mm/gup: remove task_struct pointer for all gup code
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "internal.h"
87
88 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
89 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
90 #endif
91
92 #ifndef CONFIG_NEED_MULTIPLE_NODES
93 /* use the per-pgdat data instead for discontigmem - mbligh */
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100
101 /*
102  * A number of key systems in x86 including ioremap() rely on the assumption
103  * that high_memory defines the upper bound on direct map memory, then end
104  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106  * and ZONE_HIGHMEM.
107  */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110
111 /*
112  * Randomize the address space (stacks, mmaps, brk, etc.).
113  *
114  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115  *   as ancient (libc5 based) binaries can segfault. )
116  */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119                                         1;
120 #else
121                                         2;
122 #endif
123
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127         /*
128          * Those arches which don't have hw access flag feature need to
129          * implement their own helper. By default, "true" means pagefault
130          * will be hit on old pte.
131          */
132         return true;
133 }
134 #endif
135
136 static int __init disable_randmaps(char *s)
137 {
138         randomize_va_space = 0;
139         return 1;
140 }
141 __setup("norandmaps", disable_randmaps);
142
143 unsigned long zero_pfn __read_mostly;
144 EXPORT_SYMBOL(zero_pfn);
145
146 unsigned long highest_memmap_pfn __read_mostly;
147
148 /*
149  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
150  */
151 static int __init init_zero_pfn(void)
152 {
153         zero_pfn = page_to_pfn(ZERO_PAGE(0));
154         return 0;
155 }
156 core_initcall(init_zero_pfn);
157
158 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
159 {
160         trace_rss_stat(mm, member, count);
161 }
162
163 #if defined(SPLIT_RSS_COUNTING)
164
165 void sync_mm_rss(struct mm_struct *mm)
166 {
167         int i;
168
169         for (i = 0; i < NR_MM_COUNTERS; i++) {
170                 if (current->rss_stat.count[i]) {
171                         add_mm_counter(mm, i, current->rss_stat.count[i]);
172                         current->rss_stat.count[i] = 0;
173                 }
174         }
175         current->rss_stat.events = 0;
176 }
177
178 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
179 {
180         struct task_struct *task = current;
181
182         if (likely(task->mm == mm))
183                 task->rss_stat.count[member] += val;
184         else
185                 add_mm_counter(mm, member, val);
186 }
187 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
188 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
189
190 /* sync counter once per 64 page faults */
191 #define TASK_RSS_EVENTS_THRESH  (64)
192 static void check_sync_rss_stat(struct task_struct *task)
193 {
194         if (unlikely(task != current))
195                 return;
196         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
197                 sync_mm_rss(task->mm);
198 }
199 #else /* SPLIT_RSS_COUNTING */
200
201 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
202 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
203
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206 }
207
208 #endif /* SPLIT_RSS_COUNTING */
209
210 /*
211  * Note: this doesn't free the actual pages themselves. That
212  * has been handled earlier when unmapping all the memory regions.
213  */
214 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
215                            unsigned long addr)
216 {
217         pgtable_t token = pmd_pgtable(*pmd);
218         pmd_clear(pmd);
219         pte_free_tlb(tlb, token, addr);
220         mm_dec_nr_ptes(tlb->mm);
221 }
222
223 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
224                                 unsigned long addr, unsigned long end,
225                                 unsigned long floor, unsigned long ceiling)
226 {
227         pmd_t *pmd;
228         unsigned long next;
229         unsigned long start;
230
231         start = addr;
232         pmd = pmd_offset(pud, addr);
233         do {
234                 next = pmd_addr_end(addr, end);
235                 if (pmd_none_or_clear_bad(pmd))
236                         continue;
237                 free_pte_range(tlb, pmd, addr);
238         } while (pmd++, addr = next, addr != end);
239
240         start &= PUD_MASK;
241         if (start < floor)
242                 return;
243         if (ceiling) {
244                 ceiling &= PUD_MASK;
245                 if (!ceiling)
246                         return;
247         }
248         if (end - 1 > ceiling - 1)
249                 return;
250
251         pmd = pmd_offset(pud, start);
252         pud_clear(pud);
253         pmd_free_tlb(tlb, pmd, start);
254         mm_dec_nr_pmds(tlb->mm);
255 }
256
257 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
258                                 unsigned long addr, unsigned long end,
259                                 unsigned long floor, unsigned long ceiling)
260 {
261         pud_t *pud;
262         unsigned long next;
263         unsigned long start;
264
265         start = addr;
266         pud = pud_offset(p4d, addr);
267         do {
268                 next = pud_addr_end(addr, end);
269                 if (pud_none_or_clear_bad(pud))
270                         continue;
271                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
272         } while (pud++, addr = next, addr != end);
273
274         start &= P4D_MASK;
275         if (start < floor)
276                 return;
277         if (ceiling) {
278                 ceiling &= P4D_MASK;
279                 if (!ceiling)
280                         return;
281         }
282         if (end - 1 > ceiling - 1)
283                 return;
284
285         pud = pud_offset(p4d, start);
286         p4d_clear(p4d);
287         pud_free_tlb(tlb, pud, start);
288         mm_dec_nr_puds(tlb->mm);
289 }
290
291 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
292                                 unsigned long addr, unsigned long end,
293                                 unsigned long floor, unsigned long ceiling)
294 {
295         p4d_t *p4d;
296         unsigned long next;
297         unsigned long start;
298
299         start = addr;
300         p4d = p4d_offset(pgd, addr);
301         do {
302                 next = p4d_addr_end(addr, end);
303                 if (p4d_none_or_clear_bad(p4d))
304                         continue;
305                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
306         } while (p4d++, addr = next, addr != end);
307
308         start &= PGDIR_MASK;
309         if (start < floor)
310                 return;
311         if (ceiling) {
312                 ceiling &= PGDIR_MASK;
313                 if (!ceiling)
314                         return;
315         }
316         if (end - 1 > ceiling - 1)
317                 return;
318
319         p4d = p4d_offset(pgd, start);
320         pgd_clear(pgd);
321         p4d_free_tlb(tlb, p4d, start);
322 }
323
324 /*
325  * This function frees user-level page tables of a process.
326  */
327 void free_pgd_range(struct mmu_gather *tlb,
328                         unsigned long addr, unsigned long end,
329                         unsigned long floor, unsigned long ceiling)
330 {
331         pgd_t *pgd;
332         unsigned long next;
333
334         /*
335          * The next few lines have given us lots of grief...
336          *
337          * Why are we testing PMD* at this top level?  Because often
338          * there will be no work to do at all, and we'd prefer not to
339          * go all the way down to the bottom just to discover that.
340          *
341          * Why all these "- 1"s?  Because 0 represents both the bottom
342          * of the address space and the top of it (using -1 for the
343          * top wouldn't help much: the masks would do the wrong thing).
344          * The rule is that addr 0 and floor 0 refer to the bottom of
345          * the address space, but end 0 and ceiling 0 refer to the top
346          * Comparisons need to use "end - 1" and "ceiling - 1" (though
347          * that end 0 case should be mythical).
348          *
349          * Wherever addr is brought up or ceiling brought down, we must
350          * be careful to reject "the opposite 0" before it confuses the
351          * subsequent tests.  But what about where end is brought down
352          * by PMD_SIZE below? no, end can't go down to 0 there.
353          *
354          * Whereas we round start (addr) and ceiling down, by different
355          * masks at different levels, in order to test whether a table
356          * now has no other vmas using it, so can be freed, we don't
357          * bother to round floor or end up - the tests don't need that.
358          */
359
360         addr &= PMD_MASK;
361         if (addr < floor) {
362                 addr += PMD_SIZE;
363                 if (!addr)
364                         return;
365         }
366         if (ceiling) {
367                 ceiling &= PMD_MASK;
368                 if (!ceiling)
369                         return;
370         }
371         if (end - 1 > ceiling - 1)
372                 end -= PMD_SIZE;
373         if (addr > end - 1)
374                 return;
375         /*
376          * We add page table cache pages with PAGE_SIZE,
377          * (see pte_free_tlb()), flush the tlb if we need
378          */
379         tlb_change_page_size(tlb, PAGE_SIZE);
380         pgd = pgd_offset(tlb->mm, addr);
381         do {
382                 next = pgd_addr_end(addr, end);
383                 if (pgd_none_or_clear_bad(pgd))
384                         continue;
385                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
386         } while (pgd++, addr = next, addr != end);
387 }
388
389 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
390                 unsigned long floor, unsigned long ceiling)
391 {
392         while (vma) {
393                 struct vm_area_struct *next = vma->vm_next;
394                 unsigned long addr = vma->vm_start;
395
396                 /*
397                  * Hide vma from rmap and truncate_pagecache before freeing
398                  * pgtables
399                  */
400                 unlink_anon_vmas(vma);
401                 unlink_file_vma(vma);
402
403                 if (is_vm_hugetlb_page(vma)) {
404                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
405                                 floor, next ? next->vm_start : ceiling);
406                 } else {
407                         /*
408                          * Optimization: gather nearby vmas into one call down
409                          */
410                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
411                                && !is_vm_hugetlb_page(next)) {
412                                 vma = next;
413                                 next = vma->vm_next;
414                                 unlink_anon_vmas(vma);
415                                 unlink_file_vma(vma);
416                         }
417                         free_pgd_range(tlb, addr, vma->vm_end,
418                                 floor, next ? next->vm_start : ceiling);
419                 }
420                 vma = next;
421         }
422 }
423
424 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
425 {
426         spinlock_t *ptl;
427         pgtable_t new = pte_alloc_one(mm);
428         if (!new)
429                 return -ENOMEM;
430
431         /*
432          * Ensure all pte setup (eg. pte page lock and page clearing) are
433          * visible before the pte is made visible to other CPUs by being
434          * put into page tables.
435          *
436          * The other side of the story is the pointer chasing in the page
437          * table walking code (when walking the page table without locking;
438          * ie. most of the time). Fortunately, these data accesses consist
439          * of a chain of data-dependent loads, meaning most CPUs (alpha
440          * being the notable exception) will already guarantee loads are
441          * seen in-order. See the alpha page table accessors for the
442          * smp_rmb() barriers in page table walking code.
443          */
444         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445
446         ptl = pmd_lock(mm, pmd);
447         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
448                 mm_inc_nr_ptes(mm);
449                 pmd_populate(mm, pmd, new);
450                 new = NULL;
451         }
452         spin_unlock(ptl);
453         if (new)
454                 pte_free(mm, new);
455         return 0;
456 }
457
458 int __pte_alloc_kernel(pmd_t *pmd)
459 {
460         pte_t *new = pte_alloc_one_kernel(&init_mm);
461         if (!new)
462                 return -ENOMEM;
463
464         smp_wmb(); /* See comment in __pte_alloc */
465
466         spin_lock(&init_mm.page_table_lock);
467         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
468                 pmd_populate_kernel(&init_mm, pmd, new);
469                 new = NULL;
470         }
471         spin_unlock(&init_mm.page_table_lock);
472         if (new)
473                 pte_free_kernel(&init_mm, new);
474         return 0;
475 }
476
477 static inline void init_rss_vec(int *rss)
478 {
479         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
480 }
481
482 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
483 {
484         int i;
485
486         if (current->mm == mm)
487                 sync_mm_rss(mm);
488         for (i = 0; i < NR_MM_COUNTERS; i++)
489                 if (rss[i])
490                         add_mm_counter(mm, i, rss[i]);
491 }
492
493 /*
494  * This function is called to print an error when a bad pte
495  * is found. For example, we might have a PFN-mapped pte in
496  * a region that doesn't allow it.
497  *
498  * The calling function must still handle the error.
499  */
500 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
501                           pte_t pte, struct page *page)
502 {
503         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
504         p4d_t *p4d = p4d_offset(pgd, addr);
505         pud_t *pud = pud_offset(p4d, addr);
506         pmd_t *pmd = pmd_offset(pud, addr);
507         struct address_space *mapping;
508         pgoff_t index;
509         static unsigned long resume;
510         static unsigned long nr_shown;
511         static unsigned long nr_unshown;
512
513         /*
514          * Allow a burst of 60 reports, then keep quiet for that minute;
515          * or allow a steady drip of one report per second.
516          */
517         if (nr_shown == 60) {
518                 if (time_before(jiffies, resume)) {
519                         nr_unshown++;
520                         return;
521                 }
522                 if (nr_unshown) {
523                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
524                                  nr_unshown);
525                         nr_unshown = 0;
526                 }
527                 nr_shown = 0;
528         }
529         if (nr_shown++ == 0)
530                 resume = jiffies + 60 * HZ;
531
532         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
533         index = linear_page_index(vma, addr);
534
535         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
536                  current->comm,
537                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
538         if (page)
539                 dump_page(page, "bad pte");
540         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
541                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
542         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
543                  vma->vm_file,
544                  vma->vm_ops ? vma->vm_ops->fault : NULL,
545                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
546                  mapping ? mapping->a_ops->readpage : NULL);
547         dump_stack();
548         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
549 }
550
551 /*
552  * vm_normal_page -- This function gets the "struct page" associated with a pte.
553  *
554  * "Special" mappings do not wish to be associated with a "struct page" (either
555  * it doesn't exist, or it exists but they don't want to touch it). In this
556  * case, NULL is returned here. "Normal" mappings do have a struct page.
557  *
558  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
559  * pte bit, in which case this function is trivial. Secondly, an architecture
560  * may not have a spare pte bit, which requires a more complicated scheme,
561  * described below.
562  *
563  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
564  * special mapping (even if there are underlying and valid "struct pages").
565  * COWed pages of a VM_PFNMAP are always normal.
566  *
567  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
568  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
569  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
570  * mapping will always honor the rule
571  *
572  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573  *
574  * And for normal mappings this is false.
575  *
576  * This restricts such mappings to be a linear translation from virtual address
577  * to pfn. To get around this restriction, we allow arbitrary mappings so long
578  * as the vma is not a COW mapping; in that case, we know that all ptes are
579  * special (because none can have been COWed).
580  *
581  *
582  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583  *
584  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
585  * page" backing, however the difference is that _all_ pages with a struct
586  * page (that is, those where pfn_valid is true) are refcounted and considered
587  * normal pages by the VM. The disadvantage is that pages are refcounted
588  * (which can be slower and simply not an option for some PFNMAP users). The
589  * advantage is that we don't have to follow the strict linearity rule of
590  * PFNMAP mappings in order to support COWable mappings.
591  *
592  */
593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594                             pte_t pte)
595 {
596         unsigned long pfn = pte_pfn(pte);
597
598         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599                 if (likely(!pte_special(pte)))
600                         goto check_pfn;
601                 if (vma->vm_ops && vma->vm_ops->find_special_page)
602                         return vma->vm_ops->find_special_page(vma, addr);
603                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604                         return NULL;
605                 if (is_zero_pfn(pfn))
606                         return NULL;
607                 if (pte_devmap(pte))
608                         return NULL;
609
610                 print_bad_pte(vma, addr, pte, NULL);
611                 return NULL;
612         }
613
614         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
615
616         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
617                 if (vma->vm_flags & VM_MIXEDMAP) {
618                         if (!pfn_valid(pfn))
619                                 return NULL;
620                         goto out;
621                 } else {
622                         unsigned long off;
623                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
624                         if (pfn == vma->vm_pgoff + off)
625                                 return NULL;
626                         if (!is_cow_mapping(vma->vm_flags))
627                                 return NULL;
628                 }
629         }
630
631         if (is_zero_pfn(pfn))
632                 return NULL;
633
634 check_pfn:
635         if (unlikely(pfn > highest_memmap_pfn)) {
636                 print_bad_pte(vma, addr, pte, NULL);
637                 return NULL;
638         }
639
640         /*
641          * NOTE! We still have PageReserved() pages in the page tables.
642          * eg. VDSO mappings can cause them to exist.
643          */
644 out:
645         return pfn_to_page(pfn);
646 }
647
648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
650                                 pmd_t pmd)
651 {
652         unsigned long pfn = pmd_pfn(pmd);
653
654         /*
655          * There is no pmd_special() but there may be special pmds, e.g.
656          * in a direct-access (dax) mapping, so let's just replicate the
657          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
658          */
659         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
660                 if (vma->vm_flags & VM_MIXEDMAP) {
661                         if (!pfn_valid(pfn))
662                                 return NULL;
663                         goto out;
664                 } else {
665                         unsigned long off;
666                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
667                         if (pfn == vma->vm_pgoff + off)
668                                 return NULL;
669                         if (!is_cow_mapping(vma->vm_flags))
670                                 return NULL;
671                 }
672         }
673
674         if (pmd_devmap(pmd))
675                 return NULL;
676         if (is_huge_zero_pmd(pmd))
677                 return NULL;
678         if (unlikely(pfn > highest_memmap_pfn))
679                 return NULL;
680
681         /*
682          * NOTE! We still have PageReserved() pages in the page tables.
683          * eg. VDSO mappings can cause them to exist.
684          */
685 out:
686         return pfn_to_page(pfn);
687 }
688 #endif
689
690 /*
691  * copy one vm_area from one task to the other. Assumes the page tables
692  * already present in the new task to be cleared in the whole range
693  * covered by this vma.
694  */
695
696 static inline unsigned long
697 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
698                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
699                 unsigned long addr, int *rss)
700 {
701         unsigned long vm_flags = vma->vm_flags;
702         pte_t pte = *src_pte;
703         struct page *page;
704
705         /* pte contains position in swap or file, so copy. */
706         if (unlikely(!pte_present(pte))) {
707                 swp_entry_t entry = pte_to_swp_entry(pte);
708
709                 if (likely(!non_swap_entry(entry))) {
710                         if (swap_duplicate(entry) < 0)
711                                 return entry.val;
712
713                         /* make sure dst_mm is on swapoff's mmlist. */
714                         if (unlikely(list_empty(&dst_mm->mmlist))) {
715                                 spin_lock(&mmlist_lock);
716                                 if (list_empty(&dst_mm->mmlist))
717                                         list_add(&dst_mm->mmlist,
718                                                         &src_mm->mmlist);
719                                 spin_unlock(&mmlist_lock);
720                         }
721                         rss[MM_SWAPENTS]++;
722                 } else if (is_migration_entry(entry)) {
723                         page = migration_entry_to_page(entry);
724
725                         rss[mm_counter(page)]++;
726
727                         if (is_write_migration_entry(entry) &&
728                                         is_cow_mapping(vm_flags)) {
729                                 /*
730                                  * COW mappings require pages in both
731                                  * parent and child to be set to read.
732                                  */
733                                 make_migration_entry_read(&entry);
734                                 pte = swp_entry_to_pte(entry);
735                                 if (pte_swp_soft_dirty(*src_pte))
736                                         pte = pte_swp_mksoft_dirty(pte);
737                                 if (pte_swp_uffd_wp(*src_pte))
738                                         pte = pte_swp_mkuffd_wp(pte);
739                                 set_pte_at(src_mm, addr, src_pte, pte);
740                         }
741                 } else if (is_device_private_entry(entry)) {
742                         page = device_private_entry_to_page(entry);
743
744                         /*
745                          * Update rss count even for unaddressable pages, as
746                          * they should treated just like normal pages in this
747                          * respect.
