *
2802  * Called with mmap_lock locked and the old page referenced, but
2803  * without the ptl held.
2804  *
2805  * High level logic flow:
2806  *
2807  * - Allocate a page, copy the content of the old page to the new one.
2808  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2809  * - Take the PTL. If the pte changed, bail out and release the allocated page
2810  * - If the pte is still the way we remember it, update the page table and all
2811  *   relevant references. This includes dropping the reference the page-table
2812  *   held to the old page, as well as updating the rmap.
2813  * - In any case, unlock the PTL and drop the reference we took to the old page.
2814  */
2815 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2816 {
2817         struct vm_area_struct *vma = vmf->vma;
2818         struct mm_struct *mm = vma->vm_mm;
2819         struct page *old_page = vmf->page;
2820         struct page *new_page = NULL;
2821         pte_t entry;
2822         int page_copied = 0;
2823         struct mmu_notifier_range range;
2824
2825         if (unlikely(anon_vma_prepare(vma)))
2826                 goto oom;
2827
2828         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2829                 new_page = alloc_zeroed_user_highpage_movable(vma,
2830                                                               vmf->address);
2831                 if (!new_page)
2832                         goto oom;
2833         } else {
2834                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2835                                 vmf->address);
2836                 if (!new_page)
2837                         goto oom;
2838
2839                 if (!cow_user_page(new_page, old_page, vmf)) {
2840                         /*
2841                          * COW failed, if the fault was solved by other,
2842                          * it's fine. If not, userspace would re-fault on
2843                          * the same address and we will handle the fault
2844                          * from the second attempt.
2845                          */
2846                         put_page(new_page);
2847                         if (old_page)
2848                                 put_page(old_page);
2849                         return 0;
2850                 }
2851         }
2852
2853         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2854                 goto oom_free_new;
2855         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2856
2857         __SetPageUptodate(new_page);
2858
2859         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2860                                 vmf->address & PAGE_MASK,
2861                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2862         mmu_notifier_invalidate_range_start(&range);
2863
2864         /*
2865          * Re-check the pte - we dropped the lock
2866          */
2867         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2868         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2869                 if (old_page) {
2870                         if (!PageAnon(old_page)) {
2871                                 dec_mm_counter_fast(mm,
2872                                                 mm_counter_file(old_page));
2873                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2874                         }
2875                 } else {
2876                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2877                 }
2878                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2879                 entry = mk_pte(new_page, vma->vm_page_prot);
2880                 entry = pte_sw_mkyoung(entry);
2881                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2882                 /*
2883                  * Clear the pte entry and flush it first, before updating the
2884                  * pte with the new entry. This will avoid a race condition
2885                  * seen in the presence of one thread doing SMC and another
2886                  * thread doing COW.
2887                  */
2888                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2889                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2890                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2891                 /*
2892                  * We call the notify macro here because, when using secondary
2893                  * mmu page tables (such as kvm shadow page tables), we want the
2894                  * new page to be mapped directly into the secondary page table.
2895                  */
2896                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2897                 update_mmu_cache(vma, vmf->address, vmf->pte);
2898                 if (old_page) {
2899                         /*
2900                          * Only after switching the pte to the new page may
2901                          * we remove the mapcount here. Otherwise another
2902                          * process may come and find the rmap count decremented
2903                          * before the pte is switched to the new page, and
2904                          * "reuse" the old page writing into it while our pte
2905                          * here still points into it and can be read by other
2906                          * threads.
2907                          *
2908                          * The critical issue is to order this
2909                          * page_remove_rmap with the ptp_clear_flush above.
2910                          * Those stores are ordered by (if nothing else,)
2911                          * the barrier present in the atomic_add_negative
2912                          * in page_remove_rmap.
2913                          *
2914                          * Then the TLB flush in ptep_clear_flush ensures that
2915                          * no process can access the old page before the
2916                          * decremented mapcount is visible. And the old page
2917                          * cannot be reused until after the decremented
2918                          * mapcount is visible. So transitively, TLBs to
2919                          * old page will be flushed before it can be reused.
2920                          */
2921                         page_remove_rmap(old_page, false);
2922                 }
2923
2924                 /* Free the old page.. */
2925                 new_page = old_page;
2926                 page_copied = 1;
2927         } else {
2928                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2929         }
2930
2931         if (new_page)
2932                 put_page(new_page);
2933
2934         pte_unmap_unlock(vmf->pte, vmf->ptl);
2935         /*
2936          * No need to double call mmu_notifier->invalidate_range() callback as
2937          * the above ptep_clear_flush_notify() did already call it.
2938          */
2939         mmu_notifier_invalidate_range_only_end(&range);
2940         if (old_page) {
2941                 /*
2942                  * Don't let another task, with possibly unlocked vma,
2943                  * keep the mlocked page.
2944                  */
2945                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2946                         lock_page(old_page);    /* LRU manipulation */
2947                         if (PageMlocked(old_page))
2948                                 munlock_vma_page(old_page);
2949                         unlock_page(old_page);
2950                 }
2951                 put_page(old_page);
2952         }
2953         return page_copied ? VM_FAULT_WRITE : 0;
2954 oom_free_new:
2955         put_page(new_page);
2956 oom:
2957         if (old_page)
2958                 put_page(old_page);
2959         return VM_FAULT_OOM;
2960 }
2961
2962 /**
2963  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2964  *                        writeable once the page is prepared
2965  *
2966  * @vmf: structure describing the fault
2967  *
2968  * This function handles all that is needed to finish a write page fault in a
2969  * shared mapping due to PTE being read-only once the mapped page is prepared.
2970  * It handles locking of PTE and modifying it.
2971  *
2972  * The function expects the page to be locked or other protection against
2973  * concurrent faults / writeback (such as DAX radix tree locks).
2974  *
2975  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2976  * we acquired PTE lock.
2977  */
2978 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2979 {
2980         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2981         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2982                                        &vmf->ptl);
2983         /*
2984          * We might have raced with another page fault while we released the
2985          * pte_offset_map_lock.
2986          */
2987         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2988                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2989                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2990                 return VM_FAULT_NOPAGE;
2991         }
2992         wp_page_reuse(vmf);
2993         return 0;
2994 }
2995
2996 /*
2997  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2998  * mapping
2999  */
3000 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3001 {
3002         struct vm_area_struct *vma = vmf->vma;
3003
3004         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3005                 vm_fault_t ret;
3006
3007                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3008                 vmf->flags |= FAULT_FLAG_MKWRITE;
3009                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3010                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3011                         return ret;
3012                 return finish_mkwrite_fault(vmf);
3013         }
3014         wp_page_reuse(vmf);
3015         return VM_FAULT_WRITE;
3016 }
3017
3018 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3019         __releases(vmf->ptl)
3020 {
3021         struct vm_area_struct *vma = vmf->vma;
3022         vm_fault_t ret = VM_FAULT_WRITE;
3023
3024         get_page(vmf->page);
3025
3026         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3027                 vm_fault_t tmp;
3028
3029                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3030                 tmp = do_page_mkwrite(vmf);
3031                 if (unlikely(!tmp || (tmp &
3032                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3033                         put_page(vmf->page);
3034                         return tmp;
3035                 }
3036                 tmp = finish_mkwrite_fault(vmf);
3037                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3038                         unlock_page(vmf->page);
3039                         put_page(vmf->page);
3040                         return tmp;
3041                 }
3042         } else {
3043                 wp_page_reuse(vmf);
3044                 lock_page(vmf->page);
3045         }
3046         ret |= fault_dirty_shared_page(vmf);
3047         put_page(vmf->page);
3048
3049         return ret;
3050 }
3051
3052 /*
3053  * This routine handles present pages, when users try to write
3054  * to a shared page. It is done by copying the page to a new address
3055  * and decrementing the shared-page counter for the old page.
3056  *
3057  * Note that this routine assumes that the protection checks have been
3058  * done by the caller (the low-level page fault routine in most cases).
3059  * Thus we can safely just mark it writable once we've done any necessary
3060  * COW.
3061  *
3062  * We also mark the page dirty at this point even though the page will
3063  * change only once the write actually happens. This avoids a few races,
3064  * and potentially makes it more efficient.
3065  *
3066  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3067  * but allow concurrent faults), with pte both mapped and locked.
3068  * We return with mmap_lock still held, but pte unmapped and unlocked.
3069  */
3070 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3071         __releases(vmf->ptl)
3072 {
3073         struct vm_area_struct *vma = vmf->vma;
3074
3075         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3076                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3077                 return handle_userfault(vmf, VM_UFFD_WP);
3078         }
3079
3080         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3081         if (!vmf->page) {
3082                 /*
3083                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3084                  * VM_PFNMAP VMA.
3085                  *
3086                  * We should not cow pages in a shared writeable mapping.
3087                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3088                  */
3089                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3090                                      (VM_WRITE|VM_SHARED))
3091                         return wp_pfn_shared(vmf);
3092
3093                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3094                 return wp_page_copy(vmf);
3095         }
3096
3097         /*
3098          * Take out anonymous pages first, anonymous shared vmas are
3099          * not dirty accountable.
