Merge branches 'acpi-battery', 'acpi-video' and 'acpi-misc'
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NUMA
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140         /*
141          * Transitioning a PTE from 'old' to 'young' can be expensive on
142          * some architectures, even if it's performed in hardware. By
143          * default, "false" means prefaulted entries will be 'young'.
144          */
145         return false;
146 }
147 #endif
148
149 static int __init disable_randmaps(char *s)
150 {
151         randomize_va_space = 0;
152         return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158
159 unsigned long highest_memmap_pfn __read_mostly;
160
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166         zero_pfn = page_to_pfn(ZERO_PAGE(0));
167         return 0;
168 }
169 early_initcall(init_zero_pfn);
170
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173         trace_rss_stat(mm, member, count);
174 }
175
176 #if defined(SPLIT_RSS_COUNTING)
177
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180         int i;
181
182         for (i = 0; i < NR_MM_COUNTERS; i++) {
183                 if (current->rss_stat.count[i]) {
184                         add_mm_counter(mm, i, current->rss_stat.count[i]);
185                         current->rss_stat.count[i] = 0;
186                 }
187         }
188         current->rss_stat.events = 0;
189 }
190
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193         struct task_struct *task = current;
194
195         if (likely(task->mm == mm))
196                 task->rss_stat.count[member] += val;
197         else
198                 add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH  (64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207         if (unlikely(task != current))
208                 return;
209         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210                 sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220
221 #endif /* SPLIT_RSS_COUNTING */
222
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228                            unsigned long addr)
229 {
230         pgtable_t token = pmd_pgtable(*pmd);
231         pmd_clear(pmd);
232         pte_free_tlb(tlb, token, addr);
233         mm_dec_nr_ptes(tlb->mm);
234 }
235
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237                                 unsigned long addr, unsigned long end,
238                                 unsigned long floor, unsigned long ceiling)
239 {
240         pmd_t *pmd;
241         unsigned long next;
242         unsigned long start;
243
244         start = addr;
245         pmd = pmd_offset(pud, addr);
246         do {
247                 next = pmd_addr_end(addr, end);
248                 if (pmd_none_or_clear_bad(pmd))
249                         continue;
250                 free_pte_range(tlb, pmd, addr);
251         } while (pmd++, addr = next, addr != end);
252
253         start &= PUD_MASK;
254         if (start < floor)
255                 return;
256         if (ceiling) {
257                 ceiling &= PUD_MASK;
258                 if (!ceiling)
259                         return;
260         }
261         if (end - 1 > ceiling - 1)
262                 return;
263
264         pmd = pmd_offset(pud, start);
265         pud_clear(pud);
266         pmd_free_tlb(tlb, pmd, start);
267         mm_dec_nr_pmds(tlb->mm);
268 }
269
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271                                 unsigned long addr, unsigned long end,
272                                 unsigned long floor, unsigned long ceiling)
273 {
274         pud_t *pud;
275         unsigned long next;
276         unsigned long start;
277
278         start = addr;
279         pud = pud_offset(p4d, addr);
280         do {
281                 next = pud_addr_end(addr, end);
282                 if (pud_none_or_clear_bad(pud))
283                         continue;
284                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285         } while (pud++, addr = next, addr != end);
286
287         start &= P4D_MASK;
288         if (start < floor)
289                 return;
290         if (ceiling) {
291                 ceiling &= P4D_MASK;
292                 if (!ceiling)
293                         return;
294         }
295         if (end - 1 > ceiling - 1)
296                 return;
297
298         pud = pud_offset(p4d, start);
299         p4d_clear(p4d);
300         pud_free_tlb(tlb, pud, start);
301         mm_dec_nr_puds(tlb->mm);
302 }
303
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305                                 unsigned long addr, unsigned long end,
306                                 unsigned long floor, unsigned long ceiling)
307 {
308         p4d_t *p4d;
309         unsigned long next;
310         unsigned long start;
311
312         start = addr;
313         p4d = p4d_offset(pgd, addr);
314         do {
315                 next = p4d_addr_end(addr, end);
316                 if (p4d_none_or_clear_bad(p4d))
317                         continue;
318                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319         } while (p4d++, addr = next, addr != end);
320
321         start &= PGDIR_MASK;
322         if (start < floor)
323                 return;
324         if (ceiling) {
325                 ceiling &= PGDIR_MASK;
326                 if (!ceiling)
327                         return;
328         }
329         if (end - 1 > ceiling - 1)
330                 return;
331
332         p4d = p4d_offset(pgd, start);
333         pgd_clear(pgd);
334         p4d_free_tlb(tlb, p4d, start);
335 }
336
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341                         unsigned long addr, unsigned long end,
342                         unsigned long floor, unsigned long ceiling)
343 {
344         pgd_t *pgd;
345         unsigned long next;
346
347         /*
348          * The next few lines have given us lots of grief...
349          *
350          * Why are we testing PMD* at this top level?  Because often
351          * there will be no work to do at all, and we'd prefer not to
352          * go all the way down to the bottom just to discover that.
353          *
354          * Why all these "- 1"s?  Because 0 represents both the bottom
355          * of the address space and the top of it (using -1 for the
356          * top wouldn't help much: the masks would do the wrong thing).
357          * The rule is that addr 0 and floor 0 refer to the bottom of
358          * the address space, but end 0 and ceiling 0 refer to the top
359          * Comparisons need to use "end - 1" and "ceiling - 1" (though
360          * that end 0 case should be mythical).
361          *
362          * Wherever addr is brought up or ceiling brought down, we must
363          * be careful to reject "the opposite 0" before it confuses the
364          * subsequent tests.  But what about where end is brought down
365          * by PMD_SIZE below? no, end can't go down to 0 there.
366          *
367          * Whereas we round start (addr) and ceiling down, by different
368          * masks at different levels, in order to test whether a table
369          * now has no other vmas using it, so can be freed, we don't
370          * bother to round floor or end up - the tests don't need that.
371          */
372
373         addr &= PMD_MASK;
374         if (addr < floor) {
375                 addr += PMD_SIZE;
376                 if (!addr)
377                         return;
378         }
379         if (ceiling) {
380                 ceiling &= PMD_MASK;
381                 if (!ceiling)
382                         return;
383         }
384         if (end - 1 > ceiling - 1)
385                 end -= PMD_SIZE;
386         if (addr > end - 1)
387                 return;
388         /*
389          * We add page table cache pages with PAGE_SIZE,
390          * (see pte_free_tlb()), flush the tlb if we need
391          */
392         tlb_change_page_size(tlb, PAGE_SIZE);
393         pgd = pgd_offset(tlb->mm, addr);
394         do {
395                 next = pgd_addr_end(addr, end);
396                 if (pgd_none_or_clear_bad(pgd))
397                         continue;
398                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399         } while (pgd++, addr = next, addr != end);
400 }
401
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403                 unsigned long floor, unsigned long ceiling)
404 {
405         while (vma) {
406                 struct vm_area_struct *next = vma->vm_next;
407                 unsigned long addr = vma->vm_start;
408
409                 /*
410                  * Hide vma from rmap and truncate_pagecache before freeing
411                  * pgtables
412                  */
413                 unlink_anon_vmas(vma);
414                 unlink_file_vma(vma);
415
416                 if (is_vm_hugetlb_page(vma)) {
417                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418                                 floor, next ? next->vm_start : ceiling);
419                 } else {
420                         /*
421                          * Optimization: gather nearby vmas into one call down
422                          */
423                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424                                && !is_vm_hugetlb_page(next)) {
425                                 vma = next;
426                                 next = vma->vm_next;
427                                 unlink_anon_vmas(vma);
428                                 unlink_file_vma(vma);
429                         }
430                         free_pgd_range(tlb, addr, vma->vm_end,
431                                 floor, next ? next->vm_start : ceiling);
432                 }
433                 vma = next;
434         }
435 }
436
437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
438 {
439         spinlock_t *ptl = pmd_lock(mm, pmd);
440
441         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
442                 mm_inc_nr_ptes(mm);
443                 /*
444                  * Ensure all pte setup (eg. pte page lock and page clearing) are
445                  * visible before the pte is made visible to other CPUs by being
446                  * put into page tables.
447                  *
448                  * The other side of the story is the pointer chasing in the page
449                  * table walking code (when walking the page table without locking;
450                  * ie. most of the time). Fortunately, these data accesses consist
451                  * of a chain of data-dependent loads, meaning most CPUs (alpha
452                  * being the notable exception) will already guarantee loads are
453                  * seen in-order. See the alpha page table accessors for the
454                  * smp_rmb() barriers in page table walking code.
