Merge tag 'locks-v5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton...
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 /* use the per-pgdat data instead for discontigmem - mbligh */
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102
103 /*
104  * A number of key systems in x86 including ioremap() rely on the assumption
105  * that high_memory defines the upper bound on direct map memory, then end
106  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
107  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108  * and ZONE_HIGHMEM.
109  */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112
113 /*
114  * Randomize the address space (stacks, mmaps, brk, etc.).
115  *
116  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117  *   as ancient (libc5 based) binaries can segfault. )
118  */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121                                         1;
122 #else
123                                         2;
124 #endif
125
126 #ifndef arch_faults_on_old_pte
127 static inline bool arch_faults_on_old_pte(void)
128 {
129         /*
130          * Those arches which don't have hw access flag feature need to
131          * implement their own helper. By default, "true" means pagefault
132          * will be hit on old pte.
133          */
134         return true;
135 }
136 #endif
137
138 static int __init disable_randmaps(char *s)
139 {
140         randomize_va_space = 0;
141         return 1;
142 }
143 __setup("norandmaps", disable_randmaps);
144
145 unsigned long zero_pfn __read_mostly;
146 EXPORT_SYMBOL(zero_pfn);
147
148 unsigned long highest_memmap_pfn __read_mostly;
149
150 /*
151  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152  */
153 static int __init init_zero_pfn(void)
154 {
155         zero_pfn = page_to_pfn(ZERO_PAGE(0));
156         return 0;
157 }
158 core_initcall(init_zero_pfn);
159
160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
161 {
162         trace_rss_stat(mm, member, count);
163 }
164
165 #if defined(SPLIT_RSS_COUNTING)
166
167 void sync_mm_rss(struct mm_struct *mm)
168 {
169         int i;
170
171         for (i = 0; i < NR_MM_COUNTERS; i++) {
172                 if (current->rss_stat.count[i]) {
173                         add_mm_counter(mm, i, current->rss_stat.count[i]);
174                         current->rss_stat.count[i] = 0;
175                 }
176         }
177         current->rss_stat.events = 0;
178 }
179
180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181 {
182         struct task_struct *task = current;
183
184         if (likely(task->mm == mm))
185                 task->rss_stat.count[member] += val;
186         else
187                 add_mm_counter(mm, member, val);
188 }
189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191
192 /* sync counter once per 64 page faults */
193 #define TASK_RSS_EVENTS_THRESH  (64)
194 static void check_sync_rss_stat(struct task_struct *task)
195 {
196         if (unlikely(task != current))
197                 return;
198         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
199                 sync_mm_rss(task->mm);
200 }
201 #else /* SPLIT_RSS_COUNTING */
202
203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205
206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 }
209
210 #endif /* SPLIT_RSS_COUNTING */
211
212 /*
213  * Note: this doesn't free the actual pages themselves. That
214  * has been handled earlier when unmapping all the memory regions.
215  */
216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217                            unsigned long addr)
218 {
219         pgtable_t token = pmd_pgtable(*pmd);
220         pmd_clear(pmd);
221         pte_free_tlb(tlb, token, addr);
222         mm_dec_nr_ptes(tlb->mm);
223 }
224
225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226                                 unsigned long addr, unsigned long end,
227                                 unsigned long floor, unsigned long ceiling)
228 {
229         pmd_t *pmd;
230         unsigned long next;
231         unsigned long start;
232
233         start = addr;
234         pmd = pmd_offset(pud, addr);
235         do {
236                 next = pmd_addr_end(addr, end);
237                 if (pmd_none_or_clear_bad(pmd))
238                         continue;
239                 free_pte_range(tlb, pmd, addr);
240         } while (pmd++, addr = next, addr != end);
241
242         start &= PUD_MASK;
243         if (start < floor)
244                 return;
245         if (ceiling) {
246                 ceiling &= PUD_MASK;
247                 if (!ceiling)
248                         return;
249         }
250         if (end - 1 > ceiling - 1)
251                 return;
252
253         pmd = pmd_offset(pud, start);
254         pud_clear(pud);
255         pmd_free_tlb(tlb, pmd, start);
256         mm_dec_nr_pmds(tlb->mm);
257 }
258
259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
260                                 unsigned long addr, unsigned long end,
261                                 unsigned long floor, unsigned long ceiling)
262 {
263         pud_t *pud;
264         unsigned long next;
265         unsigned long start;
266
267         start = addr;
268         pud = pud_offset(p4d, addr);
269         do {
270                 next = pud_addr_end(addr, end);
271                 if (pud_none_or_clear_bad(pud))
272                         continue;
273                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
274         } while (pud++, addr = next, addr != end);
275
276         start &= P4D_MASK;
277         if (start < floor)
278                 return;
279         if (ceiling) {
280                 ceiling &= P4D_MASK;
281                 if (!ceiling)
282                         return;
283         }
284         if (end - 1 > ceiling - 1)
285                 return;
286
287         pud = pud_offset(p4d, start);
288         p4d_clear(p4d);
289         pud_free_tlb(tlb, pud, start);
290         mm_dec_nr_puds(tlb->mm);
291 }
292
293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294                                 unsigned long addr, unsigned long end,
295                                 unsigned long floor, unsigned long ceiling)
296 {
297         p4d_t *p4d;
298         unsigned long next;
299         unsigned long start;
300
301         start = addr;
302         p4d = p4d_offset(pgd, addr);
303         do {
304                 next = p4d_addr_end(addr, end);
305                 if (p4d_none_or_clear_bad(p4d))
306                         continue;
307                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308         } while (p4d++, addr = next, addr != end);
309
310         start &= PGDIR_MASK;
311         if (start < floor)
312                 return;
313         if (ceiling) {
314                 ceiling &= PGDIR_MASK;
315                 if (!ceiling)
316                         return;
317         }
318         if (end - 1 > ceiling - 1)
319                 return;
320
321         p4d = p4d_offset(pgd, start);
322         pgd_clear(pgd);
323         p4d_free_tlb(tlb, p4d, start);
324 }
325
326 /*
327  * This function frees user-level page tables of a process.
328  */
329 void free_pgd_range(struct mmu_gather *tlb,
330                         unsigned long addr, unsigned long end,
331                         unsigned long floor, unsigned long ceiling)
332 {
333         pgd_t *pgd;
334         unsigned long next;
335
336         /*
337          * The next few lines have given us lots of grief...
338          *
339          * Why are we testing PMD* at this top level?  Because often
340          * there will be no work to do at all, and we'd prefer not to
341          * go all the way down to the bottom just to discover that.
342          *
343          * Why all these "- 1"s?  Because 0 represents both the bottom
344          * of the address space and the top of it (using -1 for the
345          * top wouldn't help much: the masks would do the wrong thing).
346          * The rule is that addr 0 and floor 0 refer to the bottom of
347          * the address space, but end 0 and ceiling 0 refer to the top
348          * Comparisons need to use "end - 1" and "ceiling - 1" (though
349          * that end 0 case should be mythical).
350          *
351          * Wherever addr is brought up or ceiling brought down, we must
352          * be careful to reject "the opposite 0" before it confuses the
353          * subsequent tests.  But what about where end is brought down
354          * by PMD_SIZE below? no, end can't go down to 0 there.
355          *
356          * Whereas we round start (addr) and ceiling down, by different
357          * masks at different levels, in order to test whether a table
358          * now has no other vmas using it, so can be freed, we don't
359          * bother to round floor or end up - the tests don't need that.
360          */
361
362         addr &= PMD_MASK;
363         if (addr < floor) {
364                 addr += PMD_SIZE;
365                 if (!addr)
366                         return;
367         }
368         if (ceiling) {
369                 ceiling &= PMD_MASK;
370                 if (!ceiling)
371                         return;
372         }
373         if (end - 1 > ceiling - 1)
374                 end -= PMD_SIZE;
375         if (addr > end - 1)
376                 return;
377         /*
378          * We add page table cache pages with PAGE_SIZE,
379          * (see pte_free_tlb()), flush the tlb if we need
380          */
381         tlb_change_page_size(tlb, PAGE_SIZE);
382         pgd = pgd_offset(tlb->mm, addr);
383         do {
384                 next = pgd_addr_end(addr, end);
385                 if (pgd_none_or_clear_bad(pgd))
386                         continue;
387                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
388         } while (pgd++, addr = next, addr != end);
389 }
390
391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
392                 unsigned long floor, unsigned long ceiling)
393 {
394         while (vma) {
395                 struct vm_area_struct *next = vma->vm_next;
396                 unsigned long addr = vma->vm_start;
397
398                 /*
399                  * Hide vma from rmap and truncate_pagecache before freeing
400                  * pgtables
401                  */
402                 unlink_anon_vmas(vma);
403                 unlink_file_vma(vma);
404
405                 if (is_vm_hugetlb_page(vma)) {
406                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
407                                 floor, next ? next->vm_start : ceiling);
408                 } else {
409                         /*
410                          * Optimization: gather nearby vmas into one call down
411                          */
412                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
413                                && !is_vm_hugetlb_page(next)) {
414                                 vma = next;
415                                 next = vma->vm_next;
416                                 unlink_anon_vmas(vma);
417                                 unlink_file_vma(vma);
418                         }
419                         free_pgd_range(tlb, addr, vma->vm_end,
420                                 floor, next ? next->vm_start : ceiling);
421                 }
422                 vma = next;
423         }
424 }
425
426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 {
428         spinlock_t *ptl;
429         pgtable_t new = pte_alloc_one(mm);
430         if (!new)
431                 return -ENOMEM;
432
433         /*
434          * Ensure all pte setup (eg. pte page lock and page clearing) are
435          * visible before the pte is made visible to other CPUs by being
436          * put into page tables.
437          *
438          * The other side of the story is the pointer chasing in the page
439          * table walking code (when walking the page table without locking;
440          * ie. most of the time). Fortunately, these data accesses consist
441          * of a chain of data-dependent loads, meaning most CPUs (alpha
442          * being the notable exception) will already guarantee loads are
443          * seen in-order. See the alpha page table accessors for the
444          * smp_rmb() barriers in page table walking code.
445          */
446         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447
448         ptl = pmd_lock(mm, pmd);
449         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
450                 mm_inc_nr_ptes(mm);
451                 pmd_populate(mm, pmd, new);
452                 new = NULL;
453         }
454         spin_unlock(ptl);
455         if (new)
456                 pte_free(mm, new);
457         return 0;
458 }
459
460 int __pte_alloc_kernel(pmd_t *pmd)
461 {
462         pte_t *new = pte_alloc_one_kernel(&init_mm);
463         if (!new)
464                 return -ENOMEM;
465
466         smp_wmb(); /* See comment in __pte_alloc */
467
468         spin_lock(&init_mm.page_table_lock);
469         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
470                 pmd_populate_kernel(&init_mm, pmd, new);
471                 new = NULL;
472         }
473         spin_unlock(&init_mm.page_table_lock);
474         if (new)
475                 pte_free_kernel(&init_mm, new);
476         return 0;
477 }
478
479 static inline void init_rss_vec(int *rss)
480 {
481         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483
484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486         int i;
487
488         if (current->mm == mm)
489                 sync_mm_rss(mm);
490         for (i = 0; i < NR_MM_COUNTERS; i++)
491                 if (rss[i])
492                         add_mm_counter(mm, i, rss[i]);
493 }
494
495 /*
496  * This function is called to print an error when a bad pte
497  * is found. For example, we might have a PFN-mapped pte in
498  * a region that doesn't allow it.
499  *
500  * The calling function must still handle the error.
501  */
502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503                           pte_t pte, struct page *page)
504 {
505         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
506         p4d_t *p4d = p4d_offset(pgd, addr);
507         pud_t *pud = pud_offset(p4d, addr);
508         pmd_t *pmd = pmd_offset(pud, addr);
509         struct address_space *mapping;
510         pgoff_t index;
511         static unsigned long resume;
512         static unsigned long nr_shown;
513         static unsigned long nr_unshown;
514
515         /*
516          * Allow a burst of 60 reports, then keep quiet for that minute;
517          * or allow a steady drip of one report per second.
518          */
519         if (nr_shown == 60) {
520                 if (time_before(jiffies, resume)) {
521                         nr_unshown++;
522                         return;
523                 }
524                 if (nr_unshown) {
525                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526                                  nr_unshown);
527                         nr_unshown = 0;
528                 }
529                 nr_shown = 0;
530         }
531         if (nr_shown++ == 0)
532                 resume = jiffies + 60 * HZ;
533
534         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535         index = linear_page_index(vma, addr);
536
537         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
538                  current->comm,
539                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
540         if (page)
541                 dump_page(page, "bad pte");
542         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
543                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
544         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
545                  vma->vm_file,
546                  vma->vm_ops ? vma->vm_ops->fault : NULL,
547                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548                  mapping ? mapping->a_ops->readpage : NULL);
549         dump_stack();
550         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552
553 /*
554  * vm_normal_page -- This function gets the "struct page" associated with a pte.
555  *
556  * "Special" mappings do not wish to be associated with a "struct page" (either
557  * it doesn't exist, or it exists but they don't want to touch it). In this
558  * case, NULL is returned here. "Normal" mappings do have a struct page.
559  *
560  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561  * pte bit, in which case this function is trivial. Secondly, an architecture
562  * may not have a spare pte bit, which requires a more complicated scheme,
563  * described below.
564  *
565  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566  * special mapping (even if there are underlying and valid "struct pages").
567  * COWed pages of a VM_PFNMAP are always normal.
568  *
569  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572  * mapping will always honor the rule
573  *
574  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575  *
576  * And for normal mappings this is false.
577  *
578  * This restricts such mappings to be a linear translation from virtual address
579  * to pfn. To get around this restriction, we allow arbitrary mappings so long
580  * as the vma is not a COW mapping; in that case, we know that all ptes are
581  * special (because none can have been COWed).
582  *
583  *
584  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585  *
586  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587  * page" backing, however the difference is that _all_ pages with a struct
588  * page (that is, those where pfn_valid is true) are refcounted and considered
589  * normal pages by the VM. The disadvantage is that pages are refcounted
590  * (which can be slower and simply not an option for some PFNMAP users). The
591  * advantage is that we don't have to follow the strict linearity rule of
592  * PFNMAP mappings in order to support COWable mappings.
593  *
594  */
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596                             pte_t pte)
597 {
598         unsigned long pfn = pte_pfn(pte);
599
600         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
601                 if (likely(!pte_special(pte)))
602                         goto check_pfn;
603                 if (vma->vm_ops && vma->vm_ops->find_special_page)
604                         return vma->vm_ops->find_special_page(vma, addr);
605                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606                         return NULL;
607                 if (is_zero_pfn(pfn))
608                         return NULL;
609                 if (pte_devmap(pte))
610                         return NULL;
611
612                 print_bad_pte(vma, addr, pte, NULL);
613                 return NULL;
614         }
615
616         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617
618         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619                 if (vma->vm_flags & VM_MIXEDMAP) {
620                         if (!pfn_valid(pfn))
621                                 return NULL;
622                         goto out;
623                 } else {
624                         unsigned long off;
625                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
626                         if (pfn == vma->vm_pgoff + off)
627                                 return NULL;
628                         if (!is_cow_mapping(vma->vm_flags))
629                                 return NULL;
630                 }
631         }
632
633         if (is_zero_pfn(pfn))
634                 return NULL;
635
636 check_pfn:
637         if (unlikely(pfn > highest_memmap_pfn)) {
638                 print_bad_pte(vma, addr, pte, NULL);
639                 return NULL;
640         }
641
642         /*
643          * NOTE! We still have PageReserved() pages in the page tables.
644          * eg. VDSO mappings can cause them to exist.
645          */
646 out:
647         return pfn_to_page(pfn);
648 }
649
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652                                 pmd_t pmd)
653 {
654         unsigned long pfn = pmd_pfn(pmd);
655
656         /*
657          * There is no pmd_special() but there may be special pmds, e.g.
658          * in a direct-access (dax) mapping, so let's just replicate the
659          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660          */
661         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662                 if (vma->vm_flags & VM_MIXEDMAP) {
663                         if (!pfn_valid(pfn))
664                                 return NULL;
665                         goto out;
666                 } else {
667                         unsigned long off;
668                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
669                         if (pfn == vma->vm_pgoff + off)
670                                 return NULL;
671                         if (!is_cow_mapping(vma->vm_flags))
672                                 return NULL;
673                 }
674         }
675
676         if (pmd_devmap(pmd))
677                 return NULL;
678         if (is_huge_zero_pmd(pmd))
679                 return NULL;
680         if (unlikely(pfn > highest_memmap_pfn))
681                 return NULL;
682
683         /*
684          * NOTE! We still have PageReserved() pages in the page tables.
685          * eg. VDSO mappings can cause them to exist.
686          */
687 out:
688         return pfn_to_page(pfn);
689 }
690 #endif
691
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697
698 static unsigned long
699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701                 unsigned long addr, int *rss)
702 {
703         unsigned long vm_flags = vma->vm_flags;
704         pte_t pte = *src_pte;
705         struct page *page;
706         swp_entry_t entry = pte_to_swp_entry(pte);
707
708         if (likely(!non_swap_entry(entry))) {
709                 if (swap_duplicate(entry) < 0)
710                         return entry.val;
711
712                 /* make sure dst_mm is on swapoff's mmlist. */
713                 if (unlikely(list_empty(&dst_mm->mmlist))) {
714                         spin_lock(&mmlist_lock);
715                         if (list_empty(&dst_mm->mmlist))
716                                 list_add(&dst_mm->mmlist,
717                                                 &src_mm->mmlist);
718                         spin_unlock(&mmlist_lock);
719                 }
720                 rss[MM_SWAPENTS]++;
721         } else if (is_migration_entry(entry)) {
722                 page = migration_entry_to_page(entry);
723
724                 rss[mm_counter(page)]++;
725
726                 if (is_write_migration_entry(entry) &&
727                                 is_cow_mapping(vm_flags)) {
728                         /*
729                          * COW mappings require pages in both
730                          * parent and child to be set to read.
731                          */
732                         make_migration_entry_read(&entry);
733                         pte = swp_entry_to_pte(entry);
734                         if (pte_swp_soft_dirty(*src_pte))
735                                 pte = pte_swp_mksoft_dirty(pte);
736                         if (pte_swp_uffd_wp(*src_pte))
737                                 pte = pte_swp_mkuffd_wp(pte);
738                         set_pte_at(src_mm, addr, src_pte, pte);
739                 }
740         } else if (is_device_private_entry(entry)) {
741                 page = device_private_entry_to_page(entry);
742
743                 /*
744                  * Update rss count even for unaddressable pages, as
745                  * they should treated just like normal pages in this
746                  * respect.
747                  *
748                  * We will likely want to have some new rss counters
749                  * for unaddressable pages, at some point. But for now
750                  * keep things as they are.
751                  */
752                 get_page(page);
753                 rss[mm_counter(page)]++;
754                 page_dup_rmap(page, false);
755
756                 /*
757                  * We do not preserve soft-dirty information, because so
758                  * far, checkpoint/restore is the only feature that
759                  * requires that. And checkpoint/restore does not work
760                  * when a device driver is involved (you cannot easily
761                  * save and restore device driver state).
762                  */
763                 if (is_write_device_private_entry(entry) &&
764                     is_cow_mapping(vm_flags)) {
765                         make_device_private_entry_read(&entry);
766                         pte = swp_entry_to_pte(entry);
767                         if (pte_swp_uffd_wp(*src_pte))
768                                 pte = pte_swp_mkuffd_wp(pte);
769                         set_pte_at(src_mm, addr, src_pte, pte);
770                 }
771         }
772         set_pte_at(dst_mm, addr, dst_pte, pte);
773         return 0;
774 }
775
776 /*
777  * Copy a present and normal page if necessary.
