Merge branch 'akpm' (patches from Andrew)
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118                                         1;
119 #else
120                                         2;
121 #endif
122
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126         /*
127          * Those arches which don't have hw access flag feature need to
128          * implement their own helper. By default, "true" means pagefault
129          * will be hit on old pte.
130          */
131         return true;
132 }
133 #endif
134
135 static int __init disable_randmaps(char *s)
136 {
137         randomize_va_space = 0;
138         return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144
145 unsigned long highest_memmap_pfn __read_mostly;
146
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152         zero_pfn = page_to_pfn(ZERO_PAGE(0));
153         return 0;
154 }
155 core_initcall(init_zero_pfn);
156
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159         trace_rss_stat(mm, member, count);
160 }
161
162 #if defined(SPLIT_RSS_COUNTING)
163
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166         int i;
167
168         for (i = 0; i < NR_MM_COUNTERS; i++) {
169                 if (current->rss_stat.count[i]) {
170                         add_mm_counter(mm, i, current->rss_stat.count[i]);
171                         current->rss_stat.count[i] = 0;
172                 }
173         }
174         current->rss_stat.events = 0;
175 }
176
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179         struct task_struct *task = current;
180
181         if (likely(task->mm == mm))
182                 task->rss_stat.count[member] += val;
183         else
184                 add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH  (64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193         if (unlikely(task != current))
194                 return;
195         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196                 sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206
207 #endif /* SPLIT_RSS_COUNTING */
208
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214                            unsigned long addr)
215 {
216         pgtable_t token = pmd_pgtable(*pmd);
217         pmd_clear(pmd);
218         pte_free_tlb(tlb, token, addr);
219         mm_dec_nr_ptes(tlb->mm);
220 }
221
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223                                 unsigned long addr, unsigned long end,
224                                 unsigned long floor, unsigned long ceiling)
225 {
226         pmd_t *pmd;
227         unsigned long next;
228         unsigned long start;
229
230         start = addr;
231         pmd = pmd_offset(pud, addr);
232         do {
233                 next = pmd_addr_end(addr, end);
234                 if (pmd_none_or_clear_bad(pmd))
235                         continue;
236                 free_pte_range(tlb, pmd, addr);
237         } while (pmd++, addr = next, addr != end);
238
239         start &= PUD_MASK;
240         if (start < floor)
241                 return;
242         if (ceiling) {
243                 ceiling &= PUD_MASK;
244                 if (!ceiling)
245                         return;
246         }
247         if (end - 1 > ceiling - 1)
248                 return;
249
250         pmd = pmd_offset(pud, start);
251         pud_clear(pud);
252         pmd_free_tlb(tlb, pmd, start);
253         mm_dec_nr_pmds(tlb->mm);
254 }
255
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257                                 unsigned long addr, unsigned long end,
258                                 unsigned long floor, unsigned long ceiling)
259 {
260         pud_t *pud;
261         unsigned long next;
262         unsigned long start;
263
264         start = addr;
265         pud = pud_offset(p4d, addr);
266         do {
267                 next = pud_addr_end(addr, end);
268                 if (pud_none_or_clear_bad(pud))
269                         continue;
270                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271         } while (pud++, addr = next, addr != end);
272
273         start &= P4D_MASK;
274         if (start < floor)
275                 return;
276         if (ceiling) {
277                 ceiling &= P4D_MASK;
278                 if (!ceiling)
279                         return;
280         }
281         if (end - 1 > ceiling - 1)
282                 return;
283
284         pud = pud_offset(p4d, start);
285         p4d_clear(p4d);
286         pud_free_tlb(tlb, pud, start);
287         mm_dec_nr_puds(tlb->mm);
288 }
289
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291                                 unsigned long addr, unsigned long end,
292                                 unsigned long floor, unsigned long ceiling)
293 {
294         p4d_t *p4d;
295         unsigned long next;
296         unsigned long start;
297
298         start = addr;
299         p4d = p4d_offset(pgd, addr);
300         do {
301                 next = p4d_addr_end(addr, end);
302                 if (p4d_none_or_clear_bad(p4d))
303                         continue;
304                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305         } while (p4d++, addr = next, addr != end);
306
307         start &= PGDIR_MASK;
308         if (start < floor)
309                 return;
310         if (ceiling) {
311                 ceiling &= PGDIR_MASK;
312                 if (!ceiling)
313                         return;
314         }
315         if (end - 1 > ceiling - 1)
316                 return;
317
318         p4d = p4d_offset(pgd, start);
319         pgd_clear(pgd);
320         p4d_free_tlb(tlb, p4d, start);
321 }
322
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327                         unsigned long addr, unsigned long end,
328                         unsigned long floor, unsigned long ceiling)
329 {
330         pgd_t *pgd;
331         unsigned long next;
332
333         /*
334          * The next few lines have given us lots of grief...
335          *
336          * Why are we testing PMD* at this top level?  Because often
337          * there will be no work to do at all, and we'd prefer not to
338          * go all the way down to the bottom just to discover that.
339          *
340          * Why all these "- 1"s?  Because 0 represents both the bottom
341          * of the address space and the top of it (using -1 for the
342          * top wouldn't help much: the masks would do the wrong thing).
343          * The rule is that addr 0 and floor 0 refer to the bottom of
344          * the address space, but end 0 and ceiling 0 refer to the top
345          * Comparisons need to use "end - 1" and "ceiling - 1" (though
346          * that end 0 case should be mythical).
347          *
348          * Wherever addr is brought up or ceiling brought down, we must
349          * be careful to reject "the opposite 0" before it confuses the
350          * subsequent tests.  But what about where end is brought down
351          * by PMD_SIZE below? no, end can't go down to 0 there.
352          *
353          * Whereas we round start (addr) and ceiling down, by different
354          * masks at different levels, in order to test whether a table
355          * now has no other vmas using it, so can be freed, we don't
356          * bother to round floor or end up - the tests don't need that.
357          */
358
359         addr &= PMD_MASK;
360         if (addr < floor) {
361                 addr += PMD_SIZE;
362                 if (!addr)
363                         return;
364         }
365         if (ceiling) {
366                 ceiling &= PMD_MASK;
367                 if (!ceiling)
368                         return;
369         }
370         if (end - 1 > ceiling - 1)
371                 end -= PMD_SIZE;
372         if (addr > end - 1)
373                 return;
374         /*
375          * We add page table cache pages with PAGE_SIZE,
376          * (see pte_free_tlb()), flush the tlb if we need
377          */
378         tlb_change_page_size(tlb, PAGE_SIZE);
379         pgd = pgd_offset(tlb->mm, addr);
380         do {
381                 next = pgd_addr_end(addr, end);
382                 if (pgd_none_or_clear_bad(pgd))
383                         continue;
384                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385         } while (pgd++, addr = next, addr != end);
386 }
387
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389                 unsigned long floor, unsigned long ceiling)
390 {
391         while (vma) {
392                 struct vm_area_struct *next = vma->vm_next;
393                 unsigned long addr = vma->vm_start;
394
395                 /*
396                  * Hide vma from rmap and truncate_pagecache before freeing
397                  * pgtables
398                  */
399                 unlink_anon_vmas(vma);
400                 unlink_file_vma(vma);
401
402                 if (is_vm_hugetlb_page(vma)) {
403                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404                                 floor, next ? next->vm_start : ceiling);
405                 } else {
406                         /*
407                          * Optimization: gather nearby vmas into one call down
408                          */
409                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410                                && !is_vm_hugetlb_page(next)) {
411                                 vma = next;
412                                 next = vma->vm_next;
413                                 unlink_anon_vmas(vma);
414                                 unlink_file_vma(vma);
415                         }
416                         free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 }
419                 vma = next;
420         }
421 }
422
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425         spinlock_t *ptl;
426         pgtable_t new = pte_alloc_one(mm);
427         if (!new)
428                 return -ENOMEM;
429
430         /*
431          * Ensure all pte setup (eg. pte page lock and page clearing) are
432          * visible before the pte is made visible to other CPUs by being
433          * put into page tables.
434          *
435          * The other side of the story is the pointer chasing in the page
436          * table walking code (when walking the page table without locking;
437          * ie. most of the time). Fortunately, these data accesses consist
438          * of a chain of data-dependent loads, meaning most CPUs (alpha
439          * being the notable exception) will already guarantee loads are
440          * seen in-order. See the alpha page table accessors for the
441          * smp_read_barrier_depends() barriers in page table walking code.
442          */
443         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
445         ptl = pmd_lock(mm, pmd);
446         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
447                 mm_inc_nr_ptes(mm);
448                 pmd_populate(mm, pmd, new);
449                 new = NULL;
450         }
451         spin_unlock(ptl);
452         if (new)
453                 pte_free(mm, new);
454         return 0;
455 }
456
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459         pte_t *new = pte_alloc_one_kernel(&init_mm);
460         if (!new)
461                 return -ENOMEM;
462
463         smp_wmb(); /* See comment in __pte_alloc */
464
465         spin_lock(&init_mm.page_table_lock);
466         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
467                 pmd_populate_kernel(&init_mm, pmd, new);
468                 new = NULL;
469         }
470         spin_unlock(&init_mm.page_table_lock);
471         if (new)
472                 pte_free_kernel(&init_mm, new);
473         return 0;
474 }
475
476 static inline void init_rss_vec(int *rss)
477 {
478         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483         int i;
484
485         if (current->mm == mm)
486                 sync_mm_rss(mm);
487         for (i = 0; i < NR_MM_COUNTERS; i++)
488                 if (rss[i])
489                         add_mm_counter(mm, i, rss[i]);
490 }
491
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500                           pte_t pte, struct page *page)
501 {
502         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503         p4d_t *p4d = p4d_offset(pgd, addr);
504         pud_t *pud = pud_offset(p4d, addr);
505         pmd_t *pmd = pmd_offset(pud, addr);
506         struct address_space *mapping;
507         pgoff_t index;
508         static unsigned long resume;
509         static unsigned long nr_shown;
510         static unsigned long nr_unshown;
511
512         /*
513          * Allow a burst of 60 reports, then keep quiet for that minute;
514          * or allow a steady drip of one report per second.
515          */
516         if (nr_shown == 60) {
517                 if (time_before(jiffies, resume)) {
518                         nr_unshown++;
519                         return;
520                 }
521                 if (nr_unshown) {
522                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523                                  nr_unshown);
524                         nr_unshown = 0;
525                 }
526                 nr_shown = 0;
527         }
528         if (nr_shown++ == 0)
529                 resume = jiffies + 60 * HZ;
530
531         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532         index = linear_page_index(vma, addr);
533
534         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535                  current->comm,
536                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
537         if (page)
538                 dump_page(page, "bad pte");
539         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542                  vma->vm_file,
543                  vma->vm_ops ? vma->vm_ops->fault : NULL,
544                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545                  mapping ? mapping->a_ops->readpage : NULL);
546         dump_stack();
547         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593                             pte_t pte)
594 {
595         unsigned long pfn = pte_pfn(pte);
596
597         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598                 if (likely(!pte_special(pte)))
599                         goto check_pfn;
600                 if (vma->vm_ops && vma->vm_ops->find_special_page)
601                         return vma->vm_ops->find_special_page(vma, addr);
602                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603                         return NULL;
604                 if (is_zero_pfn(pfn))
605                         return NULL;
606                 if (pte_devmap(pte))
607                         return NULL;
608
609                 print_bad_pte(vma, addr, pte, NULL);
610                 return NULL;
611         }
612
613         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616                 if (vma->vm_flags & VM_MIXEDMAP) {
617                         if (!pfn_valid(pfn))
618                                 return NULL;
619                         goto out;
620                 } else {
621                         unsigned long off;
622                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
623                         if (pfn == vma->vm_pgoff + off)
624                                 return NULL;
625                         if (!is_cow_mapping(vma->vm_flags))
626                                 return NULL;
627                 }
628         }
629
630         if (is_zero_pfn(pfn))
631                 return NULL;
632
633 check_pfn:
634         if (unlikely(pfn > highest_memmap_pfn)) {
635                 print_bad_pte(vma, addr, pte, NULL);
636                 return NULL;
637         }
638
639         /*
640          * NOTE! We still have PageReserved() pages in the page tables.
641          * eg. VDSO mappings can cause them to exist.
642          */
643 out:
644         return pfn_to_page(pfn);
645 }
646
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649                                 pmd_t pmd)
650 {
651         unsigned long pfn = pmd_pfn(pmd);
652
653         /*
654          * There is no pmd_special() but there may be special pmds, e.g.
655          * in a direct-access (dax) mapping, so let's just replicate the
656          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657          */
658         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659                 if (vma->vm_flags & VM_MIXEDMAP) {
660                         if (!pfn_valid(pfn))
661                                 return NULL;
662                         goto out;
663                 } else {
664                         unsigned long off;
665                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
666                         if (pfn == vma->vm_pgoff + off)
667                                 return NULL;
668                         if (!is_cow_mapping(vma->vm_flags))
669                                 return NULL;
670                 }
671         }
672
673         if (pmd_devmap(pmd))
674                 return NULL;
675         if (is_huge_zero_pmd(pmd))
676                 return NULL;
677         if (unlikely(pfn > highest_memmap_pfn))
678                 return NULL;
679
680         /*
681          * NOTE! We still have PageReserved() pages in the page tables.
682          * eg. VDSO mappings can cause them to exist.
683          */
684 out:
685         return pfn_to_page(pfn);
686 }
687 #endif
688
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698                 unsigned long addr, int *rss)
699 {
700         unsigned long vm_flags = vma->vm_flags;
701         pte_t pte = *src_pte;
702         struct page *page;
703
704         /* pte contains position in swap or file, so copy. */
705         if (unlikely(!pte_present(pte))) {
706                 swp_entry_t entry = pte_to_swp_entry(pte);
707
708                 if (likely(!non_swap_entry(entry))) {
709                         if (swap_duplicate(entry) < 0)
710                                 return entry.val;
711
712                         /* make sure dst_mm is on swapoff's mmlist. */
713                         if (unlikely(list_empty(&dst_mm->mmlist))) {
714                                 spin_lock(&mmlist_lock);
715                                 if (list_empty(&dst_mm->mmlist))
716                                         list_add(&dst_mm->mmlist,
717                                                         &src_mm->mmlist);
718                                 spin_unlock(&mmlist_lock);
719                         }
720                         rss[MM_SWAPENTS]++;
721                 } else if (is_migration_entry(entry)) {
722                         page = migration_entry_to_page(entry);
723
724                         rss[mm_counter(page)]++;
725
726                         if (is_write_migration_entry(entry) &&
727                                         is_cow_mapping(vm_flags)) {
728                                 /*
729                                  * COW mappings require pages in both
730                                  * parent and child to be set to read.
731                                  */
732                                 make_migration_entry_read(&entry);
733                                 pte = swp_entry_to_pte(entry);
734                                 if (pte_swp_soft_dirty(*src_pte))
735                                         pte = pte_swp_mksoft_dirty(pte);
736                                 if (pte_swp_uffd_wp(*src_pte))
737                                         pte = pte_swp_mkuffd_wp(pte);
738                                 set_pte_at(src_mm, addr, src_pte, pte);
739                         }
740                 } else if (is_device_private_entry(entry)) {
741                         page = device_private_entry_to_page(entry);
742
743                         /*
744                          * Update rss count even for unaddressable pages, as
745                          * they should treated just like normal pages in this
746                          * respect.
747                          *
748                          * We will likely want to have some new rss counters
749                          * for unaddressable pages, at some point. But for now
750                          * keep things as they are.
751                          */
752                         get_page(page);
753                         rss[mm_counter(page)]++;
754                         page_dup_rmap(page, false);
755
756                         /*
757                          * We do not preserve soft-dirty information, because so
758                          * far, checkpoint/restore is the only feature that
759                          * requires that. And checkpoint/restore does not work
760                          * when a device driver is involved (you cannot easily
761                          * save and restore device driver state).
762                          */
763                         if (is_write_device_private_entry(entry) &&
764                             is_cow_mapping(vm_flags)) {
765                                 make_device_private_entry_read(&entry);
766                                 pte = swp_entry_to_pte(entry);
767                                 if (pte_swp_uffd_wp(*src_pte))
768                                         pte = pte_swp_mkuffd_wp(pte);
769                                 set_pte_at(src_mm, addr, src_pte, pte);
770                         }
771                 }
772                 goto out_set_pte;
773         }
774
775         /*
776          * If it's a COW mapping, write protect it both
777          * in the parent and the child
778          */
779         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780                 ptep_set_wrprotect(src_mm, addr, src_pte);
781                 pte = pte_wrprotect(pte);
782         }
783
784         /*
785          * If it's a shared mapping, mark it clean in
786          * the child
787          */
788         if (vm_flags & VM_SHARED)
789                 pte = pte_mkclean(pte);
790         pte = pte_mkold(pte);
791
792         /*
793          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794          * does not have the VM_UFFD_WP, which means that the uffd
795          * fork event is not enabled.
796          */
797         if (!(vm_flags & VM_UFFD_WP))
798                 pte = pte_clear_uffd_wp(pte);
799
800         page = vm_normal_page(vma, addr, pte);
801         if (page) {
802                 get_page(page);
803                 page_dup_rmap(page, false);
804                 rss[mm_counter(page)]++;
805         } else if (pte_devmap(pte)) {
806                 page = pte_page(pte);
807         }
808
809 out_set_pte:
810         set_pte_at(dst_mm, addr, dst_pte, pte);
811         return 0;
812 }
813
814 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
815                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
816                    unsigned long addr, unsigned long end)
817 {
818         pte_t *orig_src_pte, *orig_dst_pte;
819         pte_t *src_pte, *dst_pte;
820         spinlock_t *src_ptl, *dst_ptl;
821         int progress = 0;
822         int rss[NR_MM_COUNTERS];
823         swp_entry_t entry = (swp_entry_t){0};
824
825 again:
826         init_rss_vec(rss);
827
828         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
829         if (!dst_pte)
830                 return -ENOMEM;
831         src_pte = pte_offset_map(src_pmd, addr);
832         src_ptl = pte_lockptr(src_mm, src_pmd);
833         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
834         orig_src_pte = src_pte;
835         orig_dst_pte = dst_pte;
836         arch_enter_lazy_mmu_mode();
837
838         do {
839                 /*
840                  * We are holding two locks at this point - either of them
841                  * could generate latencies in another task on another CPU.