455                  */
456                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457                 pmd_populate(mm, pmd, *pte);
458                 *pte = NULL;
459         }
460         spin_unlock(ptl);
461 }
462
463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
464 {
465         pgtable_t new = pte_alloc_one(mm);
466         if (!new)
467                 return -ENOMEM;
468
469         pmd_install(mm, pmd, &new);
470         if (new)
471                 pte_free(mm, new);
472         return 0;
473 }
474
475 int __pte_alloc_kernel(pmd_t *pmd)
476 {
477         pte_t *new = pte_alloc_one_kernel(&init_mm);
478         if (!new)
479                 return -ENOMEM;
480
481         spin_lock(&init_mm.page_table_lock);
482         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
483                 smp_wmb(); /* See comment in pmd_install() */
484                 pmd_populate_kernel(&init_mm, pmd, new);
485                 new = NULL;
486         }
487         spin_unlock(&init_mm.page_table_lock);
488         if (new)
489                 pte_free_kernel(&init_mm, new);
490         return 0;
491 }
492
493 static inline void init_rss_vec(int *rss)
494 {
495         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496 }
497
498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
499 {
500         int i;
501
502         if (current->mm == mm)
503                 sync_mm_rss(mm);
504         for (i = 0; i < NR_MM_COUNTERS; i++)
505                 if (rss[i])
506                         add_mm_counter(mm, i, rss[i]);
507 }
508
509 /*
510  * This function is called to print an error when a bad pte
511  * is found. For example, we might have a PFN-mapped pte in
512  * a region that doesn't allow it.
513  *
514  * The calling function must still handle the error.
515  */
516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517                           pte_t pte, struct page *page)
518 {
519         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520         p4d_t *p4d = p4d_offset(pgd, addr);
521         pud_t *pud = pud_offset(p4d, addr);
522         pmd_t *pmd = pmd_offset(pud, addr);
523         struct address_space *mapping;
524         pgoff_t index;
525         static unsigned long resume;
526         static unsigned long nr_shown;
527         static unsigned long nr_unshown;
528
529         /*
530          * Allow a burst of 60 reports, then keep quiet for that minute;
531          * or allow a steady drip of one report per second.
532          */
533         if (nr_shown == 60) {
534                 if (time_before(jiffies, resume)) {
535                         nr_unshown++;
536                         return;
537                 }
538                 if (nr_unshown) {
539                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540                                  nr_unshown);
541                         nr_unshown = 0;
542                 }
543                 nr_shown = 0;
544         }
545         if (nr_shown++ == 0)
546                 resume = jiffies + 60 * HZ;
547
548         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549         index = linear_page_index(vma, addr);
550
551         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
552                  current->comm,
553                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
554         if (page)
555                 dump_page(page, "bad pte");
556         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
559                  vma->vm_file,
560                  vma->vm_ops ? vma->vm_ops->fault : NULL,
561                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562                  mapping ? mapping->a_ops->readpage : NULL);
563         dump_stack();
564         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
565 }
566
567 /*
568  * vm_normal_page -- This function gets the "struct page" associated with a pte.
569  *
570  * "Special" mappings do not wish to be associated with a "struct page" (either
571  * it doesn't exist, or it exists but they don't want to touch it). In this
572  * case, NULL is returned here. "Normal" mappings do have a struct page.
573  *
574  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575  * pte bit, in which case this function is trivial. Secondly, an architecture
576  * may not have a spare pte bit, which requires a more complicated scheme,
577  * described below.
578  *
579  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580  * special mapping (even if there are underlying and valid "struct pages").
581  * COWed pages of a VM_PFNMAP are always normal.
582  *
583  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586  * mapping will always honor the rule
587  *
588  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589  *
590  * And for normal mappings this is false.
591  *
592  * This restricts such mappings to be a linear translation from virtual address
593  * to pfn. To get around this restriction, we allow arbitrary mappings so long
594  * as the vma is not a COW mapping; in that case, we know that all ptes are
595  * special (because none can have been COWed).
596  *
597  *
598  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
599  *
600  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601  * page" backing, however the difference is that _all_ pages with a struct
602  * page (that is, those where pfn_valid is true) are refcounted and considered
603  * normal pages by the VM. The disadvantage is that pages are refcounted
604  * (which can be slower and simply not an option for some PFNMAP users). The
605  * advantage is that we don't have to follow the strict linearity rule of
606  * PFNMAP mappings in order to support COWable mappings.
607  *
608  */
609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610                             pte_t pte)
611 {
612         unsigned long pfn = pte_pfn(pte);
613
614         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615                 if (likely(!pte_special(pte)))
616                         goto check_pfn;
617                 if (vma->vm_ops && vma->vm_ops->find_special_page)
618                         return vma->vm_ops->find_special_page(vma, addr);
619                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620                         return NULL;
621                 if (is_zero_pfn(pfn))
622                         return NULL;
623                 if (pte_devmap(pte))
624                         return NULL;
625
626                 print_bad_pte(vma, addr, pte, NULL);
627                 return NULL;
628         }
629
630         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
631
632         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633                 if (vma->vm_flags & VM_MIXEDMAP) {
634                         if (!pfn_valid(pfn))
635                                 return NULL;
636                         goto out;
637                 } else {
638                         unsigned long off;
639                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
640                         if (pfn == vma->vm_pgoff + off)
641                                 return NULL;
642                         if (!is_cow_mapping(vma->vm_flags))
643                                 return NULL;
644                 }
645         }
646
647         if (is_zero_pfn(pfn))
648                 return NULL;
649
650 check_pfn:
651         if (unlikely(pfn > highest_memmap_pfn)) {
652                 print_bad_pte(vma, addr, pte, NULL);
653                 return NULL;
654         }
655
656         /*
657          * NOTE! We still have PageReserved() pages in the page tables.
658          * eg. VDSO mappings can cause them to exist.
659          */
660 out:
661         return pfn_to_page(pfn);
662 }
663
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666                                 pmd_t pmd)
667 {
668         unsigned long pfn = pmd_pfn(pmd);
669
670         /*
671          * There is no pmd_special() but there may be special pmds, e.g.
672          * in a direct-access (dax) mapping, so let's just replicate the
673          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
674          */
675         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676                 if (vma->vm_flags & VM_MIXEDMAP) {
677                         if (!pfn_valid(pfn))
678                                 return NULL;
679                         goto out;
680                 } else {
681                         unsigned long off;
682                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
683                         if (pfn == vma->vm_pgoff + off)
684                                 return NULL;
685                         if (!is_cow_mapping(vma->vm_flags))
686                                 return NULL;
687                 }
688         }
689
690         if (pmd_devmap(pmd))
691                 return NULL;
692         if (is_huge_zero_pmd(pmd))
693                 return NULL;
694         if (unlikely(pfn > highest_memmap_pfn))
695                 return NULL;
696
697         /*
698          * NOTE! We still have PageReserved() pages in the page tables.
699          * eg. VDSO mappings can cause them to exist.
700          */
701 out:
702         return pfn_to_page(pfn);
703 }
704 #endif
705
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707                                   struct page *page, unsigned long address,
708                                   pte_t *ptep)
709 {
710         pte_t pte;
711         swp_entry_t entry;
712
713         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714         if (pte_swp_soft_dirty(*ptep))
715                 pte = pte_mksoft_dirty(pte);
716
717         entry = pte_to_swp_entry(*ptep);
718         if (pte_swp_uffd_wp(*ptep))
719                 pte = pte_mkuffd_wp(pte);
720         else if (is_writable_device_exclusive_entry(entry))
721                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722
723         /*
724          * No need to take a page reference as one was already
725          * created when the swap entry was made.
726          */
727         if (PageAnon(page))
728                 page_add_anon_rmap(page, vma, address, false);
729         else
730                 /*
731                  * Currently device exclusive access only supports anonymous
732                  * memory so the entry shouldn't point to a filebacked page.
733                  */
734                 WARN_ON_ONCE(!PageAnon(page));
735
736         set_pte_at(vma->vm_mm, address, ptep, pte);
737
738         /*
739          * No need to invalidate - it was non-present before. However
740          * secondary CPUs may have mappings that need invalidating.
741          */
742         update_mmu_cache(vma, address, ptep);
743 }
744
745 /*
746  * Tries to restore an exclusive pte if the page lock can be acquired without
747  * sleeping.