3100          */
3101         if (PageAnon(vmf->page)) {
3102                 struct page *page = vmf->page;
3103
3104                 /* PageKsm() doesn't necessarily raise the page refcount */
3105                 if (PageKsm(page) || page_count(page) != 1)
3106                         goto copy;
3107                 if (!trylock_page(page))
3108                         goto copy;
3109                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3110                         unlock_page(page);
3111                         goto copy;
3112                 }
3113                 /*
3114                  * Ok, we've got the only map reference, and the only
3115                  * page count reference, and the page is locked,
3116                  * it's dark out, and we're wearing sunglasses. Hit it.
3117                  */
3118                 unlock_page(page);
3119                 wp_page_reuse(vmf);
3120                 return VM_FAULT_WRITE;
3121         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3122                                         (VM_WRITE|VM_SHARED))) {
3123                 return wp_page_shared(vmf);
3124         }
3125 copy:
3126         /*
3127          * Ok, we need to copy. Oh, well..
3128          */
3129         get_page(vmf->page);
3130
3131         pte_unmap_unlock(vmf->pte, vmf->ptl);
3132         return wp_page_copy(vmf);
3133 }
3134
3135 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3136                 unsigned long start_addr, unsigned long end_addr,
3137                 struct zap_details *details)
3138 {
3139         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3140 }
3141
3142 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3143                                             struct zap_details *details)
3144 {
3145         struct vm_area_struct *vma;
3146         pgoff_t vba, vea, zba, zea;
3147
3148         vma_interval_tree_foreach(vma, root,
3149                         details->first_index, details->last_index) {
3150
3151                 vba = vma->vm_pgoff;
3152                 vea = vba + vma_pages(vma) - 1;
3153                 zba = details->first_index;
3154                 if (zba < vba)
3155                         zba = vba;
3156                 zea = details->last_index;
3157                 if (zea > vea)
3158                         zea = vea;
3159
3160                 unmap_mapping_range_vma(vma,
3161                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3162                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3163                                 details);
3164         }
3165 }
3166
3167 /**
3168  * unmap_mapping_pages() - Unmap pages from processes.
3169  * @mapping: The address space containing pages to be unmapped.
3170  * @start: Index of first page to be unmapped.
3171  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3172  * @even_cows: Whether to unmap even private COWed pages.
3173  *
3174  * Unmap the pages in this address space from any userspace process which
3175  * has them mmaped.  Generally, you want to remove COWed pages as well when
3176  * a file is being truncated, but not when invalidating pages from the page
3177  * cache.
3178  */
3179 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3180                 pgoff_t nr, bool even_cows)
3181 {
3182         struct zap_details details = { };
3183
3184         details.check_mapping = even_cows ? NULL : mapping;
3185         details.first_index = start;
3186         details.last_index = start + nr - 1;
3187         if (details.last_index < details.first_index)
3188                 details.last_index = ULONG_MAX;
3189
3190         i_mmap_lock_write(mapping);
3191         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3192                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3193         i_mmap_unlock_write(mapping);
3194 }
3195
3196 /**
3197  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3198  * address_space corresponding to the specified byte range in the underlying
3199  * file.
3200  *
3201  * @mapping: the address space containing mmaps to be unmapped.
3202  * @holebegin: byte in first page to unmap, relative to the start of
3203  * the underlying file.  This will be rounded down to a PAGE_SIZE
3204  * boundary.  Note that this is different from truncate_pagecache(), which
3205  * must keep the partial page.  In contrast, we must get rid of
3206  * partial pages.
3207  * @holelen: size of prospective hole in bytes.  This will be rounded
3208  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3209  * end of the file.
3210  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3211  * but 0 when invalidating pagecache, don't throw away private data.
3212  */
3213 void unmap_mapping_range(struct address_space *mapping,
3214                 loff_t const holebegin, loff_t const holelen, int even_cows)
3215 {
3216         pgoff_t hba = holebegin >> PAGE_SHIFT;
3217         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3218
3219         /* Check for overflow. */
3220         if (sizeof(holelen) > sizeof(hlen)) {
3221                 long long holeend =
3222                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3223                 if (holeend & ~(long long)ULONG_MAX)
3224                         hlen = ULONG_MAX - hba + 1;
3225         }
3226
3227         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3228 }
3229 EXPORT_SYMBOL(unmap_mapping_range);
3230
3231 /*
3232  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3233  * but allow concurrent faults), and pte mapped but not yet locked.
3234  * We return with pte unmapped and unlocked.
3235  *
3236  * We return with the mmap_lock locked or unlocked in the same cases
3237  * as does filemap_fault().
3238  */
3239 vm_fault_t do_swap_page(struct vm_fault *vmf)
3240 {
3241         struct vm_area_struct *vma = vmf->vma;
3242         struct page *page = NULL, *swapcache;
3243         swp_entry_t entry;
3244         pte_t pte;
3245         int locked;
3246         int exclusive = 0;
3247         vm_fault_t ret = 0;
3248         void *shadow = NULL;
3249
3250         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3251                 goto out;
3252
3253         entry = pte_to_swp_entry(vmf->orig_pte);
3254         if (unlikely(non_swap_entry(entry))) {
3255                 if (is_migration_entry(entry)) {
3256                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3257                                              vmf->address);
3258                 } else if (is_device_private_entry(entry)) {
3259                         vmf->page = device_private_entry_to_page(entry);
3260                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3261                 } else if (is_hwpoison_entry(entry)) {
3262                         ret = VM_FAULT_HWPOISON;
3263                 } else {
3264                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3265                         ret = VM_FAULT_SIGBUS;
3266                 }
3267                 goto out;
3268         }
3269
3270
3271         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3272         page = lookup_swap_cache(entry, vma, vmf->address);
3273         swapcache = page;
3274
3275         if (!page) {
3276                 struct swap_info_struct *si = swp_swap_info(entry);
3277
3278                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3279                     __swap_count(entry) == 1) {
3280                         /* skip swapcache */
3281                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3282                                                         vmf->address);
3283                         if (page) {
3284                                 int err;
3285
3286                                 __SetPageLocked(page);
3287                                 __SetPageSwapBacked(page);
3288                                 set_page_private(page, entry.val);
3289
3290                                 /* Tell memcg to use swap ownership records */
3291                                 SetPageSwapCache(page);
3292                                 err = mem_cgroup_charge(page, vma->vm_mm,
3293                                                         GFP_KERNEL);
3294                                 ClearPageSwapCache(page);
3295                                 if (err) {
3296                                         ret = VM_FAULT_OOM;
3297                                         goto out_page;
3298                                 }
3299
3300                                 shadow = get_shadow_from_swap_cache(entry);
3301                                 if (shadow)
3302                                         workingset_refault(page, shadow);
3303
3304                                 lru_cache_add(page);
3305                                 swap_readpage(page, true);
3306                         }
3307                 } else {
3308                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3309                                                 vmf);
3310                         swapcache = page;
3311                 }
3312
3313                 if (!page) {
3314                         /*
3315                          * Back out if somebody else faulted in this pte
3316                          * while we released the pte lock.
3317                          */
3318                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3319                                         vmf->address, &vmf->ptl);
3320                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3321                                 ret = VM_FAULT_OOM;
3322                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3323                         goto unlock;
3324                 }
3325
3326                 /* Had to read the page from swap area: Major fault */
3327                 ret = VM_FAULT_MAJOR;
3328                 count_vm_event(PGMAJFAULT);
3329                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3330         } else if (PageHWPoison(page)) {
3331                 /*
3332                  * hwpoisoned dirty swapcache pages are kept for killing
3333                  * owner processes (which may be unknown at hwpoison time)
3334                  */
3335                 ret = VM_FAULT_HWPOISON;
3336                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3337                 goto out_release;
3338         }
3339
3340         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3341
3342         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3343         if (!locked) {
3344                 ret |= VM_FAULT_RETRY;
3345                 goto out_release;
3346         }
3347
3348         /*
3349          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3350          * release the swapcache from under us.  The page pin, and pte_same
3351          * test below, are not enough to exclude that.  Even if it is still
3352          * swapcache, we need to check that the page's swap has not changed.
3353          */
3354         if (unlikely((!PageSwapCache(page) ||
3355                         page_private(page) != entry.val)) && swapcache)
3356                 goto out_page;
3357
3358         page = ksm_might_need_to_copy(page, vma, vmf->address);
3359         if (unlikely(!page)) {
3360                 ret = VM_FAULT_OOM;
3361                 page = swapcache;
3362                 goto out_page;
3363         }
3364
3365         cgroup_throttle_swaprate(page, GFP_KERNEL);
3366
3367         /*
3368          * Back out if somebody else already faulted in this pte.
3369          */
3370         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3371                         &vmf->ptl);
3372         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3373                 goto out_nomap;
3374
3375         if (unlikely(!PageUptodate(page))) {
3376                 ret = VM_FAULT_SIGBUS;
3377                 goto out_nomap;
3378         }
3379
3380         /*
3381          * The page isn't present yet, go ahead with the fault.
3382          *
3383          * Be careful about the sequence of operations here.
3384          * To get its accounting right, reuse_swap_page() must be called
3385          * while the page is counted on swap but not yet in mapcount i.e.
3386          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3387          * must be called after the swap_free(), or it will never succeed.
