mm/rmap: use page_move_anon_rmap() when reusing a mapped PageAnon() page exclusively
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NUMA
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140         /*
141          * Transitioning a PTE from 'old' to 'young' can be expensive on
142          * some architectures, even if it's performed in hardware. By
143          * default, "false" means prefaulted entries will be 'young'.
144          */
145         return false;
146 }
147 #endif
148
149 static int __init disable_randmaps(char *s)
150 {
151         randomize_va_space = 0;
152         return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158
159 unsigned long highest_memmap_pfn __read_mostly;
160
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166         zero_pfn = page_to_pfn(ZERO_PAGE(0));
167         return 0;
168 }
169 early_initcall(init_zero_pfn);
170
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173         trace_rss_stat(mm, member, count);
174 }
175
176 #if defined(SPLIT_RSS_COUNTING)
177
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180         int i;
181
182         for (i = 0; i < NR_MM_COUNTERS; i++) {
183                 if (current->rss_stat.count[i]) {
184                         add_mm_counter(mm, i, current->rss_stat.count[i]);
185                         current->rss_stat.count[i] = 0;
186                 }
187         }
188         current->rss_stat.events = 0;
189 }
190
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193         struct task_struct *task = current;
194
195         if (likely(task->mm == mm))
196                 task->rss_stat.count[member] += val;
197         else
198                 add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH  (64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207         if (unlikely(task != current))
208                 return;
209         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210                 sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220
221 #endif /* SPLIT_RSS_COUNTING */
222
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228                            unsigned long addr)
229 {
230         pgtable_t token = pmd_pgtable(*pmd);
231         pmd_clear(pmd);
232         pte_free_tlb(tlb, token, addr);
233         mm_dec_nr_ptes(tlb->mm);
234 }
235
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237                                 unsigned long addr, unsigned long end,
238                                 unsigned long floor, unsigned long ceiling)
239 {
240         pmd_t *pmd;
241         unsigned long next;
242         unsigned long start;
243
244         start = addr;
245         pmd = pmd_offset(pud, addr);
246         do {
247                 next = pmd_addr_end(addr, end);
248                 if (pmd_none_or_clear_bad(pmd))
249                         continue;
250                 free_pte_range(tlb, pmd, addr);
251         } while (pmd++, addr = next, addr != end);
252
253         start &= PUD_MASK;
254         if (start < floor)
255                 return;
256         if (ceiling) {
257                 ceiling &= PUD_MASK;
258                 if (!ceiling)
259                         return;
260         }
261         if (end - 1 > ceiling - 1)
262                 return;
263
264         pmd = pmd_offset(pud, start);
265         pud_clear(pud);
266         pmd_free_tlb(tlb, pmd, start);
267         mm_dec_nr_pmds(tlb->mm);
268 }
269
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271                                 unsigned long addr, unsigned long end,
272                                 unsigned long floor, unsigned long ceiling)
273 {
274         pud_t *pud;
275         unsigned long next;
276         unsigned long start;
277
278         start = addr;
279         pud = pud_offset(p4d, addr);
280         do {
281                 next = pud_addr_end(addr, end);
282                 if (pud_none_or_clear_bad(pud))
283                         continue;
284                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285         } while (pud++, addr = next, addr != end);
286
287         start &= P4D_MASK;
288         if (start < floor)
289                 return;
290         if (ceiling) {
291                 ceiling &= P4D_MASK;
292                 if (!ceiling)
293                         return;
294         }
295         if (end - 1 > ceiling - 1)
296                 return;
297
298         pud = pud_offset(p4d, start);
299         p4d_clear(p4d);
300         pud_free_tlb(tlb, pud, start);
301         mm_dec_nr_puds(tlb->mm);
302 }
303
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305                                 unsigned long addr, unsigned long end,
306                                 unsigned long floor, unsigned long ceiling)
307 {
308         p4d_t *p4d;
309         unsigned long next;
310         unsigned long start;
311
312         start = addr;
313         p4d = p4d_offset(pgd, addr);
314         do {
315                 next = p4d_addr_end(addr, end);
316                 if (p4d_none_or_clear_bad(p4d))
317                         continue;
318                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319         } while (p4d++, addr = next, addr != end);
320
321         start &= PGDIR_MASK;
322         if (start < floor)
323                 return;
324         if (ceiling) {
325                 ceiling &= PGDIR_MASK;
326                 if (!ceiling)
327                         return;
328         }
329         if (end - 1 > ceiling - 1)
330                 return;
331
332         p4d = p4d_offset(pgd, start);
333         pgd_clear(pgd);
334         p4d_free_tlb(tlb, p4d, start);
335 }
336
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341                         unsigned long addr, unsigned long end,
342                         unsigned long floor, unsigned long ceiling)
343 {
344         pgd_t *pgd;
345         unsigned long next;
346
347         /*
348          * The next few lines have given us lots of grief...
349          *
350          * Why are we testing PMD* at this top level?  Because often
351          * there will be no work to do at all, and we'd prefer not to
352          * go all the way down to the bottom just to discover that.
353          *
354          * Why all these "- 1"s?  Because 0 represents both the bottom
355          * of the address space and the top of it (using -1 for the
356          * top wouldn't help much: the masks would do the wrong thing).
357          * The rule is that addr 0 and floor 0 refer to the bottom of
358          * the address space, but end 0 and ceiling 0 refer to the top
359          * Comparisons need to use "end - 1" and "ceiling - 1" (though
360          * that end 0 case should be mythical).
361          *
362          * Wherever addr is brought up or ceiling brought down, we must
363          * be careful to reject "the opposite 0" before it confuses the
364          * subsequent tests.  But what about where end is brought down
365          * by PMD_SIZE below? no, end can't go down to 0 there.
366          *
367          * Whereas we round start (addr) and ceiling down, by different
368          * masks at different levels, in order to test whether a table
369          * now has no other vmas using it, so can be freed, we don't
370          * bother to round floor or end up - the tests don't need that.
371          */
372
373         addr &= PMD_MASK;
374         if (addr < floor) {
375                 addr += PMD_SIZE;
376                 if (!addr)
377                         return;
378         }
379         if (ceiling) {
380                 ceiling &= PMD_MASK;
381                 if (!ceiling)
382                         return;
383         }
384         if (end - 1 > ceiling - 1)
385                 end -= PMD_SIZE;
386         if (addr > end - 1)
387                 return;
388         /*
389          * We add page table cache pages with PAGE_SIZE,
390          * (see pte_free_tlb()), flush the tlb if we need
391          */
392         tlb_change_page_size(tlb, PAGE_SIZE);
393         pgd = pgd_offset(tlb->mm, addr);
394         do {
395                 next = pgd_addr_end(addr, end);
396                 if (pgd_none_or_clear_bad(pgd))
397                         continue;
398                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399         } while (pgd++, addr = next, addr != end);
400 }
401
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403                 unsigned long floor, unsigned long ceiling)
404 {
405         while (vma) {
406                 struct vm_area_struct *next = vma->vm_next;
407                 unsigned long addr = vma->vm_start;
408
409                 /*
410                  * Hide vma from rmap and truncate_pagecache before freeing
411                  * pgtables
412                  */
413                 unlink_anon_vmas(vma);
414                 unlink_file_vma(vma);
415
416                 if (is_vm_hugetlb_page(vma)) {
417                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418                                 floor, next ? next->vm_start : ceiling);
419                 } else {
420                         /*
421                          * Optimization: gather nearby vmas into one call down
422                          */
423                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424                                && !is_vm_hugetlb_page(next)) {
425                                 vma = next;
426                                 next = vma->vm_next;
427                                 unlink_anon_vmas(vma);
428                                 unlink_file_vma(vma);
429                         }
430                         free_pgd_range(tlb, addr, vma->vm_end,
431                                 floor, next ? next->vm_start : ceiling);
432                 }
433                 vma = next;
434         }
435 }
436
437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
438 {
439         spinlock_t *ptl = pmd_lock(mm, pmd);
440
441         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
442                 mm_inc_nr_ptes(mm);
443                 /*
444                  * Ensure all pte setup (eg. pte page lock and page clearing) are
445                  * visible before the pte is made visible to other CPUs by being
446                  * put into page tables.
447                  *
448                  * The other side of the story is the pointer chasing in the page
449                  * table walking code (when walking the page table without locking;
450                  * ie. most of the time). Fortunately, these data accesses consist
451                  * of a chain of data-dependent loads, meaning most CPUs (alpha
452                  * being the notable exception) will already guarantee loads are
453                  * seen in-order. See the alpha page table accessors for the
454                  * smp_rmb() barriers in page table walking code.
455                  */
456                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457                 pmd_populate(mm, pmd, *pte);
458                 *pte = NULL;
459         }
460         spin_unlock(ptl);
461 }
462
463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
464 {
465         pgtable_t new = pte_alloc_one(mm);
466         if (!new)
467                 return -ENOMEM;
468
469         pmd_install(mm, pmd, &new);
470         if (new)
471                 pte_free(mm, new);
472         return 0;
473 }
474
475 int __pte_alloc_kernel(pmd_t *pmd)
476 {
477         pte_t *new = pte_alloc_one_kernel(&init_mm);
478         if (!new)
479                 return -ENOMEM;
480
481         spin_lock(&init_mm.page_table_lock);
482         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
483                 smp_wmb(); /* See comment in pmd_install() */
484                 pmd_populate_kernel(&init_mm, pmd, new);
485                 new = NULL;
486         }
487         spin_unlock(&init_mm.page_table_lock);
488         if (new)
489                 pte_free_kernel(&init_mm, new);
490         return 0;
491 }
492
493 static inline void init_rss_vec(int *rss)
494 {
495         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496 }
497
498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
499 {
500         int i;
501
502         if (current->mm == mm)
503                 sync_mm_rss(mm);
504         for (i = 0; i < NR_MM_COUNTERS; i++)
505                 if (rss[i])
506                         add_mm_counter(mm, i, rss[i]);
507 }
508
509 /*
510  * This function is called to print an error when a bad pte
511  * is found. For example, we might have a PFN-mapped pte in
512  * a region that doesn't allow it.
513  *
514  * The calling function must still handle the error.
515  */
516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517                           pte_t pte, struct page *page)
518 {
519         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520         p4d_t *p4d = p4d_offset(pgd, addr);
521         pud_t *pud = pud_offset(p4d, addr);
522         pmd_t *pmd = pmd_offset(pud, addr);
523         struct address_space *mapping;
524         pgoff_t index;
525         static unsigned long resume;
526         static unsigned long nr_shown;
527         static unsigned long nr_unshown;
528
529         /*
530          * Allow a burst of 60 reports, then keep quiet for that minute;
531          * or allow a steady drip of one report per second.
532          */
533         if (nr_shown == 60) {
534                 if (time_before(jiffies, resume)) {
535                         nr_unshown++;
536                         return;
537                 }
538                 if (nr_unshown) {
539                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540                                  nr_unshown);
541                         nr_unshown = 0;
542                 }
543                 nr_shown = 0;
544         }
545         if (nr_shown++ == 0)
546                 resume = jiffies + 60 * HZ;
547
548         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549         index = linear_page_index(vma, addr);
550
551         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
552                  current->comm,
553                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
554         if (page)
555                 dump_page(page, "bad pte");
556         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
559                  vma->vm_file,
560                  vma->vm_ops ? vma->vm_ops->fault : NULL,
561                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562                  mapping ? mapping->a_ops->readpage : NULL);
563         dump_stack();
564         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
565 }
566
567 /*
568  * vm_normal_page -- This function gets the "struct page" associated with a pte.
569  *
570  * "Special" mappings do not wish to be associated with a "struct page" (either
571  * it doesn't exist, or it exists but they don't want to touch it). In this
572  * case, NULL is returned here. "Normal" mappings do have a struct page.
573  *
574  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575  * pte bit, in which case this function is trivial. Secondly, an architecture
576  * may not have a spare pte bit, which requires a more complicated scheme,
577  * described below.
578  *
579  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580  * special mapping (even if there are underlying and valid "struct pages").
581  * COWed pages of a VM_PFNMAP are always normal.
582  *
583  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586  * mapping will always honor the rule
587  *
588  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589  *
590  * And for normal mappings this is false.
591  *
592  * This restricts such mappings to be a linear translation from virtual address
593  * to pfn. To get around this restriction, we allow arbitrary mappings so long
594  * as the vma is not a COW mapping; in that case, we know that all ptes are
595  * special (because none can have been COWed).
596  *
597  *
598  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
599  *
600  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601  * page" backing, however the difference is that _all_ pages with a struct
602  * page (that is, those where pfn_valid is true) are refcounted and considered
603  * normal pages by the VM. The disadvantage is that pages are refcounted
604  * (which can be slower and simply not an option for some PFNMAP users). The
605  * advantage is that we don't have to follow the strict linearity rule of
606  * PFNMAP mappings in order to support COWable mappings.
607  *
608  */
609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610                             pte_t pte)
611 {
612         unsigned long pfn = pte_pfn(pte);
613
614         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615                 if (likely(!pte_special(pte)))
616                         goto check_pfn;
617                 if (vma->vm_ops && vma->vm_ops->find_special_page)
618                         return vma->vm_ops->find_special_page(vma, addr);
619                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620                         return NULL;
621                 if (is_zero_pfn(pfn))
622                         return NULL;
623                 if (pte_devmap(pte))
624                         return NULL;
625
626                 print_bad_pte(vma, addr, pte, NULL);
627                 return NULL;
628         }
629
630         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
631
632         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633                 if (vma->vm_flags & VM_MIXEDMAP) {
634                         if (!pfn_valid(pfn))
635                                 return NULL;
636                         goto out;
637                 } else {
638                         unsigned long off;
639                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
640                         if (pfn == vma->vm_pgoff + off)
641                                 return NULL;
642                         if (!is_cow_mapping(vma->vm_flags))
643                                 return NULL;
644                 }
645         }
646
647         if (is_zero_pfn(pfn))
648                 return NULL;
649
650 check_pfn:
651         if (unlikely(pfn > highest_memmap_pfn)) {
652                 print_bad_pte(vma, addr, pte, NULL);
653                 return NULL;
654         }
655
656         /*
657          * NOTE! We still have PageReserved() pages in the page tables.
658          * eg. VDSO mappings can cause them to exist.
659          */
660 out:
661         return pfn_to_page(pfn);
662 }
663
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666                                 pmd_t pmd)
667 {
668         unsigned long pfn = pmd_pfn(pmd);
669
670         /*
671          * There is no pmd_special() but there may be special pmds, e.g.
672          * in a direct-access (dax) mapping, so let's just replicate the
673          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
674          */
675         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676                 if (vma->vm_flags & VM_MIXEDMAP) {
677                         if (!pfn_valid(pfn))
678                                 return NULL;
679                         goto out;
680                 } else {
681                         unsigned long off;
682                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
683                         if (pfn == vma->vm_pgoff + off)
684                                 return NULL;
685                         if (!is_cow_mapping(vma->vm_flags))
686                                 return NULL;
687                 }
688         }
689
690         if (pmd_devmap(pmd))
691                 return NULL;
692         if (is_huge_zero_pmd(pmd))
693                 return NULL;
694         if (unlikely(pfn > highest_memmap_pfn))
695                 return NULL;
696
697         /*
698          * NOTE! We still have PageReserved() pages in the page tables.
699          * eg. VDSO mappings can cause them to exist.
700          */
701 out:
702         return pfn_to_page(pfn);
703 }
704 #endif
705
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707                                   struct page *page, unsigned long address,
708                                   pte_t *ptep)
709 {
710         pte_t pte;
711         swp_entry_t entry;
712
713         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714         if (pte_swp_soft_dirty(*ptep))
715                 pte = pte_mksoft_dirty(pte);
716
717         entry = pte_to_swp_entry(*ptep);
718         if (pte_swp_uffd_wp(*ptep))
719                 pte = pte_mkuffd_wp(pte);
720         else if (is_writable_device_exclusive_entry(entry))
721                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722
723         /*
724          * No need to take a page reference as one was already
725          * created when the swap entry was made.
726          */
727         if (PageAnon(page))
728                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
729         else
730                 /*
731                  * Currently device exclusive access only supports anonymous
732                  * memory so the entry shouldn't point to a filebacked page.
733                  */
734                 WARN_ON_ONCE(!PageAnon(page));
735
736         set_pte_at(vma->vm_mm, address, ptep, pte);
737
738         /*
739          * No need to invalidate - it was non-present before. However
740          * secondary CPUs may have mappings that need invalidating.
741          */
742         update_mmu_cache(vma, address, ptep);
743 }
744
745 /*
746  * Tries to restore an exclusive pte if the page lock can be acquired without
747  * sleeping.
748  */
749 static int
750 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
751                         unsigned long addr)
752 {
753         swp_entry_t entry = pte_to_swp_entry(*src_pte);
754         struct page *page = pfn_swap_entry_to_page(entry);
755
756         if (trylock_page(page)) {
757                 restore_exclusive_pte(vma, page, addr, src_pte);
758                 unlock_page(page);
759                 return 0;
760         }
761
762         return -EBUSY;
763 }
764
765 /*
766  * copy one vm_area from one task to the other. Assumes the page tables
767  * already present in the new task to be cleared in the whole range
768  * covered by this vma.
769  */
770
771 static unsigned long
772 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
773                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
774                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
775 {
776         unsigned long vm_flags = dst_vma->vm_flags;
777         pte_t pte = *src_pte;
778         struct page *page;
779         swp_entry_t entry = pte_to_swp_entry(pte);
780
781         if (likely(!non_swap_entry(entry))) {
782                 if (swap_duplicate(entry) < 0)
783                         return -EIO;
784
785                 /* make sure dst_mm is on swapoff's mmlist. */
786                 if (unlikely(list_empty(&dst_mm->mmlist))) {
787                         spin_lock(&mmlist_lock);
788                         if (list_empty(&dst_mm->mmlist))
789                                 list_add(&dst_mm->mmlist,
790                                                 &src_mm->mmlist);
791                         spin_unlock(&mmlist_lock);
792                 }
793                 rss[MM_SWAPENTS]++;
794         } else if (is_migration_entry(entry)) {
795                 page = pfn_swap_entry_to_page(entry);
796
797                 rss[mm_counter(page)]++;
798
799                 if (is_writable_migration_entry(entry) &&
800                                 is_cow_mapping(vm_flags)) {
801                         /*
802                          * COW mappings require pages in both
803                          * parent and child to be set to read.
804                          */
805                         entry = make_readable_migration_entry(
806                                                         swp_offset(entry));
807                         pte = swp_entry_to_pte(entry);
808                         if (pte_swp_soft_dirty(*src_pte))
809                                 pte = pte_swp_mksoft_dirty(pte);
810                         if (pte_swp_uffd_wp(*src_pte))
811                                 pte = pte_swp_mkuffd_wp(pte);
812                         set_pte_at(src_mm, addr, src_pte, pte);
813                 }
814         } else if (is_device_private_entry(entry)) {
815                 page = pfn_swap_entry_to_page(entry);
816
817                 /*
818                  * Update rss count even for unaddressable pages, as
819                  * they should treated just like normal pages in this
820                  * respect.
821                  *
822                  * We will likely want to have some new rss counters
823                  * for unaddressable pages, at some point. But for now
824                  * keep things as they are.
825                  */
826                 get_page(page);
827                 rss[mm_counter(page)]++;
828                 /* Cannot fail as these pages cannot get pinned. */
829                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
830
831                 /*
832                  * We do not preserve soft-dirty information, because so
833                  * far, checkpoint/restore is the only feature that
834                  * requires that. And checkpoint/restore does not work
835                  * when a device driver is involved (you cannot easily
836                  * save and restore device driver state).
837                  */
838                 if (is_writable_device_private_entry(entry) &&
839                     is_cow_mapping(vm_flags)) {
840                         entry = make_readable_device_private_entry(
841                                                         swp_offset(entry));
842                         pte = swp_entry_to_pte(entry);
843                         if (pte_swp_uffd_wp(*src_pte))
844                                 pte = pte_swp_mkuffd_wp(pte);
845                         set_pte_at(src_mm, addr, src_pte, pte);
846                 }
847         } else if (is_device_exclusive_entry(entry)) {
848                 /*
849                  * Make device exclusive entries present by restoring the
850                  * original entry then copying as for a present pte. Device
851                  * exclusive entries currently only support private writable
852                  * (ie. COW) mappings.