842                  */
843                 if (progress >= 32) {
844                         progress = 0;
845                         if (need_resched() ||
846                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
847                                 break;
848                 }
849                 if (pte_none(*src_pte)) {
850                         progress++;
851                         continue;
852                 }
853                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
854                                                         vma, addr, rss);
855                 if (entry.val)
856                         break;
857                 progress += 8;
858         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
859
860         arch_leave_lazy_mmu_mode();
861         spin_unlock(src_ptl);
862         pte_unmap(orig_src_pte);
863         add_mm_rss_vec(dst_mm, rss);
864         pte_unmap_unlock(orig_dst_pte, dst_ptl);
865         cond_resched();
866
867         if (entry.val) {
868                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
869                         return -ENOMEM;
870                 progress = 0;
871         }
872         if (addr != end)
873                 goto again;
874         return 0;
875 }
876
877 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
879                 unsigned long addr, unsigned long end)
880 {
881         pmd_t *src_pmd, *dst_pmd;
882         unsigned long next;
883
884         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
885         if (!dst_pmd)
886                 return -ENOMEM;
887         src_pmd = pmd_offset(src_pud, addr);
888         do {
889                 next = pmd_addr_end(addr, end);
890                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
891                         || pmd_devmap(*src_pmd)) {
892                         int err;
893                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
894                         err = copy_huge_pmd(dst_mm, src_mm,
895                                             dst_pmd, src_pmd, addr, vma);
896                         if (err == -ENOMEM)
897                                 return -ENOMEM;
898                         if (!err)
899                                 continue;
900                         /* fall through */
901                 }
902                 if (pmd_none_or_clear_bad(src_pmd))
903                         continue;
904                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
905                                                 vma, addr, next))
906                         return -ENOMEM;
907         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
908         return 0;
909 }
910
911 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
912                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
913                 unsigned long addr, unsigned long end)
914 {
915         pud_t *src_pud, *dst_pud;
916         unsigned long next;
917
918         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
919         if (!dst_pud)
920                 return -ENOMEM;
921         src_pud = pud_offset(src_p4d, addr);
922         do {
923                 next = pud_addr_end(addr, end);
924                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
925                         int err;
926
927                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
928                         err = copy_huge_pud(dst_mm, src_mm,
929                                             dst_pud, src_pud, addr, vma);
930                         if (err == -ENOMEM)
931                                 return -ENOMEM;
932                         if (!err)
933                                 continue;
934                         /* fall through */
935                 }
936                 if (pud_none_or_clear_bad(src_pud))
937                         continue;
938                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
939                                                 vma, addr, next))
940                         return -ENOMEM;
941         } while (dst_pud++, src_pud++, addr = next, addr != end);
942         return 0;
943 }
944
945 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
947                 unsigned long addr, unsigned long end)
948 {
949         p4d_t *src_p4d, *dst_p4d;
950         unsigned long next;
951
952         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
953         if (!dst_p4d)
954                 return -ENOMEM;
955         src_p4d = p4d_offset(src_pgd, addr);
956         do {
957                 next = p4d_addr_end(addr, end);
958                 if (p4d_none_or_clear_bad(src_p4d))
959                         continue;
960                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
961                                                 vma, addr, next))
962                         return -ENOMEM;
963         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
964         return 0;
965 }
966
967 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968                 struct vm_area_struct *vma)
969 {
970         pgd_t *src_pgd, *dst_pgd;
971         unsigned long next;
972         unsigned long addr = vma->vm_start;
973         unsigned long end = vma->vm_end;
974         struct mmu_notifier_range range;
975         bool is_cow;
976         int ret;
977
978         /*
979          * Don't copy ptes where a page fault will fill them correctly.
980          * Fork becomes much lighter when there are big shared or private
981          * readonly mappings. The tradeoff is that copy_page_range is more
982          * efficient than faulting.
983          */
984         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
985                         !vma->anon_vma)
986                 return 0;
987
988         if (is_vm_hugetlb_page(vma))
989                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
990
991         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
992                 /*
993                  * We do not free on error cases below as remove_vma
994                  * gets called on error from higher level routine
995                  */
996                 ret = track_pfn_copy(vma);
997                 if (ret)
998                         return ret;
999         }
1000
1001         /*
1002          * We need to invalidate the secondary MMU mappings only when
1003          * there could be a permission downgrade on the ptes of the
1004          * parent mm. And a permission downgrade will only happen if
1005          * is_cow_mapping() returns true.
1006          */
1007         is_cow = is_cow_mapping(vma->vm_flags);
1008
1009         if (is_cow) {
1010                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1011                                         0, vma, src_mm, addr, end);
1012                 mmu_notifier_invalidate_range_start(&range);
1013         }
1014
1015         ret = 0;
1016         dst_pgd = pgd_offset(dst_mm, addr);
1017         src_pgd = pgd_offset(src_mm, addr);
1018         do {
1019                 next = pgd_addr_end(addr, end);
1020                 if (pgd_none_or_clear_bad(src_pgd))
1021                         continue;
1022                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1023                                             vma, addr, next))) {
1024                         ret = -ENOMEM;
1025                         break;
1026                 }
1027         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1028
1029         if (is_cow)
1030                 mmu_notifier_invalidate_range_end(&range);
1031         return ret;
1032 }
1033
1034 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1035                                 struct vm_area_struct *vma, pmd_t *pmd,
1036                                 unsigned long addr, unsigned long end,
1037                                 struct zap_details *details)
1038 {
1039         struct mm_struct *mm = tlb->mm;
1040         int force_flush = 0;
1041         int rss[NR_MM_COUNTERS];
1042         spinlock_t *ptl;
1043         pte_t *start_pte;
1044         pte_t *pte;
1045         swp_entry_t entry;
1046
1047         tlb_change_page_size(tlb, PAGE_SIZE);
1048 again:
1049         init_rss_vec(rss);
1050         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1051         pte = start_pte;
1052         flush_tlb_batched_pending(mm);
1053         arch_enter_lazy_mmu_mode();
1054         do {
1055                 pte_t ptent = *pte;
1056                 if (pte_none(ptent))
1057                         continue;
1058
1059                 if (need_resched())
1060                         break;
1061
1062                 if (pte_present(ptent)) {
1063                         struct page *page;
1064
1065                         page = vm_normal_page(vma, addr, ptent);
1066                         if (unlikely(details) && page) {
1067                                 /*
1068                                  * unmap_shared_mapping_pages() wants to
1069                                  * invalidate cache without truncating:
1070                                  * unmap shared but keep private pages.
1071                                  */
1072                                 if (details->check_mapping &&
1073                                     details->check_mapping != page_rmapping(page))
1074                                         continue;
1075                         }
1076                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1077                                                         tlb->fullmm);
1078                         tlb_remove_tlb_entry(tlb, pte, addr);
1079                         if (unlikely(!page))
1080                                 continue;
1081
1082                         if (!PageAnon(page)) {
1083                                 if (pte_dirty(ptent)) {
1084                                         force_flush = 1;
1085                                         set_page_dirty(page);
1086                                 }
1087                                 if (pte_young(ptent) &&
1088                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1089                                         mark_page_accessed(page);
1090                         }
1091                         rss[mm_counter(page)]--;
1092                         page_remove_rmap(page, false);
1093                         if (unlikely(page_mapcount(page) < 0))
1094                                 print_bad_pte(vma, addr, ptent, page);
1095                         if (unlikely(__tlb_remove_page(tlb, page))) {
1096                                 force_flush = 1;
1097                                 addr += PAGE_SIZE;
1098                                 break;
1099                         }
1100                         continue;
1101                 }
1102
1103                 entry = pte_to_swp_entry(ptent);
1104                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105                         struct page *page = device_private_entry_to_page(entry);
1106
1107                         if (unlikely(details && details->check_mapping)) {
1108                                 /*
1109                                  * unmap_shared_mapping_pages() wants to
1110                                  * invalidate cache without truncating:
1111                                  * unmap shared but keep private pages.
1112                                  */
1113                                 if (details->check_mapping !=
1114                                     page_rmapping(page))
1115                                         continue;
1116                         }
1117
1118                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119                         rss[mm_counter(page)]--;
1120                         page_remove_rmap(page, false);
1121                         put_page(page);
1122                         continue;
1123                 }
1124
1125                 /* If details->check_mapping, we leave swap entries. */
1126                 if (unlikely(details))
1127                         continue;
1128
1129                 if (!non_swap_entry(entry))
1130                         rss[MM_SWAPENTS]--;
1131                 else if (is_migration_entry(entry)) {
1132                         struct page *page;
1133
1134                         page = migration_entry_to_page(entry);
1135                         rss[mm_counter(page)]--;
1136                 }
1137                 if (unlikely(!free_swap_and_cache(entry)))
1138                         print_bad_pte(vma, addr, ptent, NULL);
1139                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140         } while (pte++, addr += PAGE_SIZE, addr != end);
1141
1142         add_mm_rss_vec(mm, rss);
1143         arch_leave_lazy_mmu_mode();
1144
1145         /* Do the actual TLB flush before dropping ptl */
1146         if (force_flush)
1147                 tlb_flush_mmu_tlbonly(tlb);
1148         pte_unmap_unlock(start_pte, ptl);
1149
1150         /*
1151          * If we forced a TLB flush (either due to running out of
1152          * batch buffers or because we needed to flush dirty TLB
1153          * entries before releasing the ptl), free the batched
1154          * memory too. Restart if we didn't do everything.
1155          */
1156         if (force_flush) {
1157                 force_flush = 0;
1158                 tlb_flush_mmu(tlb);
1159         }
1160
1161         if (addr != end) {
1162                 cond_resched();
1163                 goto again;
1164         }
1165
1166         return addr;
1167 }
1168
1169 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1170                                 struct vm_area_struct *vma, pud_t *pud,
1171                                 unsigned long addr, unsigned long end,
1172                                 struct zap_details *details)
1173 {
1174         pmd_t *pmd;
1175         unsigned long next;
1176
1177         pmd = pmd_offset(pud, addr);
1178         do {
1179                 next = pmd_addr_end(addr, end);
1180                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1181                         if (next - addr != HPAGE_PMD_SIZE)
1182                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1183                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1184                                 goto next;
1185                         /* fall through */
1186                 }
1187                 /*
1188                  * Here there can be other concurrent MADV_DONTNEED or
1189                  * trans huge page faults running, and if the pmd is
1190                  * none or trans huge it can change under us. This is
1191                  * because MADV_DONTNEED holds the mmap_sem in read
1192                  * mode.
1193                  */
1194                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1195                         goto next;
1196                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1197 next:
1198                 cond_resched();
1199         } while (pmd++, addr = next, addr != end);
1200
1201         return addr;
1202 }
1203
1204 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1205                                 struct vm_area_struct *vma, p4d_t *p4d,
1206                                 unsigned long addr, unsigned long end,
1207                                 struct zap_details *details)
1208 {
1209         pud_t *pud;
1210         unsigned long next;
1211
1212         pud = pud_offset(p4d, addr);
1213         do {
1214                 next = pud_addr_end(addr, end);
1215                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1216                         if (next - addr != HPAGE_PUD_SIZE) {
1217                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1218                                 split_huge_pud(vma, pud, addr);
1219                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1220                                 goto next;
1221                         /* fall through */
1222                 }
1223                 if (pud_none_or_clear_bad(pud))
1224                         continue;
1225                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1226 next:
1227                 cond_resched();
1228         } while (pud++, addr = next, addr != end);
1229
1230         return addr;
1231 }
1232
1233 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1234                                 struct vm_area_struct *vma, pgd_t *pgd,
1235                                 unsigned long addr, unsigned long end,
1236                                 struct zap_details *details)
1237 {
1238         p4d_t *p4d;
1239         unsigned long next;
1240
1241         p4d = p4d_offset(pgd, addr);
1242         do {
1243                 next = p4d_addr_end(addr, end);
1244                 if (p4d_none_or_clear_bad(p4d))
1245                         continue;
1246                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1247         } while (p4d++, addr = next, addr != end);
1248
1249         return addr;
1250 }
1251
1252 void unmap_page_range(struct mmu_gather *tlb,
1253                              struct vm_area_struct *vma,
1254                              unsigned long addr, unsigned long end,
1255                              struct zap_details *details)
1256 {
1257         pgd_t *pgd;
1258         unsigned long next;
1259
1260         BUG_ON(addr >= end);
1261         tlb_start_vma(tlb, vma);
1262         pgd = pgd_offset(vma->vm_mm, addr);
1263         do {
1264                 next = pgd_addr_end(addr, end);
1265                 if (pgd_none_or_clear_bad(pgd))
1266                         continue;
1267                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1268         } while (pgd++, addr = next, addr != end);
1269         tlb_end_vma(tlb, vma);
1270 }
1271
1272
1273 static void unmap_single_vma(struct mmu_gather *tlb,
1274                 struct vm_area_struct *vma, unsigned long start_addr,
1275                 unsigned long end_addr,
1276                 struct zap_details *details)
1277 {
1278         unsigned long start = max(vma->vm_start, start_addr);
1279         unsigned long end;
1280
1281         if (start >= vma->vm_end)
1282                 return;
1283         end = min(vma->vm_end, end_addr);
1284         if (end <= vma->vm_start)
1285                 return;
1286
1287         if (vma->vm_file)
1288                 uprobe_munmap(vma, start, end);
1289
1290         if (unlikely(vma->vm_flags & VM_PFNMAP))
1291                 untrack_pfn(vma, 0, 0);
1292
1293         if (start != end) {
1294                 if (unlikely(is_vm_hugetlb_page(vma))) {
1295                         /*
1296                          * It is undesirable to test vma->vm_file as it
1297                          * should be non-null for valid hugetlb area.
1298                          * However, vm_file will be NULL in the error
1299                          * cleanup path of mmap_region. When
1300                          * hugetlbfs ->mmap method fails,
1301                          * mmap_region() nullifies vma->vm_file
1302                          * before calling this function to clean up.
1303                          * Since no pte has actually been setup, it is
1304                          * safe to do nothing in this case.
1305                          */
1306                         if (vma->vm_file) {
1307                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1308                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1309                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1310                         }
1311                 } else
1312                         unmap_page_range(tlb, vma, start, end, details);
1313         }
1314 }
1315
1316 /**
1317  * unmap_vmas - unmap a range of memory covered by a list of vma's
1318  * @tlb: address of the caller's struct mmu_gather
1319  * @vma: the starting vma
1320  * @start_addr: virtual address at which to start unmapping
1321  * @end_addr: virtual address at which to end unmapping
1322  *
1323  * Unmap all pages in the vma list.
1324  *
1325  * Only addresses between `start' and `end' will be unmapped.
1326  *
1327  * The VMA list must be sorted in ascending virtual address order.
1328  *
1329  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330  * range after unmap_vmas() returns.  So the only responsibility here is to
1331  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332  * drops the lock and schedules.
1333  */
1334 void unmap_vmas(struct mmu_gather *tlb,
1335                 struct vm_area_struct *vma, unsigned long start_addr,
1336                 unsigned long end_addr)
1337 {
1338         struct mmu_notifier_range range;
1339
1340         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1341                                 start_addr, end_addr);
1342         mmu_notifier_invalidate_range_start(&range);
1343         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1344                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1345         mmu_notifier_invalidate_range_end(&range);
1346 }
1347
1348 /**
1349  * zap_page_range - remove user pages in a given range
1350  * @vma: vm_area_struct holding the applicable pages
1351  * @start: starting address of pages to zap
1352  * @size: number of bytes to zap
1353  *
1354  * Caller must protect the VMA list
1355  */
1356 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1357                 unsigned long size)
1358 {
1359         struct mmu_notifier_range range;
1360         struct mmu_gather tlb;
1361
1362         lru_add_drain();
1363         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1364                                 start, start + size);
1365         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1366         update_hiwater_rss(vma->vm_mm);
1367         mmu_notifier_invalidate_range_start(&range);
1368         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1369                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1370         mmu_notifier_invalidate_range_end(&range);
1371         tlb_finish_mmu(&tlb, start, range.end);
1372 }
1373
1374 /**
1375  * zap_page_range_single - remove user pages in a given range
1376  * @vma: vm_area_struct holding the applicable pages
1377  * @address: starting address of pages to zap
1378  * @size: number of bytes to zap
1379  * @details: details of shared cache invalidation
1380  *
1381  * The range must fit into one VMA.
1382  */
1383 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1384                 unsigned long size, struct zap_details *details)
1385 {
1386         struct mmu_notifier_range range;
1387         struct mmu_gather tlb;
1388
1389         lru_add_drain();
1390         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1391                                 address, address + size);
1392         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1393         update_hiwater_rss(vma->vm_mm);
1394         mmu_notifier_invalidate_range_start(&range);
1395         unmap_single_vma(&tlb, vma, address, range.end, details);
1396         mmu_notifier_invalidate_range_end(&range);
1397         tlb_finish_mmu(&tlb, address, range.end);
1398 }
1399
1400 /**
1401  * zap_vma_ptes - remove ptes mapping the vma
1402  * @vma: vm_area_struct holding ptes to be zapped
1403  * @address: starting address of pages to zap
1404  * @size: number of bytes to zap
1405  *
1406  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407  *
1408  * The entire address range must be fully contained within the vma.