3388          */
3389
3390         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3391         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3392         pte = mk_pte(page, vma->vm_page_prot);
3393         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3394                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3395                 vmf->flags &= ~FAULT_FLAG_WRITE;
3396                 ret |= VM_FAULT_WRITE;
3397                 exclusive = RMAP_EXCLUSIVE;
3398         }
3399         flush_icache_page(vma, page);
3400         if (pte_swp_soft_dirty(vmf->orig_pte))
3401                 pte = pte_mksoft_dirty(pte);
3402         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3403                 pte = pte_mkuffd_wp(pte);
3404                 pte = pte_wrprotect(pte);
3405         }
3406         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3407         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3408         vmf->orig_pte = pte;
3409
3410         /* ksm created a completely new copy */
3411         if (unlikely(page != swapcache && swapcache)) {
3412                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3413                 lru_cache_add_inactive_or_unevictable(page, vma);
3414         } else {
3415                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3416         }
3417
3418         swap_free(entry);
3419         if (mem_cgroup_swap_full(page) ||
3420             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3421                 try_to_free_swap(page);
3422         unlock_page(page);
3423         if (page != swapcache && swapcache) {
3424                 /*
3425                  * Hold the lock to avoid the swap entry to be reused
3426                  * until we take the PT lock for the pte_same() check
3427                  * (to avoid false positives from pte_same). For
3428                  * further safety release the lock after the swap_free
3429                  * so that the swap count won't change under a
3430                  * parallel locked swapcache.
3431                  */
3432                 unlock_page(swapcache);
3433                 put_page(swapcache);
3434         }
3435
3436         if (vmf->flags & FAULT_FLAG_WRITE) {
3437                 ret |= do_wp_page(vmf);
3438                 if (ret & VM_FAULT_ERROR)
3439                         ret &= VM_FAULT_ERROR;
3440                 goto out;
3441         }
3442
3443         /* No need to invalidate - it was non-present before */
3444         update_mmu_cache(vma, vmf->address, vmf->pte);
3445 unlock:
3446         pte_unmap_unlock(vmf->pte, vmf->ptl);
3447 out:
3448         return ret;
3449 out_nomap:
3450         pte_unmap_unlock(vmf->pte, vmf->ptl);
3451 out_page:
3452         unlock_page(page);
3453 out_release:
3454         put_page(page);
3455         if (page != swapcache && swapcache) {
3456                 unlock_page(swapcache);
3457                 put_page(swapcache);
3458         }
3459         return ret;
3460 }
3461
3462 /*
3463  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3464  * but allow concurrent faults), and pte mapped but not yet locked.
3465  * We return with mmap_lock still held, but pte unmapped and unlocked.
3466  */
3467 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3468 {
3469         struct vm_area_struct *vma = vmf->vma;
3470         struct page *page;
3471         vm_fault_t ret = 0;
3472         pte_t entry;
3473
3474         /* File mapping without ->vm_ops ? */
3475         if (vma->vm_flags & VM_SHARED)
3476                 return VM_FAULT_SIGBUS;
3477
3478         /*
3479          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3480          * pte_offset_map() on pmds where a huge pmd might be created
3481          * from a different thread.
3482          *
3483          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3484          * parallel threads are excluded by other means.
3485          *
3486          * Here we only have mmap_read_lock(mm).
3487          */
3488         if (pte_alloc(vma->vm_mm, vmf->pmd))
3489                 return VM_FAULT_OOM;
3490
3491         /* See the comment in pte_alloc_one_map() */
3492         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3493                 return 0;
3494
3495         /* Use the zero-page for reads */
3496         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3497                         !mm_forbids_zeropage(vma->vm_mm)) {
3498                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3499                                                 vma->vm_page_prot));
3500                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3501                                 vmf->address, &vmf->ptl);
3502                 if (!pte_none(*vmf->pte)) {
3503                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3504                         goto unlock;
3505                 }
3506                 ret = check_stable_address_space(vma->vm_mm);
3507                 if (ret)
3508                         goto unlock;
3509                 /* Deliver the page fault to userland, check inside PT lock */
3510                 if (userfaultfd_missing(vma)) {
3511                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3512                         return handle_userfault(vmf, VM_UFFD_MISSING);
3513                 }
3514                 goto setpte;
3515         }
3516
3517         /* Allocate our own private page. */
3518         if (unlikely(anon_vma_prepare(vma)))
3519                 goto oom;
3520         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3521         if (!page)
3522                 goto oom;
3523
3524         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3525                 goto oom_free_page;
3526         cgroup_throttle_swaprate(page, GFP_KERNEL);
3527
3528         /*
3529          * The memory barrier inside __SetPageUptodate makes sure that
3530          * preceding stores to the page contents become visible before
3531          * the set_pte_at() write.
3532          */
3533         __SetPageUptodate(page);
3534
3535         entry = mk_pte(page, vma->vm_page_prot);
3536         entry = pte_sw_mkyoung(entry);
3537         if (vma->vm_flags & VM_WRITE)
3538                 entry = pte_mkwrite(pte_mkdirty(entry));
3539
3540         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3541                         &vmf->ptl);
3542         if (!pte_none(*vmf->pte)) {
3543                 update_mmu_cache(vma, vmf->address, vmf->pte);
3544                 goto release;
3545         }
3546
3547         ret = check_stable_address_space(vma->vm_mm);
3548         if (ret)
3549                 goto release;
3550
3551         /* Deliver the page fault to userland, check inside PT lock */
3552         if (userfaultfd_missing(vma)) {
3553                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3554                 put_page(page);
3555                 return handle_userfault(vmf, VM_UFFD_MISSING);
3556         }
3557
3558         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3559         page_add_new_anon_rmap(page, vma, vmf->address, false);
3560         lru_cache_add_inactive_or_unevictable(page, vma);
3561 setpte:
3562         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3563
3564         /* No need to invalidate - it was non-present before */
3565         update_mmu_cache(vma, vmf->address, vmf->pte);
3566 unlock:
3567         pte_unmap_unlock(vmf->pte, vmf->ptl);
3568         return ret;
3569 release:
3570         put_page(page);
3571         goto unlock;
3572 oom_free_page:
3573         put_page(page);
3574 oom:
3575         return VM_FAULT_OOM;
3576 }
3577
3578 /*
3579  * The mmap_lock must have been held on entry, and may have been
3580  * released depending on flags and vma->vm_ops->fault() return value.
3581  * See filemap_fault() and __lock_page_retry().
3582  */
3583 static vm_fault_t __do_fault(struct vm_fault *vmf)
3584 {
3585         struct vm_area_struct *vma = vmf->vma;
3586         vm_fault_t ret;
3587
3588         /*
3589          * Preallocate pte before we take page_lock because this might lead to
3590          * deadlocks for memcg reclaim which waits for pages under writeback:
3591          *                              lock_page(A)
3592          *                              SetPageWriteback(A)
3593          *                              unlock_page(A)
3594          * lock_page(B)
3595          *                              lock_page(B)
3596          * pte_alloc_one
3597          *   shrink_page_list
3598          *     wait_on_page_writeback(A)
3599          *                              SetPageWriteback(B)
3600          *                              unlock_page(B)
3601          *                              # flush A, B to clear the writeback
3602          */
3603         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3604                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3605                 if (!vmf->prealloc_pte)
3606                         return VM_FAULT_OOM;
3607                 smp_wmb(); /* See comment in __pte_alloc() */
3608         }
3609
3610         ret = vma->vm_ops->fault(vmf);
3611         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3612                             VM_FAULT_DONE_COW)))
3613                 return ret;
3614
3615         if (unlikely(PageHWPoison(vmf->page))) {
3616                 if (ret & VM_FAULT_LOCKED)
3617                         unlock_page(vmf->page);
3618                 put_page(vmf->page);
3619                 vmf->page = NULL;
3620                 return VM_FAULT_HWPOISON;
3621         }
3622
3623         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3624                 lock_page(vmf->page);
3625         else
3626                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3627
3628         return ret;
3629 }
3630
3631 /*
3632  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3633  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3634  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3635  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3636  */
3637 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3638 {
3639         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3640 }
3641
3642 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3643 {
3644         struct vm_area_struct *vma = vmf->vma;
3645
3646         if (!pmd_none(*vmf->pmd))
3647                 goto map_pte;
3648         if (vmf->prealloc_pte) {
3649                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3650                 if (unlikely(!pmd_none(*vmf->pmd))) {
3651                         spin_unlock(vmf->ptl);
3652                         goto map_pte;
3653                 }
3654
3655                 mm_inc_nr_ptes(vma->vm_mm);
3656                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3657                 spin_unlock(vmf->ptl);
3658                 vmf->prealloc_pte = NULL;
3659         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3660                 return VM_FAULT_OOM;
3661         }
3662 map_pte:
3663         /*
3664          * If a huge pmd materialized under us just retry later.  Use
3665          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3666          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3667          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3668          * running immediately after a huge pmd fault in a different thread of
3669          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3670          * All we have to ensure is that it is a regular pmd that we can walk
3671          * with pte_offset_map() and we can do that through an atomic read in
3672          * C, which is what pmd_trans_unstable() provides.
3673          */
3674         if (pmd_devmap_trans_unstable(vmf->pmd))
3675                 return VM_FAULT_NOPAGE;
3676
3677         /*
3678          * At this point we know that our vmf->pmd points to a page of ptes
3679          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3680          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3681          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3682          * be valid and we will re-check to make sure the vmf->pte isn't
3683          * pte_none() under vmf->ptl protection when we return to
3684          * alloc_set_pte().
3685          */
3686         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3687                         &vmf->ptl);
3688         return 0;
3689 }
3690
3691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3692 static void deposit_prealloc_pte(struct vm_fault *vmf)
3693 {
3694         struct vm_area_struct *vma = vmf->vma;
3695
3696         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3697         /*
3698          * We are going to consume the prealloc table,
3699          * count that as nr_ptes.