853                  */
854                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
855                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
856                         return -EBUSY;
857                 return -ENOENT;
858         }
859         if (!userfaultfd_wp(dst_vma))
860                 pte = pte_swp_clear_uffd_wp(pte);
861         set_pte_at(dst_mm, addr, dst_pte, pte);
862         return 0;
863 }
864
865 /*
866  * Copy a present and normal page.
867  *
868  * NOTE! The usual case is that this isn't required;
869  * instead, the caller can just increase the page refcount
870  * and re-use the pte the traditional way.
871  *
872  * And if we need a pre-allocated page but don't yet have
873  * one, return a negative error to let the preallocation
874  * code know so that it can do so outside the page table
875  * lock.
876  */
877 static inline int
878 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
879                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
880                   struct page **prealloc, struct page *page)
881 {
882         struct page *new_page;
883         pte_t pte;
884
885         new_page = *prealloc;
886         if (!new_page)
887                 return -EAGAIN;
888
889         /*
890          * We have a prealloc page, all good!  Take it
891          * over and copy the page & arm it.
892          */
893         *prealloc = NULL;
894         copy_user_highpage(new_page, page, addr, src_vma);
895         __SetPageUptodate(new_page);
896         page_add_new_anon_rmap(new_page, dst_vma, addr);
897         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
898         rss[mm_counter(new_page)]++;
899
900         /* All done, just insert the new page copy in the child */
901         pte = mk_pte(new_page, dst_vma->vm_page_prot);
902         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
903         if (userfaultfd_pte_wp(dst_vma, *src_pte))
904                 /* Uffd-wp needs to be delivered to dest pte as well */
905                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
906         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
907         return 0;
908 }
909
910 /*
911  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
912  * is required to copy this pte.
913  */
914 static inline int
915 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
916                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
917                  struct page **prealloc)
918 {
919         struct mm_struct *src_mm = src_vma->vm_mm;
920         unsigned long vm_flags = src_vma->vm_flags;
921         pte_t pte = *src_pte;
922         struct page *page;
923
924         page = vm_normal_page(src_vma, addr, pte);
925         if (page && PageAnon(page)) {
926                 /*
927                  * If this page may have been pinned by the parent process,
928                  * copy the page immediately for the child so that we'll always
929                  * guarantee the pinned page won't be randomly replaced in the
930                  * future.
931                  */
932                 get_page(page);
933                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
934                         /* Page maybe pinned, we have to copy. */
935                         put_page(page);
936                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
937                                                  addr, rss, prealloc, page);
938                 }
939                 rss[mm_counter(page)]++;
940         } else if (page) {
941                 get_page(page);
942                 page_dup_file_rmap(page, false);
943                 rss[mm_counter(page)]++;
944         }
945
946         /*
947          * If it's a COW mapping, write protect it both
948          * in the parent and the child
949          */
950         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
951                 ptep_set_wrprotect(src_mm, addr, src_pte);
952                 pte = pte_wrprotect(pte);
953         }
954
955         /*
956          * If it's a shared mapping, mark it clean in
957          * the child
958          */
959         if (vm_flags & VM_SHARED)
960                 pte = pte_mkclean(pte);
961         pte = pte_mkold(pte);
962
963         if (!userfaultfd_wp(dst_vma))
964                 pte = pte_clear_uffd_wp(pte);
965
966         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
967         return 0;
968 }
969
970 static inline struct page *
971 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
972                    unsigned long addr)
973 {
974         struct page *new_page;
975
976         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
977         if (!new_page)
978                 return NULL;
979
980         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
981                 put_page(new_page);
982                 return NULL;
983         }
984         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
985
986         return new_page;
987 }
988
989 static int
990 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
991                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
992                unsigned long end)
993 {
994         struct mm_struct *dst_mm = dst_vma->vm_mm;
995         struct mm_struct *src_mm = src_vma->vm_mm;
996         pte_t *orig_src_pte, *orig_dst_pte;
997         pte_t *src_pte, *dst_pte;
998         spinlock_t *src_ptl, *dst_ptl;
999         int progress, ret = 0;
1000         int rss[NR_MM_COUNTERS];
1001         swp_entry_t entry = (swp_entry_t){0};
1002         struct page *prealloc = NULL;
1003
1004 again:
1005         progress = 0;
1006         init_rss_vec(rss);
1007
1008         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1009         if (!dst_pte) {
1010                 ret = -ENOMEM;
1011                 goto out;
1012         }
1013         src_pte = pte_offset_map(src_pmd, addr);
1014         src_ptl = pte_lockptr(src_mm, src_pmd);
1015         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1016         orig_src_pte = src_pte;
1017         orig_dst_pte = dst_pte;
1018         arch_enter_lazy_mmu_mode();
1019
1020         do {
1021                 /*
1022                  * We are holding two locks at this point - either of them
1023                  * could generate latencies in another task on another CPU.
1024                  */
1025                 if (progress >= 32) {
1026                         progress = 0;
1027                         if (need_resched() ||
1028                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1029                                 break;
1030                 }
1031                 if (pte_none(*src_pte)) {
1032                         progress++;
1033                         continue;
1034                 }
1035                 if (unlikely(!pte_present(*src_pte))) {
1036                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1037                                                   dst_pte, src_pte,
1038                                                   dst_vma, src_vma,
1039                                                   addr, rss);
1040                         if (ret == -EIO) {
1041                                 entry = pte_to_swp_entry(*src_pte);
1042                                 break;
1043                         } else if (ret == -EBUSY) {
1044                                 break;
1045                         } else if (!ret) {
1046                                 progress += 8;
1047                                 continue;
1048                         }
1049
1050                         /*
1051                          * Device exclusive entry restored, continue by copying
1052                          * the now present pte.
1053                          */
1054                         WARN_ON_ONCE(ret != -ENOENT);
1055                 }
1056                 /* copy_present_pte() will clear `*prealloc' if consumed */
1057                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1058                                        addr, rss, &prealloc);
1059                 /*
1060                  * If we need a pre-allocated page for this pte, drop the
1061                  * locks, allocate, and try again.
1062                  */
1063                 if (unlikely(ret == -EAGAIN))
1064                         break;
1065                 if (unlikely(prealloc)) {
1066                         /*
1067                          * pre-alloc page cannot be reused by next time so as
1068                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1069                          * will allocate page according to address).  This
1070                          * could only happen if one pinned pte changed.
1071                          */
1072                         put_page(prealloc);
1073                         prealloc = NULL;
1074                 }
1075                 progress += 8;
1076         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1077
1078         arch_leave_lazy_mmu_mode();
1079         spin_unlock(src_ptl);
1080         pte_unmap(orig_src_pte);
1081         add_mm_rss_vec(dst_mm, rss);
1082         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1083         cond_resched();
1084
1085         if (ret == -EIO) {
1086                 VM_WARN_ON_ONCE(!entry.val);
1087                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1088                         ret = -ENOMEM;
1089                         goto out;
1090                 }
1091                 entry.val = 0;
1092         } else if (ret == -EBUSY) {
1093                 goto out;
1094         } else if (ret ==  -EAGAIN) {
1095                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1096                 if (!prealloc)
1097                         return -ENOMEM;
1098         } else if (ret) {
1099                 VM_WARN_ON_ONCE(1);
1100         }
1101
1102         /* We've captured and resolved the error. Reset, try again. */
1103         ret = 0;
1104
1105         if (addr != end)
1106                 goto again;
1107 out:
1108         if (unlikely(prealloc))
1109                 put_page(prealloc);
1110         return ret;
1111 }
1112
1113 static inline int
1114 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1115                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1116                unsigned long end)
1117 {
1118         struct mm_struct *dst_mm = dst_vma->vm_mm;
1119         struct mm_struct *src_mm = src_vma->vm_mm;
1120         pmd_t *src_pmd, *dst_pmd;
1121         unsigned long next;
1122
1123         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1124         if (!dst_pmd)
1125                 return -ENOMEM;
1126         src_pmd = pmd_offset(src_pud, addr);
1127         do {
1128                 next = pmd_addr_end(addr, end);
1129                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1130                         || pmd_devmap(*src_pmd)) {
1131                         int err;
1132                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1133                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1134                                             addr, dst_vma, src_vma);
1135                         if (err == -ENOMEM)
1136                                 return -ENOMEM;
1137                         if (!err)
1138                                 continue;
1139                         /* fall through */
1140                 }
1141                 if (pmd_none_or_clear_bad(src_pmd))
1142                         continue;
1143                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1144                                    addr, next))
1145                         return -ENOMEM;
1146         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1147         return 0;
1148 }
1149
1150 static inline int
1151 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1152                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1153                unsigned long end)
1154 {
1155         struct mm_struct *dst_mm = dst_vma->vm_mm;
1156         struct mm_struct *src_mm = src_vma->vm_mm;
1157         pud_t *src_pud, *dst_pud;
1158         unsigned long next;
1159
1160         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1161         if (!dst_pud)
1162                 return -ENOMEM;
1163         src_pud = pud_offset(src_p4d, addr);
1164         do {
1165                 next = pud_addr_end(addr, end);
1166                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1167                         int err;
1168
1169                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1170                         err = copy_huge_pud(dst_mm, src_mm,
1171                                             dst_pud, src_pud, addr, src_vma);
1172                         if (err == -ENOMEM)
1173                                 return -ENOMEM;
1174                         if (!err)
1175                                 continue;
1176                         /* fall through */
1177                 }
1178                 if (pud_none_or_clear_bad(src_pud))
1179                         continue;
1180                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1181                                    addr, next))
1182                         return -ENOMEM;
1183         } while (dst_pud++, src_pud++, addr = next, addr != end);
1184         return 0;
1185 }
1186
1187 static inline int
1188 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1189                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1190                unsigned long end)
1191 {
1192         struct mm_struct *dst_mm = dst_vma->vm_mm;
1193         p4d_t *src_p4d, *dst_p4d;
1194         unsigned long next;
1195
1196         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1197         if (!dst_p4d)
1198                 return -ENOMEM;
1199         src_p4d = p4d_offset(src_pgd, addr);
1200         do {
1201                 next = p4d_addr_end(addr, end);
1202                 if (p4d_none_or_clear_bad(src_p4d))
1203                         continue;
1204                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1205                                    addr, next))
1206                         return -ENOMEM;
1207         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1208         return 0;
1209 }
1210
1211 int
1212 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1213 {
1214         pgd_t *src_pgd, *dst_pgd;
1215         unsigned long next;
1216         unsigned long addr = src_vma->vm_start;
1217         unsigned long end = src_vma->vm_end;
1218         struct mm_struct *dst_mm = dst_vma->vm_mm;
1219         struct mm_struct *src_mm = src_vma->vm_mm;
1220         struct mmu_notifier_range range;
1221         bool is_cow;
1222         int ret;
1223
1224         /*
1225          * Don't copy ptes where a page fault will fill them correctly.
1226          * Fork becomes much lighter when there are big shared or private
1227          * readonly mappings. The tradeoff is that copy_page_range is more
1228          * efficient than faulting.
1229          */
1230         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1231             !src_vma->anon_vma)
1232                 return 0;
1233
1234         if (is_vm_hugetlb_page(src_vma))
1235                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1236
1237         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1238                 /*
1239                  * We do not free on error cases below as remove_vma
1240                  * gets called on error from higher level routine
1241                  */
1242                 ret = track_pfn_copy(src_vma);
1243                 if (ret)
1244                         return ret;
1245         }
1246
1247         /*
1248          * We need to invalidate the secondary MMU mappings only when
1249          * there could be a permission downgrade on the ptes of the
1250          * parent mm. And a permission downgrade will only happen if
1251          * is_cow_mapping() returns true.
1252          */
1253         is_cow = is_cow_mapping(src_vma->vm_flags);
1254
1255         if (is_cow) {
1256                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1257                                         0, src_vma, src_mm, addr, end);
1258                 mmu_notifier_invalidate_range_start(&range);
1259                 /*
1260                  * Disabling preemption is not needed for the write side, as
1261                  * the read side doesn't spin, but goes to the mmap_lock.
1262                  *
1263                  * Use the raw variant of the seqcount_t write API to avoid
1264                  * lockdep complaining about preemptibility.
1265                  */
1266                 mmap_assert_write_locked(src_mm);
1267                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1268         }
1269
1270         ret = 0;
1271         dst_pgd = pgd_offset(dst_mm, addr);
1272         src_pgd = pgd_offset(src_mm, addr);
1273         do {
1274                 next = pgd_addr_end(addr, end);
1275                 if (pgd_none_or_clear_bad(src_pgd))
1276                         continue;
1277                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1278                                             addr, next))) {
1279                         ret = -ENOMEM;
1280                         break;
1281                 }
1282         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1283
1284         if (is_cow) {
1285                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1286                 mmu_notifier_invalidate_range_end(&range);
1287         }
1288         return ret;
1289 }
1290
1291 /*
1292  * Parameter block passed down to zap_pte_range in exceptional cases.
1293  */
1294 struct zap_details {
1295         struct folio *single_folio;     /* Locked folio to be unmapped */
1296         bool even_cows;                 /* Zap COWed private pages too? */
1297 };
1298
1299 /* Whether we should zap all COWed (private) pages too */
1300 static inline bool should_zap_cows(struct zap_details *details)
1301 {
1302         /* By default, zap all pages */
1303         if (!details)
1304                 return true;
1305
1306         /* Or, we zap COWed pages only if the caller wants to */
1307         return details->even_cows;
1308 }
1309
1310 /* Decides whether we should zap this page with the page pointer specified */
1311 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1312 {
1313         /* If we can make a decision without *page.. */
1314         if (should_zap_cows(details))
1315                 return true;
1316
1317         /* E.g. the caller passes NULL for the case of a zero page */
1318         if (!page)
1319                 return true;
1320
1321         /* Otherwise we should only zap non-anon pages */
1322         return !PageAnon(page);
1323 }
1324
1325 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1326                                 struct vm_area_struct *vma, pmd_t *pmd,
1327                                 unsigned long addr, unsigned long end,
1328                                 struct zap_details *details)
1329 {
1330         struct mm_struct *mm = tlb->mm;
1331         int force_flush = 0;
1332         int rss[NR_MM_COUNTERS];
1333         spinlock_t *ptl;
1334         pte_t *start_pte;
1335         pte_t *pte;
1336         swp_entry_t entry;
1337
1338         tlb_change_page_size(tlb, PAGE_SIZE);
1339 again:
1340         init_rss_vec(rss);
1341         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1342         pte = start_pte;
1343         flush_tlb_batched_pending(mm);
1344         arch_enter_lazy_mmu_mode();
1345         do {
1346                 pte_t ptent = *pte;
1347                 struct page *page;
1348
1349                 if (pte_none(ptent))
1350                         continue;
1351
1352                 if (need_resched())
1353                         break;
1354
1355                 if (pte_present(ptent)) {
1356                         page = vm_normal_page(vma, addr, ptent);
1357                         if (unlikely(!should_zap_page(details, page)))
1358                                 continue;
1359                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1360                                                         tlb->fullmm);
1361                         tlb_remove_tlb_entry(tlb, pte, addr);
1362                         if (unlikely(!page))
1363                                 continue;
1364
1365                         if (!PageAnon(page)) {
1366                                 if (pte_dirty(ptent)) {
1367                                         force_flush = 1;
1368                                         set_page_dirty(page);
1369                                 }
1370                                 if (pte_young(ptent) &&
1371                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1372                                         mark_page_accessed(page);
1373                         }
1374                         rss[mm_counter(page)]--;
1375                         page_remove_rmap(page, vma, false);
1376                         if (unlikely(page_mapcount(page) < 0))
1377                                 print_bad_pte(vma, addr, ptent, page);
1378                         if (unlikely(__tlb_remove_page(tlb, page))) {
1379                                 force_flush = 1;
1380                                 addr += PAGE_SIZE;
1381                                 break;
1382                         }
1383                         continue;
1384                 }
1385
1386                 entry = pte_to_swp_entry(ptent);
1387                 if (is_device_private_entry(entry) ||
1388                     is_device_exclusive_entry(entry)) {
1389                         page = pfn_swap_entry_to_page(entry);
1390                         if (unlikely(!should_zap_page(details, page)))
1391                                 continue;
1392                         rss[mm_counter(page)]--;
1393                         if (is_device_private_entry(entry))
1394                                 page_remove_rmap(page, vma, false);
1395                         put_page(page);
1396                 } else if (!non_swap_entry(entry)) {
1397                         /* Genuine swap entry, hence a private anon page */
1398                         if (!should_zap_cows(details))
1399                                 continue;
1400                         rss[MM_SWAPENTS]--;
1401                         if (unlikely(!free_swap_and_cache(entry)))
1402                                 print_bad_pte(vma, addr, ptent, NULL);
1403                 } else if (is_migration_entry(entry)) {
1404                         page = pfn_swap_entry_to_page(entry);
1405                         if (!should_zap_page(details, page))
1406                                 continue;
1407                         rss[mm_counter(page)]--;
1408                 } else if (is_hwpoison_entry(entry)) {
1409                         if (!should_zap_cows(details))
1410                                 continue;
1411                 } else {
1412                         /* We should have covered all the swap entry types */
1413                         WARN_ON_ONCE(1);
1414                 }
1415                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1416         } while (pte++, addr += PAGE_SIZE, addr != end);
1417
1418         add_mm_rss_vec(mm, rss);
1419         arch_leave_lazy_mmu_mode();
1420
1421         /* Do the actual TLB flush before dropping ptl */
1422         if (force_flush)
1423                 tlb_flush_mmu_tlbonly(tlb);
1424         pte_unmap_unlock(start_pte, ptl);
1425
1426         /*
1427          * If we forced a TLB flush (either due to running out of
1428          * batch buffers or because we needed to flush dirty TLB
1429          * entries before releasing the ptl), free the batched
1430          * memory too. Restart if we didn't do everything.
1431          */
1432         if (force_flush) {
1433                 force_flush = 0;
1434                 tlb_flush_mmu(tlb);
1435         }
1436
1437         if (addr != end) {
1438                 cond_resched();
1439                 goto again;
1440         }
1441
1442         return addr;
1443 }
1444
1445 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1446                                 struct vm_area_struct *vma, pud_t *pud,
1447                                 unsigned long addr, unsigned long end,
1448                                 struct zap_details *details)
1449 {
1450         pmd_t *pmd;
1451         unsigned long next;
1452
1453         pmd = pmd_offset(pud, addr);
1454         do {
1455                 next = pmd_addr_end(addr, end);
1456                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1457                         if (next - addr != HPAGE_PMD_SIZE)
1458                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1459                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1460                                 goto next;
1461                         /* fall through */
1462                 } else if (details && details->single_folio &&
1463                            folio_test_pmd_mappable(details->single_folio) &&
1464                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1465                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1466                         /*
1467                          * Take and drop THP pmd lock so that we cannot return
1468                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1469                          * but not yet decremented compound_mapcount().
1470                          */
1471                         spin_unlock(ptl);
1472                 }
1473
1474                 /*
1475                  * Here there can be other concurrent MADV_DONTNEED or
1476                  * trans huge page faults running, and if the pmd is
1477                  * none or trans huge it can change under us. This is
1478                  * because MADV_DONTNEED holds the mmap_lock in read
1479                  * mode.