748                          *
749                          * We will likely want to have some new rss counters
750                          * for unaddressable pages, at some point. But for now
751                          * keep things as they are.
752                          */
753                         get_page(page);
754                         rss[mm_counter(page)]++;
755                         page_dup_rmap(page, false);
756
757                         /*
758                          * We do not preserve soft-dirty information, because so
759                          * far, checkpoint/restore is the only feature that
760                          * requires that. And checkpoint/restore does not work
761                          * when a device driver is involved (you cannot easily
762                          * save and restore device driver state).
763                          */
764                         if (is_write_device_private_entry(entry) &&
765                             is_cow_mapping(vm_flags)) {
766                                 make_device_private_entry_read(&entry);
767                                 pte = swp_entry_to_pte(entry);
768                                 if (pte_swp_uffd_wp(*src_pte))
769                                         pte = pte_swp_mkuffd_wp(pte);
770                                 set_pte_at(src_mm, addr, src_pte, pte);
771                         }
772                 }
773                 goto out_set_pte;
774         }
775
776         /*
777          * If it's a COW mapping, write protect it both
778          * in the parent and the child
779          */
780         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
781                 ptep_set_wrprotect(src_mm, addr, src_pte);
782                 pte = pte_wrprotect(pte);
783         }
784
785         /*
786          * If it's a shared mapping, mark it clean in
787          * the child
788          */
789         if (vm_flags & VM_SHARED)
790                 pte = pte_mkclean(pte);
791         pte = pte_mkold(pte);
792
793         /*
794          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
795          * does not have the VM_UFFD_WP, which means that the uffd
796          * fork event is not enabled.
797          */
798         if (!(vm_flags & VM_UFFD_WP))
799                 pte = pte_clear_uffd_wp(pte);
800
801         page = vm_normal_page(vma, addr, pte);
802         if (page) {
803                 get_page(page);
804                 page_dup_rmap(page, false);
805                 rss[mm_counter(page)]++;
806         }
807
808 out_set_pte:
809         set_pte_at(dst_mm, addr, dst_pte, pte);
810         return 0;
811 }
812
813 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
814                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
815                    unsigned long addr, unsigned long end)
816 {
817         pte_t *orig_src_pte, *orig_dst_pte;
818         pte_t *src_pte, *dst_pte;
819         spinlock_t *src_ptl, *dst_ptl;
820         int progress = 0;
821         int rss[NR_MM_COUNTERS];
822         swp_entry_t entry = (swp_entry_t){0};
823
824 again:
825         init_rss_vec(rss);
826
827         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
828         if (!dst_pte)
829                 return -ENOMEM;
830         src_pte = pte_offset_map(src_pmd, addr);
831         src_ptl = pte_lockptr(src_mm, src_pmd);
832         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
833         orig_src_pte = src_pte;
834         orig_dst_pte = dst_pte;
835         arch_enter_lazy_mmu_mode();
836
837         do {
838                 /*
839                  * We are holding two locks at this point - either of them
840                  * could generate latencies in another task on another CPU.
841                  */
842                 if (progress >= 32) {
843                         progress = 0;
844                         if (need_resched() ||
845                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
846                                 break;
847                 }
848                 if (pte_none(*src_pte)) {
849                         progress++;
850                         continue;
851                 }
852                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
853                                                         vma, addr, rss);
854                 if (entry.val)
855                         break;
856                 progress += 8;
857         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
858
859         arch_leave_lazy_mmu_mode();
860         spin_unlock(src_ptl);
861         pte_unmap(orig_src_pte);
862         add_mm_rss_vec(dst_mm, rss);
863         pte_unmap_unlock(orig_dst_pte, dst_ptl);
864         cond_resched();
865
866         if (entry.val) {
867                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
868                         return -ENOMEM;
869                 progress = 0;
870         }
871         if (addr != end)
872                 goto again;
873         return 0;
874 }
875
876 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
877                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
878                 unsigned long addr, unsigned long end)
879 {
880         pmd_t *src_pmd, *dst_pmd;
881         unsigned long next;
882
883         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
884         if (!dst_pmd)
885                 return -ENOMEM;
886         src_pmd = pmd_offset(src_pud, addr);
887         do {
888                 next = pmd_addr_end(addr, end);
889                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
890                         || pmd_devmap(*src_pmd)) {
891                         int err;
892                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
893                         err = copy_huge_pmd(dst_mm, src_mm,
894                                             dst_pmd, src_pmd, addr, vma);
895                         if (err == -ENOMEM)
896                                 return -ENOMEM;
897                         if (!err)
898                                 continue;
899                         /* fall through */
900                 }
901                 if (pmd_none_or_clear_bad(src_pmd))
902                         continue;
903                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
904                                                 vma, addr, next))
905                         return -ENOMEM;
906         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
907         return 0;
908 }
909
910 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
911                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
912                 unsigned long addr, unsigned long end)
913 {
914         pud_t *src_pud, *dst_pud;
915         unsigned long next;
916
917         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
918         if (!dst_pud)
919                 return -ENOMEM;
920         src_pud = pud_offset(src_p4d, addr);
921         do {
922                 next = pud_addr_end(addr, end);
923                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
924                         int err;
925
926                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
927                         err = copy_huge_pud(dst_mm, src_mm,
928                                             dst_pud, src_pud, addr, vma);
929                         if (err == -ENOMEM)
930                                 return -ENOMEM;
931                         if (!err)
932                                 continue;
933                         /* fall through */
934                 }
935                 if (pud_none_or_clear_bad(src_pud))
936                         continue;
937                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
938                                                 vma, addr, next))
939                         return -ENOMEM;
940         } while (dst_pud++, src_pud++, addr = next, addr != end);
941         return 0;
942 }
943
944 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
946                 unsigned long addr, unsigned long end)
947 {
948         p4d_t *src_p4d, *dst_p4d;
949         unsigned long next;
950
951         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
952         if (!dst_p4d)
953                 return -ENOMEM;
954         src_p4d = p4d_offset(src_pgd, addr);
955         do {
956                 next = p4d_addr_end(addr, end);
957                 if (p4d_none_or_clear_bad(src_p4d))
958                         continue;
959                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
960                                                 vma, addr, next))
961                         return -ENOMEM;
962         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
963         return 0;
964 }
965
966 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
967                 struct vm_area_struct *vma)
968 {
969         pgd_t *src_pgd, *dst_pgd;
970         unsigned long next;
971         unsigned long addr = vma->vm_start;
972         unsigned long end = vma->vm_end;
973         struct mmu_notifier_range range;
974         bool is_cow;
975         int ret;
976
977         /*
978          * Don't copy ptes where a page fault will fill them correctly.
979          * Fork becomes much lighter when there are big shared or private
980          * readonly mappings. The tradeoff is that copy_page_range is more
981          * efficient than faulting.
982          */
983         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
984                         !vma->anon_vma)
985                 return 0;
986
987         if (is_vm_hugetlb_page(vma))
988                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
989
990         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
991                 /*
992                  * We do not free on error cases below as remove_vma
993                  * gets called on error from higher level routine
994                  */
995                 ret = track_pfn_copy(vma);
996                 if (ret)
997                         return ret;
998         }
999
1000         /*
1001          * We need to invalidate the secondary MMU mappings only when
1002          * there could be a permission downgrade on the ptes of the
1003          * parent mm. And a permission downgrade will only happen if
1004          * is_cow_mapping() returns true.
1005          */
1006         is_cow = is_cow_mapping(vma->vm_flags);
1007
1008         if (is_cow) {
1009                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1010                                         0, vma, src_mm, addr, end);
1011                 mmu_notifier_invalidate_range_start(&range);
1012         }
1013
1014         ret = 0;
1015         dst_pgd = pgd_offset(dst_mm, addr);
1016         src_pgd = pgd_offset(src_mm, addr);
1017         do {
1018                 next = pgd_addr_end(addr, end);
1019                 if (pgd_none_or_clear_bad(src_pgd))
1020                         continue;
1021                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1022                                             vma, addr, next))) {
1023                         ret = -ENOMEM;
1024                         break;
1025                 }
1026         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1027
1028         if (is_cow)
1029                 mmu_notifier_invalidate_range_end(&range);
1030         return ret;
1031 }
1032
1033 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1034                                 struct vm_area_struct *vma, pmd_t *pmd,
1035                                 unsigned long addr, unsigned long end,
1036                                 struct zap_details *details)
1037 {
1038         struct mm_struct *mm = tlb->mm;
1039         int force_flush = 0;
1040         int rss[NR_MM_COUNTERS];
1041         spinlock_t *ptl;
1042         pte_t *start_pte;
1043         pte_t *pte;
1044         swp_entry_t entry;
1045
1046         tlb_change_page_size(tlb, PAGE_SIZE);
1047 again:
1048         init_rss_vec(rss);
1049         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1050         pte = start_pte;
1051         flush_tlb_batched_pending(mm);
1052         arch_enter_lazy_mmu_mode();
1053         do {
1054                 pte_t ptent = *pte;
1055                 if (pte_none(ptent))
1056                         continue;
1057
1058                 if (need_resched())
1059                         break;
1060
1061                 if (pte_present(ptent)) {
1062                         struct page *page;
1063
1064                         page = vm_normal_page(vma, addr, ptent);
1065                         if (unlikely(details) && page) {
1066                                 /*
1067                                  * unmap_shared_mapping_pages() wants to
1068                                  * invalidate cache without truncating:
1069                                  * unmap shared but keep private pages.
1070                                  */
1071                                 if (details->check_mapping &&
1072                                     details->check_mapping != page_rmapping(page))
1073                                         continue;
1074                         }
1075                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1076                                                         tlb->fullmm);
1077                         tlb_remove_tlb_entry(tlb, pte, addr);
1078                         if (unlikely(!page))
1079                                 continue;
1080
1081                         if (!PageAnon(page)) {
1082                                 if (pte_dirty(ptent)) {
1083                                         force_flush = 1;
1084                                         set_page_dirty(page);
1085                                 }
1086                                 if (pte_young(ptent) &&
1087                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1088                                         mark_page_accessed(page);
1089                         }
1090                         rss[mm_counter(page)]--;
1091                         page_remove_rmap(page, false);
1092                         if (unlikely(page_mapcount(page) < 0))
1093                                 print_bad_pte(vma, addr, ptent, page);
1094                         if (unlikely(__tlb_remove_page(tlb, page))) {
1095                                 force_flush = 1;
1096                                 addr += PAGE_SIZE;
1097                                 break;
1098                         }
1099                         continue;
1100                 }
1101
1102                 entry = pte_to_swp_entry(ptent);
1103                 if (is_device_private_entry(entry)) {
1104                         struct page *page = device_private_entry_to_page(entry);
1105
1106                         if (unlikely(details && details->check_mapping)) {
1107                                 /*
1108                                  * unmap_shared_mapping_pages() wants to
1109                                  * invalidate cache without truncating:
1110                                  * unmap shared but keep private pages.
1111                                  */
1112                                 if (details->check_mapping !=
1113                                     page_rmapping(page))
1114                                         continue;
1115                         }
1116
1117                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118                         rss[mm_counter(page)]--;
1119                         page_remove_rmap(page, false);
1120                         put_page(page);
1121                         continue;
1122                 }
1123
1124                 /* If details->check_mapping, we leave swap entries. */
1125                 if (unlikely(details))
1126                         continue;
1127
1128                 if (!non_swap_entry(entry))
1129                         rss[MM_SWAPENTS]--;
1130                 else if (is_migration_entry(entry)) {
1131                         struct page *page;
1132
1133                         page = migration_entry_to_page(entry);
1134                         rss[mm_counter(page)]--;
1135                 }
1136                 if (unlikely(!free_swap_and_cache(entry)))
1137                         print_bad_pte(vma, addr, ptent, NULL);
1138                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1139         } while (pte++, addr += PAGE_SIZE, addr != end);
1140
1141         add_mm_rss_vec(mm, rss);
1142         arch_leave_lazy_mmu_mode();
1143
1144         /* Do the actual TLB flush before dropping ptl */
1145         if (force_flush)
1146                 tlb_flush_mmu_tlbonly(tlb);
1147         pte_unmap_unlock(start_pte, ptl);
1148
1149         /*
1150          * If we forced a TLB flush (either due to running out of
1151          * batch buffers or because we needed to flush dirty TLB
1152          * entries before releasing the ptl), free the batched
1153          * memory too. Restart if we didn't do everything.
1154          */
1155         if (force_flush) {
1156                 force_flush = 0;
1157                 tlb_flush_mmu(tlb);
1158         }
1159
1160         if (addr != end) {
1161                 cond_resched();
1162                 goto again;
1163         }
1164
1165         return addr;
1166 }
1167
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169                                 struct vm_area_struct *vma, pud_t *pud,
1170                                 unsigned long addr, unsigned long end,
1171                                 struct zap_details *details)
1172 {
1173         pmd_t *pmd;
1174         unsigned long next;
1175
1176         pmd = pmd_offset(pud, addr);
1177         do {
1178                 next = pmd_addr_end(addr, end);
1179                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180                         if (next - addr != HPAGE_PMD_SIZE)
1181                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1182                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1183                                 goto next;
1184                         /* fall through */
1185                 }
1186                 /*
1187                  * Here there can be other concurrent MADV_DONTNEED or
1188                  * trans huge page faults running, and if the pmd is
1189                  * none or trans huge it can change under us. This is
1190                  * because MADV_DONTNEED holds the mmap_lock in read
1191                  * mode.
1192                  */
1193                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194                         goto next;
1195                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1196 next:
1197                 cond_resched();
1198         } while (pmd++, addr = next, addr != end);
1199
1200         return addr;
1201 }
1202
1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204                                 struct vm_area_struct *vma, p4d_t *p4d,
1205                                 unsigned long addr, unsigned long end,
1206                                 struct zap_details *details)
1207 {
1208         pud_t *pud;
1209         unsigned long next;
1210
1211         pud = pud_offset(p4d, addr);
1212         do {
1213                 next = pud_addr_end(addr, end);
1214                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215                         if (next - addr != HPAGE_PUD_SIZE) {
1216                                 mmap_assert_locked(tlb->mm);
1217                                 split_huge_pud(vma, pud, addr);
1218                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1219                                 goto next;
1220                         /* fall through */
1221                 }
1222                 if (pud_none_or_clear_bad(pud))
1223                         continue;
1224                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1225 next:
1226                 cond_resched();
1227         } while (pud++, addr = next, addr != end);
1228
1229         return addr;
1230 }
1231
1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233                                 struct vm_area_struct *vma, pgd_t *pgd,
1234                                 unsigned long addr, unsigned long end,
1235                                 struct zap_details *details)
1236 {
1237         p4d_t *p4d;
1238         unsigned long next;
1239
1240         p4d = p4d_offset(pgd, addr);
1241         do {
1242                 next = p4d_addr_end(addr, end);
1243                 if (p4d_none_or_clear_bad(p4d))
1244                         continue;
1245                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246         } while (p4d++, addr = next, addr != end);
1247
1248         return addr;
1249 }
1250
1251 void unmap_page_range(struct mmu_gather *tlb,
1252                              struct vm_area_struct *vma,
1253                              unsigned long addr, unsigned long end,
1254                              struct zap_details *details)
1255 {
1256         pgd_t *pgd;
1257         unsigned long next;
1258
1259         BUG_ON(addr >= end);
1260         tlb_start_vma(tlb, vma);
1261         pgd = pgd_offset(vma->vm_mm, addr);
1262         do {
1263                 next = pgd_addr_end(addr, end);
1264                 if (pgd_none_or_clear_bad(pgd))
1265                         continue;
1266                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267         } while (pgd++, addr = next, addr != end);
1268         tlb_end_vma(tlb, vma);
1269 }
1270
1271
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273                 struct vm_area_struct *vma, unsigned long start_addr,
1274                 unsigned long end_addr,
1275                 struct zap_details *details)
1276 {
1277         unsigned long start = max(vma->vm_start, start_addr);
1278         unsigned long end;
1279
1280         if (start >= vma->vm_end)
1281                 return;
1282         end = min(vma->vm_end, end_addr);
1283         if (end <= vma->vm_start)
1284                 return;
1285
1286         if (vma->vm_file)
1287                 uprobe_munmap(vma, start, end);
1288
1289         if (unlikely(vma->vm_flags & VM_PFNMAP))
1290                 untrack_pfn(vma, 0, 0);
1291
1292         if (start != end) {
1293                 if (unlikely(is_vm_hugetlb_page(vma))) {
1294                         /*
1295                          * It is undesirable to test vma->vm_file as it
1296                          * should be non-null for valid hugetlb area.
1297                          * However, vm_file will be NULL in the error
1298                          * cleanup path of mmap_region. When
1299                          * hugetlbfs ->mmap method fails,
1300                          * mmap_region() nullifies vma->vm_file
1301                          * before calling this function to clean up.
1302                          * Since no pte has actually been setup, it is
1303                          * safe to do nothing in this case.
1304                          */
1305                         if (vma->vm_file) {
1306                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1307                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1309                         }
1310                 } else
1311                         unmap_page_range(tlb, vma, start, end, details);
1312         }
1313 }
1314
1315 /**
1316  * unmap_vmas - unmap a range of memory covered by a list of vma's
1317  * @tlb: address of the caller's struct mmu_gather
1318  * @vma: the starting vma
1319  * @start_addr: virtual address at which to start unmapping
1320  * @end_addr: virtual address at which to end unmapping
1321  *
1322  * Unmap all pages in the vma list.
1323  *
1324  * Only addresses between `start' and `end' will be unmapped.
1325  *
1326  * The VMA list must be sorted in ascending virtual address order.
1327  *
1328  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329  * range after unmap_vmas() returns.  So the only responsibility here is to
1330  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331  * drops the lock and schedules.
1332  */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334                 struct vm_area_struct *vma, unsigned long start_addr,
1335                 unsigned long end_addr)
1336 {
1337         struct mmu_notifier_range range;
1338
1339         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340                                 start_addr, end_addr);
1341         mmu_notifier_invalidate_range_start(&range);
1342         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344         mmu_notifier_invalidate_range_end(&range);
1345 }
1346
1347 /**
1348  * zap_page_range - remove user pages in a given range
1349  * @vma: vm_area_struct holding the applicable pages
1350  * @start: starting address of pages to zap
1351  * @size: number of bytes to zap
1352  *
1353  * Caller must protect the VMA list
1354  */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356                 unsigned long size)
1357 {
1358         struct mmu_notifier_range range;
1359         struct mmu_gather tlb;
1360
1361         lru_add_drain();
1362         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363                                 start, start + size);
1364         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365         update_hiwater_rss(vma->vm_mm);
1366         mmu_notifier_invalidate_range_start(&range);
1367         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369         mmu_notifier_invalidate_range_end(&range);
1370         tlb_finish_mmu(&tlb, start, range.end);
1371 }
1372
1373 /**
1374  * zap_page_range_single - remove user pages in a given range
1375  * @vma: vm_area_struct holding the applicable pages
1376  * @address: starting address of pages to zap
1377  * @size: number of bytes to zap
1378  * @details: details of shared cache invalidation
1379  *
1380  * The range must fit into one VMA.