778  *
779  * NOTE! The usual case is that this doesn't need to do
780  * anything, and can just return a positive value. That
781  * will let the caller know that it can just increase
782  * the page refcount and re-use the pte the traditional
783  * way.
784  *
785  * But _if_ we need to copy it because it needs to be
786  * pinned in the parent (and the child should get its own
787  * copy rather than just a reference to the same page),
788  * we'll do that here and return zero to let the caller
789  * know we're done.
790  *
791  * And if we need a pre-allocated page but don't yet have
792  * one, return a negative error to let the preallocation
793  * code know so that it can do so outside the page table
794  * lock.
795  */
796 static inline int
797 copy_present_page(struct mm_struct *dst_mm, struct mm_struct *src_mm,
798                 pte_t *dst_pte, pte_t *src_pte,
799                 struct vm_area_struct *vma, struct vm_area_struct *new,
800                 unsigned long addr, int *rss, struct page **prealloc,
801                 pte_t pte, struct page *page)
802 {
803         struct page *new_page;
804
805         if (!is_cow_mapping(vma->vm_flags))
806                 return 1;
807
808         /*
809          * What we want to do is to check whether this page may
810          * have been pinned by the parent process.  If so,
811          * instead of wrprotect the pte on both sides, we copy
812          * the page immediately so that we'll always guarantee
813          * the pinned page won't be randomly replaced in the
814          * future.
815          *
816          * The page pinning checks are just "has this mm ever
817          * seen pinning", along with the (inexact) check of
818          * the page count. That might give false positives for
819          * for pinning, but it will work correctly.
820          */
821         if (likely(!atomic_read(&src_mm->has_pinned)))
822                 return 1;
823         if (likely(!page_maybe_dma_pinned(page)))
824                 return 1;
825
826         new_page = *prealloc;
827         if (!new_page)
828                 return -EAGAIN;
829
830         /*
831          * We have a prealloc page, all good!  Take it
832          * over and copy the page & arm it.
833          */
834         *prealloc = NULL;
835         copy_user_highpage(new_page, page, addr, vma);
836         __SetPageUptodate(new_page);
837         page_add_new_anon_rmap(new_page, new, addr, false);
838         lru_cache_add_inactive_or_unevictable(new_page, new);
839         rss[mm_counter(new_page)]++;
840
841         /* All done, just insert the new page copy in the child */
842         pte = mk_pte(new_page, new->vm_page_prot);
843         pte = maybe_mkwrite(pte_mkdirty(pte), new);
844         set_pte_at(dst_mm, addr, dst_pte, pte);
845         return 0;
846 }
847
848 /*
849  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
850  * is required to copy this pte.
851  */
852 static inline int
853 copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
854                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
855                 struct vm_area_struct *new,
856                 unsigned long addr, int *rss, struct page **prealloc)
857 {
858         unsigned long vm_flags = vma->vm_flags;
859         pte_t pte = *src_pte;
860         struct page *page;
861
862         page = vm_normal_page(vma, addr, pte);
863         if (page) {
864                 int retval;
865
866                 retval = copy_present_page(dst_mm, src_mm,
867                         dst_pte, src_pte,
868                         vma, new,
869                         addr, rss, prealloc,
870                         pte, page);
871                 if (retval <= 0)
872                         return retval;
873
874                 get_page(page);
875                 page_dup_rmap(page, false);
876                 rss[mm_counter(page)]++;
877         }
878
879         /*
880          * If it's a COW mapping, write protect it both
881          * in the parent and the child
882          */
883         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
884                 ptep_set_wrprotect(src_mm, addr, src_pte);
885                 pte = pte_wrprotect(pte);
886         }
887
888         /*
889          * If it's a shared mapping, mark it clean in
890          * the child
891          */
892         if (vm_flags & VM_SHARED)
893                 pte = pte_mkclean(pte);
894         pte = pte_mkold(pte);
895
896         /*
897          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
898          * does not have the VM_UFFD_WP, which means that the uffd
899          * fork event is not enabled.
900          */
901         if (!(vm_flags & VM_UFFD_WP))
902                 pte = pte_clear_uffd_wp(pte);
903
904         set_pte_at(dst_mm, addr, dst_pte, pte);
905         return 0;
906 }
907
908 static inline struct page *
909 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
910                    unsigned long addr)
911 {
912         struct page *new_page;
913
914         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
915         if (!new_page)
916                 return NULL;
917
918         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
919                 put_page(new_page);
920                 return NULL;
921         }
922         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
923
924         return new_page;
925 }
926
927 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
929                    struct vm_area_struct *new,
930                    unsigned long addr, unsigned long end)
931 {
932         pte_t *orig_src_pte, *orig_dst_pte;
933         pte_t *src_pte, *dst_pte;
934         spinlock_t *src_ptl, *dst_ptl;
935         int progress, ret = 0;
936         int rss[NR_MM_COUNTERS];
937         swp_entry_t entry = (swp_entry_t){0};
938         struct page *prealloc = NULL;
939
940 again:
941         progress = 0;
942         init_rss_vec(rss);
943
944         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
945         if (!dst_pte) {
946                 ret = -ENOMEM;
947                 goto out;
948         }
949         src_pte = pte_offset_map(src_pmd, addr);
950         src_ptl = pte_lockptr(src_mm, src_pmd);
951         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
952         orig_src_pte = src_pte;
953         orig_dst_pte = dst_pte;
954         arch_enter_lazy_mmu_mode();
955
956         do {
957                 /*
958                  * We are holding two locks at this point - either of them
959                  * could generate latencies in another task on another CPU.
960                  */
961                 if (progress >= 32) {
962                         progress = 0;
963                         if (need_resched() ||
964                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
965                                 break;
966                 }
967                 if (pte_none(*src_pte)) {
968                         progress++;
969                         continue;
970                 }
971                 if (unlikely(!pte_present(*src_pte))) {
972                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
973                                                         dst_pte, src_pte,
974                                                         vma, addr, rss);
975                         if (entry.val)
976                                 break;
977                         progress += 8;
978                         continue;
979                 }
980                 /* copy_present_pte() will clear `*prealloc' if consumed */
981                 ret = copy_present_pte(dst_mm, src_mm, dst_pte, src_pte,
982                                        vma, new, addr, rss, &prealloc);
983                 /*
984                  * If we need a pre-allocated page for this pte, drop the
985                  * locks, allocate, and try again.
986                  */
987                 if (unlikely(ret == -EAGAIN))
988                         break;
989                 if (unlikely(prealloc)) {
990                         /*
991                          * pre-alloc page cannot be reused by next time so as
992                          * to strictly follow mempolicy (e.g., alloc_page_vma()
993                          * will allocate page according to address).  This
994                          * could only happen if one pinned pte changed.
995                          */
996                         put_page(prealloc);
997                         prealloc = NULL;
998                 }
999                 progress += 8;
1000         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1001
1002         arch_leave_lazy_mmu_mode();
1003         spin_unlock(src_ptl);
1004         pte_unmap(orig_src_pte);
1005         add_mm_rss_vec(dst_mm, rss);
1006         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1007         cond_resched();
1008
1009         if (entry.val) {
1010                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1011                         ret = -ENOMEM;
1012                         goto out;
1013                 }
1014                 entry.val = 0;
1015         } else if (ret) {
1016                 WARN_ON_ONCE(ret != -EAGAIN);
1017                 prealloc = page_copy_prealloc(src_mm, vma, addr);
1018                 if (!prealloc)
1019                         return -ENOMEM;
1020                 /* We've captured and resolved the error. Reset, try again. */
1021                 ret = 0;
1022         }
1023         if (addr != end)
1024                 goto again;
1025 out:
1026         if (unlikely(prealloc))
1027                 put_page(prealloc);
1028         return ret;
1029 }
1030
1031 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1033                 struct vm_area_struct *new,
1034                 unsigned long addr, unsigned long end)
1035 {
1036         pmd_t *src_pmd, *dst_pmd;
1037         unsigned long next;
1038
1039         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1040         if (!dst_pmd)
1041                 return -ENOMEM;
1042         src_pmd = pmd_offset(src_pud, addr);
1043         do {
1044                 next = pmd_addr_end(addr, end);
1045                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1046                         || pmd_devmap(*src_pmd)) {
1047                         int err;
1048                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1049                         err = copy_huge_pmd(dst_mm, src_mm,
1050                                             dst_pmd, src_pmd, addr, vma);
1051                         if (err == -ENOMEM)
1052                                 return -ENOMEM;
1053                         if (!err)
1054                                 continue;
1055                         /* fall through */
1056                 }
1057                 if (pmd_none_or_clear_bad(src_pmd))
1058                         continue;
1059                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1060                                    vma, new, addr, next))
1061                         return -ENOMEM;
1062         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1063         return 0;
1064 }
1065
1066 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1067                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1068                 struct vm_area_struct *new,
1069                 unsigned long addr, unsigned long end)
1070 {
1071         pud_t *src_pud, *dst_pud;
1072         unsigned long next;
1073
1074         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1075         if (!dst_pud)
1076                 return -ENOMEM;
1077         src_pud = pud_offset(src_p4d, addr);
1078         do {
1079                 next = pud_addr_end(addr, end);
1080                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1081                         int err;
1082
1083                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1084                         err = copy_huge_pud(dst_mm, src_mm,
1085                                             dst_pud, src_pud, addr, vma);
1086                         if (err == -ENOMEM)
1087                                 return -ENOMEM;
1088                         if (!err)
1089                                 continue;
1090                         /* fall through */
1091                 }
1092                 if (pud_none_or_clear_bad(src_pud))
1093                         continue;
1094                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1095                                    vma, new, addr, next))
1096                         return -ENOMEM;
1097         } while (dst_pud++, src_pud++, addr = next, addr != end);
1098         return 0;
1099 }
1100
1101 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1102                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1103                 struct vm_area_struct *new,
1104                 unsigned long addr, unsigned long end)
1105 {
1106         p4d_t *src_p4d, *dst_p4d;
1107         unsigned long next;
1108
1109         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1110         if (!dst_p4d)
1111                 return -ENOMEM;
1112         src_p4d = p4d_offset(src_pgd, addr);
1113         do {
1114                 next = p4d_addr_end(addr, end);
1115                 if (p4d_none_or_clear_bad(src_p4d))
1116                         continue;
1117                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1118                                    vma, new, addr, next))
1119                         return -ENOMEM;
1120         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1121         return 0;
1122 }
1123
1124 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1125                     struct vm_area_struct *vma, struct vm_area_struct *new)
1126 {
1127         pgd_t *src_pgd, *dst_pgd;
1128         unsigned long next;
1129         unsigned long addr = vma->vm_start;
1130         unsigned long end = vma->vm_end;
1131         struct mmu_notifier_range range;
1132         bool is_cow;
1133         int ret;
1134
1135         /*
1136          * Don't copy ptes where a page fault will fill them correctly.
1137          * Fork becomes much lighter when there are big shared or private
1138          * readonly mappings. The tradeoff is that copy_page_range is more
1139          * efficient than faulting.
1140          */
1141         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1142                         !vma->anon_vma)
1143                 return 0;
1144
1145         if (is_vm_hugetlb_page(vma))
1146                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1147
1148         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1149                 /*
1150                  * We do not free on error cases below as remove_vma
1151                  * gets called on error from higher level routine
1152                  */
1153                 ret = track_pfn_copy(vma);
1154                 if (ret)
1155                         return ret;
1156         }
1157
1158         /*
1159          * We need to invalidate the secondary MMU mappings only when
1160          * there could be a permission downgrade on the ptes of the
1161          * parent mm. And a permission downgrade will only happen if
1162          * is_cow_mapping() returns true.
1163          */
1164         is_cow = is_cow_mapping(vma->vm_flags);
1165
1166         if (is_cow) {
1167                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1168                                         0, vma, src_mm, addr, end);
1169                 mmu_notifier_invalidate_range_start(&range);
1170         }
1171
1172         ret = 0;
1173         dst_pgd = pgd_offset(dst_mm, addr);
1174         src_pgd = pgd_offset(src_mm, addr);
1175         do {
1176                 next = pgd_addr_end(addr, end);
1177                 if (pgd_none_or_clear_bad(src_pgd))
1178                         continue;
1179                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1180                                             vma, new, addr, next))) {
1181                         ret = -ENOMEM;
1182                         break;
1183                 }
1184         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1185
1186         if (is_cow)
1187                 mmu_notifier_invalidate_range_end(&range);
1188         return ret;
1189 }
1190
1191 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1192                                 struct vm_area_struct *vma, pmd_t *pmd,
1193                                 unsigned long addr, unsigned long end,
1194                                 struct zap_details *details)
1195 {
1196         struct mm_struct *mm = tlb->mm;
1197         int force_flush = 0;
1198         int rss[NR_MM_COUNTERS];
1199         spinlock_t *ptl;
1200         pte_t *start_pte;
1201         pte_t *pte;
1202         swp_entry_t entry;
1203
1204         tlb_change_page_size(tlb, PAGE_SIZE);
1205 again:
1206         init_rss_vec(rss);
1207         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1208         pte = start_pte;
1209         flush_tlb_batched_pending(mm);
1210         arch_enter_lazy_mmu_mode();
1211         do {
1212                 pte_t ptent = *pte;
1213                 if (pte_none(ptent))
1214                         continue;
1215
1216                 if (need_resched())
1217                         break;
1218
1219                 if (pte_present(ptent)) {
1220                         struct page *page;
1221
1222                         page = vm_normal_page(vma, addr, ptent);
1223                         if (unlikely(details) && page) {
1224                                 /*
1225                                  * unmap_shared_mapping_pages() wants to
1226                                  * invalidate cache without truncating:
1227                                  * unmap shared but keep private pages.
1228                                  */
1229                                 if (details->check_mapping &&
1230                                     details->check_mapping != page_rmapping(page))
1231                                         continue;
1232                         }
1233                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1234                                                         tlb->fullmm);
1235                         tlb_remove_tlb_entry(tlb, pte, addr);
1236                         if (unlikely(!page))
1237                                 continue;
1238
1239                         if (!PageAnon(page)) {
1240                                 if (pte_dirty(ptent)) {
1241                                         force_flush = 1;
1242                                         set_page_dirty(page);
1243                                 }
1244                                 if (pte_young(ptent) &&
1245                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1246                                         mark_page_accessed(page);
1247                         }
1248                         rss[mm_counter(page)]--;
1249                         page_remove_rmap(page, false);
1250                         if (unlikely(page_mapcount(page) < 0))
1251                                 print_bad_pte(vma, addr, ptent, page);
1252                         if (unlikely(__tlb_remove_page(tlb, page))) {
1253                                 force_flush = 1;
1254                                 addr += PAGE_SIZE;
1255                                 break;
1256                         }
1257                         continue;
1258                 }
1259
1260                 entry = pte_to_swp_entry(ptent);
1261                 if (is_device_private_entry(entry)) {
1262                         struct page *page = device_private_entry_to_page(entry);
1263
1264                         if (unlikely(details && details->check_mapping)) {
1265                                 /*
1266                                  * unmap_shared_mapping_pages() wants to
1267                                  * invalidate cache without truncating:
1268                                  * unmap shared but keep private pages.
1269                                  */
1270                                 if (details->check_mapping !=
1271                                     page_rmapping(page))
1272                                         continue;
1273                         }
1274
1275                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1276                         rss[mm_counter(page)]--;
1277                         page_remove_rmap(page, false);
1278                         put_page(page);
1279                         continue;
1280                 }
1281
1282                 /* If details->check_mapping, we leave swap entries. */
1283                 if (unlikely(details))
1284                         continue;
1285
1286                 if (!non_swap_entry(entry))
1287                         rss[MM_SWAPENTS]--;
1288                 else if (is_migration_entry(entry)) {
1289                         struct page *page;
1290
1291                         page = migration_entry_to_page(entry);
1292                         rss[mm_counter(page)]--;
1293                 }
1294                 if (unlikely(!free_swap_and_cache(entry)))
1295                         print_bad_pte(vma, addr, ptent, NULL);
1296                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297         } while (pte++, addr += PAGE_SIZE, addr != end);
1298
1299         add_mm_rss_vec(mm, rss);
1300         arch_leave_lazy_mmu_mode();
1301
1302         /* Do the actual TLB flush before dropping ptl */
1303         if (force_flush)
1304                 tlb_flush_mmu_tlbonly(tlb);
1305         pte_unmap_unlock(start_pte, ptl);
1306
1307         /*
1308          * If we forced a TLB flush (either due to running out of
1309          * batch buffers or because we needed to flush dirty TLB
1310          * entries before releasing the ptl), free the batched
1311          * memory too. Restart if we didn't do everything.
1312          */
1313         if (force_flush) {
1314                 force_flush = 0;
1315                 tlb_flush_mmu(tlb);
1316         }
1317
1318         if (addr != end) {
1319                 cond_resched();
1320                 goto again;
1321         }
1322
1323         return addr;
1324 }
1325
1326 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1327                                 struct vm_area_struct *vma, pud_t *pud,
1328                                 unsigned long addr, unsigned long end,
1329                                 struct zap_details *details)
1330 {
1331         pmd_t *pmd;
1332         unsigned long next;
1333
1334         pmd = pmd_offset(pud, addr);
1335         do {
1336                 next = pmd_addr_end(addr, end);
1337                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1338                         if (next - addr != HPAGE_PMD_SIZE)
1339                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1340                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1341                                 goto next;
1342                         /* fall through */
1343                 }
1344                 /*
1345                  * Here there can be other concurrent MADV_DONTNEED or
1346                  * trans huge page faults running, and if the pmd is
1347                  * none or trans huge it can change under us. This is
1348                  * because MADV_DONTNEED holds the mmap_lock in read
1349                  * mode.