1409  *
1410  */
1411 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1412                 unsigned long size)
1413 {
1414         if (address < vma->vm_start || address + size > vma->vm_end ||
1415                         !(vma->vm_flags & VM_PFNMAP))
1416                 return;
1417
1418         zap_page_range_single(vma, address, size, NULL);
1419 }
1420 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1421
1422 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1423                         spinlock_t **ptl)
1424 {
1425         pgd_t *pgd;
1426         p4d_t *p4d;
1427         pud_t *pud;
1428         pmd_t *pmd;
1429
1430         pgd = pgd_offset(mm, addr);
1431         p4d = p4d_alloc(mm, pgd, addr);
1432         if (!p4d)
1433                 return NULL;
1434         pud = pud_alloc(mm, p4d, addr);
1435         if (!pud)
1436                 return NULL;
1437         pmd = pmd_alloc(mm, pud, addr);
1438         if (!pmd)
1439                 return NULL;
1440
1441         VM_BUG_ON(pmd_trans_huge(*pmd));
1442         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1443 }
1444
1445 /*
1446  * This is the old fallback for page remapping.
1447  *
1448  * For historical reasons, it only allows reserved pages. Only
1449  * old drivers should use this, and they needed to mark their
1450  * pages reserved for the old functions anyway.
1451  */
1452 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1453                         struct page *page, pgprot_t prot)
1454 {
1455         struct mm_struct *mm = vma->vm_mm;
1456         int retval;
1457         pte_t *pte;
1458         spinlock_t *ptl;
1459
1460         retval = -EINVAL;
1461         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1462                 goto out;
1463         retval = -ENOMEM;
1464         flush_dcache_page(page);
1465         pte = get_locked_pte(mm, addr, &ptl);
1466         if (!pte)
1467                 goto out;
1468         retval = -EBUSY;
1469         if (!pte_none(*pte))
1470                 goto out_unlock;
1471
1472         /* Ok, finally just insert the thing.. */
1473         get_page(page);
1474         inc_mm_counter_fast(mm, mm_counter_file(page));
1475         page_add_file_rmap(page, false);
1476         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1477
1478         retval = 0;
1479 out_unlock:
1480         pte_unmap_unlock(pte, ptl);
1481 out:
1482         return retval;
1483 }
1484
1485 /**
1486  * vm_insert_page - insert single page into user vma
1487  * @vma: user vma to map to
1488  * @addr: target user address of this page
1489  * @page: source kernel page
1490  *
1491  * This allows drivers to insert individual pages they've allocated
1492  * into a user vma.
1493  *
1494  * The page has to be a nice clean _individual_ kernel allocation.
1495  * If you allocate a compound page, you need to have marked it as
1496  * such (__GFP_COMP), or manually just split the page up yourself
1497  * (see split_page()).
1498  *
1499  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1500  * took an arbitrary page protection parameter. This doesn't allow
1501  * that. Your vma protection will have to be set up correctly, which
1502  * means that if you want a shared writable mapping, you'd better
1503  * ask for a shared writable mapping!
1504  *
1505  * The page does not need to be reserved.
1506  *
1507  * Usually this function is called from f_op->mmap() handler
1508  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1509  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1510  * function from other places, for example from page-fault handler.
1511  *
1512  * Return: %0 on success, negative error code otherwise.
1513  */
1514 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1515                         struct page *page)
1516 {
1517         if (addr < vma->vm_start || addr >= vma->vm_end)
1518                 return -EFAULT;
1519         if (!page_count(page))
1520                 return -EINVAL;
1521         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1522                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1523                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1524                 vma->vm_flags |= VM_MIXEDMAP;
1525         }
1526         return insert_page(vma, addr, page, vma->vm_page_prot);
1527 }
1528 EXPORT_SYMBOL(vm_insert_page);
1529
1530 /*
1531  * __vm_map_pages - maps range of kernel pages into user vma
1532  * @vma: user vma to map to
1533  * @pages: pointer to array of source kernel pages
1534  * @num: number of pages in page array
1535  * @offset: user's requested vm_pgoff
1536  *
1537  * This allows drivers to map range of kernel pages into a user vma.
1538  *
1539  * Return: 0 on success and error code otherwise.
1540  */
1541 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1542                                 unsigned long num, unsigned long offset)
1543 {
1544         unsigned long count = vma_pages(vma);
1545         unsigned long uaddr = vma->vm_start;
1546         int ret, i;
1547
1548         /* Fail if the user requested offset is beyond the end of the object */
1549         if (offset >= num)
1550                 return -ENXIO;
1551
1552         /* Fail if the user requested size exceeds available object size */
1553         if (count > num - offset)
1554                 return -ENXIO;
1555
1556         for (i = 0; i < count; i++) {
1557                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1558                 if (ret < 0)
1559                         return ret;
1560                 uaddr += PAGE_SIZE;
1561         }
1562
1563         return 0;
1564 }
1565
1566 /**
1567  * vm_map_pages - maps range of kernel pages starts with non zero offset
1568  * @vma: user vma to map to
1569  * @pages: pointer to array of source kernel pages
1570  * @num: number of pages in page array
1571  *
1572  * Maps an object consisting of @num pages, catering for the user's
1573  * requested vm_pgoff
1574  *
1575  * If we fail to insert any page into the vma, the function will return
1576  * immediately leaving any previously inserted pages present.  Callers
1577  * from the mmap handler may immediately return the error as their caller
1578  * will destroy the vma, removing any successfully inserted pages. Other
1579  * callers should make their own arrangements for calling unmap_region().
1580  *
1581  * Context: Process context. Called by mmap handlers.
1582  * Return: 0 on success and error code otherwise.
1583  */
1584 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1585                                 unsigned long num)
1586 {
1587         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1588 }
1589 EXPORT_SYMBOL(vm_map_pages);
1590
1591 /**
1592  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1593  * @vma: user vma to map to
1594  * @pages: pointer to array of source kernel pages
1595  * @num: number of pages in page array
1596  *
1597  * Similar to vm_map_pages(), except that it explicitly sets the offset
1598  * to 0. This function is intended for the drivers that did not consider
1599  * vm_pgoff.
1600  *
1601  * Context: Process context. Called by mmap handlers.
1602  * Return: 0 on success and error code otherwise.
1603  */
1604 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1605                                 unsigned long num)
1606 {
1607         return __vm_map_pages(vma, pages, num, 0);
1608 }
1609 EXPORT_SYMBOL(vm_map_pages_zero);
1610
1611 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1612                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1613 {
1614         struct mm_struct *mm = vma->vm_mm;
1615         pte_t *pte, entry;
1616         spinlock_t *ptl;
1617
1618         pte = get_locked_pte(mm, addr, &ptl);
1619         if (!pte)
1620                 return VM_FAULT_OOM;
1621         if (!pte_none(*pte)) {
1622                 if (mkwrite) {
1623                         /*
1624                          * For read faults on private mappings the PFN passed
1625                          * in may not match the PFN we have mapped if the
1626                          * mapped PFN is a writeable COW page.  In the mkwrite
1627                          * case we are creating a writable PTE for a shared
1628                          * mapping and we expect the PFNs to match. If they
1629                          * don't match, we are likely racing with block
1630                          * allocation and mapping invalidation so just skip the
1631                          * update.
1632                          */
1633                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1634                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1635                                 goto out_unlock;
1636                         }
1637                         entry = pte_mkyoung(*pte);
1638                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1639                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1640                                 update_mmu_cache(vma, addr, pte);
1641                 }
1642                 goto out_unlock;
1643         }
1644
1645         /* Ok, finally just insert the thing.. */
1646         if (pfn_t_devmap(pfn))
1647                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1648         else
1649                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1650
1651         if (mkwrite) {
1652                 entry = pte_mkyoung(entry);
1653                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1654         }
1655
1656         set_pte_at(mm, addr, pte, entry);
1657         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1658
1659 out_unlock:
1660         pte_unmap_unlock(pte, ptl);
1661         return VM_FAULT_NOPAGE;
1662 }
1663
1664 /**
1665  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1666  * @vma: user vma to map to
1667  * @addr: target user address of this page
1668  * @pfn: source kernel pfn
1669  * @pgprot: pgprot flags for the inserted page
1670  *
1671  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1672  * to override pgprot on a per-page basis.
1673  *
1674  * This only makes sense for IO mappings, and it makes no sense for
1675  * COW mappings.  In general, using multiple vmas is preferable;
1676  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1677  * impractical.
1678  *
1679  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1680  * a value of @pgprot different from that of @vma->vm_page_prot.
1681  *
1682  * Context: Process context.  May allocate using %GFP_KERNEL.
1683  * Return: vm_fault_t value.
1684  */
1685 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1686                         unsigned long pfn, pgprot_t pgprot)
1687 {
1688         /*
1689          * Technically, architectures with pte_special can avoid all these
1690          * restrictions (same for remap_pfn_range).  However we would like
1691          * consistency in testing and feature parity among all, so we should
1692          * try to keep these invariants in place for everybody.
1693          */
1694         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1695         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1696                                                 (VM_PFNMAP|VM_MIXEDMAP));
1697         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1698         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1699
1700         if (addr < vma->vm_start || addr >= vma->vm_end)
1701                 return VM_FAULT_SIGBUS;
1702
1703         if (!pfn_modify_allowed(pfn, pgprot))
1704                 return VM_FAULT_SIGBUS;
1705
1706         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1707
1708         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1709                         false);
1710 }
1711 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1712
1713 /**
1714  * vmf_insert_pfn - insert single pfn into user vma
1715  * @vma: user vma to map to
1716  * @addr: target user address of this page
1717  * @pfn: source kernel pfn
1718  *
1719  * Similar to vm_insert_page, this allows drivers to insert individual pages
1720  * they've allocated into a user vma. Same comments apply.
1721  *
1722  * This function should only be called from a vm_ops->fault handler, and
1723  * in that case the handler should return the result of this function.
1724  *
1725  * vma cannot be a COW mapping.
1726  *
1727  * As this is called only for pages that do not currently exist, we
1728  * do not need to flush old virtual caches or the TLB.
1729  *
1730  * Context: Process context.  May allocate using %GFP_KERNEL.
1731  * Return: vm_fault_t value.
1732  */
1733 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1734                         unsigned long pfn)
1735 {
1736         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1737 }
1738 EXPORT_SYMBOL(vmf_insert_pfn);
1739
1740 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1741 {
1742         /* these checks mirror the abort conditions in vm_normal_page */
1743         if (vma->vm_flags & VM_MIXEDMAP)
1744                 return true;
1745         if (pfn_t_devmap(pfn))
1746                 return true;
1747         if (pfn_t_special(pfn))
1748                 return true;
1749         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1750                 return true;
1751         return false;
1752 }
1753
1754 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1755                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1756                 bool mkwrite)
1757 {
1758         int err;
1759
1760         BUG_ON(!vm_mixed_ok(vma, pfn));
1761
1762         if (addr < vma->vm_start || addr >= vma->vm_end)
1763                 return VM_FAULT_SIGBUS;
1764
1765         track_pfn_insert(vma, &pgprot, pfn);
1766
1767         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1768                 return VM_FAULT_SIGBUS;
1769
1770         /*
1771          * If we don't have pte special, then we have to use the pfn_valid()
1772          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1773          * refcount the page if pfn_valid is true (hence insert_page rather
1774          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1775          * without pte special, it would there be refcounted as a normal page.
1776          */
1777         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1778             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1779                 struct page *page;
1780
1781                 /*
1782                  * At this point we are committed to insert_page()
1783                  * regardless of whether the caller specified flags that
1784                  * result in pfn_t_has_page() == false.
1785                  */
1786                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1787                 err = insert_page(vma, addr, page, pgprot);
1788         } else {
1789                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1790         }
1791
1792         if (err == -ENOMEM)
1793                 return VM_FAULT_OOM;
1794         if (err < 0 && err != -EBUSY)
1795                 return VM_FAULT_SIGBUS;
1796
1797         return VM_FAULT_NOPAGE;
1798 }
1799
1800 /**
1801  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1802  * @vma: user vma to map to
1803  * @addr: target user address of this page
1804  * @pfn: source kernel pfn
1805  * @pgprot: pgprot flags for the inserted page
1806  *
1807  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1808  * to override pgprot on a per-page basis.
1809  *
1810  * Typically this function should be used by drivers to set caching- and
1811  * encryption bits different than those of @vma->vm_page_prot, because
1812  * the caching- or encryption mode may not be known at mmap() time.
1813  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1814  * to set caching and encryption bits for those vmas (except for COW pages).
1815  * This is ensured by core vm only modifying these page table entries using
1816  * functions that don't touch caching- or encryption bits, using pte_modify()
1817  * if needed. (See for example mprotect()).
1818  * Also when new page-table entries are created, this is only done using the
1819  * fault() callback, and never using the value of vma->vm_page_prot,
1820  * except for page-table entries that point to anonymous pages as the result
1821  * of COW.
1822  *
1823  * Context: Process context.  May allocate using %GFP_KERNEL.
1824  * Return: vm_fault_t value.
1825  */
1826 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1827                                  pfn_t pfn, pgprot_t pgprot)
1828 {
1829         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1830 }
1831 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1832
1833 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1834                 pfn_t pfn)
1835 {
1836         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1837 }
1838 EXPORT_SYMBOL(vmf_insert_mixed);
1839
1840 /*
1841  *  If the insertion of PTE failed because someone else already added a
1842  *  different entry in the mean time, we treat that as success as we assume
1843  *  the same entry was actually inserted.
1844  */
1845 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1846                 unsigned long addr, pfn_t pfn)
1847 {
1848         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1849 }
1850 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1851
1852 /*
1853  * maps a range of physical memory into the requested pages. the old
1854  * mappings are removed. any references to nonexistent pages results
1855  * in null mappings (currently treated as "copy-on-access")
1856  */
1857 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1858                         unsigned long addr, unsigned long end,
1859                         unsigned long pfn, pgprot_t prot)
1860 {
1861         pte_t *pte;
1862         spinlock_t *ptl;
1863         int err = 0;
1864
1865         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1866         if (!pte)
1867                 return -ENOMEM;
1868         arch_enter_lazy_mmu_mode();
1869         do {
1870                 BUG_ON(!pte_none(*pte));
1871                 if (!pfn_modify_allowed(pfn, prot)) {
1872                         err = -EACCES;
1873                         break;
1874                 }
1875                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1876                 pfn++;
1877         } while (pte++, addr += PAGE_SIZE, addr != end);
1878         arch_leave_lazy_mmu_mode();
1879         pte_unmap_unlock(pte - 1, ptl);
1880         return err;
1881 }
1882
1883 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1884                         unsigned long addr, unsigned long end,
1885                         unsigned long pfn, pgprot_t prot)
1886 {
1887         pmd_t *pmd;
1888         unsigned long next;
1889         int err;
1890
1891         pfn -= addr >> PAGE_SHIFT;
1892         pmd = pmd_alloc(mm, pud, addr);
1893         if (!pmd)
1894                 return -ENOMEM;
1895         VM_BUG_ON(pmd_trans_huge(*pmd));
1896         do {
1897                 next = pmd_addr_end(addr, end);
1898                 err = remap_pte_range(mm, pmd, addr, next,
1899                                 pfn + (addr >> PAGE_SHIFT), prot);
1900                 if (err)
1901                         return err;
1902         } while (pmd++, addr = next, addr != end);
1903         return 0;
1904 }
1905
1906 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1907                         unsigned long addr, unsigned long end,
1908                         unsigned long pfn, pgprot_t prot)
1909 {
1910         pud_t *pud;
1911         unsigned long next;
1912         int err;
1913
1914         pfn -= addr >> PAGE_SHIFT;
1915         pud = pud_alloc(mm, p4d, addr);
1916         if (!pud)
1917                 return -ENOMEM;
1918         do {
1919                 next = pud_addr_end(addr, end);
1920                 err = remap_pmd_range(mm, pud, addr, next,
1921                                 pfn + (addr >> PAGE_SHIFT), prot);
1922                 if (err)
1923                         return err;
1924         } while (pud++, addr = next, addr != end);
1925         return 0;
1926 }
1927
1928 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1929                         unsigned long addr, unsigned long end,
1930                         unsigned long pfn, pgprot_t prot)
1931 {
1932         p4d_t *p4d;
1933         unsigned long next;
1934         int err;
1935
1936         pfn -= addr >> PAGE_SHIFT;
1937         p4d = p4d_alloc(mm, pgd, addr);
1938         if (!p4d)
1939                 return -ENOMEM;
1940         do {
1941                 next = p4d_addr_end(addr, end);
1942                 err = remap_pud_range(mm, p4d, addr, next,
1943                                 pfn + (addr >> PAGE_SHIFT), prot);
1944                 if (err)
1945                         return err;
1946         } while (p4d++, addr = next, addr != end);
1947         return 0;
1948 }
1949
1950 /**
1951  * remap_pfn_range - remap kernel memory to userspace
1952  * @vma: user vma to map to
1953  * @addr: target user address to start at
1954  * @pfn: page frame number of kernel physical memory address
1955  * @size: size of mapping area
1956  * @prot: page protection flags for this mapping
1957  *
1958  * Note: this is only safe if the mm semaphore is held when called.
1959  *
1960  * Return: %0 on success, negative error code otherwise.
1961  */
1962 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1963                     unsigned long pfn, unsigned long size, pgprot_t prot)
1964 {
1965         pgd_t *pgd;
1966         unsigned long next;
1967         unsigned long end = addr + PAGE_ALIGN(size);
1968         struct mm_struct *mm = vma->vm_mm;
1969         unsigned long remap_pfn = pfn;
1970         int err;
1971
1972         /*
1973          * Physically remapped pages are special. Tell the
1974          * rest of the world about it:
1975          *   VM_IO tells people not to look at these pages
1976          *      (accesses can have side effects).