3700          */
3701         mm_inc_nr_ptes(vma->vm_mm);
3702         vmf->prealloc_pte = NULL;
3703 }
3704
3705 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3706 {
3707         struct vm_area_struct *vma = vmf->vma;
3708         bool write = vmf->flags & FAULT_FLAG_WRITE;
3709         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3710         pmd_t entry;
3711         int i;
3712         vm_fault_t ret = VM_FAULT_FALLBACK;
3713
3714         if (!transhuge_vma_suitable(vma, haddr))
3715                 return ret;
3716
3717         page = compound_head(page);
3718         if (compound_order(page) != HPAGE_PMD_ORDER)
3719                 return ret;
3720
3721         /*
3722          * Archs like ppc64 need additonal space to store information
3723          * related to pte entry. Use the preallocated table for that.
3724          */
3725         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3726                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3727                 if (!vmf->prealloc_pte)
3728                         return VM_FAULT_OOM;
3729                 smp_wmb(); /* See comment in __pte_alloc() */
3730         }
3731
3732         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3733         if (unlikely(!pmd_none(*vmf->pmd)))
3734                 goto out;
3735
3736         for (i = 0; i < HPAGE_PMD_NR; i++)
3737                 flush_icache_page(vma, page + i);
3738
3739         entry = mk_huge_pmd(page, vma->vm_page_prot);
3740         if (write)
3741                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3742
3743         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3744         page_add_file_rmap(page, true);
3745         /*
3746          * deposit and withdraw with pmd lock held
3747          */
3748         if (arch_needs_pgtable_deposit())
3749                 deposit_prealloc_pte(vmf);
3750
3751         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3752
3753         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3754
3755         /* fault is handled */
3756         ret = 0;
3757         count_vm_event(THP_FILE_MAPPED);
3758 out:
3759         spin_unlock(vmf->ptl);
3760         return ret;
3761 }
3762 #else
3763 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3764 {
3765         BUILD_BUG();
3766         return 0;
3767 }
3768 #endif
3769
3770 /**
3771  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3772  * mapping. If needed, the function allocates page table or use pre-allocated.
3773  *
3774  * @vmf: fault environment
3775  * @page: page to map
3776  *
3777  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3778  * return.
3779  *
3780  * Target users are page handler itself and implementations of
3781  * vm_ops->map_pages.
3782  *
3783  * Return: %0 on success, %VM_FAULT_ code in case of error.
3784  */
3785 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3786 {
3787         struct vm_area_struct *vma = vmf->vma;
3788         bool write = vmf->flags & FAULT_FLAG_WRITE;
3789         pte_t entry;
3790         vm_fault_t ret;
3791
3792         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3793                 ret = do_set_pmd(vmf, page);
3794                 if (ret != VM_FAULT_FALLBACK)
3795                         return ret;
3796         }
3797
3798         if (!vmf->pte) {
3799                 ret = pte_alloc_one_map(vmf);
3800                 if (ret)
3801                         return ret;
3802         }
3803
3804         /* Re-check under ptl */
3805         if (unlikely(!pte_none(*vmf->pte))) {
3806                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3807                 return VM_FAULT_NOPAGE;
3808         }
3809
3810         flush_icache_page(vma, page);
3811         entry = mk_pte(page, vma->vm_page_prot);
3812         entry = pte_sw_mkyoung(entry);
3813         if (write)
3814                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3815         /* copy-on-write page */
3816         if (write && !(vma->vm_flags & VM_SHARED)) {
3817                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3818                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3819                 lru_cache_add_inactive_or_unevictable(page, vma);
3820         } else {
3821                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3822                 page_add_file_rmap(page, false);
3823         }
3824         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3825
3826         /* no need to invalidate: a not-present page won't be cached */
3827         update_mmu_cache(vma, vmf->address, vmf->pte);
3828
3829         return 0;
3830 }
3831
3832
3833 /**
3834  * finish_fault - finish page fault once we have prepared the page to fault
3835  *
3836  * @vmf: structure describing the fault
3837  *
3838  * This function handles all that is needed to finish a page fault once the
3839  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3840  * given page, adds reverse page mapping, handles memcg charges and LRU
3841  * addition.
3842  *
3843  * The function expects the page to be locked and on success it consumes a
3844  * reference of a page being mapped (for the PTE which maps it).
3845  *
3846  * Return: %0 on success, %VM_FAULT_ code in case of error.
3847  */
3848 vm_fault_t finish_fault(struct vm_fault *vmf)
3849 {
3850         struct page *page;
3851         vm_fault_t ret = 0;
3852
3853         /* Did we COW the page? */
3854         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3855             !(vmf->vma->vm_flags & VM_SHARED))
3856                 page = vmf->cow_page;
3857         else
3858                 page = vmf->page;
3859
3860         /*
3861          * check even for read faults because we might have lost our CoWed
3862          * page
3863          */
3864         if (!(vmf->vma->vm_flags & VM_SHARED))
3865                 ret = check_stable_address_space(vmf->vma->vm_mm);
3866         if (!ret)
3867                 ret = alloc_set_pte(vmf, page);
3868         if (vmf->pte)
3869                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3870         return ret;
3871 }
3872
3873 static unsigned long fault_around_bytes __read_mostly =
3874         rounddown_pow_of_two(65536);
3875
3876 #ifdef CONFIG_DEBUG_FS
3877 static int fault_around_bytes_get(void *data, u64 *val)
3878 {
3879         *val = fault_around_bytes;
3880         return 0;
3881 }
3882
3883 /*
3884  * fault_around_bytes must be rounded down to the nearest page order as it's
3885  * what do_fault_around() expects to see.
3886  */
3887 static int fault_around_bytes_set(void *data, u64 val)
3888 {
3889         if (val / PAGE_SIZE > PTRS_PER_PTE)
3890                 return -EINVAL;
3891         if (val > PAGE_SIZE)
3892                 fault_around_bytes = rounddown_pow_of_two(val);
3893         else
3894                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3895         return 0;
3896 }
3897 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3898                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3899
3900 static int __init fault_around_debugfs(void)
3901 {
3902         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3903                                    &fault_around_bytes_fops);
3904         return 0;
3905 }
3906 late_initcall(fault_around_debugfs);
3907 #endif
3908
3909 /*
3910  * do_fault_around() tries to map few pages around the fault address. The hope
3911  * is that the pages will be needed soon and this will lower the number of
3912  * faults to handle.
3913  *
3914  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3915  * not ready to be mapped: not up-to-date, locked, etc.
3916  *
3917  * This function is called with the page table lock taken. In the split ptlock
3918  * case the page table lock only protects only those entries which belong to
3919  * the page table corresponding to the fault address.
3920  *
3921  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3922  * only once.
3923  *
3924  * fault_around_bytes defines how many bytes we'll try to map.
3925  * do_fault_around() expects it to be set to a power of two less than or equal
3926  * to PTRS_PER_PTE.
3927  *
3928  * The virtual address of the area that we map is naturally aligned to
3929  * fault_around_bytes rounded down to the machine page size
3930  * (and therefore to page order).  This way it's easier to guarantee
3931  * that we don't cross page table boundaries.
3932  */
3933 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3934 {
3935         unsigned long address = vmf->address, nr_pages, mask;
3936         pgoff_t start_pgoff = vmf->pgoff;
3937         pgoff_t end_pgoff;
3938         int off;
3939         vm_fault_t ret = 0;
3940
3941         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3942         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3943
3944         vmf->address = max(address & mask, vmf->vma->vm_start);
3945         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3946         start_pgoff -= off;
3947
3948         /*
3949          *  end_pgoff is either the end of the page table, the end of
3950          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3951          */
3952         end_pgoff = start_pgoff -
3953                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3954                 PTRS_PER_PTE - 1;
3955         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3956                         start_pgoff + nr_pages - 1);
3957
3958         if (pmd_none(*vmf->pmd)) {
3959                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3960                 if (!vmf->prealloc_pte)
3961                         goto out;
3962                 smp_wmb(); /* See comment in __pte_alloc() */
3963         }
3964
3965         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3966
3967         /* Huge page is mapped? Page fault is solved */
3968         if (pmd_trans_huge(*vmf->pmd)) {
3969                 ret = VM_FAULT_NOPAGE;
3970                 goto out;
3971         }
3972
3973         /* ->map_pages() haven't done anything useful. Cold page cache? */
3974         if (!vmf->pte)
3975                 goto out;
3976
3977         /* check if the page fault is solved */
3978         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3979         if (!pte_none(*vmf->pte))
3980                 ret = VM_FAULT_NOPAGE;
3981         pte_unmap_unlock(vmf->pte, vmf->ptl);
3982 out:
3983         vmf->address = address;
3984         vmf->pte = NULL;
3985         return ret;
3986 }
3987
3988 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3989 {
3990         struct vm_area_struct *vma = vmf->vma;
3991         vm_fault_t ret = 0;
3992
3993         /*
3994          * Let's call ->map_pages() first and use ->fault() as fallback
3995          * if page by the offset is not ready to be mapped (cold cache or
3996          * something).