1350                  */
1351                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1352                         goto next;
1353                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1354 next:
1355                 cond_resched();
1356         } while (pmd++, addr = next, addr != end);
1357
1358         return addr;
1359 }
1360
1361 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1362                                 struct vm_area_struct *vma, p4d_t *p4d,
1363                                 unsigned long addr, unsigned long end,
1364                                 struct zap_details *details)
1365 {
1366         pud_t *pud;
1367         unsigned long next;
1368
1369         pud = pud_offset(p4d, addr);
1370         do {
1371                 next = pud_addr_end(addr, end);
1372                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1373                         if (next - addr != HPAGE_PUD_SIZE) {
1374                                 mmap_assert_locked(tlb->mm);
1375                                 split_huge_pud(vma, pud, addr);
1376                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1377                                 goto next;
1378                         /* fall through */
1379                 }
1380                 if (pud_none_or_clear_bad(pud))
1381                         continue;
1382                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1383 next:
1384                 cond_resched();
1385         } while (pud++, addr = next, addr != end);
1386
1387         return addr;
1388 }
1389
1390 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1391                                 struct vm_area_struct *vma, pgd_t *pgd,
1392                                 unsigned long addr, unsigned long end,
1393                                 struct zap_details *details)
1394 {
1395         p4d_t *p4d;
1396         unsigned long next;
1397
1398         p4d = p4d_offset(pgd, addr);
1399         do {
1400                 next = p4d_addr_end(addr, end);
1401                 if (p4d_none_or_clear_bad(p4d))
1402                         continue;
1403                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1404         } while (p4d++, addr = next, addr != end);
1405
1406         return addr;
1407 }
1408
1409 void unmap_page_range(struct mmu_gather *tlb,
1410                              struct vm_area_struct *vma,
1411                              unsigned long addr, unsigned long end,
1412                              struct zap_details *details)
1413 {
1414         pgd_t *pgd;
1415         unsigned long next;
1416
1417         BUG_ON(addr >= end);
1418         tlb_start_vma(tlb, vma);
1419         pgd = pgd_offset(vma->vm_mm, addr);
1420         do {
1421                 next = pgd_addr_end(addr, end);
1422                 if (pgd_none_or_clear_bad(pgd))
1423                         continue;
1424                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1425         } while (pgd++, addr = next, addr != end);
1426         tlb_end_vma(tlb, vma);
1427 }
1428
1429
1430 static void unmap_single_vma(struct mmu_gather *tlb,
1431                 struct vm_area_struct *vma, unsigned long start_addr,
1432                 unsigned long end_addr,
1433                 struct zap_details *details)
1434 {
1435         unsigned long start = max(vma->vm_start, start_addr);
1436         unsigned long end;
1437
1438         if (start >= vma->vm_end)
1439                 return;
1440         end = min(vma->vm_end, end_addr);
1441         if (end <= vma->vm_start)
1442                 return;
1443
1444         if (vma->vm_file)
1445                 uprobe_munmap(vma, start, end);
1446
1447         if (unlikely(vma->vm_flags & VM_PFNMAP))
1448                 untrack_pfn(vma, 0, 0);
1449
1450         if (start != end) {
1451                 if (unlikely(is_vm_hugetlb_page(vma))) {
1452                         /*
1453                          * It is undesirable to test vma->vm_file as it
1454                          * should be non-null for valid hugetlb area.
1455                          * However, vm_file will be NULL in the error
1456                          * cleanup path of mmap_region. When
1457                          * hugetlbfs ->mmap method fails,
1458                          * mmap_region() nullifies vma->vm_file
1459                          * before calling this function to clean up.
1460                          * Since no pte has actually been setup, it is
1461                          * safe to do nothing in this case.
1462                          */
1463                         if (vma->vm_file) {
1464                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1465                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1466                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1467                         }
1468                 } else
1469                         unmap_page_range(tlb, vma, start, end, details);
1470         }
1471 }
1472
1473 /**
1474  * unmap_vmas - unmap a range of memory covered by a list of vma's
1475  * @tlb: address of the caller's struct mmu_gather
1476  * @vma: the starting vma
1477  * @start_addr: virtual address at which to start unmapping
1478  * @end_addr: virtual address at which to end unmapping
1479  *
1480  * Unmap all pages in the vma list.
1481  *
1482  * Only addresses between `start' and `end' will be unmapped.
1483  *
1484  * The VMA list must be sorted in ascending virtual address order.
1485  *
1486  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1487  * range after unmap_vmas() returns.  So the only responsibility here is to
1488  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1489  * drops the lock and schedules.
1490  */
1491 void unmap_vmas(struct mmu_gather *tlb,
1492                 struct vm_area_struct *vma, unsigned long start_addr,
1493                 unsigned long end_addr)
1494 {
1495         struct mmu_notifier_range range;
1496
1497         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1498                                 start_addr, end_addr);
1499         mmu_notifier_invalidate_range_start(&range);
1500         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1501                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1502         mmu_notifier_invalidate_range_end(&range);
1503 }
1504
1505 /**
1506  * zap_page_range - remove user pages in a given range
1507  * @vma: vm_area_struct holding the applicable pages
1508  * @start: starting address of pages to zap
1509  * @size: number of bytes to zap
1510  *
1511  * Caller must protect the VMA list
1512  */
1513 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1514                 unsigned long size)
1515 {
1516         struct mmu_notifier_range range;
1517         struct mmu_gather tlb;
1518
1519         lru_add_drain();
1520         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1521                                 start, start + size);
1522         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1523         update_hiwater_rss(vma->vm_mm);
1524         mmu_notifier_invalidate_range_start(&range);
1525         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1526                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1527         mmu_notifier_invalidate_range_end(&range);
1528         tlb_finish_mmu(&tlb, start, range.end);
1529 }
1530
1531 /**
1532  * zap_page_range_single - remove user pages in a given range
1533  * @vma: vm_area_struct holding the applicable pages
1534  * @address: starting address of pages to zap
1535  * @size: number of bytes to zap
1536  * @details: details of shared cache invalidation
1537  *
1538  * The range must fit into one VMA.
1539  */
1540 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1541                 unsigned long size, struct zap_details *details)
1542 {
1543         struct mmu_notifier_range range;
1544         struct mmu_gather tlb;
1545
1546         lru_add_drain();
1547         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1548                                 address, address + size);
1549         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1550         update_hiwater_rss(vma->vm_mm);
1551         mmu_notifier_invalidate_range_start(&range);
1552         unmap_single_vma(&tlb, vma, address, range.end, details);
1553         mmu_notifier_invalidate_range_end(&range);
1554         tlb_finish_mmu(&tlb, address, range.end);
1555 }
1556
1557 /**
1558  * zap_vma_ptes - remove ptes mapping the vma
1559  * @vma: vm_area_struct holding ptes to be zapped
1560  * @address: starting address of pages to zap
1561  * @size: number of bytes to zap
1562  *
1563  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1564  *
1565  * The entire address range must be fully contained within the vma.
1566  *
1567  */
1568 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1569                 unsigned long size)
1570 {
1571         if (address < vma->vm_start || address + size > vma->vm_end ||
1572                         !(vma->vm_flags & VM_PFNMAP))
1573                 return;
1574
1575         zap_page_range_single(vma, address, size, NULL);
1576 }
1577 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1578
1579 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1580 {
1581         pgd_t *pgd;
1582         p4d_t *p4d;
1583         pud_t *pud;
1584         pmd_t *pmd;
1585
1586         pgd = pgd_offset(mm, addr);
1587         p4d = p4d_alloc(mm, pgd, addr);
1588         if (!p4d)
1589                 return NULL;
1590         pud = pud_alloc(mm, p4d, addr);
1591         if (!pud)
1592                 return NULL;
1593         pmd = pmd_alloc(mm, pud, addr);
1594         if (!pmd)
1595                 return NULL;
1596
1597         VM_BUG_ON(pmd_trans_huge(*pmd));
1598         return pmd;
1599 }
1600
1601 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1602                         spinlock_t **ptl)
1603 {
1604         pmd_t *pmd = walk_to_pmd(mm, addr);
1605
1606         if (!pmd)
1607                 return NULL;
1608         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1609 }
1610
1611 static int validate_page_before_insert(struct page *page)
1612 {
1613         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1614                 return -EINVAL;
1615         flush_dcache_page(page);
1616         return 0;
1617 }
1618
1619 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1620                         unsigned long addr, struct page *page, pgprot_t prot)
1621 {
1622         if (!pte_none(*pte))
1623                 return -EBUSY;
1624         /* Ok, finally just insert the thing.. */
1625         get_page(page);
1626         inc_mm_counter_fast(mm, mm_counter_file(page));
1627         page_add_file_rmap(page, false);
1628         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1629         return 0;
1630 }
1631
1632 /*
1633  * This is the old fallback for page remapping.
1634  *
1635  * For historical reasons, it only allows reserved pages. Only
1636  * old drivers should use this, and they needed to mark their
1637  * pages reserved for the old functions anyway.
1638  */
1639 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1640                         struct page *page, pgprot_t prot)
1641 {
1642         struct mm_struct *mm = vma->vm_mm;
1643         int retval;
1644         pte_t *pte;
1645         spinlock_t *ptl;
1646
1647         retval = validate_page_before_insert(page);
1648         if (retval)
1649                 goto out;
1650         retval = -ENOMEM;
1651         pte = get_locked_pte(mm, addr, &ptl);
1652         if (!pte)
1653                 goto out;
1654         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1655         pte_unmap_unlock(pte, ptl);
1656 out:
1657         return retval;
1658 }
1659
1660 #ifdef pte_index
1661 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1662                         unsigned long addr, struct page *page, pgprot_t prot)
1663 {
1664         int err;
1665
1666         if (!page_count(page))
1667                 return -EINVAL;
1668         err = validate_page_before_insert(page);
1669         if (err)
1670                 return err;
1671         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1672 }
1673
1674 /* insert_pages() amortizes the cost of spinlock operations
1675  * when inserting pages in a loop. Arch *must* define pte_index.
1676  */
1677 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1678                         struct page **pages, unsigned long *num, pgprot_t prot)
1679 {
1680         pmd_t *pmd = NULL;
1681         pte_t *start_pte, *pte;
1682         spinlock_t *pte_lock;
1683         struct mm_struct *const mm = vma->vm_mm;
1684         unsigned long curr_page_idx = 0;
1685         unsigned long remaining_pages_total = *num;
1686         unsigned long pages_to_write_in_pmd;
1687         int ret;
1688 more:
1689         ret = -EFAULT;
1690         pmd = walk_to_pmd(mm, addr);
1691         if (!pmd)
1692                 goto out;
1693
1694         pages_to_write_in_pmd = min_t(unsigned long,
1695                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1696
1697         /* Allocate the PTE if necessary; takes PMD lock once only. */
1698         ret = -ENOMEM;
1699         if (pte_alloc(mm, pmd))
1700                 goto out;
1701
1702         while (pages_to_write_in_pmd) {
1703                 int pte_idx = 0;
1704                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1705
1706                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1707                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1708                         int err = insert_page_in_batch_locked(mm, pte,
1709                                 addr, pages[curr_page_idx], prot);
1710                         if (unlikely(err)) {
1711                                 pte_unmap_unlock(start_pte, pte_lock);
1712                                 ret = err;
1713                                 remaining_pages_total -= pte_idx;
1714                                 goto out;
1715                         }
1716                         addr += PAGE_SIZE;
1717                         ++curr_page_idx;
1718                 }
1719                 pte_unmap_unlock(start_pte, pte_lock);
1720                 pages_to_write_in_pmd -= batch_size;
1721                 remaining_pages_total -= batch_size;
1722         }
1723         if (remaining_pages_total)
1724                 goto more;
1725         ret = 0;
1726 out:
1727         *num = remaining_pages_total;
1728         return ret;
1729 }
1730 #endif  /* ifdef pte_index */
1731
1732 /**
1733  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1734  * @vma: user vma to map to
1735  * @addr: target start user address of these pages
1736  * @pages: source kernel pages
1737  * @num: in: number of pages to map. out: number of pages that were *not*
1738  * mapped. (0 means all pages were successfully mapped).
1739  *
1740  * Preferred over vm_insert_page() when inserting multiple pages.
1741  *
1742  * In case of error, we may have mapped a subset of the provided
1743  * pages. It is the caller's responsibility to account for this case.
1744  *
1745  * The same restrictions apply as in vm_insert_page().
1746  */
1747 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1748                         struct page **pages, unsigned long *num)
1749 {
1750 #ifdef pte_index
1751         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1752
1753         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1754                 return -EFAULT;
1755         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1756                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1757                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1758                 vma->vm_flags |= VM_MIXEDMAP;
1759         }
1760         /* Defer page refcount checking till we're about to map that page. */
1761         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1762 #else
1763         unsigned long idx = 0, pgcount = *num;
1764         int err = -EINVAL;
1765
1766         for (; idx < pgcount; ++idx) {
1767                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1768                 if (err)
1769                         break;
1770         }
1771         *num = pgcount - idx;
1772         return err;
1773 #endif  /* ifdef pte_index */
1774 }
1775 EXPORT_SYMBOL(vm_insert_pages);
1776
1777 /**
1778  * vm_insert_page - insert single page into user vma
1779  * @vma: user vma to map to
1780  * @addr: target user address of this page
1781  * @page: source kernel page
1782  *
1783  * This allows drivers to insert individual pages they've allocated
1784  * into a user vma.
1785  *
1786  * The page has to be a nice clean _individual_ kernel allocation.
1787  * If you allocate a compound page, you need to have marked it as
1788  * such (__GFP_COMP), or manually just split the page up yourself
1789  * (see split_page()).
1790  *
1791  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1792  * took an arbitrary page protection parameter. This doesn't allow
1793  * that. Your vma protection will have to be set up correctly, which
1794  * means that if you want a shared writable mapping, you'd better
1795  * ask for a shared writable mapping!
1796  *
1797  * The page does not need to be reserved.
1798  *
1799  * Usually this function is called from f_op->mmap() handler
1800  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1801  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1802  * function from other places, for example from page-fault handler.
1803  *
1804  * Return: %0 on success, negative error code otherwise.
1805  */
1806 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1807                         struct page *page)
1808 {
1809         if (addr < vma->vm_start || addr >= vma->vm_end)
1810                 return -EFAULT;
1811         if (!page_count(page))
1812                 return -EINVAL;
1813         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1814                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1815                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1816                 vma->vm_flags |= VM_MIXEDMAP;
1817         }
1818         return insert_page(vma, addr, page, vma->vm_page_prot);
1819 }
1820 EXPORT_SYMBOL(vm_insert_page);
1821
1822 /*
1823  * __vm_map_pages - maps range of kernel pages into user vma
1824  * @vma: user vma to map to
1825  * @pages: pointer to array of source kernel pages
1826  * @num: number of pages in page array
1827  * @offset: user's requested vm_pgoff
1828  *
1829  * This allows drivers to map range of kernel pages into a user vma.
1830  *
1831  * Return: 0 on success and error code otherwise.
1832  */
1833 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1834                                 unsigned long num, unsigned long offset)
1835 {
1836         unsigned long count = vma_pages(vma);
1837         unsigned long uaddr = vma->vm_start;
1838         int ret, i;
1839
1840         /* Fail if the user requested offset is beyond the end of the object */
1841         if (offset >= num)
1842                 return -ENXIO;
1843
1844         /* Fail if the user requested size exceeds available object size */
1845         if (count > num - offset)
1846                 return -ENXIO;
1847
1848         for (i = 0; i < count; i++) {
1849                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1850                 if (ret < 0)
1851                         return ret;
1852                 uaddr += PAGE_SIZE;
1853         }
1854
1855         return 0;
1856 }
1857
1858 /**
1859  * vm_map_pages - maps range of kernel pages starts with non zero offset
1860  * @vma: user vma to map to
1861  * @pages: pointer to array of source kernel pages
1862  * @num: number of pages in page array
1863  *
1864  * Maps an object consisting of @num pages, catering for the user's
1865  * requested vm_pgoff
1866  *
1867  * If we fail to insert any page into the vma, the function will return
1868  * immediately leaving any previously inserted pages present.  Callers
1869  * from the mmap handler may immediately return the error as their caller
1870  * will destroy the vma, removing any successfully inserted pages. Other
1871  * callers should make their own arrangements for calling unmap_region().
1872  *
1873  * Context: Process context. Called by mmap handlers.
1874  * Return: 0 on success and error code otherwise.
1875  */
1876 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1877                                 unsigned long num)
1878 {
1879         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1880 }
1881 EXPORT_SYMBOL(vm_map_pages);
1882
1883 /**
1884  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1885  * @vma: user vma to map to
1886  * @pages: pointer to array of source kernel pages
1887  * @num: number of pages in page array
1888  *
1889  * Similar to vm_map_pages(), except that it explicitly sets the offset
1890  * to 0. This function is intended for the drivers that did not consider
1891  * vm_pgoff.
1892  *
1893  * Context: Process context. Called by mmap handlers.
1894  * Return: 0 on success and error code otherwise.
1895  */
1896 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1897                                 unsigned long num)
1898 {
1899         return __vm_map_pages(vma, pages, num, 0);
1900 }
1901 EXPORT_SYMBOL(vm_map_pages_zero);
1902
1903 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1904                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1905 {
1906         struct mm_struct *mm = vma->vm_mm;
1907         pte_t *pte, entry;
1908         spinlock_t *ptl;
1909
1910         pte = get_locked_pte(mm, addr, &ptl);
1911         if (!pte)
1912                 return VM_FAULT_OOM;
1913         if (!pte_none(*pte)) {
1914                 if (mkwrite) {
1915                         /*
1916                          * For read faults on private mappings the PFN passed
1917                          * in may not match the PFN we have mapped if the
1918                          * mapped PFN is a writeable COW page.  In the mkwrite
1919                          * case we are creating a writable PTE for a shared
1920                          * mapping and we expect the PFNs to match. If they
1921                          * don't match, we are likely racing with block
1922                          * allocation and mapping invalidation so just skip the
1923                          * update.
1924                          */
1925                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1926                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1927                                 goto out_unlock;
1928                         }
1929                         entry = pte_mkyoung(*pte);
1930                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1931                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1932                                 update_mmu_cache(vma, addr, pte);
1933                 }
1934                 goto out_unlock;
1935         }
1936
1937         /* Ok, finally just insert the thing.. */
1938         if (pfn_t_devmap(pfn))
1939                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1940         else
1941                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1942
1943         if (mkwrite) {
1944                 entry = pte_mkyoung(entry);
1945                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1946         }
1947
1948         set_pte_at(mm, addr, pte, entry);
1949         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1950
1951 out_unlock:
1952         pte_unmap_unlock(pte, ptl);
1953         return VM_FAULT_NOPAGE;
1954 }
1955
1956 /**
1957  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1958  * @vma: user vma to map to
1959  * @addr: target user address of this page
1960  * @pfn: source kernel pfn
1961  * @pgprot: pgprot flags for the inserted page
1962  *
1963  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1964  * to override pgprot on a per-page basis.
1965  *
1966  * This only makes sense for IO mappings, and it makes no sense for
1967  * COW mappings.  In general, using multiple vmas is preferable;
1968  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1969  * impractical.
1970  *
1971  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1972  * a value of @pgprot different from that of @vma->vm_page_prot.
1973  *
1974  * Context: Process context.  May allocate using %GFP_KERNEL.
1975  * Return: vm_fault_t value.
1976  */
1977 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1978                         unsigned long pfn, pgprot_t pgprot)
1979 {
1980         /*
1981          * Technically, architectures with pte_special can avoid all these
1982          * restrictions (same for remap_pfn_range).  However we would like
1983          * consistency in testing and feature parity among all, so we should
1984          * try to keep these invariants in place for everybody.
1985          */
1986         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1987         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1988                                                 (VM_PFNMAP|VM_MIXEDMAP));
1989         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1990         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1991
1992         if (addr < vma->vm_start || addr >= vma->vm_end)
1993                 return VM_FAULT_SIGBUS;
1994
1995         if (!pfn_modify_allowed(pfn, pgprot))
1996                 return VM_FAULT_SIGBUS;
1997
1998         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1999
2000         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2001                         false);
2002 }
2003 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2004
2005 /**
2006  * vmf_insert_pfn - insert single pfn into user vma
2007  * @vma: user vma to map to
2008  * @addr: target user address of this page
2009  * @pfn: source kernel pfn
2010  *
2011  * Similar to vm_insert_page, this allows drivers to insert individual pages
2012  * they've allocated into a user vma. Same comments apply.
2013  *
2014  * This function should only be called from a vm_ops->fault handler, and
2015  * in that case the handler should return the result of this function.
2016  *
2017  * vma cannot be a COW mapping.
2018  *
2019  * As this is called only for pages that do not currently exist, we
2020  * do not need to flush old virtual caches or the TLB.
2021  *
2022  * Context: Process context.  May allocate using %GFP_KERNEL.
2023  * Return: vm_fault_t value.