1480                  */
1481                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1482                         goto next;
1483                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1484 next:
1485                 cond_resched();
1486         } while (pmd++, addr = next, addr != end);
1487
1488         return addr;
1489 }
1490
1491 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1492                                 struct vm_area_struct *vma, p4d_t *p4d,
1493                                 unsigned long addr, unsigned long end,
1494                                 struct zap_details *details)
1495 {
1496         pud_t *pud;
1497         unsigned long next;
1498
1499         pud = pud_offset(p4d, addr);
1500         do {
1501                 next = pud_addr_end(addr, end);
1502                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1503                         if (next - addr != HPAGE_PUD_SIZE) {
1504                                 mmap_assert_locked(tlb->mm);
1505                                 split_huge_pud(vma, pud, addr);
1506                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1507                                 goto next;
1508                         /* fall through */
1509                 }
1510                 if (pud_none_or_clear_bad(pud))
1511                         continue;
1512                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1513 next:
1514                 cond_resched();
1515         } while (pud++, addr = next, addr != end);
1516
1517         return addr;
1518 }
1519
1520 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1521                                 struct vm_area_struct *vma, pgd_t *pgd,
1522                                 unsigned long addr, unsigned long end,
1523                                 struct zap_details *details)
1524 {
1525         p4d_t *p4d;
1526         unsigned long next;
1527
1528         p4d = p4d_offset(pgd, addr);
1529         do {
1530                 next = p4d_addr_end(addr, end);
1531                 if (p4d_none_or_clear_bad(p4d))
1532                         continue;
1533                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1534         } while (p4d++, addr = next, addr != end);
1535
1536         return addr;
1537 }
1538
1539 void unmap_page_range(struct mmu_gather *tlb,
1540                              struct vm_area_struct *vma,
1541                              unsigned long addr, unsigned long end,
1542                              struct zap_details *details)
1543 {
1544         pgd_t *pgd;
1545         unsigned long next;
1546
1547         BUG_ON(addr >= end);
1548         tlb_start_vma(tlb, vma);
1549         pgd = pgd_offset(vma->vm_mm, addr);
1550         do {
1551                 next = pgd_addr_end(addr, end);
1552                 if (pgd_none_or_clear_bad(pgd))
1553                         continue;
1554                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1555         } while (pgd++, addr = next, addr != end);
1556         tlb_end_vma(tlb, vma);
1557 }
1558
1559
1560 static void unmap_single_vma(struct mmu_gather *tlb,
1561                 struct vm_area_struct *vma, unsigned long start_addr,
1562                 unsigned long end_addr,
1563                 struct zap_details *details)
1564 {
1565         unsigned long start = max(vma->vm_start, start_addr);
1566         unsigned long end;
1567
1568         if (start >= vma->vm_end)
1569                 return;
1570         end = min(vma->vm_end, end_addr);
1571         if (end <= vma->vm_start)
1572                 return;
1573
1574         if (vma->vm_file)
1575                 uprobe_munmap(vma, start, end);
1576
1577         if (unlikely(vma->vm_flags & VM_PFNMAP))
1578                 untrack_pfn(vma, 0, 0);
1579
1580         if (start != end) {
1581                 if (unlikely(is_vm_hugetlb_page(vma))) {
1582                         /*
1583                          * It is undesirable to test vma->vm_file as it
1584                          * should be non-null for valid hugetlb area.
1585                          * However, vm_file will be NULL in the error
1586                          * cleanup path of mmap_region. When
1587                          * hugetlbfs ->mmap method fails,
1588                          * mmap_region() nullifies vma->vm_file
1589                          * before calling this function to clean up.
1590                          * Since no pte has actually been setup, it is
1591                          * safe to do nothing in this case.
1592                          */
1593                         if (vma->vm_file) {
1594                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1595                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1596                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1597                         }
1598                 } else
1599                         unmap_page_range(tlb, vma, start, end, details);
1600         }
1601 }
1602
1603 /**
1604  * unmap_vmas - unmap a range of memory covered by a list of vma's
1605  * @tlb: address of the caller's struct mmu_gather
1606  * @vma: the starting vma
1607  * @start_addr: virtual address at which to start unmapping
1608  * @end_addr: virtual address at which to end unmapping
1609  *
1610  * Unmap all pages in the vma list.
1611  *
1612  * Only addresses between `start' and `end' will be unmapped.
1613  *
1614  * The VMA list must be sorted in ascending virtual address order.
1615  *
1616  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1617  * range after unmap_vmas() returns.  So the only responsibility here is to
1618  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1619  * drops the lock and schedules.
1620  */
1621 void unmap_vmas(struct mmu_gather *tlb,
1622                 struct vm_area_struct *vma, unsigned long start_addr,
1623                 unsigned long end_addr)
1624 {
1625         struct mmu_notifier_range range;
1626
1627         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1628                                 start_addr, end_addr);
1629         mmu_notifier_invalidate_range_start(&range);
1630         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1631                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1632         mmu_notifier_invalidate_range_end(&range);
1633 }
1634
1635 /**
1636  * zap_page_range - remove user pages in a given range
1637  * @vma: vm_area_struct holding the applicable pages
1638  * @start: starting address of pages to zap
1639  * @size: number of bytes to zap
1640  *
1641  * Caller must protect the VMA list
1642  */
1643 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1644                 unsigned long size)
1645 {
1646         struct mmu_notifier_range range;
1647         struct mmu_gather tlb;
1648
1649         lru_add_drain();
1650         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1651                                 start, start + size);
1652         tlb_gather_mmu(&tlb, vma->vm_mm);
1653         update_hiwater_rss(vma->vm_mm);
1654         mmu_notifier_invalidate_range_start(&range);
1655         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1656                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1657         mmu_notifier_invalidate_range_end(&range);
1658         tlb_finish_mmu(&tlb);
1659 }
1660
1661 /**
1662  * zap_page_range_single - remove user pages in a given range
1663  * @vma: vm_area_struct holding the applicable pages
1664  * @address: starting address of pages to zap
1665  * @size: number of bytes to zap
1666  * @details: details of shared cache invalidation
1667  *
1668  * The range must fit into one VMA.
1669  */
1670 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1671                 unsigned long size, struct zap_details *details)
1672 {
1673         struct mmu_notifier_range range;
1674         struct mmu_gather tlb;
1675
1676         lru_add_drain();
1677         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1678                                 address, address + size);
1679         tlb_gather_mmu(&tlb, vma->vm_mm);
1680         update_hiwater_rss(vma->vm_mm);
1681         mmu_notifier_invalidate_range_start(&range);
1682         unmap_single_vma(&tlb, vma, address, range.end, details);
1683         mmu_notifier_invalidate_range_end(&range);
1684         tlb_finish_mmu(&tlb);
1685 }
1686
1687 /**
1688  * zap_vma_ptes - remove ptes mapping the vma
1689  * @vma: vm_area_struct holding ptes to be zapped
1690  * @address: starting address of pages to zap
1691  * @size: number of bytes to zap
1692  *
1693  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1694  *
1695  * The entire address range must be fully contained within the vma.
1696  *
1697  */
1698 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1699                 unsigned long size)
1700 {
1701         if (!range_in_vma(vma, address, address + size) ||
1702                         !(vma->vm_flags & VM_PFNMAP))
1703                 return;
1704
1705         zap_page_range_single(vma, address, size, NULL);
1706 }
1707 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1708
1709 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1710 {
1711         pgd_t *pgd;
1712         p4d_t *p4d;
1713         pud_t *pud;
1714         pmd_t *pmd;
1715
1716         pgd = pgd_offset(mm, addr);
1717         p4d = p4d_alloc(mm, pgd, addr);
1718         if (!p4d)
1719                 return NULL;
1720         pud = pud_alloc(mm, p4d, addr);
1721         if (!pud)
1722                 return NULL;
1723         pmd = pmd_alloc(mm, pud, addr);
1724         if (!pmd)
1725                 return NULL;
1726
1727         VM_BUG_ON(pmd_trans_huge(*pmd));
1728         return pmd;
1729 }
1730
1731 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1732                         spinlock_t **ptl)
1733 {
1734         pmd_t *pmd = walk_to_pmd(mm, addr);
1735
1736         if (!pmd)
1737                 return NULL;
1738         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1739 }
1740
1741 static int validate_page_before_insert(struct page *page)
1742 {
1743         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1744                 return -EINVAL;
1745         flush_dcache_page(page);
1746         return 0;
1747 }
1748
1749 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1750                         unsigned long addr, struct page *page, pgprot_t prot)
1751 {
1752         if (!pte_none(*pte))
1753                 return -EBUSY;
1754         /* Ok, finally just insert the thing.. */
1755         get_page(page);
1756         inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1757         page_add_file_rmap(page, vma, false);
1758         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1759         return 0;
1760 }
1761
1762 /*
1763  * This is the old fallback for page remapping.
1764  *
1765  * For historical reasons, it only allows reserved pages. Only
1766  * old drivers should use this, and they needed to mark their
1767  * pages reserved for the old functions anyway.
1768  */
1769 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1770                         struct page *page, pgprot_t prot)
1771 {
1772         int retval;
1773         pte_t *pte;
1774         spinlock_t *ptl;
1775
1776         retval = validate_page_before_insert(page);
1777         if (retval)
1778                 goto out;
1779         retval = -ENOMEM;
1780         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1781         if (!pte)
1782                 goto out;
1783         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1784         pte_unmap_unlock(pte, ptl);
1785 out:
1786         return retval;
1787 }
1788
1789 #ifdef pte_index
1790 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1791                         unsigned long addr, struct page *page, pgprot_t prot)
1792 {
1793         int err;
1794
1795         if (!page_count(page))
1796                 return -EINVAL;
1797         err = validate_page_before_insert(page);
1798         if (err)
1799                 return err;
1800         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1801 }
1802
1803 /* insert_pages() amortizes the cost of spinlock operations
1804  * when inserting pages in a loop. Arch *must* define pte_index.
1805  */
1806 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1807                         struct page **pages, unsigned long *num, pgprot_t prot)
1808 {
1809         pmd_t *pmd = NULL;
1810         pte_t *start_pte, *pte;
1811         spinlock_t *pte_lock;
1812         struct mm_struct *const mm = vma->vm_mm;
1813         unsigned long curr_page_idx = 0;
1814         unsigned long remaining_pages_total = *num;
1815         unsigned long pages_to_write_in_pmd;
1816         int ret;
1817 more:
1818         ret = -EFAULT;
1819         pmd = walk_to_pmd(mm, addr);
1820         if (!pmd)
1821                 goto out;
1822
1823         pages_to_write_in_pmd = min_t(unsigned long,
1824                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1825
1826         /* Allocate the PTE if necessary; takes PMD lock once only. */
1827         ret = -ENOMEM;
1828         if (pte_alloc(mm, pmd))
1829                 goto out;
1830
1831         while (pages_to_write_in_pmd) {
1832                 int pte_idx = 0;
1833                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1834
1835                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1836                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1837                         int err = insert_page_in_batch_locked(vma, pte,
1838                                 addr, pages[curr_page_idx], prot);
1839                         if (unlikely(err)) {
1840                                 pte_unmap_unlock(start_pte, pte_lock);
1841                                 ret = err;
1842                                 remaining_pages_total -= pte_idx;
1843                                 goto out;
1844                         }
1845                         addr += PAGE_SIZE;
1846                         ++curr_page_idx;
1847                 }
1848                 pte_unmap_unlock(start_pte, pte_lock);
1849                 pages_to_write_in_pmd -= batch_size;
1850                 remaining_pages_total -= batch_size;
1851         }
1852         if (remaining_pages_total)
1853                 goto more;
1854         ret = 0;
1855 out:
1856         *num = remaining_pages_total;
1857         return ret;
1858 }
1859 #endif  /* ifdef pte_index */
1860
1861 /**
1862  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1863  * @vma: user vma to map to
1864  * @addr: target start user address of these pages
1865  * @pages: source kernel pages
1866  * @num: in: number of pages to map. out: number of pages that were *not*
1867  * mapped. (0 means all pages were successfully mapped).
1868  *
1869  * Preferred over vm_insert_page() when inserting multiple pages.
1870  *
1871  * In case of error, we may have mapped a subset of the provided
1872  * pages. It is the caller's responsibility to account for this case.
1873  *
1874  * The same restrictions apply as in vm_insert_page().
1875  */
1876 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1877                         struct page **pages, unsigned long *num)
1878 {
1879 #ifdef pte_index
1880         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1881
1882         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1883                 return -EFAULT;
1884         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1885                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1886                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1887                 vma->vm_flags |= VM_MIXEDMAP;
1888         }
1889         /* Defer page refcount checking till we're about to map that page. */
1890         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1891 #else
1892         unsigned long idx = 0, pgcount = *num;
1893         int err = -EINVAL;
1894
1895         for (; idx < pgcount; ++idx) {
1896                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1897                 if (err)
1898                         break;
1899         }
1900         *num = pgcount - idx;
1901         return err;
1902 #endif  /* ifdef pte_index */
1903 }
1904 EXPORT_SYMBOL(vm_insert_pages);
1905
1906 /**
1907  * vm_insert_page - insert single page into user vma
1908  * @vma: user vma to map to
1909  * @addr: target user address of this page
1910  * @page: source kernel page
1911  *
1912  * This allows drivers to insert individual pages they've allocated
1913  * into a user vma.
1914  *
1915  * The page has to be a nice clean _individual_ kernel allocation.
1916  * If you allocate a compound page, you need to have marked it as
1917  * such (__GFP_COMP), or manually just split the page up yourself
1918  * (see split_page()).
1919  *
1920  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1921  * took an arbitrary page protection parameter. This doesn't allow
1922  * that. Your vma protection will have to be set up correctly, which
1923  * means that if you want a shared writable mapping, you'd better
1924  * ask for a shared writable mapping!
1925  *
1926  * The page does not need to be reserved.
1927  *
1928  * Usually this function is called from f_op->mmap() handler
1929  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1930  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1931  * function from other places, for example from page-fault handler.
1932  *
1933  * Return: %0 on success, negative error code otherwise.
1934  */
1935 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1936                         struct page *page)
1937 {
1938         if (addr < vma->vm_start || addr >= vma->vm_end)
1939                 return -EFAULT;
1940         if (!page_count(page))
1941                 return -EINVAL;
1942         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1943                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1944                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1945                 vma->vm_flags |= VM_MIXEDMAP;
1946         }
1947         return insert_page(vma, addr, page, vma->vm_page_prot);
1948 }
1949 EXPORT_SYMBOL(vm_insert_page);
1950
1951 /*
1952  * __vm_map_pages - maps range of kernel pages into user vma
1953  * @vma: user vma to map to
1954  * @pages: pointer to array of source kernel pages
1955  * @num: number of pages in page array
1956  * @offset: user's requested vm_pgoff
1957  *
1958  * This allows drivers to map range of kernel pages into a user vma.
1959  *
1960  * Return: 0 on success and error code otherwise.
1961  */
1962 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1963                                 unsigned long num, unsigned long offset)
1964 {
1965         unsigned long count = vma_pages(vma);
1966         unsigned long uaddr = vma->vm_start;
1967         int ret, i;
1968
1969         /* Fail if the user requested offset is beyond the end of the object */
1970         if (offset >= num)
1971                 return -ENXIO;
1972
1973         /* Fail if the user requested size exceeds available object size */
1974         if (count > num - offset)
1975                 return -ENXIO;
1976
1977         for (i = 0; i < count; i++) {
1978                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1979                 if (ret < 0)
1980                         return ret;
1981                 uaddr += PAGE_SIZE;
1982         }
1983
1984         return 0;
1985 }
1986
1987 /**
1988  * vm_map_pages - maps range of kernel pages starts with non zero offset
1989  * @vma: user vma to map to
1990  * @pages: pointer to array of source kernel pages
1991  * @num: number of pages in page array
1992  *
1993  * Maps an object consisting of @num pages, catering for the user's
1994  * requested vm_pgoff
1995  *
1996  * If we fail to insert any page into the vma, the function will return
1997  * immediately leaving any previously inserted pages present.  Callers
1998  * from the mmap handler may immediately return the error as their caller
1999  * will destroy the vma, removing any successfully inserted pages. Other
2000  * callers should make their own arrangements for calling unmap_region().
2001  *
2002  * Context: Process context. Called by mmap handlers.
2003  * Return: 0 on success and error code otherwise.
2004  */
2005 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2006                                 unsigned long num)
2007 {
2008         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2009 }
2010 EXPORT_SYMBOL(vm_map_pages);
2011
2012 /**
2013  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2014  * @vma: user vma to map to
2015  * @pages: pointer to array of source kernel pages
2016  * @num: number of pages in page array
2017  *
2018  * Similar to vm_map_pages(), except that it explicitly sets the offset
2019  * to 0. This function is intended for the drivers that did not consider
2020  * vm_pgoff.
2021  *
2022  * Context: Process context. Called by mmap handlers.
2023  * Return: 0 on success and error code otherwise.
2024  */
2025 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2026                                 unsigned long num)
2027 {
2028         return __vm_map_pages(vma, pages, num, 0);
2029 }
2030 EXPORT_SYMBOL(vm_map_pages_zero);
2031
2032 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2033                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2034 {
2035         struct mm_struct *mm = vma->vm_mm;
2036         pte_t *pte, entry;
2037         spinlock_t *ptl;
2038
2039         pte = get_locked_pte(mm, addr, &ptl);
2040         if (!pte)
2041                 return VM_FAULT_OOM;
2042         if (!pte_none(*pte)) {
2043                 if (mkwrite) {
2044                         /*
2045                          * For read faults on private mappings the PFN passed
2046                          * in may not match the PFN we have mapped if the
2047                          * mapped PFN is a writeable COW page.  In the mkwrite
2048                          * case we are creating a writable PTE for a shared
2049                          * mapping and we expect the PFNs to match. If they
2050                          * don't match, we are likely racing with block
2051                          * allocation and mapping invalidation so just skip the
2052                          * update.
2053                          */
2054                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2055                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2056                                 goto out_unlock;
2057                         }
2058                         entry = pte_mkyoung(*pte);
2059                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2060                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2061                                 update_mmu_cache(vma, addr, pte);
2062                 }
2063                 goto out_unlock;
2064         }
2065
2066         /* Ok, finally just insert the thing.. */
2067         if (pfn_t_devmap(pfn))
2068                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2069         else
2070                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2071
2072         if (mkwrite) {
2073                 entry = pte_mkyoung(entry);
2074                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2075         }
2076
2077         set_pte_at(mm, addr, pte, entry);
2078         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2079
2080 out_unlock:
2081         pte_unmap_unlock(pte, ptl);
2082         return VM_FAULT_NOPAGE;
2083 }
2084
2085 /**
2086  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2087  * @vma: user vma to map to
2088  * @addr: target user address of this page
2089  * @pfn: source kernel pfn
2090  * @pgprot: pgprot flags for the inserted page
2091  *
2092  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2093  * to override pgprot on a per-page basis.
2094  *
2095  * This only makes sense for IO mappings, and it makes no sense for
2096  * COW mappings.  In general, using multiple vmas is preferable;
2097  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2098  * impractical.
2099  *
2100  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2101  * a value of @pgprot different from that of @vma->vm_page_prot.
2102  *
2103  * Context: Process context.  May allocate using %GFP_KERNEL.
2104  * Return: vm_fault_t value.
2105  */
2106 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2107                         unsigned long pfn, pgprot_t pgprot)
2108 {
2109         /*
2110          * Technically, architectures with pte_special can avoid all these
2111          * restrictions (same for remap_pfn_range).  However we would like
2112          * consistency in testing and feature parity among all, so we should
2113          * try to keep these invariants in place for everybody.
2114          */
2115         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2116         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2117                                                 (VM_PFNMAP|VM_MIXEDMAP));
2118         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2119         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2120
2121         if (addr < vma->vm_start || addr >= vma->vm_end)
2122                 return VM_FAULT_SIGBUS;
2123
2124         if (!pfn_modify_allowed(pfn, pgprot))
2125                 return VM_FAULT_SIGBUS;
2126
2127         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2128
2129         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2130                         false);
2131 }
2132 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2133
2134 /**
2135  * vmf_insert_pfn - insert single pfn into user vma
2136  * @vma: user vma to map to
2137  * @addr: target user address of this page
2138  * @pfn: source kernel pfn
2139  *
2140  * Similar to vm_insert_page, this allows drivers to insert individual pages
2141  * they've allocated into a user vma. Same comments apply.
2142  *
2143  * This function should only be called from a vm_ops->fault handler, and
2144  * in that case the handler should return the result of this function.
2145  *
2146  * vma cannot be a COW mapping.
2147  *
2148  * As this is called only for pages that do not currently exist, we
2149  * do not need to flush old virtual caches or the TLB.
2150  *
2151  * Context: Process context.  May allocate using %GFP_KERNEL.
2152  * Return: vm_fault_t value.
2153  */
2154 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2155                         unsigned long pfn)
2156 {
2157         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2158 }
2159 EXPORT_SYMBOL(vmf_insert_pfn);
2160
2161 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2162 {
2163         /* these checks mirror the abort conditions in vm_normal_page */
2164         if (vma->vm_flags & VM_MIXEDMAP)
2165                 return true;
2166         if (pfn_t_devmap(pfn))
2167                 return true;
2168         if (pfn_t_special(pfn))
2169                 return true;
2170         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2171                 return true;
2172         return false;
2173 }
2174
2175 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2176                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2177                 bool mkwrite)
2178 {
2179         int err;
2180
2181         BUG_ON(!vm_mixed_ok(vma, pfn));
2182
2183         if (addr < vma->vm_start || addr >= vma->vm_end)
2184                 return VM_FAULT_SIGBUS;
2185
2186         track_pfn_insert(vma, &pgprot, pfn);
2187
2188         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2189                 return VM_FAULT_SIGBUS;
2190
2191         /*
2192          * If we don't have pte special, then we have to use the pfn_valid()
2193          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2194          * refcount the page if pfn_valid is true (hence insert_page rather
2195          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2196          * without pte special, it would there be refcounted as a normal page.