1381  */
1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383                 unsigned long size, struct zap_details *details)
1384 {
1385         struct mmu_notifier_range range;
1386         struct mmu_gather tlb;
1387
1388         lru_add_drain();
1389         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390                                 address, address + size);
1391         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392         update_hiwater_rss(vma->vm_mm);
1393         mmu_notifier_invalidate_range_start(&range);
1394         unmap_single_vma(&tlb, vma, address, range.end, details);
1395         mmu_notifier_invalidate_range_end(&range);
1396         tlb_finish_mmu(&tlb, address, range.end);
1397 }
1398
1399 /**
1400  * zap_vma_ptes - remove ptes mapping the vma
1401  * @vma: vm_area_struct holding ptes to be zapped
1402  * @address: starting address of pages to zap
1403  * @size: number of bytes to zap
1404  *
1405  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406  *
1407  * The entire address range must be fully contained within the vma.
1408  *
1409  */
1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411                 unsigned long size)
1412 {
1413         if (address < vma->vm_start || address + size > vma->vm_end ||
1414                         !(vma->vm_flags & VM_PFNMAP))
1415                 return;
1416
1417         zap_page_range_single(vma, address, size, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420
1421 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1422 {
1423         pgd_t *pgd;
1424         p4d_t *p4d;
1425         pud_t *pud;
1426         pmd_t *pmd;
1427
1428         pgd = pgd_offset(mm, addr);
1429         p4d = p4d_alloc(mm, pgd, addr);
1430         if (!p4d)
1431                 return NULL;
1432         pud = pud_alloc(mm, p4d, addr);
1433         if (!pud)
1434                 return NULL;
1435         pmd = pmd_alloc(mm, pud, addr);
1436         if (!pmd)
1437                 return NULL;
1438
1439         VM_BUG_ON(pmd_trans_huge(*pmd));
1440         return pmd;
1441 }
1442
1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1444                         spinlock_t **ptl)
1445 {
1446         pmd_t *pmd = walk_to_pmd(mm, addr);
1447
1448         if (!pmd)
1449                 return NULL;
1450         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1451 }
1452
1453 static int validate_page_before_insert(struct page *page)
1454 {
1455         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1456                 return -EINVAL;
1457         flush_dcache_page(page);
1458         return 0;
1459 }
1460
1461 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1462                         unsigned long addr, struct page *page, pgprot_t prot)
1463 {
1464         if (!pte_none(*pte))
1465                 return -EBUSY;
1466         /* Ok, finally just insert the thing.. */
1467         get_page(page);
1468         inc_mm_counter_fast(mm, mm_counter_file(page));
1469         page_add_file_rmap(page, false);
1470         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471         return 0;
1472 }
1473
1474 /*
1475  * This is the old fallback for page remapping.
1476  *
1477  * For historical reasons, it only allows reserved pages. Only
1478  * old drivers should use this, and they needed to mark their
1479  * pages reserved for the old functions anyway.
1480  */
1481 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1482                         struct page *page, pgprot_t prot)
1483 {
1484         struct mm_struct *mm = vma->vm_mm;
1485         int retval;
1486         pte_t *pte;
1487         spinlock_t *ptl;
1488
1489         retval = validate_page_before_insert(page);
1490         if (retval)
1491                 goto out;
1492         retval = -ENOMEM;
1493         pte = get_locked_pte(mm, addr, &ptl);
1494         if (!pte)
1495                 goto out;
1496         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1497         pte_unmap_unlock(pte, ptl);
1498 out:
1499         return retval;
1500 }
1501
1502 #ifdef pte_index
1503 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1504                         unsigned long addr, struct page *page, pgprot_t prot)
1505 {
1506         int err;
1507
1508         if (!page_count(page))
1509                 return -EINVAL;
1510         err = validate_page_before_insert(page);
1511         if (err)
1512                 return err;
1513         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1514 }
1515
1516 /* insert_pages() amortizes the cost of spinlock operations
1517  * when inserting pages in a loop. Arch *must* define pte_index.
1518  */
1519 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1520                         struct page **pages, unsigned long *num, pgprot_t prot)
1521 {
1522         pmd_t *pmd = NULL;
1523         pte_t *start_pte, *pte;
1524         spinlock_t *pte_lock;
1525         struct mm_struct *const mm = vma->vm_mm;
1526         unsigned long curr_page_idx = 0;
1527         unsigned long remaining_pages_total = *num;
1528         unsigned long pages_to_write_in_pmd;
1529         int ret;
1530 more:
1531         ret = -EFAULT;
1532         pmd = walk_to_pmd(mm, addr);
1533         if (!pmd)
1534                 goto out;
1535
1536         pages_to_write_in_pmd = min_t(unsigned long,
1537                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1538
1539         /* Allocate the PTE if necessary; takes PMD lock once only. */
1540         ret = -ENOMEM;
1541         if (pte_alloc(mm, pmd))
1542                 goto out;
1543
1544         while (pages_to_write_in_pmd) {
1545                 int pte_idx = 0;
1546                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1547
1548                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1549                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1550                         int err = insert_page_in_batch_locked(mm, pte,
1551                                 addr, pages[curr_page_idx], prot);
1552                         if (unlikely(err)) {
1553                                 pte_unmap_unlock(start_pte, pte_lock);
1554                                 ret = err;
1555                                 remaining_pages_total -= pte_idx;
1556                                 goto out;
1557                         }
1558                         addr += PAGE_SIZE;
1559                         ++curr_page_idx;
1560                 }
1561                 pte_unmap_unlock(start_pte, pte_lock);
1562                 pages_to_write_in_pmd -= batch_size;
1563                 remaining_pages_total -= batch_size;
1564         }
1565         if (remaining_pages_total)
1566                 goto more;
1567         ret = 0;
1568 out:
1569         *num = remaining_pages_total;
1570         return ret;
1571 }
1572 #endif  /* ifdef pte_index */
1573
1574 /**
1575  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1576  * @vma: user vma to map to
1577  * @addr: target start user address of these pages
1578  * @pages: source kernel pages
1579  * @num: in: number of pages to map. out: number of pages that were *not*
1580  * mapped. (0 means all pages were successfully mapped).
1581  *
1582  * Preferred over vm_insert_page() when inserting multiple pages.
1583  *
1584  * In case of error, we may have mapped a subset of the provided
1585  * pages. It is the caller's responsibility to account for this case.
1586  *
1587  * The same restrictions apply as in vm_insert_page().
1588  */
1589 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1590                         struct page **pages, unsigned long *num)
1591 {
1592 #ifdef pte_index
1593         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1594
1595         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1596                 return -EFAULT;
1597         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1598                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1599                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1600                 vma->vm_flags |= VM_MIXEDMAP;
1601         }
1602         /* Defer page refcount checking till we're about to map that page. */
1603         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1604 #else
1605         unsigned long idx = 0, pgcount = *num;
1606         int err = -EINVAL;
1607
1608         for (; idx < pgcount; ++idx) {
1609                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1610                 if (err)
1611                         break;
1612         }
1613         *num = pgcount - idx;
1614         return err;
1615 #endif  /* ifdef pte_index */
1616 }
1617 EXPORT_SYMBOL(vm_insert_pages);
1618
1619 /**
1620  * vm_insert_page - insert single page into user vma
1621  * @vma: user vma to map to
1622  * @addr: target user address of this page
1623  * @page: source kernel page
1624  *
1625  * This allows drivers to insert individual pages they've allocated
1626  * into a user vma.
1627  *
1628  * The page has to be a nice clean _individual_ kernel allocation.
1629  * If you allocate a compound page, you need to have marked it as
1630  * such (__GFP_COMP), or manually just split the page up yourself
1631  * (see split_page()).
1632  *
1633  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1634  * took an arbitrary page protection parameter. This doesn't allow
1635  * that. Your vma protection will have to be set up correctly, which
1636  * means that if you want a shared writable mapping, you'd better
1637  * ask for a shared writable mapping!
1638  *
1639  * The page does not need to be reserved.
1640  *
1641  * Usually this function is called from f_op->mmap() handler
1642  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1643  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1644  * function from other places, for example from page-fault handler.
1645  *
1646  * Return: %0 on success, negative error code otherwise.
1647  */
1648 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1649                         struct page *page)
1650 {
1651         if (addr < vma->vm_start || addr >= vma->vm_end)
1652                 return -EFAULT;
1653         if (!page_count(page))
1654                 return -EINVAL;
1655         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1656                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1657                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1658                 vma->vm_flags |= VM_MIXEDMAP;
1659         }
1660         return insert_page(vma, addr, page, vma->vm_page_prot);
1661 }
1662 EXPORT_SYMBOL(vm_insert_page);
1663
1664 /*
1665  * __vm_map_pages - maps range of kernel pages into user vma
1666  * @vma: user vma to map to
1667  * @pages: pointer to array of source kernel pages
1668  * @num: number of pages in page array
1669  * @offset: user's requested vm_pgoff
1670  *
1671  * This allows drivers to map range of kernel pages into a user vma.
1672  *
1673  * Return: 0 on success and error code otherwise.
1674  */
1675 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1676                                 unsigned long num, unsigned long offset)
1677 {
1678         unsigned long count = vma_pages(vma);
1679         unsigned long uaddr = vma->vm_start;
1680         int ret, i;
1681
1682         /* Fail if the user requested offset is beyond the end of the object */
1683         if (offset >= num)
1684                 return -ENXIO;
1685
1686         /* Fail if the user requested size exceeds available object size */
1687         if (count > num - offset)
1688                 return -ENXIO;
1689
1690         for (i = 0; i < count; i++) {
1691                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1692                 if (ret < 0)
1693                         return ret;
1694                 uaddr += PAGE_SIZE;
1695         }
1696
1697         return 0;
1698 }
1699
1700 /**
1701  * vm_map_pages - maps range of kernel pages starts with non zero offset
1702  * @vma: user vma to map to
1703  * @pages: pointer to array of source kernel pages
1704  * @num: number of pages in page array
1705  *
1706  * Maps an object consisting of @num pages, catering for the user's
1707  * requested vm_pgoff
1708  *
1709  * If we fail to insert any page into the vma, the function will return
1710  * immediately leaving any previously inserted pages present.  Callers
1711  * from the mmap handler may immediately return the error as their caller
1712  * will destroy the vma, removing any successfully inserted pages. Other
1713  * callers should make their own arrangements for calling unmap_region().
1714  *
1715  * Context: Process context. Called by mmap handlers.
1716  * Return: 0 on success and error code otherwise.
1717  */
1718 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1719                                 unsigned long num)
1720 {
1721         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1722 }
1723 EXPORT_SYMBOL(vm_map_pages);
1724
1725 /**
1726  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1727  * @vma: user vma to map to
1728  * @pages: pointer to array of source kernel pages
1729  * @num: number of pages in page array
1730  *
1731  * Similar to vm_map_pages(), except that it explicitly sets the offset
1732  * to 0. This function is intended for the drivers that did not consider
1733  * vm_pgoff.
1734  *
1735  * Context: Process context. Called by mmap handlers.
1736  * Return: 0 on success and error code otherwise.
1737  */
1738 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1739                                 unsigned long num)
1740 {
1741         return __vm_map_pages(vma, pages, num, 0);
1742 }
1743 EXPORT_SYMBOL(vm_map_pages_zero);
1744
1745 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1746                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1747 {
1748         struct mm_struct *mm = vma->vm_mm;
1749         pte_t *pte, entry;
1750         spinlock_t *ptl;
1751
1752         pte = get_locked_pte(mm, addr, &ptl);
1753         if (!pte)
1754                 return VM_FAULT_OOM;
1755         if (!pte_none(*pte)) {
1756                 if (mkwrite) {
1757                         /*
1758                          * For read faults on private mappings the PFN passed
1759                          * in may not match the PFN we have mapped if the
1760                          * mapped PFN is a writeable COW page.  In the mkwrite
1761                          * case we are creating a writable PTE for a shared
1762                          * mapping and we expect the PFNs to match. If they
1763                          * don't match, we are likely racing with block
1764                          * allocation and mapping invalidation so just skip the
1765                          * update.
1766                          */
1767                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1768                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1769                                 goto out_unlock;
1770                         }
1771                         entry = pte_mkyoung(*pte);
1772                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1773                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1774                                 update_mmu_cache(vma, addr, pte);
1775                 }
1776                 goto out_unlock;
1777         }
1778
1779         /* Ok, finally just insert the thing.. */
1780         if (pfn_t_devmap(pfn))
1781                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1782         else
1783                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1784
1785         if (mkwrite) {
1786                 entry = pte_mkyoung(entry);
1787                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1788         }
1789
1790         set_pte_at(mm, addr, pte, entry);
1791         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1792
1793 out_unlock:
1794         pte_unmap_unlock(pte, ptl);
1795         return VM_FAULT_NOPAGE;
1796 }
1797
1798 /**
1799  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1800  * @vma: user vma to map to
1801  * @addr: target user address of this page
1802  * @pfn: source kernel pfn
1803  * @pgprot: pgprot flags for the inserted page
1804  *
1805  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1806  * to override pgprot on a per-page basis.
1807  *
1808  * This only makes sense for IO mappings, and it makes no sense for
1809  * COW mappings.  In general, using multiple vmas is preferable;
1810  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1811  * impractical.
1812  *
1813  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1814  * a value of @pgprot different from that of @vma->vm_page_prot.
1815  *
1816  * Context: Process context.  May allocate using %GFP_KERNEL.
1817  * Return: vm_fault_t value.
1818  */
1819 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1820                         unsigned long pfn, pgprot_t pgprot)
1821 {
1822         /*
1823          * Technically, architectures with pte_special can avoid all these
1824          * restrictions (same for remap_pfn_range).  However we would like
1825          * consistency in testing and feature parity among all, so we should
1826          * try to keep these invariants in place for everybody.
1827          */
1828         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1829         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1830                                                 (VM_PFNMAP|VM_MIXEDMAP));
1831         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1832         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1833
1834         if (addr < vma->vm_start || addr >= vma->vm_end)
1835                 return VM_FAULT_SIGBUS;
1836
1837         if (!pfn_modify_allowed(pfn, pgprot))
1838                 return VM_FAULT_SIGBUS;
1839
1840         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1841
1842         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1843                         false);
1844 }
1845 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1846
1847 /**
1848  * vmf_insert_pfn - insert single pfn into user vma
1849  * @vma: user vma to map to
1850  * @addr: target user address of this page
1851  * @pfn: source kernel pfn
1852  *
1853  * Similar to vm_insert_page, this allows drivers to insert individual pages
1854  * they've allocated into a user vma. Same comments apply.
1855  *
1856  * This function should only be called from a vm_ops->fault handler, and
1857  * in that case the handler should return the result of this function.
1858  *
1859  * vma cannot be a COW mapping.
1860  *
1861  * As this is called only for pages that do not currently exist, we
1862  * do not need to flush old virtual caches or the TLB.
1863  *
1864  * Context: Process context.  May allocate using %GFP_KERNEL.
1865  * Return: vm_fault_t value.
1866  */
1867 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1868                         unsigned long pfn)
1869 {
1870         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1871 }
1872 EXPORT_SYMBOL(vmf_insert_pfn);
1873
1874 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1875 {
1876         /* these checks mirror the abort conditions in vm_normal_page */
1877         if (vma->vm_flags & VM_MIXEDMAP)
1878                 return true;
1879         if (pfn_t_devmap(pfn))
1880                 return true;
1881         if (pfn_t_special(pfn))
1882                 return true;
1883         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1884                 return true;
1885         return false;
1886 }
1887
1888 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1889                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1890                 bool mkwrite)
1891 {
1892         int err;
1893
1894         BUG_ON(!vm_mixed_ok(vma, pfn));
1895
1896         if (addr < vma->vm_start || addr >= vma->vm_end)
1897                 return VM_FAULT_SIGBUS;
1898
1899         track_pfn_insert(vma, &pgprot, pfn);
1900
1901         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1902                 return VM_FAULT_SIGBUS;
1903
1904         /*
1905          * If we don't have pte special, then we have to use the pfn_valid()
1906          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1907          * refcount the page if pfn_valid is true (hence insert_page rather
1908          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1909          * without pte special, it would there be refcounted as a normal page.
1910          */
1911         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1912             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1913                 struct page *page;
1914
1915                 /*
1916                  * At this point we are committed to insert_page()
1917                  * regardless of whether the caller specified flags that
1918                  * result in pfn_t_has_page() == false.
1919                  */
1920                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1921                 err = insert_page(vma, addr, page, pgprot);
1922         } else {
1923                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1924         }
1925
1926         if (err == -ENOMEM)
1927                 return VM_FAULT_OOM;
1928         if (err < 0 && err != -EBUSY)
1929                 return VM_FAULT_SIGBUS;
1930
1931         return VM_FAULT_NOPAGE;
1932 }
1933
1934 /**
1935  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1936  * @vma: user vma to map to
1937  * @addr: target user address of this page
1938  * @pfn: source kernel pfn
1939  * @pgprot: pgprot flags for the inserted page
1940  *
1941  * This is exactly like vmf_insert_mixed(), except that it allows drivers
1942  * to override pgprot on a per-page basis.
1943  *
1944  * Typically this function should be used by drivers to set caching- and
1945  * encryption bits different than those of @vma->vm_page_prot, because
1946  * the caching- or encryption mode may not be known at mmap() time.
1947  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1948  * to set caching and encryption bits for those vmas (except for COW pages).
1949  * This is ensured by core vm only modifying these page table entries using
1950  * functions that don't touch caching- or encryption bits, using pte_modify()
1951  * if needed. (See for example mprotect()).
1952  * Also when new page-table entries are created, this is only done using the
1953  * fault() callback, and never using the value of vma->vm_page_prot,
1954  * except for page-table entries that point to anonymous pages as the result
1955  * of COW.
1956  *
1957  * Context: Process context.  May allocate using %GFP_KERNEL.
1958  * Return: vm_fault_t value.
1959  */
1960 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1961                                  pfn_t pfn, pgprot_t pgprot)
1962 {
1963         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1964 }
1965 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1966
1967 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1968                 pfn_t pfn)
1969 {
1970         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1971 }
1972 EXPORT_SYMBOL(vmf_insert_mixed);
1973
1974 /*
1975  *  If the insertion of PTE failed because someone else already added a
1976  *  different entry in the mean time, we treat that as success as we assume
1977  *  the same entry was actually inserted.