2024  */
2025 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2026                         unsigned long pfn)
2027 {
2028         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2029 }
2030 EXPORT_SYMBOL(vmf_insert_pfn);
2031
2032 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2033 {
2034         /* these checks mirror the abort conditions in vm_normal_page */
2035         if (vma->vm_flags & VM_MIXEDMAP)
2036                 return true;
2037         if (pfn_t_devmap(pfn))
2038                 return true;
2039         if (pfn_t_special(pfn))
2040                 return true;
2041         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2042                 return true;
2043         return false;
2044 }
2045
2046 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2047                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2048                 bool mkwrite)
2049 {
2050         int err;
2051
2052         BUG_ON(!vm_mixed_ok(vma, pfn));
2053
2054         if (addr < vma->vm_start || addr >= vma->vm_end)
2055                 return VM_FAULT_SIGBUS;
2056
2057         track_pfn_insert(vma, &pgprot, pfn);
2058
2059         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2060                 return VM_FAULT_SIGBUS;
2061
2062         /*
2063          * If we don't have pte special, then we have to use the pfn_valid()
2064          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2065          * refcount the page if pfn_valid is true (hence insert_page rather
2066          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2067          * without pte special, it would there be refcounted as a normal page.
2068          */
2069         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2070             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2071                 struct page *page;
2072
2073                 /*
2074                  * At this point we are committed to insert_page()
2075                  * regardless of whether the caller specified flags that
2076                  * result in pfn_t_has_page() == false.
2077                  */
2078                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2079                 err = insert_page(vma, addr, page, pgprot);
2080         } else {
2081                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2082         }
2083
2084         if (err == -ENOMEM)
2085                 return VM_FAULT_OOM;
2086         if (err < 0 && err != -EBUSY)
2087                 return VM_FAULT_SIGBUS;
2088
2089         return VM_FAULT_NOPAGE;
2090 }
2091
2092 /**
2093  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2094  * @vma: user vma to map to
2095  * @addr: target user address of this page
2096  * @pfn: source kernel pfn
2097  * @pgprot: pgprot flags for the inserted page
2098  *
2099  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2100  * to override pgprot on a per-page basis.
2101  *
2102  * Typically this function should be used by drivers to set caching- and
2103  * encryption bits different than those of @vma->vm_page_prot, because
2104  * the caching- or encryption mode may not be known at mmap() time.
2105  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2106  * to set caching and encryption bits for those vmas (except for COW pages).
2107  * This is ensured by core vm only modifying these page table entries using
2108  * functions that don't touch caching- or encryption bits, using pte_modify()
2109  * if needed. (See for example mprotect()).
2110  * Also when new page-table entries are created, this is only done using the
2111  * fault() callback, and never using the value of vma->vm_page_prot,
2112  * except for page-table entries that point to anonymous pages as the result
2113  * of COW.
2114  *
2115  * Context: Process context.  May allocate using %GFP_KERNEL.
2116  * Return: vm_fault_t value.
2117  */
2118 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2119                                  pfn_t pfn, pgprot_t pgprot)
2120 {
2121         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2122 }
2123 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2124
2125 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2126                 pfn_t pfn)
2127 {
2128         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2129 }
2130 EXPORT_SYMBOL(vmf_insert_mixed);
2131
2132 /*
2133  *  If the insertion of PTE failed because someone else already added a
2134  *  different entry in the mean time, we treat that as success as we assume
2135  *  the same entry was actually inserted.
2136  */
2137 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2138                 unsigned long addr, pfn_t pfn)
2139 {
2140         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2141 }
2142 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2143
2144 /*
2145  * maps a range of physical memory into the requested pages. the old
2146  * mappings are removed. any references to nonexistent pages results
2147  * in null mappings (currently treated as "copy-on-access")
2148  */
2149 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2150                         unsigned long addr, unsigned long end,
2151                         unsigned long pfn, pgprot_t prot)
2152 {
2153         pte_t *pte;
2154         spinlock_t *ptl;
2155         int err = 0;
2156
2157         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2158         if (!pte)
2159                 return -ENOMEM;
2160         arch_enter_lazy_mmu_mode();
2161         do {
2162                 BUG_ON(!pte_none(*pte));
2163                 if (!pfn_modify_allowed(pfn, prot)) {
2164                         err = -EACCES;
2165                         break;
2166                 }
2167                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2168                 pfn++;
2169         } while (pte++, addr += PAGE_SIZE, addr != end);
2170         arch_leave_lazy_mmu_mode();
2171         pte_unmap_unlock(pte - 1, ptl);
2172         return err;
2173 }
2174
2175 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2176                         unsigned long addr, unsigned long end,
2177                         unsigned long pfn, pgprot_t prot)
2178 {
2179         pmd_t *pmd;
2180         unsigned long next;
2181         int err;
2182
2183         pfn -= addr >> PAGE_SHIFT;
2184         pmd = pmd_alloc(mm, pud, addr);
2185         if (!pmd)
2186                 return -ENOMEM;
2187         VM_BUG_ON(pmd_trans_huge(*pmd));
2188         do {
2189                 next = pmd_addr_end(addr, end);
2190                 err = remap_pte_range(mm, pmd, addr, next,
2191                                 pfn + (addr >> PAGE_SHIFT), prot);
2192                 if (err)
2193                         return err;
2194         } while (pmd++, addr = next, addr != end);
2195         return 0;
2196 }
2197
2198 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2199                         unsigned long addr, unsigned long end,
2200                         unsigned long pfn, pgprot_t prot)
2201 {
2202         pud_t *pud;
2203         unsigned long next;
2204         int err;
2205
2206         pfn -= addr >> PAGE_SHIFT;
2207         pud = pud_alloc(mm, p4d, addr);
2208         if (!pud)
2209                 return -ENOMEM;
2210         do {
2211                 next = pud_addr_end(addr, end);
2212                 err = remap_pmd_range(mm, pud, addr, next,
2213                                 pfn + (addr >> PAGE_SHIFT), prot);
2214                 if (err)
2215                         return err;
2216         } while (pud++, addr = next, addr != end);
2217         return 0;
2218 }
2219
2220 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2221                         unsigned long addr, unsigned long end,
2222                         unsigned long pfn, pgprot_t prot)
2223 {
2224         p4d_t *p4d;
2225         unsigned long next;
2226         int err;
2227
2228         pfn -= addr >> PAGE_SHIFT;
2229         p4d = p4d_alloc(mm, pgd, addr);
2230         if (!p4d)
2231                 return -ENOMEM;
2232         do {
2233                 next = p4d_addr_end(addr, end);
2234                 err = remap_pud_range(mm, p4d, addr, next,
2235                                 pfn + (addr >> PAGE_SHIFT), prot);
2236                 if (err)
2237                         return err;
2238         } while (p4d++, addr = next, addr != end);
2239         return 0;
2240 }
2241
2242 /**
2243  * remap_pfn_range - remap kernel memory to userspace
2244  * @vma: user vma to map to
2245  * @addr: target page aligned user address to start at
2246  * @pfn: page frame number of kernel physical memory address
2247  * @size: size of mapping area
2248  * @prot: page protection flags for this mapping
2249  *
2250  * Note: this is only safe if the mm semaphore is held when called.
2251  *
2252  * Return: %0 on success, negative error code otherwise.
2253  */
2254 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2255                     unsigned long pfn, unsigned long size, pgprot_t prot)
2256 {
2257         pgd_t *pgd;
2258         unsigned long next;
2259         unsigned long end = addr + PAGE_ALIGN(size);
2260         struct mm_struct *mm = vma->vm_mm;
2261         unsigned long remap_pfn = pfn;
2262         int err;
2263
2264         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2265                 return -EINVAL;
2266
2267         /*
2268          * Physically remapped pages are special. Tell the
2269          * rest of the world about it:
2270          *   VM_IO tells people not to look at these pages
2271          *      (accesses can have side effects).
2272          *   VM_PFNMAP tells the core MM that the base pages are just
2273          *      raw PFN mappings, and do not have a "struct page" associated
2274          *      with them.
2275          *   VM_DONTEXPAND
2276          *      Disable vma merging and expanding with mremap().
2277          *   VM_DONTDUMP
2278          *      Omit vma from core dump, even when VM_IO turned off.
2279          *
2280          * There's a horrible special case to handle copy-on-write
2281          * behaviour that some programs depend on. We mark the "original"
2282          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2283          * See vm_normal_page() for details.
2284          */
2285         if (is_cow_mapping(vma->vm_flags)) {
2286                 if (addr != vma->vm_start || end != vma->vm_end)
2287                         return -EINVAL;
2288                 vma->vm_pgoff = pfn;
2289         }
2290
2291         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2292         if (err)
2293                 return -EINVAL;
2294
2295         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2296
2297         BUG_ON(addr >= end);
2298         pfn -= addr >> PAGE_SHIFT;
2299         pgd = pgd_offset(mm, addr);
2300         flush_cache_range(vma, addr, end);
2301         do {
2302                 next = pgd_addr_end(addr, end);
2303                 err = remap_p4d_range(mm, pgd, addr, next,
2304                                 pfn + (addr >> PAGE_SHIFT), prot);
2305                 if (err)
2306                         break;
2307         } while (pgd++, addr = next, addr != end);
2308
2309         if (err)
2310                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2311
2312         return err;
2313 }
2314 EXPORT_SYMBOL(remap_pfn_range);
2315
2316 /**
2317  * vm_iomap_memory - remap memory to userspace
2318  * @vma: user vma to map to
2319  * @start: start of the physical memory to be mapped
2320  * @len: size of area
2321  *
2322  * This is a simplified io_remap_pfn_range() for common driver use. The
2323  * driver just needs to give us the physical memory range to be mapped,
2324  * we'll figure out the rest from the vma information.
2325  *
2326  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2327  * whatever write-combining details or similar.
2328  *
2329  * Return: %0 on success, negative error code otherwise.
2330  */
2331 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2332 {
2333         unsigned long vm_len, pfn, pages;
2334
2335         /* Check that the physical memory area passed in looks valid */
2336         if (start + len < start)
2337                 return -EINVAL;
2338         /*
2339          * You *really* shouldn't map things that aren't page-aligned,
2340          * but we've historically allowed it because IO memory might
2341          * just have smaller alignment.
2342          */
2343         len += start & ~PAGE_MASK;
2344         pfn = start >> PAGE_SHIFT;
2345         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2346         if (pfn + pages < pfn)
2347                 return -EINVAL;
2348
2349         /* We start the mapping 'vm_pgoff' pages into the area */
2350         if (vma->vm_pgoff > pages)
2351                 return -EINVAL;
2352         pfn += vma->vm_pgoff;
2353         pages -= vma->vm_pgoff;
2354
2355         /* Can we fit all of the mapping? */
2356         vm_len = vma->vm_end - vma->vm_start;
2357         if (vm_len >> PAGE_SHIFT > pages)
2358                 return -EINVAL;
2359
2360         /* Ok, let it rip */
2361         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2362 }
2363 EXPORT_SYMBOL(vm_iomap_memory);
2364
2365 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2366                                      unsigned long addr, unsigned long end,
2367                                      pte_fn_t fn, void *data, bool create,
2368                                      pgtbl_mod_mask *mask)
2369 {
2370         pte_t *pte;
2371         int err = 0;
2372         spinlock_t *ptl;
2373
2374         if (create) {
2375                 pte = (mm == &init_mm) ?
2376                         pte_alloc_kernel_track(pmd, addr, mask) :
2377                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2378                 if (!pte)
2379                         return -ENOMEM;
2380         } else {
2381                 pte = (mm == &init_mm) ?
2382                         pte_offset_kernel(pmd, addr) :
2383                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2384         }
2385
2386         BUG_ON(pmd_huge(*pmd));
2387
2388         arch_enter_lazy_mmu_mode();
2389
2390         do {
2391                 if (create || !pte_none(*pte)) {
2392                         err = fn(pte++, addr, data);
2393                         if (err)
2394                                 break;
2395                 }
2396         } while (addr += PAGE_SIZE, addr != end);
2397         *mask |= PGTBL_PTE_MODIFIED;
2398
2399         arch_leave_lazy_mmu_mode();
2400
2401         if (mm != &init_mm)
2402                 pte_unmap_unlock(pte-1, ptl);
2403         return err;
2404 }
2405
2406 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2407                                      unsigned long addr, unsigned long end,
2408                                      pte_fn_t fn, void *data, bool create,
2409                                      pgtbl_mod_mask *mask)
2410 {
2411         pmd_t *pmd;
2412         unsigned long next;
2413         int err = 0;
2414
2415         BUG_ON(pud_huge(*pud));
2416
2417         if (create) {
2418                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2419                 if (!pmd)
2420                         return -ENOMEM;
2421         } else {
2422                 pmd = pmd_offset(pud, addr);
2423         }
2424         do {
2425                 next = pmd_addr_end(addr, end);
2426                 if (create || !pmd_none_or_clear_bad(pmd)) {
2427                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2428                                                  create, mask);
2429                         if (err)
2430                                 break;
2431                 }
2432         } while (pmd++, addr = next, addr != end);
2433         return err;
2434 }
2435
2436 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2437                                      unsigned long addr, unsigned long end,
2438                                      pte_fn_t fn, void *data, bool create,
2439                                      pgtbl_mod_mask *mask)
2440 {
2441         pud_t *pud;
2442         unsigned long next;
2443         int err = 0;
2444
2445         if (create) {
2446                 pud = pud_alloc_track(mm, p4d, addr, mask);
2447                 if (!pud)
2448                         return -ENOMEM;
2449         } else {
2450                 pud = pud_offset(p4d, addr);
2451         }
2452         do {
2453                 next = pud_addr_end(addr, end);
2454                 if (create || !pud_none_or_clear_bad(pud)) {
2455                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2456                                                  create, mask);
2457                         if (err)
2458                                 break;
2459                 }
2460         } while (pud++, addr = next, addr != end);
2461         return err;
2462 }
2463
2464 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2465                                      unsigned long addr, unsigned long end,
2466                                      pte_fn_t fn, void *data, bool create,
2467                                      pgtbl_mod_mask *mask)
2468 {
2469         p4d_t *p4d;
2470         unsigned long next;
2471         int err = 0;
2472
2473         if (create) {
2474                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2475                 if (!p4d)
2476                         return -ENOMEM;
2477         } else {
2478                 p4d = p4d_offset(pgd, addr);
2479         }
2480         do {
2481                 next = p4d_addr_end(addr, end);
2482                 if (create || !p4d_none_or_clear_bad(p4d)) {
2483                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2484                                                  create, mask);
2485                         if (err)
2486                                 break;
2487                 }
2488         } while (p4d++, addr = next, addr != end);
2489         return err;
2490 }
2491
2492 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2493                                  unsigned long size, pte_fn_t fn,
2494                                  void *data, bool create)
2495 {
2496         pgd_t *pgd;
2497         unsigned long start = addr, next;
2498         unsigned long end = addr + size;
2499         pgtbl_mod_mask mask = 0;
2500         int err = 0;
2501
2502         if (WARN_ON(addr >= end))
2503                 return -EINVAL;
2504
2505         pgd = pgd_offset(mm, addr);
2506         do {
2507                 next = pgd_addr_end(addr, end);
2508                 if (!create && pgd_none_or_clear_bad(pgd))
2509                         continue;
2510                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2511                 if (err)
2512                         break;
2513         } while (pgd++, addr = next, addr != end);
2514
2515         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2516                 arch_sync_kernel_mappings(start, start + size);
2517
2518         return err;
2519 }
2520
2521 /*
2522  * Scan a region of virtual memory, filling in page tables as necessary
2523  * and calling a provided function on each leaf page table.
2524  */
2525 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2526                         unsigned long size, pte_fn_t fn, void *data)
2527 {
2528         return __apply_to_page_range(mm, addr, size, fn, data, true);
2529 }
2530 EXPORT_SYMBOL_GPL(apply_to_page_range);
2531
2532 /*
2533  * Scan a region of virtual memory, calling a provided function on
2534  * each leaf page table where it exists.
2535  *
2536  * Unlike apply_to_page_range, this does _not_ fill in page tables
2537  * where they are absent.
2538  */
2539 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2540                                  unsigned long size, pte_fn_t fn, void *data)
2541 {
2542         return __apply_to_page_range(mm, addr, size, fn, data, false);
2543 }
2544 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2545
2546 /*
2547  * handle_pte_fault chooses page fault handler according to an entry which was
2548  * read non-atomically.  Before making any commitment, on those architectures
2549  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2550  * parts, do_swap_page must check under lock before unmapping the pte and
2551  * proceeding (but do_wp_page is only called after already making such a check;
2552  * and do_anonymous_page can safely check later on).
2553  */
2554 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2555                                 pte_t *page_table, pte_t orig_pte)
2556 {
2557         int same = 1;
2558 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2559         if (sizeof(pte_t) > sizeof(unsigned long)) {
2560                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2561                 spin_lock(ptl);
2562                 same = pte_same(*page_table, orig_pte);
2563                 spin_unlock(ptl);
2564         }
2565 #endif
2566         pte_unmap(page_table);
2567         return same;
2568 }
2569
2570 static inline bool cow_user_page(struct page *dst, struct page *src,
2571                                  struct vm_fault *vmf)
2572 {
2573         bool ret;
2574         void *kaddr;
2575         void __user *uaddr;
2576         bool locked = false;
2577         struct vm_area_struct *vma = vmf->vma;
2578         struct mm_struct *mm = vma->vm_mm;
2579         unsigned long addr = vmf->address;
2580
2581         if (likely(src)) {
2582                 copy_user_highpage(dst, src, addr, vma);
2583                 return true;
2584         }
2585
2586         /*
2587          * If the source page was a PFN mapping, we don't have
2588          * a "struct page" for it. We do a best-effort copy by
2589          * just copying from the original user address. If that
2590          * fails, we just zero-fill it. Live with it.
2591          */
2592         kaddr = kmap_atomic(dst);
2593         uaddr = (void __user *)(addr & PAGE_MASK);
2594
2595         /*
2596          * On architectures with software "accessed" bits, we would
2597          * take a double page fault, so mark it accessed here.
2598          */
2599         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2600                 pte_t entry;
2601
2602                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2603                 locked = true;
2604                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2605                         /*
2606                          * Other thread has already handled the fault
2607                          * and update local tlb only
2608                          */
2609                         update_mmu_tlb(vma, addr, vmf->pte);
2610                         ret = false;
2611                         goto pte_unlock;
2612                 }
2613
2614                 entry = pte_mkyoung(vmf->orig_pte);
2615                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2616                         update_mmu_cache(vma, addr, vmf->pte);
2617         }
2618
2619         /*
2620          * This really shouldn't fail, because the page is there
2621          * in the page tables. But it might just be unreadable,
2622          * in which case we just give up and fill the result with
2623          * zeroes.
2624          */
2625         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2626                 if (locked)
2627                         goto warn;
2628
2629                 /* Re-validate under PTL if the page is still mapped */
2630                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2631                 locked = true;
2632                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2633                         /* The PTE changed under us, update local tlb */
2634                         update_mmu_tlb(vma, addr, vmf->pte);
2635                         ret = false;
2636                         goto pte_unlock;
2637                 }
2638
2639                 /*
2640                  * The same page can be mapped back since last copy attempt.
2641                  * Try to copy again under PTL.