1977          *   VM_PFNMAP tells the core MM that the base pages are just
1978          *      raw PFN mappings, and do not have a "struct page" associated
1979          *      with them.
1980          *   VM_DONTEXPAND
1981          *      Disable vma merging and expanding with mremap().
1982          *   VM_DONTDUMP
1983          *      Omit vma from core dump, even when VM_IO turned off.
1984          *
1985          * There's a horrible special case to handle copy-on-write
1986          * behaviour that some programs depend on. We mark the "original"
1987          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1988          * See vm_normal_page() for details.
1989          */
1990         if (is_cow_mapping(vma->vm_flags)) {
1991                 if (addr != vma->vm_start || end != vma->vm_end)
1992                         return -EINVAL;
1993                 vma->vm_pgoff = pfn;
1994         }
1995
1996         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1997         if (err)
1998                 return -EINVAL;
1999
2000         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2001
2002         BUG_ON(addr >= end);
2003         pfn -= addr >> PAGE_SHIFT;
2004         pgd = pgd_offset(mm, addr);
2005         flush_cache_range(vma, addr, end);
2006         do {
2007                 next = pgd_addr_end(addr, end);
2008                 err = remap_p4d_range(mm, pgd, addr, next,
2009                                 pfn + (addr >> PAGE_SHIFT), prot);
2010                 if (err)
2011                         break;
2012         } while (pgd++, addr = next, addr != end);
2013
2014         if (err)
2015                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2016
2017         return err;
2018 }
2019 EXPORT_SYMBOL(remap_pfn_range);
2020
2021 /**
2022  * vm_iomap_memory - remap memory to userspace
2023  * @vma: user vma to map to
2024  * @start: start of the physical memory to be mapped
2025  * @len: size of area
2026  *
2027  * This is a simplified io_remap_pfn_range() for common driver use. The
2028  * driver just needs to give us the physical memory range to be mapped,
2029  * we'll figure out the rest from the vma information.
2030  *
2031  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2032  * whatever write-combining details or similar.
2033  *
2034  * Return: %0 on success, negative error code otherwise.
2035  */
2036 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2037 {
2038         unsigned long vm_len, pfn, pages;
2039
2040         /* Check that the physical memory area passed in looks valid */
2041         if (start + len < start)
2042                 return -EINVAL;
2043         /*
2044          * You *really* shouldn't map things that aren't page-aligned,
2045          * but we've historically allowed it because IO memory might
2046          * just have smaller alignment.
2047          */
2048         len += start & ~PAGE_MASK;
2049         pfn = start >> PAGE_SHIFT;
2050         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2051         if (pfn + pages < pfn)
2052                 return -EINVAL;
2053
2054         /* We start the mapping 'vm_pgoff' pages into the area */
2055         if (vma->vm_pgoff > pages)
2056                 return -EINVAL;
2057         pfn += vma->vm_pgoff;
2058         pages -= vma->vm_pgoff;
2059
2060         /* Can we fit all of the mapping? */
2061         vm_len = vma->vm_end - vma->vm_start;
2062         if (vm_len >> PAGE_SHIFT > pages)
2063                 return -EINVAL;
2064
2065         /* Ok, let it rip */
2066         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2067 }
2068 EXPORT_SYMBOL(vm_iomap_memory);
2069
2070 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2071                                      unsigned long addr, unsigned long end,
2072                                      pte_fn_t fn, void *data, bool create)
2073 {
2074         pte_t *pte;
2075         int err = 0;
2076         spinlock_t *uninitialized_var(ptl);
2077
2078         if (create) {
2079                 pte = (mm == &init_mm) ?
2080                         pte_alloc_kernel(pmd, addr) :
2081                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2082                 if (!pte)
2083                         return -ENOMEM;
2084         } else {
2085                 pte = (mm == &init_mm) ?
2086                         pte_offset_kernel(pmd, addr) :
2087                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2088         }
2089
2090         BUG_ON(pmd_huge(*pmd));
2091
2092         arch_enter_lazy_mmu_mode();
2093
2094         do {
2095                 if (create || !pte_none(*pte)) {
2096                         err = fn(pte++, addr, data);
2097                         if (err)
2098                                 break;
2099                 }
2100         } while (addr += PAGE_SIZE, addr != end);
2101
2102         arch_leave_lazy_mmu_mode();
2103
2104         if (mm != &init_mm)
2105                 pte_unmap_unlock(pte-1, ptl);
2106         return err;
2107 }
2108
2109 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2110                                      unsigned long addr, unsigned long end,
2111                                      pte_fn_t fn, void *data, bool create)
2112 {
2113         pmd_t *pmd;
2114         unsigned long next;
2115         int err = 0;
2116
2117         BUG_ON(pud_huge(*pud));
2118
2119         if (create) {
2120                 pmd = pmd_alloc(mm, pud, addr);
2121                 if (!pmd)
2122                         return -ENOMEM;
2123         } else {
2124                 pmd = pmd_offset(pud, addr);
2125         }
2126         do {
2127                 next = pmd_addr_end(addr, end);
2128                 if (create || !pmd_none_or_clear_bad(pmd)) {
2129                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2130                                                  create);
2131                         if (err)
2132                                 break;
2133                 }
2134         } while (pmd++, addr = next, addr != end);
2135         return err;
2136 }
2137
2138 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2139                                      unsigned long addr, unsigned long end,
2140                                      pte_fn_t fn, void *data, bool create)
2141 {
2142         pud_t *pud;
2143         unsigned long next;
2144         int err = 0;
2145
2146         if (create) {
2147                 pud = pud_alloc(mm, p4d, addr);
2148                 if (!pud)
2149                         return -ENOMEM;
2150         } else {
2151                 pud = pud_offset(p4d, addr);
2152         }
2153         do {
2154                 next = pud_addr_end(addr, end);
2155                 if (create || !pud_none_or_clear_bad(pud)) {
2156                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2157                                                  create);
2158                         if (err)
2159                                 break;
2160                 }
2161         } while (pud++, addr = next, addr != end);
2162         return err;
2163 }
2164
2165 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2166                                      unsigned long addr, unsigned long end,
2167                                      pte_fn_t fn, void *data, bool create)
2168 {
2169         p4d_t *p4d;
2170         unsigned long next;
2171         int err = 0;
2172
2173         if (create) {
2174                 p4d = p4d_alloc(mm, pgd, addr);
2175                 if (!p4d)
2176                         return -ENOMEM;
2177         } else {
2178                 p4d = p4d_offset(pgd, addr);
2179         }
2180         do {
2181                 next = p4d_addr_end(addr, end);
2182                 if (create || !p4d_none_or_clear_bad(p4d)) {
2183                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2184                                                  create);
2185                         if (err)
2186                                 break;
2187                 }
2188         } while (p4d++, addr = next, addr != end);
2189         return err;
2190 }
2191
2192 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2193                                  unsigned long size, pte_fn_t fn,
2194                                  void *data, bool create)
2195 {
2196         pgd_t *pgd;
2197         unsigned long next;
2198         unsigned long end = addr + size;
2199         int err = 0;
2200
2201         if (WARN_ON(addr >= end))
2202                 return -EINVAL;
2203
2204         pgd = pgd_offset(mm, addr);
2205         do {
2206                 next = pgd_addr_end(addr, end);
2207                 if (!create && pgd_none_or_clear_bad(pgd))
2208                         continue;
2209                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2210                 if (err)
2211                         break;
2212         } while (pgd++, addr = next, addr != end);
2213
2214         return err;
2215 }
2216
2217 /*
2218  * Scan a region of virtual memory, filling in page tables as necessary
2219  * and calling a provided function on each leaf page table.
2220  */
2221 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2222                         unsigned long size, pte_fn_t fn, void *data)
2223 {
2224         return __apply_to_page_range(mm, addr, size, fn, data, true);
2225 }
2226 EXPORT_SYMBOL_GPL(apply_to_page_range);
2227
2228 /*
2229  * Scan a region of virtual memory, calling a provided function on
2230  * each leaf page table where it exists.
2231  *
2232  * Unlike apply_to_page_range, this does _not_ fill in page tables
2233  * where they are absent.
2234  */
2235 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2236                                  unsigned long size, pte_fn_t fn, void *data)
2237 {
2238         return __apply_to_page_range(mm, addr, size, fn, data, false);
2239 }
2240 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2241
2242 /*
2243  * handle_pte_fault chooses page fault handler according to an entry which was
2244  * read non-atomically.  Before making any commitment, on those architectures
2245  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2246  * parts, do_swap_page must check under lock before unmapping the pte and
2247  * proceeding (but do_wp_page is only called after already making such a check;
2248  * and do_anonymous_page can safely check later on).
2249  */
2250 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2251                                 pte_t *page_table, pte_t orig_pte)
2252 {
2253         int same = 1;
2254 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2255         if (sizeof(pte_t) > sizeof(unsigned long)) {
2256                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2257                 spin_lock(ptl);
2258                 same = pte_same(*page_table, orig_pte);
2259                 spin_unlock(ptl);
2260         }
2261 #endif
2262         pte_unmap(page_table);
2263         return same;
2264 }
2265
2266 static inline bool cow_user_page(struct page *dst, struct page *src,
2267                                  struct vm_fault *vmf)
2268 {
2269         bool ret;
2270         void *kaddr;
2271         void __user *uaddr;
2272         bool locked = false;
2273         struct vm_area_struct *vma = vmf->vma;
2274         struct mm_struct *mm = vma->vm_mm;
2275         unsigned long addr = vmf->address;
2276
2277         debug_dma_assert_idle(src);
2278
2279         if (likely(src)) {
2280                 copy_user_highpage(dst, src, addr, vma);
2281                 return true;
2282         }
2283
2284         /*
2285          * If the source page was a PFN mapping, we don't have
2286          * a "struct page" for it. We do a best-effort copy by
2287          * just copying from the original user address. If that
2288          * fails, we just zero-fill it. Live with it.
2289          */
2290         kaddr = kmap_atomic(dst);
2291         uaddr = (void __user *)(addr & PAGE_MASK);
2292
2293         /*
2294          * On architectures with software "accessed" bits, we would
2295          * take a double page fault, so mark it accessed here.
2296          */
2297         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2298                 pte_t entry;
2299
2300                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2301                 locked = true;
2302                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2303                         /*
2304                          * Other thread has already handled the fault
2305                          * and we don't need to do anything. If it's
2306                          * not the case, the fault will be triggered
2307                          * again on the same address.
2308                          */
2309                         ret = false;
2310                         goto pte_unlock;
2311                 }
2312
2313                 entry = pte_mkyoung(vmf->orig_pte);
2314                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2315                         update_mmu_cache(vma, addr, vmf->pte);
2316         }
2317
2318         /*
2319          * This really shouldn't fail, because the page is there
2320          * in the page tables. But it might just be unreadable,
2321          * in which case we just give up and fill the result with
2322          * zeroes.
2323          */
2324         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2325                 if (locked)
2326                         goto warn;
2327
2328                 /* Re-validate under PTL if the page is still mapped */
2329                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2330                 locked = true;
2331                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2332                         /* The PTE changed under us. Retry page fault. */
2333                         ret = false;
2334                         goto pte_unlock;
2335                 }
2336
2337                 /*
2338                  * The same page can be mapped back since last copy attampt.
2339                  * Try to copy again under PTL.
2340                  */
2341                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2342                         /*
2343                          * Give a warn in case there can be some obscure
2344                          * use-case
2345                          */
2346 warn:
2347                         WARN_ON_ONCE(1);
2348                         clear_page(kaddr);
2349                 }
2350         }
2351
2352         ret = true;
2353
2354 pte_unlock:
2355         if (locked)
2356                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2357         kunmap_atomic(kaddr);
2358         flush_dcache_page(dst);
2359
2360         return ret;
2361 }
2362
2363 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2364 {
2365         struct file *vm_file = vma->vm_file;
2366
2367         if (vm_file)
2368                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2369
2370         /*
2371          * Special mappings (e.g. VDSO) do not have any file so fake
2372          * a default GFP_KERNEL for them.
2373          */
2374         return GFP_KERNEL;
2375 }
2376
2377 /*
2378  * Notify the address space that the page is about to become writable so that
2379  * it can prohibit this or wait for the page to get into an appropriate state.
2380  *
2381  * We do this without the lock held, so that it can sleep if it needs to.
2382  */
2383 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2384 {
2385         vm_fault_t ret;
2386         struct page *page = vmf->page;
2387         unsigned int old_flags = vmf->flags;
2388
2389         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2390
2391         if (vmf->vma->vm_file &&
2392             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2393                 return VM_FAULT_SIGBUS;
2394
2395         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2396         /* Restore original flags so that caller is not surprised */
2397         vmf->flags = old_flags;
2398         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2399                 return ret;
2400         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2401                 lock_page(page);
2402                 if (!page->mapping) {
2403                         unlock_page(page);
2404                         return 0; /* retry */
2405                 }
2406                 ret |= VM_FAULT_LOCKED;
2407         } else
2408                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2409         return ret;
2410 }
2411
2412 /*
2413  * Handle dirtying of a page in shared file mapping on a write fault.
2414  *
2415  * The function expects the page to be locked and unlocks it.
2416  */
2417 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2418 {
2419         struct vm_area_struct *vma = vmf->vma;
2420         struct address_space *mapping;
2421         struct page *page = vmf->page;
2422         bool dirtied;
2423         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2424
2425         dirtied = set_page_dirty(page);
2426         VM_BUG_ON_PAGE(PageAnon(page), page);
2427         /*
2428          * Take a local copy of the address_space - page.mapping may be zeroed
2429          * by truncate after unlock_page().   The address_space itself remains
2430          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2431          * release semantics to prevent the compiler from undoing this copying.
2432          */
2433         mapping = page_rmapping(page);
2434         unlock_page(page);
2435
2436         if (!page_mkwrite)
2437                 file_update_time(vma->vm_file);
2438
2439         /*
2440          * Throttle page dirtying rate down to writeback speed.
2441          *
2442          * mapping may be NULL here because some device drivers do not
2443          * set page.mapping but still dirty their pages
2444          *
2445          * Drop the mmap_sem before waiting on IO, if we can. The file
2446          * is pinning the mapping, as per above.
2447          */
2448         if ((dirtied || page_mkwrite) && mapping) {
2449                 struct file *fpin;
2450
2451                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2452                 balance_dirty_pages_ratelimited(mapping);
2453                 if (fpin) {
2454                         fput(fpin);
2455                         return VM_FAULT_RETRY;
2456                 }
2457         }
2458
2459         return 0;
2460 }
2461
2462 /*
2463  * Handle write page faults for pages that can be reused in the current vma
2464  *
2465  * This can happen either due to the mapping being with the VM_SHARED flag,
2466  * or due to us being the last reference standing to the page. In either
2467  * case, all we need to do here is to mark the page as writable and update
2468  * any related book-keeping.
2469  */
2470 static inline void wp_page_reuse(struct vm_fault *vmf)
2471         __releases(vmf->ptl)
2472 {
2473         struct vm_area_struct *vma = vmf->vma;
2474         struct page *page = vmf->page;
2475         pte_t entry;
2476         /*
2477          * Clear the pages cpupid information as the existing
2478          * information potentially belongs to a now completely
2479          * unrelated process.
2480          */
2481         if (page)
2482                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2483
2484         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2485         entry = pte_mkyoung(vmf->orig_pte);
2486         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2487         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2488                 update_mmu_cache(vma, vmf->address, vmf->pte);
2489         pte_unmap_unlock(vmf->pte, vmf->ptl);
2490 }
2491
2492 /*
2493  * Handle the case of a page which we actually need to copy to a new page.
2494  *
2495  * Called with mmap_sem locked and the old page referenced, but
2496  * without the ptl held.
2497  *
2498  * High level logic flow:
2499  *
2500  * - Allocate a page, copy the content of the old page to the new one.
2501  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2502  * - Take the PTL. If the pte changed, bail out and release the allocated page
2503  * - If the pte is still the way we remember it, update the page table and all
2504  *   relevant references. This includes dropping the reference the page-table
2505  *   held to the old page, as well as updating the rmap.
2506  * - In any case, unlock the PTL and drop the reference we took to the old page.
2507  */
2508 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2509 {
2510         struct vm_area_struct *vma = vmf->vma;
2511         struct mm_struct *mm = vma->vm_mm;
2512         struct page *old_page = vmf->page;
2513         struct page *new_page = NULL;
2514         pte_t entry;
2515         int page_copied = 0;
2516         struct mem_cgroup *memcg;
2517         struct mmu_notifier_range range;
2518
2519         if (unlikely(anon_vma_prepare(vma)))
2520                 goto oom;
2521
2522         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2523                 new_page = alloc_zeroed_user_highpage_movable(vma,
2524                                                               vmf->address);
2525                 if (!new_page)
2526                         goto oom;
2527         } else {
2528                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2529                                 vmf->address);
2530                 if (!new_page)
2531                         goto oom;
2532
2533                 if (!cow_user_page(new_page, old_page, vmf)) {
2534                         /*
2535                          * COW failed, if the fault was solved by other,
2536                          * it's fine. If not, userspace would re-fault on
2537                          * the same address and we will handle the fault
2538                          * from the second attempt.