2197          */
2198         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2199             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2200                 struct page *page;
2201
2202                 /*
2203                  * At this point we are committed to insert_page()
2204                  * regardless of whether the caller specified flags that
2205                  * result in pfn_t_has_page() == false.
2206                  */
2207                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2208                 err = insert_page(vma, addr, page, pgprot);
2209         } else {
2210                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2211         }
2212
2213         if (err == -ENOMEM)
2214                 return VM_FAULT_OOM;
2215         if (err < 0 && err != -EBUSY)
2216                 return VM_FAULT_SIGBUS;
2217
2218         return VM_FAULT_NOPAGE;
2219 }
2220
2221 /**
2222  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2223  * @vma: user vma to map to
2224  * @addr: target user address of this page
2225  * @pfn: source kernel pfn
2226  * @pgprot: pgprot flags for the inserted page
2227  *
2228  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2229  * to override pgprot on a per-page basis.
2230  *
2231  * Typically this function should be used by drivers to set caching- and
2232  * encryption bits different than those of @vma->vm_page_prot, because
2233  * the caching- or encryption mode may not be known at mmap() time.
2234  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2235  * to set caching and encryption bits for those vmas (except for COW pages).
2236  * This is ensured by core vm only modifying these page table entries using
2237  * functions that don't touch caching- or encryption bits, using pte_modify()
2238  * if needed. (See for example mprotect()).
2239  * Also when new page-table entries are created, this is only done using the
2240  * fault() callback, and never using the value of vma->vm_page_prot,
2241  * except for page-table entries that point to anonymous pages as the result
2242  * of COW.
2243  *
2244  * Context: Process context.  May allocate using %GFP_KERNEL.
2245  * Return: vm_fault_t value.
2246  */
2247 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2248                                  pfn_t pfn, pgprot_t pgprot)
2249 {
2250         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2251 }
2252 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2253
2254 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2255                 pfn_t pfn)
2256 {
2257         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2258 }
2259 EXPORT_SYMBOL(vmf_insert_mixed);
2260
2261 /*
2262  *  If the insertion of PTE failed because someone else already added a
2263  *  different entry in the mean time, we treat that as success as we assume
2264  *  the same entry was actually inserted.
2265  */
2266 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2267                 unsigned long addr, pfn_t pfn)
2268 {
2269         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2270 }
2271 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2272
2273 /*
2274  * maps a range of physical memory into the requested pages. the old
2275  * mappings are removed. any references to nonexistent pages results
2276  * in null mappings (currently treated as "copy-on-access")
2277  */
2278 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2279                         unsigned long addr, unsigned long end,
2280                         unsigned long pfn, pgprot_t prot)
2281 {
2282         pte_t *pte, *mapped_pte;
2283         spinlock_t *ptl;
2284         int err = 0;
2285
2286         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2287         if (!pte)
2288                 return -ENOMEM;
2289         arch_enter_lazy_mmu_mode();
2290         do {
2291                 BUG_ON(!pte_none(*pte));
2292                 if (!pfn_modify_allowed(pfn, prot)) {
2293                         err = -EACCES;
2294                         break;
2295                 }
2296                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2297                 pfn++;
2298         } while (pte++, addr += PAGE_SIZE, addr != end);
2299         arch_leave_lazy_mmu_mode();
2300         pte_unmap_unlock(mapped_pte, ptl);
2301         return err;
2302 }
2303
2304 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2305                         unsigned long addr, unsigned long end,
2306                         unsigned long pfn, pgprot_t prot)
2307 {
2308         pmd_t *pmd;
2309         unsigned long next;
2310         int err;
2311
2312         pfn -= addr >> PAGE_SHIFT;
2313         pmd = pmd_alloc(mm, pud, addr);
2314         if (!pmd)
2315                 return -ENOMEM;
2316         VM_BUG_ON(pmd_trans_huge(*pmd));
2317         do {
2318                 next = pmd_addr_end(addr, end);
2319                 err = remap_pte_range(mm, pmd, addr, next,
2320                                 pfn + (addr >> PAGE_SHIFT), prot);
2321                 if (err)
2322                         return err;
2323         } while (pmd++, addr = next, addr != end);
2324         return 0;
2325 }
2326
2327 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2328                         unsigned long addr, unsigned long end,
2329                         unsigned long pfn, pgprot_t prot)
2330 {
2331         pud_t *pud;
2332         unsigned long next;
2333         int err;
2334
2335         pfn -= addr >> PAGE_SHIFT;
2336         pud = pud_alloc(mm, p4d, addr);
2337         if (!pud)
2338                 return -ENOMEM;
2339         do {
2340                 next = pud_addr_end(addr, end);
2341                 err = remap_pmd_range(mm, pud, addr, next,
2342                                 pfn + (addr >> PAGE_SHIFT), prot);
2343                 if (err)
2344                         return err;
2345         } while (pud++, addr = next, addr != end);
2346         return 0;
2347 }
2348
2349 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2350                         unsigned long addr, unsigned long end,
2351                         unsigned long pfn, pgprot_t prot)
2352 {
2353         p4d_t *p4d;
2354         unsigned long next;
2355         int err;
2356
2357         pfn -= addr >> PAGE_SHIFT;
2358         p4d = p4d_alloc(mm, pgd, addr);
2359         if (!p4d)
2360                 return -ENOMEM;
2361         do {
2362                 next = p4d_addr_end(addr, end);
2363                 err = remap_pud_range(mm, p4d, addr, next,
2364                                 pfn + (addr >> PAGE_SHIFT), prot);
2365                 if (err)
2366                         return err;
2367         } while (p4d++, addr = next, addr != end);
2368         return 0;
2369 }
2370
2371 /*
2372  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2373  * must have pre-validated the caching bits of the pgprot_t.
2374  */
2375 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2376                 unsigned long pfn, unsigned long size, pgprot_t prot)
2377 {
2378         pgd_t *pgd;
2379         unsigned long next;
2380         unsigned long end = addr + PAGE_ALIGN(size);
2381         struct mm_struct *mm = vma->vm_mm;
2382         int err;
2383
2384         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2385                 return -EINVAL;
2386
2387         /*
2388          * Physically remapped pages are special. Tell the
2389          * rest of the world about it:
2390          *   VM_IO tells people not to look at these pages
2391          *      (accesses can have side effects).
2392          *   VM_PFNMAP tells the core MM that the base pages are just
2393          *      raw PFN mappings, and do not have a "struct page" associated
2394          *      with them.
2395          *   VM_DONTEXPAND
2396          *      Disable vma merging and expanding with mremap().
2397          *   VM_DONTDUMP
2398          *      Omit vma from core dump, even when VM_IO turned off.
2399          *
2400          * There's a horrible special case to handle copy-on-write
2401          * behaviour that some programs depend on. We mark the "original"
2402          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2403          * See vm_normal_page() for details.
2404          */
2405         if (is_cow_mapping(vma->vm_flags)) {
2406                 if (addr != vma->vm_start || end != vma->vm_end)
2407                         return -EINVAL;
2408                 vma->vm_pgoff = pfn;
2409         }
2410
2411         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2412
2413         BUG_ON(addr >= end);
2414         pfn -= addr >> PAGE_SHIFT;
2415         pgd = pgd_offset(mm, addr);
2416         flush_cache_range(vma, addr, end);
2417         do {
2418                 next = pgd_addr_end(addr, end);
2419                 err = remap_p4d_range(mm, pgd, addr, next,
2420                                 pfn + (addr >> PAGE_SHIFT), prot);
2421                 if (err)
2422                         return err;
2423         } while (pgd++, addr = next, addr != end);
2424
2425         return 0;
2426 }
2427
2428 /**
2429  * remap_pfn_range - remap kernel memory to userspace
2430  * @vma: user vma to map to
2431  * @addr: target page aligned user address to start at
2432  * @pfn: page frame number of kernel physical memory address
2433  * @size: size of mapping area
2434  * @prot: page protection flags for this mapping
2435  *
2436  * Note: this is only safe if the mm semaphore is held when called.
2437  *
2438  * Return: %0 on success, negative error code otherwise.
2439  */
2440 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2441                     unsigned long pfn, unsigned long size, pgprot_t prot)
2442 {
2443         int err;
2444
2445         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2446         if (err)
2447                 return -EINVAL;
2448
2449         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2450         if (err)
2451                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2452         return err;
2453 }
2454 EXPORT_SYMBOL(remap_pfn_range);
2455
2456 /**
2457  * vm_iomap_memory - remap memory to userspace
2458  * @vma: user vma to map to
2459  * @start: start of the physical memory to be mapped
2460  * @len: size of area
2461  *
2462  * This is a simplified io_remap_pfn_range() for common driver use. The
2463  * driver just needs to give us the physical memory range to be mapped,
2464  * we'll figure out the rest from the vma information.
2465  *
2466  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2467  * whatever write-combining details or similar.
2468  *
2469  * Return: %0 on success, negative error code otherwise.
2470  */
2471 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2472 {
2473         unsigned long vm_len, pfn, pages;
2474
2475         /* Check that the physical memory area passed in looks valid */
2476         if (start + len < start)
2477                 return -EINVAL;
2478         /*
2479          * You *really* shouldn't map things that aren't page-aligned,
2480          * but we've historically allowed it because IO memory might
2481          * just have smaller alignment.
2482          */
2483         len += start & ~PAGE_MASK;
2484         pfn = start >> PAGE_SHIFT;
2485         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2486         if (pfn + pages < pfn)
2487                 return -EINVAL;
2488
2489         /* We start the mapping 'vm_pgoff' pages into the area */
2490         if (vma->vm_pgoff > pages)
2491                 return -EINVAL;
2492         pfn += vma->vm_pgoff;
2493         pages -= vma->vm_pgoff;
2494
2495         /* Can we fit all of the mapping? */
2496         vm_len = vma->vm_end - vma->vm_start;
2497         if (vm_len >> PAGE_SHIFT > pages)
2498                 return -EINVAL;
2499
2500         /* Ok, let it rip */
2501         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2502 }
2503 EXPORT_SYMBOL(vm_iomap_memory);
2504
2505 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2506                                      unsigned long addr, unsigned long end,
2507                                      pte_fn_t fn, void *data, bool create,
2508                                      pgtbl_mod_mask *mask)
2509 {
2510         pte_t *pte, *mapped_pte;
2511         int err = 0;
2512         spinlock_t *ptl;
2513
2514         if (create) {
2515                 mapped_pte = pte = (mm == &init_mm) ?
2516                         pte_alloc_kernel_track(pmd, addr, mask) :
2517                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2518                 if (!pte)
2519                         return -ENOMEM;
2520         } else {
2521                 mapped_pte = pte = (mm == &init_mm) ?
2522                         pte_offset_kernel(pmd, addr) :
2523                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2524         }
2525
2526         BUG_ON(pmd_huge(*pmd));
2527
2528         arch_enter_lazy_mmu_mode();
2529
2530         if (fn) {
2531                 do {
2532                         if (create || !pte_none(*pte)) {
2533                                 err = fn(pte++, addr, data);
2534                                 if (err)
2535                                         break;
2536                         }
2537                 } while (addr += PAGE_SIZE, addr != end);
2538         }
2539         *mask |= PGTBL_PTE_MODIFIED;
2540
2541         arch_leave_lazy_mmu_mode();
2542
2543         if (mm != &init_mm)
2544                 pte_unmap_unlock(mapped_pte, ptl);
2545         return err;
2546 }
2547
2548 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2549                                      unsigned long addr, unsigned long end,
2550                                      pte_fn_t fn, void *data, bool create,
2551                                      pgtbl_mod_mask *mask)
2552 {
2553         pmd_t *pmd;
2554         unsigned long next;
2555         int err = 0;
2556
2557         BUG_ON(pud_huge(*pud));
2558
2559         if (create) {
2560                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2561                 if (!pmd)
2562                         return -ENOMEM;
2563         } else {
2564                 pmd = pmd_offset(pud, addr);
2565         }
2566         do {
2567                 next = pmd_addr_end(addr, end);
2568                 if (pmd_none(*pmd) && !create)
2569                         continue;
2570                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2571                         return -EINVAL;
2572                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2573                         if (!create)
2574                                 continue;
2575                         pmd_clear_bad(pmd);
2576                 }
2577                 err = apply_to_pte_range(mm, pmd, addr, next,
2578                                          fn, data, create, mask);
2579                 if (err)
2580                         break;
2581         } while (pmd++, addr = next, addr != end);
2582
2583         return err;
2584 }
2585
2586 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2587                                      unsigned long addr, unsigned long end,
2588                                      pte_fn_t fn, void *data, bool create,
2589                                      pgtbl_mod_mask *mask)
2590 {
2591         pud_t *pud;
2592         unsigned long next;
2593         int err = 0;
2594
2595         if (create) {
2596                 pud = pud_alloc_track(mm, p4d, addr, mask);
2597                 if (!pud)
2598                         return -ENOMEM;
2599         } else {
2600                 pud = pud_offset(p4d, addr);
2601         }
2602         do {
2603                 next = pud_addr_end(addr, end);
2604                 if (pud_none(*pud) && !create)
2605                         continue;
2606                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2607                         return -EINVAL;
2608                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2609                         if (!create)
2610                                 continue;
2611                         pud_clear_bad(pud);
2612                 }
2613                 err = apply_to_pmd_range(mm, pud, addr, next,
2614                                          fn, data, create, mask);
2615                 if (err)
2616                         break;
2617         } while (pud++, addr = next, addr != end);
2618
2619         return err;
2620 }
2621
2622 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2623                                      unsigned long addr, unsigned long end,
2624                                      pte_fn_t fn, void *data, bool create,
2625                                      pgtbl_mod_mask *mask)
2626 {
2627         p4d_t *p4d;
2628         unsigned long next;
2629         int err = 0;
2630
2631         if (create) {
2632                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2633                 if (!p4d)
2634                         return -ENOMEM;
2635         } else {
2636                 p4d = p4d_offset(pgd, addr);
2637         }
2638         do {
2639                 next = p4d_addr_end(addr, end);
2640                 if (p4d_none(*p4d) && !create)
2641                         continue;
2642                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2643                         return -EINVAL;
2644                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2645                         if (!create)
2646                                 continue;
2647                         p4d_clear_bad(p4d);
2648                 }
2649                 err = apply_to_pud_range(mm, p4d, addr, next,
2650                                          fn, data, create, mask);
2651                 if (err)
2652                         break;
2653         } while (p4d++, addr = next, addr != end);
2654
2655         return err;
2656 }
2657
2658 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2659                                  unsigned long size, pte_fn_t fn,
2660                                  void *data, bool create)
2661 {
2662         pgd_t *pgd;
2663         unsigned long start = addr, next;
2664         unsigned long end = addr + size;
2665         pgtbl_mod_mask mask = 0;
2666         int err = 0;
2667
2668         if (WARN_ON(addr >= end))
2669                 return -EINVAL;
2670
2671         pgd = pgd_offset(mm, addr);
2672         do {
2673                 next = pgd_addr_end(addr, end);
2674                 if (pgd_none(*pgd) && !create)
2675                         continue;
2676                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2677                         return -EINVAL;
2678                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2679                         if (!create)
2680                                 continue;
2681                         pgd_clear_bad(pgd);
2682                 }
2683                 err = apply_to_p4d_range(mm, pgd, addr, next,
2684                                          fn, data, create, &mask);
2685                 if (err)
2686                         break;
2687         } while (pgd++, addr = next, addr != end);
2688
2689         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2690                 arch_sync_kernel_mappings(start, start + size);
2691
2692         return err;
2693 }
2694
2695 /*
2696  * Scan a region of virtual memory, filling in page tables as necessary
2697  * and calling a provided function on each leaf page table.
2698  */
2699 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2700                         unsigned long size, pte_fn_t fn, void *data)
2701 {
2702         return __apply_to_page_range(mm, addr, size, fn, data, true);
2703 }
2704 EXPORT_SYMBOL_GPL(apply_to_page_range);
2705
2706 /*
2707  * Scan a region of virtual memory, calling a provided function on
2708  * each leaf page table where it exists.
2709  *
2710  * Unlike apply_to_page_range, this does _not_ fill in page tables
2711  * where they are absent.
2712  */
2713 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2714                                  unsigned long size, pte_fn_t fn, void *data)
2715 {
2716         return __apply_to_page_range(mm, addr, size, fn, data, false);
2717 }
2718 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2719
2720 /*
2721  * handle_pte_fault chooses page fault handler according to an entry which was
2722  * read non-atomically.  Before making any commitment, on those architectures
2723  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2724  * parts, do_swap_page must check under lock before unmapping the pte and
2725  * proceeding (but do_wp_page is only called after already making such a check;
2726  * and do_anonymous_page can safely check later on).
2727  */
2728 static inline int pte_unmap_same(struct vm_fault *vmf)
2729 {
2730         int same = 1;
2731 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2732         if (sizeof(pte_t) > sizeof(unsigned long)) {
2733                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2734                 spin_lock(ptl);
2735                 same = pte_same(*vmf->pte, vmf->orig_pte);
2736                 spin_unlock(ptl);
2737         }
2738 #endif
2739         pte_unmap(vmf->pte);
2740         vmf->pte = NULL;
2741         return same;
2742 }
2743
2744 static inline bool cow_user_page(struct page *dst, struct page *src,
2745                                  struct vm_fault *vmf)
2746 {
2747         bool ret;
2748         void *kaddr;
2749         void __user *uaddr;
2750         bool locked = false;
2751         struct vm_area_struct *vma = vmf->vma;
2752         struct mm_struct *mm = vma->vm_mm;
2753         unsigned long addr = vmf->address;
2754
2755         if (likely(src)) {
2756                 copy_user_highpage(dst, src, addr, vma);
2757                 return true;
2758         }
2759
2760         /*
2761          * If the source page was a PFN mapping, we don't have
2762          * a "struct page" for it. We do a best-effort copy by
2763          * just copying from the original user address. If that
2764          * fails, we just zero-fill it. Live with it.
2765          */
2766         kaddr = kmap_atomic(dst);
2767         uaddr = (void __user *)(addr & PAGE_MASK);
2768
2769         /*
2770          * On architectures with software "accessed" bits, we would
2771          * take a double page fault, so mark it accessed here.
2772          */
2773         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2774                 pte_t entry;
2775
2776                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2777                 locked = true;
2778                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2779                         /*
2780                          * Other thread has already handled the fault
2781                          * and update local tlb only
2782                          */
2783                         update_mmu_tlb(vma, addr, vmf->pte);
2784                         ret = false;
2785                         goto pte_unlock;
2786                 }
2787
2788                 entry = pte_mkyoung(vmf->orig_pte);
2789                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2790                         update_mmu_cache(vma, addr, vmf->pte);
2791         }
2792
2793         /*
2794          * This really shouldn't fail, because the page is there
2795          * in the page tables. But it might just be unreadable,
2796          * in which case we just give up and fill the result with
2797          * zeroes.
2798          */
2799         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2800                 if (locked)
2801                         goto warn;
2802
2803                 /* Re-validate under PTL if the page is still mapped */
2804                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2805                 locked = true;
2806                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2807                         /* The PTE changed under us, update local tlb */
2808                         update_mmu_tlb(vma, addr, vmf->pte);
2809                         ret = false;
2810                         goto pte_unlock;
2811                 }
2812
2813                 /*
2814                  * The same page can be mapped back since last copy attempt.
2815                  * Try to copy again under PTL.
2816                  */
2817                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2818                         /*
2819                          * Give a warn in case there can be some obscure
2820                          * use-case
2821                          */
2822 warn:
2823                         WARN_ON_ONCE(1);
2824                         clear_page(kaddr);
2825                 }
2826         }
2827
2828         ret = true;
2829
2830 pte_unlock:
2831         if (locked)
2832                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2833         kunmap_atomic(kaddr);
2834         flush_dcache_page(dst);
2835
2836         return ret;
2837 }
2838
2839 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2840 {
2841         struct file *vm_file = vma->vm_file;
2842
2843         if (vm_file)
2844                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2845
2846         /*
2847          * Special mappings (e.g. VDSO) do not have any file so fake
2848          * a default GFP_KERNEL for them.