2642                  */
2643                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2644                         /*
2645                          * Give a warn in case there can be some obscure
2646                          * use-case
2647                          */
2648 warn:
2649                         WARN_ON_ONCE(1);
2650                         clear_page(kaddr);
2651                 }
2652         }
2653
2654         ret = true;
2655
2656 pte_unlock:
2657         if (locked)
2658                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2659         kunmap_atomic(kaddr);
2660         flush_dcache_page(dst);
2661
2662         return ret;
2663 }
2664
2665 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2666 {
2667         struct file *vm_file = vma->vm_file;
2668
2669         if (vm_file)
2670                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2671
2672         /*
2673          * Special mappings (e.g. VDSO) do not have any file so fake
2674          * a default GFP_KERNEL for them.
2675          */
2676         return GFP_KERNEL;
2677 }
2678
2679 /*
2680  * Notify the address space that the page is about to become writable so that
2681  * it can prohibit this or wait for the page to get into an appropriate state.
2682  *
2683  * We do this without the lock held, so that it can sleep if it needs to.
2684  */
2685 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2686 {
2687         vm_fault_t ret;
2688         struct page *page = vmf->page;
2689         unsigned int old_flags = vmf->flags;
2690
2691         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2692
2693         if (vmf->vma->vm_file &&
2694             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2695                 return VM_FAULT_SIGBUS;
2696
2697         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2698         /* Restore original flags so that caller is not surprised */
2699         vmf->flags = old_flags;
2700         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2701                 return ret;
2702         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2703                 lock_page(page);
2704                 if (!page->mapping) {
2705                         unlock_page(page);
2706                         return 0; /* retry */
2707                 }
2708                 ret |= VM_FAULT_LOCKED;
2709         } else
2710                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2711         return ret;
2712 }
2713
2714 /*
2715  * Handle dirtying of a page in shared file mapping on a write fault.
2716  *
2717  * The function expects the page to be locked and unlocks it.
2718  */
2719 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2720 {
2721         struct vm_area_struct *vma = vmf->vma;
2722         struct address_space *mapping;
2723         struct page *page = vmf->page;
2724         bool dirtied;
2725         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2726
2727         dirtied = set_page_dirty(page);
2728         VM_BUG_ON_PAGE(PageAnon(page), page);
2729         /*
2730          * Take a local copy of the address_space - page.mapping may be zeroed
2731          * by truncate after unlock_page().   The address_space itself remains
2732          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2733          * release semantics to prevent the compiler from undoing this copying.
2734          */
2735         mapping = page_rmapping(page);
2736         unlock_page(page);
2737
2738         if (!page_mkwrite)
2739                 file_update_time(vma->vm_file);
2740
2741         /*
2742          * Throttle page dirtying rate down to writeback speed.
2743          *
2744          * mapping may be NULL here because some device drivers do not
2745          * set page.mapping but still dirty their pages
2746          *
2747          * Drop the mmap_lock before waiting on IO, if we can. The file
2748          * is pinning the mapping, as per above.
2749          */
2750         if ((dirtied || page_mkwrite) && mapping) {
2751                 struct file *fpin;
2752
2753                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2754                 balance_dirty_pages_ratelimited(mapping);
2755                 if (fpin) {
2756                         fput(fpin);
2757                         return VM_FAULT_RETRY;
2758                 }
2759         }
2760
2761         return 0;
2762 }
2763
2764 /*
2765  * Handle write page faults for pages that can be reused in the current vma
2766  *
2767  * This can happen either due to the mapping being with the VM_SHARED flag,
2768  * or due to us being the last reference standing to the page. In either
2769  * case, all we need to do here is to mark the page as writable and update
2770  * any related book-keeping.
2771  */
2772 static inline void wp_page_reuse(struct vm_fault *vmf)
2773         __releases(vmf->ptl)
2774 {
2775         struct vm_area_struct *vma = vmf->vma;
2776         struct page *page = vmf->page;
2777         pte_t entry;
2778         /*
2779          * Clear the pages cpupid information as the existing
2780          * information potentially belongs to a now completely
2781          * unrelated process.
2782          */
2783         if (page)
2784                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2785
2786         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2787         entry = pte_mkyoung(vmf->orig_pte);
2788         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2789         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2790                 update_mmu_cache(vma, vmf->address, vmf->pte);
2791         pte_unmap_unlock(vmf->pte, vmf->ptl);
2792         count_vm_event(PGREUSE);
2793 }
2794
2795 /*
2796  * Handle the case of a page which we actually need to copy to a new page.
2797  *
2798  * Called with mmap_lock locked and the old page referenced, but
2799  * without the ptl held.
2800  *
2801  * High level logic flow:
2802  *
2803  * - Allocate a page, copy the content of the old page to the new one.
2804  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2805  * - Take the PTL. If the pte changed, bail out and release the allocated page
2806  * - If the pte is still the way we remember it, update the page table and all
2807  *   relevant references. This includes dropping the reference the page-table
2808  *   held to the old page, as well as updating the rmap.
2809  * - In any case, unlock the PTL and drop the reference we took to the old page.
2810  */
2811 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2812 {
2813         struct vm_area_struct *vma = vmf->vma;
2814         struct mm_struct *mm = vma->vm_mm;
2815         struct page *old_page = vmf->page;
2816         struct page *new_page = NULL;
2817         pte_t entry;
2818         int page_copied = 0;
2819         struct mmu_notifier_range range;
2820
2821         if (unlikely(anon_vma_prepare(vma)))
2822                 goto oom;
2823
2824         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2825                 new_page = alloc_zeroed_user_highpage_movable(vma,
2826                                                               vmf->address);
2827                 if (!new_page)
2828                         goto oom;
2829         } else {
2830                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2831                                 vmf->address);
2832                 if (!new_page)
2833                         goto oom;
2834
2835                 if (!cow_user_page(new_page, old_page, vmf)) {
2836                         /*
2837                          * COW failed, if the fault was solved by other,
2838                          * it's fine. If not, userspace would re-fault on
2839                          * the same address and we will handle the fault
2840                          * from the second attempt.
2841                          */
2842                         put_page(new_page);
2843                         if (old_page)
2844                                 put_page(old_page);
2845                         return 0;
2846                 }
2847         }
2848
2849         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2850                 goto oom_free_new;
2851         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2852
2853         __SetPageUptodate(new_page);
2854
2855         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2856                                 vmf->address & PAGE_MASK,
2857                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2858         mmu_notifier_invalidate_range_start(&range);
2859
2860         /*
2861          * Re-check the pte - we dropped the lock
2862          */
2863         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2864         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2865                 if (old_page) {
2866                         if (!PageAnon(old_page)) {
2867                                 dec_mm_counter_fast(mm,
2868                                                 mm_counter_file(old_page));
2869                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2870                         }
2871                 } else {
2872                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2873                 }
2874                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2875                 entry = mk_pte(new_page, vma->vm_page_prot);
2876                 entry = pte_sw_mkyoung(entry);
2877                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2878                 /*
2879                  * Clear the pte entry and flush it first, before updating the
2880                  * pte with the new entry. This will avoid a race condition
2881                  * seen in the presence of one thread doing SMC and another
2882                  * thread doing COW.
2883                  */
2884                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2885                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2886                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2887                 /*
2888                  * We call the notify macro here because, when using secondary
2889                  * mmu page tables (such as kvm shadow page tables), we want the
2890                  * new page to be mapped directly into the secondary page table.
2891                  */
2892                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2893                 update_mmu_cache(vma, vmf->address, vmf->pte);
2894                 if (old_page) {
2895                         /*
2896                          * Only after switching the pte to the new page may
2897                          * we remove the mapcount here. Otherwise another
2898                          * process may come and find the rmap count decremented
2899                          * before the pte is switched to the new page, and
2900                          * "reuse" the old page writing into it while our pte
2901                          * here still points into it and can be read by other
2902                          * threads.
2903                          *
2904                          * The critical issue is to order this
2905                          * page_remove_rmap with the ptp_clear_flush above.
2906                          * Those stores are ordered by (if nothing else,)
2907                          * the barrier present in the atomic_add_negative
2908                          * in page_remove_rmap.
2909                          *
2910                          * Then the TLB flush in ptep_clear_flush ensures that
2911                          * no process can access the old page before the
2912                          * decremented mapcount is visible. And the old page
2913                          * cannot be reused until after the decremented
2914                          * mapcount is visible. So transitively, TLBs to
2915                          * old page will be flushed before it can be reused.
2916                          */
2917                         page_remove_rmap(old_page, false);
2918                 }
2919
2920                 /* Free the old page.. */
2921                 new_page = old_page;
2922                 page_copied = 1;
2923         } else {
2924                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2925         }
2926
2927         if (new_page)
2928                 put_page(new_page);
2929
2930         pte_unmap_unlock(vmf->pte, vmf->ptl);
2931         /*
2932          * No need to double call mmu_notifier->invalidate_range() callback as
2933          * the above ptep_clear_flush_notify() did already call it.
2934          */
2935         mmu_notifier_invalidate_range_only_end(&range);
2936         if (old_page) {
2937                 /*
2938                  * Don't let another task, with possibly unlocked vma,
2939                  * keep the mlocked page.
2940                  */
2941                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2942                         lock_page(old_page);    /* LRU manipulation */
2943                         if (PageMlocked(old_page))
2944                                 munlock_vma_page(old_page);
2945                         unlock_page(old_page);
2946                 }
2947                 put_page(old_page);
2948         }
2949         return page_copied ? VM_FAULT_WRITE : 0;
2950 oom_free_new:
2951         put_page(new_page);
2952 oom:
2953         if (old_page)
2954                 put_page(old_page);
2955         return VM_FAULT_OOM;
2956 }
2957
2958 /**
2959  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2960  *                        writeable once the page is prepared
2961  *
2962  * @vmf: structure describing the fault
2963  *
2964  * This function handles all that is needed to finish a write page fault in a
2965  * shared mapping due to PTE being read-only once the mapped page is prepared.
2966  * It handles locking of PTE and modifying it.
2967  *
2968  * The function expects the page to be locked or other protection against
2969  * concurrent faults / writeback (such as DAX radix tree locks).
2970  *
2971  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2972  * we acquired PTE lock.
2973  */
2974 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2975 {
2976         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2977         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2978                                        &vmf->ptl);
2979         /*
2980          * We might have raced with another page fault while we released the
2981          * pte_offset_map_lock.
2982          */
2983         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2984                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2985                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2986                 return VM_FAULT_NOPAGE;
2987         }
2988         wp_page_reuse(vmf);
2989         return 0;
2990 }
2991
2992 /*
2993  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2994  * mapping
2995  */
2996 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2997 {
2998         struct vm_area_struct *vma = vmf->vma;
2999
3000         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3001                 vm_fault_t ret;
3002
3003                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3004                 vmf->flags |= FAULT_FLAG_MKWRITE;
3005                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3006                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3007                         return ret;
3008                 return finish_mkwrite_fault(vmf);
3009         }
3010         wp_page_reuse(vmf);
3011         return VM_FAULT_WRITE;
3012 }
3013
3014 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3015         __releases(vmf->ptl)
3016 {
3017         struct vm_area_struct *vma = vmf->vma;
3018         vm_fault_t ret = VM_FAULT_WRITE;
3019
3020         get_page(vmf->page);
3021
3022         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3023                 vm_fault_t tmp;
3024
3025                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3026                 tmp = do_page_mkwrite(vmf);
3027                 if (unlikely(!tmp || (tmp &
3028                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3029                         put_page(vmf->page);
3030                         return tmp;
3031                 }
3032                 tmp = finish_mkwrite_fault(vmf);
3033                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3034                         unlock_page(vmf->page);
3035                         put_page(vmf->page);
3036                         return tmp;
3037                 }
3038         } else {
3039                 wp_page_reuse(vmf);
3040                 lock_page(vmf->page);
3041         }
3042         ret |= fault_dirty_shared_page(vmf);
3043         put_page(vmf->page);
3044
3045         return ret;
3046 }
3047
3048 /*
3049  * This routine handles present pages, when users try to write
3050  * to a shared page. It is done by copying the page to a new address
3051  * and decrementing the shared-page counter for the old page.
3052  *
3053  * Note that this routine assumes that the protection checks have been
3054  * done by the caller (the low-level page fault routine in most cases).
3055  * Thus we can safely just mark it writable once we've done any necessary
3056  * COW.
3057  *
3058  * We also mark the page dirty at this point even though the page will
3059  * change only once the write actually happens. This avoids a few races,
3060  * and potentially makes it more efficient.
3061  *
3062  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3063  * but allow concurrent faults), with pte both mapped and locked.
3064  * We return with mmap_lock still held, but pte unmapped and unlocked.
3065  */
3066 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3067         __releases(vmf->ptl)
3068 {
3069         struct vm_area_struct *vma = vmf->vma;
3070
3071         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3072                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3073                 return handle_userfault(vmf, VM_UFFD_WP);
3074         }
3075
3076         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3077         if (!vmf->page) {
3078                 /*
3079                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3080                  * VM_PFNMAP VMA.
3081                  *
3082                  * We should not cow pages in a shared writeable mapping.
3083                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3084                  */
3085                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3086                                      (VM_WRITE|VM_SHARED))
3087                         return wp_pfn_shared(vmf);
3088
3089                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3090                 return wp_page_copy(vmf);
3091         }
3092
3093         /*
3094          * Take out anonymous pages first, anonymous shared vmas are
3095          * not dirty accountable.
3096          */
3097         if (PageAnon(vmf->page)) {
3098                 struct page *page = vmf->page;
3099
3100                 /* PageKsm() doesn't necessarily raise the page refcount */
3101                 if (PageKsm(page) || page_count(page) != 1)
3102                         goto copy;
3103                 if (!trylock_page(page))
3104                         goto copy;
3105                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3106                         unlock_page(page);
3107                         goto copy;
3108                 }
3109                 /*
3110                  * Ok, we've got the only map reference, and the only
3111                  * page count reference, and the page is locked,
3112                  * it's dark out, and we're wearing sunglasses. Hit it.
3113                  */
3114                 unlock_page(page);
3115                 wp_page_reuse(vmf);
3116                 return VM_FAULT_WRITE;
3117         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3118                                         (VM_WRITE|VM_SHARED))) {
3119                 return wp_page_shared(vmf);
3120         }
3121 copy:
3122         /*
3123          * Ok, we need to copy. Oh, well..
3124          */
3125         get_page(vmf->page);
3126
3127         pte_unmap_unlock(vmf->pte, vmf->ptl);
3128         return wp_page_copy(vmf);
3129 }
3130
3131 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3132                 unsigned long start_addr, unsigned long end_addr,
3133                 struct zap_details *details)
3134 {
3135         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3136 }
3137
3138 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3139                                             struct zap_details *details)
3140 {
3141         struct vm_area_struct *vma;
3142         pgoff_t vba, vea, zba, zea;
3143
3144         vma_interval_tree_foreach(vma, root,
3145                         details->first_index, details->last_index) {
3146
3147                 vba = vma->vm_pgoff;
3148                 vea = vba + vma_pages(vma) - 1;
3149                 zba = details->first_index;
3150                 if (zba < vba)
3151                         zba = vba;
3152                 zea = details->last_index;
3153                 if (zea > vea)
3154                         zea = vea;
3155
3156                 unmap_mapping_range_vma(vma,
3157                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3158                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3159                                 details);
3160         }
3161 }
3162
3163 /**
3164  * unmap_mapping_pages() - Unmap pages from processes.
3165  * @mapping: The address space containing pages to be unmapped.
3166  * @start: Index of first page to be unmapped.
3167  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3168  * @even_cows: Whether to unmap even private COWed pages.
3169  *
3170  * Unmap the pages in this address space from any userspace process which
3171  * has them mmaped.  Generally, you want to remove COWed pages as well when
3172  * a file is being truncated, but not when invalidating pages from the page
3173  * cache.
3174  */
3175 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3176                 pgoff_t nr, bool even_cows)
3177 {
3178         struct zap_details details = { };
3179
3180         details.check_mapping = even_cows ? NULL : mapping;
3181         details.first_index = start;
3182         details.last_index = start + nr - 1;
3183         if (details.last_index < details.first_index)
3184                 details.last_index = ULONG_MAX;
3185
3186         i_mmap_lock_write(mapping);
3187         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3188                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3189         i_mmap_unlock_write(mapping);
3190 }
3191
3192 /**
3193  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3194  * address_space corresponding to the specified byte range in the underlying
3195  * file.
3196  *
3197  * @mapping: the address space containing mmaps to be unmapped.
3198  * @holebegin: byte in first page to unmap, relative to the start of
3199  * the underlying file.  This will be rounded down to a PAGE_SIZE
3200  * boundary.  Note that this is different from truncate_pagecache(), which
3201  * must keep the partial page.  In contrast, we must get rid of
3202  * partial pages.
3203  * @holelen: size of prospective hole in bytes.  This will be rounded
3204  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3205  * end of the file.
3206  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3207  * but 0 when invalidating pagecache, don't throw away private data.
3208  */
3209 void unmap_mapping_range(struct address_space *mapping,
3210                 loff_t const holebegin, loff_t const holelen, int even_cows)
3211 {
3212         pgoff_t hba = holebegin >> PAGE_SHIFT;
3213         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3214
3215         /* Check for overflow. */
3216         if (sizeof(holelen) > sizeof(hlen)) {
3217                 long long holeend =
3218                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3219                 if (holeend & ~(long long)ULONG_MAX)
3220                         hlen = ULONG_MAX - hba + 1;
3221         }
3222
3223         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3224 }
3225 EXPORT_SYMBOL(unmap_mapping_range);
3226
3227 /*
3228  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3229  * but allow concurrent faults), and pte mapped but not yet locked.
3230  * We return with pte unmapped and unlocked.
3231  *
3232  * We return with the mmap_lock locked or unlocked in the same cases
3233  * as does filemap_fault().
3234  */
3235 vm_fault_t do_swap_page(struct vm_fault *vmf)
3236 {
3237         struct vm_area_struct *vma = vmf->vma;
3238         struct page *page = NULL, *swapcache;
3239         swp_entry_t entry;
3240         pte_t pte;
3241         int locked;
3242         int exclusive = 0;
3243         vm_fault_t ret = 0;
3244         void *shadow = NULL;
3245
3246         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3247                 goto out;
3248
3249         entry = pte_to_swp_entry(vmf->orig_pte);
3250         if (unlikely(non_swap_entry(entry))) {
3251                 if (is_migration_entry(entry)) {
3252                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3253                                              vmf->address);
3254                 } else if (is_device_private_entry(entry)) {
3255                         vmf->page = device_private_entry_to_page(entry);
3256                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3257                 } else if (is_hwpoison_entry(entry)) {
3258                         ret = VM_FAULT_HWPOISON;
3259                 } else {
3260                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3261                         ret = VM_FAULT_SIGBUS;
3262                 }
3263                 goto out;
3264         }
3265
3266
3267         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3268         page = lookup_swap_cache(entry, vma, vmf->address);
3269         swapcache = page;
3270
3271         if (!page) {
3272                 struct swap_info_struct *si = swp_swap_info(entry);
3273
3274                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3275                     __swap_count(entry) == 1) {
3276                         /* skip swapcache */
3277                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3278                                                         vmf->address);
3279                         if (page) {
3280                                 int err;
3281
3282                                 __SetPageLocked(page);
3283                                 __SetPageSwapBacked(page);
3284                                 set_page_private(page, entry.val);
3285
3286                                 /* Tell memcg to use swap ownership records */
3287                                 SetPageSwapCache(page);
3288                                 err = mem_cgroup_charge(page, vma->vm_mm,
3289                                                         GFP_KERNEL);
3290                                 ClearPageSwapCache(page);
3291                                 if (err) {
3292                                         ret = VM_FAULT_OOM;
3293                                         goto out_page;
3294                                 }
3295
3296                                 shadow = get_shadow_from_swap_cache(entry);
3297                                 if (shadow)
3298                                         workingset_refault(page, shadow);
3299
3300                                 lru_cache_add(page);
3301                                 swap_readpage(page, true);
3302                         }
3303                 } else {
3304                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3305                                                 vmf);
3306                         swapcache = page;
3307                 }
3308
3309                 if (!page) {
3310                         /*
3311                          * Back out if somebody else faulted in this pte
3312                          * while we released the pte lock.