1978  */
1979 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1980                 unsigned long addr, pfn_t pfn)
1981 {
1982         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1983 }
1984 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1985
1986 /*
1987  * maps a range of physical memory into the requested pages. the old
1988  * mappings are removed. any references to nonexistent pages results
1989  * in null mappings (currently treated as "copy-on-access")
1990  */
1991 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1992                         unsigned long addr, unsigned long end,
1993                         unsigned long pfn, pgprot_t prot)
1994 {
1995         pte_t *pte;
1996         spinlock_t *ptl;
1997         int err = 0;
1998
1999         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2000         if (!pte)
2001                 return -ENOMEM;
2002         arch_enter_lazy_mmu_mode();
2003         do {
2004                 BUG_ON(!pte_none(*pte));
2005                 if (!pfn_modify_allowed(pfn, prot)) {
2006                         err = -EACCES;
2007                         break;
2008                 }
2009                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2010                 pfn++;
2011         } while (pte++, addr += PAGE_SIZE, addr != end);
2012         arch_leave_lazy_mmu_mode();
2013         pte_unmap_unlock(pte - 1, ptl);
2014         return err;
2015 }
2016
2017 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2018                         unsigned long addr, unsigned long end,
2019                         unsigned long pfn, pgprot_t prot)
2020 {
2021         pmd_t *pmd;
2022         unsigned long next;
2023         int err;
2024
2025         pfn -= addr >> PAGE_SHIFT;
2026         pmd = pmd_alloc(mm, pud, addr);
2027         if (!pmd)
2028                 return -ENOMEM;
2029         VM_BUG_ON(pmd_trans_huge(*pmd));
2030         do {
2031                 next = pmd_addr_end(addr, end);
2032                 err = remap_pte_range(mm, pmd, addr, next,
2033                                 pfn + (addr >> PAGE_SHIFT), prot);
2034                 if (err)
2035                         return err;
2036         } while (pmd++, addr = next, addr != end);
2037         return 0;
2038 }
2039
2040 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2041                         unsigned long addr, unsigned long end,
2042                         unsigned long pfn, pgprot_t prot)
2043 {
2044         pud_t *pud;
2045         unsigned long next;
2046         int err;
2047
2048         pfn -= addr >> PAGE_SHIFT;
2049         pud = pud_alloc(mm, p4d, addr);
2050         if (!pud)
2051                 return -ENOMEM;
2052         do {
2053                 next = pud_addr_end(addr, end);
2054                 err = remap_pmd_range(mm, pud, addr, next,
2055                                 pfn + (addr >> PAGE_SHIFT), prot);
2056                 if (err)
2057                         return err;
2058         } while (pud++, addr = next, addr != end);
2059         return 0;
2060 }
2061
2062 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2063                         unsigned long addr, unsigned long end,
2064                         unsigned long pfn, pgprot_t prot)
2065 {
2066         p4d_t *p4d;
2067         unsigned long next;
2068         int err;
2069
2070         pfn -= addr >> PAGE_SHIFT;
2071         p4d = p4d_alloc(mm, pgd, addr);
2072         if (!p4d)
2073                 return -ENOMEM;
2074         do {
2075                 next = p4d_addr_end(addr, end);
2076                 err = remap_pud_range(mm, p4d, addr, next,
2077                                 pfn + (addr >> PAGE_SHIFT), prot);
2078                 if (err)
2079                         return err;
2080         } while (p4d++, addr = next, addr != end);
2081         return 0;
2082 }
2083
2084 /**
2085  * remap_pfn_range - remap kernel memory to userspace
2086  * @vma: user vma to map to
2087  * @addr: target page aligned user address to start at
2088  * @pfn: page frame number of kernel physical memory address
2089  * @size: size of mapping area
2090  * @prot: page protection flags for this mapping
2091  *
2092  * Note: this is only safe if the mm semaphore is held when called.
2093  *
2094  * Return: %0 on success, negative error code otherwise.
2095  */
2096 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2097                     unsigned long pfn, unsigned long size, pgprot_t prot)
2098 {
2099         pgd_t *pgd;
2100         unsigned long next;
2101         unsigned long end = addr + PAGE_ALIGN(size);
2102         struct mm_struct *mm = vma->vm_mm;
2103         unsigned long remap_pfn = pfn;
2104         int err;
2105
2106         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2107                 return -EINVAL;
2108
2109         /*
2110          * Physically remapped pages are special. Tell the
2111          * rest of the world about it:
2112          *   VM_IO tells people not to look at these pages
2113          *      (accesses can have side effects).
2114          *   VM_PFNMAP tells the core MM that the base pages are just
2115          *      raw PFN mappings, and do not have a "struct page" associated
2116          *      with them.
2117          *   VM_DONTEXPAND
2118          *      Disable vma merging and expanding with mremap().
2119          *   VM_DONTDUMP
2120          *      Omit vma from core dump, even when VM_IO turned off.
2121          *
2122          * There's a horrible special case to handle copy-on-write
2123          * behaviour that some programs depend on. We mark the "original"
2124          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2125          * See vm_normal_page() for details.
2126          */
2127         if (is_cow_mapping(vma->vm_flags)) {
2128                 if (addr != vma->vm_start || end != vma->vm_end)
2129                         return -EINVAL;
2130                 vma->vm_pgoff = pfn;
2131         }
2132
2133         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2134         if (err)
2135                 return -EINVAL;
2136
2137         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2138
2139         BUG_ON(addr >= end);
2140         pfn -= addr >> PAGE_SHIFT;
2141         pgd = pgd_offset(mm, addr);
2142         flush_cache_range(vma, addr, end);
2143         do {
2144                 next = pgd_addr_end(addr, end);
2145                 err = remap_p4d_range(mm, pgd, addr, next,
2146                                 pfn + (addr >> PAGE_SHIFT), prot);
2147                 if (err)
2148                         break;
2149         } while (pgd++, addr = next, addr != end);
2150
2151         if (err)
2152                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2153
2154         return err;
2155 }
2156 EXPORT_SYMBOL(remap_pfn_range);
2157
2158 /**
2159  * vm_iomap_memory - remap memory to userspace
2160  * @vma: user vma to map to
2161  * @start: start of the physical memory to be mapped
2162  * @len: size of area
2163  *
2164  * This is a simplified io_remap_pfn_range() for common driver use. The
2165  * driver just needs to give us the physical memory range to be mapped,
2166  * we'll figure out the rest from the vma information.
2167  *
2168  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2169  * whatever write-combining details or similar.
2170  *
2171  * Return: %0 on success, negative error code otherwise.
2172  */
2173 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2174 {
2175         unsigned long vm_len, pfn, pages;
2176
2177         /* Check that the physical memory area passed in looks valid */
2178         if (start + len < start)
2179                 return -EINVAL;
2180         /*
2181          * You *really* shouldn't map things that aren't page-aligned,
2182          * but we've historically allowed it because IO memory might
2183          * just have smaller alignment.
2184          */
2185         len += start & ~PAGE_MASK;
2186         pfn = start >> PAGE_SHIFT;
2187         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2188         if (pfn + pages < pfn)
2189                 return -EINVAL;
2190
2191         /* We start the mapping 'vm_pgoff' pages into the area */
2192         if (vma->vm_pgoff > pages)
2193                 return -EINVAL;
2194         pfn += vma->vm_pgoff;
2195         pages -= vma->vm_pgoff;
2196
2197         /* Can we fit all of the mapping? */
2198         vm_len = vma->vm_end - vma->vm_start;
2199         if (vm_len >> PAGE_SHIFT > pages)
2200                 return -EINVAL;
2201
2202         /* Ok, let it rip */
2203         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2204 }
2205 EXPORT_SYMBOL(vm_iomap_memory);
2206
2207 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2208                                      unsigned long addr, unsigned long end,
2209                                      pte_fn_t fn, void *data, bool create)
2210 {
2211         pte_t *pte;
2212         int err = 0;
2213         spinlock_t *ptl;
2214
2215         if (create) {
2216                 pte = (mm == &init_mm) ?
2217                         pte_alloc_kernel(pmd, addr) :
2218                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2219                 if (!pte)
2220                         return -ENOMEM;
2221         } else {
2222                 pte = (mm == &init_mm) ?
2223                         pte_offset_kernel(pmd, addr) :
2224                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2225         }
2226
2227         BUG_ON(pmd_huge(*pmd));
2228
2229         arch_enter_lazy_mmu_mode();
2230
2231         do {
2232                 if (create || !pte_none(*pte)) {
2233                         err = fn(pte++, addr, data);
2234                         if (err)
2235                                 break;
2236                 }
2237         } while (addr += PAGE_SIZE, addr != end);
2238
2239         arch_leave_lazy_mmu_mode();
2240
2241         if (mm != &init_mm)
2242                 pte_unmap_unlock(pte-1, ptl);
2243         return err;
2244 }
2245
2246 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2247                                      unsigned long addr, unsigned long end,
2248                                      pte_fn_t fn, void *data, bool create)
2249 {
2250         pmd_t *pmd;
2251         unsigned long next;
2252         int err = 0;
2253
2254         BUG_ON(pud_huge(*pud));
2255
2256         if (create) {
2257                 pmd = pmd_alloc(mm, pud, addr);
2258                 if (!pmd)
2259                         return -ENOMEM;
2260         } else {
2261                 pmd = pmd_offset(pud, addr);
2262         }
2263         do {
2264                 next = pmd_addr_end(addr, end);
2265                 if (create || !pmd_none_or_clear_bad(pmd)) {
2266                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2267                                                  create);
2268                         if (err)
2269                                 break;
2270                 }
2271         } while (pmd++, addr = next, addr != end);
2272         return err;
2273 }
2274
2275 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2276                                      unsigned long addr, unsigned long end,
2277                                      pte_fn_t fn, void *data, bool create)
2278 {
2279         pud_t *pud;
2280         unsigned long next;
2281         int err = 0;
2282
2283         if (create) {
2284                 pud = pud_alloc(mm, p4d, addr);
2285                 if (!pud)
2286                         return -ENOMEM;
2287         } else {
2288                 pud = pud_offset(p4d, addr);
2289         }
2290         do {
2291                 next = pud_addr_end(addr, end);
2292                 if (create || !pud_none_or_clear_bad(pud)) {
2293                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2294                                                  create);
2295                         if (err)
2296                                 break;
2297                 }
2298         } while (pud++, addr = next, addr != end);
2299         return err;
2300 }
2301
2302 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2303                                      unsigned long addr, unsigned long end,
2304                                      pte_fn_t fn, void *data, bool create)
2305 {
2306         p4d_t *p4d;
2307         unsigned long next;
2308         int err = 0;
2309
2310         if (create) {
2311                 p4d = p4d_alloc(mm, pgd, addr);
2312                 if (!p4d)
2313                         return -ENOMEM;
2314         } else {
2315                 p4d = p4d_offset(pgd, addr);
2316         }
2317         do {
2318                 next = p4d_addr_end(addr, end);
2319                 if (create || !p4d_none_or_clear_bad(p4d)) {
2320                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2321                                                  create);
2322                         if (err)
2323                                 break;
2324                 }
2325         } while (p4d++, addr = next, addr != end);
2326         return err;
2327 }
2328
2329 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2330                                  unsigned long size, pte_fn_t fn,
2331                                  void *data, bool create)
2332 {
2333         pgd_t *pgd;
2334         unsigned long next;
2335         unsigned long end = addr + size;
2336         int err = 0;
2337
2338         if (WARN_ON(addr >= end))
2339                 return -EINVAL;
2340
2341         pgd = pgd_offset(mm, addr);
2342         do {
2343                 next = pgd_addr_end(addr, end);
2344                 if (!create && pgd_none_or_clear_bad(pgd))
2345                         continue;
2346                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2347                 if (err)
2348                         break;
2349         } while (pgd++, addr = next, addr != end);
2350
2351         return err;
2352 }
2353
2354 /*
2355  * Scan a region of virtual memory, filling in page tables as necessary
2356  * and calling a provided function on each leaf page table.
2357  */
2358 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2359                         unsigned long size, pte_fn_t fn, void *data)
2360 {
2361         return __apply_to_page_range(mm, addr, size, fn, data, true);
2362 }
2363 EXPORT_SYMBOL_GPL(apply_to_page_range);
2364
2365 /*
2366  * Scan a region of virtual memory, calling a provided function on
2367  * each leaf page table where it exists.
2368  *
2369  * Unlike apply_to_page_range, this does _not_ fill in page tables
2370  * where they are absent.
2371  */
2372 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2373                                  unsigned long size, pte_fn_t fn, void *data)
2374 {
2375         return __apply_to_page_range(mm, addr, size, fn, data, false);
2376 }
2377 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2378
2379 /*
2380  * handle_pte_fault chooses page fault handler according to an entry which was
2381  * read non-atomically.  Before making any commitment, on those architectures
2382  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2383  * parts, do_swap_page must check under lock before unmapping the pte and
2384  * proceeding (but do_wp_page is only called after already making such a check;
2385  * and do_anonymous_page can safely check later on).
2386  */
2387 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2388                                 pte_t *page_table, pte_t orig_pte)
2389 {
2390         int same = 1;
2391 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2392         if (sizeof(pte_t) > sizeof(unsigned long)) {
2393                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2394                 spin_lock(ptl);
2395                 same = pte_same(*page_table, orig_pte);
2396                 spin_unlock(ptl);
2397         }
2398 #endif
2399         pte_unmap(page_table);
2400         return same;
2401 }
2402
2403 static inline bool cow_user_page(struct page *dst, struct page *src,
2404                                  struct vm_fault *vmf)
2405 {
2406         bool ret;
2407         void *kaddr;
2408         void __user *uaddr;
2409         bool locked = false;
2410         struct vm_area_struct *vma = vmf->vma;
2411         struct mm_struct *mm = vma->vm_mm;
2412         unsigned long addr = vmf->address;
2413
2414         debug_dma_assert_idle(src);
2415
2416         if (likely(src)) {
2417                 copy_user_highpage(dst, src, addr, vma);
2418                 return true;
2419         }
2420
2421         /*
2422          * If the source page was a PFN mapping, we don't have
2423          * a "struct page" for it. We do a best-effort copy by
2424          * just copying from the original user address. If that
2425          * fails, we just zero-fill it. Live with it.
2426          */
2427         kaddr = kmap_atomic(dst);
2428         uaddr = (void __user *)(addr & PAGE_MASK);
2429
2430         /*
2431          * On architectures with software "accessed" bits, we would
2432          * take a double page fault, so mark it accessed here.
2433          */
2434         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2435                 pte_t entry;
2436
2437                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2438                 locked = true;
2439                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2440                         /*
2441                          * Other thread has already handled the fault
2442                          * and update local tlb only
2443                          */
2444                         update_mmu_tlb(vma, addr, vmf->pte);
2445                         ret = false;
2446                         goto pte_unlock;
2447                 }
2448
2449                 entry = pte_mkyoung(vmf->orig_pte);
2450                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2451                         update_mmu_cache(vma, addr, vmf->pte);
2452         }
2453
2454         /*
2455          * This really shouldn't fail, because the page is there
2456          * in the page tables. But it might just be unreadable,
2457          * in which case we just give up and fill the result with
2458          * zeroes.
2459          */
2460         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2461                 if (locked)
2462                         goto warn;
2463
2464                 /* Re-validate under PTL if the page is still mapped */
2465                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2466                 locked = true;
2467                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2468                         /* The PTE changed under us, update local tlb */
2469                         update_mmu_tlb(vma, addr, vmf->pte);
2470                         ret = false;
2471                         goto pte_unlock;
2472                 }
2473
2474                 /*
2475                  * The same page can be mapped back since last copy attempt.
2476                  * Try to copy again under PTL.
2477                  */
2478                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2479                         /*
2480                          * Give a warn in case there can be some obscure
2481                          * use-case
2482                          */
2483 warn:
2484                         WARN_ON_ONCE(1);
2485                         clear_page(kaddr);
2486                 }
2487         }
2488
2489         ret = true;
2490
2491 pte_unlock:
2492         if (locked)
2493                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2494         kunmap_atomic(kaddr);
2495         flush_dcache_page(dst);
2496
2497         return ret;
2498 }
2499
2500 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2501 {
2502         struct file *vm_file = vma->vm_file;
2503
2504         if (vm_file)
2505                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2506
2507         /*
2508          * Special mappings (e.g. VDSO) do not have any file so fake
2509          * a default GFP_KERNEL for them.
2510          */
2511         return GFP_KERNEL;
2512 }
2513
2514 /*
2515  * Notify the address space that the page is about to become writable so that
2516  * it can prohibit this or wait for the page to get into an appropriate state.
2517  *
2518  * We do this without the lock held, so that it can sleep if it needs to.
2519  */
2520 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2521 {
2522         vm_fault_t ret;
2523         struct page *page = vmf->page;
2524         unsigned int old_flags = vmf->flags;
2525
2526         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2527
2528         if (vmf->vma->vm_file &&
2529             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2530                 return VM_FAULT_SIGBUS;
2531
2532         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2533         /* Restore original flags so that caller is not surprised */
2534         vmf->flags = old_flags;
2535         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2536                 return ret;
2537         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2538                 lock_page(page);
2539                 if (!page->mapping) {
2540                         unlock_page(page);
2541                         return 0; /* retry */
2542                 }
2543                 ret |= VM_FAULT_LOCKED;
2544         } else
2545                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2546         return ret;
2547 }
2548
2549 /*
2550  * Handle dirtying of a page in shared file mapping on a write fault.
2551  *
2552  * The function expects the page to be locked and unlocks it.
2553  */
2554 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2555 {
2556         struct vm_area_struct *vma = vmf->vma;
2557         struct address_space *mapping;
2558         struct page *page = vmf->page;
2559         bool dirtied;
2560         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2561
2562         dirtied = set_page_dirty(page);
2563         VM_BUG_ON_PAGE(PageAnon(page), page);
2564         /*
2565          * Take a local copy of the address_space - page.mapping may be zeroed
2566          * by truncate after unlock_page().   The address_space itself remains
2567          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2568          * release semantics to prevent the compiler from undoing this copying.
2569          */
2570         mapping = page_rmapping(page);
2571         unlock_page(page);
2572
2573         if (!page_mkwrite)
2574                 file_update_time(vma->vm_file);
2575
2576         /*
2577          * Throttle page dirtying rate down to writeback speed.
2578          *
2579          * mapping may be NULL here because some device drivers do not
2580          * set page.mapping but still dirty their pages
2581          *
2582          * Drop the mmap_lock before waiting on IO, if we can. The file
2583          * is pinning the mapping, as per above.
2584          */
2585         if ((dirtied || page_mkwrite) && mapping) {
2586                 struct file *fpin;
2587
2588                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2589                 balance_dirty_pages_ratelimited(mapping);
2590                 if (fpin) {
2591                         fput(fpin);
2592                         return VM_FAULT_RETRY;
2593                 }
2594         }
2595
2596         return 0;
2597 }
2598
2599 /*
2600  * Handle write page faults for pages that can be reused in the current vma
2601  *
2602  * This can happen either due to the mapping being with the VM_SHARED flag,
2603  * or due to us being the last reference standing to the page. In either
2604  * case, all we need to do here is to mark the page as writable and update
2605  * any related book-keeping.