748  */
749 static int
750 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
751                         unsigned long addr)
752 {
753         swp_entry_t entry = pte_to_swp_entry(*src_pte);
754         struct page *page = pfn_swap_entry_to_page(entry);
755
756         if (trylock_page(page)) {
757                 restore_exclusive_pte(vma, page, addr, src_pte);
758                 unlock_page(page);
759                 return 0;
760         }
761
762         return -EBUSY;
763 }
764
765 /*
766  * copy one vm_area from one task to the other. Assumes the page tables
767  * already present in the new task to be cleared in the whole range
768  * covered by this vma.
769  */
770
771 static unsigned long
772 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
773                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
774                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
775 {
776         unsigned long vm_flags = dst_vma->vm_flags;
777         pte_t pte = *src_pte;
778         struct page *page;
779         swp_entry_t entry = pte_to_swp_entry(pte);
780
781         if (likely(!non_swap_entry(entry))) {
782                 if (swap_duplicate(entry) < 0)
783                         return -EIO;
784
785                 /* make sure dst_mm is on swapoff's mmlist. */
786                 if (unlikely(list_empty(&dst_mm->mmlist))) {
787                         spin_lock(&mmlist_lock);
788                         if (list_empty(&dst_mm->mmlist))
789                                 list_add(&dst_mm->mmlist,
790                                                 &src_mm->mmlist);
791                         spin_unlock(&mmlist_lock);
792                 }
793                 rss[MM_SWAPENTS]++;
794         } else if (is_migration_entry(entry)) {
795                 page = pfn_swap_entry_to_page(entry);
796
797                 rss[mm_counter(page)]++;
798
799                 if (is_writable_migration_entry(entry) &&
800                                 is_cow_mapping(vm_flags)) {
801                         /*
802                          * COW mappings require pages in both
803                          * parent and child to be set to read.
804                          */
805                         entry = make_readable_migration_entry(
806                                                         swp_offset(entry));
807                         pte = swp_entry_to_pte(entry);
808                         if (pte_swp_soft_dirty(*src_pte))
809                                 pte = pte_swp_mksoft_dirty(pte);
810                         if (pte_swp_uffd_wp(*src_pte))
811                                 pte = pte_swp_mkuffd_wp(pte);
812                         set_pte_at(src_mm, addr, src_pte, pte);
813                 }
814         } else if (is_device_private_entry(entry)) {
815                 page = pfn_swap_entry_to_page(entry);
816
817                 /*
818                  * Update rss count even for unaddressable pages, as
819                  * they should treated just like normal pages in this
820                  * respect.
821                  *
822                  * We will likely want to have some new rss counters
823                  * for unaddressable pages, at some point. But for now
824                  * keep things as they are.
825                  */
826                 get_page(page);
827                 rss[mm_counter(page)]++;
828                 page_dup_rmap(page, false);
829
830                 /*
831                  * We do not preserve soft-dirty information, because so
832                  * far, checkpoint/restore is the only feature that
833                  * requires that. And checkpoint/restore does not work
834                  * when a device driver is involved (you cannot easily
835                  * save and restore device driver state).
836                  */
837                 if (is_writable_device_private_entry(entry) &&
838                     is_cow_mapping(vm_flags)) {
839                         entry = make_readable_device_private_entry(
840                                                         swp_offset(entry));
841                         pte = swp_entry_to_pte(entry);
842                         if (pte_swp_uffd_wp(*src_pte))
843                                 pte = pte_swp_mkuffd_wp(pte);
844                         set_pte_at(src_mm, addr, src_pte, pte);
845                 }
846         } else if (is_device_exclusive_entry(entry)) {
847                 /*
848                  * Make device exclusive entries present by restoring the
849                  * original entry then copying as for a present pte. Device
850                  * exclusive entries currently only support private writable
851                  * (ie. COW) mappings.
852                  */
853                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
854                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
855                         return -EBUSY;
856                 return -ENOENT;
857         }
858         if (!userfaultfd_wp(dst_vma))
859                 pte = pte_swp_clear_uffd_wp(pte);
860         set_pte_at(dst_mm, addr, dst_pte, pte);
861         return 0;
862 }
863
864 /*
865  * Copy a present and normal page if necessary.
866  *
867  * NOTE! The usual case is that this doesn't need to do
868  * anything, and can just return a positive value. That
869  * will let the caller know that it can just increase
870  * the page refcount and re-use the pte the traditional
871  * way.
872  *
873  * But _if_ we need to copy it because it needs to be
874  * pinned in the parent (and the child should get its own
875  * copy rather than just a reference to the same page),
876  * we'll do that here and return zero to let the caller
877  * know we're done.
878  *
879  * And if we need a pre-allocated page but don't yet have
880  * one, return a negative error to let the preallocation
881  * code know so that it can do so outside the page table
882  * lock.
883  */
884 static inline int
885 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
886                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
887                   struct page **prealloc, pte_t pte, struct page *page)
888 {
889         struct page *new_page;
890
891         /*
892          * What we want to do is to check whether this page may
893          * have been pinned by the parent process.  If so,
894          * instead of wrprotect the pte on both sides, we copy
895          * the page immediately so that we'll always guarantee
896          * the pinned page won't be randomly replaced in the
897          * future.
898          *
899          * The page pinning checks are just "has this mm ever
900          * seen pinning", along with the (inexact) check of
901          * the page count. That might give false positives for
902          * for pinning, but it will work correctly.
903          */
904         if (likely(!page_needs_cow_for_dma(src_vma, page)))
905                 return 1;
906
907         new_page = *prealloc;
908         if (!new_page)
909                 return -EAGAIN;
910
911         /*
912          * We have a prealloc page, all good!  Take it
913          * over and copy the page & arm it.
914          */
915         *prealloc = NULL;
916         copy_user_highpage(new_page, page, addr, src_vma);
917         __SetPageUptodate(new_page);
918         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
919         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
920         rss[mm_counter(new_page)]++;
921
922         /* All done, just insert the new page copy in the child */
923         pte = mk_pte(new_page, dst_vma->vm_page_prot);
924         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
925         if (userfaultfd_pte_wp(dst_vma, *src_pte))
926                 /* Uffd-wp needs to be delivered to dest pte as well */
927                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
928         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
929         return 0;
930 }
931
932 /*
933  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
934  * is required to copy this pte.
935  */
936 static inline int
937 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
938                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
939                  struct page **prealloc)
940 {
941         struct mm_struct *src_mm = src_vma->vm_mm;
942         unsigned long vm_flags = src_vma->vm_flags;
943         pte_t pte = *src_pte;
944         struct page *page;
945
946         page = vm_normal_page(src_vma, addr, pte);
947         if (page) {
948                 int retval;
949
950                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
951                                            addr, rss, prealloc, pte, page);
952                 if (retval <= 0)
953                         return retval;
954
955                 get_page(page);
956                 page_dup_rmap(page, false);
957                 rss[mm_counter(page)]++;
958         }
959
960         /*
961          * If it's a COW mapping, write protect it both
962          * in the parent and the child
963          */
964         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
965                 ptep_set_wrprotect(src_mm, addr, src_pte);
966                 pte = pte_wrprotect(pte);
967         }
968
969         /*
970          * If it's a shared mapping, mark it clean in
971          * the child
972          */
973         if (vm_flags & VM_SHARED)
974                 pte = pte_mkclean(pte);
975         pte = pte_mkold(pte);
976
977         if (!userfaultfd_wp(dst_vma))
978                 pte = pte_clear_uffd_wp(pte);
979
980         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
981         return 0;
982 }
983
984 static inline struct page *
985 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
986                    unsigned long addr)
987 {
988         struct page *new_page;
989
990         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
991         if (!new_page)
992                 return NULL;
993
994         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
995                 put_page(new_page);
996                 return NULL;
997         }
998         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
999
1000         return new_page;
1001 }
1002
1003 static int
1004 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1005                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1006                unsigned long end)
1007 {
1008         struct mm_struct *dst_mm = dst_vma->vm_mm;
1009         struct mm_struct *src_mm = src_vma->vm_mm;
1010         pte_t *orig_src_pte, *orig_dst_pte;
1011         pte_t *src_pte, *dst_pte;
1012         spinlock_t *src_ptl, *dst_ptl;
1013         int progress, ret = 0;
1014         int rss[NR_MM_COUNTERS];
1015         swp_entry_t entry = (swp_entry_t){0};
1016         struct page *prealloc = NULL;
1017
1018 again:
1019         progress = 0;
1020         init_rss_vec(rss);
1021
1022         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1023         if (!dst_pte) {
1024                 ret = -ENOMEM;
1025                 goto out;
1026         }
1027         src_pte = pte_offset_map(src_pmd, addr);
1028         src_ptl = pte_lockptr(src_mm, src_pmd);
1029         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1030         orig_src_pte = src_pte;
1031         orig_dst_pte = dst_pte;
1032         arch_enter_lazy_mmu_mode();
1033
1034         do {
1035                 /*
1036                  * We are holding two locks at this point - either of them
1037                  * could generate latencies in another task on another CPU.