3997          */
3998         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3999                 ret = do_fault_around(vmf);
4000                 if (ret)
4001                         return ret;
4002         }
4003
4004         ret = __do_fault(vmf);
4005         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4006                 return ret;
4007
4008         ret |= finish_fault(vmf);
4009         unlock_page(vmf->page);
4010         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4011                 put_page(vmf->page);
4012         return ret;
4013 }
4014
4015 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4016 {
4017         struct vm_area_struct *vma = vmf->vma;
4018         vm_fault_t ret;
4019
4020         if (unlikely(anon_vma_prepare(vma)))
4021                 return VM_FAULT_OOM;
4022
4023         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4024         if (!vmf->cow_page)
4025                 return VM_FAULT_OOM;
4026
4027         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4028                 put_page(vmf->cow_page);
4029                 return VM_FAULT_OOM;
4030         }
4031         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4032
4033         ret = __do_fault(vmf);
4034         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4035                 goto uncharge_out;
4036         if (ret & VM_FAULT_DONE_COW)
4037                 return ret;
4038
4039         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4040         __SetPageUptodate(vmf->cow_page);
4041
4042         ret |= finish_fault(vmf);
4043         unlock_page(vmf->page);
4044         put_page(vmf->page);
4045         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4046                 goto uncharge_out;
4047         return ret;
4048 uncharge_out:
4049         put_page(vmf->cow_page);
4050         return ret;
4051 }
4052
4053 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4054 {
4055         struct vm_area_struct *vma = vmf->vma;
4056         vm_fault_t ret, tmp;
4057
4058         ret = __do_fault(vmf);
4059         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4060                 return ret;
4061
4062         /*
4063          * Check if the backing address space wants to know that the page is
4064          * about to become writable
4065          */
4066         if (vma->vm_ops->page_mkwrite) {
4067                 unlock_page(vmf->page);
4068                 tmp = do_page_mkwrite(vmf);
4069                 if (unlikely(!tmp ||
4070                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4071                         put_page(vmf->page);
4072                         return tmp;
4073                 }
4074         }
4075
4076         ret |= finish_fault(vmf);
4077         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4078                                         VM_FAULT_RETRY))) {
4079                 unlock_page(vmf->page);
4080                 put_page(vmf->page);
4081                 return ret;
4082         }
4083
4084         ret |= fault_dirty_shared_page(vmf);
4085         return ret;
4086 }
4087
4088 /*
4089  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4090  * but allow concurrent faults).
4091  * The mmap_lock may have been released depending on flags and our
4092  * return value.  See filemap_fault() and __lock_page_or_retry().
4093  * If mmap_lock is released, vma may become invalid (for example
4094  * by other thread calling munmap()).
4095  */
4096 static vm_fault_t do_fault(struct vm_fault *vmf)
4097 {
4098         struct vm_area_struct *vma = vmf->vma;
4099         struct mm_struct *vm_mm = vma->vm_mm;
4100         vm_fault_t ret;
4101
4102         /*
4103          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4104          */
4105         if (!vma->vm_ops->fault) {
4106                 /*
4107                  * If we find a migration pmd entry or a none pmd entry, which
4108                  * should never happen, return SIGBUS
4109                  */
4110                 if (unlikely(!pmd_present(*vmf->pmd)))
4111                         ret = VM_FAULT_SIGBUS;
4112                 else {
4113                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4114                                                        vmf->pmd,
4115                                                        vmf->address,
4116                                                        &vmf->ptl);
4117                         /*
4118                          * Make sure this is not a temporary clearing of pte
4119                          * by holding ptl and checking again. A R/M/W update
4120                          * of pte involves: take ptl, clearing the pte so that
4121                          * we don't have concurrent modification by hardware
4122                          * followed by an update.
4123                          */
4124                         if (unlikely(pte_none(*vmf->pte)))
4125                                 ret = VM_FAULT_SIGBUS;
4126                         else
4127                                 ret = VM_FAULT_NOPAGE;
4128
4129                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4130                 }
4131         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4132                 ret = do_read_fault(vmf);
4133         else if (!(vma->vm_flags & VM_SHARED))
4134                 ret = do_cow_fault(vmf);
4135         else
4136                 ret = do_shared_fault(vmf);
4137
4138         /* preallocated pagetable is unused: free it */
4139         if (vmf->prealloc_pte) {
4140                 pte_free(vm_mm, vmf->prealloc_pte);
4141                 vmf->prealloc_pte = NULL;
4142         }
4143         return ret;
4144 }
4145
4146 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4147                                 unsigned long addr, int page_nid,
4148                                 int *flags)
4149 {
4150         get_page(page);
4151
4152         count_vm_numa_event(NUMA_HINT_FAULTS);
4153         if (page_nid == numa_node_id()) {
4154                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4155                 *flags |= TNF_FAULT_LOCAL;
4156         }
4157
4158         return mpol_misplaced(page, vma, addr);
4159 }
4160
4161 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4162 {
4163         struct vm_area_struct *vma = vmf->vma;
4164         struct page *page = NULL;
4165         int page_nid = NUMA_NO_NODE;
4166         int last_cpupid;
4167         int target_nid;
4168         bool migrated = false;
4169         pte_t pte, old_pte;
4170         bool was_writable = pte_savedwrite(vmf->orig_pte);
4171         int flags = 0;
4172
4173         /*
4174          * The "pte" at this point cannot be used safely without
4175          * validation through pte_unmap_same(). It's of NUMA type but
4176          * the pfn may be screwed if the read is non atomic.
4177          */
4178         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4179         spin_lock(vmf->ptl);
4180         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4181                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4182                 goto out;
4183         }
4184
4185         /*
4186          * Make it present again, Depending on how arch implementes non
4187          * accessible ptes, some can allow access by kernel mode.
4188          */
4189         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4190         pte = pte_modify(old_pte, vma->vm_page_prot);
4191         pte = pte_mkyoung(pte);
4192         if (was_writable)
4193                 pte = pte_mkwrite(pte);
4194         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4195         update_mmu_cache(vma, vmf->address, vmf->pte);
4196
4197         page = vm_normal_page(vma, vmf->address, pte);
4198         if (!page) {
4199                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4200                 return 0;
4201         }
4202
4203         /* TODO: handle PTE-mapped THP */
4204         if (PageCompound(page)) {
4205                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4206                 return 0;
4207         }
4208
4209         /*
4210          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4211          * much anyway since they can be in shared cache state. This misses
4212          * the case where a mapping is writable but the process never writes
4213          * to it but pte_write gets cleared during protection updates and
4214          * pte_dirty has unpredictable behaviour between PTE scan updates,
4215          * background writeback, dirty balancing and application behaviour.
4216          */
4217         if (!pte_write(pte))
4218                 flags |= TNF_NO_GROUP;
4219
4220         /*
4221          * Flag if the page is shared between multiple address spaces. This
4222          * is later used when determining whether to group tasks together
4223          */
4224         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4225                 flags |= TNF_SHARED;
4226
4227         last_cpupid = page_cpupid_last(page);
4228         page_nid = page_to_nid(page);
4229         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4230                         &flags);
4231         pte_unmap_unlock(vmf->pte, vmf->ptl);
4232         if (target_nid == NUMA_NO_NODE) {
4233                 put_page(page);
4234                 goto out;
4235         }
4236
4237         /* Migrate to the requested node */
4238         migrated = migrate_misplaced_page(page, vma, target_nid);
4239         if (migrated) {
4240                 page_nid = target_nid;
4241                 flags |= TNF_MIGRATED;
4242         } else
4243                 flags |= TNF_MIGRATE_FAIL;
4244
4245 out:
4246         if (page_nid != NUMA_NO_NODE)
4247                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4248         return 0;
4249 }
4250
4251 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4252 {
4253         if (vma_is_anonymous(vmf->vma))
4254                 return do_huge_pmd_anonymous_page(vmf);
4255         if (vmf->vma->vm_ops->huge_fault)
4256                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4257         return VM_FAULT_FALLBACK;
4258 }
4259
4260 /* `inline' is required to avoid gcc 4.1.2 build error */
4261 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4262 {
4263         if (vma_is_anonymous(vmf->vma)) {
4264                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4265                         return handle_userfault(vmf, VM_UFFD_WP);
4266                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4267         }
4268         if (vmf->vma->vm_ops->huge_fault) {
4269                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4270
4271                 if (!(ret & VM_FAULT_FALLBACK))
4272                         return ret;
4273         }
4274
4275         /* COW or write-notify handled on pte level: split pmd. */
4276         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4277
4278         return VM_FAULT_FALLBACK;
4279 }
4280
4281 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4282 {
4283 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4284         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4285         /* No support for anonymous transparent PUD pages yet */
4286         if (vma_is_anonymous(vmf->vma))
4287                 goto split;
4288         if (vmf->vma->vm_ops->huge_fault) {
4289                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4290
4291                 if (!(ret & VM_FAULT_FALLBACK))
4292                         return ret;
4293         }
4294 split:
4295         /* COW or write-notify not handled on PUD level: split pud.*/
4296         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4297 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4298         return VM_FAULT_FALLBACK;
4299 }
4300
4301 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4302 {
4303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4304         /* No support for anonymous transparent PUD pages yet */
4305         if (vma_is_anonymous(vmf->vma))
4306                 return VM_FAULT_FALLBACK;
4307         if (vmf->vma->vm_ops->huge_fault)
4308                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4309 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4310         return VM_FAULT_FALLBACK;
4311 }
4312
4313 /*
4314  * These routines also need to handle stuff like marking pages dirty
4315  * and/or accessed for architectures that don't do it in hardware (most
4316  * RISC architectures).  The early dirtying is also good on the i386.