2606  */
2607 static inline void wp_page_reuse(struct vm_fault *vmf)
2608         __releases(vmf->ptl)
2609 {
2610         struct vm_area_struct *vma = vmf->vma;
2611         struct page *page = vmf->page;
2612         pte_t entry;
2613         /*
2614          * Clear the pages cpupid information as the existing
2615          * information potentially belongs to a now completely
2616          * unrelated process.
2617          */
2618         if (page)
2619                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2620
2621         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2622         entry = pte_mkyoung(vmf->orig_pte);
2623         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2624         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2625                 update_mmu_cache(vma, vmf->address, vmf->pte);
2626         pte_unmap_unlock(vmf->pte, vmf->ptl);
2627 }
2628
2629 /*
2630  * Handle the case of a page which we actually need to copy to a new page.
2631  *
2632  * Called with mmap_lock locked and the old page referenced, but
2633  * without the ptl held.
2634  *
2635  * High level logic flow:
2636  *
2637  * - Allocate a page, copy the content of the old page to the new one.
2638  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2639  * - Take the PTL. If the pte changed, bail out and release the allocated page
2640  * - If the pte is still the way we remember it, update the page table and all
2641  *   relevant references. This includes dropping the reference the page-table
2642  *   held to the old page, as well as updating the rmap.
2643  * - In any case, unlock the PTL and drop the reference we took to the old page.
2644  */
2645 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2646 {
2647         struct vm_area_struct *vma = vmf->vma;
2648         struct mm_struct *mm = vma->vm_mm;
2649         struct page *old_page = vmf->page;
2650         struct page *new_page = NULL;
2651         pte_t entry;
2652         int page_copied = 0;
2653         struct mmu_notifier_range range;
2654
2655         if (unlikely(anon_vma_prepare(vma)))
2656                 goto oom;
2657
2658         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2659                 new_page = alloc_zeroed_user_highpage_movable(vma,
2660                                                               vmf->address);
2661                 if (!new_page)
2662                         goto oom;
2663         } else {
2664                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2665                                 vmf->address);
2666                 if (!new_page)
2667                         goto oom;
2668
2669                 if (!cow_user_page(new_page, old_page, vmf)) {
2670                         /*
2671                          * COW failed, if the fault was solved by other,
2672                          * it's fine. If not, userspace would re-fault on
2673                          * the same address and we will handle the fault
2674                          * from the second attempt.
2675                          */
2676                         put_page(new_page);
2677                         if (old_page)
2678                                 put_page(old_page);
2679                         return 0;
2680                 }
2681         }
2682
2683         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2684                 goto oom_free_new;
2685         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2686
2687         __SetPageUptodate(new_page);
2688
2689         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2690                                 vmf->address & PAGE_MASK,
2691                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2692         mmu_notifier_invalidate_range_start(&range);
2693
2694         /*
2695          * Re-check the pte - we dropped the lock
2696          */
2697         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2698         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2699                 if (old_page) {
2700                         if (!PageAnon(old_page)) {
2701                                 dec_mm_counter_fast(mm,
2702                                                 mm_counter_file(old_page));
2703                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2704                         }
2705                 } else {
2706                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2707                 }
2708                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2709                 entry = mk_pte(new_page, vma->vm_page_prot);
2710                 entry = pte_sw_mkyoung(entry);
2711                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2712                 /*
2713                  * Clear the pte entry and flush it first, before updating the
2714                  * pte with the new entry. This will avoid a race condition
2715                  * seen in the presence of one thread doing SMC and another
2716                  * thread doing COW.
2717                  */
2718                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2719                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2720                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2721                 /*
2722                  * We call the notify macro here because, when using secondary
2723                  * mmu page tables (such as kvm shadow page tables), we want the
2724                  * new page to be mapped directly into the secondary page table.
2725                  */
2726                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2727                 update_mmu_cache(vma, vmf->address, vmf->pte);
2728                 if (old_page) {
2729                         /*
2730                          * Only after switching the pte to the new page may
2731                          * we remove the mapcount here. Otherwise another
2732                          * process may come and find the rmap count decremented
2733                          * before the pte is switched to the new page, and
2734                          * "reuse" the old page writing into it while our pte
2735                          * here still points into it and can be read by other
2736                          * threads.
2737                          *
2738                          * The critical issue is to order this
2739                          * page_remove_rmap with the ptp_clear_flush above.
2740                          * Those stores are ordered by (if nothing else,)
2741                          * the barrier present in the atomic_add_negative
2742                          * in page_remove_rmap.
2743                          *
2744                          * Then the TLB flush in ptep_clear_flush ensures that
2745                          * no process can access the old page before the
2746                          * decremented mapcount is visible. And the old page
2747                          * cannot be reused until after the decremented
2748                          * mapcount is visible. So transitively, TLBs to
2749                          * old page will be flushed before it can be reused.
2750                          */
2751                         page_remove_rmap(old_page, false);
2752                 }
2753
2754                 /* Free the old page.. */
2755                 new_page = old_page;
2756                 page_copied = 1;
2757         } else {
2758                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2759         }
2760
2761         if (new_page)
2762                 put_page(new_page);
2763
2764         pte_unmap_unlock(vmf->pte, vmf->ptl);
2765         /*
2766          * No need to double call mmu_notifier->invalidate_range() callback as
2767          * the above ptep_clear_flush_notify() did already call it.
2768          */
2769         mmu_notifier_invalidate_range_only_end(&range);
2770         if (old_page) {
2771                 /*
2772                  * Don't let another task, with possibly unlocked vma,
2773                  * keep the mlocked page.
2774                  */
2775                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2776                         lock_page(old_page);    /* LRU manipulation */
2777                         if (PageMlocked(old_page))
2778                                 munlock_vma_page(old_page);
2779                         unlock_page(old_page);
2780                 }
2781                 put_page(old_page);
2782         }
2783         return page_copied ? VM_FAULT_WRITE : 0;
2784 oom_free_new:
2785         put_page(new_page);
2786 oom:
2787         if (old_page)
2788                 put_page(old_page);
2789         return VM_FAULT_OOM;
2790 }
2791
2792 /**
2793  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2794  *                        writeable once the page is prepared
2795  *
2796  * @vmf: structure describing the fault
2797  *
2798  * This function handles all that is needed to finish a write page fault in a
2799  * shared mapping due to PTE being read-only once the mapped page is prepared.
2800  * It handles locking of PTE and modifying it.
2801  *
2802  * The function expects the page to be locked or other protection against
2803  * concurrent faults / writeback (such as DAX radix tree locks).
2804  *
2805  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2806  * we acquired PTE lock.
2807  */
2808 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2809 {
2810         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2811         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2812                                        &vmf->ptl);
2813         /*
2814          * We might have raced with another page fault while we released the
2815          * pte_offset_map_lock.
2816          */
2817         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2818                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2819                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2820                 return VM_FAULT_NOPAGE;
2821         }
2822         wp_page_reuse(vmf);
2823         return 0;
2824 }
2825
2826 /*
2827  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2828  * mapping
2829  */
2830 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2831 {
2832         struct vm_area_struct *vma = vmf->vma;
2833
2834         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2835                 vm_fault_t ret;
2836
2837                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2838                 vmf->flags |= FAULT_FLAG_MKWRITE;
2839                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2840                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2841                         return ret;
2842                 return finish_mkwrite_fault(vmf);
2843         }
2844         wp_page_reuse(vmf);
2845         return VM_FAULT_WRITE;
2846 }
2847
2848 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2849         __releases(vmf->ptl)
2850 {
2851         struct vm_area_struct *vma = vmf->vma;
2852         vm_fault_t ret = VM_FAULT_WRITE;
2853
2854         get_page(vmf->page);
2855
2856         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2857                 vm_fault_t tmp;
2858
2859                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2860                 tmp = do_page_mkwrite(vmf);
2861                 if (unlikely(!tmp || (tmp &
2862                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2863                         put_page(vmf->page);
2864                         return tmp;
2865                 }
2866                 tmp = finish_mkwrite_fault(vmf);
2867                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2868                         unlock_page(vmf->page);
2869                         put_page(vmf->page);
2870                         return tmp;
2871                 }
2872         } else {
2873                 wp_page_reuse(vmf);
2874                 lock_page(vmf->page);
2875         }
2876         ret |= fault_dirty_shared_page(vmf);
2877         put_page(vmf->page);
2878
2879         return ret;
2880 }
2881
2882 /*
2883  * This routine handles present pages, when users try to write
2884  * to a shared page. It is done by copying the page to a new address
2885  * and decrementing the shared-page counter for the old page.
2886  *
2887  * Note that this routine assumes that the protection checks have been
2888  * done by the caller (the low-level page fault routine in most cases).
2889  * Thus we can safely just mark it writable once we've done any necessary
2890  * COW.
2891  *
2892  * We also mark the page dirty at this point even though the page will
2893  * change only once the write actually happens. This avoids a few races,
2894  * and potentially makes it more efficient.
2895  *
2896  * We enter with non-exclusive mmap_lock (to exclude vma changes,
2897  * but allow concurrent faults), with pte both mapped and locked.
2898  * We return with mmap_lock still held, but pte unmapped and unlocked.
2899  */
2900 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2901         __releases(vmf->ptl)
2902 {
2903         struct vm_area_struct *vma = vmf->vma;
2904
2905         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2906                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2907                 return handle_userfault(vmf, VM_UFFD_WP);
2908         }
2909
2910         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2911         if (!vmf->page) {
2912                 /*
2913                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2914                  * VM_PFNMAP VMA.
2915                  *
2916                  * We should not cow pages in a shared writeable mapping.
2917                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2918                  */
2919                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2920                                      (VM_WRITE|VM_SHARED))
2921                         return wp_pfn_shared(vmf);
2922
2923                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2924                 return wp_page_copy(vmf);
2925         }
2926
2927         /*
2928          * Take out anonymous pages first, anonymous shared vmas are
2929          * not dirty accountable.
2930          */
2931         if (PageAnon(vmf->page)) {
2932                 int total_map_swapcount;
2933                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2934                                            page_count(vmf->page) != 1))
2935                         goto copy;
2936                 if (!trylock_page(vmf->page)) {
2937                         get_page(vmf->page);
2938                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2939                         lock_page(vmf->page);
2940                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2941                                         vmf->address, &vmf->ptl);
2942                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2943                                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2944                                 unlock_page(vmf->page);
2945                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2946                                 put_page(vmf->page);
2947                                 return 0;
2948                         }
2949                         put_page(vmf->page);
2950                 }
2951                 if (PageKsm(vmf->page)) {
2952                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2953                                                      vmf->address);
2954                         unlock_page(vmf->page);
2955                         if (!reused)
2956                                 goto copy;
2957                         wp_page_reuse(vmf);
2958                         return VM_FAULT_WRITE;
2959                 }
2960                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2961                         if (total_map_swapcount == 1) {
2962                                 /*
2963                                  * The page is all ours. Move it to
2964                                  * our anon_vma so the rmap code will
2965                                  * not search our parent or siblings.
2966                                  * Protected against the rmap code by
2967                                  * the page lock.
2968                                  */
2969                                 page_move_anon_rmap(vmf->page, vma);
2970                         }
2971                         unlock_page(vmf->page);
2972                         wp_page_reuse(vmf);
2973                         return VM_FAULT_WRITE;
2974                 }
2975                 unlock_page(vmf->page);
2976         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2977                                         (VM_WRITE|VM_SHARED))) {
2978                 return wp_page_shared(vmf);
2979         }
2980 copy:
2981         /*
2982          * Ok, we need to copy. Oh, well..
2983          */
2984         get_page(vmf->page);
2985
2986         pte_unmap_unlock(vmf->pte, vmf->ptl);
2987         return wp_page_copy(vmf);
2988 }
2989
2990 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2991                 unsigned long start_addr, unsigned long end_addr,
2992                 struct zap_details *details)
2993 {
2994         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2995 }
2996
2997 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2998                                             struct zap_details *details)
2999 {
3000         struct vm_area_struct *vma;
3001         pgoff_t vba, vea, zba, zea;
3002
3003         vma_interval_tree_foreach(vma, root,
3004                         details->first_index, details->last_index) {
3005
3006                 vba = vma->vm_pgoff;
3007                 vea = vba + vma_pages(vma) - 1;
3008                 zba = details->first_index;
3009                 if (zba < vba)
3010                         zba = vba;
3011                 zea = details->last_index;
3012                 if (zea > vea)
3013                         zea = vea;
3014
3015                 unmap_mapping_range_vma(vma,
3016                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3017                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3018                                 details);
3019         }
3020 }
3021
3022 /**
3023  * unmap_mapping_pages() - Unmap pages from processes.
3024  * @mapping: The address space containing pages to be unmapped.
3025  * @start: Index of first page to be unmapped.
3026  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3027  * @even_cows: Whether to unmap even private COWed pages.
3028  *
3029  * Unmap the pages in this address space from any userspace process which
3030  * has them mmaped.  Generally, you want to remove COWed pages as well when
3031  * a file is being truncated, but not when invalidating pages from the page
3032  * cache.
3033  */
3034 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3035                 pgoff_t nr, bool even_cows)
3036 {
3037         struct zap_details details = { };
3038
3039         details.check_mapping = even_cows ? NULL : mapping;
3040         details.first_index = start;
3041         details.last_index = start + nr - 1;
3042         if (details.last_index < details.first_index)
3043                 details.last_index = ULONG_MAX;
3044
3045         i_mmap_lock_write(mapping);
3046         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3047                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3048         i_mmap_unlock_write(mapping);
3049 }
3050
3051 /**
3052  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3053  * address_space corresponding to the specified byte range in the underlying
3054  * file.
3055  *
3056  * @mapping: the address space containing mmaps to be unmapped.
3057  * @holebegin: byte in first page to unmap, relative to the start of
3058  * the underlying file.  This will be rounded down to a PAGE_SIZE
3059  * boundary.  Note that this is different from truncate_pagecache(), which
3060  * must keep the partial page.  In contrast, we must get rid of
3061  * partial pages.
3062  * @holelen: size of prospective hole in bytes.  This will be rounded
3063  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3064  * end of the file.
3065  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3066  * but 0 when invalidating pagecache, don't throw away private data.
3067  */
3068 void unmap_mapping_range(struct address_space *mapping,
3069                 loff_t const holebegin, loff_t const holelen, int even_cows)
3070 {
3071         pgoff_t hba = holebegin >> PAGE_SHIFT;
3072         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3073
3074         /* Check for overflow. */
3075         if (sizeof(holelen) > sizeof(hlen)) {
3076                 long long holeend =
3077                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3078                 if (holeend & ~(long long)ULONG_MAX)
3079                         hlen = ULONG_MAX - hba + 1;
3080         }
3081
3082         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3083 }
3084 EXPORT_SYMBOL(unmap_mapping_range);
3085
3086 /*
3087  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3088  * but allow concurrent faults), and pte mapped but not yet locked.
3089  * We return with pte unmapped and unlocked.
3090  *
3091  * We return with the mmap_lock locked or unlocked in the same cases
3092  * as does filemap_fault().
3093  */
3094 vm_fault_t do_swap_page(struct vm_fault *vmf)
3095 {
3096         struct vm_area_struct *vma = vmf->vma;
3097         struct page *page = NULL, *swapcache;
3098         swp_entry_t entry;
3099         pte_t pte;
3100         int locked;
3101         int exclusive = 0;
3102         vm_fault_t ret = 0;
3103         void *shadow = NULL;
3104
3105         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3106                 goto out;
3107
3108         entry = pte_to_swp_entry(vmf->orig_pte);
3109         if (unlikely(non_swap_entry(entry))) {
3110                 if (is_migration_entry(entry)) {
3111                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3112                                              vmf->address);
3113                 } else if (is_device_private_entry(entry)) {
3114                         vmf->page = device_private_entry_to_page(entry);
3115                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3116                 } else if (is_hwpoison_entry(entry)) {
3117                         ret = VM_FAULT_HWPOISON;
3118                 } else {
3119                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3120                         ret = VM_FAULT_SIGBUS;
3121                 }
3122                 goto out;
3123         }
3124
3125
3126         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3127         page = lookup_swap_cache(entry, vma, vmf->address);
3128         swapcache = page;
3129
3130         if (!page) {
3131                 struct swap_info_struct *si = swp_swap_info(entry);
3132
3133                 if (si->flags & SWP_SYNCHRONOUS_IO &&
3134                                 __swap_count(entry) == 1) {
3135                         /* skip swapcache */
3136                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3137                                                         vmf->address);
3138                         if (page) {
3139                                 int err;
3140
3141                                 __SetPageLocked(page);
3142                                 __SetPageSwapBacked(page);
3143                                 set_page_private(page, entry.val);
3144
3145                                 /* Tell memcg to use swap ownership records */
3146                                 SetPageSwapCache(page);
3147                                 err = mem_cgroup_charge(page, vma->vm_mm,
3148                                                         GFP_KERNEL);
3149                                 ClearPageSwapCache(page);
3150                                 if (err) {
3151                                         ret = VM_FAULT_OOM;
3152                                         goto out_page;
3153                                 }
3154
3155                                 shadow = get_shadow_from_swap_cache(entry);
3156                                 if (shadow)
3157                                         workingset_refault(page, shadow);
3158
3159                                 lru_cache_add(page);
3160                                 swap_readpage(page, true);
3161                         }
3162                 } else {
3163                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3164                                                 vmf);
3165                         swapcache = page;
3166                 }
3167
3168                 if (!page) {
3169                         /*
3170                          * Back out if somebody else faulted in this pte
3171                          * while we released the pte lock.
3172                          */
3173                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3174                                         vmf->address, &vmf->ptl);
3175                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3176                                 ret = VM_FAULT_OOM;
3177                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3178                         goto unlock;
3179                 }
3180
3181                 /* Had to read the page from swap area: Major fault */
3182                 ret = VM_FAULT_MAJOR;
3183                 count_vm_event(PGMAJFAULT);
3184                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3185         } else if (PageHWPoison(page)) {
3186                 /*
3187                  * hwpoisoned dirty swapcache pages are kept for killing
3188                  * owner processes (which may be unknown at hwpoison time)
3189                  */
3190                 ret = VM_FAULT_HWPOISON;
3191                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3192                 goto out_release;
3193         }
3194
3195         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3196
3197         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3198         if (!locked) {
3199                 ret |= VM_FAULT_RETRY;
3200                 goto out_release;
3201         }
3202
3203         /*
3204          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3205          * release the swapcache from under us.  The page pin, and pte_same
3206          * test below, are not enough to exclude that.  Even if it is still
3207          * swapcache, we need to check that the page's swap has not changed.