2849          */
2850         return GFP_KERNEL;
2851 }
2852
2853 /*
2854  * Notify the address space that the page is about to become writable so that
2855  * it can prohibit this or wait for the page to get into an appropriate state.
2856  *
2857  * We do this without the lock held, so that it can sleep if it needs to.
2858  */
2859 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2860 {
2861         vm_fault_t ret;
2862         struct page *page = vmf->page;
2863         unsigned int old_flags = vmf->flags;
2864
2865         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2866
2867         if (vmf->vma->vm_file &&
2868             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2869                 return VM_FAULT_SIGBUS;
2870
2871         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2872         /* Restore original flags so that caller is not surprised */
2873         vmf->flags = old_flags;
2874         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2875                 return ret;
2876         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2877                 lock_page(page);
2878                 if (!page->mapping) {
2879                         unlock_page(page);
2880                         return 0; /* retry */
2881                 }
2882                 ret |= VM_FAULT_LOCKED;
2883         } else
2884                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2885         return ret;
2886 }
2887
2888 /*
2889  * Handle dirtying of a page in shared file mapping on a write fault.
2890  *
2891  * The function expects the page to be locked and unlocks it.
2892  */
2893 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2894 {
2895         struct vm_area_struct *vma = vmf->vma;
2896         struct address_space *mapping;
2897         struct page *page = vmf->page;
2898         bool dirtied;
2899         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2900
2901         dirtied = set_page_dirty(page);
2902         VM_BUG_ON_PAGE(PageAnon(page), page);
2903         /*
2904          * Take a local copy of the address_space - page.mapping may be zeroed
2905          * by truncate after unlock_page().   The address_space itself remains
2906          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2907          * release semantics to prevent the compiler from undoing this copying.
2908          */
2909         mapping = page_rmapping(page);
2910         unlock_page(page);
2911
2912         if (!page_mkwrite)
2913                 file_update_time(vma->vm_file);
2914
2915         /*
2916          * Throttle page dirtying rate down to writeback speed.
2917          *
2918          * mapping may be NULL here because some device drivers do not
2919          * set page.mapping but still dirty their pages
2920          *
2921          * Drop the mmap_lock before waiting on IO, if we can. The file
2922          * is pinning the mapping, as per above.
2923          */
2924         if ((dirtied || page_mkwrite) && mapping) {
2925                 struct file *fpin;
2926
2927                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2928                 balance_dirty_pages_ratelimited(mapping);
2929                 if (fpin) {
2930                         fput(fpin);
2931                         return VM_FAULT_RETRY;
2932                 }
2933         }
2934
2935         return 0;
2936 }
2937
2938 /*
2939  * Handle write page faults for pages that can be reused in the current vma
2940  *
2941  * This can happen either due to the mapping being with the VM_SHARED flag,
2942  * or due to us being the last reference standing to the page. In either
2943  * case, all we need to do here is to mark the page as writable and update
2944  * any related book-keeping.
2945  */
2946 static inline void wp_page_reuse(struct vm_fault *vmf)
2947         __releases(vmf->ptl)
2948 {
2949         struct vm_area_struct *vma = vmf->vma;
2950         struct page *page = vmf->page;
2951         pte_t entry;
2952         /*
2953          * Clear the pages cpupid information as the existing
2954          * information potentially belongs to a now completely
2955          * unrelated process.
2956          */
2957         if (page)
2958                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2959
2960         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2961         entry = pte_mkyoung(vmf->orig_pte);
2962         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2963         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2964                 update_mmu_cache(vma, vmf->address, vmf->pte);
2965         pte_unmap_unlock(vmf->pte, vmf->ptl);
2966         count_vm_event(PGREUSE);
2967 }
2968
2969 /*
2970  * Handle the case of a page which we actually need to copy to a new page.
2971  *
2972  * Called with mmap_lock locked and the old page referenced, but
2973  * without the ptl held.
2974  *
2975  * High level logic flow:
2976  *
2977  * - Allocate a page, copy the content of the old page to the new one.
2978  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2979  * - Take the PTL. If the pte changed, bail out and release the allocated page
2980  * - If the pte is still the way we remember it, update the page table and all
2981  *   relevant references. This includes dropping the reference the page-table
2982  *   held to the old page, as well as updating the rmap.
2983  * - In any case, unlock the PTL and drop the reference we took to the old page.
2984  */
2985 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2986 {
2987         struct vm_area_struct *vma = vmf->vma;
2988         struct mm_struct *mm = vma->vm_mm;
2989         struct page *old_page = vmf->page;
2990         struct page *new_page = NULL;
2991         pte_t entry;
2992         int page_copied = 0;
2993         struct mmu_notifier_range range;
2994
2995         if (unlikely(anon_vma_prepare(vma)))
2996                 goto oom;
2997
2998         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2999                 new_page = alloc_zeroed_user_highpage_movable(vma,
3000                                                               vmf->address);
3001                 if (!new_page)
3002                         goto oom;
3003         } else {
3004                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3005                                 vmf->address);
3006                 if (!new_page)
3007                         goto oom;
3008
3009                 if (!cow_user_page(new_page, old_page, vmf)) {
3010                         /*
3011                          * COW failed, if the fault was solved by other,
3012                          * it's fine. If not, userspace would re-fault on
3013                          * the same address and we will handle the fault
3014                          * from the second attempt.
3015                          */
3016                         put_page(new_page);
3017                         if (old_page)
3018                                 put_page(old_page);
3019                         return 0;
3020                 }
3021         }
3022
3023         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3024                 goto oom_free_new;
3025         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3026
3027         __SetPageUptodate(new_page);
3028
3029         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3030                                 vmf->address & PAGE_MASK,
3031                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3032         mmu_notifier_invalidate_range_start(&range);
3033
3034         /*
3035          * Re-check the pte - we dropped the lock
3036          */
3037         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3038         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3039                 if (old_page) {
3040                         if (!PageAnon(old_page)) {
3041                                 dec_mm_counter_fast(mm,
3042                                                 mm_counter_file(old_page));
3043                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3044                         }
3045                 } else {
3046                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3047                 }
3048                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3049                 entry = mk_pte(new_page, vma->vm_page_prot);
3050                 entry = pte_sw_mkyoung(entry);
3051                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3052
3053                 /*
3054                  * Clear the pte entry and flush it first, before updating the
3055                  * pte with the new entry, to keep TLBs on different CPUs in
3056                  * sync. This code used to set the new PTE then flush TLBs, but
3057                  * that left a window where the new PTE could be loaded into
3058                  * some TLBs while the old PTE remains in others.
3059                  */
3060                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3061                 page_add_new_anon_rmap(new_page, vma, vmf->address);
3062                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3063                 /*
3064                  * We call the notify macro here because, when using secondary
3065                  * mmu page tables (such as kvm shadow page tables), we want the
3066                  * new page to be mapped directly into the secondary page table.
3067                  */
3068                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3069                 update_mmu_cache(vma, vmf->address, vmf->pte);
3070                 if (old_page) {
3071                         /*
3072                          * Only after switching the pte to the new page may
3073                          * we remove the mapcount here. Otherwise another
3074                          * process may come and find the rmap count decremented
3075                          * before the pte is switched to the new page, and
3076                          * "reuse" the old page writing into it while our pte
3077                          * here still points into it and can be read by other
3078                          * threads.
3079                          *
3080                          * The critical issue is to order this
3081                          * page_remove_rmap with the ptp_clear_flush above.
3082                          * Those stores are ordered by (if nothing else,)
3083                          * the barrier present in the atomic_add_negative
3084                          * in page_remove_rmap.
3085                          *
3086                          * Then the TLB flush in ptep_clear_flush ensures that
3087                          * no process can access the old page before the
3088                          * decremented mapcount is visible. And the old page
3089                          * cannot be reused until after the decremented
3090                          * mapcount is visible. So transitively, TLBs to
3091                          * old page will be flushed before it can be reused.
3092                          */
3093                         page_remove_rmap(old_page, vma, false);
3094                 }
3095
3096                 /* Free the old page.. */
3097                 new_page = old_page;
3098                 page_copied = 1;
3099         } else {
3100                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3101         }
3102
3103         if (new_page)
3104                 put_page(new_page);
3105
3106         pte_unmap_unlock(vmf->pte, vmf->ptl);
3107         /*
3108          * No need to double call mmu_notifier->invalidate_range() callback as
3109          * the above ptep_clear_flush_notify() did already call it.
3110          */
3111         mmu_notifier_invalidate_range_only_end(&range);
3112         if (old_page) {
3113                 if (page_copied)
3114                         free_swap_cache(old_page);
3115                 put_page(old_page);
3116         }
3117         return page_copied ? VM_FAULT_WRITE : 0;
3118 oom_free_new:
3119         put_page(new_page);
3120 oom:
3121         if (old_page)
3122                 put_page(old_page);
3123         return VM_FAULT_OOM;
3124 }
3125
3126 /**
3127  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3128  *                        writeable once the page is prepared
3129  *
3130  * @vmf: structure describing the fault
3131  *
3132  * This function handles all that is needed to finish a write page fault in a
3133  * shared mapping due to PTE being read-only once the mapped page is prepared.
3134  * It handles locking of PTE and modifying it.
3135  *
3136  * The function expects the page to be locked or other protection against
3137  * concurrent faults / writeback (such as DAX radix tree locks).
3138  *
3139  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3140  * we acquired PTE lock.
3141  */
3142 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3143 {
3144         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3145         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3146                                        &vmf->ptl);
3147         /*
3148          * We might have raced with another page fault while we released the
3149          * pte_offset_map_lock.
3150          */
3151         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3152                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3153                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3154                 return VM_FAULT_NOPAGE;
3155         }
3156         wp_page_reuse(vmf);
3157         return 0;
3158 }
3159
3160 /*
3161  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3162  * mapping
3163  */
3164 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3165 {
3166         struct vm_area_struct *vma = vmf->vma;
3167
3168         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3169                 vm_fault_t ret;
3170
3171                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3172                 vmf->flags |= FAULT_FLAG_MKWRITE;
3173                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3174                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3175                         return ret;
3176                 return finish_mkwrite_fault(vmf);
3177         }
3178         wp_page_reuse(vmf);
3179         return VM_FAULT_WRITE;
3180 }
3181
3182 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3183         __releases(vmf->ptl)
3184 {
3185         struct vm_area_struct *vma = vmf->vma;
3186         vm_fault_t ret = VM_FAULT_WRITE;
3187
3188         get_page(vmf->page);
3189
3190         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3191                 vm_fault_t tmp;
3192
3193                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3194                 tmp = do_page_mkwrite(vmf);
3195                 if (unlikely(!tmp || (tmp &
3196                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3197                         put_page(vmf->page);
3198                         return tmp;
3199                 }
3200                 tmp = finish_mkwrite_fault(vmf);
3201                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3202                         unlock_page(vmf->page);
3203                         put_page(vmf->page);
3204                         return tmp;
3205                 }
3206         } else {
3207                 wp_page_reuse(vmf);
3208                 lock_page(vmf->page);
3209         }
3210         ret |= fault_dirty_shared_page(vmf);
3211         put_page(vmf->page);
3212
3213         return ret;
3214 }
3215
3216 /*
3217  * This routine handles present pages, when users try to write
3218  * to a shared page. It is done by copying the page to a new address
3219  * and decrementing the shared-page counter for the old page.
3220  *
3221  * Note that this routine assumes that the protection checks have been
3222  * done by the caller (the low-level page fault routine in most cases).
3223  * Thus we can safely just mark it writable once we've done any necessary
3224  * COW.
3225  *
3226  * We also mark the page dirty at this point even though the page will
3227  * change only once the write actually happens. This avoids a few races,
3228  * and potentially makes it more efficient.
3229  *
3230  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3231  * but allow concurrent faults), with pte both mapped and locked.
3232  * We return with mmap_lock still held, but pte unmapped and unlocked.
3233  */
3234 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3235         __releases(vmf->ptl)
3236 {
3237         struct vm_area_struct *vma = vmf->vma;
3238
3239         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3240                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3241                 return handle_userfault(vmf, VM_UFFD_WP);
3242         }
3243
3244         /*
3245          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3246          * is flushed in this case before copying.
3247          */
3248         if (unlikely(userfaultfd_wp(vmf->vma) &&
3249                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3250                 flush_tlb_page(vmf->vma, vmf->address);
3251
3252         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3253         if (!vmf->page) {
3254                 /*
3255                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3256                  * VM_PFNMAP VMA.
3257                  *
3258                  * We should not cow pages in a shared writeable mapping.
3259                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3260                  */
3261                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3262                                      (VM_WRITE|VM_SHARED))
3263                         return wp_pfn_shared(vmf);
3264
3265                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3266                 return wp_page_copy(vmf);
3267         }
3268
3269         /*
3270          * Take out anonymous pages first, anonymous shared vmas are
3271          * not dirty accountable.
3272          */
3273         if (PageAnon(vmf->page)) {
3274                 struct page *page = vmf->page;
3275
3276                 /*
3277                  * We have to verify under page lock: these early checks are
3278                  * just an optimization to avoid locking the page and freeing
3279                  * the swapcache if there is little hope that we can reuse.
3280                  *
3281                  * PageKsm() doesn't necessarily raise the page refcount.
3282                  */
3283                 if (PageKsm(page) || page_count(page) > 3)
3284                         goto copy;
3285                 if (!PageLRU(page))
3286                         /*
3287                          * Note: We cannot easily detect+handle references from
3288                          * remote LRU pagevecs or references to PageLRU() pages.
3289                          */
3290                         lru_add_drain();
3291                 if (page_count(page) > 1 + PageSwapCache(page))
3292                         goto copy;
3293                 if (!trylock_page(page))
3294                         goto copy;
3295                 if (PageSwapCache(page))
3296                         try_to_free_swap(page);
3297                 if (PageKsm(page) || page_count(page) != 1) {
3298                         unlock_page(page);
3299                         goto copy;
3300                 }
3301                 /*
3302                  * Ok, we've got the only page reference from our mapping
3303                  * and the page is locked, it's dark out, and we're wearing
3304                  * sunglasses. Hit it.
3305                  */
3306                 page_move_anon_rmap(page, vma);
3307                 unlock_page(page);
3308                 wp_page_reuse(vmf);
3309                 return VM_FAULT_WRITE;
3310         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3311                                         (VM_WRITE|VM_SHARED))) {
3312                 return wp_page_shared(vmf);
3313         }
3314 copy:
3315         /*
3316          * Ok, we need to copy. Oh, well..
3317          */
3318         get_page(vmf->page);
3319
3320         pte_unmap_unlock(vmf->pte, vmf->ptl);
3321 #ifdef CONFIG_KSM
3322         if (PageKsm(vmf->page))
3323                 count_vm_event(COW_KSM);
3324 #endif
3325         return wp_page_copy(vmf);
3326 }
3327
3328 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3329                 unsigned long start_addr, unsigned long end_addr,
3330                 struct zap_details *details)
3331 {
3332         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3333 }
3334
3335 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3336                                             pgoff_t first_index,
3337                                             pgoff_t last_index,
3338                                             struct zap_details *details)
3339 {
3340         struct vm_area_struct *vma;
3341         pgoff_t vba, vea, zba, zea;
3342
3343         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3344                 vba = vma->vm_pgoff;
3345                 vea = vba + vma_pages(vma) - 1;
3346                 zba = max(first_index, vba);
3347                 zea = min(last_index, vea);
3348
3349                 unmap_mapping_range_vma(vma,
3350                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3351                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3352                                 details);
3353         }
3354 }
3355
3356 /**
3357  * unmap_mapping_folio() - Unmap single folio from processes.
3358  * @folio: The locked folio to be unmapped.
3359  *
3360  * Unmap this folio from any userspace process which still has it mmaped.
3361  * Typically, for efficiency, the range of nearby pages has already been
3362  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3363  * truncation or invalidation holds the lock on a folio, it may find that
3364  * the page has been remapped again: and then uses unmap_mapping_folio()
3365  * to unmap it finally.
3366  */
3367 void unmap_mapping_folio(struct folio *folio)
3368 {
3369         struct address_space *mapping = folio->mapping;
3370         struct zap_details details = { };
3371         pgoff_t first_index;
3372         pgoff_t last_index;
3373
3374         VM_BUG_ON(!folio_test_locked(folio));
3375
3376         first_index = folio->index;
3377         last_index = folio->index + folio_nr_pages(folio) - 1;
3378
3379         details.even_cows = false;
3380         details.single_folio = folio;
3381
3382         i_mmap_lock_read(mapping);
3383         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3384                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3385                                          last_index, &details);
3386         i_mmap_unlock_read(mapping);
3387 }
3388
3389 /**
3390  * unmap_mapping_pages() - Unmap pages from processes.
3391  * @mapping: The address space containing pages to be unmapped.
3392  * @start: Index of first page to be unmapped.
3393  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3394  * @even_cows: Whether to unmap even private COWed pages.
3395  *
3396  * Unmap the pages in this address space from any userspace process which
3397  * has them mmaped.  Generally, you want to remove COWed pages as well when
3398  * a file is being truncated, but not when invalidating pages from the page
3399  * cache.
3400  */
3401 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3402                 pgoff_t nr, bool even_cows)
3403 {
3404         struct zap_details details = { };
3405         pgoff_t first_index = start;
3406         pgoff_t last_index = start + nr - 1;
3407
3408         details.even_cows = even_cows;
3409         if (last_index < first_index)
3410                 last_index = ULONG_MAX;
3411
3412         i_mmap_lock_read(mapping);
3413         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3414                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3415                                          last_index, &details);
3416         i_mmap_unlock_read(mapping);
3417 }
3418 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3419
3420 /**
3421  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3422  * address_space corresponding to the specified byte range in the underlying
3423  * file.
3424  *
3425  * @mapping: the address space containing mmaps to be unmapped.
3426  * @holebegin: byte in first page to unmap, relative to the start of
3427  * the underlying file.  This will be rounded down to a PAGE_SIZE
3428  * boundary.  Note that this is different from truncate_pagecache(), which
3429  * must keep the partial page.  In contrast, we must get rid of
3430  * partial pages.
3431  * @holelen: size of prospective hole in bytes.  This will be rounded
3432  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3433  * end of the file.
3434  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3435  * but 0 when invalidating pagecache, don't throw away private data.
3436  */
3437 void unmap_mapping_range(struct address_space *mapping,
3438                 loff_t const holebegin, loff_t const holelen, int even_cows)
3439 {
3440         pgoff_t hba = holebegin >> PAGE_SHIFT;
3441         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3442
3443         /* Check for overflow. */
3444         if (sizeof(holelen) > sizeof(hlen)) {
3445                 long long holeend =
3446                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3447                 if (holeend & ~(long long)ULONG_MAX)
3448                         hlen = ULONG_MAX - hba + 1;
3449         }
3450
3451         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3452 }
3453 EXPORT_SYMBOL(unmap_mapping_range);
3454
3455 /*
3456  * Restore a potential device exclusive pte to a working pte entry
3457  */
3458 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3459 {
3460         struct page *page = vmf->page;
3461         struct vm_area_struct *vma = vmf->vma;
3462         struct mmu_notifier_range range;
3463
3464         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3465                 return VM_FAULT_RETRY;
3466         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3467                                 vma->vm_mm, vmf->address & PAGE_MASK,
3468                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3469         mmu_notifier_invalidate_range_start(&range);
3470
3471         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3472                                 &vmf->ptl);
3473         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3474                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3475
3476         pte_unmap_unlock(vmf->pte, vmf->ptl);
3477         unlock_page(page);
3478
3479         mmu_notifier_invalidate_range_end(&range);
3480         return 0;
3481 }
3482
3483 static inline bool should_try_to_free_swap(struct page *page,
3484                                            struct vm_area_struct *vma,
3485                                            unsigned int fault_flags)
3486 {
3487         if (!PageSwapCache(page))
3488                 return false;
3489         if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3490             PageMlocked(page))
3491                 return true;
3492         /*
3493          * If we want to map a page that's in the swapcache writable, we
3494          * have to detect via the refcount if we're really the exclusive
3495          * user. Try freeing the swapcache to get rid of the swapcache
3496          * reference only in case it's likely that we'll be the exlusive user.
3497          */
3498         return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3499                 page_count(page) == 2;
3500 }
3501
3502 /*
3503  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3504  * but allow concurrent faults), and pte mapped but not yet locked.
3505  * We return with pte unmapped and unlocked.
3506  *
3507  * We return with the mmap_lock locked or unlocked in the same cases
3508  * as does filemap_fault().