1038                  */
1039                 if (progress >= 32) {
1040                         progress = 0;
1041                         if (need_resched() ||
1042                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1043                                 break;
1044                 }
1045                 if (pte_none(*src_pte)) {
1046                         progress++;
1047                         continue;
1048                 }
1049                 if (unlikely(!pte_present(*src_pte))) {
1050                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1051                                                   dst_pte, src_pte,
1052                                                   dst_vma, src_vma,
1053                                                   addr, rss);
1054                         if (ret == -EIO) {
1055                                 entry = pte_to_swp_entry(*src_pte);
1056                                 break;
1057                         } else if (ret == -EBUSY) {
1058                                 break;
1059                         } else if (!ret) {
1060                                 progress += 8;
1061                                 continue;
1062                         }
1063
1064                         /*
1065                          * Device exclusive entry restored, continue by copying
1066                          * the now present pte.
1067                          */
1068                         WARN_ON_ONCE(ret != -ENOENT);
1069                 }
1070                 /* copy_present_pte() will clear `*prealloc' if consumed */
1071                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1072                                        addr, rss, &prealloc);
1073                 /*
1074                  * If we need a pre-allocated page for this pte, drop the
1075                  * locks, allocate, and try again.
1076                  */
1077                 if (unlikely(ret == -EAGAIN))
1078                         break;
1079                 if (unlikely(prealloc)) {
1080                         /*
1081                          * pre-alloc page cannot be reused by next time so as
1082                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1083                          * will allocate page according to address).  This
1084                          * could only happen if one pinned pte changed.
1085                          */
1086                         put_page(prealloc);
1087                         prealloc = NULL;
1088                 }
1089                 progress += 8;
1090         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1091
1092         arch_leave_lazy_mmu_mode();
1093         spin_unlock(src_ptl);
1094         pte_unmap(orig_src_pte);
1095         add_mm_rss_vec(dst_mm, rss);
1096         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1097         cond_resched();
1098
1099         if (ret == -EIO) {
1100                 VM_WARN_ON_ONCE(!entry.val);
1101                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1102                         ret = -ENOMEM;
1103                         goto out;
1104                 }
1105                 entry.val = 0;
1106         } else if (ret == -EBUSY) {
1107                 goto out;
1108         } else if (ret ==  -EAGAIN) {
1109                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1110                 if (!prealloc)
1111                         return -ENOMEM;
1112         } else if (ret) {
1113                 VM_WARN_ON_ONCE(1);
1114         }
1115
1116         /* We've captured and resolved the error. Reset, try again. */
1117         ret = 0;
1118
1119         if (addr != end)
1120                 goto again;
1121 out:
1122         if (unlikely(prealloc))
1123                 put_page(prealloc);
1124         return ret;
1125 }
1126
1127 static inline int
1128 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1129                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1130                unsigned long end)
1131 {
1132         struct mm_struct *dst_mm = dst_vma->vm_mm;
1133         struct mm_struct *src_mm = src_vma->vm_mm;
1134         pmd_t *src_pmd, *dst_pmd;
1135         unsigned long next;
1136
1137         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1138         if (!dst_pmd)
1139                 return -ENOMEM;
1140         src_pmd = pmd_offset(src_pud, addr);
1141         do {
1142                 next = pmd_addr_end(addr, end);
1143                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1144                         || pmd_devmap(*src_pmd)) {
1145                         int err;
1146                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1147                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1148                                             addr, dst_vma, src_vma);
1149                         if (err == -ENOMEM)
1150                                 return -ENOMEM;
1151                         if (!err)
1152                                 continue;
1153                         /* fall through */
1154                 }
1155                 if (pmd_none_or_clear_bad(src_pmd))
1156                         continue;
1157                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1158                                    addr, next))
1159                         return -ENOMEM;
1160         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1161         return 0;
1162 }
1163
1164 static inline int
1165 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1166                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1167                unsigned long end)
1168 {
1169         struct mm_struct *dst_mm = dst_vma->vm_mm;
1170         struct mm_struct *src_mm = src_vma->vm_mm;
1171         pud_t *src_pud, *dst_pud;
1172         unsigned long next;
1173
1174         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1175         if (!dst_pud)
1176                 return -ENOMEM;
1177         src_pud = pud_offset(src_p4d, addr);
1178         do {
1179                 next = pud_addr_end(addr, end);
1180                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1181                         int err;
1182
1183                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1184                         err = copy_huge_pud(dst_mm, src_mm,
1185                                             dst_pud, src_pud, addr, src_vma);
1186                         if (err == -ENOMEM)
1187                                 return -ENOMEM;
1188                         if (!err)
1189                                 continue;
1190                         /* fall through */
1191                 }
1192                 if (pud_none_or_clear_bad(src_pud))
1193                         continue;
1194                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1195                                    addr, next))
1196                         return -ENOMEM;
1197         } while (dst_pud++, src_pud++, addr = next, addr != end);
1198         return 0;
1199 }
1200
1201 static inline int
1202 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1203                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1204                unsigned long end)
1205 {
1206         struct mm_struct *dst_mm = dst_vma->vm_mm;
1207         p4d_t *src_p4d, *dst_p4d;
1208         unsigned long next;
1209
1210         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1211         if (!dst_p4d)
1212                 return -ENOMEM;
1213         src_p4d = p4d_offset(src_pgd, addr);
1214         do {
1215                 next = p4d_addr_end(addr, end);
1216                 if (p4d_none_or_clear_bad(src_p4d))
1217                         continue;
1218                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1219                                    addr, next))
1220                         return -ENOMEM;
1221         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1222         return 0;
1223 }
1224
1225 int
1226 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1227 {
1228         pgd_t *src_pgd, *dst_pgd;
1229         unsigned long next;
1230         unsigned long addr = src_vma->vm_start;
1231         unsigned long end = src_vma->vm_end;
1232         struct mm_struct *dst_mm = dst_vma->vm_mm;
1233         struct mm_struct *src_mm = src_vma->vm_mm;
1234         struct mmu_notifier_range range;
1235         bool is_cow;
1236         int ret;
1237
1238         /*
1239          * Don't copy ptes where a page fault will fill them correctly.
1240          * Fork becomes much lighter when there are big shared or private
1241          * readonly mappings. The tradeoff is that copy_page_range is more
1242          * efficient than faulting.
1243          */
1244         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1245             !src_vma->anon_vma)
1246                 return 0;
1247
1248         if (is_vm_hugetlb_page(src_vma))
1249                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1250
1251         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1252                 /*
1253                  * We do not free on error cases below as remove_vma
1254                  * gets called on error from higher level routine
1255                  */
1256                 ret = track_pfn_copy(src_vma);
1257                 if (ret)
1258                         return ret;
1259         }
1260
1261         /*
1262          * We need to invalidate the secondary MMU mappings only when
1263          * there could be a permission downgrade on the ptes of the
1264          * parent mm. And a permission downgrade will only happen if
1265          * is_cow_mapping() returns true.
1266          */
1267         is_cow = is_cow_mapping(src_vma->vm_flags);
1268
1269         if (is_cow) {
1270                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1271                                         0, src_vma, src_mm, addr, end);
1272                 mmu_notifier_invalidate_range_start(&range);
1273                 /*
1274                  * Disabling preemption is not needed for the write side, as
1275                  * the read side doesn't spin, but goes to the mmap_lock.
1276                  *
1277                  * Use the raw variant of the seqcount_t write API to avoid
1278                  * lockdep complaining about preemptibility.
1279                  */
1280                 mmap_assert_write_locked(src_mm);
1281                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1282         }
1283
1284         ret = 0;
1285         dst_pgd = pgd_offset(dst_mm, addr);
1286         src_pgd = pgd_offset(src_mm, addr);
1287         do {
1288                 next = pgd_addr_end(addr, end);
1289                 if (pgd_none_or_clear_bad(src_pgd))
1290                         continue;
1291                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1292                                             addr, next))) {
1293                         ret = -ENOMEM;
1294                         break;
1295                 }
1296         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1297
1298         if (is_cow) {
1299                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1300                 mmu_notifier_invalidate_range_end(&range);
1301         }
1302         return ret;
1303 }
1304
1305 /*
1306  * Parameter block passed down to zap_pte_range in exceptional cases.