3208          */
3209         if (unlikely((!PageSwapCache(page) ||
3210                         page_private(page) != entry.val)) && swapcache)
3211                 goto out_page;
3212
3213         page = ksm_might_need_to_copy(page, vma, vmf->address);
3214         if (unlikely(!page)) {
3215                 ret = VM_FAULT_OOM;
3216                 page = swapcache;
3217                 goto out_page;
3218         }
3219
3220         cgroup_throttle_swaprate(page, GFP_KERNEL);
3221
3222         /*
3223          * Back out if somebody else already faulted in this pte.
3224          */
3225         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3226                         &vmf->ptl);
3227         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3228                 goto out_nomap;
3229
3230         if (unlikely(!PageUptodate(page))) {
3231                 ret = VM_FAULT_SIGBUS;
3232                 goto out_nomap;
3233         }
3234
3235         /*
3236          * The page isn't present yet, go ahead with the fault.
3237          *
3238          * Be careful about the sequence of operations here.
3239          * To get its accounting right, reuse_swap_page() must be called
3240          * while the page is counted on swap but not yet in mapcount i.e.
3241          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3242          * must be called after the swap_free(), or it will never succeed.
3243          */
3244
3245         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3246         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3247         pte = mk_pte(page, vma->vm_page_prot);
3248         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3249                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3250                 vmf->flags &= ~FAULT_FLAG_WRITE;
3251                 ret |= VM_FAULT_WRITE;
3252                 exclusive = RMAP_EXCLUSIVE;
3253         }
3254         flush_icache_page(vma, page);
3255         if (pte_swp_soft_dirty(vmf->orig_pte))
3256                 pte = pte_mksoft_dirty(pte);
3257         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3258                 pte = pte_mkuffd_wp(pte);
3259                 pte = pte_wrprotect(pte);
3260         }
3261         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3262         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3263         vmf->orig_pte = pte;
3264
3265         /* ksm created a completely new copy */
3266         if (unlikely(page != swapcache && swapcache)) {
3267                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3268                 lru_cache_add_inactive_or_unevictable(page, vma);
3269         } else {
3270                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3271         }
3272
3273         swap_free(entry);
3274         if (mem_cgroup_swap_full(page) ||
3275             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3276                 try_to_free_swap(page);
3277         unlock_page(page);
3278         if (page != swapcache && swapcache) {
3279                 /*
3280                  * Hold the lock to avoid the swap entry to be reused
3281                  * until we take the PT lock for the pte_same() check
3282                  * (to avoid false positives from pte_same). For
3283                  * further safety release the lock after the swap_free
3284                  * so that the swap count won't change under a
3285                  * parallel locked swapcache.
3286                  */
3287                 unlock_page(swapcache);
3288                 put_page(swapcache);
3289         }
3290
3291         if (vmf->flags & FAULT_FLAG_WRITE) {
3292                 ret |= do_wp_page(vmf);
3293                 if (ret & VM_FAULT_ERROR)
3294                         ret &= VM_FAULT_ERROR;
3295                 goto out;
3296         }
3297
3298         /* No need to invalidate - it was non-present before */
3299         update_mmu_cache(vma, vmf->address, vmf->pte);
3300 unlock:
3301         pte_unmap_unlock(vmf->pte, vmf->ptl);
3302 out:
3303         return ret;
3304 out_nomap:
3305         pte_unmap_unlock(vmf->pte, vmf->ptl);
3306 out_page:
3307         unlock_page(page);
3308 out_release:
3309         put_page(page);
3310         if (page != swapcache && swapcache) {
3311                 unlock_page(swapcache);
3312                 put_page(swapcache);
3313         }
3314         return ret;
3315 }
3316
3317 /*
3318  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3319  * but allow concurrent faults), and pte mapped but not yet locked.
3320  * We return with mmap_lock still held, but pte unmapped and unlocked.
3321  */
3322 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3323 {
3324         struct vm_area_struct *vma = vmf->vma;
3325         struct page *page;
3326         vm_fault_t ret = 0;
3327         pte_t entry;
3328
3329         /* File mapping without ->vm_ops ? */
3330         if (vma->vm_flags & VM_SHARED)
3331                 return VM_FAULT_SIGBUS;
3332
3333         /*
3334          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3335          * pte_offset_map() on pmds where a huge pmd might be created
3336          * from a different thread.
3337          *
3338          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3339          * parallel threads are excluded by other means.
3340          *
3341          * Here we only have mmap_read_lock(mm).
3342          */
3343         if (pte_alloc(vma->vm_mm, vmf->pmd))
3344                 return VM_FAULT_OOM;
3345
3346         /* See the comment in pte_alloc_one_map() */
3347         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3348                 return 0;
3349
3350         /* Use the zero-page for reads */
3351         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3352                         !mm_forbids_zeropage(vma->vm_mm)) {
3353                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3354                                                 vma->vm_page_prot));
3355                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3356                                 vmf->address, &vmf->ptl);
3357                 if (!pte_none(*vmf->pte)) {
3358                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3359                         goto unlock;
3360                 }
3361                 ret = check_stable_address_space(vma->vm_mm);
3362                 if (ret)
3363                         goto unlock;
3364                 /* Deliver the page fault to userland, check inside PT lock */
3365                 if (userfaultfd_missing(vma)) {
3366                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3367                         return handle_userfault(vmf, VM_UFFD_MISSING);
3368                 }
3369                 goto setpte;
3370         }
3371
3372         /* Allocate our own private page. */
3373         if (unlikely(anon_vma_prepare(vma)))
3374                 goto oom;
3375         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3376         if (!page)
3377                 goto oom;
3378
3379         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3380                 goto oom_free_page;
3381         cgroup_throttle_swaprate(page, GFP_KERNEL);
3382
3383         /*
3384          * The memory barrier inside __SetPageUptodate makes sure that
3385          * preceding stores to the page contents become visible before
3386          * the set_pte_at() write.
3387          */
3388         __SetPageUptodate(page);
3389
3390         entry = mk_pte(page, vma->vm_page_prot);
3391         entry = pte_sw_mkyoung(entry);
3392         if (vma->vm_flags & VM_WRITE)
3393                 entry = pte_mkwrite(pte_mkdirty(entry));
3394
3395         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3396                         &vmf->ptl);
3397         if (!pte_none(*vmf->pte)) {
3398                 update_mmu_cache(vma, vmf->address, vmf->pte);
3399                 goto release;
3400         }
3401
3402         ret = check_stable_address_space(vma->vm_mm);
3403         if (ret)
3404                 goto release;
3405
3406         /* Deliver the page fault to userland, check inside PT lock */
3407         if (userfaultfd_missing(vma)) {
3408                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3409                 put_page(page);
3410                 return handle_userfault(vmf, VM_UFFD_MISSING);
3411         }
3412
3413         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3414         page_add_new_anon_rmap(page, vma, vmf->address, false);
3415         lru_cache_add_inactive_or_unevictable(page, vma);
3416 setpte:
3417         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3418
3419         /* No need to invalidate - it was non-present before */
3420         update_mmu_cache(vma, vmf->address, vmf->pte);
3421 unlock:
3422         pte_unmap_unlock(vmf->pte, vmf->ptl);
3423         return ret;
3424 release:
3425         put_page(page);
3426         goto unlock;
3427 oom_free_page:
3428         put_page(page);
3429 oom:
3430         return VM_FAULT_OOM;
3431 }
3432
3433 /*
3434  * The mmap_lock must have been held on entry, and may have been
3435  * released depending on flags and vma->vm_ops->fault() return value.
3436  * See filemap_fault() and __lock_page_retry().
3437  */
3438 static vm_fault_t __do_fault(struct vm_fault *vmf)
3439 {
3440         struct vm_area_struct *vma = vmf->vma;
3441         vm_fault_t ret;
3442
3443         /*
3444          * Preallocate pte before we take page_lock because this might lead to
3445          * deadlocks for memcg reclaim which waits for pages under writeback:
3446          *                              lock_page(A)
3447          *                              SetPageWriteback(A)
3448          *                              unlock_page(A)
3449          * lock_page(B)
3450          *                              lock_page(B)
3451          * pte_alloc_pne
3452          *   shrink_page_list
3453          *     wait_on_page_writeback(A)
3454          *                              SetPageWriteback(B)
3455          *                              unlock_page(B)
3456          *                              # flush A, B to clear the writeback
3457          */
3458         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3459                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3460                 if (!vmf->prealloc_pte)
3461                         return VM_FAULT_OOM;
3462                 smp_wmb(); /* See comment in __pte_alloc() */
3463         }
3464
3465         ret = vma->vm_ops->fault(vmf);
3466         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3467                             VM_FAULT_DONE_COW)))
3468                 return ret;
3469
3470         if (unlikely(PageHWPoison(vmf->page))) {
3471                 if (ret & VM_FAULT_LOCKED)
3472                         unlock_page(vmf->page);
3473                 put_page(vmf->page);
3474                 vmf->page = NULL;
3475                 return VM_FAULT_HWPOISON;
3476         }
3477
3478         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3479                 lock_page(vmf->page);
3480         else
3481                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3482
3483         return ret;
3484 }
3485
3486 /*
3487  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3488  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3489  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3490  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3491  */
3492 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3493 {
3494         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3495 }
3496
3497 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3498 {
3499         struct vm_area_struct *vma = vmf->vma;
3500
3501         if (!pmd_none(*vmf->pmd))
3502                 goto map_pte;
3503         if (vmf->prealloc_pte) {
3504                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3505                 if (unlikely(!pmd_none(*vmf->pmd))) {
3506                         spin_unlock(vmf->ptl);
3507                         goto map_pte;
3508                 }
3509
3510                 mm_inc_nr_ptes(vma->vm_mm);
3511                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3512                 spin_unlock(vmf->ptl);
3513                 vmf->prealloc_pte = NULL;
3514         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3515                 return VM_FAULT_OOM;
3516         }
3517 map_pte:
3518         /*
3519          * If a huge pmd materialized under us just retry later.  Use
3520          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3521          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3522          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3523          * running immediately after a huge pmd fault in a different thread of
3524          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3525          * All we have to ensure is that it is a regular pmd that we can walk
3526          * with pte_offset_map() and we can do that through an atomic read in
3527          * C, which is what pmd_trans_unstable() provides.
3528          */
3529         if (pmd_devmap_trans_unstable(vmf->pmd))
3530                 return VM_FAULT_NOPAGE;
3531
3532         /*
3533          * At this point we know that our vmf->pmd points to a page of ptes
3534          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3535          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3536          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3537          * be valid and we will re-check to make sure the vmf->pte isn't
3538          * pte_none() under vmf->ptl protection when we return to
3539          * alloc_set_pte().
3540          */
3541         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3542                         &vmf->ptl);
3543         return 0;
3544 }
3545
3546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3547 static void deposit_prealloc_pte(struct vm_fault *vmf)
3548 {
3549         struct vm_area_struct *vma = vmf->vma;
3550
3551         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3552         /*
3553          * We are going to consume the prealloc table,
3554          * count that as nr_ptes.
3555          */
3556         mm_inc_nr_ptes(vma->vm_mm);
3557         vmf->prealloc_pte = NULL;
3558 }
3559
3560 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3561 {
3562         struct vm_area_struct *vma = vmf->vma;
3563         bool write = vmf->flags & FAULT_FLAG_WRITE;
3564         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3565         pmd_t entry;
3566         int i;
3567         vm_fault_t ret;
3568
3569         if (!transhuge_vma_suitable(vma, haddr))
3570                 return VM_FAULT_FALLBACK;
3571
3572         ret = VM_FAULT_FALLBACK;
3573         page = compound_head(page);
3574
3575         /*
3576          * Archs like ppc64 need additonal space to store information
3577          * related to pte entry. Use the preallocated table for that.
3578          */
3579         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3580                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3581                 if (!vmf->prealloc_pte)
3582                         return VM_FAULT_OOM;
3583                 smp_wmb(); /* See comment in __pte_alloc() */
3584         }
3585
3586         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3587         if (unlikely(!pmd_none(*vmf->pmd)))
3588                 goto out;
3589
3590         for (i = 0; i < HPAGE_PMD_NR; i++)
3591                 flush_icache_page(vma, page + i);
3592
3593         entry = mk_huge_pmd(page, vma->vm_page_prot);
3594         if (write)
3595                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3596
3597         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3598         page_add_file_rmap(page, true);
3599         /*
3600          * deposit and withdraw with pmd lock held
3601          */
3602         if (arch_needs_pgtable_deposit())
3603                 deposit_prealloc_pte(vmf);
3604
3605         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3606
3607         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3608
3609         /* fault is handled */
3610         ret = 0;
3611         count_vm_event(THP_FILE_MAPPED);
3612 out:
3613         spin_unlock(vmf->ptl);
3614         return ret;
3615 }
3616 #else
3617 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3618 {
3619         BUILD_BUG();
3620         return 0;
3621 }
3622 #endif
3623
3624 /**
3625  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3626  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3627  *
3628  * @vmf: fault environment
3629  * @page: page to map
3630  *
3631  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3632  * return.
3633  *
3634  * Target users are page handler itself and implementations of
3635  * vm_ops->map_pages.
3636  *
3637  * Return: %0 on success, %VM_FAULT_ code in case of error.
3638  */
3639 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3640 {
3641         struct vm_area_struct *vma = vmf->vma;
3642         bool write = vmf->flags & FAULT_FLAG_WRITE;
3643         pte_t entry;
3644         vm_fault_t ret;
3645
3646         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3647                 ret = do_set_pmd(vmf, page);
3648                 if (ret != VM_FAULT_FALLBACK)
3649                         return ret;
3650         }
3651
3652         if (!vmf->pte) {
3653                 ret = pte_alloc_one_map(vmf);
3654                 if (ret)
3655                         return ret;
3656         }
3657
3658         /* Re-check under ptl */
3659         if (unlikely(!pte_none(*vmf->pte))) {
3660                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3661                 return VM_FAULT_NOPAGE;
3662         }
3663
3664         flush_icache_page(vma, page);
3665         entry = mk_pte(page, vma->vm_page_prot);
3666         entry = pte_sw_mkyoung(entry);
3667         if (write)
3668                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3669         /* copy-on-write page */
3670         if (write && !(vma->vm_flags & VM_SHARED)) {
3671                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3672                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3673                 lru_cache_add_inactive_or_unevictable(page, vma);
3674         } else {
3675                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3676                 page_add_file_rmap(page, false);
3677         }
3678         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3679
3680         /* no need to invalidate: a not-present page won't be cached */
3681         update_mmu_cache(vma, vmf->address, vmf->pte);
3682
3683         return 0;
3684 }
3685
3686
3687 /**
3688  * finish_fault - finish page fault once we have prepared the page to fault
3689  *
3690  * @vmf: structure describing the fault
3691  *
3692  * This function handles all that is needed to finish a page fault once the
3693  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3694  * given page, adds reverse page mapping, handles memcg charges and LRU
3695  * addition.
3696  *
3697  * The function expects the page to be locked and on success it consumes a
3698  * reference of a page being mapped (for the PTE which maps it).
3699  *
3700  * Return: %0 on success, %VM_FAULT_ code in case of error.
3701  */
3702 vm_fault_t finish_fault(struct vm_fault *vmf)
3703 {
3704         struct page *page;
3705         vm_fault_t ret = 0;
3706
3707         /* Did we COW the page? */
3708         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3709             !(vmf->vma->vm_flags & VM_SHARED))
3710                 page = vmf->cow_page;
3711         else
3712                 page = vmf->page;
3713
3714         /*
3715          * check even for read faults because we might have lost our CoWed
3716          * page
3717          */
3718         if (!(vmf->vma->vm_flags & VM_SHARED))
3719                 ret = check_stable_address_space(vmf->vma->vm_mm);
3720         if (!ret)
3721                 ret = alloc_set_pte(vmf, page);
3722         if (vmf->pte)
3723                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3724         return ret;
3725 }
3726
3727 static unsigned long fault_around_bytes __read_mostly =
3728         rounddown_pow_of_two(65536);
3729
3730 #ifdef CONFIG_DEBUG_FS
3731 static int fault_around_bytes_get(void *data, u64 *val)
3732 {
3733         *val = fault_around_bytes;
3734         return 0;
3735 }
3736
3737 /*
3738  * fault_around_bytes must be rounded down to the nearest page order as it's
3739  * what do_fault_around() expects to see.
3740  */
3741 static int fault_around_bytes_set(void *data, u64 val)
3742 {
3743         if (val / PAGE_SIZE > PTRS_PER_PTE)
3744                 return -EINVAL;
3745         if (val > PAGE_SIZE)
3746                 fault_around_bytes = rounddown_pow_of_two(val);
3747         else
3748                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3749         return 0;
3750 }
3751 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3752                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3753
3754 static int __init fault_around_debugfs(void)
3755 {
3756         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3757                                    &fault_around_bytes_fops);
3758         return 0;
3759 }
3760 late_initcall(fault_around_debugfs);
3761 #endif
3762
3763 /*
3764  * do_fault_around() tries to map few pages around the fault address. The hope
3765  * is that the pages will be needed soon and this will lower the number of
3766  * faults to handle.
3767  *
3768  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3769  * not ready to be mapped: not up-to-date, locked, etc.
3770  *
3771  * This function is called with the page table lock taken. In the split ptlock
3772  * case the page table lock only protects only those entries which belong to
3773  * the page table corresponding to the fault address.
3774  *
3775  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3776  * only once.
3777  *
3778  * fault_around_bytes defines how many bytes we'll try to map.
3779  * do_fault_around() expects it to be set to a power of two less than or equal
3780  * to PTRS_PER_PTE.
3781  *
3782  * The virtual address of the area that we map is naturally aligned to
3783  * fault_around_bytes rounded down to the machine page size
3784  * (and therefore to page order).  This way it's easier to guarantee
3785  * that we don't cross page table boundaries.
3786  */
3787 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3788 {
3789         unsigned long address = vmf->address, nr_pages, mask;
3790         pgoff_t start_pgoff = vmf->pgoff;
3791         pgoff_t end_pgoff;
3792         int off;
3793         vm_fault_t ret = 0;
3794
3795         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3796         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3797
3798         vmf->address = max(address & mask, vmf->vma->vm_start);
3799         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3800         start_pgoff -= off;
3801
3802         /*
3803          *  end_pgoff is either the end of the page table, the end of
3804          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3805          */
3806         end_pgoff = start_pgoff -
3807                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3808                 PTRS_PER_PTE - 1;
3809         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3810                         start_pgoff + nr_pages - 1);
3811
3812         if (pmd_none(*vmf->pmd)) {
3813                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3814                 if (!vmf->prealloc_pte)
3815                         goto out;
3816                 smp_wmb(); /* See comment in __pte_alloc() */
3817         }
3818
3819         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3820
3821         /* Huge page is mapped? Page fault is solved */
3822         if (pmd_trans_huge(*vmf->pmd)) {
3823                 ret = VM_FAULT_NOPAGE;
3824                 goto out;
3825         }
3826
3827         /* ->map_pages() haven't done anything useful. Cold page cache? */
3828         if (!vmf->pte)
3829                 goto out;
3830
3831         /* check if the page fault is solved */
3832         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3833         if (!pte_none(*vmf->pte))
3834                 ret = VM_FAULT_NOPAGE;
3835         pte_unmap_unlock(vmf->pte, vmf->ptl);
3836 out:
3837         vmf->address = address;
3838         vmf->pte = NULL;
3839         return ret;
3840 }
3841
3842 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3843 {
3844         struct vm_area_struct *vma = vmf->vma;
3845         vm_fault_t ret = 0;
3846
3847         /*
3848          * Let's call ->map_pages() first and use ->fault() as fallback
3849          * if page by the offset is not ready to be mapped (cold cache or
3850          * something).