4317  *
4318  * There is also a hook called "update_mmu_cache()" that architectures
4319  * with external mmu caches can use to update those (ie the Sparc or
4320  * PowerPC hashed page tables that act as extended TLBs).
4321  *
4322  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4323  * concurrent faults).
4324  *
4325  * The mmap_lock may have been released depending on flags and our return value.
4326  * See filemap_fault() and __lock_page_or_retry().
4327  */
4328 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4329 {
4330         pte_t entry;
4331
4332         if (unlikely(pmd_none(*vmf->pmd))) {
4333                 /*
4334                  * Leave __pte_alloc() until later: because vm_ops->fault may
4335                  * want to allocate huge page, and if we expose page table
4336                  * for an instant, it will be difficult to retract from
4337                  * concurrent faults and from rmap lookups.
4338                  */
4339                 vmf->pte = NULL;
4340         } else {
4341                 /* See comment in pte_alloc_one_map() */
4342                 if (pmd_devmap_trans_unstable(vmf->pmd))
4343                         return 0;
4344                 /*
4345                  * A regular pmd is established and it can't morph into a huge
4346                  * pmd from under us anymore at this point because we hold the
4347                  * mmap_lock read mode and khugepaged takes it in write mode.
4348                  * So now it's safe to run pte_offset_map().
4349                  */
4350                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4351                 vmf->orig_pte = *vmf->pte;
4352
4353                 /*
4354                  * some architectures can have larger ptes than wordsize,
4355                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4356                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4357                  * accesses.  The code below just needs a consistent view
4358                  * for the ifs and we later double check anyway with the
4359                  * ptl lock held. So here a barrier will do.
4360                  */
4361                 barrier();
4362                 if (pte_none(vmf->orig_pte)) {
4363                         pte_unmap(vmf->pte);
4364                         vmf->pte = NULL;
4365                 }
4366         }
4367
4368         if (!vmf->pte) {
4369                 if (vma_is_anonymous(vmf->vma))
4370                         return do_anonymous_page(vmf);
4371                 else
4372                         return do_fault(vmf);
4373         }
4374
4375         if (!pte_present(vmf->orig_pte))
4376                 return do_swap_page(vmf);
4377
4378         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4379                 return do_numa_page(vmf);
4380
4381         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4382         spin_lock(vmf->ptl);
4383         entry = vmf->orig_pte;
4384         if (unlikely(!pte_same(*vmf->pte, entry))) {
4385                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4386                 goto unlock;
4387         }
4388         if (vmf->flags & FAULT_FLAG_WRITE) {
4389                 if (!pte_write(entry))
4390                         return do_wp_page(vmf);
4391                 entry = pte_mkdirty(entry);
4392         }
4393         entry = pte_mkyoung(entry);
4394         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4395                                 vmf->flags & FAULT_FLAG_WRITE)) {
4396                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4397         } else {
4398                 /* Skip spurious TLB flush for retried page fault */
4399                 if (vmf->flags & FAULT_FLAG_TRIED)
4400                         goto unlock;
4401                 /*
4402                  * This is needed only for protection faults but the arch code
4403                  * is not yet telling us if this is a protection fault or not.
4404                  * This still avoids useless tlb flushes for .text page faults
4405                  * with threads.
4406                  */
4407                 if (vmf->flags & FAULT_FLAG_WRITE)
4408                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4409         }
4410 unlock:
4411         pte_unmap_unlock(vmf->pte, vmf->ptl);
4412         return 0;
4413 }
4414
4415 /*
4416  * By the time we get here, we already hold the mm semaphore
4417  *
4418  * The mmap_lock may have been released depending on flags and our
4419  * return value.  See filemap_fault() and __lock_page_or_retry().
4420  */
4421 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4422                 unsigned long address, unsigned int flags)
4423 {
4424         struct vm_fault vmf = {
4425                 .vma = vma,
4426                 .address = address & PAGE_MASK,
4427                 .flags = flags,
4428                 .pgoff = linear_page_index(vma, address),
4429                 .gfp_mask = __get_fault_gfp_mask(vma),
4430         };
4431         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4432         struct mm_struct *mm = vma->vm_mm;
4433         pgd_t *pgd;
4434         p4d_t *p4d;
4435         vm_fault_t ret;
4436
4437         pgd = pgd_offset(mm, address);
4438         p4d = p4d_alloc(mm, pgd, address);
4439         if (!p4d)
4440                 return VM_FAULT_OOM;
4441
4442         vmf.pud = pud_alloc(mm, p4d, address);
4443         if (!vmf.pud)
4444                 return VM_FAULT_OOM;
4445 retry_pud:
4446         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4447                 ret = create_huge_pud(&vmf);
4448                 if (!(ret & VM_FAULT_FALLBACK))
4449                         return ret;
4450         } else {
4451                 pud_t orig_pud = *vmf.pud;
4452
4453                 barrier();
4454                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4455
4456                         /* NUMA case for anonymous PUDs would go here */
4457
4458                         if (dirty && !pud_write(orig_pud)) {
4459                                 ret = wp_huge_pud(&vmf, orig_pud);
4460                                 if (!(ret & VM_FAULT_FALLBACK))
4461                                         return ret;
4462                         } else {
4463                                 huge_pud_set_accessed(&vmf, orig_pud);
4464                                 return 0;
4465                         }
4466                 }
4467         }
4468
4469         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4470         if (!vmf.pmd)
4471                 return VM_FAULT_OOM;
4472
4473         /* Huge pud page fault raced with pmd_alloc? */
4474         if (pud_trans_unstable(vmf.pud))
4475                 goto retry_pud;
4476
4477         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4478                 ret = create_huge_pmd(&vmf);
4479                 if (!(ret & VM_FAULT_FALLBACK))
4480                         return ret;
4481         } else {
4482                 pmd_t orig_pmd = *vmf.pmd;
4483
4484                 barrier();
4485                 if (unlikely(is_swap_pmd(orig_pmd))) {
4486                         VM_BUG_ON(thp_migration_supported() &&
4487                                           !is_pmd_migration_entry(orig_pmd));
4488                         if (is_pmd_migration_entry(orig_pmd))
4489                                 pmd_migration_entry_wait(mm, vmf.pmd);
4490                         return 0;
4491                 }
4492                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4493                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4494                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4495
4496                         if (dirty && !pmd_write(orig_pmd)) {
4497                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4498                                 if (!(ret & VM_FAULT_FALLBACK))
4499                                         return ret;
4500                         } else {
4501                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4502                                 return 0;
4503                         }
4504                 }
4505         }
4506
4507         return handle_pte_fault(&vmf);
4508 }
4509
4510 /**
4511  * mm_account_fault - Do page fault accountings
4512  *
4513  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4514  *        of perf event counters, but we'll still do the per-task accounting to
4515  *        the task who triggered this page fault.
4516  * @address: the faulted address.
4517  * @flags: the fault flags.
4518  * @ret: the fault retcode.
4519  *
4520  * This will take care of most of the page fault accountings.  Meanwhile, it
4521  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4522  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4523  * still be in per-arch page fault handlers at the entry of page fault.
4524  */
4525 static inline void mm_account_fault(struct pt_regs *regs,
4526                                     unsigned long address, unsigned int flags,
4527                                     vm_fault_t ret)
4528 {
4529         bool major;
4530
4531         /*
4532          * We don't do accounting for some specific faults:
4533          *
4534          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4535          *   includes arch_vma_access_permitted() failing before reaching here.
4536          *   So this is not a "this many hardware page faults" counter.  We
4537          *   should use the hw profiling for that.
4538          *
4539          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4540          *   once they're completed.
4541          */
4542         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4543                 return;
4544
4545         /*
4546          * We define the fault as a major fault when the final successful fault
4547          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4548          * handle it immediately previously).
4549          */
4550         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4551
4552         if (major)
4553                 current->maj_flt++;
4554         else
4555                 current->min_flt++;
4556
4557         /*
4558          * If the fault is done for GUP, regs will be NULL.  We only do the
4559          * accounting for the per thread fault counters who triggered the
4560          * fault, and we skip the perf event updates.
4561          */
4562         if (!regs)
4563                 return;
4564
4565         if (major)
4566                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4567         else
4568                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4569 }
4570
4571 /*
4572  * By the time we get here, we already hold the mm semaphore
4573  *
4574  * The mmap_lock may have been released depending on flags and our
4575  * return value.  See filemap_fault() and __lock_page_or_retry().
4576  */
4577 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4578                            unsigned int flags, struct pt_regs *regs)
4579 {
4580         vm_fault_t ret;
4581
4582         __set_current_state(TASK_RUNNING);
4583
4584         count_vm_event(PGFAULT);
4585         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4586
4587         /* do counter updates before entering really critical section. */
4588         check_sync_rss_stat(current);
4589
4590         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4591                                             flags & FAULT_FLAG_INSTRUCTION,
4592                                             flags & FAULT_FLAG_REMOTE))
4593                 return VM_FAULT_SIGSEGV;
4594
4595         /*
4596          * Enable the memcg OOM handling for faults triggered in user
4597          * space.  Kernel faults are handled more gracefully.