1307  */
1308 struct zap_details {
1309         struct folio *single_folio;     /* Locked folio to be unmapped */
1310         bool even_cows;                 /* Zap COWed private pages too? */
1311 };
1312
1313 /* Whether we should zap all COWed (private) pages too */
1314 static inline bool should_zap_cows(struct zap_details *details)
1315 {
1316         /* By default, zap all pages */
1317         if (!details)
1318                 return true;
1319
1320         /* Or, we zap COWed pages only if the caller wants to */
1321         return details->even_cows;
1322 }
1323
1324 /* Decides whether we should zap this page with the page pointer specified */
1325 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1326 {
1327         /* If we can make a decision without *page.. */
1328         if (should_zap_cows(details))
1329                 return true;
1330
1331         /* E.g. the caller passes NULL for the case of a zero page */
1332         if (!page)
1333                 return true;
1334
1335         /* Otherwise we should only zap non-anon pages */
1336         return !PageAnon(page);
1337 }
1338
1339 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1340                                 struct vm_area_struct *vma, pmd_t *pmd,
1341                                 unsigned long addr, unsigned long end,
1342                                 struct zap_details *details)
1343 {
1344         struct mm_struct *mm = tlb->mm;
1345         int force_flush = 0;
1346         int rss[NR_MM_COUNTERS];
1347         spinlock_t *ptl;
1348         pte_t *start_pte;
1349         pte_t *pte;
1350         swp_entry_t entry;
1351
1352         tlb_change_page_size(tlb, PAGE_SIZE);
1353 again:
1354         init_rss_vec(rss);
1355         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1356         pte = start_pte;
1357         flush_tlb_batched_pending(mm);
1358         arch_enter_lazy_mmu_mode();
1359         do {
1360                 pte_t ptent = *pte;
1361                 struct page *page;
1362
1363                 if (pte_none(ptent))
1364                         continue;
1365
1366                 if (need_resched())
1367                         break;
1368
1369                 if (pte_present(ptent)) {
1370                         page = vm_normal_page(vma, addr, ptent);
1371                         if (unlikely(!should_zap_page(details, page)))
1372                                 continue;
1373                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1374                                                         tlb->fullmm);
1375                         tlb_remove_tlb_entry(tlb, pte, addr);
1376                         if (unlikely(!page))
1377                                 continue;
1378
1379                         if (!PageAnon(page)) {
1380                                 if (pte_dirty(ptent)) {
1381                                         force_flush = 1;
1382                                         set_page_dirty(page);
1383                                 }
1384                                 if (pte_young(ptent) &&
1385                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1386                                         mark_page_accessed(page);
1387                         }
1388                         rss[mm_counter(page)]--;
1389                         page_remove_rmap(page, vma, false);
1390                         if (unlikely(page_mapcount(page) < 0))
1391                                 print_bad_pte(vma, addr, ptent, page);
1392                         if (unlikely(__tlb_remove_page(tlb, page))) {
1393                                 force_flush = 1;
1394                                 addr += PAGE_SIZE;
1395                                 break;
1396                         }
1397                         continue;
1398                 }
1399
1400                 entry = pte_to_swp_entry(ptent);
1401                 if (is_device_private_entry(entry) ||
1402                     is_device_exclusive_entry(entry)) {
1403                         page = pfn_swap_entry_to_page(entry);
1404                         if (unlikely(!should_zap_page(details, page)))
1405                                 continue;
1406                         rss[mm_counter(page)]--;
1407                         if (is_device_private_entry(entry))
1408                                 page_remove_rmap(page, vma, false);
1409                         put_page(page);
1410                 } else if (!non_swap_entry(entry)) {
1411                         /* Genuine swap entry, hence a private anon page */
1412                         if (!should_zap_cows(details))
1413                                 continue;
1414                         rss[MM_SWAPENTS]--;
1415                         if (unlikely(!free_swap_and_cache(entry)))
1416                                 print_bad_pte(vma, addr, ptent, NULL);
1417                 } else if (is_migration_entry(entry)) {
1418                         page = pfn_swap_entry_to_page(entry);
1419                         if (!should_zap_page(details, page))
1420                                 continue;
1421                         rss[mm_counter(page)]--;
1422                 } else if (is_hwpoison_entry(entry)) {
1423                         if (!should_zap_cows(details))
1424                                 continue;
1425                 } else {
1426                         /* We should have covered all the swap entry types */
1427                         WARN_ON_ONCE(1);
1428                 }
1429                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1430         } while (pte++, addr += PAGE_SIZE, addr != end);
1431
1432         add_mm_rss_vec(mm, rss);
1433         arch_leave_lazy_mmu_mode();
1434
1435         /* Do the actual TLB flush before dropping ptl */
1436         if (force_flush)
1437                 tlb_flush_mmu_tlbonly(tlb);
1438         pte_unmap_unlock(start_pte, ptl);
1439
1440         /*
1441          * If we forced a TLB flush (either due to running out of
1442          * batch buffers or because we needed to flush dirty TLB
1443          * entries before releasing the ptl), free the batched
1444          * memory too. Restart if we didn't do everything.
1445          */
1446         if (force_flush) {
1447                 force_flush = 0;
1448                 tlb_flush_mmu(tlb);
1449         }
1450
1451         if (addr != end) {
1452                 cond_resched();
1453                 goto again;
1454         }
1455
1456         return addr;
1457 }
1458
1459 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1460                                 struct vm_area_struct *vma, pud_t *pud,
1461                                 unsigned long addr, unsigned long end,
1462                                 struct zap_details *details)
1463 {
1464         pmd_t *pmd;
1465         unsigned long next;
1466
1467         pmd = pmd_offset(pud, addr);
1468         do {
1469                 next = pmd_addr_end(addr, end);
1470                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1471                         if (next - addr != HPAGE_PMD_SIZE)
1472                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1473                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1474                                 goto next;
1475                         /* fall through */
1476                 } else if (details && details->single_folio &&
1477                            folio_test_pmd_mappable(details->single_folio) &&
1478                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1479                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1480                         /*
1481                          * Take and drop THP pmd lock so that we cannot return
1482                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1483                          * but not yet decremented compound_mapcount().
1484                          */
1485                         spin_unlock(ptl);
1486                 }
1487
1488                 /*
1489                  * Here there can be other concurrent MADV_DONTNEED or
1490                  * trans huge page faults running, and if the pmd is
1491                  * none or trans huge it can change under us. This is
1492                  * because MADV_DONTNEED holds the mmap_lock in read
1493                  * mode.
1494                  */
1495                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1496                         goto next;
1497                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1498 next:
1499                 cond_resched();
1500         } while (pmd++, addr = next, addr != end);
1501
1502         return addr;
1503 }
1504
1505 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1506                                 struct vm_area_struct *vma, p4d_t *p4d,
1507                                 unsigned long addr, unsigned long end,
1508                                 struct zap_details *details)
1509 {
1510         pud_t *pud;
1511         unsigned long next;
1512
1513         pud = pud_offset(p4d, addr);
1514         do {
1515                 next = pud_addr_end(addr, end);
1516                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1517                         if (next - addr != HPAGE_PUD_SIZE) {
1518                                 mmap_assert_locked(tlb->mm);
1519                                 split_huge_pud(vma, pud, addr);
1520                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1521                                 goto next;
1522                         /* fall through */
1523                 }
1524                 if (pud_none_or_clear_bad(pud))
1525                         continue;
1526                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1527 next:
1528                 cond_resched();
1529         } while (pud++, addr = next, addr != end);
1530
1531         return addr;
1532 }
1533
1534 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1535                                 struct vm_area_struct *vma, pgd_t *pgd,
1536                                 unsigned long addr, unsigned long end,
1537                                 struct zap_details *details)
1538 {
1539         p4d_t *p4d;
1540         unsigned long next;
1541
1542         p4d = p4d_offset(pgd, addr);
1543         do {
1544                 next = p4d_addr_end(addr, end);
1545                 if (p4d_none_or_clear_bad(p4d))
1546                         continue;
1547                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1548         } while (p4d++, addr = next, addr != end);
1549
1550         return addr;
1551 }
1552
1553 void unmap_page_range(struct mmu_gather *tlb,
1554                              struct vm_area_struct *vma,
1555                              unsigned long addr, unsigned long end,
1556                              struct zap_details *details)
1557 {
1558         pgd_t *pgd;
1559         unsigned long next;
1560
1561         BUG_ON(addr >= end);
1562         tlb_start_vma(tlb, vma);
1563         pgd = pgd_offset(vma->vm_mm, addr);
1564         do {
1565                 next = pgd_addr_end(addr, end);
1566                 if (pgd_none_or_clear_bad(pgd))
1567                         continue;
1568                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1569         } while (pgd++, addr = next, addr != end);
1570         tlb_end_vma(tlb, vma);
1571 }
1572
1573
1574 static void unmap_single_vma(struct mmu_gather *tlb,
1575                 struct vm_area_struct *vma, unsigned long start_addr,
1576                 unsigned long end_addr,
1577                 struct zap_details *details)
1578 {
1579         unsigned long start = max(vma->vm_start, start_addr);
1580         unsigned long end;
1581
1582         if (start >= vma->vm_end)
1583                 return;
1584         end = min(vma->vm_end, end_addr);
1585         if (end <= vma->vm_start)
1586                 return;
1587
1588         if (vma->vm_file)
1589                 uprobe_munmap(vma, start, end);
1590
1591         if (unlikely(vma->vm_flags & VM_PFNMAP))
1592                 untrack_pfn(vma, 0, 0);
1593
1594         if (start != end) {
1595                 if (unlikely(is_vm_hugetlb_page(vma))) {
1596                         /*
1597                          * It is undesirable to test vma->vm_file as it
1598                          * should be non-null for valid hugetlb area.