3851          */
3852         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3853                 ret = do_fault_around(vmf);
3854                 if (ret)
3855                         return ret;
3856         }
3857
3858         ret = __do_fault(vmf);
3859         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3860                 return ret;
3861
3862         ret |= finish_fault(vmf);
3863         unlock_page(vmf->page);
3864         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3865                 put_page(vmf->page);
3866         return ret;
3867 }
3868
3869 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3870 {
3871         struct vm_area_struct *vma = vmf->vma;
3872         vm_fault_t ret;
3873
3874         if (unlikely(anon_vma_prepare(vma)))
3875                 return VM_FAULT_OOM;
3876
3877         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3878         if (!vmf->cow_page)
3879                 return VM_FAULT_OOM;
3880
3881         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3882                 put_page(vmf->cow_page);
3883                 return VM_FAULT_OOM;
3884         }
3885         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3886
3887         ret = __do_fault(vmf);
3888         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3889                 goto uncharge_out;
3890         if (ret & VM_FAULT_DONE_COW)
3891                 return ret;
3892
3893         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3894         __SetPageUptodate(vmf->cow_page);
3895
3896         ret |= finish_fault(vmf);
3897         unlock_page(vmf->page);
3898         put_page(vmf->page);
3899         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3900                 goto uncharge_out;
3901         return ret;
3902 uncharge_out:
3903         put_page(vmf->cow_page);
3904         return ret;
3905 }
3906
3907 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3908 {
3909         struct vm_area_struct *vma = vmf->vma;
3910         vm_fault_t ret, tmp;
3911
3912         ret = __do_fault(vmf);
3913         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3914                 return ret;
3915
3916         /*
3917          * Check if the backing address space wants to know that the page is
3918          * about to become writable
3919          */
3920         if (vma->vm_ops->page_mkwrite) {
3921                 unlock_page(vmf->page);
3922                 tmp = do_page_mkwrite(vmf);
3923                 if (unlikely(!tmp ||
3924                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3925                         put_page(vmf->page);
3926                         return tmp;
3927                 }
3928         }
3929
3930         ret |= finish_fault(vmf);
3931         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3932                                         VM_FAULT_RETRY))) {
3933                 unlock_page(vmf->page);
3934                 put_page(vmf->page);
3935                 return ret;
3936         }
3937
3938         ret |= fault_dirty_shared_page(vmf);
3939         return ret;
3940 }
3941
3942 /*
3943  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3944  * but allow concurrent faults).
3945  * The mmap_lock may have been released depending on flags and our
3946  * return value.  See filemap_fault() and __lock_page_or_retry().
3947  * If mmap_lock is released, vma may become invalid (for example
3948  * by other thread calling munmap()).
3949  */
3950 static vm_fault_t do_fault(struct vm_fault *vmf)
3951 {
3952         struct vm_area_struct *vma = vmf->vma;
3953         struct mm_struct *vm_mm = vma->vm_mm;
3954         vm_fault_t ret;
3955
3956         /*
3957          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3958          */
3959         if (!vma->vm_ops->fault) {
3960                 /*
3961                  * If we find a migration pmd entry or a none pmd entry, which
3962                  * should never happen, return SIGBUS
3963                  */
3964                 if (unlikely(!pmd_present(*vmf->pmd)))
3965                         ret = VM_FAULT_SIGBUS;
3966                 else {
3967                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3968                                                        vmf->pmd,
3969                                                        vmf->address,
3970                                                        &vmf->ptl);
3971                         /*
3972                          * Make sure this is not a temporary clearing of pte
3973                          * by holding ptl and checking again. A R/M/W update
3974                          * of pte involves: take ptl, clearing the pte so that
3975                          * we don't have concurrent modification by hardware
3976                          * followed by an update.
3977                          */
3978                         if (unlikely(pte_none(*vmf->pte)))
3979                                 ret = VM_FAULT_SIGBUS;
3980                         else
3981                                 ret = VM_FAULT_NOPAGE;
3982
3983                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3984                 }
3985         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3986                 ret = do_read_fault(vmf);
3987         else if (!(vma->vm_flags & VM_SHARED))
3988                 ret = do_cow_fault(vmf);
3989         else
3990                 ret = do_shared_fault(vmf);
3991
3992         /* preallocated pagetable is unused: free it */
3993         if (vmf->prealloc_pte) {
3994                 pte_free(vm_mm, vmf->prealloc_pte);
3995                 vmf->prealloc_pte = NULL;
3996         }
3997         return ret;
3998 }
3999
4000 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4001                                 unsigned long addr, int page_nid,
4002                                 int *flags)
4003 {
4004         get_page(page);
4005
4006         count_vm_numa_event(NUMA_HINT_FAULTS);
4007         if (page_nid == numa_node_id()) {
4008                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4009                 *flags |= TNF_FAULT_LOCAL;
4010         }
4011
4012         return mpol_misplaced(page, vma, addr);
4013 }
4014
4015 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4016 {
4017         struct vm_area_struct *vma = vmf->vma;
4018         struct page *page = NULL;
4019         int page_nid = NUMA_NO_NODE;
4020         int last_cpupid;
4021         int target_nid;
4022         bool migrated = false;
4023         pte_t pte, old_pte;
4024         bool was_writable = pte_savedwrite(vmf->orig_pte);
4025         int flags = 0;
4026
4027         /*
4028          * The "pte" at this point cannot be used safely without
4029          * validation through pte_unmap_same(). It's of NUMA type but
4030          * the pfn may be screwed if the read is non atomic.
4031          */
4032         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4033         spin_lock(vmf->ptl);
4034         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4035                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4036                 goto out;
4037         }
4038
4039         /*
4040          * Make it present again, Depending on how arch implementes non
4041          * accessible ptes, some can allow access by kernel mode.
4042          */
4043         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4044         pte = pte_modify(old_pte, vma->vm_page_prot);
4045         pte = pte_mkyoung(pte);
4046         if (was_writable)
4047                 pte = pte_mkwrite(pte);
4048         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4049         update_mmu_cache(vma, vmf->address, vmf->pte);
4050
4051         page = vm_normal_page(vma, vmf->address, pte);
4052         if (!page) {
4053                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4054                 return 0;
4055         }
4056
4057         /* TODO: handle PTE-mapped THP */
4058         if (PageCompound(page)) {
4059                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4060                 return 0;
4061         }
4062
4063         /*
4064          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4065          * much anyway since they can be in shared cache state. This misses
4066          * the case where a mapping is writable but the process never writes
4067          * to it but pte_write gets cleared during protection updates and
4068          * pte_dirty has unpredictable behaviour between PTE scan updates,
4069          * background writeback, dirty balancing and application behaviour.
4070          */
4071         if (!pte_write(pte))
4072                 flags |= TNF_NO_GROUP;
4073
4074         /*
4075          * Flag if the page is shared between multiple address spaces. This
4076          * is later used when determining whether to group tasks together
4077          */
4078         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4079                 flags |= TNF_SHARED;
4080
4081         last_cpupid = page_cpupid_last(page);
4082         page_nid = page_to_nid(page);
4083         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4084                         &flags);
4085         pte_unmap_unlock(vmf->pte, vmf->ptl);
4086         if (target_nid == NUMA_NO_NODE) {
4087                 put_page(page);
4088                 goto out;
4089         }
4090
4091         /* Migrate to the requested node */
4092         migrated = migrate_misplaced_page(page, vma, target_nid);
4093         if (migrated) {
4094                 page_nid = target_nid;
4095                 flags |= TNF_MIGRATED;
4096         } else
4097                 flags |= TNF_MIGRATE_FAIL;
4098
4099 out:
4100         if (page_nid != NUMA_NO_NODE)
4101                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4102         return 0;
4103 }
4104
4105 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4106 {
4107         if (vma_is_anonymous(vmf->vma))
4108                 return do_huge_pmd_anonymous_page(vmf);
4109         if (vmf->vma->vm_ops->huge_fault)
4110                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4111         return VM_FAULT_FALLBACK;
4112 }
4113
4114 /* `inline' is required to avoid gcc 4.1.2 build error */
4115 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4116 {
4117         if (vma_is_anonymous(vmf->vma)) {
4118                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4119                         return handle_userfault(vmf, VM_UFFD_WP);
4120                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4121         }
4122         if (vmf->vma->vm_ops->huge_fault) {
4123                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4124
4125                 if (!(ret & VM_FAULT_FALLBACK))
4126                         return ret;
4127         }
4128
4129         /* COW or write-notify handled on pte level: split pmd. */
4130         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4131
4132         return VM_FAULT_FALLBACK;
4133 }
4134
4135 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4136 {
4137 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4138         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4139         /* No support for anonymous transparent PUD pages yet */
4140         if (vma_is_anonymous(vmf->vma))
4141                 goto split;
4142         if (vmf->vma->vm_ops->huge_fault) {
4143                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4144
4145                 if (!(ret & VM_FAULT_FALLBACK))
4146                         return ret;
4147         }
4148 split:
4149         /* COW or write-notify not handled on PUD level: split pud.*/
4150         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4151 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4152         return VM_FAULT_FALLBACK;
4153 }
4154
4155 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4156 {
4157 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4158         /* No support for anonymous transparent PUD pages yet */
4159         if (vma_is_anonymous(vmf->vma))
4160                 return VM_FAULT_FALLBACK;
4161         if (vmf->vma->vm_ops->huge_fault)
4162                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4163 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4164         return VM_FAULT_FALLBACK;
4165 }
4166
4167 /*
4168  * These routines also need to handle stuff like marking pages dirty
4169  * and/or accessed for architectures that don't do it in hardware (most
4170  * RISC architectures).  The early dirtying is also good on the i386.
4171  *
4172  * There is also a hook called "update_mmu_cache()" that architectures
4173  * with external mmu caches can use to update those (ie the Sparc or
4174  * PowerPC hashed page tables that act as extended TLBs).
4175  *
4176  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4177  * concurrent faults).
4178  *
4179  * The mmap_lock may have been released depending on flags and our return value.
4180  * See filemap_fault() and __lock_page_or_retry().
4181  */
4182 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4183 {
4184         pte_t entry;
4185
4186         if (unlikely(pmd_none(*vmf->pmd))) {
4187                 /*
4188                  * Leave __pte_alloc() until later: because vm_ops->fault may
4189                  * want to allocate huge page, and if we expose page table
4190                  * for an instant, it will be difficult to retract from
4191                  * concurrent faults and from rmap lookups.
4192                  */
4193                 vmf->pte = NULL;
4194         } else {
4195                 /* See comment in pte_alloc_one_map() */
4196                 if (pmd_devmap_trans_unstable(vmf->pmd))
4197                         return 0;
4198                 /*
4199                  * A regular pmd is established and it can't morph into a huge
4200                  * pmd from under us anymore at this point because we hold the
4201                  * mmap_lock read mode and khugepaged takes it in write mode.
4202                  * So now it's safe to run pte_offset_map().
4203                  */
4204                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4205                 vmf->orig_pte = *vmf->pte;
4206
4207                 /*
4208                  * some architectures can have larger ptes than wordsize,
4209                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4210                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4211                  * accesses.  The code below just needs a consistent view
4212                  * for the ifs and we later double check anyway with the
4213                  * ptl lock held. So here a barrier will do.
4214                  */
4215                 barrier();
4216                 if (pte_none(vmf->orig_pte)) {
4217                         pte_unmap(vmf->pte);
4218                         vmf->pte = NULL;
4219                 }
4220         }
4221
4222         if (!vmf->pte) {
4223                 if (vma_is_anonymous(vmf->vma))
4224                         return do_anonymous_page(vmf);
4225                 else
4226                         return do_fault(vmf);
4227         }
4228
4229         if (!pte_present(vmf->orig_pte))
4230                 return do_swap_page(vmf);
4231
4232         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4233                 return do_numa_page(vmf);
4234
4235         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4236         spin_lock(vmf->ptl);
4237         entry = vmf->orig_pte;
4238         if (unlikely(!pte_same(*vmf->pte, entry))) {
4239                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4240                 goto unlock;
4241         }
4242         if (vmf->flags & FAULT_FLAG_WRITE) {
4243                 if (!pte_write(entry))
4244                         return do_wp_page(vmf);
4245                 entry = pte_mkdirty(entry);
4246         }
4247         entry = pte_mkyoung(entry);
4248         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4249                                 vmf->flags & FAULT_FLAG_WRITE)) {
4250                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4251         } else {
4252                 /*
4253                  * This is needed only for protection faults but the arch code
4254                  * is not yet telling us if this is a protection fault or not.
4255                  * This still avoids useless tlb flushes for .text page faults
4256                  * with threads.
4257                  */
4258                 if (vmf->flags & FAULT_FLAG_WRITE)
4259                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4260         }
4261 unlock:
4262         pte_unmap_unlock(vmf->pte, vmf->ptl);
4263         return 0;
4264 }
4265
4266 /*
4267  * By the time we get here, we already hold the mm semaphore
4268  *
4269  * The mmap_lock may have been released depending on flags and our
4270  * return value.  See filemap_fault() and __lock_page_or_retry().
4271  */
4272 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4273                 unsigned long address, unsigned int flags)
4274 {
4275         struct vm_fault vmf = {
4276                 .vma = vma,
4277                 .address = address & PAGE_MASK,
4278                 .flags = flags,
4279                 .pgoff = linear_page_index(vma, address),
4280                 .gfp_mask = __get_fault_gfp_mask(vma),
4281         };
4282         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4283         struct mm_struct *mm = vma->vm_mm;
4284         pgd_t *pgd;
4285         p4d_t *p4d;
4286         vm_fault_t ret;
4287
4288         pgd = pgd_offset(mm, address);
4289         p4d = p4d_alloc(mm, pgd, address);
4290         if (!p4d)
4291                 return VM_FAULT_OOM;
4292
4293         vmf.pud = pud_alloc(mm, p4d, address);
4294         if (!vmf.pud)
4295                 return VM_FAULT_OOM;
4296 retry_pud:
4297         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4298                 ret = create_huge_pud(&vmf);
4299                 if (!(ret & VM_FAULT_FALLBACK))
4300                         return ret;
4301         } else {
4302                 pud_t orig_pud = *vmf.pud;
4303
4304                 barrier();
4305                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4306
4307                         /* NUMA case for anonymous PUDs would go here */
4308
4309                         if (dirty && !pud_write(orig_pud)) {
4310                                 ret = wp_huge_pud(&vmf, orig_pud);
4311                                 if (!(ret & VM_FAULT_FALLBACK))
4312                                         return ret;
4313                         } else {
4314                                 huge_pud_set_accessed(&vmf, orig_pud);
4315                                 return 0;
4316                         }
4317                 }
4318         }
4319
4320         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4321         if (!vmf.pmd)
4322                 return VM_FAULT_OOM;
4323
4324         /* Huge pud page fault raced with pmd_alloc? */
4325         if (pud_trans_unstable(vmf.pud))
4326                 goto retry_pud;
4327
4328         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4329                 ret = create_huge_pmd(&vmf);
4330                 if (!(ret & VM_FAULT_FALLBACK))
4331                         return ret;
4332         } else {
4333                 pmd_t orig_pmd = *vmf.pmd;
4334
4335                 barrier();
4336                 if (unlikely(is_swap_pmd(orig_pmd))) {
4337                         VM_BUG_ON(thp_migration_supported() &&
4338                                           !is_pmd_migration_entry(orig_pmd));
4339                         if (is_pmd_migration_entry(orig_pmd))
4340                                 pmd_migration_entry_wait(mm, vmf.pmd);
4341                         return 0;
4342                 }
4343                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4344                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4345                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4346
4347                         if (dirty && !pmd_write(orig_pmd)) {
4348                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4349                                 if (!(ret & VM_FAULT_FALLBACK))
4350                                         return ret;
4351                         } else {
4352                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4353                                 return 0;
4354                         }
4355                 }
4356         }
4357
4358         return handle_pte_fault(&vmf);
4359 }
4360
4361 /**
4362  * mm_account_fault - Do page fault accountings
4363  *
4364  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4365  *        of perf event counters, but we'll still do the per-task accounting to
4366  *        the task who triggered this page fault.
4367  * @address: the faulted address.
4368  * @flags: the fault flags.
4369  * @ret: the fault retcode.
4370  *
4371  * This will take care of most of the page fault accountings.  Meanwhile, it
4372  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4373  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4374  * still be in per-arch page fault handlers at the entry of page fault.
4375  */
4376 static inline void mm_account_fault(struct pt_regs *regs,
4377                                     unsigned long address, unsigned int flags,
4378                                     vm_fault_t ret)
4379 {
4380         bool major;
4381
4382         /*
4383          * We don't do accounting for some specific faults:
4384          *
4385          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4386          *   includes arch_vma_access_permitted() failing before reaching here.
4387          *   So this is not a "this many hardware page faults" counter.  We
4388          *   should use the hw profiling for that.
4389          *
4390          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4391          *   once they're completed.
4392          */
4393         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4394                 return;
4395
4396         /*
4397          * We define the fault as a major fault when the final successful fault
4398          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4399          * handle it immediately previously).
4400          */
4401         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4402
4403         if (major)
4404                 current->maj_flt++;
4405         else
4406                 current->min_flt++;
4407
4408         /*
4409          * If the fault is done for GUP, regs will be NULL.  We only do the
4410          * accounting for the per thread fault counters who triggered the
4411          * fault, and we skip the perf event updates.
4412          */
4413         if (!regs)
4414                 return;
4415
4416         if (major)
4417                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4418         else
4419                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4420 }
4421
4422 /*
4423  * By the time we get here, we already hold the mm semaphore
4424  *
4425  * The mmap_lock may have been released depending on flags and our
4426  * return value.  See filemap_fault() and __lock_page_or_retry().
4427  */
4428 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4429                            unsigned int flags, struct pt_regs *regs)
4430 {
4431         vm_fault_t ret;
4432
4433         __set_current_state(TASK_RUNNING);
4434
4435         count_vm_event(PGFAULT);
4436         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4437
4438         /* do counter updates before entering really critical section. */
4439         check_sync_rss_stat(current);
4440
4441         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4442                                             flags & FAULT_FLAG_INSTRUCTION,
4443                                             flags & FAULT_FLAG_REMOTE))
4444                 return VM_FAULT_SIGSEGV;
4445
4446         /*
4447          * Enable the memcg OOM handling for faults triggered in user
4448          * space.  Kernel faults are handled more gracefully.