3313                          */
3314                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3315                                         vmf->address, &vmf->ptl);
3316                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3317                                 ret = VM_FAULT_OOM;
3318                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3319                         goto unlock;
3320                 }
3321
3322                 /* Had to read the page from swap area: Major fault */
3323                 ret = VM_FAULT_MAJOR;
3324                 count_vm_event(PGMAJFAULT);
3325                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3326         } else if (PageHWPoison(page)) {
3327                 /*
3328                  * hwpoisoned dirty swapcache pages are kept for killing
3329                  * owner processes (which may be unknown at hwpoison time)
3330                  */
3331                 ret = VM_FAULT_HWPOISON;
3332                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3333                 goto out_release;
3334         }
3335
3336         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3337
3338         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3339         if (!locked) {
3340                 ret |= VM_FAULT_RETRY;
3341                 goto out_release;
3342         }
3343
3344         /*
3345          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3346          * release the swapcache from under us.  The page pin, and pte_same
3347          * test below, are not enough to exclude that.  Even if it is still
3348          * swapcache, we need to check that the page's swap has not changed.
3349          */
3350         if (unlikely((!PageSwapCache(page) ||
3351                         page_private(page) != entry.val)) && swapcache)
3352                 goto out_page;
3353
3354         page = ksm_might_need_to_copy(page, vma, vmf->address);
3355         if (unlikely(!page)) {
3356                 ret = VM_FAULT_OOM;
3357                 page = swapcache;
3358                 goto out_page;
3359         }
3360
3361         cgroup_throttle_swaprate(page, GFP_KERNEL);
3362
3363         /*
3364          * Back out if somebody else already faulted in this pte.
3365          */
3366         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3367                         &vmf->ptl);
3368         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3369                 goto out_nomap;
3370
3371         if (unlikely(!PageUptodate(page))) {
3372                 ret = VM_FAULT_SIGBUS;
3373                 goto out_nomap;
3374         }
3375
3376         /*
3377          * The page isn't present yet, go ahead with the fault.
3378          *
3379          * Be careful about the sequence of operations here.
3380          * To get its accounting right, reuse_swap_page() must be called
3381          * while the page is counted on swap but not yet in mapcount i.e.
3382          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3383          * must be called after the swap_free(), or it will never succeed.
3384          */
3385
3386         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3387         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3388         pte = mk_pte(page, vma->vm_page_prot);
3389         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3390                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3391                 vmf->flags &= ~FAULT_FLAG_WRITE;
3392                 ret |= VM_FAULT_WRITE;
3393                 exclusive = RMAP_EXCLUSIVE;
3394         }
3395         flush_icache_page(vma, page);
3396         if (pte_swp_soft_dirty(vmf->orig_pte))
3397                 pte = pte_mksoft_dirty(pte);
3398         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3399                 pte = pte_mkuffd_wp(pte);
3400                 pte = pte_wrprotect(pte);
3401         }
3402         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3403         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3404         vmf->orig_pte = pte;
3405
3406         /* ksm created a completely new copy */
3407         if (unlikely(page != swapcache && swapcache)) {
3408                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3409                 lru_cache_add_inactive_or_unevictable(page, vma);
3410         } else {
3411                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3412         }
3413
3414         swap_free(entry);
3415         if (mem_cgroup_swap_full(page) ||
3416             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3417                 try_to_free_swap(page);
3418         unlock_page(page);
3419         if (page != swapcache && swapcache) {
3420                 /*
3421                  * Hold the lock to avoid the swap entry to be reused
3422                  * until we take the PT lock for the pte_same() check
3423                  * (to avoid false positives from pte_same). For
3424                  * further safety release the lock after the swap_free
3425                  * so that the swap count won't change under a
3426                  * parallel locked swapcache.
3427                  */
3428                 unlock_page(swapcache);
3429                 put_page(swapcache);
3430         }
3431
3432         if (vmf->flags & FAULT_FLAG_WRITE) {
3433                 ret |= do_wp_page(vmf);
3434                 if (ret & VM_FAULT_ERROR)
3435                         ret &= VM_FAULT_ERROR;
3436                 goto out;
3437         }
3438
3439         /* No need to invalidate - it was non-present before */
3440         update_mmu_cache(vma, vmf->address, vmf->pte);
3441 unlock:
3442         pte_unmap_unlock(vmf->pte, vmf->ptl);
3443 out:
3444         return ret;
3445 out_nomap:
3446         pte_unmap_unlock(vmf->pte, vmf->ptl);
3447 out_page:
3448         unlock_page(page);
3449 out_release:
3450         put_page(page);
3451         if (page != swapcache && swapcache) {
3452                 unlock_page(swapcache);
3453                 put_page(swapcache);
3454         }
3455         return ret;
3456 }
3457
3458 /*
3459  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3460  * but allow concurrent faults), and pte mapped but not yet locked.
3461  * We return with mmap_lock still held, but pte unmapped and unlocked.
3462  */
3463 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3464 {
3465         struct vm_area_struct *vma = vmf->vma;
3466         struct page *page;
3467         vm_fault_t ret = 0;
3468         pte_t entry;
3469
3470         /* File mapping without ->vm_ops ? */
3471         if (vma->vm_flags & VM_SHARED)
3472                 return VM_FAULT_SIGBUS;
3473
3474         /*
3475          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3476          * pte_offset_map() on pmds where a huge pmd might be created
3477          * from a different thread.
3478          *
3479          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3480          * parallel threads are excluded by other means.
3481          *
3482          * Here we only have mmap_read_lock(mm).
3483          */
3484         if (pte_alloc(vma->vm_mm, vmf->pmd))
3485                 return VM_FAULT_OOM;
3486
3487         /* See the comment in pte_alloc_one_map() */
3488         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3489                 return 0;
3490
3491         /* Use the zero-page for reads */
3492         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3493                         !mm_forbids_zeropage(vma->vm_mm)) {
3494                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3495                                                 vma->vm_page_prot));
3496                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3497                                 vmf->address, &vmf->ptl);
3498                 if (!pte_none(*vmf->pte)) {
3499                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3500                         goto unlock;
3501                 }
3502                 ret = check_stable_address_space(vma->vm_mm);
3503                 if (ret)
3504                         goto unlock;
3505                 /* Deliver the page fault to userland, check inside PT lock */
3506                 if (userfaultfd_missing(vma)) {
3507                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3508                         return handle_userfault(vmf, VM_UFFD_MISSING);
3509                 }
3510                 goto setpte;
3511         }
3512
3513         /* Allocate our own private page. */
3514         if (unlikely(anon_vma_prepare(vma)))
3515                 goto oom;
3516         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3517         if (!page)
3518                 goto oom;
3519
3520         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3521                 goto oom_free_page;
3522         cgroup_throttle_swaprate(page, GFP_KERNEL);
3523
3524         /*
3525          * The memory barrier inside __SetPageUptodate makes sure that
3526          * preceding stores to the page contents become visible before
3527          * the set_pte_at() write.
3528          */
3529         __SetPageUptodate(page);
3530
3531         entry = mk_pte(page, vma->vm_page_prot);
3532         entry = pte_sw_mkyoung(entry);
3533         if (vma->vm_flags & VM_WRITE)
3534                 entry = pte_mkwrite(pte_mkdirty(entry));
3535
3536         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3537                         &vmf->ptl);
3538         if (!pte_none(*vmf->pte)) {
3539                 update_mmu_cache(vma, vmf->address, vmf->pte);
3540                 goto release;
3541         }
3542
3543         ret = check_stable_address_space(vma->vm_mm);
3544         if (ret)
3545                 goto release;
3546
3547         /* Deliver the page fault to userland, check inside PT lock */
3548         if (userfaultfd_missing(vma)) {
3549                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3550                 put_page(page);
3551                 return handle_userfault(vmf, VM_UFFD_MISSING);
3552         }
3553
3554         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3555         page_add_new_anon_rmap(page, vma, vmf->address, false);
3556         lru_cache_add_inactive_or_unevictable(page, vma);
3557 setpte:
3558         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3559
3560         /* No need to invalidate - it was non-present before */
3561         update_mmu_cache(vma, vmf->address, vmf->pte);
3562 unlock:
3563         pte_unmap_unlock(vmf->pte, vmf->ptl);
3564         return ret;
3565 release:
3566         put_page(page);
3567         goto unlock;
3568 oom_free_page:
3569         put_page(page);
3570 oom:
3571         return VM_FAULT_OOM;
3572 }
3573
3574 /*
3575  * The mmap_lock must have been held on entry, and may have been
3576  * released depending on flags and vma->vm_ops->fault() return value.
3577  * See filemap_fault() and __lock_page_retry().
3578  */
3579 static vm_fault_t __do_fault(struct vm_fault *vmf)
3580 {
3581         struct vm_area_struct *vma = vmf->vma;
3582         vm_fault_t ret;
3583
3584         /*
3585          * Preallocate pte before we take page_lock because this might lead to
3586          * deadlocks for memcg reclaim which waits for pages under writeback:
3587          *                              lock_page(A)
3588          *                              SetPageWriteback(A)
3589          *                              unlock_page(A)
3590          * lock_page(B)
3591          *                              lock_page(B)
3592          * pte_alloc_pne
3593          *   shrink_page_list
3594          *     wait_on_page_writeback(A)
3595          *                              SetPageWriteback(B)
3596          *                              unlock_page(B)
3597          *                              # flush A, B to clear the writeback
3598          */
3599         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3600                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3601                 if (!vmf->prealloc_pte)
3602                         return VM_FAULT_OOM;
3603                 smp_wmb(); /* See comment in __pte_alloc() */
3604         }
3605
3606         ret = vma->vm_ops->fault(vmf);
3607         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3608                             VM_FAULT_DONE_COW)))
3609                 return ret;
3610
3611         if (unlikely(PageHWPoison(vmf->page))) {
3612                 if (ret & VM_FAULT_LOCKED)
3613                         unlock_page(vmf->page);
3614                 put_page(vmf->page);
3615                 vmf->page = NULL;
3616                 return VM_FAULT_HWPOISON;
3617         }
3618
3619         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3620                 lock_page(vmf->page);
3621         else
3622                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3623
3624         return ret;
3625 }
3626
3627 /*
3628  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3629  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3630  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3631  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3632  */
3633 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3634 {
3635         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3636 }
3637
3638 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3639 {
3640         struct vm_area_struct *vma = vmf->vma;
3641
3642         if (!pmd_none(*vmf->pmd))
3643                 goto map_pte;
3644         if (vmf->prealloc_pte) {
3645                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3646                 if (unlikely(!pmd_none(*vmf->pmd))) {
3647                         spin_unlock(vmf->ptl);
3648                         goto map_pte;
3649                 }
3650
3651                 mm_inc_nr_ptes(vma->vm_mm);
3652                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3653                 spin_unlock(vmf->ptl);
3654                 vmf->prealloc_pte = NULL;
3655         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3656                 return VM_FAULT_OOM;
3657         }
3658 map_pte:
3659         /*
3660          * If a huge pmd materialized under us just retry later.  Use
3661          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3662          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3663          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3664          * running immediately after a huge pmd fault in a different thread of
3665          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3666          * All we have to ensure is that it is a regular pmd that we can walk
3667          * with pte_offset_map() and we can do that through an atomic read in
3668          * C, which is what pmd_trans_unstable() provides.
3669          */
3670         if (pmd_devmap_trans_unstable(vmf->pmd))
3671                 return VM_FAULT_NOPAGE;
3672
3673         /*
3674          * At this point we know that our vmf->pmd points to a page of ptes
3675          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3676          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3677          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3678          * be valid and we will re-check to make sure the vmf->pte isn't
3679          * pte_none() under vmf->ptl protection when we return to
3680          * alloc_set_pte().
3681          */
3682         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3683                         &vmf->ptl);
3684         return 0;
3685 }
3686
3687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3688 static void deposit_prealloc_pte(struct vm_fault *vmf)
3689 {
3690         struct vm_area_struct *vma = vmf->vma;
3691
3692         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3693         /*
3694          * We are going to consume the prealloc table,
3695          * count that as nr_ptes.
3696          */
3697         mm_inc_nr_ptes(vma->vm_mm);
3698         vmf->prealloc_pte = NULL;
3699 }
3700
3701 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3702 {
3703         struct vm_area_struct *vma = vmf->vma;
3704         bool write = vmf->flags & FAULT_FLAG_WRITE;
3705         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3706         pmd_t entry;
3707         int i;
3708         vm_fault_t ret;
3709
3710         if (!transhuge_vma_suitable(vma, haddr))
3711                 return VM_FAULT_FALLBACK;
3712
3713         ret = VM_FAULT_FALLBACK;
3714         page = compound_head(page);
3715
3716         /*
3717          * Archs like ppc64 need additonal space to store information
3718          * related to pte entry. Use the preallocated table for that.
3719          */
3720         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3721                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3722                 if (!vmf->prealloc_pte)
3723                         return VM_FAULT_OOM;
3724                 smp_wmb(); /* See comment in __pte_alloc() */
3725         }
3726
3727         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3728         if (unlikely(!pmd_none(*vmf->pmd)))
3729                 goto out;
3730
3731         for (i = 0; i < HPAGE_PMD_NR; i++)
3732                 flush_icache_page(vma, page + i);
3733
3734         entry = mk_huge_pmd(page, vma->vm_page_prot);
3735         if (write)
3736                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3737
3738         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3739         page_add_file_rmap(page, true);
3740         /*
3741          * deposit and withdraw with pmd lock held
3742          */
3743         if (arch_needs_pgtable_deposit())
3744                 deposit_prealloc_pte(vmf);
3745
3746         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3747
3748         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3749
3750         /* fault is handled */
3751         ret = 0;
3752         count_vm_event(THP_FILE_MAPPED);
3753 out:
3754         spin_unlock(vmf->ptl);
3755         return ret;
3756 }
3757 #else
3758 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3759 {
3760         BUILD_BUG();
3761         return 0;
3762 }
3763 #endif
3764
3765 /**
3766  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3767  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3768  *
3769  * @vmf: fault environment
3770  * @page: page to map
3771  *
3772  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3773  * return.
3774  *
3775  * Target users are page handler itself and implementations of
3776  * vm_ops->map_pages.
3777  *
3778  * Return: %0 on success, %VM_FAULT_ code in case of error.
3779  */
3780 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3781 {
3782         struct vm_area_struct *vma = vmf->vma;
3783         bool write = vmf->flags & FAULT_FLAG_WRITE;
3784         pte_t entry;
3785         vm_fault_t ret;
3786
3787         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3788                 ret = do_set_pmd(vmf, page);
3789                 if (ret != VM_FAULT_FALLBACK)
3790                         return ret;
3791         }
3792
3793         if (!vmf->pte) {
3794                 ret = pte_alloc_one_map(vmf);
3795                 if (ret)
3796                         return ret;
3797         }
3798
3799         /* Re-check under ptl */
3800         if (unlikely(!pte_none(*vmf->pte))) {
3801                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3802                 return VM_FAULT_NOPAGE;
3803         }
3804
3805         flush_icache_page(vma, page);
3806         entry = mk_pte(page, vma->vm_page_prot);
3807         entry = pte_sw_mkyoung(entry);
3808         if (write)
3809                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3810         /* copy-on-write page */
3811         if (write && !(vma->vm_flags & VM_SHARED)) {
3812                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3813                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3814                 lru_cache_add_inactive_or_unevictable(page, vma);
3815         } else {
3816                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3817                 page_add_file_rmap(page, false);
3818         }
3819         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3820
3821         /* no need to invalidate: a not-present page won't be cached */
3822         update_mmu_cache(vma, vmf->address, vmf->pte);
3823
3824         return 0;
3825 }
3826
3827
3828 /**
3829  * finish_fault - finish page fault once we have prepared the page to fault
3830  *
3831  * @vmf: structure describing the fault
3832  *
3833  * This function handles all that is needed to finish a page fault once the
3834  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3835  * given page, adds reverse page mapping, handles memcg charges and LRU
3836  * addition.
3837  *
3838  * The function expects the page to be locked and on success it consumes a
3839  * reference of a page being mapped (for the PTE which maps it).
3840  *
3841  * Return: %0 on success, %VM_FAULT_ code in case of error.
3842  */
3843 vm_fault_t finish_fault(struct vm_fault *vmf)
3844 {
3845         struct page *page;
3846         vm_fault_t ret = 0;
3847
3848         /* Did we COW the page? */
3849         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3850             !(vmf->vma->vm_flags & VM_SHARED))
3851                 page = vmf->cow_page;
3852         else
3853                 page = vmf->page;
3854
3855         /*
3856          * check even for read faults because we might have lost our CoWed
3857          * page
3858          */
3859         if (!(vmf->vma->vm_flags & VM_SHARED))
3860                 ret = check_stable_address_space(vmf->vma->vm_mm);
3861         if (!ret)
3862                 ret = alloc_set_pte(vmf, page);
3863         if (vmf->pte)
3864                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3865         return ret;
3866 }
3867
3868 static unsigned long fault_around_bytes __read_mostly =
3869         rounddown_pow_of_two(65536);
3870
3871 #ifdef CONFIG_DEBUG_FS
3872 static int fault_around_bytes_get(void *data, u64 *val)
3873 {
3874         *val = fault_around_bytes;
3875         return 0;
3876 }
3877
3878 /*
3879  * fault_around_bytes must be rounded down to the nearest page order as it's
3880  * what do_fault_around() expects to see.
3881  */
3882 static int fault_around_bytes_set(void *data, u64 val)
3883 {
3884         if (val / PAGE_SIZE > PTRS_PER_PTE)
3885                 return -EINVAL;
3886         if (val > PAGE_SIZE)
3887                 fault_around_bytes = rounddown_pow_of_two(val);
3888         else
3889                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3890         return 0;
3891 }
3892 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3893                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3894
3895 static int __init fault_around_debugfs(void)
3896 {
3897         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3898                                    &fault_around_bytes_fops);
3899         return 0;
3900 }
3901 late_initcall(fault_around_debugfs);
3902 #endif
3903
3904 /*
3905  * do_fault_around() tries to map few pages around the fault address. The hope
3906  * is that the pages will be needed soon and this will lower the number of
3907  * faults to handle.
3908  *
3909  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3910  * not ready to be mapped: not up-to-date, locked, etc.
3911  *
3912  * This function is called with the page table lock taken. In the split ptlock
3913  * case the page table lock only protects only those entries which belong to
3914  * the page table corresponding to the fault address.
3915  *
3916  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3917  * only once.
3918  *
3919  * fault_around_bytes defines how many bytes we'll try to map.
3920  * do_fault_around() expects it to be set to a power of two less than or equal
3921  * to PTRS_PER_PTE.
3922  *
3923  * The virtual address of the area that we map is naturally aligned to
3924  * fault_around_bytes rounded down to the machine page size
3925  * (and therefore to page order).  This way it's easier to guarantee
3926  * that we don't cross page table boundaries.