1599                          * However, vm_file will be NULL in the error
1600                          * cleanup path of mmap_region. When
1601                          * hugetlbfs ->mmap method fails,
1602                          * mmap_region() nullifies vma->vm_file
1603                          * before calling this function to clean up.
1604                          * Since no pte has actually been setup, it is
1605                          * safe to do nothing in this case.
1606                          */
1607                         if (vma->vm_file) {
1608                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1609                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1610                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1611                         }
1612                 } else
1613                         unmap_page_range(tlb, vma, start, end, details);
1614         }
1615 }
1616
1617 /**
1618  * unmap_vmas - unmap a range of memory covered by a list of vma's
1619  * @tlb: address of the caller's struct mmu_gather
1620  * @vma: the starting vma
1621  * @start_addr: virtual address at which to start unmapping
1622  * @end_addr: virtual address at which to end unmapping
1623  *
1624  * Unmap all pages in the vma list.
1625  *
1626  * Only addresses between `start' and `end' will be unmapped.
1627  *
1628  * The VMA list must be sorted in ascending virtual address order.
1629  *
1630  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1631  * range after unmap_vmas() returns.  So the only responsibility here is to
1632  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1633  * drops the lock and schedules.
1634  */
1635 void unmap_vmas(struct mmu_gather *tlb,
1636                 struct vm_area_struct *vma, unsigned long start_addr,
1637                 unsigned long end_addr)
1638 {
1639         struct mmu_notifier_range range;
1640
1641         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1642                                 start_addr, end_addr);
1643         mmu_notifier_invalidate_range_start(&range);
1644         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1645                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1646         mmu_notifier_invalidate_range_end(&range);
1647 }
1648
1649 /**
1650  * zap_page_range - remove user pages in a given range
1651  * @vma: vm_area_struct holding the applicable pages
1652  * @start: starting address of pages to zap
1653  * @size: number of bytes to zap
1654  *
1655  * Caller must protect the VMA list
1656  */
1657 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1658                 unsigned long size)
1659 {
1660         struct mmu_notifier_range range;
1661         struct mmu_gather tlb;
1662
1663         lru_add_drain();
1664         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1665                                 start, start + size);
1666         tlb_gather_mmu(&tlb, vma->vm_mm);
1667         update_hiwater_rss(vma->vm_mm);
1668         mmu_notifier_invalidate_range_start(&range);
1669         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1670                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1671         mmu_notifier_invalidate_range_end(&range);
1672         tlb_finish_mmu(&tlb);
1673 }
1674
1675 /**
1676  * zap_page_range_single - remove user pages in a given range
1677  * @vma: vm_area_struct holding the applicable pages
1678  * @address: starting address of pages to zap
1679  * @size: number of bytes to zap
1680  * @details: details of shared cache invalidation
1681  *
1682  * The range must fit into one VMA.
1683  */
1684 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1685                 unsigned long size, struct zap_details *details)
1686 {
1687         struct mmu_notifier_range range;
1688         struct mmu_gather tlb;
1689
1690         lru_add_drain();
1691         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1692                                 address, address + size);
1693         tlb_gather_mmu(&tlb, vma->vm_mm);
1694         update_hiwater_rss(vma->vm_mm);
1695         mmu_notifier_invalidate_range_start(&range);
1696         unmap_single_vma(&tlb, vma, address, range.end, details);
1697         mmu_notifier_invalidate_range_end(&range);
1698         tlb_finish_mmu(&tlb);
1699 }
1700
1701 /**
1702  * zap_vma_ptes - remove ptes mapping the vma
1703  * @vma: vm_area_struct holding ptes to be zapped
1704  * @address: starting address of pages to zap
1705  * @size: number of bytes to zap
1706  *
1707  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1708  *
1709  * The entire address range must be fully contained within the vma.
1710  *
1711  */
1712 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1713                 unsigned long size)
1714 {
1715         if (!range_in_vma(vma, address, address + size) ||
1716                         !(vma->vm_flags & VM_PFNMAP))
1717                 return;
1718
1719         zap_page_range_single(vma, address, size, NULL);
1720 }
1721 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1722
1723 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1724 {
1725         pgd_t *pgd;
1726         p4d_t *p4d;
1727         pud_t *pud;
1728         pmd_t *pmd;
1729
1730         pgd = pgd_offset(mm, addr);
1731         p4d = p4d_alloc(mm, pgd, addr);
1732         if (!p4d)
1733                 return NULL;
1734         pud = pud_alloc(mm, p4d, addr);
1735         if (!pud)
1736                 return NULL;
1737         pmd = pmd_alloc(mm, pud, addr);
1738         if (!pmd)
1739                 return NULL;
1740
1741         VM_BUG_ON(pmd_trans_huge(*pmd));
1742         return pmd;
1743 }
1744
1745 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1746                         spinlock_t **ptl)
1747 {
1748         pmd_t *pmd = walk_to_pmd(mm, addr);
1749
1750         if (!pmd)
1751                 return NULL;
1752         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1753 }
1754
1755 static int validate_page_before_insert(struct page *page)
1756 {
1757         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1758                 return -EINVAL;
1759         flush_dcache_page(page);
1760         return 0;
1761 }
1762
1763 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1764                         unsigned long addr, struct page *page, pgprot_t prot)
1765 {
1766         if (!pte_none(*pte))
1767                 return -EBUSY;
1768         /* Ok, finally just insert the thing.. */
1769         get_page(page);
1770         inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1771         page_add_file_rmap(page, vma, false);
1772         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1773         return 0;
1774 }
1775
1776 /*
1777  * This is the old fallback for page remapping.
1778  *
1779  * For historical reasons, it only allows reserved pages. Only
1780  * old drivers should use this, and they needed to mark their
1781  * pages reserved for the old functions anyway.
1782  */
1783 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1784                         struct page *page, pgprot_t prot)
1785 {
1786         int retval;
1787         pte_t *pte;
1788         spinlock_t *ptl;
1789
1790         retval = validate_page_before_insert(page);
1791         if (retval)
1792                 goto out;
1793         retval = -ENOMEM;
1794         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1795         if (!pte)
1796                 goto out;
1797         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1798         pte_unmap_unlock(pte, ptl);
1799 out:
1800         return retval;
1801 }
1802
1803 #ifdef pte_index
1804 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1805                         unsigned long addr, struct page *page, pgprot_t prot)
1806 {
1807         int err;
1808
1809         if (!page_count(page))
1810                 return -EINVAL;
1811         err = validate_page_before_insert(page);
1812         if (err)
1813                 return err;
1814         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1815 }
1816
1817 /* insert_pages() amortizes the cost of spinlock operations
1818  * when inserting pages in a loop. Arch *must* define pte_index.