2539                          */
2540                         put_page(new_page);
2541                         if (old_page)
2542                                 put_page(old_page);
2543                         return 0;
2544                 }
2545         }
2546
2547         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2548                 goto oom_free_new;
2549
2550         __SetPageUptodate(new_page);
2551
2552         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2553                                 vmf->address & PAGE_MASK,
2554                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2555         mmu_notifier_invalidate_range_start(&range);
2556
2557         /*
2558          * Re-check the pte - we dropped the lock
2559          */
2560         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2561         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2562                 if (old_page) {
2563                         if (!PageAnon(old_page)) {
2564                                 dec_mm_counter_fast(mm,
2565                                                 mm_counter_file(old_page));
2566                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2567                         }
2568                 } else {
2569                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2570                 }
2571                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2572                 entry = mk_pte(new_page, vma->vm_page_prot);
2573                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2574                 /*
2575                  * Clear the pte entry and flush it first, before updating the
2576                  * pte with the new entry. This will avoid a race condition
2577                  * seen in the presence of one thread doing SMC and another
2578                  * thread doing COW.
2579                  */
2580                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2581                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2582                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2583                 lru_cache_add_active_or_unevictable(new_page, vma);
2584                 /*
2585                  * We call the notify macro here because, when using secondary
2586                  * mmu page tables (such as kvm shadow page tables), we want the
2587                  * new page to be mapped directly into the secondary page table.
2588                  */
2589                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2590                 update_mmu_cache(vma, vmf->address, vmf->pte);
2591                 if (old_page) {
2592                         /*
2593                          * Only after switching the pte to the new page may
2594                          * we remove the mapcount here. Otherwise another
2595                          * process may come and find the rmap count decremented
2596                          * before the pte is switched to the new page, and
2597                          * "reuse" the old page writing into it while our pte
2598                          * here still points into it and can be read by other
2599                          * threads.
2600                          *
2601                          * The critical issue is to order this
2602                          * page_remove_rmap with the ptp_clear_flush above.
2603                          * Those stores are ordered by (if nothing else,)
2604                          * the barrier present in the atomic_add_negative
2605                          * in page_remove_rmap.
2606                          *
2607                          * Then the TLB flush in ptep_clear_flush ensures that
2608                          * no process can access the old page before the
2609                          * decremented mapcount is visible. And the old page
2610                          * cannot be reused until after the decremented
2611                          * mapcount is visible. So transitively, TLBs to
2612                          * old page will be flushed before it can be reused.
2613                          */
2614                         page_remove_rmap(old_page, false);
2615                 }
2616
2617                 /* Free the old page.. */
2618                 new_page = old_page;
2619                 page_copied = 1;
2620         } else {
2621                 mem_cgroup_cancel_charge(new_page, memcg, false);
2622         }
2623
2624         if (new_page)
2625                 put_page(new_page);
2626
2627         pte_unmap_unlock(vmf->pte, vmf->ptl);
2628         /*
2629          * No need to double call mmu_notifier->invalidate_range() callback as
2630          * the above ptep_clear_flush_notify() did already call it.
2631          */
2632         mmu_notifier_invalidate_range_only_end(&range);
2633         if (old_page) {
2634                 /*
2635                  * Don't let another task, with possibly unlocked vma,
2636                  * keep the mlocked page.
2637                  */
2638                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2639                         lock_page(old_page);    /* LRU manipulation */
2640                         if (PageMlocked(old_page))
2641                                 munlock_vma_page(old_page);
2642                         unlock_page(old_page);
2643                 }
2644                 put_page(old_page);
2645         }
2646         return page_copied ? VM_FAULT_WRITE : 0;
2647 oom_free_new:
2648         put_page(new_page);
2649 oom:
2650         if (old_page)
2651                 put_page(old_page);
2652         return VM_FAULT_OOM;
2653 }
2654
2655 /**
2656  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2657  *                        writeable once the page is prepared
2658  *
2659  * @vmf: structure describing the fault
2660  *
2661  * This function handles all that is needed to finish a write page fault in a
2662  * shared mapping due to PTE being read-only once the mapped page is prepared.
2663  * It handles locking of PTE and modifying it.
2664  *
2665  * The function expects the page to be locked or other protection against
2666  * concurrent faults / writeback (such as DAX radix tree locks).
2667  *
2668  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2669  * we acquired PTE lock.
2670  */
2671 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2672 {
2673         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2674         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2675                                        &vmf->ptl);
2676         /*
2677          * We might have raced with another page fault while we released the
2678          * pte_offset_map_lock.
2679          */
2680         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2681                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2682                 return VM_FAULT_NOPAGE;
2683         }
2684         wp_page_reuse(vmf);
2685         return 0;
2686 }
2687
2688 /*
2689  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2690  * mapping
2691  */
2692 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2693 {
2694         struct vm_area_struct *vma = vmf->vma;
2695
2696         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2697                 vm_fault_t ret;
2698
2699                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2700                 vmf->flags |= FAULT_FLAG_MKWRITE;
2701                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2702                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2703                         return ret;
2704                 return finish_mkwrite_fault(vmf);
2705         }
2706         wp_page_reuse(vmf);
2707         return VM_FAULT_WRITE;
2708 }
2709
2710 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2711         __releases(vmf->ptl)
2712 {
2713         struct vm_area_struct *vma = vmf->vma;
2714         vm_fault_t ret = VM_FAULT_WRITE;
2715
2716         get_page(vmf->page);
2717
2718         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2719                 vm_fault_t tmp;
2720
2721                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2722                 tmp = do_page_mkwrite(vmf);
2723                 if (unlikely(!tmp || (tmp &
2724                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2725                         put_page(vmf->page);
2726                         return tmp;
2727                 }
2728                 tmp = finish_mkwrite_fault(vmf);
2729                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2730                         unlock_page(vmf->page);
2731                         put_page(vmf->page);
2732                         return tmp;
2733                 }
2734         } else {
2735                 wp_page_reuse(vmf);
2736                 lock_page(vmf->page);
2737         }
2738         ret |= fault_dirty_shared_page(vmf);
2739         put_page(vmf->page);
2740
2741         return ret;
2742 }
2743
2744 /*
2745  * This routine handles present pages, when users try to write
2746  * to a shared page. It is done by copying the page to a new address
2747  * and decrementing the shared-page counter for the old page.
2748  *
2749  * Note that this routine assumes that the protection checks have been
2750  * done by the caller (the low-level page fault routine in most cases).
2751  * Thus we can safely just mark it writable once we've done any necessary
2752  * COW.
2753  *
2754  * We also mark the page dirty at this point even though the page will
2755  * change only once the write actually happens. This avoids a few races,
2756  * and potentially makes it more efficient.
2757  *
2758  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759  * but allow concurrent faults), with pte both mapped and locked.
2760  * We return with mmap_sem still held, but pte unmapped and unlocked.
2761  */
2762 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2763         __releases(vmf->ptl)
2764 {
2765         struct vm_area_struct *vma = vmf->vma;
2766
2767         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2768                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2769                 return handle_userfault(vmf, VM_UFFD_WP);
2770         }
2771
2772         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2773         if (!vmf->page) {
2774                 /*
2775                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2776                  * VM_PFNMAP VMA.
2777                  *
2778                  * We should not cow pages in a shared writeable mapping.
2779                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2780                  */
2781                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2782                                      (VM_WRITE|VM_SHARED))
2783                         return wp_pfn_shared(vmf);
2784
2785                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2786                 return wp_page_copy(vmf);
2787         }
2788
2789         /*
2790          * Take out anonymous pages first, anonymous shared vmas are
2791          * not dirty accountable.
2792          */
2793         if (PageAnon(vmf->page)) {
2794                 int total_map_swapcount;
2795                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2796                                            page_count(vmf->page) != 1))
2797                         goto copy;
2798                 if (!trylock_page(vmf->page)) {
2799                         get_page(vmf->page);
2800                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2801                         lock_page(vmf->page);
2802                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2803                                         vmf->address, &vmf->ptl);
2804                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2805                                 unlock_page(vmf->page);
2806                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2807                                 put_page(vmf->page);
2808                                 return 0;
2809                         }
2810                         put_page(vmf->page);
2811                 }
2812                 if (PageKsm(vmf->page)) {
2813                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2814                                                      vmf->address);
2815                         unlock_page(vmf->page);
2816                         if (!reused)
2817                                 goto copy;
2818                         wp_page_reuse(vmf);
2819                         return VM_FAULT_WRITE;
2820                 }
2821                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2822                         if (total_map_swapcount == 1) {
2823                                 /*
2824                                  * The page is all ours. Move it to
2825                                  * our anon_vma so the rmap code will
2826                                  * not search our parent or siblings.
2827                                  * Protected against the rmap code by
2828                                  * the page lock.
2829                                  */
2830                                 page_move_anon_rmap(vmf->page, vma);
2831                         }
2832                         unlock_page(vmf->page);
2833                         wp_page_reuse(vmf);
2834                         return VM_FAULT_WRITE;
2835                 }
2836                 unlock_page(vmf->page);
2837         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2838                                         (VM_WRITE|VM_SHARED))) {
2839                 return wp_page_shared(vmf);
2840         }
2841 copy:
2842         /*
2843          * Ok, we need to copy. Oh, well..
2844          */
2845         get_page(vmf->page);
2846
2847         pte_unmap_unlock(vmf->pte, vmf->ptl);
2848         return wp_page_copy(vmf);
2849 }
2850
2851 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2852                 unsigned long start_addr, unsigned long end_addr,
2853                 struct zap_details *details)
2854 {
2855         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2856 }
2857
2858 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2859                                             struct zap_details *details)
2860 {
2861         struct vm_area_struct *vma;
2862         pgoff_t vba, vea, zba, zea;
2863
2864         vma_interval_tree_foreach(vma, root,
2865                         details->first_index, details->last_index) {
2866
2867                 vba = vma->vm_pgoff;
2868                 vea = vba + vma_pages(vma) - 1;
2869                 zba = details->first_index;
2870                 if (zba < vba)
2871                         zba = vba;
2872                 zea = details->last_index;
2873                 if (zea > vea)
2874                         zea = vea;
2875
2876                 unmap_mapping_range_vma(vma,
2877                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2878                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2879                                 details);
2880         }
2881 }
2882
2883 /**
2884  * unmap_mapping_pages() - Unmap pages from processes.
2885  * @mapping: The address space containing pages to be unmapped.
2886  * @start: Index of first page to be unmapped.
2887  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2888  * @even_cows: Whether to unmap even private COWed pages.
2889  *
2890  * Unmap the pages in this address space from any userspace process which
2891  * has them mmaped.  Generally, you want to remove COWed pages as well when
2892  * a file is being truncated, but not when invalidating pages from the page
2893  * cache.
2894  */
2895 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2896                 pgoff_t nr, bool even_cows)
2897 {
2898         struct zap_details details = { };
2899
2900         details.check_mapping = even_cows ? NULL : mapping;
2901         details.first_index = start;
2902         details.last_index = start + nr - 1;
2903         if (details.last_index < details.first_index)
2904                 details.last_index = ULONG_MAX;
2905
2906         i_mmap_lock_write(mapping);
2907         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2908                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2909         i_mmap_unlock_write(mapping);
2910 }
2911
2912 /**
2913  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2914  * address_space corresponding to the specified byte range in the underlying
2915  * file.
2916  *
2917  * @mapping: the address space containing mmaps to be unmapped.
2918  * @holebegin: byte in first page to unmap, relative to the start of
2919  * the underlying file.  This will be rounded down to a PAGE_SIZE
2920  * boundary.  Note that this is different from truncate_pagecache(), which
2921  * must keep the partial page.  In contrast, we must get rid of
2922  * partial pages.
2923  * @holelen: size of prospective hole in bytes.  This will be rounded
2924  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2925  * end of the file.
2926  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2927  * but 0 when invalidating pagecache, don't throw away private data.
2928  */
2929 void unmap_mapping_range(struct address_space *mapping,
2930                 loff_t const holebegin, loff_t const holelen, int even_cows)
2931 {
2932         pgoff_t hba = holebegin >> PAGE_SHIFT;
2933         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2934
2935         /* Check for overflow. */
2936         if (sizeof(holelen) > sizeof(hlen)) {
2937                 long long holeend =
2938                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2939                 if (holeend & ~(long long)ULONG_MAX)
2940                         hlen = ULONG_MAX - hba + 1;
2941         }
2942
2943         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2944 }
2945 EXPORT_SYMBOL(unmap_mapping_range);
2946
2947 /*
2948  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2949  * but allow concurrent faults), and pte mapped but not yet locked.
2950  * We return with pte unmapped and unlocked.
2951  *
2952  * We return with the mmap_sem locked or unlocked in the same cases
2953  * as does filemap_fault().
2954  */
2955 vm_fault_t do_swap_page(struct vm_fault *vmf)
2956 {
2957         struct vm_area_struct *vma = vmf->vma;
2958         struct page *page = NULL, *swapcache;
2959         struct mem_cgroup *memcg;
2960         swp_entry_t entry;
2961         pte_t pte;
2962         int locked;
2963         int exclusive = 0;
2964         vm_fault_t ret = 0;
2965
2966         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2967                 goto out;
2968
2969         entry = pte_to_swp_entry(vmf->orig_pte);
2970         if (unlikely(non_swap_entry(entry))) {
2971                 if (is_migration_entry(entry)) {
2972                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2973                                              vmf->address);
2974                 } else if (is_device_private_entry(entry)) {
2975                         vmf->page = device_private_entry_to_page(entry);
2976                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2977                 } else if (is_hwpoison_entry(entry)) {
2978                         ret = VM_FAULT_HWPOISON;
2979                 } else {
2980                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2981                         ret = VM_FAULT_SIGBUS;
2982                 }
2983                 goto out;
2984         }
2985
2986
2987         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2988         page = lookup_swap_cache(entry, vma, vmf->address);
2989         swapcache = page;
2990
2991         if (!page) {
2992                 struct swap_info_struct *si = swp_swap_info(entry);
2993
2994                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2995                                 __swap_count(entry) == 1) {
2996                         /* skip swapcache */
2997                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2998                                                         vmf->address);
2999                         if (page) {
3000                                 __SetPageLocked(page);
3001                                 __SetPageSwapBacked(page);
3002                                 set_page_private(page, entry.val);
3003                                 lru_cache_add_anon(page);
3004                                 swap_readpage(page, true);
3005                         }
3006                 } else {
3007                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3008                                                 vmf);
3009                         swapcache = page;
3010                 }
3011
3012                 if (!page) {
3013                         /*
3014                          * Back out if somebody else faulted in this pte
3015                          * while we released the pte lock.
3016                          */
3017                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3018                                         vmf->address, &vmf->ptl);
3019                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3020                                 ret = VM_FAULT_OOM;
3021                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3022                         goto unlock;
3023                 }
3024
3025                 /* Had to read the page from swap area: Major fault */
3026                 ret = VM_FAULT_MAJOR;
3027                 count_vm_event(PGMAJFAULT);
3028                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3029         } else if (PageHWPoison(page)) {
3030                 /*
3031                  * hwpoisoned dirty swapcache pages are kept for killing
3032                  * owner processes (which may be unknown at hwpoison time)
3033                  */
3034                 ret = VM_FAULT_HWPOISON;
3035                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3036                 goto out_release;
3037         }
3038
3039         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3040
3041         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3042         if (!locked) {
3043                 ret |= VM_FAULT_RETRY;
3044                 goto out_release;
3045         }
3046
3047         /*
3048          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3049          * release the swapcache from under us.  The page pin, and pte_same
3050          * test below, are not enough to exclude that.  Even if it is still
3051          * swapcache, we need to check that the page's swap has not changed.
3052          */
3053         if (unlikely((!PageSwapCache(page) ||
3054                         page_private(page) != entry.val)) && swapcache)
3055                 goto out_page;
3056
3057         page = ksm_might_need_to_copy(page, vma, vmf->address);
3058         if (unlikely(!page)) {
3059                 ret = VM_FAULT_OOM;
3060                 page = swapcache;
3061                 goto out_page;
3062         }
3063
3064         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3065                                         &memcg, false)) {
3066                 ret = VM_FAULT_OOM;
3067                 goto out_page;
3068         }
3069
3070         /*
3071          * Back out if somebody else already faulted in this pte.
3072          */
3073         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3074                         &vmf->ptl);
3075         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3076                 goto out_nomap;
3077
3078         if (unlikely(!PageUptodate(page))) {
3079                 ret = VM_FAULT_SIGBUS;
3080                 goto out_nomap;
3081         }
3082
3083         /*
3084          * The page isn't present yet, go ahead with the fault.
3085          *
3086          * Be careful about the sequence of operations here.
3087          * To get its accounting right, reuse_swap_page() must be called
3088          * while the page is counted on swap but not yet in mapcount i.e.
3089          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3090          * must be called after the swap_free(), or it will never succeed.
3091          */
3092
3093         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3094         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3095         pte = mk_pte(page, vma->vm_page_prot);
3096         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3097                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3098                 vmf->flags &= ~FAULT_FLAG_WRITE;
3099                 ret |= VM_FAULT_WRITE;
3100                 exclusive = RMAP_EXCLUSIVE;
3101         }
3102         flush_icache_page(vma, page);
3103         if (pte_swp_soft_dirty(vmf->orig_pte))
3104                 pte = pte_mksoft_dirty(pte);
3105         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3106                 pte = pte_mkuffd_wp(pte);
3107                 pte = pte_wrprotect(pte);
3108         }
3109         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3110         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3111         vmf->orig_pte = pte;
3112
3113         /* ksm created a completely new copy */
3114         if (unlikely(page != swapcache && swapcache)) {
3115                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3116                 mem_cgroup_commit_charge(page, memcg, false, false);
3117                 lru_cache_add_active_or_unevictable(page, vma);
3118         } else {
3119                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3120                 mem_cgroup_commit_charge(page, memcg, true, false);
3121                 activate_page(page);
3122         }
3123
3124         swap_free(entry);
3125         if (mem_cgroup_swap_full(page) ||
3126             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3127                 try_to_free_swap(page);
3128         unlock_page(page);
3129         if (page != swapcache && swapcache) {
3130                 /*
3131                  * Hold the lock to avoid the swap entry to be reused
3132                  * until we take the PT lock for the pte_same() check
3133                  * (to avoid false positives from pte_same). For
3134                  * further safety release the lock after the swap_free
3135                  * so that the swap count won't change under a
3136                  * parallel locked swapcache.