3927  */
3928 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3929 {
3930         unsigned long address = vmf->address, nr_pages, mask;
3931         pgoff_t start_pgoff = vmf->pgoff;
3932         pgoff_t end_pgoff;
3933         int off;
3934         vm_fault_t ret = 0;
3935
3936         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3937         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3938
3939         vmf->address = max(address & mask, vmf->vma->vm_start);
3940         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3941         start_pgoff -= off;
3942
3943         /*
3944          *  end_pgoff is either the end of the page table, the end of
3945          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3946          */
3947         end_pgoff = start_pgoff -
3948                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3949                 PTRS_PER_PTE - 1;
3950         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3951                         start_pgoff + nr_pages - 1);
3952
3953         if (pmd_none(*vmf->pmd)) {
3954                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3955                 if (!vmf->prealloc_pte)
3956                         goto out;
3957                 smp_wmb(); /* See comment in __pte_alloc() */
3958         }
3959
3960         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3961
3962         /* Huge page is mapped? Page fault is solved */
3963         if (pmd_trans_huge(*vmf->pmd)) {
3964                 ret = VM_FAULT_NOPAGE;
3965                 goto out;
3966         }
3967
3968         /* ->map_pages() haven't done anything useful. Cold page cache? */
3969         if (!vmf->pte)
3970                 goto out;
3971
3972         /* check if the page fault is solved */
3973         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3974         if (!pte_none(*vmf->pte))
3975                 ret = VM_FAULT_NOPAGE;
3976         pte_unmap_unlock(vmf->pte, vmf->ptl);
3977 out:
3978         vmf->address = address;
3979         vmf->pte = NULL;
3980         return ret;
3981 }
3982
3983 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3984 {
3985         struct vm_area_struct *vma = vmf->vma;
3986         vm_fault_t ret = 0;
3987
3988         /*
3989          * Let's call ->map_pages() first and use ->fault() as fallback
3990          * if page by the offset is not ready to be mapped (cold cache or
3991          * something).
3992          */
3993         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3994                 ret = do_fault_around(vmf);
3995                 if (ret)
3996                         return ret;
3997         }
3998
3999         ret = __do_fault(vmf);
4000         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4001                 return ret;
4002
4003         ret |= finish_fault(vmf);
4004         unlock_page(vmf->page);
4005         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4006                 put_page(vmf->page);
4007         return ret;
4008 }
4009
4010 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4011 {
4012         struct vm_area_struct *vma = vmf->vma;
4013         vm_fault_t ret;
4014
4015         if (unlikely(anon_vma_prepare(vma)))
4016                 return VM_FAULT_OOM;
4017
4018         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4019         if (!vmf->cow_page)
4020                 return VM_FAULT_OOM;
4021
4022         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4023                 put_page(vmf->cow_page);
4024                 return VM_FAULT_OOM;
4025         }
4026         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4027
4028         ret = __do_fault(vmf);
4029         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4030                 goto uncharge_out;
4031         if (ret & VM_FAULT_DONE_COW)
4032                 return ret;
4033
4034         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4035         __SetPageUptodate(vmf->cow_page);
4036
4037         ret |= finish_fault(vmf);
4038         unlock_page(vmf->page);
4039         put_page(vmf->page);
4040         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4041                 goto uncharge_out;
4042         return ret;
4043 uncharge_out:
4044         put_page(vmf->cow_page);
4045         return ret;
4046 }
4047
4048 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4049 {
4050         struct vm_area_struct *vma = vmf->vma;
4051         vm_fault_t ret, tmp;
4052
4053         ret = __do_fault(vmf);
4054         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4055                 return ret;
4056
4057         /*
4058          * Check if the backing address space wants to know that the page is
4059          * about to become writable
4060          */
4061         if (vma->vm_ops->page_mkwrite) {
4062                 unlock_page(vmf->page);
4063                 tmp = do_page_mkwrite(vmf);
4064                 if (unlikely(!tmp ||
4065                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4066                         put_page(vmf->page);
4067                         return tmp;
4068                 }
4069         }
4070
4071         ret |= finish_fault(vmf);
4072         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4073                                         VM_FAULT_RETRY))) {
4074                 unlock_page(vmf->page);
4075                 put_page(vmf->page);
4076                 return ret;
4077         }
4078
4079         ret |= fault_dirty_shared_page(vmf);
4080         return ret;
4081 }
4082
4083 /*
4084  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4085  * but allow concurrent faults).
4086  * The mmap_lock may have been released depending on flags and our
4087  * return value.  See filemap_fault() and __lock_page_or_retry().
4088  * If mmap_lock is released, vma may become invalid (for example
4089  * by other thread calling munmap()).
4090  */
4091 static vm_fault_t do_fault(struct vm_fault *vmf)
4092 {
4093         struct vm_area_struct *vma = vmf->vma;
4094         struct mm_struct *vm_mm = vma->vm_mm;
4095         vm_fault_t ret;
4096
4097         /*
4098          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4099          */
4100         if (!vma->vm_ops->fault) {
4101                 /*
4102                  * If we find a migration pmd entry or a none pmd entry, which
4103                  * should never happen, return SIGBUS
4104                  */
4105                 if (unlikely(!pmd_present(*vmf->pmd)))
4106                         ret = VM_FAULT_SIGBUS;
4107                 else {
4108                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4109                                                        vmf->pmd,
4110                                                        vmf->address,
4111                                                        &vmf->ptl);
4112                         /*
4113                          * Make sure this is not a temporary clearing of pte
4114                          * by holding ptl and checking again. A R/M/W update
4115                          * of pte involves: take ptl, clearing the pte so that
4116                          * we don't have concurrent modification by hardware
4117                          * followed by an update.
4118                          */
4119                         if (unlikely(pte_none(*vmf->pte)))
4120                                 ret = VM_FAULT_SIGBUS;
4121                         else
4122                                 ret = VM_FAULT_NOPAGE;
4123
4124                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4125                 }
4126         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4127                 ret = do_read_fault(vmf);
4128         else if (!(vma->vm_flags & VM_SHARED))
4129                 ret = do_cow_fault(vmf);
4130         else
4131                 ret = do_shared_fault(vmf);
4132
4133         /* preallocated pagetable is unused: free it */
4134         if (vmf->prealloc_pte) {
4135                 pte_free(vm_mm, vmf->prealloc_pte);
4136                 vmf->prealloc_pte = NULL;
4137         }
4138         return ret;
4139 }
4140
4141 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4142                                 unsigned long addr, int page_nid,
4143                                 int *flags)
4144 {
4145         get_page(page);
4146
4147         count_vm_numa_event(NUMA_HINT_FAULTS);
4148         if (page_nid == numa_node_id()) {
4149                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4150                 *flags |= TNF_FAULT_LOCAL;
4151         }
4152
4153         return mpol_misplaced(page, vma, addr);
4154 }
4155
4156 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4157 {
4158         struct vm_area_struct *vma = vmf->vma;
4159         struct page *page = NULL;
4160         int page_nid = NUMA_NO_NODE;
4161         int last_cpupid;
4162         int target_nid;
4163         bool migrated = false;
4164         pte_t pte, old_pte;
4165         bool was_writable = pte_savedwrite(vmf->orig_pte);
4166         int flags = 0;
4167
4168         /*
4169          * The "pte" at this point cannot be used safely without
4170          * validation through pte_unmap_same(). It's of NUMA type but
4171          * the pfn may be screwed if the read is non atomic.
4172          */
4173         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4174         spin_lock(vmf->ptl);
4175         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4176                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4177                 goto out;
4178         }
4179
4180         /*
4181          * Make it present again, Depending on how arch implementes non
4182          * accessible ptes, some can allow access by kernel mode.
4183          */
4184         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4185         pte = pte_modify(old_pte, vma->vm_page_prot);
4186         pte = pte_mkyoung(pte);
4187         if (was_writable)
4188                 pte = pte_mkwrite(pte);
4189         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4190         update_mmu_cache(vma, vmf->address, vmf->pte);
4191
4192         page = vm_normal_page(vma, vmf->address, pte);
4193         if (!page) {
4194                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4195                 return 0;
4196         }
4197
4198         /* TODO: handle PTE-mapped THP */
4199         if (PageCompound(page)) {
4200                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4201                 return 0;
4202         }
4203
4204         /*
4205          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4206          * much anyway since they can be in shared cache state. This misses
4207          * the case where a mapping is writable but the process never writes
4208          * to it but pte_write gets cleared during protection updates and
4209          * pte_dirty has unpredictable behaviour between PTE scan updates,
4210          * background writeback, dirty balancing and application behaviour.
4211          */
4212         if (!pte_write(pte))
4213                 flags |= TNF_NO_GROUP;
4214
4215         /*
4216          * Flag if the page is shared between multiple address spaces. This
4217          * is later used when determining whether to group tasks together
4218          */
4219         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4220                 flags |= TNF_SHARED;
4221
4222         last_cpupid = page_cpupid_last(page);
4223         page_nid = page_to_nid(page);
4224         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4225                         &flags);
4226         pte_unmap_unlock(vmf->pte, vmf->ptl);
4227         if (target_nid == NUMA_NO_NODE) {
4228                 put_page(page);
4229                 goto out;
4230         }
4231
4232         /* Migrate to the requested node */
4233         migrated = migrate_misplaced_page(page, vma, target_nid);
4234         if (migrated) {
4235                 page_nid = target_nid;
4236                 flags |= TNF_MIGRATED;
4237         } else
4238                 flags |= TNF_MIGRATE_FAIL;
4239
4240 out:
4241         if (page_nid != NUMA_NO_NODE)
4242                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4243         return 0;
4244 }
4245
4246 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4247 {
4248         if (vma_is_anonymous(vmf->vma))
4249                 return do_huge_pmd_anonymous_page(vmf);
4250         if (vmf->vma->vm_ops->huge_fault)
4251                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4252         return VM_FAULT_FALLBACK;
4253 }
4254
4255 /* `inline' is required to avoid gcc 4.1.2 build error */
4256 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4257 {
4258         if (vma_is_anonymous(vmf->vma)) {
4259                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4260                         return handle_userfault(vmf, VM_UFFD_WP);
4261                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4262         }
4263         if (vmf->vma->vm_ops->huge_fault) {
4264                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4265
4266                 if (!(ret & VM_FAULT_FALLBACK))
4267                         return ret;
4268         }
4269
4270         /* COW or write-notify handled on pte level: split pmd. */
4271         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4272
4273         return VM_FAULT_FALLBACK;
4274 }
4275
4276 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4277 {
4278 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4279         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4280         /* No support for anonymous transparent PUD pages yet */
4281         if (vma_is_anonymous(vmf->vma))
4282                 goto split;
4283         if (vmf->vma->vm_ops->huge_fault) {
4284                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4285
4286                 if (!(ret & VM_FAULT_FALLBACK))
4287                         return ret;
4288         }
4289 split:
4290         /* COW or write-notify not handled on PUD level: split pud.*/
4291         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4292 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4293         return VM_FAULT_FALLBACK;
4294 }
4295
4296 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4297 {
4298 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4299         /* No support for anonymous transparent PUD pages yet */
4300         if (vma_is_anonymous(vmf->vma))
4301                 return VM_FAULT_FALLBACK;
4302         if (vmf->vma->vm_ops->huge_fault)
4303                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4304 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4305         return VM_FAULT_FALLBACK;
4306 }
4307
4308 /*
4309  * These routines also need to handle stuff like marking pages dirty
4310  * and/or accessed for architectures that don't do it in hardware (most
4311  * RISC architectures).  The early dirtying is also good on the i386.
4312  *
4313  * There is also a hook called "update_mmu_cache()" that architectures
4314  * with external mmu caches can use to update those (ie the Sparc or
4315  * PowerPC hashed page tables that act as extended TLBs).
4316  *
4317  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4318  * concurrent faults).
4319  *
4320  * The mmap_lock may have been released depending on flags and our return value.
4321  * See filemap_fault() and __lock_page_or_retry().
4322  */
4323 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4324 {
4325         pte_t entry;
4326
4327         if (unlikely(pmd_none(*vmf->pmd))) {
4328                 /*
4329                  * Leave __pte_alloc() until later: because vm_ops->fault may
4330                  * want to allocate huge page, and if we expose page table
4331                  * for an instant, it will be difficult to retract from
4332                  * concurrent faults and from rmap lookups.
4333                  */
4334                 vmf->pte = NULL;
4335         } else {
4336                 /* See comment in pte_alloc_one_map() */
4337                 if (pmd_devmap_trans_unstable(vmf->pmd))
4338                         return 0;
4339                 /*
4340                  * A regular pmd is established and it can't morph into a huge
4341                  * pmd from under us anymore at this point because we hold the
4342                  * mmap_lock read mode and khugepaged takes it in write mode.
4343                  * So now it's safe to run pte_offset_map().
4344                  */
4345                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4346                 vmf->orig_pte = *vmf->pte;
4347
4348                 /*
4349                  * some architectures can have larger ptes than wordsize,
4350                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4351                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4352                  * accesses.  The code below just needs a consistent view
4353                  * for the ifs and we later double check anyway with the
4354                  * ptl lock held. So here a barrier will do.
4355                  */
4356                 barrier();
4357                 if (pte_none(vmf->orig_pte)) {
4358                         pte_unmap(vmf->pte);
4359                         vmf->pte = NULL;
4360                 }
4361         }
4362
4363         if (!vmf->pte) {
4364                 if (vma_is_anonymous(vmf->vma))
4365                         return do_anonymous_page(vmf);
4366                 else
4367                         return do_fault(vmf);
4368         }
4369
4370         if (!pte_present(vmf->orig_pte))
4371                 return do_swap_page(vmf);
4372
4373         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4374                 return do_numa_page(vmf);
4375
4376         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4377         spin_lock(vmf->ptl);
4378         entry = vmf->orig_pte;
4379         if (unlikely(!pte_same(*vmf->pte, entry))) {
4380                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4381                 goto unlock;
4382         }
4383         if (vmf->flags & FAULT_FLAG_WRITE) {
4384                 if (!pte_write(entry))
4385                         return do_wp_page(vmf);
4386                 entry = pte_mkdirty(entry);
4387         }
4388         entry = pte_mkyoung(entry);
4389         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4390                                 vmf->flags & FAULT_FLAG_WRITE)) {
4391                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4392         } else {
4393                 /* Skip spurious TLB flush for retried page fault */
4394                 if (vmf->flags & FAULT_FLAG_TRIED)
4395                         goto unlock;
4396                 /*
4397                  * This is needed only for protection faults but the arch code
4398                  * is not yet telling us if this is a protection fault or not.
4399                  * This still avoids useless tlb flushes for .text page faults
4400                  * with threads.
4401                  */
4402                 if (vmf->flags & FAULT_FLAG_WRITE)
4403                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4404         }
4405 unlock:
4406         pte_unmap_unlock(vmf->pte, vmf->ptl);
4407         return 0;
4408 }
4409
4410 /*
4411  * By the time we get here, we already hold the mm semaphore
4412  *
4413  * The mmap_lock may have been released depending on flags and our
4414  * return value.  See filemap_fault() and __lock_page_or_retry().
4415  */
4416 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4417                 unsigned long address, unsigned int flags)
4418 {
4419         struct vm_fault vmf = {
4420                 .vma = vma,
4421                 .address = address & PAGE_MASK,
4422                 .flags = flags,
4423                 .pgoff = linear_page_index(vma, address),
4424                 .gfp_mask = __get_fault_gfp_mask(vma),
4425         };
4426         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4427         struct mm_struct *mm = vma->vm_mm;
4428         pgd_t *pgd;
4429         p4d_t *p4d;
4430         vm_fault_t ret;
4431
4432         pgd = pgd_offset(mm, address);
4433         p4d = p4d_alloc(mm, pgd, address);
4434         if (!p4d)
4435                 return VM_FAULT_OOM;
4436
4437         vmf.pud = pud_alloc(mm, p4d, address);
4438         if (!vmf.pud)
4439                 return VM_FAULT_OOM;
4440 retry_pud:
4441         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4442                 ret = create_huge_pud(&vmf);
4443                 if (!(ret & VM_FAULT_FALLBACK))
4444                         return ret;
4445         } else {
4446                 pud_t orig_pud = *vmf.pud;
4447
4448                 barrier();
4449                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4450
4451                         /* NUMA case for anonymous PUDs would go here */
4452
4453                         if (dirty && !pud_write(orig_pud)) {
4454                                 ret = wp_huge_pud(&vmf, orig_pud);
4455                                 if (!(ret & VM_FAULT_FALLBACK))
4456                                         return ret;
4457                         } else {
4458                                 huge_pud_set_accessed(&vmf, orig_pud);
4459                                 return 0;
4460                         }
4461                 }
4462         }
4463
4464         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4465         if (!vmf.pmd)
4466                 return VM_FAULT_OOM;
4467
4468         /* Huge pud page fault raced with pmd_alloc? */
4469         if (pud_trans_unstable(vmf.pud))
4470                 goto retry_pud;
4471
4472         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4473                 ret = create_huge_pmd(&vmf);
4474                 if (!(ret & VM_FAULT_FALLBACK))
4475                         return ret;
4476         } else {
4477                 pmd_t orig_pmd = *vmf.pmd;
4478
4479                 barrier();
4480                 if (unlikely(is_swap_pmd(orig_pmd))) {
4481                         VM_BUG_ON(thp_migration_supported() &&
4482                                           !is_pmd_migration_entry(orig_pmd));
4483                         if (is_pmd_migration_entry(orig_pmd))
4484                                 pmd_migration_entry_wait(mm, vmf.pmd);
4485                         return 0;
4486                 }
4487                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4488                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4489                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4490
4491                         if (dirty && !pmd_write(orig_pmd)) {
4492                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4493                                 if (!(ret & VM_FAULT_FALLBACK))
4494                                         return ret;
4495                         } else {
4496                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4497                                 return 0;
4498                         }
4499                 }
4500         }
4501
4502         return handle_pte_fault(&vmf);
4503 }
4504
4505 /**
4506  * mm_account_fault - Do page fault accountings
4507  *
4508  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4509  *        of perf event counters, but we'll still do the per-task accounting to
4510  *        the task who triggered this page fault.
4511  * @address: the faulted address.
4512  * @flags: the fault flags.
4513  * @ret: the fault retcode.
4514  *
4515  * This will take care of most of the page fault accountings.  Meanwhile, it
4516  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4517  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4518  * still be in per-arch page fault handlers at the entry of page fault.
4519  */
4520 static inline void mm_account_fault(struct pt_regs *regs,
4521                                     unsigned long address, unsigned int flags,
4522                                     vm_fault_t ret)
4523 {
4524         bool major;
4525
4526         /*
4527          * We don't do accounting for some specific faults:
4528          *
4529          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4530          *   includes arch_vma_access_permitted() failing before reaching here.
4531          *   So this is not a "this many hardware page faults" counter.  We
4532          *   should use the hw profiling for that.
4533          *
4534          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4535          *   once they're completed.
4536          */
4537         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4538                 return;
4539
4540         /*
4541          * We define the fault as a major fault when the final successful fault
4542          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4543          * handle it immediately previously).
4544          */
4545         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4546
4547         if (major)
4548                 current->maj_flt++;
4549         else
4550                 current->min_flt++;
4551
4552         /*
4553          * If the fault is done for GUP, regs will be NULL.  We only do the
4554          * accounting for the per thread fault counters who triggered the
4555          * fault, and we skip the perf event updates.
4556          */
4557         if (!regs)
4558                 return;
4559
4560         if (major)
4561                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4562         else
4563                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4564 }
4565
4566 /*
4567  * By the time we get here, we already hold the mm semaphore
4568  *
4569  * The mmap_lock may have been released depending on flags and our
4570  * return value.  See filemap_fault() and __lock_page_or_retry().