1819  */
1820 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1821                         struct page **pages, unsigned long *num, pgprot_t prot)
1822 {
1823         pmd_t *pmd = NULL;
1824         pte_t *start_pte, *pte;
1825         spinlock_t *pte_lock;
1826         struct mm_struct *const mm = vma->vm_mm;
1827         unsigned long curr_page_idx = 0;
1828         unsigned long remaining_pages_total = *num;
1829         unsigned long pages_to_write_in_pmd;
1830         int ret;
1831 more:
1832         ret = -EFAULT;
1833         pmd = walk_to_pmd(mm, addr);
1834         if (!pmd)
1835                 goto out;
1836
1837         pages_to_write_in_pmd = min_t(unsigned long,
1838                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1839
1840         /* Allocate the PTE if necessary; takes PMD lock once only. */
1841         ret = -ENOMEM;
1842         if (pte_alloc(mm, pmd))
1843                 goto out;
1844
1845         while (pages_to_write_in_pmd) {
1846                 int pte_idx = 0;
1847                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1848
1849                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1850                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1851                         int err = insert_page_in_batch_locked(vma, pte,
1852                                 addr, pages[curr_page_idx], prot);
1853                         if (unlikely(err)) {
1854                                 pte_unmap_unlock(start_pte, pte_lock);
1855                                 ret = err;
1856                                 remaining_pages_total -= pte_idx;
1857                                 goto out;
1858                         }
1859                         addr += PAGE_SIZE;
1860                         ++curr_page_idx;
1861                 }
1862                 pte_unmap_unlock(start_pte, pte_lock);
1863                 pages_to_write_in_pmd -= batch_size;
1864                 remaining_pages_total -= batch_size;
1865         }
1866         if (remaining_pages_total)
1867                 goto more;
1868         ret = 0;
1869 out:
1870         *num = remaining_pages_total;
1871         return ret;
1872 }
1873 #endif  /* ifdef pte_index */
1874
1875 /**
1876  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1877  * @vma: user vma to map to
1878  * @addr: target start user address of these pages
1879  * @pages: source kernel pages
1880  * @num: in: number of pages to map. out: number of pages that were *not*
1881  * mapped. (0 means all pages were successfully mapped).
1882  *
1883  * Preferred over vm_insert_page() when inserting multiple pages.
1884  *
1885  * In case of error, we may have mapped a subset of the provided
1886  * pages. It is the caller's responsibility to account for this case.
1887  *
1888  * The same restrictions apply as in vm_insert_page().
1889  */
1890 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1891                         struct page **pages, unsigned long *num)
1892 {
1893 #ifdef pte_index
1894         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1895
1896         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1897                 return -EFAULT;
1898         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1899                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1900                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1901                 vma->vm_flags |= VM_MIXEDMAP;
1902         }
1903         /* Defer page refcount checking till we're about to map that page. */
1904         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1905 #else
1906         unsigned long idx = 0, pgcount = *num;
1907         int err = -EINVAL;
1908
1909         for (; idx < pgcount; ++idx) {
1910                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1911                 if (err)
1912                         break;
1913         }
1914         *num = pgcount - idx;
1915         return err;
1916 #endif  /* ifdef pte_index */
1917 }
1918 EXPORT_SYMBOL(vm_insert_pages);
1919
1920 /**
1921  * vm_insert_page - insert single page into user vma
1922  * @vma: user vma to map to
1923  * @addr: target user address of this page
1924  * @page: source kernel page
1925  *
1926  * This allows drivers to insert individual pages they've allocated
1927  * into a user vma.
1928  *
1929  * The page has to be a nice clean _individual_ kernel allocation.
1930  * If you allocate a compound page, you need to have marked it as
1931  * such (__GFP_COMP), or manually just split the page up yourself
1932  * (see split_page()).
1933  *
1934  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1935  * took an arbitrary page protection parameter. This doesn't allow
1936  * that. Your vma protection will have to be set up correctly, which
1937  * means that if you want a shared writable mapping, you'd better
1938  * ask for a shared writable mapping!
1939  *
1940  * The page does not need to be reserved.
1941  *
1942  * Usually this function is called from f_op->mmap() handler
1943  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1944  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1945  * function from other places, for example from page-fault handler.
1946  *
1947  * Return: %0 on success, negative error code otherwise.
1948  */
1949 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1950                         struct page *page)
1951 {
1952         if (addr < vma->vm_start || addr >= vma->vm_end)
1953                 return -EFAULT;
1954         if (!page_count(page))
1955                 return -EINVAL;
1956         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1957                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1958                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1959                 vma->vm_flags |= VM_MIXEDMAP;
1960         }
1961         return insert_page(vma, addr, page, vma->vm_page_prot);
1962 }
1963 EXPORT_SYMBOL(vm_insert_page);
1964
1965 /*
1966  * __vm_map_pages - maps range of kernel pages into user vma
1967  * @vma: user vma to map to
1968  * @pages: pointer to array of source kernel pages
1969  * @num: number of pages in page array
1970  * @offset: user's requested vm_pgoff
1971  *
1972  * This allows drivers to map range of kernel pages into a user vma.
1973  *
1974  * Return: 0 on success and error code otherwise.
1975  */
1976 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1977                                 unsigned long num, unsigned long offset)
1978 {
1979         unsigned long count = vma_pages(vma);
1980         unsigned long uaddr = vma->vm_start;
1981         int ret, i;
1982
1983         /* Fail if the user requested offset is beyond the end of the object */
1984         if (offset >= num)
1985                 return -ENXIO;
1986
1987         /* Fail if the user requested size exceeds available object size */
1988         if (count > num - offset)
1989                 return -ENXIO;
1990
1991         for (i = 0; i < count; i++) {
1992                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1993                 if (ret < 0)
1994                         return ret;
1995                 uaddr += PAGE_SIZE;
1996         }
1997
1998         return 0;
1999 }
2000
2001 /**
2002  * vm_map_pages - maps range of kernel pages starts with non zero offset
2003  * @vma: user vma to map to
2004  * @pages: pointer to array of source kernel pages
2005  * @num: number of pages in page array
2006  *
2007  * Maps an object consisting of @num pages, catering for the user's
2008  * requested vm_pgoff
2009  *
2010  * If we fail to insert any page into the vma, the function will return
2011  * immediately leaving any previously inserted pages present.  Callers
2012  * from the mmap handler may immediately return the error as their caller
2013  * will destroy the vma, removing any successfully inserted pages. Other
2014  * callers should make their own arrangements for calling unmap_region().
2015  *
2016  * Context: Process context. Called by mmap handlers.
2017  * Return: 0 on success and error code otherwise.
2018  */
2019 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2020                                 unsigned long num)
2021 {
2022         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2023 }
2024 EXPORT_SYMBOL(vm_map_pages);
2025
2026 /**
2027  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2028  * @vma: user vma to map to
2029  * @pages: pointer to array of source kernel pages
2030  * @num: number of pages in page array
2031  *
2032  * Similar to vm_map_pages(), except that it explicitly sets the offset
2033  * to 0. This function is intended for the drivers that did not consider
2034  * vm_pgoff.
2035  *
2036  * Context: Process context. Called by mmap handlers.
2037  * Return: 0 on success and error code otherwise.
2038  */
2039 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2040                                 unsigned long num)
2041 {
2042         return __vm_map_pages(vma, pages, num, 0);
2043 }
2044 EXPORT_SYMBOL(vm_map_pages_zero);
2045
2046 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2047                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2048 {
2049         struct mm_struct *mm = vma->vm_mm;
2050         pte_t *pte, entry;
2051         spinlock_t *ptl;
2052
2053         pte = get_locked_pte(mm, addr, &ptl);
2054         if (!pte)
2055                 return VM_FAULT_OOM;
2056         if (!pte_none(*pte)) {
2057                 if (mkwrite) {
2058                         /*
2059                          * For read faults on private mappings the PFN passed
2060                          * in may not match the PFN we have mapped if the
2061                          * mapped PFN is a writeable COW page.  In the mkwrite
2062                          * case we are creating a writable PTE for a shared
2063                          * mapping and we expect the PFNs to match. If they
2064                          * don't match, we are likely racing with block
2065                          * allocation and mapping invalidation so just skip the
2066                          * update.
2067                          */
2068                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2069                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2070                                 goto out_unlock;
2071                         }
2072                         entry = pte_mkyoung(*pte);
2073                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2074                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2075                                 update_mmu_cache(vma, addr, pte);
2076                 }
2077                 goto out_unlock;
2078         }
2079
2080         /* Ok, finally just insert the thing.. */
2081         if (pfn_t_devmap(pfn))
2082                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2083         else
2084                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2085
2086         if (mkwrite) {
2087                 entry = pte_mkyoung(entry);
2088                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2089         }
2090
2091         set_pte_at(mm, addr, pte, entry);
2092         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2093
2094 out_unlock:
2095         pte_unmap_unlock(pte, ptl);
2096         return VM_FAULT_NOPAGE;
2097 }
2098
2099 /**
2100  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2101  * @vma: user vma to map to
2102  * @addr: target user address of this page
2103  * @pfn: source kernel pfn
2104  * @pgprot: pgprot flags for the inserted page
2105  *
2106  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2107  * to override pgprot on a per-page basis.