3509  */
3510 vm_fault_t do_swap_page(struct vm_fault *vmf)
3511 {
3512         struct vm_area_struct *vma = vmf->vma;
3513         struct page *page = NULL, *swapcache;
3514         struct swap_info_struct *si = NULL;
3515         rmap_t rmap_flags = RMAP_NONE;
3516         swp_entry_t entry;
3517         pte_t pte;
3518         int locked;
3519         vm_fault_t ret = 0;
3520         void *shadow = NULL;
3521
3522         if (!pte_unmap_same(vmf))
3523                 goto out;
3524
3525         entry = pte_to_swp_entry(vmf->orig_pte);
3526         if (unlikely(non_swap_entry(entry))) {
3527                 if (is_migration_entry(entry)) {
3528                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3529                                              vmf->address);
3530                 } else if (is_device_exclusive_entry(entry)) {
3531                         vmf->page = pfn_swap_entry_to_page(entry);
3532                         ret = remove_device_exclusive_entry(vmf);
3533                 } else if (is_device_private_entry(entry)) {
3534                         vmf->page = pfn_swap_entry_to_page(entry);
3535                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3536                 } else if (is_hwpoison_entry(entry)) {
3537                         ret = VM_FAULT_HWPOISON;
3538                 } else {
3539                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3540                         ret = VM_FAULT_SIGBUS;
3541                 }
3542                 goto out;
3543         }
3544
3545         /* Prevent swapoff from happening to us. */
3546         si = get_swap_device(entry);
3547         if (unlikely(!si))
3548                 goto out;
3549
3550         page = lookup_swap_cache(entry, vma, vmf->address);
3551         swapcache = page;
3552
3553         if (!page) {
3554                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3555                     __swap_count(entry) == 1) {
3556                         /* skip swapcache */
3557                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3558                                                         vmf->address);
3559                         if (page) {
3560                                 __SetPageLocked(page);
3561                                 __SetPageSwapBacked(page);
3562
3563                                 if (mem_cgroup_swapin_charge_page(page,
3564                                         vma->vm_mm, GFP_KERNEL, entry)) {
3565                                         ret = VM_FAULT_OOM;
3566                                         goto out_page;
3567                                 }
3568                                 mem_cgroup_swapin_uncharge_swap(entry);
3569
3570                                 shadow = get_shadow_from_swap_cache(entry);
3571                                 if (shadow)
3572                                         workingset_refault(page_folio(page),
3573                                                                 shadow);
3574
3575                                 lru_cache_add(page);
3576
3577                                 /* To provide entry to swap_readpage() */
3578                                 set_page_private(page, entry.val);
3579                                 swap_readpage(page, true);
3580                                 set_page_private(page, 0);
3581                         }
3582                 } else {
3583                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3584                                                 vmf);
3585                         swapcache = page;
3586                 }
3587
3588                 if (!page) {
3589                         /*
3590                          * Back out if somebody else faulted in this pte
3591                          * while we released the pte lock.
3592                          */
3593                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3594                                         vmf->address, &vmf->ptl);
3595                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3596                                 ret = VM_FAULT_OOM;
3597                         goto unlock;
3598                 }
3599
3600                 /* Had to read the page from swap area: Major fault */
3601                 ret = VM_FAULT_MAJOR;
3602                 count_vm_event(PGMAJFAULT);
3603                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3604         } else if (PageHWPoison(page)) {
3605                 /*
3606                  * hwpoisoned dirty swapcache pages are kept for killing
3607                  * owner processes (which may be unknown at hwpoison time)
3608                  */
3609                 ret = VM_FAULT_HWPOISON;
3610                 goto out_release;
3611         }
3612
3613         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3614
3615         if (!locked) {
3616                 ret |= VM_FAULT_RETRY;
3617                 goto out_release;
3618         }
3619
3620         if (swapcache) {
3621                 /*
3622                  * Make sure try_to_free_swap or swapoff did not release the
3623                  * swapcache from under us.  The page pin, and pte_same test
3624                  * below, are not enough to exclude that.  Even if it is still
3625                  * swapcache, we need to check that the page's swap has not
3626                  * changed.
3627                  */
3628                 if (unlikely(!PageSwapCache(page) ||
3629                              page_private(page) != entry.val))
3630                         goto out_page;
3631
3632                 /*
3633                  * KSM sometimes has to copy on read faults, for example, if
3634                  * page->index of !PageKSM() pages would be nonlinear inside the
3635                  * anon VMA -- PageKSM() is lost on actual swapout.
3636                  */
3637                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3638                 if (unlikely(!page)) {
3639                         ret = VM_FAULT_OOM;
3640                         page = swapcache;
3641                         goto out_page;
3642                 }
3643
3644                 /*
3645                  * If we want to map a page that's in the swapcache writable, we
3646                  * have to detect via the refcount if we're really the exclusive
3647                  * owner. Try removing the extra reference from the local LRU
3648                  * pagevecs if required.
3649                  */
3650                 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3651                     !PageKsm(page) && !PageLRU(page))
3652                         lru_add_drain();
3653         }
3654
3655         cgroup_throttle_swaprate(page, GFP_KERNEL);
3656
3657         /*
3658          * Back out if somebody else already faulted in this pte.
3659          */
3660         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3661                         &vmf->ptl);
3662         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3663                 goto out_nomap;
3664
3665         if (unlikely(!PageUptodate(page))) {
3666                 ret = VM_FAULT_SIGBUS;
3667                 goto out_nomap;
3668         }
3669
3670         /*
3671          * Remove the swap entry and conditionally try to free up the swapcache.
3672          * We're already holding a reference on the page but haven't mapped it
3673          * yet.
3674          */
3675         swap_free(entry);
3676         if (should_try_to_free_swap(page, vma, vmf->flags))
3677                 try_to_free_swap(page);
3678
3679         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3680         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3681         pte = mk_pte(page, vma->vm_page_prot);
3682
3683         /*
3684          * Same logic as in do_wp_page(); however, optimize for fresh pages
3685          * that are certainly not shared because we just allocated them without
3686          * exposing them to the swapcache.
3687          */
3688         if ((vmf->flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3689             (page != swapcache || page_count(page) == 1)) {
3690                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3691                 vmf->flags &= ~FAULT_FLAG_WRITE;
3692                 ret |= VM_FAULT_WRITE;
3693                 rmap_flags |= RMAP_EXCLUSIVE;
3694         }
3695         flush_icache_page(vma, page);
3696         if (pte_swp_soft_dirty(vmf->orig_pte))
3697                 pte = pte_mksoft_dirty(pte);
3698         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3699                 pte = pte_mkuffd_wp(pte);
3700                 pte = pte_wrprotect(pte);
3701         }
3702         vmf->orig_pte = pte;
3703
3704         /* ksm created a completely new copy */
3705         if (unlikely(page != swapcache && swapcache)) {
3706                 page_add_new_anon_rmap(page, vma, vmf->address);
3707                 lru_cache_add_inactive_or_unevictable(page, vma);
3708         } else {
3709                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3710         }
3711
3712         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3713         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3714
3715         unlock_page(page);
3716         if (page != swapcache && swapcache) {
3717                 /*
3718                  * Hold the lock to avoid the swap entry to be reused
3719                  * until we take the PT lock for the pte_same() check
3720                  * (to avoid false positives from pte_same). For
3721                  * further safety release the lock after the swap_free
3722                  * so that the swap count won't change under a
3723                  * parallel locked swapcache.
3724                  */
3725                 unlock_page(swapcache);
3726                 put_page(swapcache);
3727         }
3728
3729         if (vmf->flags & FAULT_FLAG_WRITE) {
3730                 ret |= do_wp_page(vmf);
3731                 if (ret & VM_FAULT_ERROR)
3732                         ret &= VM_FAULT_ERROR;
3733                 goto out;
3734         }
3735
3736         /* No need to invalidate - it was non-present before */
3737         update_mmu_cache(vma, vmf->address, vmf->pte);
3738 unlock:
3739         pte_unmap_unlock(vmf->pte, vmf->ptl);
3740 out:
3741         if (si)
3742                 put_swap_device(si);
3743         return ret;
3744 out_nomap:
3745         pte_unmap_unlock(vmf->pte, vmf->ptl);
3746 out_page:
3747         unlock_page(page);
3748 out_release:
3749         put_page(page);
3750         if (page != swapcache && swapcache) {
3751                 unlock_page(swapcache);
3752                 put_page(swapcache);
3753         }
3754         if (si)
3755                 put_swap_device(si);
3756         return ret;
3757 }
3758
3759 /*
3760  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3761  * but allow concurrent faults), and pte mapped but not yet locked.
3762  * We return with mmap_lock still held, but pte unmapped and unlocked.
3763  */
3764 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3765 {
3766         struct vm_area_struct *vma = vmf->vma;
3767         struct page *page;
3768         vm_fault_t ret = 0;
3769         pte_t entry;
3770
3771         /* File mapping without ->vm_ops ? */
3772         if (vma->vm_flags & VM_SHARED)
3773                 return VM_FAULT_SIGBUS;
3774
3775         /*
3776          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3777          * pte_offset_map() on pmds where a huge pmd might be created
3778          * from a different thread.
3779          *
3780          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3781          * parallel threads are excluded by other means.
3782          *
3783          * Here we only have mmap_read_lock(mm).
3784          */
3785         if (pte_alloc(vma->vm_mm, vmf->pmd))
3786                 return VM_FAULT_OOM;
3787
3788         /* See comment in handle_pte_fault() */
3789         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3790                 return 0;
3791
3792         /* Use the zero-page for reads */
3793         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3794                         !mm_forbids_zeropage(vma->vm_mm)) {
3795                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3796                                                 vma->vm_page_prot));
3797                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3798                                 vmf->address, &vmf->ptl);
3799                 if (!pte_none(*vmf->pte)) {
3800                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3801                         goto unlock;
3802                 }
3803                 ret = check_stable_address_space(vma->vm_mm);
3804                 if (ret)
3805                         goto unlock;
3806                 /* Deliver the page fault to userland, check inside PT lock */
3807                 if (userfaultfd_missing(vma)) {
3808                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3809                         return handle_userfault(vmf, VM_UFFD_MISSING);
3810                 }
3811                 goto setpte;
3812         }
3813
3814         /* Allocate our own private page. */
3815         if (unlikely(anon_vma_prepare(vma)))
3816                 goto oom;
3817         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3818         if (!page)
3819                 goto oom;
3820
3821         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3822                 goto oom_free_page;
3823         cgroup_throttle_swaprate(page, GFP_KERNEL);
3824
3825         /*
3826          * The memory barrier inside __SetPageUptodate makes sure that
3827          * preceding stores to the page contents become visible before
3828          * the set_pte_at() write.
3829          */
3830         __SetPageUptodate(page);
3831
3832         entry = mk_pte(page, vma->vm_page_prot);
3833         entry = pte_sw_mkyoung(entry);
3834         if (vma->vm_flags & VM_WRITE)
3835                 entry = pte_mkwrite(pte_mkdirty(entry));
3836
3837         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3838                         &vmf->ptl);
3839         if (!pte_none(*vmf->pte)) {
3840                 update_mmu_cache(vma, vmf->address, vmf->pte);
3841                 goto release;
3842         }
3843
3844         ret = check_stable_address_space(vma->vm_mm);
3845         if (ret)
3846                 goto release;
3847
3848         /* Deliver the page fault to userland, check inside PT lock */
3849         if (userfaultfd_missing(vma)) {
3850                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3851                 put_page(page);
3852                 return handle_userfault(vmf, VM_UFFD_MISSING);
3853         }
3854
3855         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3856         page_add_new_anon_rmap(page, vma, vmf->address);
3857         lru_cache_add_inactive_or_unevictable(page, vma);
3858 setpte:
3859         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3860
3861         /* No need to invalidate - it was non-present before */
3862         update_mmu_cache(vma, vmf->address, vmf->pte);
3863 unlock:
3864         pte_unmap_unlock(vmf->pte, vmf->ptl);
3865         return ret;
3866 release:
3867         put_page(page);
3868         goto unlock;
3869 oom_free_page:
3870         put_page(page);
3871 oom:
3872         return VM_FAULT_OOM;
3873 }
3874
3875 /*
3876  * The mmap_lock must have been held on entry, and may have been
3877  * released depending on flags and vma->vm_ops->fault() return value.
3878  * See filemap_fault() and __lock_page_retry().
3879  */
3880 static vm_fault_t __do_fault(struct vm_fault *vmf)
3881 {
3882         struct vm_area_struct *vma = vmf->vma;
3883         vm_fault_t ret;
3884
3885         /*
3886          * Preallocate pte before we take page_lock because this might lead to
3887          * deadlocks for memcg reclaim which waits for pages under writeback:
3888          *                              lock_page(A)
3889          *                              SetPageWriteback(A)
3890          *                              unlock_page(A)
3891          * lock_page(B)
3892          *                              lock_page(B)
3893          * pte_alloc_one
3894          *   shrink_page_list
3895          *     wait_on_page_writeback(A)
3896          *                              SetPageWriteback(B)
3897          *                              unlock_page(B)
3898          *                              # flush A, B to clear the writeback
3899          */
3900         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3901                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3902                 if (!vmf->prealloc_pte)
3903                         return VM_FAULT_OOM;
3904         }
3905
3906         ret = vma->vm_ops->fault(vmf);
3907         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3908                             VM_FAULT_DONE_COW)))
3909                 return ret;
3910
3911         if (unlikely(PageHWPoison(vmf->page))) {
3912                 struct page *page = vmf->page;
3913                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3914                 if (ret & VM_FAULT_LOCKED) {
3915                         if (page_mapped(page))
3916                                 unmap_mapping_pages(page_mapping(page),
3917                                                     page->index, 1, false);
3918                         /* Retry if a clean page was removed from the cache. */
3919                         if (invalidate_inode_page(page))
3920                                 poisonret = VM_FAULT_NOPAGE;
3921                         unlock_page(page);
3922                 }
3923                 put_page(page);
3924                 vmf->page = NULL;
3925                 return poisonret;
3926         }
3927
3928         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3929                 lock_page(vmf->page);
3930         else
3931                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3932
3933         return ret;
3934 }
3935
3936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3937 static void deposit_prealloc_pte(struct vm_fault *vmf)
3938 {
3939         struct vm_area_struct *vma = vmf->vma;
3940
3941         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3942         /*
3943          * We are going to consume the prealloc table,
3944          * count that as nr_ptes.
3945          */
3946         mm_inc_nr_ptes(vma->vm_mm);
3947         vmf->prealloc_pte = NULL;
3948 }
3949
3950 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3951 {
3952         struct vm_area_struct *vma = vmf->vma;
3953         bool write = vmf->flags & FAULT_FLAG_WRITE;
3954         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3955         pmd_t entry;
3956         int i;
3957         vm_fault_t ret = VM_FAULT_FALLBACK;
3958
3959         if (!transhuge_vma_suitable(vma, haddr))
3960                 return ret;
3961
3962         page = compound_head(page);
3963         if (compound_order(page) != HPAGE_PMD_ORDER)
3964                 return ret;
3965
3966         /*
3967          * Just backoff if any subpage of a THP is corrupted otherwise
3968          * the corrupted page may mapped by PMD silently to escape the
3969          * check.  This kind of THP just can be PTE mapped.  Access to
3970          * the corrupted subpage should trigger SIGBUS as expected.
3971          */
3972         if (unlikely(PageHasHWPoisoned(page)))
3973                 return ret;
3974
3975         /*
3976          * Archs like ppc64 need additional space to store information
3977          * related to pte entry. Use the preallocated table for that.
3978          */
3979         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3980                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3981                 if (!vmf->prealloc_pte)
3982                         return VM_FAULT_OOM;
3983         }
3984
3985         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3986         if (unlikely(!pmd_none(*vmf->pmd)))
3987                 goto out;
3988
3989         for (i = 0; i < HPAGE_PMD_NR; i++)
3990                 flush_icache_page(vma, page + i);
3991
3992         entry = mk_huge_pmd(page, vma->vm_page_prot);
3993         if (write)
3994                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3995
3996         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3997         page_add_file_rmap(page, vma, true);
3998
3999         /*
4000          * deposit and withdraw with pmd lock held
4001          */
4002         if (arch_needs_pgtable_deposit())
4003                 deposit_prealloc_pte(vmf);
4004
4005         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4006
4007         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4008
4009         /* fault is handled */
4010         ret = 0;
4011         count_vm_event(THP_FILE_MAPPED);
4012 out:
4013         spin_unlock(vmf->ptl);
4014         return ret;
4015 }
4016 #else
4017 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4018 {
4019         return VM_FAULT_FALLBACK;
4020 }
4021 #endif
4022
4023 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4024 {
4025         struct vm_area_struct *vma = vmf->vma;
4026         bool write = vmf->flags & FAULT_FLAG_WRITE;
4027         bool prefault = vmf->address != addr;
4028         pte_t entry;
4029
4030         flush_icache_page(vma, page);
4031         entry = mk_pte(page, vma->vm_page_prot);
4032
4033         if (prefault && arch_wants_old_prefaulted_pte())
4034                 entry = pte_mkold(entry);
4035         else
4036                 entry = pte_sw_mkyoung(entry);
4037
4038         if (write)
4039                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4040         /* copy-on-write page */
4041         if (write && !(vma->vm_flags & VM_SHARED)) {
4042                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4043                 page_add_new_anon_rmap(page, vma, addr);
4044                 lru_cache_add_inactive_or_unevictable(page, vma);
4045         } else {
4046                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4047                 page_add_file_rmap(page, vma, false);
4048         }
4049         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4050 }
4051
4052 /**
4053  * finish_fault - finish page fault once we have prepared the page to fault
4054  *
4055  * @vmf: structure describing the fault
4056  *
4057  * This function handles all that is needed to finish a page fault once the
4058  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4059  * given page, adds reverse page mapping, handles memcg charges and LRU
4060  * addition.
4061  *
4062  * The function expects the page to be locked and on success it consumes a
4063  * reference of a page being mapped (for the PTE which maps it).
4064  *
4065  * Return: %0 on success, %VM_FAULT_ code in case of error.
4066  */
4067 vm_fault_t finish_fault(struct vm_fault *vmf)
4068 {
4069         struct vm_area_struct *vma = vmf->vma;
4070         struct page *page;
4071         vm_fault_t ret;
4072
4073         /* Did we COW the page? */
4074         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4075                 page = vmf->cow_page;
4076         else
4077                 page = vmf->page;
4078
4079         /*
4080          * check even for read faults because we might have lost our CoWed
4081          * page
4082          */
4083         if (!(vma->vm_flags & VM_SHARED)) {
4084                 ret = check_stable_address_space(vma->vm_mm);
4085                 if (ret)
4086                         return ret;
4087         }
4088
4089         if (pmd_none(*vmf->pmd)) {
4090                 if (PageTransCompound(page)) {
4091                         ret = do_set_pmd(vmf, page);
4092                         if (ret != VM_FAULT_FALLBACK)
4093                                 return ret;
4094                 }
4095
4096                 if (vmf->prealloc_pte)
4097                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4098                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4099                         return VM_FAULT_OOM;
4100         }
4101
4102         /* See comment in handle_pte_fault() */
4103         if (pmd_devmap_trans_unstable(vmf->pmd))
4104                 return 0;
4105
4106         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4107                                       vmf->address, &vmf->ptl);
4108         ret = 0;
4109         /* Re-check under ptl */
4110         if (likely(pte_none(*vmf->pte)))
4111                 do_set_pte(vmf, page, vmf->address);
4112         else
4113                 ret = VM_FAULT_NOPAGE;
4114
4115         update_mmu_tlb(vma, vmf->address, vmf->pte);
4116         pte_unmap_unlock(vmf->pte, vmf->ptl);
4117         return ret;
4118 }
4119
4120 static unsigned long fault_around_bytes __read_mostly =
4121         rounddown_pow_of_two(65536);
4122
4123 #ifdef CONFIG_DEBUG_FS
4124 static int fault_around_bytes_get(void *data, u64 *val)
4125 {
4126         *val = fault_around_bytes;
4127         return 0;
4128 }
4129
4130 /*
4131  * fault_around_bytes must be rounded down to the nearest page order as it's
4132  * what do_fault_around() expects to see.