4571  */
4572 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4573                            unsigned int flags, struct pt_regs *regs)
4574 {
4575         vm_fault_t ret;
4576
4577         __set_current_state(TASK_RUNNING);
4578
4579         count_vm_event(PGFAULT);
4580         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4581
4582         /* do counter updates before entering really critical section. */
4583         check_sync_rss_stat(current);
4584
4585         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4586                                             flags & FAULT_FLAG_INSTRUCTION,
4587                                             flags & FAULT_FLAG_REMOTE))
4588                 return VM_FAULT_SIGSEGV;
4589
4590         /*
4591          * Enable the memcg OOM handling for faults triggered in user
4592          * space.  Kernel faults are handled more gracefully.
4593          */
4594         if (flags & FAULT_FLAG_USER)
4595                 mem_cgroup_enter_user_fault();
4596
4597         if (unlikely(is_vm_hugetlb_page(vma)))
4598                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4599         else
4600                 ret = __handle_mm_fault(vma, address, flags);
4601
4602         if (flags & FAULT_FLAG_USER) {
4603                 mem_cgroup_exit_user_fault();
4604                 /*
4605                  * The task may have entered a memcg OOM situation but
4606                  * if the allocation error was handled gracefully (no
4607                  * VM_FAULT_OOM), there is no need to kill anything.
4608                  * Just clean up the OOM state peacefully.
4609                  */
4610                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4611                         mem_cgroup_oom_synchronize(false);
4612         }
4613
4614         mm_account_fault(regs, address, flags, ret);
4615
4616         return ret;
4617 }
4618 EXPORT_SYMBOL_GPL(handle_mm_fault);
4619
4620 #ifndef __PAGETABLE_P4D_FOLDED
4621 /*
4622  * Allocate p4d page table.
4623  * We've already handled the fast-path in-line.
4624  */
4625 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4626 {
4627         p4d_t *new = p4d_alloc_one(mm, address);
4628         if (!new)
4629                 return -ENOMEM;
4630
4631         smp_wmb(); /* See comment in __pte_alloc */
4632
4633         spin_lock(&mm->page_table_lock);
4634         if (pgd_present(*pgd))          /* Another has populated it */
4635                 p4d_free(mm, new);
4636         else
4637                 pgd_populate(mm, pgd, new);
4638         spin_unlock(&mm->page_table_lock);
4639         return 0;
4640 }
4641 #endif /* __PAGETABLE_P4D_FOLDED */
4642
4643 #ifndef __PAGETABLE_PUD_FOLDED
4644 /*
4645  * Allocate page upper directory.
4646  * We've already handled the fast-path in-line.
4647  */
4648 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4649 {
4650         pud_t *new = pud_alloc_one(mm, address);
4651         if (!new)
4652                 return -ENOMEM;
4653
4654         smp_wmb(); /* See comment in __pte_alloc */
4655
4656         spin_lock(&mm->page_table_lock);
4657         if (!p4d_present(*p4d)) {
4658                 mm_inc_nr_puds(mm);
4659                 p4d_populate(mm, p4d, new);
4660         } else  /* Another has populated it */
4661                 pud_free(mm, new);
4662         spin_unlock(&mm->page_table_lock);
4663         return 0;
4664 }
4665 #endif /* __PAGETABLE_PUD_FOLDED */
4666
4667 #ifndef __PAGETABLE_PMD_FOLDED
4668 /*
4669  * Allocate page middle directory.
4670  * We've already handled the fast-path in-line.
4671  */
4672 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4673 {
4674         spinlock_t *ptl;
4675         pmd_t *new = pmd_alloc_one(mm, address);
4676         if (!new)
4677                 return -ENOMEM;
4678
4679         smp_wmb(); /* See comment in __pte_alloc */
4680
4681         ptl = pud_lock(mm, pud);
4682         if (!pud_present(*pud)) {
4683                 mm_inc_nr_pmds(mm);
4684                 pud_populate(mm, pud, new);
4685         } else  /* Another has populated it */
4686                 pmd_free(mm, new);
4687         spin_unlock(ptl);
4688         return 0;
4689 }
4690 #endif /* __PAGETABLE_PMD_FOLDED */
4691
4692 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4693                             struct mmu_notifier_range *range,
4694                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4695 {
4696         pgd_t *pgd;
4697         p4d_t *p4d;
4698         pud_t *pud;
4699         pmd_t *pmd;
4700         pte_t *ptep;
4701
4702         pgd = pgd_offset(mm, address);
4703         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4704                 goto out;
4705
4706         p4d = p4d_offset(pgd, address);
4707         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4708                 goto out;
4709
4710         pud = pud_offset(p4d, address);
4711         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4712                 goto out;
4713
4714         pmd = pmd_offset(pud, address);
4715         VM_BUG_ON(pmd_trans_huge(*pmd));
4716
4717         if (pmd_huge(*pmd)) {
4718                 if (!pmdpp)
4719                         goto out;
4720
4721                 if (range) {
4722                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4723                                                 NULL, mm, address & PMD_MASK,
4724                                                 (address & PMD_MASK) + PMD_SIZE);
4725                         mmu_notifier_invalidate_range_start(range);
4726                 }
4727                 *ptlp = pmd_lock(mm, pmd);
4728                 if (pmd_huge(*pmd)) {
4729                         *pmdpp = pmd;
4730                         return 0;
4731                 }
4732                 spin_unlock(*ptlp);
4733                 if (range)
4734                         mmu_notifier_invalidate_range_end(range);
4735         }
4736
4737         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4738                 goto out;
4739
4740         if (range) {
4741                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4742                                         address & PAGE_MASK,
4743                                         (address & PAGE_MASK) + PAGE_SIZE);
4744                 mmu_notifier_invalidate_range_start(range);
4745         }
4746         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4747         if (!pte_present(*ptep))
4748                 goto unlock;
4749         *ptepp = ptep;
4750         return 0;
4751 unlock:
4752         pte_unmap_unlock(ptep, *ptlp);
4753         if (range)
4754                 mmu_notifier_invalidate_range_end(range);
4755 out:
4756         return -EINVAL;
4757 }
4758
4759 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4760                              pte_t **ptepp, spinlock_t **ptlp)
4761 {
4762         int res;
4763
4764         /* (void) is needed to make gcc happy */
4765         (void) __cond_lock(*ptlp,
4766                            !(res = __follow_pte_pmd(mm, address, NULL,
4767                                                     ptepp, NULL, ptlp)));
4768         return res;
4769 }
4770
4771 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4772                    struct mmu_notifier_range *range,
4773                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4774 {
4775         int res;
4776
4777         /* (void) is needed to make gcc happy */
4778         (void) __cond_lock(*ptlp,
4779                            !(res = __follow_pte_pmd(mm, address, range,
4780                                                     ptepp, pmdpp, ptlp)));
4781         return res;
4782 }
4783 EXPORT_SYMBOL(follow_pte_pmd);
4784
4785 /**
4786  * follow_pfn - look up PFN at a user virtual address
4787  * @vma: memory mapping
4788  * @address: user virtual address
4789  * @pfn: location to store found PFN
4790  *
4791  * Only IO mappings and raw PFN mappings are allowed.
4792  *
4793  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4794  */
4795 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4796         unsigned long *pfn)
4797 {
4798         int ret = -EINVAL;
4799         spinlock_t *ptl;
4800         pte_t *ptep;
4801
4802         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4803                 return ret;
4804
4805         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4806         if (ret)
4807                 return ret;
4808         *pfn = pte_pfn(*ptep);
4809         pte_unmap_unlock(ptep, ptl);
4810         return 0;
4811 }
4812 EXPORT_SYMBOL(follow_pfn);
4813
4814 #ifdef CONFIG_HAVE_IOREMAP_PROT
4815 int follow_phys(struct vm_area_struct *vma,
4816                 unsigned long address, unsigned int flags,
4817                 unsigned long *prot, resource_size_t *phys)
4818 {
4819         int ret = -EINVAL;
4820         pte_t *ptep, pte;
4821         spinlock_t *ptl;
4822
4823         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4824                 goto out;
4825
4826         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4827                 goto out;
4828         pte = *ptep;
4829
4830         if ((flags & FOLL_WRITE) && !pte_write(pte))
4831                 goto unlock;
4832
4833         *prot = pgprot_val(pte_pgprot(pte));
4834         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4835
4836         ret = 0;
4837 unlock:
4838         pte_unmap_unlock(ptep, ptl);
4839 out:
4840         return ret;
4841 }
4842
4843 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4844                         void *buf, int len, int write)
4845 {
4846         resource_size_t phys_addr;
4847         unsigned long prot = 0;
4848         void __iomem *maddr;
4849         int offset = addr & (PAGE_SIZE-1);
4850
4851         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4852                 return -EINVAL;
4853
4854         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4855         if (!maddr)
4856                 return -ENOMEM;
4857
4858         if (write)
4859                 memcpy_toio(maddr + offset, buf, len);
4860         else
4861                 memcpy_fromio(buf, maddr + offset, len);
4862         iounmap(maddr);
4863
4864         return len;
4865 }
4866 EXPORT_SYMBOL_GPL(generic_access_phys);
4867 #endif
4868
4869 /*
4870  * Access another process' address space as given in mm.  If non-NULL, use the
4871  * given task for page fault accounting.
4872  */
4873 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4874                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4875 {
4876         struct vm_area_struct *vma;
4877         void *old_buf = buf;
4878         int write = gup_flags & FOLL_WRITE;
4879
4880         if (mmap_read_lock_killable(mm))
4881                 return 0;
4882
4883         /* ignore errors, just check how much was successfully transferred */
4884         while (len) {
4885                 int bytes, ret, offset;
4886                 void *maddr;
4887                 struct page *page = NULL;
4888
4889                 ret = get_user_pages_remote(mm, addr, 1,
4890                                 gup_flags, &page, &vma, NULL);
4891                 if (ret <= 0) {
4892 #ifndef CONFIG_HAVE_IOREMAP_PROT
4893                         break;
4894 #else
4895                         /*
4896                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4897                          * we can access using slightly different code.
4898                          */
4899                         vma = find_vma(mm, addr);
4900                         if (!vma || vma->vm_start > addr)
4901                                 break;
4902                         if (vma->vm_ops && vma->vm_ops->access)
4903                                 ret = vma->vm_ops->access(vma, addr, buf,
4904                                                           len, write);
4905                         if (ret <= 0)
4906                                 break;
4907                         bytes = ret;
4908 #endif
4909                 } else {
4910                         bytes = len;
4911                         offset = addr & (PAGE_SIZE-1);
4912                         if (bytes > PAGE_SIZE-offset)
4913                                 bytes = PAGE_SIZE-offset;
4914
4915                         maddr = kmap(page);
4916                         if (write) {
4917                                 copy_to_user_page(vma, page, addr,
4918                                                   maddr + offset, buf, bytes);
4919                                 set_page_dirty_lock(page);
4920                         } else {
4921                                 copy_from_user_page(vma, page, addr,
4922                                                     buf, maddr + offset, bytes);
4923                         }
4924                         kunmap(page);
4925                         put_page(page);
4926                 }
4927                 len -= bytes;
4928                 buf += bytes;
4929                 addr += bytes;
4930         }
4931         mmap_read_unlock(mm);
4932
4933         return buf - old_buf;
4934 }
4935
4936 /**
4937  * access_remote_vm - access another process' address space
4938  * @mm:         the mm_struct of the target address space
4939  * @addr:       start address to access
4940  * @buf:        source or destination buffer
4941  * @len:        number of bytes to transfer
4942  * @gup_flags:  flags modifying lookup behaviour
4943  *
4944  * The caller must hold a reference on @mm.
4945  *
4946  * Return: number of bytes copied from source to destination.
4947  */
4948 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4949                 void *buf, int len, unsigned int gup_flags)
4950 {
4951         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4952 }
4953
4954 /*
4955  * Access another process' address space.
4956  * Source/target buffer must be kernel space,
4957  * Do not walk the page table directly, use get_user_pages
4958  */
4959 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4960                 void *buf, int len, unsigned int gup_flags)
4961 {
4962         struct mm_struct *mm;
4963         int ret;
4964
4965         mm = get_task_mm(tsk);
4966         if (!mm)
4967                 return 0;
4968
4969         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4970
4971         mmput(mm);
4972
4973         return ret;
4974 }
4975 EXPORT_SYMBOL_GPL(access_process_vm);
4976
4977 /*
4978  * Print the name of a VMA.
4979  */
4980 void print_vma_addr(char *prefix, unsigned long ip)
4981 {
4982         struct mm_struct *mm = current->mm;
4983         struct vm_area_struct *vma;
4984
4985         /*
4986          * we might be running from an atomic context so we cannot sleep
4987          */
4988         if (!mmap_read_trylock(mm))
4989                 return;
4990
4991         vma = find_vma(mm, ip);
4992         if (vma && vma->vm_file) {
4993                 struct file *f = vma->vm_file;
4994                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4995                 if (buf) {
4996                         char *p;
4997
4998                         p = file_path(f, buf, PAGE_SIZE);
4999                         if (IS_ERR(p))
5000                                 p = "?";
5001                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5002                                         vma->vm_start,
5003                                         vma->vm_end - vma->vm_start);
5004                         free_page((unsigned long)buf);
5005                 }
5006         }
5007         mmap_read_unlock(mm);
5008 }
5009
5010 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5011 void __might_fault(const char *file, int line)
5012 {
5013         /*
5014          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5015          * holding the mmap_lock, this is safe because kernel memory doesn't
5016          * get paged out, therefore we'll never actually fault, and the
5017          * below annotations will generate false positives.
5018          */
5019         if (uaccess_kernel())
5020                 return;
5021         if (pagefault_disabled())
5022                 return;
5023         __might_sleep(file, line, 0);
5024 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5025         if (current->mm)
5026                 might_lock_read(&current->mm->mmap_lock);
5027 #endif
5028 }
5029 EXPORT_SYMBOL(__might_fault);
5030 #endif
5031
5032 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5033 /*
5034  * Process all subpages of the specified huge page with the specified
5035  * operation.  The target subpage will be processed last to keep its
5036  * cache lines hot.
5037  */
5038 static inline void process_huge_page(
5039         unsigned long addr_hint, unsigned int pages_per_huge_page,
5040         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5041         void *arg)
5042 {
5043         int i, n, base, l;
5044         unsigned long addr = addr_hint &
5045                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5046
5047         /* Process target subpage last to keep its cache lines hot */
5048         might_sleep();
5049         n = (addr_hint - addr) / PAGE_SIZE;
5050         if (2 * n <= pages_per_huge_page) {
5051                 /* If target subpage in first half of huge page */
5052                 base = 0;
5053                 l = n;
5054                 /* Process subpages at the end of huge page */
5055                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5056                         cond_resched();
5057                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5058                 }
5059         } else {
5060                 /* If target subpage in second half of huge page */
5061                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5062                 l = pages_per_huge_page - n;
5063                 /* Process subpages at the begin of huge page */
5064                 for (i = 0; i < base; i++) {
5065                         cond_resched();
5066                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5067                 }
5068         }
5069         /*
5070          * Process remaining subpages in left-right-left-right pattern
5071          * towards the target subpage
5072          */
5073         for (i = 0; i < l; i++) {
5074                 int left_idx = base + i;
5075                 int right_idx = base + 2 * l - 1 - i;
5076
5077                 cond_resched();
5078                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5079                 cond_resched();
5080                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5081         }
5082 }
5083
5084 static void clear_gigantic_page(struct page *page,
5085                                 unsigned long addr,
5086                                 unsigned int pages_per_huge_page)
5087 {
5088         int i;
5089         struct page *p = page;
5090
5091         might_sleep();
5092         for (i = 0; i < pages_per_huge_page;
5093              i++, p = mem_map_next(p, page, i)) {
5094                 cond_resched();
5095                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5096         }
5097 }
5098
5099 static void clear_subpage(unsigned long addr, int idx, void *arg)
5100 {
5101         struct page *page = arg;
5102
5103         clear_user_highpage(page + idx, addr);
5104 }
5105
5106 void clear_huge_page(struct page *page,
5107                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5108 {
5109         unsigned long addr = addr_hint &
5110                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5111
5112         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5113                 clear_gigantic_page(page, addr, pages_per_huge_page);
5114                 return;
5115         }
5116
5117         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5118 }
5119
5120 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5121                                     unsigned long addr,
5122                                     struct vm_area_struct *vma,
5123                                     unsigned int pages_per_huge_page)
5124 {
5125         int i;
5126         struct page *dst_base = dst;
5127         struct page *src_base = src;
5128
5129         for (i = 0; i < pages_per_huge_page; ) {
5130                 cond_resched();
5131                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5132
5133                 i++;
5134                 dst = mem_map_next(dst, dst_base, i);
5135                 src = mem_map_next(src, src_base, i);
5136         }
5137 }
5138
5139 struct copy_subpage_arg {
5140         struct page *dst;
5141         struct page *src;
5142         struct vm_area_struct *vma;
5143 };
5144
5145 static void copy_subpage(unsigned long addr, int idx, void *arg)
5146 {
5147         struct copy_subpage_arg *copy_arg = arg;
5148
5149         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5150                            addr, copy_arg->vma);
5151 }
5152
5153 void copy_user_huge_page(struct page *dst, struct page *src,
5154                          unsigned long addr_hint, struct vm_area_struct *vma,
5155                          unsigned int pages_per_huge_page)
5156 {
5157         unsigned long addr = addr_hint &
5158                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5159         struct copy_subpage_arg arg = {
5160                 .dst = dst,
5161                 .src = src,
5162                 .vma = vma,
5163         };
5164
5165         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5166                 copy_user_gigantic_page(dst, src, addr, vma,
5167                                         pages_per_huge_page);
5168                 return;
5169         }
5170
5171         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5172 }
5173
5174 long copy_huge_page_from_user(struct page *dst_page,
5175                                 const void __user *usr_src,
5176                                 unsigned int pages_per_huge_page,
5177                                 bool allow_pagefault)
5178 {
5179         void *src = (void *)usr_src;
5180         void *page_kaddr;
5181         unsigned long i, rc = 0;
5182         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5183
5184         for (i = 0; i < pages_per_huge_page; i++) {
5185                 if (allow_pagefault)
5186                         page_kaddr = kmap(dst_page + i);
5187                 else
5188                         page_kaddr = kmap_atomic(dst_page + i);
5189                 rc = copy_from_user(page_kaddr,
5190                                 (const void __user *)(src + i * PAGE_SIZE),
5191                                 PAGE_SIZE);
5192                 if (allow_pagefault)
5193                         kunmap(dst_page + i);
5194                 else
5195                         kunmap_atomic(page_kaddr);
5196
5197                 ret_val -= (PAGE_SIZE - rc);
5198                 if (rc)
5199                         break;
5200
5201                 cond_resched();
5202         }
5203         return ret_val;
5204 }
5205 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5206
5207 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5208
5209 static struct kmem_cache *page_ptl_cachep;
5210
5211 void __init ptlock_cache_init(void)
5212 {
5213         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5214                         SLAB_PANIC, NULL);
5215 }
5216
5217 bool ptlock_alloc(struct page *page)
5218 {
5219         spinlock_t *ptl;
5220
5221         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5222         if (!ptl)
5223                 return false;
5224         page->ptl = ptl;
5225         return true;
5226 }
5227
5228 void ptlock_free(struct page *page)
5229 {
5230         kmem_cache_free(page_ptl_cachep, page->ptl);
5231 }
5232 #endif