3137                  */
3138                 unlock_page(swapcache);
3139                 put_page(swapcache);
3140         }
3141
3142         if (vmf->flags & FAULT_FLAG_WRITE) {
3143                 ret |= do_wp_page(vmf);
3144                 if (ret & VM_FAULT_ERROR)
3145                         ret &= VM_FAULT_ERROR;
3146                 goto out;
3147         }
3148
3149         /* No need to invalidate - it was non-present before */
3150         update_mmu_cache(vma, vmf->address, vmf->pte);
3151 unlock:
3152         pte_unmap_unlock(vmf->pte, vmf->ptl);
3153 out:
3154         return ret;
3155 out_nomap:
3156         mem_cgroup_cancel_charge(page, memcg, false);
3157         pte_unmap_unlock(vmf->pte, vmf->ptl);
3158 out_page:
3159         unlock_page(page);
3160 out_release:
3161         put_page(page);
3162         if (page != swapcache && swapcache) {
3163                 unlock_page(swapcache);
3164                 put_page(swapcache);
3165         }
3166         return ret;
3167 }
3168
3169 /*
3170  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3171  * but allow concurrent faults), and pte mapped but not yet locked.
3172  * We return with mmap_sem still held, but pte unmapped and unlocked.
3173  */
3174 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3175 {
3176         struct vm_area_struct *vma = vmf->vma;
3177         struct mem_cgroup *memcg;
3178         struct page *page;
3179         vm_fault_t ret = 0;
3180         pte_t entry;
3181
3182         /* File mapping without ->vm_ops ? */
3183         if (vma->vm_flags & VM_SHARED)
3184                 return VM_FAULT_SIGBUS;
3185
3186         /*
3187          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3188          * pte_offset_map() on pmds where a huge pmd might be created
3189          * from a different thread.
3190          *
3191          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3192          * parallel threads are excluded by other means.
3193          *
3194          * Here we only have down_read(mmap_sem).
3195          */
3196         if (pte_alloc(vma->vm_mm, vmf->pmd))
3197                 return VM_FAULT_OOM;
3198
3199         /* See the comment in pte_alloc_one_map() */
3200         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3201                 return 0;
3202
3203         /* Use the zero-page for reads */
3204         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3205                         !mm_forbids_zeropage(vma->vm_mm)) {
3206                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3207                                                 vma->vm_page_prot));
3208                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3209                                 vmf->address, &vmf->ptl);
3210                 if (!pte_none(*vmf->pte))
3211                         goto unlock;
3212                 ret = check_stable_address_space(vma->vm_mm);
3213                 if (ret)
3214                         goto unlock;
3215                 /* Deliver the page fault to userland, check inside PT lock */
3216                 if (userfaultfd_missing(vma)) {
3217                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3218                         return handle_userfault(vmf, VM_UFFD_MISSING);
3219                 }
3220                 goto setpte;
3221         }
3222
3223         /* Allocate our own private page. */
3224         if (unlikely(anon_vma_prepare(vma)))
3225                 goto oom;
3226         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3227         if (!page)
3228                 goto oom;
3229
3230         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3231                                         false))
3232                 goto oom_free_page;
3233
3234         /*
3235          * The memory barrier inside __SetPageUptodate makes sure that
3236          * preceding stores to the page contents become visible before
3237          * the set_pte_at() write.
3238          */
3239         __SetPageUptodate(page);
3240
3241         entry = mk_pte(page, vma->vm_page_prot);
3242         if (vma->vm_flags & VM_WRITE)
3243                 entry = pte_mkwrite(pte_mkdirty(entry));
3244
3245         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3246                         &vmf->ptl);
3247         if (!pte_none(*vmf->pte))
3248                 goto release;
3249
3250         ret = check_stable_address_space(vma->vm_mm);
3251         if (ret)
3252                 goto release;
3253
3254         /* Deliver the page fault to userland, check inside PT lock */
3255         if (userfaultfd_missing(vma)) {
3256                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3257                 mem_cgroup_cancel_charge(page, memcg, false);
3258                 put_page(page);
3259                 return handle_userfault(vmf, VM_UFFD_MISSING);
3260         }
3261
3262         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3263         page_add_new_anon_rmap(page, vma, vmf->address, false);
3264         mem_cgroup_commit_charge(page, memcg, false, false);
3265         lru_cache_add_active_or_unevictable(page, vma);
3266 setpte:
3267         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3268
3269         /* No need to invalidate - it was non-present before */
3270         update_mmu_cache(vma, vmf->address, vmf->pte);
3271 unlock:
3272         pte_unmap_unlock(vmf->pte, vmf->ptl);
3273         return ret;
3274 release:
3275         mem_cgroup_cancel_charge(page, memcg, false);
3276         put_page(page);
3277         goto unlock;
3278 oom_free_page:
3279         put_page(page);
3280 oom:
3281         return VM_FAULT_OOM;
3282 }
3283
3284 /*
3285  * The mmap_sem must have been held on entry, and may have been
3286  * released depending on flags and vma->vm_ops->fault() return value.
3287  * See filemap_fault() and __lock_page_retry().
3288  */
3289 static vm_fault_t __do_fault(struct vm_fault *vmf)
3290 {
3291         struct vm_area_struct *vma = vmf->vma;
3292         vm_fault_t ret;
3293
3294         /*
3295          * Preallocate pte before we take page_lock because this might lead to
3296          * deadlocks for memcg reclaim which waits for pages under writeback:
3297          *                              lock_page(A)
3298          *                              SetPageWriteback(A)
3299          *                              unlock_page(A)
3300          * lock_page(B)
3301          *                              lock_page(B)
3302          * pte_alloc_pne
3303          *   shrink_page_list
3304          *     wait_on_page_writeback(A)
3305          *                              SetPageWriteback(B)
3306          *                              unlock_page(B)
3307          *                              # flush A, B to clear the writeback
3308          */
3309         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3310                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3311                 if (!vmf->prealloc_pte)
3312                         return VM_FAULT_OOM;
3313                 smp_wmb(); /* See comment in __pte_alloc() */
3314         }
3315
3316         ret = vma->vm_ops->fault(vmf);
3317         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3318                             VM_FAULT_DONE_COW)))
3319                 return ret;
3320
3321         if (unlikely(PageHWPoison(vmf->page))) {
3322                 if (ret & VM_FAULT_LOCKED)
3323                         unlock_page(vmf->page);
3324                 put_page(vmf->page);
3325                 vmf->page = NULL;
3326                 return VM_FAULT_HWPOISON;
3327         }
3328
3329         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3330                 lock_page(vmf->page);
3331         else
3332                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3333
3334         return ret;
3335 }
3336
3337 /*
3338  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3339  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3340  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3341  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3342  */
3343 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3344 {
3345         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3346 }
3347
3348 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3349 {
3350         struct vm_area_struct *vma = vmf->vma;
3351
3352         if (!pmd_none(*vmf->pmd))
3353                 goto map_pte;
3354         if (vmf->prealloc_pte) {
3355                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3356                 if (unlikely(!pmd_none(*vmf->pmd))) {
3357                         spin_unlock(vmf->ptl);
3358                         goto map_pte;
3359                 }
3360
3361                 mm_inc_nr_ptes(vma->vm_mm);
3362                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3363                 spin_unlock(vmf->ptl);
3364                 vmf->prealloc_pte = NULL;
3365         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3366                 return VM_FAULT_OOM;
3367         }
3368 map_pte:
3369         /*
3370          * If a huge pmd materialized under us just retry later.  Use
3371          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3372          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3373          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3374          * running immediately after a huge pmd fault in a different thread of
3375          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3376          * All we have to ensure is that it is a regular pmd that we can walk
3377          * with pte_offset_map() and we can do that through an atomic read in
3378          * C, which is what pmd_trans_unstable() provides.
3379          */
3380         if (pmd_devmap_trans_unstable(vmf->pmd))
3381                 return VM_FAULT_NOPAGE;
3382
3383         /*
3384          * At this point we know that our vmf->pmd points to a page of ptes
3385          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3386          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3387          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3388          * be valid and we will re-check to make sure the vmf->pte isn't
3389          * pte_none() under vmf->ptl protection when we return to
3390          * alloc_set_pte().
3391          */
3392         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3393                         &vmf->ptl);
3394         return 0;
3395 }
3396
3397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3398 static void deposit_prealloc_pte(struct vm_fault *vmf)
3399 {
3400         struct vm_area_struct *vma = vmf->vma;
3401
3402         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3403         /*
3404          * We are going to consume the prealloc table,
3405          * count that as nr_ptes.
3406          */
3407         mm_inc_nr_ptes(vma->vm_mm);
3408         vmf->prealloc_pte = NULL;
3409 }
3410
3411 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3412 {
3413         struct vm_area_struct *vma = vmf->vma;
3414         bool write = vmf->flags & FAULT_FLAG_WRITE;
3415         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3416         pmd_t entry;
3417         int i;
3418         vm_fault_t ret;
3419
3420         if (!transhuge_vma_suitable(vma, haddr))
3421                 return VM_FAULT_FALLBACK;
3422
3423         ret = VM_FAULT_FALLBACK;
3424         page = compound_head(page);
3425
3426         /*
3427          * Archs like ppc64 need additonal space to store information
3428          * related to pte entry. Use the preallocated table for that.
3429          */
3430         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3431                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3432                 if (!vmf->prealloc_pte)
3433                         return VM_FAULT_OOM;
3434                 smp_wmb(); /* See comment in __pte_alloc() */
3435         }
3436
3437         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3438         if (unlikely(!pmd_none(*vmf->pmd)))
3439                 goto out;
3440
3441         for (i = 0; i < HPAGE_PMD_NR; i++)
3442                 flush_icache_page(vma, page + i);
3443
3444         entry = mk_huge_pmd(page, vma->vm_page_prot);
3445         if (write)
3446                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3447
3448         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3449         page_add_file_rmap(page, true);
3450         /*
3451          * deposit and withdraw with pmd lock held
3452          */
3453         if (arch_needs_pgtable_deposit())
3454                 deposit_prealloc_pte(vmf);
3455
3456         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3457
3458         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3459
3460         /* fault is handled */
3461         ret = 0;
3462         count_vm_event(THP_FILE_MAPPED);
3463 out:
3464         spin_unlock(vmf->ptl);
3465         return ret;
3466 }
3467 #else
3468 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3469 {
3470         BUILD_BUG();
3471         return 0;
3472 }
3473 #endif
3474
3475 /**
3476  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3477  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3478  *
3479  * @vmf: fault environment
3480  * @memcg: memcg to charge page (only for private mappings)
3481  * @page: page to map
3482  *
3483  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3484  * return.
3485  *
3486  * Target users are page handler itself and implementations of
3487  * vm_ops->map_pages.
3488  *
3489  * Return: %0 on success, %VM_FAULT_ code in case of error.
3490  */
3491 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3492                 struct page *page)
3493 {
3494         struct vm_area_struct *vma = vmf->vma;
3495         bool write = vmf->flags & FAULT_FLAG_WRITE;
3496         pte_t entry;
3497         vm_fault_t ret;
3498
3499         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3500                 /* THP on COW? */
3501                 VM_BUG_ON_PAGE(memcg, page);
3502
3503                 ret = do_set_pmd(vmf, page);
3504                 if (ret != VM_FAULT_FALLBACK)
3505                         return ret;
3506         }
3507
3508         if (!vmf->pte) {
3509                 ret = pte_alloc_one_map(vmf);
3510                 if (ret)
3511                         return ret;
3512         }
3513
3514         /* Re-check under ptl */
3515         if (unlikely(!pte_none(*vmf->pte)))
3516                 return VM_FAULT_NOPAGE;
3517
3518         flush_icache_page(vma, page);
3519         entry = mk_pte(page, vma->vm_page_prot);
3520         if (write)
3521                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3522         /* copy-on-write page */
3523         if (write && !(vma->vm_flags & VM_SHARED)) {
3524                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3525                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3526                 mem_cgroup_commit_charge(page, memcg, false, false);
3527                 lru_cache_add_active_or_unevictable(page, vma);
3528         } else {
3529                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3530                 page_add_file_rmap(page, false);
3531         }
3532         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3533
3534         /* no need to invalidate: a not-present page won't be cached */
3535         update_mmu_cache(vma, vmf->address, vmf->pte);
3536
3537         return 0;
3538 }
3539
3540
3541 /**
3542  * finish_fault - finish page fault once we have prepared the page to fault
3543  *
3544  * @vmf: structure describing the fault
3545  *
3546  * This function handles all that is needed to finish a page fault once the
3547  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3548  * given page, adds reverse page mapping, handles memcg charges and LRU
3549  * addition.
3550  *
3551  * The function expects the page to be locked and on success it consumes a
3552  * reference of a page being mapped (for the PTE which maps it).
3553  *
3554  * Return: %0 on success, %VM_FAULT_ code in case of error.
3555  */
3556 vm_fault_t finish_fault(struct vm_fault *vmf)
3557 {
3558         struct page *page;
3559         vm_fault_t ret = 0;
3560
3561         /* Did we COW the page? */
3562         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3563             !(vmf->vma->vm_flags & VM_SHARED))
3564                 page = vmf->cow_page;
3565         else
3566                 page = vmf->page;
3567
3568         /*
3569          * check even for read faults because we might have lost our CoWed
3570          * page
3571          */
3572         if (!(vmf->vma->vm_flags & VM_SHARED))
3573                 ret = check_stable_address_space(vmf->vma->vm_mm);
3574         if (!ret)
3575                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3576         if (vmf->pte)
3577                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3578         return ret;
3579 }
3580
3581 static unsigned long fault_around_bytes __read_mostly =
3582         rounddown_pow_of_two(65536);
3583
3584 #ifdef CONFIG_DEBUG_FS
3585 static int fault_around_bytes_get(void *data, u64 *val)
3586 {
3587         *val = fault_around_bytes;
3588         return 0;
3589 }
3590
3591 /*
3592  * fault_around_bytes must be rounded down to the nearest page order as it's
3593  * what do_fault_around() expects to see.
3594  */
3595 static int fault_around_bytes_set(void *data, u64 val)
3596 {
3597         if (val / PAGE_SIZE > PTRS_PER_PTE)
3598                 return -EINVAL;
3599         if (val > PAGE_SIZE)
3600                 fault_around_bytes = rounddown_pow_of_two(val);
3601         else
3602                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3603         return 0;
3604 }
3605 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3606                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3607
3608 static int __init fault_around_debugfs(void)
3609 {
3610         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3611                                    &fault_around_bytes_fops);
3612         return 0;
3613 }
3614 late_initcall(fault_around_debugfs);
3615 #endif
3616
3617 /*
3618  * do_fault_around() tries to map few pages around the fault address. The hope
3619  * is that the pages will be needed soon and this will lower the number of
3620  * faults to handle.
3621  *
3622  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3623  * not ready to be mapped: not up-to-date, locked, etc.
3624  *
3625  * This function is called with the page table lock taken. In the split ptlock
3626  * case the page table lock only protects only those entries which belong to
3627  * the page table corresponding to the fault address.
3628  *
3629  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3630  * only once.
3631  *
3632  * fault_around_bytes defines how many bytes we'll try to map.
3633  * do_fault_around() expects it to be set to a power of two less than or equal
3634  * to PTRS_PER_PTE.
3635  *
3636  * The virtual address of the area that we map is naturally aligned to
3637  * fault_around_bytes rounded down to the machine page size
3638  * (and therefore to page order).  This way it's easier to guarantee
3639  * that we don't cross page table boundaries.
3640  */
3641 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3642 {
3643         unsigned long address = vmf->address, nr_pages, mask;
3644         pgoff_t start_pgoff = vmf->pgoff;
3645         pgoff_t end_pgoff;
3646         int off;
3647         vm_fault_t ret = 0;
3648
3649         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3650         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3651
3652         vmf->address = max(address & mask, vmf->vma->vm_start);
3653         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3654         start_pgoff -= off;
3655
3656         /*
3657          *  end_pgoff is either the end of the page table, the end of
3658          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3659          */
3660         end_pgoff = start_pgoff -
3661                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3662                 PTRS_PER_PTE - 1;
3663         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3664                         start_pgoff + nr_pages - 1);
3665
3666         if (pmd_none(*vmf->pmd)) {
3667                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3668                 if (!vmf->prealloc_pte)
3669                         goto out;
3670                 smp_wmb(); /* See comment in __pte_alloc() */
3671         }
3672
3673         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3674
3675         /* Huge page is mapped? Page fault is solved */
3676         if (pmd_trans_huge(*vmf->pmd)) {
3677                 ret = VM_FAULT_NOPAGE;
3678                 goto out;
3679         }
3680
3681         /* ->map_pages() haven't done anything useful. Cold page cache? */
3682         if (!vmf->pte)
3683                 goto out;
3684
3685         /* check if the page fault is solved */
3686         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3687         if (!pte_none(*vmf->pte))
3688                 ret = VM_FAULT_NOPAGE;
3689         pte_unmap_unlock(vmf->pte, vmf->ptl);
3690 out:
3691         vmf->address = address;
3692         vmf->pte = NULL;
3693         return ret;
3694 }
3695
3696 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3697 {
3698         struct vm_area_struct *vma = vmf->vma;
3699         vm_fault_t ret = 0;
3700
3701         /*
3702          * Let's call ->map_pages() first and use ->fault() as fallback
3703          * if page by the offset is not ready to be mapped (cold cache or
3704          * something).