4598          */
4599         if (flags & FAULT_FLAG_USER)
4600                 mem_cgroup_enter_user_fault();
4601
4602         if (unlikely(is_vm_hugetlb_page(vma)))
4603                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4604         else
4605                 ret = __handle_mm_fault(vma, address, flags);
4606
4607         if (flags & FAULT_FLAG_USER) {
4608                 mem_cgroup_exit_user_fault();
4609                 /*
4610                  * The task may have entered a memcg OOM situation but
4611                  * if the allocation error was handled gracefully (no
4612                  * VM_FAULT_OOM), there is no need to kill anything.
4613                  * Just clean up the OOM state peacefully.
4614                  */
4615                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4616                         mem_cgroup_oom_synchronize(false);
4617         }
4618
4619         mm_account_fault(regs, address, flags, ret);
4620
4621         return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(handle_mm_fault);
4624
4625 #ifndef __PAGETABLE_P4D_FOLDED
4626 /*
4627  * Allocate p4d page table.
4628  * We've already handled the fast-path in-line.
4629  */
4630 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4631 {
4632         p4d_t *new = p4d_alloc_one(mm, address);
4633         if (!new)
4634                 return -ENOMEM;
4635
4636         smp_wmb(); /* See comment in __pte_alloc */
4637
4638         spin_lock(&mm->page_table_lock);
4639         if (pgd_present(*pgd))          /* Another has populated it */
4640                 p4d_free(mm, new);
4641         else
4642                 pgd_populate(mm, pgd, new);
4643         spin_unlock(&mm->page_table_lock);
4644         return 0;
4645 }
4646 #endif /* __PAGETABLE_P4D_FOLDED */
4647
4648 #ifndef __PAGETABLE_PUD_FOLDED
4649 /*
4650  * Allocate page upper directory.
4651  * We've already handled the fast-path in-line.
4652  */
4653 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4654 {
4655         pud_t *new = pud_alloc_one(mm, address);
4656         if (!new)
4657                 return -ENOMEM;
4658
4659         smp_wmb(); /* See comment in __pte_alloc */
4660
4661         spin_lock(&mm->page_table_lock);
4662         if (!p4d_present(*p4d)) {
4663                 mm_inc_nr_puds(mm);
4664                 p4d_populate(mm, p4d, new);
4665         } else  /* Another has populated it */
4666                 pud_free(mm, new);
4667         spin_unlock(&mm->page_table_lock);
4668         return 0;
4669 }
4670 #endif /* __PAGETABLE_PUD_FOLDED */
4671
4672 #ifndef __PAGETABLE_PMD_FOLDED
4673 /*
4674  * Allocate page middle directory.
4675  * We've already handled the fast-path in-line.
4676  */
4677 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4678 {
4679         spinlock_t *ptl;
4680         pmd_t *new = pmd_alloc_one(mm, address);
4681         if (!new)
4682                 return -ENOMEM;
4683
4684         smp_wmb(); /* See comment in __pte_alloc */
4685
4686         ptl = pud_lock(mm, pud);
4687         if (!pud_present(*pud)) {
4688                 mm_inc_nr_pmds(mm);
4689                 pud_populate(mm, pud, new);
4690         } else  /* Another has populated it */
4691                 pmd_free(mm, new);
4692         spin_unlock(ptl);
4693         return 0;
4694 }
4695 #endif /* __PAGETABLE_PMD_FOLDED */
4696
4697 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4698                             struct mmu_notifier_range *range,
4699                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4700 {
4701         pgd_t *pgd;
4702         p4d_t *p4d;
4703         pud_t *pud;
4704         pmd_t *pmd;
4705         pte_t *ptep;
4706
4707         pgd = pgd_offset(mm, address);
4708         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4709                 goto out;
4710
4711         p4d = p4d_offset(pgd, address);
4712         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4713                 goto out;
4714
4715         pud = pud_offset(p4d, address);
4716         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4717                 goto out;
4718
4719         pmd = pmd_offset(pud, address);
4720         VM_BUG_ON(pmd_trans_huge(*pmd));
4721
4722         if (pmd_huge(*pmd)) {
4723                 if (!pmdpp)
4724                         goto out;
4725
4726                 if (range) {
4727                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4728                                                 NULL, mm, address & PMD_MASK,
4729                                                 (address & PMD_MASK) + PMD_SIZE);
4730                         mmu_notifier_invalidate_range_start(range);
4731                 }
4732                 *ptlp = pmd_lock(mm, pmd);
4733                 if (pmd_huge(*pmd)) {
4734                         *pmdpp = pmd;
4735                         return 0;
4736                 }
4737                 spin_unlock(*ptlp);
4738                 if (range)
4739                         mmu_notifier_invalidate_range_end(range);
4740         }
4741
4742         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4743                 goto out;
4744
4745         if (range) {
4746                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4747                                         address & PAGE_MASK,
4748                                         (address & PAGE_MASK) + PAGE_SIZE);
4749                 mmu_notifier_invalidate_range_start(range);
4750         }
4751         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4752         if (!pte_present(*ptep))
4753                 goto unlock;
4754         *ptepp = ptep;
4755         return 0;
4756 unlock:
4757         pte_unmap_unlock(ptep, *ptlp);
4758         if (range)
4759                 mmu_notifier_invalidate_range_end(range);
4760 out:
4761         return -EINVAL;
4762 }
4763
4764 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4765                              pte_t **ptepp, spinlock_t **ptlp)
4766 {
4767         int res;
4768
4769         /* (void) is needed to make gcc happy */
4770         (void) __cond_lock(*ptlp,
4771                            !(res = __follow_pte_pmd(mm, address, NULL,
4772                                                     ptepp, NULL, ptlp)));
4773         return res;
4774 }
4775
4776 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4777                    struct mmu_notifier_range *range,
4778                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4779 {
4780         int res;
4781
4782         /* (void) is needed to make gcc happy */
4783         (void) __cond_lock(*ptlp,
4784                            !(res = __follow_pte_pmd(mm, address, range,
4785                                                     ptepp, pmdpp, ptlp)));
4786         return res;
4787 }
4788 EXPORT_SYMBOL(follow_pte_pmd);
4789
4790 /**
4791  * follow_pfn - look up PFN at a user virtual address
4792  * @vma: memory mapping
4793  * @address: user virtual address
4794  * @pfn: location to store found PFN
4795  *
4796  * Only IO mappings and raw PFN mappings are allowed.
4797  *
4798  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4799  */
4800 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4801         unsigned long *pfn)
4802 {
4803         int ret = -EINVAL;
4804         spinlock_t *ptl;
4805         pte_t *ptep;
4806
4807         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4808                 return ret;
4809
4810         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4811         if (ret)
4812                 return ret;
4813         *pfn = pte_pfn(*ptep);
4814         pte_unmap_unlock(ptep, ptl);
4815         return 0;
4816 }
4817 EXPORT_SYMBOL(follow_pfn);
4818
4819 #ifdef CONFIG_HAVE_IOREMAP_PROT
4820 int follow_phys(struct vm_area_struct *vma,
4821                 unsigned long address, unsigned int flags,
4822                 unsigned long *prot, resource_size_t *phys)
4823 {
4824         int ret = -EINVAL;
4825         pte_t *ptep, pte;
4826         spinlock_t *ptl;
4827
4828         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4829                 goto out;
4830
4831         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4832                 goto out;
4833         pte = *ptep;
4834
4835         if ((flags & FOLL_WRITE) && !pte_write(pte))
4836                 goto unlock;
4837
4838         *prot = pgprot_val(pte_pgprot(pte));
4839         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4840
4841         ret = 0;
4842 unlock:
4843         pte_unmap_unlock(ptep, ptl);
4844 out:
4845         return ret;
4846 }
4847
4848 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4849                         void *buf, int len, int write)
4850 {
4851         resource_size_t phys_addr;
4852         unsigned long prot = 0;
4853         void __iomem *maddr;
4854         int offset = addr & (PAGE_SIZE-1);
4855
4856         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4857                 return -EINVAL;
4858
4859         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4860         if (!maddr)
4861                 return -ENOMEM;
4862
4863         if (write)
4864                 memcpy_toio(maddr + offset, buf, len);
4865         else
4866                 memcpy_fromio(buf, maddr + offset, len);
4867         iounmap(maddr);
4868
4869         return len;
4870 }
4871 EXPORT_SYMBOL_GPL(generic_access_phys);
4872 #endif
4873
4874 /*
4875  * Access another process' address space as given in mm.  If non-NULL, use the
4876  * given task for page fault accounting.
4877  */
4878 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4879                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4880 {
4881         struct vm_area_struct *vma;
4882         void *old_buf = buf;
4883         int write = gup_flags & FOLL_WRITE;
4884
4885         if (mmap_read_lock_killable(mm))
4886                 return 0;
4887
4888         /* ignore errors, just check how much was successfully transferred */
4889         while (len) {
4890                 int bytes, ret, offset;
4891                 void *maddr;
4892                 struct page *page = NULL;
4893
4894                 ret = get_user_pages_remote(mm, addr, 1,
4895                                 gup_flags, &page, &vma, NULL);
4896                 if (ret <= 0) {
4897 #ifndef CONFIG_HAVE_IOREMAP_PROT
4898                         break;
4899 #else
4900                         /*
4901                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4902                          * we can access using slightly different code.