4133  */
4134 static int fault_around_bytes_set(void *data, u64 val)
4135 {
4136         if (val / PAGE_SIZE > PTRS_PER_PTE)
4137                 return -EINVAL;
4138         if (val > PAGE_SIZE)
4139                 fault_around_bytes = rounddown_pow_of_two(val);
4140         else
4141                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4142         return 0;
4143 }
4144 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4145                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4146
4147 static int __init fault_around_debugfs(void)
4148 {
4149         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4150                                    &fault_around_bytes_fops);
4151         return 0;
4152 }
4153 late_initcall(fault_around_debugfs);
4154 #endif
4155
4156 /*
4157  * do_fault_around() tries to map few pages around the fault address. The hope
4158  * is that the pages will be needed soon and this will lower the number of
4159  * faults to handle.
4160  *
4161  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4162  * not ready to be mapped: not up-to-date, locked, etc.
4163  *
4164  * This function is called with the page table lock taken. In the split ptlock
4165  * case the page table lock only protects only those entries which belong to
4166  * the page table corresponding to the fault address.
4167  *
4168  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4169  * only once.
4170  *
4171  * fault_around_bytes defines how many bytes we'll try to map.
4172  * do_fault_around() expects it to be set to a power of two less than or equal
4173  * to PTRS_PER_PTE.
4174  *
4175  * The virtual address of the area that we map is naturally aligned to
4176  * fault_around_bytes rounded down to the machine page size
4177  * (and therefore to page order).  This way it's easier to guarantee
4178  * that we don't cross page table boundaries.
4179  */
4180 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4181 {
4182         unsigned long address = vmf->address, nr_pages, mask;
4183         pgoff_t start_pgoff = vmf->pgoff;
4184         pgoff_t end_pgoff;
4185         int off;
4186
4187         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4188         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4189
4190         address = max(address & mask, vmf->vma->vm_start);
4191         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4192         start_pgoff -= off;
4193
4194         /*
4195          *  end_pgoff is either the end of the page table, the end of
4196          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4197          */
4198         end_pgoff = start_pgoff -
4199                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4200                 PTRS_PER_PTE - 1;
4201         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4202                         start_pgoff + nr_pages - 1);
4203
4204         if (pmd_none(*vmf->pmd)) {
4205                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4206                 if (!vmf->prealloc_pte)
4207                         return VM_FAULT_OOM;
4208         }
4209
4210         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4211 }
4212
4213 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4214 {
4215         struct vm_area_struct *vma = vmf->vma;
4216         vm_fault_t ret = 0;
4217
4218         /*
4219          * Let's call ->map_pages() first and use ->fault() as fallback
4220          * if page by the offset is not ready to be mapped (cold cache or
4221          * something).
4222          */
4223         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4224                 if (likely(!userfaultfd_minor(vmf->vma))) {
4225                         ret = do_fault_around(vmf);
4226                         if (ret)
4227                                 return ret;
4228                 }
4229         }
4230
4231         ret = __do_fault(vmf);
4232         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4233                 return ret;
4234
4235         ret |= finish_fault(vmf);
4236         unlock_page(vmf->page);
4237         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4238                 put_page(vmf->page);
4239         return ret;
4240 }
4241
4242 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4243 {
4244         struct vm_area_struct *vma = vmf->vma;
4245         vm_fault_t ret;
4246
4247         if (unlikely(anon_vma_prepare(vma)))
4248                 return VM_FAULT_OOM;
4249
4250         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4251         if (!vmf->cow_page)
4252                 return VM_FAULT_OOM;
4253
4254         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4255                                 GFP_KERNEL)) {
4256                 put_page(vmf->cow_page);
4257                 return VM_FAULT_OOM;
4258         }
4259         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4260
4261         ret = __do_fault(vmf);
4262         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4263                 goto uncharge_out;
4264         if (ret & VM_FAULT_DONE_COW)
4265                 return ret;
4266
4267         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4268         __SetPageUptodate(vmf->cow_page);
4269
4270         ret |= finish_fault(vmf);
4271         unlock_page(vmf->page);
4272         put_page(vmf->page);
4273         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4274                 goto uncharge_out;
4275         return ret;
4276 uncharge_out:
4277         put_page(vmf->cow_page);
4278         return ret;
4279 }
4280
4281 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4282 {
4283         struct vm_area_struct *vma = vmf->vma;
4284         vm_fault_t ret, tmp;
4285
4286         ret = __do_fault(vmf);
4287         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4288                 return ret;
4289
4290         /*
4291          * Check if the backing address space wants to know that the page is
4292          * about to become writable
4293          */
4294         if (vma->vm_ops->page_mkwrite) {
4295                 unlock_page(vmf->page);
4296                 tmp = do_page_mkwrite(vmf);
4297                 if (unlikely(!tmp ||
4298                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4299                         put_page(vmf->page);
4300                         return tmp;
4301                 }
4302         }
4303
4304         ret |= finish_fault(vmf);
4305         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4306                                         VM_FAULT_RETRY))) {
4307                 unlock_page(vmf->page);
4308                 put_page(vmf->page);
4309                 return ret;
4310         }
4311
4312         ret |= fault_dirty_shared_page(vmf);
4313         return ret;
4314 }
4315
4316 /*
4317  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4318  * but allow concurrent faults).
4319  * The mmap_lock may have been released depending on flags and our
4320  * return value.  See filemap_fault() and __folio_lock_or_retry().
4321  * If mmap_lock is released, vma may become invalid (for example
4322  * by other thread calling munmap()).
4323  */
4324 static vm_fault_t do_fault(struct vm_fault *vmf)
4325 {
4326         struct vm_area_struct *vma = vmf->vma;
4327         struct mm_struct *vm_mm = vma->vm_mm;
4328         vm_fault_t ret;
4329
4330         /*
4331          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4332          */
4333         if (!vma->vm_ops->fault) {
4334                 /*
4335                  * If we find a migration pmd entry or a none pmd entry, which
4336                  * should never happen, return SIGBUS
4337                  */
4338                 if (unlikely(!pmd_present(*vmf->pmd)))
4339                         ret = VM_FAULT_SIGBUS;
4340                 else {
4341                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4342                                                        vmf->pmd,
4343                                                        vmf->address,
4344                                                        &vmf->ptl);
4345                         /*
4346                          * Make sure this is not a temporary clearing of pte
4347                          * by holding ptl and checking again. A R/M/W update
4348                          * of pte involves: take ptl, clearing the pte so that
4349                          * we don't have concurrent modification by hardware
4350                          * followed by an update.
4351                          */
4352                         if (unlikely(pte_none(*vmf->pte)))
4353                                 ret = VM_FAULT_SIGBUS;
4354                         else
4355                                 ret = VM_FAULT_NOPAGE;
4356
4357                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4358                 }
4359         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4360                 ret = do_read_fault(vmf);
4361         else if (!(vma->vm_flags & VM_SHARED))
4362                 ret = do_cow_fault(vmf);
4363         else
4364                 ret = do_shared_fault(vmf);
4365
4366         /* preallocated pagetable is unused: free it */
4367         if (vmf->prealloc_pte) {
4368                 pte_free(vm_mm, vmf->prealloc_pte);
4369                 vmf->prealloc_pte = NULL;
4370         }
4371         return ret;
4372 }
4373
4374 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4375                       unsigned long addr, int page_nid, int *flags)
4376 {
4377         get_page(page);
4378
4379         count_vm_numa_event(NUMA_HINT_FAULTS);
4380         if (page_nid == numa_node_id()) {
4381                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4382                 *flags |= TNF_FAULT_LOCAL;
4383         }
4384
4385         return mpol_misplaced(page, vma, addr);
4386 }
4387
4388 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4389 {
4390         struct vm_area_struct *vma = vmf->vma;
4391         struct page *page = NULL;
4392         int page_nid = NUMA_NO_NODE;
4393         int last_cpupid;
4394         int target_nid;
4395         pte_t pte, old_pte;
4396         bool was_writable = pte_savedwrite(vmf->orig_pte);
4397         int flags = 0;
4398
4399         /*
4400          * The "pte" at this point cannot be used safely without
4401          * validation through pte_unmap_same(). It's of NUMA type but
4402          * the pfn may be screwed if the read is non atomic.
4403          */
4404         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4405         spin_lock(vmf->ptl);
4406         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4407                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4408                 goto out;
4409         }
4410
4411         /* Get the normal PTE  */
4412         old_pte = ptep_get(vmf->pte);
4413         pte = pte_modify(old_pte, vma->vm_page_prot);
4414
4415         page = vm_normal_page(vma, vmf->address, pte);
4416         if (!page)
4417                 goto out_map;
4418
4419         /* TODO: handle PTE-mapped THP */
4420         if (PageCompound(page))
4421                 goto out_map;
4422
4423         /*
4424          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4425          * much anyway since they can be in shared cache state. This misses
4426          * the case where a mapping is writable but the process never writes
4427          * to it but pte_write gets cleared during protection updates and
4428          * pte_dirty has unpredictable behaviour between PTE scan updates,
4429          * background writeback, dirty balancing and application behaviour.
4430          */
4431         if (!was_writable)
4432                 flags |= TNF_NO_GROUP;
4433
4434         /*
4435          * Flag if the page is shared between multiple address spaces. This
4436          * is later used when determining whether to group tasks together
4437          */
4438         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4439                 flags |= TNF_SHARED;
4440
4441         last_cpupid = page_cpupid_last(page);
4442         page_nid = page_to_nid(page);
4443         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4444                         &flags);
4445         if (target_nid == NUMA_NO_NODE) {
4446                 put_page(page);
4447                 goto out_map;
4448         }
4449         pte_unmap_unlock(vmf->pte, vmf->ptl);
4450
4451         /* Migrate to the requested node */
4452         if (migrate_misplaced_page(page, vma, target_nid)) {
4453                 page_nid = target_nid;
4454                 flags |= TNF_MIGRATED;
4455         } else {
4456                 flags |= TNF_MIGRATE_FAIL;
4457                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4458                 spin_lock(vmf->ptl);
4459                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4460                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4461                         goto out;
4462                 }
4463                 goto out_map;
4464         }
4465
4466 out:
4467         if (page_nid != NUMA_NO_NODE)
4468                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4469         return 0;
4470 out_map:
4471         /*
4472          * Make it present again, depending on how arch implements
4473          * non-accessible ptes, some can allow access by kernel mode.
4474          */
4475         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4476         pte = pte_modify(old_pte, vma->vm_page_prot);
4477         pte = pte_mkyoung(pte);
4478         if (was_writable)
4479                 pte = pte_mkwrite(pte);
4480         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4481         update_mmu_cache(vma, vmf->address, vmf->pte);
4482         pte_unmap_unlock(vmf->pte, vmf->ptl);
4483         goto out;
4484 }
4485
4486 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4487 {
4488         if (vma_is_anonymous(vmf->vma))
4489                 return do_huge_pmd_anonymous_page(vmf);
4490         if (vmf->vma->vm_ops->huge_fault)
4491                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4492         return VM_FAULT_FALLBACK;
4493 }
4494
4495 /* `inline' is required to avoid gcc 4.1.2 build error */
4496 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4497 {
4498         if (vma_is_anonymous(vmf->vma)) {
4499                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4500                         return handle_userfault(vmf, VM_UFFD_WP);
4501                 return do_huge_pmd_wp_page(vmf);
4502         }
4503         if (vmf->vma->vm_ops->huge_fault) {
4504                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4505
4506                 if (!(ret & VM_FAULT_FALLBACK))
4507                         return ret;
4508         }
4509
4510         /* COW or write-notify handled on pte level: split pmd. */
4511         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4512
4513         return VM_FAULT_FALLBACK;
4514 }
4515
4516 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4517 {
4518 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4519         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4520         /* No support for anonymous transparent PUD pages yet */
4521         if (vma_is_anonymous(vmf->vma))
4522                 goto split;
4523         if (vmf->vma->vm_ops->huge_fault) {
4524                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4525
4526                 if (!(ret & VM_FAULT_FALLBACK))
4527                         return ret;
4528         }
4529 split:
4530         /* COW or write-notify not handled on PUD level: split pud.*/
4531         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4532 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4533         return VM_FAULT_FALLBACK;
4534 }
4535
4536 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4537 {
4538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4539         /* No support for anonymous transparent PUD pages yet */
4540         if (vma_is_anonymous(vmf->vma))
4541                 return VM_FAULT_FALLBACK;
4542         if (vmf->vma->vm_ops->huge_fault)
4543                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4544 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4545         return VM_FAULT_FALLBACK;
4546 }
4547
4548 /*
4549  * These routines also need to handle stuff like marking pages dirty
4550  * and/or accessed for architectures that don't do it in hardware (most
4551  * RISC architectures).  The early dirtying is also good on the i386.
4552  *
4553  * There is also a hook called "update_mmu_cache()" that architectures
4554  * with external mmu caches can use to update those (ie the Sparc or
4555  * PowerPC hashed page tables that act as extended TLBs).
4556  *
4557  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4558  * concurrent faults).
4559  *
4560  * The mmap_lock may have been released depending on flags and our return value.
4561  * See filemap_fault() and __folio_lock_or_retry().
4562  */
4563 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4564 {
4565         pte_t entry;
4566
4567         if (unlikely(pmd_none(*vmf->pmd))) {
4568                 /*
4569                  * Leave __pte_alloc() until later: because vm_ops->fault may
4570                  * want to allocate huge page, and if we expose page table
4571                  * for an instant, it will be difficult to retract from
4572                  * concurrent faults and from rmap lookups.
4573                  */
4574                 vmf->pte = NULL;
4575         } else {
4576                 /*
4577                  * If a huge pmd materialized under us just retry later.  Use
4578                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4579                  * of pmd_trans_huge() to ensure the pmd didn't become
4580                  * pmd_trans_huge under us and then back to pmd_none, as a
4581                  * result of MADV_DONTNEED running immediately after a huge pmd
4582                  * fault in a different thread of this mm, in turn leading to a
4583                  * misleading pmd_trans_huge() retval. All we have to ensure is
4584                  * that it is a regular pmd that we can walk with
4585                  * pte_offset_map() and we can do that through an atomic read
4586                  * in C, which is what pmd_trans_unstable() provides.
4587                  */
4588                 if (pmd_devmap_trans_unstable(vmf->pmd))
4589                         return 0;
4590                 /*
4591                  * A regular pmd is established and it can't morph into a huge
4592                  * pmd from under us anymore at this point because we hold the
4593                  * mmap_lock read mode and khugepaged takes it in write mode.
4594                  * So now it's safe to run pte_offset_map().
4595                  */
4596                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4597                 vmf->orig_pte = *vmf->pte;
4598
4599                 /*
4600                  * some architectures can have larger ptes than wordsize,
4601                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4602                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4603                  * accesses.  The code below just needs a consistent view
4604                  * for the ifs and we later double check anyway with the
4605                  * ptl lock held. So here a barrier will do.
4606                  */
4607                 barrier();
4608                 if (pte_none(vmf->orig_pte)) {
4609                         pte_unmap(vmf->pte);
4610                         vmf->pte = NULL;
4611                 }
4612         }
4613
4614         if (!vmf->pte) {
4615                 if (vma_is_anonymous(vmf->vma))
4616                         return do_anonymous_page(vmf);
4617                 else
4618                         return do_fault(vmf);
4619         }
4620
4621         if (!pte_present(vmf->orig_pte))
4622                 return do_swap_page(vmf);
4623
4624         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4625                 return do_numa_page(vmf);
4626
4627         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4628         spin_lock(vmf->ptl);
4629         entry = vmf->orig_pte;
4630         if (unlikely(!pte_same(*vmf->pte, entry))) {
4631                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4632                 goto unlock;
4633         }
4634         if (vmf->flags & FAULT_FLAG_WRITE) {
4635                 if (!pte_write(entry))
4636                         return do_wp_page(vmf);
4637                 entry = pte_mkdirty(entry);
4638         }
4639         entry = pte_mkyoung(entry);
4640         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4641                                 vmf->flags & FAULT_FLAG_WRITE)) {
4642                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4643         } else {
4644                 /* Skip spurious TLB flush for retried page fault */
4645                 if (vmf->flags & FAULT_FLAG_TRIED)
4646                         goto unlock;
4647                 /*
4648                  * This is needed only for protection faults but the arch code
4649                  * is not yet telling us if this is a protection fault or not.
4650                  * This still avoids useless tlb flushes for .text page faults
4651                  * with threads.
4652                  */
4653                 if (vmf->flags & FAULT_FLAG_WRITE)
4654                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4655         }
4656 unlock:
4657         pte_unmap_unlock(vmf->pte, vmf->ptl);
4658         return 0;
4659 }
4660
4661 /*
4662  * By the time we get here, we already hold the mm semaphore
4663  *
4664  * The mmap_lock may have been released depending on flags and our
4665  * return value.  See filemap_fault() and __folio_lock_or_retry().
4666  */
4667 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4668                 unsigned long address, unsigned int flags)
4669 {
4670         struct vm_fault vmf = {
4671                 .vma = vma,
4672                 .address = address & PAGE_MASK,
4673                 .real_address = address,
4674                 .flags = flags,
4675                 .pgoff = linear_page_index(vma, address),
4676                 .gfp_mask = __get_fault_gfp_mask(vma),
4677         };
4678         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4679         struct mm_struct *mm = vma->vm_mm;
4680         pgd_t *pgd;
4681         p4d_t *p4d;
4682         vm_fault_t ret;
4683
4684         pgd = pgd_offset(mm, address);
4685         p4d = p4d_alloc(mm, pgd, address);
4686         if (!p4d)
4687                 return VM_FAULT_OOM;
4688
4689         vmf.pud = pud_alloc(mm, p4d, address);
4690         if (!vmf.pud)
4691                 return VM_FAULT_OOM;
4692 retry_pud:
4693         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4694                 ret = create_huge_pud(&vmf);
4695                 if (!(ret & VM_FAULT_FALLBACK))
4696                         return ret;
4697         } else {
4698                 pud_t orig_pud = *vmf.pud;
4699
4700                 barrier();
4701                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4702
4703                         /* NUMA case for anonymous PUDs would go here */
4704
4705                         if (dirty && !pud_write(orig_pud)) {
4706                                 ret = wp_huge_pud(&vmf, orig_pud);
4707                                 if (!(ret & VM_FAULT_FALLBACK))
4708                                         return ret;
4709                         } else {
4710                                 huge_pud_set_accessed(&vmf, orig_pud);
4711                                 return 0;
4712                         }
4713                 }
4714         }
4715
4716         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4717         if (!vmf.pmd)
4718                 return VM_FAULT_OOM;
4719
4720         /* Huge pud page fault raced with pmd_alloc? */
4721         if (pud_trans_unstable(vmf.pud))
4722                 goto retry_pud;
4723
4724         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4725                 ret = create_huge_pmd(&vmf);
4726                 if (!(ret & VM_FAULT_FALLBACK))
4727                         return ret;
4728         } else {
4729                 vmf.orig_pmd = *vmf.pmd;
4730
4731                 barrier();
4732                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4733                         VM_BUG_ON(thp_migration_supported() &&
4734                                           !is_pmd_migration_entry(vmf.orig_pmd));
4735                         if (is_pmd_migration_entry(vmf.orig_pmd))
4736                                 pmd_migration_entry_wait(mm, vmf.pmd);
4737                         return 0;
4738                 }
4739                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4740                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4741                                 return do_huge_pmd_numa_page(&vmf);
4742
4743                         if (dirty && !pmd_write(vmf.orig_pmd)) {
4744                                 ret = wp_huge_pmd(&vmf);
4745                                 if (!(ret & VM_FAULT_FALLBACK))
4746                                         return ret;
4747                         } else {
4748                                 huge_pmd_set_accessed(&vmf);
4749                                 return 0;
4750                         }
4751                 }
4752         }
4753
4754         return handle_pte_fault(&vmf);
4755 }
4756
4757 /**
4758  * mm_account_fault - Do page fault accounting
4759  *
4760  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4761  *        of perf event counters, but we'll still do the per-task accounting to
4762  *        the task who triggered this page fault.
4763  * @address: the faulted address.
4764  * @flags: the fault flags.
4765  * @ret: the fault retcode.
4766  *
4767  * This will take care of most of the page fault accounting.  Meanwhile, it
4768  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4769  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4770  * still be in per-arch page fault handlers at the entry of page fault.
4771  */
4772 static inline void mm_account_fault(struct pt_regs *regs,
4773                                     unsigned long address, unsigned int flags,
4774                                     vm_fault_t ret)
4775 {
4776         bool major;
4777
4778         /*
4779          * We don't do accounting for some specific faults:
4780          *
4781          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4782          *   includes arch_vma_access_permitted() failing before reaching here.