4449          */
4450         if (flags & FAULT_FLAG_USER)
4451                 mem_cgroup_enter_user_fault();
4452
4453         if (unlikely(is_vm_hugetlb_page(vma)))
4454                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4455         else
4456                 ret = __handle_mm_fault(vma, address, flags);
4457
4458         if (flags & FAULT_FLAG_USER) {
4459                 mem_cgroup_exit_user_fault();
4460                 /*
4461                  * The task may have entered a memcg OOM situation but
4462                  * if the allocation error was handled gracefully (no
4463                  * VM_FAULT_OOM), there is no need to kill anything.
4464                  * Just clean up the OOM state peacefully.
4465                  */
4466                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4467                         mem_cgroup_oom_synchronize(false);
4468         }
4469
4470         mm_account_fault(regs, address, flags, ret);
4471
4472         return ret;
4473 }
4474 EXPORT_SYMBOL_GPL(handle_mm_fault);
4475
4476 #ifndef __PAGETABLE_P4D_FOLDED
4477 /*
4478  * Allocate p4d page table.
4479  * We've already handled the fast-path in-line.
4480  */
4481 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4482 {
4483         p4d_t *new = p4d_alloc_one(mm, address);
4484         if (!new)
4485                 return -ENOMEM;
4486
4487         smp_wmb(); /* See comment in __pte_alloc */
4488
4489         spin_lock(&mm->page_table_lock);
4490         if (pgd_present(*pgd))          /* Another has populated it */
4491                 p4d_free(mm, new);
4492         else
4493                 pgd_populate(mm, pgd, new);
4494         spin_unlock(&mm->page_table_lock);
4495         return 0;
4496 }
4497 #endif /* __PAGETABLE_P4D_FOLDED */
4498
4499 #ifndef __PAGETABLE_PUD_FOLDED
4500 /*
4501  * Allocate page upper directory.
4502  * We've already handled the fast-path in-line.
4503  */
4504 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4505 {
4506         pud_t *new = pud_alloc_one(mm, address);
4507         if (!new)
4508                 return -ENOMEM;
4509
4510         smp_wmb(); /* See comment in __pte_alloc */
4511
4512         spin_lock(&mm->page_table_lock);
4513         if (!p4d_present(*p4d)) {
4514                 mm_inc_nr_puds(mm);
4515                 p4d_populate(mm, p4d, new);
4516         } else  /* Another has populated it */
4517                 pud_free(mm, new);
4518         spin_unlock(&mm->page_table_lock);
4519         return 0;
4520 }
4521 #endif /* __PAGETABLE_PUD_FOLDED */
4522
4523 #ifndef __PAGETABLE_PMD_FOLDED
4524 /*
4525  * Allocate page middle directory.
4526  * We've already handled the fast-path in-line.
4527  */
4528 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4529 {
4530         spinlock_t *ptl;
4531         pmd_t *new = pmd_alloc_one(mm, address);
4532         if (!new)
4533                 return -ENOMEM;
4534
4535         smp_wmb(); /* See comment in __pte_alloc */
4536
4537         ptl = pud_lock(mm, pud);
4538         if (!pud_present(*pud)) {
4539                 mm_inc_nr_pmds(mm);
4540                 pud_populate(mm, pud, new);
4541         } else  /* Another has populated it */
4542                 pmd_free(mm, new);
4543         spin_unlock(ptl);
4544         return 0;
4545 }
4546 #endif /* __PAGETABLE_PMD_FOLDED */
4547
4548 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4549                             struct mmu_notifier_range *range,
4550                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4551 {
4552         pgd_t *pgd;
4553         p4d_t *p4d;
4554         pud_t *pud;
4555         pmd_t *pmd;
4556         pte_t *ptep;
4557
4558         pgd = pgd_offset(mm, address);
4559         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4560                 goto out;
4561
4562         p4d = p4d_offset(pgd, address);
4563         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4564                 goto out;
4565
4566         pud = pud_offset(p4d, address);
4567         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4568                 goto out;
4569
4570         pmd = pmd_offset(pud, address);
4571         VM_BUG_ON(pmd_trans_huge(*pmd));
4572
4573         if (pmd_huge(*pmd)) {
4574                 if (!pmdpp)
4575                         goto out;
4576
4577                 if (range) {
4578                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4579                                                 NULL, mm, address & PMD_MASK,
4580                                                 (address & PMD_MASK) + PMD_SIZE);
4581                         mmu_notifier_invalidate_range_start(range);
4582                 }
4583                 *ptlp = pmd_lock(mm, pmd);
4584                 if (pmd_huge(*pmd)) {
4585                         *pmdpp = pmd;
4586                         return 0;
4587                 }
4588                 spin_unlock(*ptlp);
4589                 if (range)
4590                         mmu_notifier_invalidate_range_end(range);
4591         }
4592
4593         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4594                 goto out;
4595
4596         if (range) {
4597                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4598                                         address & PAGE_MASK,
4599                                         (address & PAGE_MASK) + PAGE_SIZE);
4600                 mmu_notifier_invalidate_range_start(range);
4601         }
4602         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4603         if (!pte_present(*ptep))
4604                 goto unlock;
4605         *ptepp = ptep;
4606         return 0;
4607 unlock:
4608         pte_unmap_unlock(ptep, *ptlp);
4609         if (range)
4610                 mmu_notifier_invalidate_range_end(range);
4611 out:
4612         return -EINVAL;
4613 }
4614
4615 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4616                              pte_t **ptepp, spinlock_t **ptlp)
4617 {
4618         int res;
4619
4620         /* (void) is needed to make gcc happy */
4621         (void) __cond_lock(*ptlp,
4622                            !(res = __follow_pte_pmd(mm, address, NULL,
4623                                                     ptepp, NULL, ptlp)));
4624         return res;
4625 }
4626
4627 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4628                    struct mmu_notifier_range *range,
4629                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4630 {
4631         int res;
4632
4633         /* (void) is needed to make gcc happy */
4634         (void) __cond_lock(*ptlp,
4635                            !(res = __follow_pte_pmd(mm, address, range,
4636                                                     ptepp, pmdpp, ptlp)));
4637         return res;
4638 }
4639 EXPORT_SYMBOL(follow_pte_pmd);
4640
4641 /**
4642  * follow_pfn - look up PFN at a user virtual address
4643  * @vma: memory mapping
4644  * @address: user virtual address
4645  * @pfn: location to store found PFN
4646  *
4647  * Only IO mappings and raw PFN mappings are allowed.
4648  *
4649  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4650  */
4651 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4652         unsigned long *pfn)
4653 {
4654         int ret = -EINVAL;
4655         spinlock_t *ptl;
4656         pte_t *ptep;
4657
4658         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4659                 return ret;
4660
4661         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4662         if (ret)
4663                 return ret;
4664         *pfn = pte_pfn(*ptep);
4665         pte_unmap_unlock(ptep, ptl);
4666         return 0;
4667 }
4668 EXPORT_SYMBOL(follow_pfn);
4669
4670 #ifdef CONFIG_HAVE_IOREMAP_PROT
4671 int follow_phys(struct vm_area_struct *vma,
4672                 unsigned long address, unsigned int flags,
4673                 unsigned long *prot, resource_size_t *phys)
4674 {
4675         int ret = -EINVAL;
4676         pte_t *ptep, pte;
4677         spinlock_t *ptl;
4678
4679         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4680                 goto out;
4681
4682         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4683                 goto out;
4684         pte = *ptep;
4685
4686         if ((flags & FOLL_WRITE) && !pte_write(pte))
4687                 goto unlock;
4688
4689         *prot = pgprot_val(pte_pgprot(pte));
4690         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4691
4692         ret = 0;
4693 unlock:
4694         pte_unmap_unlock(ptep, ptl);
4695 out:
4696         return ret;
4697 }
4698
4699 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4700                         void *buf, int len, int write)
4701 {
4702         resource_size_t phys_addr;
4703         unsigned long prot = 0;
4704         void __iomem *maddr;
4705         int offset = addr & (PAGE_SIZE-1);
4706
4707         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4708                 return -EINVAL;
4709
4710         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4711         if (!maddr)
4712                 return -ENOMEM;
4713
4714         if (write)
4715                 memcpy_toio(maddr + offset, buf, len);
4716         else
4717                 memcpy_fromio(buf, maddr + offset, len);
4718         iounmap(maddr);
4719
4720         return len;
4721 }
4722 EXPORT_SYMBOL_GPL(generic_access_phys);
4723 #endif
4724
4725 /*
4726  * Access another process' address space as given in mm.  If non-NULL, use the
4727  * given task for page fault accounting.
4728  */
4729 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4730                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4731 {
4732         struct vm_area_struct *vma;
4733         void *old_buf = buf;
4734         int write = gup_flags & FOLL_WRITE;
4735
4736         if (mmap_read_lock_killable(mm))
4737                 return 0;
4738
4739         /* ignore errors, just check how much was successfully transferred */
4740         while (len) {
4741                 int bytes, ret, offset;
4742                 void *maddr;
4743                 struct page *page = NULL;
4744
4745                 ret = get_user_pages_remote(mm, addr, 1,
4746                                 gup_flags, &page, &vma, NULL);
4747                 if (ret <= 0) {
4748 #ifndef CONFIG_HAVE_IOREMAP_PROT
4749                         break;
4750 #else
4751                         /*
4752                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4753                          * we can access using slightly different code.
4754                          */
4755                         vma = find_vma(mm, addr);
4756                         if (!vma || vma->vm_start > addr)
4757                                 break;
4758                         if (vma->vm_ops && vma->vm_ops->access)
4759                                 ret = vma->vm_ops->access(vma, addr, buf,
4760                                                           len, write);
4761                         if (ret <= 0)
4762                                 break;
4763                         bytes = ret;
4764 #endif
4765                 } else {
4766                         bytes = len;
4767                         offset = addr & (PAGE_SIZE-1);
4768                         if (bytes > PAGE_SIZE-offset)
4769                                 bytes = PAGE_SIZE-offset;
4770
4771                         maddr = kmap(page);
4772                         if (write) {
4773                                 copy_to_user_page(vma, page, addr,
4774                                                   maddr + offset, buf, bytes);
4775                                 set_page_dirty_lock(page);
4776                         } else {
4777                                 copy_from_user_page(vma, page, addr,
4778                                                     buf, maddr + offset, bytes);
4779                         }
4780                         kunmap(page);
4781                         put_page(page);
4782                 }
4783                 len -= bytes;
4784                 buf += bytes;
4785                 addr += bytes;
4786         }
4787         mmap_read_unlock(mm);
4788
4789         return buf - old_buf;
4790 }
4791
4792 /**
4793  * access_remote_vm - access another process' address space
4794  * @mm:         the mm_struct of the target address space
4795  * @addr:       start address to access
4796  * @buf:        source or destination buffer
4797  * @len:        number of bytes to transfer
4798  * @gup_flags:  flags modifying lookup behaviour
4799  *
4800  * The caller must hold a reference on @mm.
4801  *
4802  * Return: number of bytes copied from source to destination.
4803  */
4804 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4805                 void *buf, int len, unsigned int gup_flags)
4806 {
4807         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4808 }
4809
4810 /*
4811  * Access another process' address space.
4812  * Source/target buffer must be kernel space,
4813  * Do not walk the page table directly, use get_user_pages
4814  */
4815 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4816                 void *buf, int len, unsigned int gup_flags)
4817 {
4818         struct mm_struct *mm;
4819         int ret;
4820
4821         mm = get_task_mm(tsk);
4822         if (!mm)
4823                 return 0;
4824
4825         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4826
4827         mmput(mm);
4828
4829         return ret;
4830 }
4831 EXPORT_SYMBOL_GPL(access_process_vm);
4832
4833 /*
4834  * Print the name of a VMA.
4835  */
4836 void print_vma_addr(char *prefix, unsigned long ip)
4837 {
4838         struct mm_struct *mm = current->mm;
4839         struct vm_area_struct *vma;
4840
4841         /*
4842          * we might be running from an atomic context so we cannot sleep
4843          */
4844         if (!mmap_read_trylock(mm))
4845                 return;
4846
4847         vma = find_vma(mm, ip);
4848         if (vma && vma->vm_file) {
4849                 struct file *f = vma->vm_file;
4850                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4851                 if (buf) {
4852                         char *p;
4853
4854                         p = file_path(f, buf, PAGE_SIZE);
4855                         if (IS_ERR(p))
4856                                 p = "?";
4857                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4858                                         vma->vm_start,
4859                                         vma->vm_end - vma->vm_start);
4860                         free_page((unsigned long)buf);
4861                 }
4862         }
4863         mmap_read_unlock(mm);
4864 }
4865
4866 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4867 void __might_fault(const char *file, int line)
4868 {
4869         /*
4870          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4871          * holding the mmap_lock, this is safe because kernel memory doesn't
4872          * get paged out, therefore we'll never actually fault, and the
4873          * below annotations will generate false positives.
4874          */
4875         if (uaccess_kernel())
4876                 return;
4877         if (pagefault_disabled())
4878                 return;
4879         __might_sleep(file, line, 0);
4880 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4881         if (current->mm)
4882                 might_lock_read(&current->mm->mmap_lock);
4883 #endif
4884 }
4885 EXPORT_SYMBOL(__might_fault);
4886 #endif
4887
4888 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4889 /*
4890  * Process all subpages of the specified huge page with the specified
4891  * operation.  The target subpage will be processed last to keep its
4892  * cache lines hot.
4893  */
4894 static inline void process_huge_page(
4895         unsigned long addr_hint, unsigned int pages_per_huge_page,
4896         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4897         void *arg)
4898 {
4899         int i, n, base, l;
4900         unsigned long addr = addr_hint &
4901                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4902
4903         /* Process target subpage last to keep its cache lines hot */
4904         might_sleep();
4905         n = (addr_hint - addr) / PAGE_SIZE;
4906         if (2 * n <= pages_per_huge_page) {
4907                 /* If target subpage in first half of huge page */
4908                 base = 0;
4909                 l = n;
4910                 /* Process subpages at the end of huge page */
4911                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4912                         cond_resched();
4913                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4914                 }
4915         } else {
4916                 /* If target subpage in second half of huge page */
4917                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4918                 l = pages_per_huge_page - n;
4919                 /* Process subpages at the begin of huge page */
4920                 for (i = 0; i < base; i++) {
4921                         cond_resched();
4922                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4923                 }
4924         }
4925         /*
4926          * Process remaining subpages in left-right-left-right pattern
4927          * towards the target subpage
4928          */
4929         for (i = 0; i < l; i++) {
4930                 int left_idx = base + i;
4931                 int right_idx = base + 2 * l - 1 - i;
4932
4933                 cond_resched();
4934                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4935                 cond_resched();
4936                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4937         }
4938 }
4939
4940 static void clear_gigantic_page(struct page *page,
4941                                 unsigned long addr,
4942                                 unsigned int pages_per_huge_page)
4943 {
4944         int i;
4945         struct page *p = page;
4946
4947         might_sleep();
4948         for (i = 0; i < pages_per_huge_page;
4949              i++, p = mem_map_next(p, page, i)) {
4950                 cond_resched();
4951                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4952         }
4953 }
4954
4955 static void clear_subpage(unsigned long addr, int idx, void *arg)
4956 {
4957         struct page *page = arg;
4958
4959         clear_user_highpage(page + idx, addr);
4960 }
4961
4962 void clear_huge_page(struct page *page,
4963                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4964 {
4965         unsigned long addr = addr_hint &
4966                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4967
4968         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4969                 clear_gigantic_page(page, addr, pages_per_huge_page);
4970                 return;
4971         }
4972
4973         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4974 }
4975
4976 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4977                                     unsigned long addr,
4978                                     struct vm_area_struct *vma,
4979                                     unsigned int pages_per_huge_page)
4980 {
4981         int i;
4982         struct page *dst_base = dst;
4983         struct page *src_base = src;
4984
4985         for (i = 0; i < pages_per_huge_page; ) {
4986                 cond_resched();
4987                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4988
4989                 i++;
4990                 dst = mem_map_next(dst, dst_base, i);
4991                 src = mem_map_next(src, src_base, i);
4992         }
4993 }
4994
4995 struct copy_subpage_arg {
4996         struct page *dst;
4997         struct page *src;
4998         struct vm_area_struct *vma;
4999 };
5000
5001 static void copy_subpage(unsigned long addr, int idx, void *arg)
5002 {
5003         struct copy_subpage_arg *copy_arg = arg;
5004
5005         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5006                            addr, copy_arg->vma);
5007 }
5008
5009 void copy_user_huge_page(struct page *dst, struct page *src,
5010                          unsigned long addr_hint, struct vm_area_struct *vma,
5011                          unsigned int pages_per_huge_page)
5012 {
5013         unsigned long addr = addr_hint &
5014                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5015         struct copy_subpage_arg arg = {
5016                 .dst = dst,
5017                 .src = src,
5018                 .vma = vma,
5019         };
5020
5021         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5022                 copy_user_gigantic_page(dst, src, addr, vma,
5023                                         pages_per_huge_page);
5024                 return;
5025         }
5026
5027         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5028 }
5029
5030 long copy_huge_page_from_user(struct page *dst_page,
5031                                 const void __user *usr_src,
5032                                 unsigned int pages_per_huge_page,
5033                                 bool allow_pagefault)
5034 {
5035         void *src = (void *)usr_src;
5036         void *page_kaddr;
5037         unsigned long i, rc = 0;
5038         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5039
5040         for (i = 0; i < pages_per_huge_page; i++) {
5041                 if (allow_pagefault)
5042                         page_kaddr = kmap(dst_page + i);
5043                 else
5044                         page_kaddr = kmap_atomic(dst_page + i);
5045                 rc = copy_from_user(page_kaddr,
5046                                 (const void __user *)(src + i * PAGE_SIZE),
5047                                 PAGE_SIZE);
5048                 if (allow_pagefault)
5049                         kunmap(dst_page + i);
5050                 else
5051                         kunmap_atomic(page_kaddr);
5052
5053                 ret_val -= (PAGE_SIZE - rc);
5054                 if (rc)
5055                         break;
5056
5057                 cond_resched();
5058         }
5059         return ret_val;
5060 }
5061 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5062
5063 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5064
5065 static struct kmem_cache *page_ptl_cachep;
5066
5067 void __init ptlock_cache_init(void)
5068 {
5069         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5070                         SLAB_PANIC, NULL);
5071 }
5072
5073 bool ptlock_alloc(struct page *page)
5074 {
5075         spinlock_t *ptl;
5076
5077         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5078         if (!ptl)
5079                 return false;
5080         page->ptl = ptl;
5081         return true;
5082 }
5083
5084 void ptlock_free(struct page *page)
5085 {
5086         kmem_cache_free(page_ptl_cachep, page->ptl);
5087 }
5088 #endif