3705          */
3706         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3707                 ret = do_fault_around(vmf);
3708                 if (ret)
3709                         return ret;
3710         }
3711
3712         ret = __do_fault(vmf);
3713         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3714                 return ret;
3715
3716         ret |= finish_fault(vmf);
3717         unlock_page(vmf->page);
3718         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3719                 put_page(vmf->page);
3720         return ret;
3721 }
3722
3723 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3724 {
3725         struct vm_area_struct *vma = vmf->vma;
3726         vm_fault_t ret;
3727
3728         if (unlikely(anon_vma_prepare(vma)))
3729                 return VM_FAULT_OOM;
3730
3731         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3732         if (!vmf->cow_page)
3733                 return VM_FAULT_OOM;
3734
3735         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3736                                 &vmf->memcg, false)) {
3737                 put_page(vmf->cow_page);
3738                 return VM_FAULT_OOM;
3739         }
3740
3741         ret = __do_fault(vmf);
3742         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3743                 goto uncharge_out;
3744         if (ret & VM_FAULT_DONE_COW)
3745                 return ret;
3746
3747         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3748         __SetPageUptodate(vmf->cow_page);
3749
3750         ret |= finish_fault(vmf);
3751         unlock_page(vmf->page);
3752         put_page(vmf->page);
3753         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3754                 goto uncharge_out;
3755         return ret;
3756 uncharge_out:
3757         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3758         put_page(vmf->cow_page);
3759         return ret;
3760 }
3761
3762 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3763 {
3764         struct vm_area_struct *vma = vmf->vma;
3765         vm_fault_t ret, tmp;
3766
3767         ret = __do_fault(vmf);
3768         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3769                 return ret;
3770
3771         /*
3772          * Check if the backing address space wants to know that the page is
3773          * about to become writable
3774          */
3775         if (vma->vm_ops->page_mkwrite) {
3776                 unlock_page(vmf->page);
3777                 tmp = do_page_mkwrite(vmf);
3778                 if (unlikely(!tmp ||
3779                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3780                         put_page(vmf->page);
3781                         return tmp;
3782                 }
3783         }
3784
3785         ret |= finish_fault(vmf);
3786         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3787                                         VM_FAULT_RETRY))) {
3788                 unlock_page(vmf->page);
3789                 put_page(vmf->page);
3790                 return ret;
3791         }
3792
3793         ret |= fault_dirty_shared_page(vmf);
3794         return ret;
3795 }
3796
3797 /*
3798  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3799  * but allow concurrent faults).
3800  * The mmap_sem may have been released depending on flags and our
3801  * return value.  See filemap_fault() and __lock_page_or_retry().
3802  * If mmap_sem is released, vma may become invalid (for example
3803  * by other thread calling munmap()).
3804  */
3805 static vm_fault_t do_fault(struct vm_fault *vmf)
3806 {
3807         struct vm_area_struct *vma = vmf->vma;
3808         struct mm_struct *vm_mm = vma->vm_mm;
3809         vm_fault_t ret;
3810
3811         /*
3812          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3813          */
3814         if (!vma->vm_ops->fault) {
3815                 /*
3816                  * If we find a migration pmd entry or a none pmd entry, which
3817                  * should never happen, return SIGBUS
3818                  */
3819                 if (unlikely(!pmd_present(*vmf->pmd)))
3820                         ret = VM_FAULT_SIGBUS;
3821                 else {
3822                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3823                                                        vmf->pmd,
3824                                                        vmf->address,
3825                                                        &vmf->ptl);
3826                         /*
3827                          * Make sure this is not a temporary clearing of pte
3828                          * by holding ptl and checking again. A R/M/W update
3829                          * of pte involves: take ptl, clearing the pte so that
3830                          * we don't have concurrent modification by hardware
3831                          * followed by an update.
3832                          */
3833                         if (unlikely(pte_none(*vmf->pte)))
3834                                 ret = VM_FAULT_SIGBUS;
3835                         else
3836                                 ret = VM_FAULT_NOPAGE;
3837
3838                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3839                 }
3840         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3841                 ret = do_read_fault(vmf);
3842         else if (!(vma->vm_flags & VM_SHARED))
3843                 ret = do_cow_fault(vmf);
3844         else
3845                 ret = do_shared_fault(vmf);
3846
3847         /* preallocated pagetable is unused: free it */
3848         if (vmf->prealloc_pte) {
3849                 pte_free(vm_mm, vmf->prealloc_pte);
3850                 vmf->prealloc_pte = NULL;
3851         }
3852         return ret;
3853 }
3854
3855 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3856                                 unsigned long addr, int page_nid,
3857                                 int *flags)
3858 {
3859         get_page(page);
3860
3861         count_vm_numa_event(NUMA_HINT_FAULTS);
3862         if (page_nid == numa_node_id()) {
3863                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3864                 *flags |= TNF_FAULT_LOCAL;
3865         }
3866
3867         return mpol_misplaced(page, vma, addr);
3868 }
3869
3870 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3871 {
3872         struct vm_area_struct *vma = vmf->vma;
3873         struct page *page = NULL;
3874         int page_nid = NUMA_NO_NODE;
3875         int last_cpupid;
3876         int target_nid;
3877         bool migrated = false;
3878         pte_t pte, old_pte;
3879         bool was_writable = pte_savedwrite(vmf->orig_pte);
3880         int flags = 0;
3881
3882         /*
3883          * The "pte" at this point cannot be used safely without
3884          * validation through pte_unmap_same(). It's of NUMA type but
3885          * the pfn may be screwed if the read is non atomic.
3886          */
3887         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3888         spin_lock(vmf->ptl);
3889         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3890                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3891                 goto out;
3892         }
3893
3894         /*
3895          * Make it present again, Depending on how arch implementes non
3896          * accessible ptes, some can allow access by kernel mode.
3897          */
3898         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3899         pte = pte_modify(old_pte, vma->vm_page_prot);
3900         pte = pte_mkyoung(pte);
3901         if (was_writable)
3902                 pte = pte_mkwrite(pte);
3903         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3904         update_mmu_cache(vma, vmf->address, vmf->pte);
3905
3906         page = vm_normal_page(vma, vmf->address, pte);
3907         if (!page) {
3908                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3909                 return 0;
3910         }
3911
3912         /* TODO: handle PTE-mapped THP */
3913         if (PageCompound(page)) {
3914                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3915                 return 0;
3916         }
3917
3918         /*
3919          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3920          * much anyway since they can be in shared cache state. This misses
3921          * the case where a mapping is writable but the process never writes
3922          * to it but pte_write gets cleared during protection updates and
3923          * pte_dirty has unpredictable behaviour between PTE scan updates,
3924          * background writeback, dirty balancing and application behaviour.
3925          */
3926         if (!pte_write(pte))
3927                 flags |= TNF_NO_GROUP;
3928
3929         /*
3930          * Flag if the page is shared between multiple address spaces. This
3931          * is later used when determining whether to group tasks together
3932          */
3933         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3934                 flags |= TNF_SHARED;
3935
3936         last_cpupid = page_cpupid_last(page);
3937         page_nid = page_to_nid(page);
3938         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3939                         &flags);
3940         pte_unmap_unlock(vmf->pte, vmf->ptl);
3941         if (target_nid == NUMA_NO_NODE) {
3942                 put_page(page);
3943                 goto out;
3944         }
3945
3946         /* Migrate to the requested node */
3947         migrated = migrate_misplaced_page(page, vma, target_nid);
3948         if (migrated) {
3949                 page_nid = target_nid;
3950                 flags |= TNF_MIGRATED;
3951         } else
3952                 flags |= TNF_MIGRATE_FAIL;
3953
3954 out:
3955         if (page_nid != NUMA_NO_NODE)
3956                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3957         return 0;
3958 }
3959
3960 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3961 {
3962         if (vma_is_anonymous(vmf->vma))
3963                 return do_huge_pmd_anonymous_page(vmf);
3964         if (vmf->vma->vm_ops->huge_fault)
3965                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3966         return VM_FAULT_FALLBACK;
3967 }
3968
3969 /* `inline' is required to avoid gcc 4.1.2 build error */
3970 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3971 {
3972         if (vma_is_anonymous(vmf->vma)) {
3973                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
3974                         return handle_userfault(vmf, VM_UFFD_WP);
3975                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3976         }
3977         if (vmf->vma->vm_ops->huge_fault) {
3978                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3979
3980                 if (!(ret & VM_FAULT_FALLBACK))
3981                         return ret;
3982         }
3983
3984         /* COW or write-notify handled on pte level: split pmd. */
3985         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3986
3987         return VM_FAULT_FALLBACK;
3988 }
3989
3990 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3991 {
3992 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
3993         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
3994         /* No support for anonymous transparent PUD pages yet */
3995         if (vma_is_anonymous(vmf->vma))
3996                 goto split;
3997         if (vmf->vma->vm_ops->huge_fault) {
3998                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3999
4000                 if (!(ret & VM_FAULT_FALLBACK))
4001                         return ret;
4002         }
4003 split:
4004         /* COW or write-notify not handled on PUD level: split pud.*/
4005         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4007         return VM_FAULT_FALLBACK;
4008 }
4009
4010 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4011 {
4012 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4013         /* No support for anonymous transparent PUD pages yet */
4014         if (vma_is_anonymous(vmf->vma))
4015                 return VM_FAULT_FALLBACK;
4016         if (vmf->vma->vm_ops->huge_fault)
4017                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4018 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4019         return VM_FAULT_FALLBACK;
4020 }
4021
4022 /*
4023  * These routines also need to handle stuff like marking pages dirty
4024  * and/or accessed for architectures that don't do it in hardware (most
4025  * RISC architectures).  The early dirtying is also good on the i386.
4026  *
4027  * There is also a hook called "update_mmu_cache()" that architectures
4028  * with external mmu caches can use to update those (ie the Sparc or
4029  * PowerPC hashed page tables that act as extended TLBs).
4030  *
4031  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4032  * concurrent faults).
4033  *
4034  * The mmap_sem may have been released depending on flags and our return value.
4035  * See filemap_fault() and __lock_page_or_retry().
4036  */
4037 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4038 {
4039         pte_t entry;
4040
4041         if (unlikely(pmd_none(*vmf->pmd))) {
4042                 /*
4043                  * Leave __pte_alloc() until later: because vm_ops->fault may
4044                  * want to allocate huge page, and if we expose page table
4045                  * for an instant, it will be difficult to retract from
4046                  * concurrent faults and from rmap lookups.
4047                  */
4048                 vmf->pte = NULL;
4049         } else {
4050                 /* See comment in pte_alloc_one_map() */
4051                 if (pmd_devmap_trans_unstable(vmf->pmd))
4052                         return 0;
4053                 /*
4054                  * A regular pmd is established and it can't morph into a huge
4055                  * pmd from under us anymore at this point because we hold the
4056                  * mmap_sem read mode and khugepaged takes it in write mode.
4057                  * So now it's safe to run pte_offset_map().
4058                  */
4059                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4060                 vmf->orig_pte = *vmf->pte;
4061
4062                 /*
4063                  * some architectures can have larger ptes than wordsize,
4064                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4065                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4066                  * accesses.  The code below just needs a consistent view
4067                  * for the ifs and we later double check anyway with the
4068                  * ptl lock held. So here a barrier will do.
4069                  */
4070                 barrier();
4071                 if (pte_none(vmf->orig_pte)) {
4072                         pte_unmap(vmf->pte);
4073                         vmf->pte = NULL;
4074                 }
4075         }
4076
4077         if (!vmf->pte) {
4078                 if (vma_is_anonymous(vmf->vma))
4079                         return do_anonymous_page(vmf);
4080                 else
4081                         return do_fault(vmf);
4082         }
4083
4084         if (!pte_present(vmf->orig_pte))
4085                 return do_swap_page(vmf);
4086
4087         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4088                 return do_numa_page(vmf);
4089
4090         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4091         spin_lock(vmf->ptl);
4092         entry = vmf->orig_pte;
4093         if (unlikely(!pte_same(*vmf->pte, entry)))
4094                 goto unlock;
4095         if (vmf->flags & FAULT_FLAG_WRITE) {
4096                 if (!pte_write(entry))
4097                         return do_wp_page(vmf);
4098                 entry = pte_mkdirty(entry);
4099         }
4100         entry = pte_mkyoung(entry);
4101         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4102                                 vmf->flags & FAULT_FLAG_WRITE)) {
4103                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4104         } else {
4105                 /*
4106                  * This is needed only for protection faults but the arch code
4107                  * is not yet telling us if this is a protection fault or not.
4108                  * This still avoids useless tlb flushes for .text page faults
4109                  * with threads.
4110                  */
4111                 if (vmf->flags & FAULT_FLAG_WRITE)
4112                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4113         }
4114 unlock:
4115         pte_unmap_unlock(vmf->pte, vmf->ptl);
4116         return 0;
4117 }
4118
4119 /*
4120  * By the time we get here, we already hold the mm semaphore
4121  *
4122  * The mmap_sem may have been released depending on flags and our
4123  * return value.  See filemap_fault() and __lock_page_or_retry().
4124  */
4125 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4126                 unsigned long address, unsigned int flags)
4127 {
4128         struct vm_fault vmf = {
4129                 .vma = vma,
4130                 .address = address & PAGE_MASK,
4131                 .flags = flags,
4132                 .pgoff = linear_page_index(vma, address),
4133                 .gfp_mask = __get_fault_gfp_mask(vma),
4134         };
4135         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4136         struct mm_struct *mm = vma->vm_mm;
4137         pgd_t *pgd;
4138         p4d_t *p4d;
4139         vm_fault_t ret;
4140
4141         pgd = pgd_offset(mm, address);
4142         p4d = p4d_alloc(mm, pgd, address);
4143         if (!p4d)
4144                 return VM_FAULT_OOM;
4145
4146         vmf.pud = pud_alloc(mm, p4d, address);
4147         if (!vmf.pud)
4148                 return VM_FAULT_OOM;
4149 retry_pud:
4150         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4151                 ret = create_huge_pud(&vmf);
4152                 if (!(ret & VM_FAULT_FALLBACK))
4153                         return ret;
4154         } else {
4155                 pud_t orig_pud = *vmf.pud;
4156
4157                 barrier();
4158                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4159
4160                         /* NUMA case for anonymous PUDs would go here */
4161
4162                         if (dirty && !pud_write(orig_pud)) {
4163                                 ret = wp_huge_pud(&vmf, orig_pud);
4164                                 if (!(ret & VM_FAULT_FALLBACK))
4165                                         return ret;
4166                         } else {
4167                                 huge_pud_set_accessed(&vmf, orig_pud);
4168                                 return 0;
4169                         }
4170                 }
4171         }
4172
4173         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4174         if (!vmf.pmd)
4175                 return VM_FAULT_OOM;
4176
4177         /* Huge pud page fault raced with pmd_alloc? */
4178         if (pud_trans_unstable(vmf.pud))
4179                 goto retry_pud;
4180
4181         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4182                 ret = create_huge_pmd(&vmf);
4183                 if (!(ret & VM_FAULT_FALLBACK))
4184                         return ret;
4185         } else {
4186                 pmd_t orig_pmd = *vmf.pmd;
4187
4188                 barrier();
4189                 if (unlikely(is_swap_pmd(orig_pmd))) {
4190                         VM_BUG_ON(thp_migration_supported() &&
4191                                           !is_pmd_migration_entry(orig_pmd));
4192                         if (is_pmd_migration_entry(orig_pmd))
4193                                 pmd_migration_entry_wait(mm, vmf.pmd);
4194                         return 0;
4195                 }
4196                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4197                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4198                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4199
4200                         if (dirty && !pmd_write(orig_pmd)) {
4201                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4202                                 if (!(ret & VM_FAULT_FALLBACK))
4203                                         return ret;
4204                         } else {
4205                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4206                                 return 0;
4207                         }
4208                 }
4209         }
4210
4211         return handle_pte_fault(&vmf);
4212 }
4213
4214 /*
4215  * By the time we get here, we already hold the mm semaphore
4216  *
4217  * The mmap_sem may have been released depending on flags and our
4218  * return value.  See filemap_fault() and __lock_page_or_retry().
4219  */
4220 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4221                 unsigned int flags)
4222 {
4223         vm_fault_t ret;
4224
4225         __set_current_state(TASK_RUNNING);
4226
4227         count_vm_event(PGFAULT);
4228         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4229
4230         /* do counter updates before entering really critical section. */
4231         check_sync_rss_stat(current);
4232
4233         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4234                                             flags & FAULT_FLAG_INSTRUCTION,
4235                                             flags & FAULT_FLAG_REMOTE))
4236                 return VM_FAULT_SIGSEGV;
4237
4238         /*
4239          * Enable the memcg OOM handling for faults triggered in user
4240          * space.  Kernel faults are handled more gracefully.
4241          */
4242         if (flags & FAULT_FLAG_USER)
4243                 mem_cgroup_enter_user_fault();
4244
4245         if (unlikely(is_vm_hugetlb_page(vma)))
4246                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4247         else
4248                 ret = __handle_mm_fault(vma, address, flags);
4249
4250         if (flags & FAULT_FLAG_USER) {
4251                 mem_cgroup_exit_user_fault();
4252                 /*
4253                  * The task may have entered a memcg OOM situation but
4254                  * if the allocation error was handled gracefully (no
4255                  * VM_FAULT_OOM), there is no need to kill anything.
4256                  * Just clean up the OOM state peacefully.
4257                  */
4258                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4259                         mem_cgroup_oom_synchronize(false);
4260         }
4261
4262         return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(handle_mm_fault);
4265
4266 #ifndef __PAGETABLE_P4D_FOLDED
4267 /*
4268  * Allocate p4d page table.
4269  * We've already handled the fast-path in-line.