4783          *   So this is not a "this many hardware page faults" counter.  We
4784          *   should use the hw profiling for that.
4785          *
4786          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4787          *   once they're completed.
4788          */
4789         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4790                 return;
4791
4792         /*
4793          * We define the fault as a major fault when the final successful fault
4794          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4795          * handle it immediately previously).
4796          */
4797         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4798
4799         if (major)
4800                 current->maj_flt++;
4801         else
4802                 current->min_flt++;
4803
4804         /*
4805          * If the fault is done for GUP, regs will be NULL.  We only do the
4806          * accounting for the per thread fault counters who triggered the
4807          * fault, and we skip the perf event updates.
4808          */
4809         if (!regs)
4810                 return;
4811
4812         if (major)
4813                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4814         else
4815                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4816 }
4817
4818 /*
4819  * By the time we get here, we already hold the mm semaphore
4820  *
4821  * The mmap_lock may have been released depending on flags and our
4822  * return value.  See filemap_fault() and __folio_lock_or_retry().
4823  */
4824 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4825                            unsigned int flags, struct pt_regs *regs)
4826 {
4827         vm_fault_t ret;
4828
4829         __set_current_state(TASK_RUNNING);
4830
4831         count_vm_event(PGFAULT);
4832         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4833
4834         /* do counter updates before entering really critical section. */
4835         check_sync_rss_stat(current);
4836
4837         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4838                                             flags & FAULT_FLAG_INSTRUCTION,
4839                                             flags & FAULT_FLAG_REMOTE))
4840                 return VM_FAULT_SIGSEGV;
4841
4842         /*
4843          * Enable the memcg OOM handling for faults triggered in user
4844          * space.  Kernel faults are handled more gracefully.
4845          */
4846         if (flags & FAULT_FLAG_USER)
4847                 mem_cgroup_enter_user_fault();
4848
4849         if (unlikely(is_vm_hugetlb_page(vma)))
4850                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4851         else
4852                 ret = __handle_mm_fault(vma, address, flags);
4853
4854         if (flags & FAULT_FLAG_USER) {
4855                 mem_cgroup_exit_user_fault();
4856                 /*
4857                  * The task may have entered a memcg OOM situation but
4858                  * if the allocation error was handled gracefully (no
4859                  * VM_FAULT_OOM), there is no need to kill anything.
4860                  * Just clean up the OOM state peacefully.
4861                  */
4862                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4863                         mem_cgroup_oom_synchronize(false);
4864         }
4865
4866         mm_account_fault(regs, address, flags, ret);
4867
4868         return ret;
4869 }
4870 EXPORT_SYMBOL_GPL(handle_mm_fault);
4871
4872 #ifndef __PAGETABLE_P4D_FOLDED
4873 /*
4874  * Allocate p4d page table.
4875  * We've already handled the fast-path in-line.
4876  */
4877 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4878 {
4879         p4d_t *new = p4d_alloc_one(mm, address);
4880         if (!new)
4881                 return -ENOMEM;
4882
4883         spin_lock(&mm->page_table_lock);
4884         if (pgd_present(*pgd)) {        /* Another has populated it */
4885                 p4d_free(mm, new);
4886         } else {
4887                 smp_wmb(); /* See comment in pmd_install() */
4888                 pgd_populate(mm, pgd, new);
4889         }
4890         spin_unlock(&mm->page_table_lock);
4891         return 0;
4892 }
4893 #endif /* __PAGETABLE_P4D_FOLDED */
4894
4895 #ifndef __PAGETABLE_PUD_FOLDED
4896 /*
4897  * Allocate page upper directory.
4898  * We've already handled the fast-path in-line.
4899  */
4900 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4901 {
4902         pud_t *new = pud_alloc_one(mm, address);
4903         if (!new)
4904                 return -ENOMEM;
4905
4906         spin_lock(&mm->page_table_lock);
4907         if (!p4d_present(*p4d)) {
4908                 mm_inc_nr_puds(mm);
4909                 smp_wmb(); /* See comment in pmd_install() */
4910                 p4d_populate(mm, p4d, new);
4911         } else  /* Another has populated it */
4912                 pud_free(mm, new);
4913         spin_unlock(&mm->page_table_lock);
4914         return 0;
4915 }
4916 #endif /* __PAGETABLE_PUD_FOLDED */
4917
4918 #ifndef __PAGETABLE_PMD_FOLDED
4919 /*
4920  * Allocate page middle directory.
4921  * We've already handled the fast-path in-line.
4922  */
4923 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4924 {
4925         spinlock_t *ptl;
4926         pmd_t *new = pmd_alloc_one(mm, address);
4927         if (!new)
4928                 return -ENOMEM;
4929
4930         ptl = pud_lock(mm, pud);
4931         if (!pud_present(*pud)) {
4932                 mm_inc_nr_pmds(mm);
4933                 smp_wmb(); /* See comment in pmd_install() */
4934                 pud_populate(mm, pud, new);
4935         } else {        /* Another has populated it */
4936                 pmd_free(mm, new);
4937         }
4938         spin_unlock(ptl);
4939         return 0;
4940 }
4941 #endif /* __PAGETABLE_PMD_FOLDED */
4942
4943 /**
4944  * follow_pte - look up PTE at a user virtual address
4945  * @mm: the mm_struct of the target address space
4946  * @address: user virtual address
4947  * @ptepp: location to store found PTE
4948  * @ptlp: location to store the lock for the PTE
4949  *
4950  * On a successful return, the pointer to the PTE is stored in @ptepp;
4951  * the corresponding lock is taken and its location is stored in @ptlp.
4952  * The contents of the PTE are only stable until @ptlp is released;
4953  * any further use, if any, must be protected against invalidation
4954  * with MMU notifiers.
4955  *
4956  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4957  * should be taken for read.
4958  *
4959  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4960  * it is not a good general-purpose API.
4961  *
4962  * Return: zero on success, -ve otherwise.
4963  */
4964 int follow_pte(struct mm_struct *mm, unsigned long address,
4965                pte_t **ptepp, spinlock_t **ptlp)
4966 {
4967         pgd_t *pgd;
4968         p4d_t *p4d;
4969         pud_t *pud;
4970         pmd_t *pmd;
4971         pte_t *ptep;
4972
4973         pgd = pgd_offset(mm, address);
4974         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4975                 goto out;
4976
4977         p4d = p4d_offset(pgd, address);
4978         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4979                 goto out;
4980
4981         pud = pud_offset(p4d, address);
4982         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4983                 goto out;
4984
4985         pmd = pmd_offset(pud, address);
4986         VM_BUG_ON(pmd_trans_huge(*pmd));
4987
4988         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4989                 goto out;
4990
4991         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4992         if (!pte_present(*ptep))
4993                 goto unlock;
4994         *ptepp = ptep;
4995         return 0;
4996 unlock:
4997         pte_unmap_unlock(ptep, *ptlp);
4998 out:
4999         return -EINVAL;
5000 }
5001 EXPORT_SYMBOL_GPL(follow_pte);
5002
5003 /**
5004  * follow_pfn - look up PFN at a user virtual address
5005  * @vma: memory mapping
5006  * @address: user virtual address
5007  * @pfn: location to store found PFN
5008  *
5009  * Only IO mappings and raw PFN mappings are allowed.
5010  *
5011  * This function does not allow the caller to read the permissions
5012  * of the PTE.  Do not use it.
5013  *
5014  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5015  */
5016 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5017         unsigned long *pfn)
5018 {
5019         int ret = -EINVAL;
5020         spinlock_t *ptl;
5021         pte_t *ptep;
5022
5023         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5024                 return ret;
5025
5026         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5027         if (ret)
5028                 return ret;
5029         *pfn = pte_pfn(*ptep);
5030         pte_unmap_unlock(ptep, ptl);
5031         return 0;
5032 }
5033 EXPORT_SYMBOL(follow_pfn);
5034
5035 #ifdef CONFIG_HAVE_IOREMAP_PROT
5036 int follow_phys(struct vm_area_struct *vma,
5037                 unsigned long address, unsigned int flags,
5038                 unsigned long *prot, resource_size_t *phys)
5039 {
5040         int ret = -EINVAL;
5041         pte_t *ptep, pte;
5042         spinlock_t *ptl;
5043
5044         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5045                 goto out;
5046
5047         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5048                 goto out;
5049         pte = *ptep;
5050
5051         if ((flags & FOLL_WRITE) && !pte_write(pte))
5052                 goto unlock;
5053
5054         *prot = pgprot_val(pte_pgprot(pte));
5055         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5056
5057         ret = 0;
5058 unlock:
5059         pte_unmap_unlock(ptep, ptl);
5060 out:
5061         return ret;
5062 }
5063
5064 /**
5065  * generic_access_phys - generic implementation for iomem mmap access
5066  * @vma: the vma to access
5067  * @addr: userspace address, not relative offset within @vma
5068  * @buf: buffer to read/write
5069  * @len: length of transfer
5070  * @write: set to FOLL_WRITE when writing, otherwise reading
5071  *
5072  * This is a generic implementation for &vm_operations_struct.access for an
5073  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5074  * not page based.
5075  */
5076 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5077                         void *buf, int len, int write)
5078 {
5079         resource_size_t phys_addr;
5080         unsigned long prot = 0;
5081         void __iomem *maddr;
5082         pte_t *ptep, pte;
5083         spinlock_t *ptl;
5084         int offset = offset_in_page(addr);
5085         int ret = -EINVAL;
5086
5087         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5088                 return -EINVAL;
5089
5090 retry:
5091         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5092                 return -EINVAL;
5093         pte = *ptep;
5094         pte_unmap_unlock(ptep, ptl);
5095
5096         prot = pgprot_val(pte_pgprot(pte));
5097         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5098
5099         if ((write & FOLL_WRITE) && !pte_write(pte))
5100                 return -EINVAL;
5101
5102         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5103         if (!maddr)
5104                 return -ENOMEM;
5105
5106         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5107                 goto out_unmap;
5108
5109         if (!pte_same(pte, *ptep)) {
5110                 pte_unmap_unlock(ptep, ptl);
5111                 iounmap(maddr);
5112
5113                 goto retry;
5114         }
5115
5116         if (write)
5117                 memcpy_toio(maddr + offset, buf, len);
5118         else
5119                 memcpy_fromio(buf, maddr + offset, len);
5120         ret = len;
5121         pte_unmap_unlock(ptep, ptl);
5122 out_unmap:
5123         iounmap(maddr);
5124
5125         return ret;
5126 }
5127 EXPORT_SYMBOL_GPL(generic_access_phys);
5128 #endif
5129
5130 /*
5131  * Access another process' address space as given in mm.
5132  */
5133 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5134                        int len, unsigned int gup_flags)
5135 {
5136         struct vm_area_struct *vma;
5137         void *old_buf = buf;
5138         int write = gup_flags & FOLL_WRITE;
5139
5140         if (mmap_read_lock_killable(mm))
5141                 return 0;
5142
5143         /* ignore errors, just check how much was successfully transferred */
5144         while (len) {
5145                 int bytes, ret, offset;
5146                 void *maddr;
5147                 struct page *page = NULL;
5148
5149                 ret = get_user_pages_remote(mm, addr, 1,
5150                                 gup_flags, &page, &vma, NULL);
5151                 if (ret <= 0) {
5152 #ifndef CONFIG_HAVE_IOREMAP_PROT
5153                         break;
5154 #else
5155                         /*
5156                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5157                          * we can access using slightly different code.
5158                          */
5159                         vma = vma_lookup(mm, addr);
5160                         if (!vma)
5161                                 break;
5162                         if (vma->vm_ops && vma->vm_ops->access)
5163                                 ret = vma->vm_ops->access(vma, addr, buf,
5164                                                           len, write);
5165                         if (ret <= 0)
5166                                 break;
5167                         bytes = ret;
5168 #endif
5169                 } else {
5170                         bytes = len;
5171                         offset = addr & (PAGE_SIZE-1);
5172                         if (bytes > PAGE_SIZE-offset)
5173                                 bytes = PAGE_SIZE-offset;
5174
5175                         maddr = kmap(page);
5176                         if (write) {
5177                                 copy_to_user_page(vma, page, addr,
5178                                                   maddr + offset, buf, bytes);
5179                                 set_page_dirty_lock(page);
5180                         } else {
5181                                 copy_from_user_page(vma, page, addr,
5182                                                     buf, maddr + offset, bytes);
5183                         }
5184                         kunmap(page);
5185                         put_page(page);
5186                 }
5187                 len -= bytes;
5188                 buf += bytes;
5189                 addr += bytes;
5190         }
5191         mmap_read_unlock(mm);
5192
5193         return buf - old_buf;
5194 }
5195
5196 /**
5197  * access_remote_vm - access another process' address space
5198  * @mm:         the mm_struct of the target address space
5199  * @addr:       start address to access
5200  * @buf:        source or destination buffer
5201  * @len:        number of bytes to transfer
5202  * @gup_flags:  flags modifying lookup behaviour
5203  *
5204  * The caller must hold a reference on @mm.
5205  *
5206  * Return: number of bytes copied from source to destination.
5207  */
5208 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5209                 void *buf, int len, unsigned int gup_flags)
5210 {
5211         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5212 }
5213
5214 /*
5215  * Access another process' address space.
5216  * Source/target buffer must be kernel space,
5217  * Do not walk the page table directly, use get_user_pages
5218  */
5219 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5220                 void *buf, int len, unsigned int gup_flags)
5221 {
5222         struct mm_struct *mm;
5223         int ret;
5224
5225         mm = get_task_mm(tsk);
5226         if (!mm)
5227                 return 0;
5228
5229         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5230
5231         mmput(mm);
5232
5233         return ret;
5234 }
5235 EXPORT_SYMBOL_GPL(access_process_vm);
5236
5237 /*
5238  * Print the name of a VMA.
5239  */
5240 void print_vma_addr(char *prefix, unsigned long ip)
5241 {
5242         struct mm_struct *mm = current->mm;
5243         struct vm_area_struct *vma;
5244
5245         /*
5246          * we might be running from an atomic context so we cannot sleep
5247          */
5248         if (!mmap_read_trylock(mm))
5249                 return;
5250
5251         vma = find_vma(mm, ip);
5252         if (vma && vma->vm_file) {
5253                 struct file *f = vma->vm_file;
5254                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5255                 if (buf) {
5256                         char *p;
5257
5258                         p = file_path(f, buf, PAGE_SIZE);
5259                         if (IS_ERR(p))
5260                                 p = "?";
5261                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5262                                         vma->vm_start,
5263                                         vma->vm_end - vma->vm_start);
5264                         free_page((unsigned long)buf);
5265                 }
5266         }
5267         mmap_read_unlock(mm);
5268 }
5269
5270 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5271 void __might_fault(const char *file, int line)
5272 {
5273         if (pagefault_disabled())
5274                 return;
5275         __might_sleep(file, line);
5276 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5277         if (current->mm)
5278                 might_lock_read(&current->mm->mmap_lock);
5279 #endif
5280 }
5281 EXPORT_SYMBOL(__might_fault);
5282 #endif
5283
5284 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5285 /*
5286  * Process all subpages of the specified huge page with the specified
5287  * operation.  The target subpage will be processed last to keep its
5288  * cache lines hot.
5289  */
5290 static inline void process_huge_page(
5291         unsigned long addr_hint, unsigned int pages_per_huge_page,
5292         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5293         void *arg)
5294 {
5295         int i, n, base, l;
5296         unsigned long addr = addr_hint &
5297                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5298
5299         /* Process target subpage last to keep its cache lines hot */
5300         might_sleep();
5301         n = (addr_hint - addr) / PAGE_SIZE;
5302         if (2 * n <= pages_per_huge_page) {
5303                 /* If target subpage in first half of huge page */
5304                 base = 0;
5305                 l = n;
5306                 /* Process subpages at the end of huge page */
5307                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5308                         cond_resched();
5309                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5310                 }
5311         } else {
5312                 /* If target subpage in second half of huge page */
5313                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5314                 l = pages_per_huge_page - n;
5315                 /* Process subpages at the begin of huge page */
5316                 for (i = 0; i < base; i++) {
5317                         cond_resched();
5318                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5319                 }
5320         }
5321         /*
5322          * Process remaining subpages in left-right-left-right pattern
5323          * towards the target subpage
5324          */
5325         for (i = 0; i < l; i++) {
5326                 int left_idx = base + i;
5327                 int right_idx = base + 2 * l - 1 - i;
5328
5329                 cond_resched();
5330                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5331                 cond_resched();
5332                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5333         }
5334 }
5335
5336 static void clear_gigantic_page(struct page *page,
5337                                 unsigned long addr,
5338                                 unsigned int pages_per_huge_page)
5339 {
5340         int i;
5341         struct page *p = page;
5342
5343         might_sleep();
5344         for (i = 0; i < pages_per_huge_page;
5345              i++, p = mem_map_next(p, page, i)) {
5346                 cond_resched();
5347                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5348         }
5349 }
5350
5351 static void clear_subpage(unsigned long addr, int idx, void *arg)
5352 {
5353         struct page *page = arg;
5354
5355         clear_user_highpage(page + idx, addr);
5356 }
5357
5358 void clear_huge_page(struct page *page,
5359                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5360 {
5361         unsigned long addr = addr_hint &
5362                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5363
5364         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5365                 clear_gigantic_page(page, addr, pages_per_huge_page);
5366                 return;
5367         }
5368
5369         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5370 }
5371
5372 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5373                                     unsigned long addr,
5374                                     struct vm_area_struct *vma,
5375                                     unsigned int pages_per_huge_page)
5376 {
5377         int i;
5378         struct page *dst_base = dst;
5379         struct page *src_base = src;
5380
5381         for (i = 0; i < pages_per_huge_page; ) {
5382                 cond_resched();
5383                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5384
5385                 i++;
5386                 dst = mem_map_next(dst, dst_base, i);
5387                 src = mem_map_next(src, src_base, i);
5388         }
5389 }
5390
5391 struct copy_subpage_arg {
5392         struct page *dst;
5393         struct page *src;
5394         struct vm_area_struct *vma;
5395 };
5396
5397 static void copy_subpage(unsigned long addr, int idx, void *arg)
5398 {
5399         struct copy_subpage_arg *copy_arg = arg;
5400
5401         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5402                            addr, copy_arg->vma);
5403 }
5404
5405 void copy_user_huge_page(struct page *dst, struct page *src,
5406                          unsigned long addr_hint, struct vm_area_struct *vma,
5407                          unsigned int pages_per_huge_page)
5408 {
5409         unsigned long addr = addr_hint &
5410                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5411         struct copy_subpage_arg arg = {
5412                 .dst = dst,
5413                 .src = src,
5414                 .vma = vma,
5415         };
5416
5417         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5418                 copy_user_gigantic_page(dst, src, addr, vma,
5419                                         pages_per_huge_page);
5420                 return;
5421         }
5422
5423         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5424 }
5425
5426 long copy_huge_page_from_user(struct page *dst_page,
5427                                 const void __user *usr_src,
5428                                 unsigned int pages_per_huge_page,
5429                                 bool allow_pagefault)
5430 {
5431         void *page_kaddr;
5432         unsigned long i, rc = 0;
5433         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5434         struct page *subpage = dst_page;
5435
5436         for (i = 0; i < pages_per_huge_page;
5437              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5438                 if (allow_pagefault)
5439                         page_kaddr = kmap(subpage);
5440                 else
5441                         page_kaddr = kmap_atomic(subpage);
5442                 rc = copy_from_user(page_kaddr,
5443                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5444                 if (allow_pagefault)
5445                         kunmap(subpage);
5446                 else
5447                         kunmap_atomic(page_kaddr);
5448
5449                 ret_val -= (PAGE_SIZE - rc);
5450                 if (rc)
5451                         break;
5452
5453                 flush_dcache_page(subpage);
5454
5455                 cond_resched();
5456         }
5457         return ret_val;
5458 }
5459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5460
5461 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5462
5463 static struct kmem_cache *page_ptl_cachep;
5464
5465 void __init ptlock_cache_init(void)
5466 {
5467         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5468                         SLAB_PANIC, NULL);
5469 }
5470
5471 bool ptlock_alloc(struct page *page)
5472 {
5473         spinlock_t *ptl;
5474
5475         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5476         if (!ptl)
5477                 return false;
5478         page->ptl = ptl;
5479         return true;
5480 }
5481
5482 void ptlock_free(struct page *page)
5483 {
5484         kmem_cache_free(page_ptl_cachep, page->ptl);
5485 }
5486 #endif