4903                          */
4904                         vma = find_vma(mm, addr);
4905                         if (!vma || vma->vm_start > addr)
4906                                 break;
4907                         if (vma->vm_ops && vma->vm_ops->access)
4908                                 ret = vma->vm_ops->access(vma, addr, buf,
4909                                                           len, write);
4910                         if (ret <= 0)
4911                                 break;
4912                         bytes = ret;
4913 #endif
4914                 } else {
4915                         bytes = len;
4916                         offset = addr & (PAGE_SIZE-1);
4917                         if (bytes > PAGE_SIZE-offset)
4918                                 bytes = PAGE_SIZE-offset;
4919
4920                         maddr = kmap(page);
4921                         if (write) {
4922                                 copy_to_user_page(vma, page, addr,
4923                                                   maddr + offset, buf, bytes);
4924                                 set_page_dirty_lock(page);
4925                         } else {
4926                                 copy_from_user_page(vma, page, addr,
4927                                                     buf, maddr + offset, bytes);
4928                         }
4929                         kunmap(page);
4930                         put_page(page);
4931                 }
4932                 len -= bytes;
4933                 buf += bytes;
4934                 addr += bytes;
4935         }
4936         mmap_read_unlock(mm);
4937
4938         return buf - old_buf;
4939 }
4940
4941 /**
4942  * access_remote_vm - access another process' address space
4943  * @mm:         the mm_struct of the target address space
4944  * @addr:       start address to access
4945  * @buf:        source or destination buffer
4946  * @len:        number of bytes to transfer
4947  * @gup_flags:  flags modifying lookup behaviour
4948  *
4949  * The caller must hold a reference on @mm.
4950  *
4951  * Return: number of bytes copied from source to destination.
4952  */
4953 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4954                 void *buf, int len, unsigned int gup_flags)
4955 {
4956         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4957 }
4958
4959 /*
4960  * Access another process' address space.
4961  * Source/target buffer must be kernel space,
4962  * Do not walk the page table directly, use get_user_pages
4963  */
4964 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4965                 void *buf, int len, unsigned int gup_flags)
4966 {
4967         struct mm_struct *mm;
4968         int ret;
4969
4970         mm = get_task_mm(tsk);
4971         if (!mm)
4972                 return 0;
4973
4974         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4975
4976         mmput(mm);
4977
4978         return ret;
4979 }
4980 EXPORT_SYMBOL_GPL(access_process_vm);
4981
4982 /*
4983  * Print the name of a VMA.
4984  */
4985 void print_vma_addr(char *prefix, unsigned long ip)
4986 {
4987         struct mm_struct *mm = current->mm;
4988         struct vm_area_struct *vma;
4989
4990         /*
4991          * we might be running from an atomic context so we cannot sleep
4992          */
4993         if (!mmap_read_trylock(mm))
4994                 return;
4995
4996         vma = find_vma(mm, ip);
4997         if (vma && vma->vm_file) {
4998                 struct file *f = vma->vm_file;
4999                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5000                 if (buf) {
5001                         char *p;
5002
5003                         p = file_path(f, buf, PAGE_SIZE);
5004                         if (IS_ERR(p))
5005                                 p = "?";
5006                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5007                                         vma->vm_start,
5008                                         vma->vm_end - vma->vm_start);
5009                         free_page((unsigned long)buf);
5010                 }
5011         }
5012         mmap_read_unlock(mm);
5013 }
5014
5015 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5016 void __might_fault(const char *file, int line)
5017 {
5018         /*
5019          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5020          * holding the mmap_lock, this is safe because kernel memory doesn't
5021          * get paged out, therefore we'll never actually fault, and the
5022          * below annotations will generate false positives.
5023          */
5024         if (uaccess_kernel())
5025                 return;
5026         if (pagefault_disabled())
5027                 return;
5028         __might_sleep(file, line, 0);
5029 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5030         if (current->mm)
5031                 might_lock_read(&current->mm->mmap_lock);
5032 #endif
5033 }
5034 EXPORT_SYMBOL(__might_fault);
5035 #endif
5036
5037 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5038 /*
5039  * Process all subpages of the specified huge page with the specified
5040  * operation.  The target subpage will be processed last to keep its
5041  * cache lines hot.
5042  */
5043 static inline void process_huge_page(
5044         unsigned long addr_hint, unsigned int pages_per_huge_page,
5045         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5046         void *arg)
5047 {
5048         int i, n, base, l;
5049         unsigned long addr = addr_hint &
5050                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5051
5052         /* Process target subpage last to keep its cache lines hot */
5053         might_sleep();
5054         n = (addr_hint - addr) / PAGE_SIZE;
5055         if (2 * n <= pages_per_huge_page) {
5056                 /* If target subpage in first half of huge page */
5057                 base = 0;
5058                 l = n;
5059                 /* Process subpages at the end of huge page */
5060                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5061                         cond_resched();
5062                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5063                 }
5064         } else {
5065                 /* If target subpage in second half of huge page */
5066                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5067                 l = pages_per_huge_page - n;
5068                 /* Process subpages at the begin of huge page */
5069                 for (i = 0; i < base; i++) {
5070                         cond_resched();
5071                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5072                 }
5073         }
5074         /*
5075          * Process remaining subpages in left-right-left-right pattern
5076          * towards the target subpage
5077          */
5078         for (i = 0; i < l; i++) {
5079                 int left_idx = base + i;
5080                 int right_idx = base + 2 * l - 1 - i;
5081
5082                 cond_resched();
5083                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5084                 cond_resched();
5085                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5086         }
5087 }
5088
5089 static void clear_gigantic_page(struct page *page,
5090                                 unsigned long addr,
5091                                 unsigned int pages_per_huge_page)
5092 {
5093         int i;
5094         struct page *p = page;
5095
5096         might_sleep();
5097         for (i = 0; i < pages_per_huge_page;
5098              i++, p = mem_map_next(p, page, i)) {
5099                 cond_resched();
5100                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5101         }
5102 }
5103
5104 static void clear_subpage(unsigned long addr, int idx, void *arg)
5105 {
5106         struct page *page = arg;
5107
5108         clear_user_highpage(page + idx, addr);
5109 }
5110
5111 void clear_huge_page(struct page *page,
5112                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5113 {
5114         unsigned long addr = addr_hint &
5115                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5116
5117         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5118                 clear_gigantic_page(page, addr, pages_per_huge_page);
5119                 return;
5120         }
5121
5122         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5123 }
5124
5125 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5126                                     unsigned long addr,
5127                                     struct vm_area_struct *vma,
5128                                     unsigned int pages_per_huge_page)
5129 {
5130         int i;
5131         struct page *dst_base = dst;
5132         struct page *src_base = src;
5133
5134         for (i = 0; i < pages_per_huge_page; ) {
5135                 cond_resched();
5136                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5137
5138                 i++;
5139                 dst = mem_map_next(dst, dst_base, i);
5140                 src = mem_map_next(src, src_base, i);
5141         }
5142 }
5143
5144 struct copy_subpage_arg {
5145         struct page *dst;
5146         struct page *src;
5147         struct vm_area_struct *vma;
5148 };
5149
5150 static void copy_subpage(unsigned long addr, int idx, void *arg)
5151 {
5152         struct copy_subpage_arg *copy_arg = arg;
5153
5154         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5155                            addr, copy_arg->vma);
5156 }
5157
5158 void copy_user_huge_page(struct page *dst, struct page *src,
5159                          unsigned long addr_hint, struct vm_area_struct *vma,
5160                          unsigned int pages_per_huge_page)
5161 {
5162         unsigned long addr = addr_hint &
5163                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5164         struct copy_subpage_arg arg = {
5165                 .dst = dst,
5166                 .src = src,
5167                 .vma = vma,
5168         };
5169
5170         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5171                 copy_user_gigantic_page(dst, src, addr, vma,
5172                                         pages_per_huge_page);
5173                 return;
5174         }
5175
5176         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5177 }
5178
5179 long copy_huge_page_from_user(struct page *dst_page,
5180                                 const void __user *usr_src,
5181                                 unsigned int pages_per_huge_page,
5182                                 bool allow_pagefault)
5183 {
5184         void *src = (void *)usr_src;
5185         void *page_kaddr;
5186         unsigned long i, rc = 0;
5187         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5188
5189         for (i = 0; i < pages_per_huge_page; i++) {
5190                 if (allow_pagefault)
5191                         page_kaddr = kmap(dst_page + i);
5192                 else
5193                         page_kaddr = kmap_atomic(dst_page + i);
5194                 rc = copy_from_user(page_kaddr,
5195                                 (const void __user *)(src + i * PAGE_SIZE),
5196                                 PAGE_SIZE);
5197                 if (allow_pagefault)
5198                         kunmap(dst_page + i);
5199                 else
5200                         kunmap_atomic(page_kaddr);
5201
5202                 ret_val -= (PAGE_SIZE - rc);
5203                 if (rc)
5204                         break;
5205
5206                 cond_resched();
5207         }
5208         return ret_val;
5209 }
5210 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5211
5212 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5213
5214 static struct kmem_cache *page_ptl_cachep;
5215
5216 void __init ptlock_cache_init(void)
5217 {
5218         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5219                         SLAB_PANIC, NULL);
5220 }
5221
5222 bool ptlock_alloc(struct page *page)
5223 {
5224         spinlock_t *ptl;
5225
5226         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5227         if (!ptl)
5228                 return false;
5229         page->ptl = ptl;
5230         return true;
5231 }
5232
5233 void ptlock_free(struct page *page)
5234 {
5235         kmem_cache_free(page_ptl_cachep, page->ptl);
5236 }
5237 #endif