4270  */
4271 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4272 {
4273         p4d_t *new = p4d_alloc_one(mm, address);
4274         if (!new)
4275                 return -ENOMEM;
4276
4277         smp_wmb(); /* See comment in __pte_alloc */
4278
4279         spin_lock(&mm->page_table_lock);
4280         if (pgd_present(*pgd))          /* Another has populated it */
4281                 p4d_free(mm, new);
4282         else
4283                 pgd_populate(mm, pgd, new);
4284         spin_unlock(&mm->page_table_lock);
4285         return 0;
4286 }
4287 #endif /* __PAGETABLE_P4D_FOLDED */
4288
4289 #ifndef __PAGETABLE_PUD_FOLDED
4290 /*
4291  * Allocate page upper directory.
4292  * We've already handled the fast-path in-line.
4293  */
4294 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4295 {
4296         pud_t *new = pud_alloc_one(mm, address);
4297         if (!new)
4298                 return -ENOMEM;
4299
4300         smp_wmb(); /* See comment in __pte_alloc */
4301
4302         spin_lock(&mm->page_table_lock);
4303 #ifndef __ARCH_HAS_5LEVEL_HACK
4304         if (!p4d_present(*p4d)) {
4305                 mm_inc_nr_puds(mm);
4306                 p4d_populate(mm, p4d, new);
4307         } else  /* Another has populated it */
4308                 pud_free(mm, new);
4309 #else
4310         if (!pgd_present(*p4d)) {
4311                 mm_inc_nr_puds(mm);
4312                 pgd_populate(mm, p4d, new);
4313         } else  /* Another has populated it */
4314                 pud_free(mm, new);
4315 #endif /* __ARCH_HAS_5LEVEL_HACK */
4316         spin_unlock(&mm->page_table_lock);
4317         return 0;
4318 }
4319 #endif /* __PAGETABLE_PUD_FOLDED */
4320
4321 #ifndef __PAGETABLE_PMD_FOLDED
4322 /*
4323  * Allocate page middle directory.
4324  * We've already handled the fast-path in-line.
4325  */
4326 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4327 {
4328         spinlock_t *ptl;
4329         pmd_t *new = pmd_alloc_one(mm, address);
4330         if (!new)
4331                 return -ENOMEM;
4332
4333         smp_wmb(); /* See comment in __pte_alloc */
4334
4335         ptl = pud_lock(mm, pud);
4336         if (!pud_present(*pud)) {
4337                 mm_inc_nr_pmds(mm);
4338                 pud_populate(mm, pud, new);
4339         } else  /* Another has populated it */
4340                 pmd_free(mm, new);
4341         spin_unlock(ptl);
4342         return 0;
4343 }
4344 #endif /* __PAGETABLE_PMD_FOLDED */
4345
4346 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4347                             struct mmu_notifier_range *range,
4348                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4349 {
4350         pgd_t *pgd;
4351         p4d_t *p4d;
4352         pud_t *pud;
4353         pmd_t *pmd;
4354         pte_t *ptep;
4355
4356         pgd = pgd_offset(mm, address);
4357         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4358                 goto out;
4359
4360         p4d = p4d_offset(pgd, address);
4361         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4362                 goto out;
4363
4364         pud = pud_offset(p4d, address);
4365         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4366                 goto out;
4367
4368         pmd = pmd_offset(pud, address);
4369         VM_BUG_ON(pmd_trans_huge(*pmd));
4370
4371         if (pmd_huge(*pmd)) {
4372                 if (!pmdpp)
4373                         goto out;
4374
4375                 if (range) {
4376                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4377                                                 NULL, mm, address & PMD_MASK,
4378                                                 (address & PMD_MASK) + PMD_SIZE);
4379                         mmu_notifier_invalidate_range_start(range);
4380                 }
4381                 *ptlp = pmd_lock(mm, pmd);
4382                 if (pmd_huge(*pmd)) {
4383                         *pmdpp = pmd;
4384                         return 0;
4385                 }
4386                 spin_unlock(*ptlp);
4387                 if (range)
4388                         mmu_notifier_invalidate_range_end(range);
4389         }
4390
4391         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4392                 goto out;
4393
4394         if (range) {
4395                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4396                                         address & PAGE_MASK,
4397                                         (address & PAGE_MASK) + PAGE_SIZE);
4398                 mmu_notifier_invalidate_range_start(range);
4399         }
4400         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4401         if (!pte_present(*ptep))
4402                 goto unlock;
4403         *ptepp = ptep;
4404         return 0;
4405 unlock:
4406         pte_unmap_unlock(ptep, *ptlp);
4407         if (range)
4408                 mmu_notifier_invalidate_range_end(range);
4409 out:
4410         return -EINVAL;
4411 }
4412
4413 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4414                              pte_t **ptepp, spinlock_t **ptlp)
4415 {
4416         int res;
4417
4418         /* (void) is needed to make gcc happy */
4419         (void) __cond_lock(*ptlp,
4420                            !(res = __follow_pte_pmd(mm, address, NULL,
4421                                                     ptepp, NULL, ptlp)));
4422         return res;
4423 }
4424
4425 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4426                    struct mmu_notifier_range *range,
4427                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4428 {
4429         int res;
4430
4431         /* (void) is needed to make gcc happy */
4432         (void) __cond_lock(*ptlp,
4433                            !(res = __follow_pte_pmd(mm, address, range,
4434                                                     ptepp, pmdpp, ptlp)));
4435         return res;
4436 }
4437 EXPORT_SYMBOL(follow_pte_pmd);
4438
4439 /**
4440  * follow_pfn - look up PFN at a user virtual address
4441  * @vma: memory mapping
4442  * @address: user virtual address
4443  * @pfn: location to store found PFN
4444  *
4445  * Only IO mappings and raw PFN mappings are allowed.
4446  *
4447  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4448  */
4449 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4450         unsigned long *pfn)
4451 {
4452         int ret = -EINVAL;
4453         spinlock_t *ptl;
4454         pte_t *ptep;
4455
4456         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4457                 return ret;
4458
4459         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4460         if (ret)
4461                 return ret;
4462         *pfn = pte_pfn(*ptep);
4463         pte_unmap_unlock(ptep, ptl);
4464         return 0;
4465 }
4466 EXPORT_SYMBOL(follow_pfn);
4467
4468 #ifdef CONFIG_HAVE_IOREMAP_PROT
4469 int follow_phys(struct vm_area_struct *vma,
4470                 unsigned long address, unsigned int flags,
4471                 unsigned long *prot, resource_size_t *phys)
4472 {
4473         int ret = -EINVAL;
4474         pte_t *ptep, pte;
4475         spinlock_t *ptl;
4476
4477         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4478                 goto out;
4479
4480         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4481                 goto out;
4482         pte = *ptep;
4483
4484         if ((flags & FOLL_WRITE) && !pte_write(pte))
4485                 goto unlock;
4486
4487         *prot = pgprot_val(pte_pgprot(pte));
4488         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4489
4490         ret = 0;
4491 unlock:
4492         pte_unmap_unlock(ptep, ptl);
4493 out:
4494         return ret;
4495 }
4496
4497 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4498                         void *buf, int len, int write)
4499 {
4500         resource_size_t phys_addr;
4501         unsigned long prot = 0;
4502         void __iomem *maddr;
4503         int offset = addr & (PAGE_SIZE-1);
4504
4505         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4506                 return -EINVAL;
4507
4508         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4509         if (!maddr)
4510                 return -ENOMEM;
4511
4512         if (write)
4513                 memcpy_toio(maddr + offset, buf, len);
4514         else
4515                 memcpy_fromio(buf, maddr + offset, len);
4516         iounmap(maddr);
4517
4518         return len;
4519 }
4520 EXPORT_SYMBOL_GPL(generic_access_phys);
4521 #endif
4522
4523 /*
4524  * Access another process' address space as given in mm.  If non-NULL, use the
4525  * given task for page fault accounting.
4526  */
4527 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4528                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4529 {
4530         struct vm_area_struct *vma;
4531         void *old_buf = buf;
4532         int write = gup_flags & FOLL_WRITE;
4533
4534         if (down_read_killable(&mm->mmap_sem))
4535                 return 0;
4536
4537         /* ignore errors, just check how much was successfully transferred */
4538         while (len) {
4539                 int bytes, ret, offset;
4540                 void *maddr;
4541                 struct page *page = NULL;
4542
4543                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4544                                 gup_flags, &page, &vma, NULL);
4545                 if (ret <= 0) {
4546 #ifndef CONFIG_HAVE_IOREMAP_PROT
4547                         break;
4548 #else
4549                         /*
4550                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4551                          * we can access using slightly different code.
4552                          */
4553                         vma = find_vma(mm, addr);
4554                         if (!vma || vma->vm_start > addr)
4555                                 break;
4556                         if (vma->vm_ops && vma->vm_ops->access)
4557                                 ret = vma->vm_ops->access(vma, addr, buf,
4558                                                           len, write);
4559                         if (ret <= 0)
4560                                 break;
4561                         bytes = ret;
4562 #endif
4563                 } else {
4564                         bytes = len;
4565                         offset = addr & (PAGE_SIZE-1);
4566                         if (bytes > PAGE_SIZE-offset)
4567                                 bytes = PAGE_SIZE-offset;
4568
4569                         maddr = kmap(page);
4570                         if (write) {
4571                                 copy_to_user_page(vma, page, addr,
4572                                                   maddr + offset, buf, bytes);
4573                                 set_page_dirty_lock(page);
4574                         } else {
4575                                 copy_from_user_page(vma, page, addr,
4576                                                     buf, maddr + offset, bytes);
4577                         }
4578                         kunmap(page);
4579                         put_page(page);
4580                 }
4581                 len -= bytes;
4582                 buf += bytes;
4583                 addr += bytes;
4584         }
4585         up_read(&mm->mmap_sem);
4586
4587         return buf - old_buf;
4588 }
4589
4590 /**
4591  * access_remote_vm - access another process' address space
4592  * @mm:         the mm_struct of the target address space
4593  * @addr:       start address to access
4594  * @buf:        source or destination buffer
4595  * @len:        number of bytes to transfer
4596  * @gup_flags:  flags modifying lookup behaviour
4597  *
4598  * The caller must hold a reference on @mm.
4599  *
4600  * Return: number of bytes copied from source to destination.
4601  */
4602 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4603                 void *buf, int len, unsigned int gup_flags)
4604 {
4605         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4606 }
4607
4608 /*
4609  * Access another process' address space.
4610  * Source/target buffer must be kernel space,
4611  * Do not walk the page table directly, use get_user_pages
4612  */
4613 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4614                 void *buf, int len, unsigned int gup_flags)
4615 {
4616         struct mm_struct *mm;
4617         int ret;
4618
4619         mm = get_task_mm(tsk);
4620         if (!mm)
4621                 return 0;
4622
4623         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4624
4625         mmput(mm);
4626
4627         return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(access_process_vm);
4630
4631 /*
4632  * Print the name of a VMA.
4633  */
4634 void print_vma_addr(char *prefix, unsigned long ip)
4635 {
4636         struct mm_struct *mm = current->mm;
4637         struct vm_area_struct *vma;
4638
4639         /*
4640          * we might be running from an atomic context so we cannot sleep
4641          */
4642         if (!down_read_trylock(&mm->mmap_sem))
4643                 return;
4644
4645         vma = find_vma(mm, ip);
4646         if (vma && vma->vm_file) {
4647                 struct file *f = vma->vm_file;
4648                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4649                 if (buf) {
4650                         char *p;
4651
4652                         p = file_path(f, buf, PAGE_SIZE);
4653                         if (IS_ERR(p))
4654                                 p = "?";
4655                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4656                                         vma->vm_start,
4657                                         vma->vm_end - vma->vm_start);
4658                         free_page((unsigned long)buf);
4659                 }
4660         }
4661         up_read(&mm->mmap_sem);
4662 }
4663
4664 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4665 void __might_fault(const char *file, int line)
4666 {
4667         /*
4668          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4669          * holding the mmap_sem, this is safe because kernel memory doesn't
4670          * get paged out, therefore we'll never actually fault, and the
4671          * below annotations will generate false positives.
4672          */
4673         if (uaccess_kernel())
4674                 return;
4675         if (pagefault_disabled())
4676                 return;
4677         __might_sleep(file, line, 0);
4678 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4679         if (current->mm)
4680                 might_lock_read(&current->mm->mmap_sem);
4681 #endif
4682 }
4683 EXPORT_SYMBOL(__might_fault);
4684 #endif
4685
4686 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4687 /*
4688  * Process all subpages of the specified huge page with the specified
4689  * operation.  The target subpage will be processed last to keep its
4690  * cache lines hot.
4691  */
4692 static inline void process_huge_page(
4693         unsigned long addr_hint, unsigned int pages_per_huge_page,
4694         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4695         void *arg)
4696 {
4697         int i, n, base, l;
4698         unsigned long addr = addr_hint &
4699                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4700
4701         /* Process target subpage last to keep its cache lines hot */
4702         might_sleep();
4703         n = (addr_hint - addr) / PAGE_SIZE;
4704         if (2 * n <= pages_per_huge_page) {
4705                 /* If target subpage in first half of huge page */
4706                 base = 0;
4707                 l = n;
4708                 /* Process subpages at the end of huge page */
4709                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4710                         cond_resched();
4711                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4712                 }
4713         } else {
4714                 /* If target subpage in second half of huge page */
4715                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4716                 l = pages_per_huge_page - n;
4717                 /* Process subpages at the begin of huge page */
4718                 for (i = 0; i < base; i++) {
4719                         cond_resched();
4720                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4721                 }
4722         }
4723         /*
4724          * Process remaining subpages in left-right-left-right pattern
4725          * towards the target subpage
4726          */
4727         for (i = 0; i < l; i++) {
4728                 int left_idx = base + i;
4729                 int right_idx = base + 2 * l - 1 - i;
4730
4731                 cond_resched();
4732                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4733                 cond_resched();
4734                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4735         }
4736 }
4737
4738 static void clear_gigantic_page(struct page *page,
4739                                 unsigned long addr,
4740                                 unsigned int pages_per_huge_page)
4741 {
4742         int i;
4743         struct page *p = page;
4744
4745         might_sleep();
4746         for (i = 0; i < pages_per_huge_page;
4747              i++, p = mem_map_next(p, page, i)) {
4748                 cond_resched();
4749                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4750         }
4751 }
4752
4753 static void clear_subpage(unsigned long addr, int idx, void *arg)
4754 {
4755         struct page *page = arg;
4756
4757         clear_user_highpage(page + idx, addr);
4758 }
4759
4760 void clear_huge_page(struct page *page,
4761                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4762 {
4763         unsigned long addr = addr_hint &
4764                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4765
4766         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4767                 clear_gigantic_page(page, addr, pages_per_huge_page);
4768                 return;
4769         }
4770
4771         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4772 }
4773
4774 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4775                                     unsigned long addr,
4776                                     struct vm_area_struct *vma,
4777                                     unsigned int pages_per_huge_page)
4778 {
4779         int i;
4780         struct page *dst_base = dst;
4781         struct page *src_base = src;
4782
4783         for (i = 0; i < pages_per_huge_page; ) {
4784                 cond_resched();
4785                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4786
4787                 i++;
4788                 dst = mem_map_next(dst, dst_base, i);
4789                 src = mem_map_next(src, src_base, i);
4790         }
4791 }
4792
4793 struct copy_subpage_arg {
4794         struct page *dst;
4795         struct page *src;
4796         struct vm_area_struct *vma;
4797 };
4798
4799 static void copy_subpage(unsigned long addr, int idx, void *arg)
4800 {
4801         struct copy_subpage_arg *copy_arg = arg;
4802
4803         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4804                            addr, copy_arg->vma);
4805 }
4806
4807 void copy_user_huge_page(struct page *dst, struct page *src,
4808                          unsigned long addr_hint, struct vm_area_struct *vma,
4809                          unsigned int pages_per_huge_page)
4810 {
4811         unsigned long addr = addr_hint &
4812                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4813         struct copy_subpage_arg arg = {
4814                 .dst = dst,
4815                 .src = src,
4816                 .vma = vma,
4817         };
4818
4819         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4820                 copy_user_gigantic_page(dst, src, addr, vma,
4821                                         pages_per_huge_page);
4822                 return;
4823         }
4824
4825         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4826 }
4827
4828 long copy_huge_page_from_user(struct page *dst_page,
4829                                 const void __user *usr_src,
4830                                 unsigned int pages_per_huge_page,
4831                                 bool allow_pagefault)
4832 {
4833         void *src = (void *)usr_src;
4834         void *page_kaddr;
4835         unsigned long i, rc = 0;
4836         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4837
4838         for (i = 0; i < pages_per_huge_page; i++) {
4839                 if (allow_pagefault)
4840                         page_kaddr = kmap(dst_page + i);
4841                 else
4842                         page_kaddr = kmap_atomic(dst_page + i);
4843                 rc = copy_from_user(page_kaddr,
4844                                 (const void __user *)(src + i * PAGE_SIZE),
4845                                 PAGE_SIZE);
4846                 if (allow_pagefault)
4847                         kunmap(dst_page + i);
4848                 else
4849                         kunmap_atomic(page_kaddr);
4850
4851                 ret_val -= (PAGE_SIZE - rc);
4852                 if (rc)
4853                         break;
4854
4855                 cond_resched();
4856         }
4857         return ret_val;
4858 }
4859 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4860
4861 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4862
4863 static struct kmem_cache *page_ptl_cachep;
4864
4865 void __init ptlock_cache_init(void)
4866 {
4867         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4868                         SLAB_PANIC, NULL);
4869 }
4870
4871 bool ptlock_alloc(struct page *page)
4872 {
4873         spinlock_t *ptl;
4874
4875         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4876         if (!ptl)
4877                 return false;
4878         page->ptl = ptl;
4879         return true;
4880 }
4881
4882 void ptlock_free(struct page *page)
4883 {
4884         kmem_cache_free(page_ptl_cachep, page->ptl);
4885 }
4886 #endif