2108  *
2109  * This only makes sense for IO mappings, and it makes no sense for
2110  * COW mappings.  In general, using multiple vmas is preferable;
2111  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2112  * impractical.
2113  *
2114  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2115  * a value of @pgprot different from that of @vma->vm_page_prot.
2116  *
2117  * Context: Process context.  May allocate using %GFP_KERNEL.
2118  * Return: vm_fault_t value.
2119  */
2120 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2121                         unsigned long pfn, pgprot_t pgprot)
2122 {
2123         /*
2124          * Technically, architectures with pte_special can avoid all these
2125          * restrictions (same for remap_pfn_range).  However we would like
2126          * consistency in testing and feature parity among all, so we should
2127          * try to keep these invariants in place for everybody.
2128          */
2129         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2130         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2131                                                 (VM_PFNMAP|VM_MIXEDMAP));
2132         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2133         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2134
2135         if (addr < vma->vm_start || addr >= vma->vm_end)
2136                 return VM_FAULT_SIGBUS;
2137
2138         if (!pfn_modify_allowed(pfn, pgprot))
2139                 return VM_FAULT_SIGBUS;
2140
2141         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2142
2143         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2144                         false);
2145 }
2146 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2147
2148 /**
2149  * vmf_insert_pfn - insert single pfn into user vma
2150  * @vma: user vma to map to
2151  * @addr: target user address of this page
2152  * @pfn: source kernel pfn
2153  *
2154  * Similar to vm_insert_page, this allows drivers to insert individual pages
2155  * they've allocated into a user vma. Same comments apply.
2156  *
2157  * This function should only be called from a vm_ops->fault handler, and
2158  * in that case the handler should return the result of this function.
2159  *
2160  * vma cannot be a COW mapping.
2161  *
2162  * As this is called only for pages that do not currently exist, we
2163  * do not need to flush old virtual caches or the TLB.
2164  *
2165  * Context: Process context.  May allocate using %GFP_KERNEL.
2166  * Return: vm_fault_t value.
2167  */
2168 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2169                         unsigned long pfn)
2170 {
2171         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2172 }
2173 EXPORT_SYMBOL(vmf_insert_pfn);
2174
2175 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2176 {
2177         /* these checks mirror the abort conditions in vm_normal_page */
2178         if (vma->vm_flags & VM_MIXEDMAP)
2179                 return true;
2180         if (pfn_t_devmap(pfn))
2181                 return true;
2182         if (pfn_t_special(pfn))
2183                 return true;
2184         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2185                 return true;
2186         return false;
2187 }
2188
2189 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2190                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2191                 bool mkwrite)
2192 {
2193         int err;
2194
2195         BUG_ON(!vm_mixed_ok(vma, pfn));
2196
2197         if (addr < vma->vm_start || addr >= vma->vm_end)
2198                 return VM_FAULT_SIGBUS;
2199
2200         track_pfn_insert(vma, &pgprot, pfn);
2201
2202         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2203                 return VM_FAULT_SIGBUS;
2204
2205         /*
2206          * If we don't have pte special, then we have to use the pfn_valid()
2207          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2208          * refcount the page if pfn_valid is true (hence insert_page rather
2209          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2210          * without pte special, it would there be refcounted as a normal page.
2211          */
2212         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2213             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2214                 struct page *page;
2215
2216                 /*
2217                  * At this point we are committed to insert_page()
2218                  * regardless of whether the caller specified flags that
2219                  * result in pfn_t_has_page() == false.
2220                  */
2221                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2222                 err = insert_page(vma, addr, page, pgprot);
2223         } else {
2224                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2225         }
2226
2227         if (err == -ENOMEM)
2228                 return VM_FAULT_OOM;
2229         if (err < 0 && err != -EBUSY)
2230                 return VM_FAULT_SIGBUS;
2231
2232         return VM_FAULT_NOPAGE;
2233 }
2234
2235 /**
2236  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2237  * @vma: user vma to map to
2238  * @addr: target user address of this page
2239  * @pfn: source kernel pfn
2240  * @pgprot: pgprot flags for the inserted page
2241  *
2242  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2243  * to override pgprot on a per-page basis.
2244  *
2245  * Typically this function should be used by drivers to set caching- and
2246  * encryption bits different than those of @vma->vm_page_prot, because
2247  * the caching- or encryption mode may not be known at mmap() time.
2248  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2249  * to set caching and encryption bits for those vmas (except for COW pages).
2250  * This is ensured by core vm only modifying these page table entries using
2251  * functions that don't touch caching- or encryption bits, using pte_modify()
2252  * if needed. (See for example mprotect()).
2253  * Also when new page-table entries are created, this is only done using the
2254  * fault() callback, and never using the value of vma->vm_page_prot,
2255  * except for page-table entries that point to anonymous pages as the result
2256  * of COW.
2257  *
2258  * Context: Process context.  May allocate using %GFP_KERNEL.
2259  * Return: vm_fault_t value.
2260  */
2261 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2262                                  pfn_t pfn, pgprot_t pgprot)
2263 {
2264         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2265 }
2266 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2267
2268 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2269                 pfn_t pfn)
2270 {
2271         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2272 }
2273 EXPORT_SYMBOL(vmf_insert_mixed);
2274
2275 /*
2276  *  If the insertion of PTE failed because someone else already added a
2277  *  different entry in the mean time, we treat that as success as we assume
2278  *  the same entry was actually inserted.
2279  */
2280 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2281                 unsigned long addr, pfn_t pfn)
2282 {
2283         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2284 }
2285 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2286
2287 /*
2288  * maps a range of physical memory into the requested pages. the old
2289  * mappings are removed. any references to nonexistent pages results
2290  * in null mappings (currently treated as "copy-on-access")
2291  */
2292 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2293                         unsigned long addr, unsigned long end,
2294                         unsigned long pfn, pgprot_t prot)
2295 {
2296         pte_t *pte, *mapped_pte;
2297         spinlock_t *ptl;
2298         int err = 0;
2299
2300         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2301         if (!pte)
2302                 return -ENOMEM;
2303         arch_enter_lazy_mmu_mode();
2304         do {
2305                 BUG_ON(!pte_none(*pte));
2306                 if (!pfn_modify_allowed(pfn, prot)) {
2307                         err = -EACCES;
2308                         break;
2309                 }
2310                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2311                 pfn++;
2312         } while (pte++, addr += PAGE_SIZE, addr != end);
2313         arch_leave_lazy_mmu_mode();
2314         pte_unmap_unlock(mapped_pte, ptl);
2315         return err;
2316 }
2317
2318 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2319                         unsigned long addr, unsigned long end,
2320                         unsigned long pfn, pgprot_t prot)
2321 {
2322         pmd_t *pmd;
2323         unsigned long next;
2324         int err;
2325
2326         pfn -= addr >> PAGE_SHIFT;
2327         pmd = pmd_alloc(mm, pud, addr);
2328         if (!pmd)
2329                 return -ENOMEM;
2330         VM_BUG_ON(pmd_trans_huge(*pmd));
2331         do {
2332                 next = pmd_addr_end(addr, end);
2333                 err = remap_pte_range(mm, pmd, addr, next,
2334                                 pfn + (addr >> PAGE_SHIFT), prot);
2335                 if (err)
2336                         return err;
2337         } while (pmd++, addr = next, addr != end);
2338         return 0;
2339 }
2340
2341 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2342                         unsigned long addr, unsigned long end,
2343                         unsigned long pfn, pgprot_t prot)
2344 {
2345         pud_t *pud;
2346         unsigned long next;
2347         int err;
2348
2349         pfn -= addr >> PAGE_SHIFT;
2350         pud = pud_alloc(mm, p4d, addr);
2351         if (!pud)
2352                 return -ENOMEM;
2353         do {
2354                 next = pud_addr_end(addr, end);
2355                 err = remap_pmd_range(mm, pud, addr, next,
2356                                 pfn + (addr >> PAGE_SHIFT), prot);
2357                 if (err)
2358                         return err;
2359         } while (pud++, addr = next, addr != end);
2360         return 0;
2361 }
2362
2363 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2364                         unsigned long addr, unsigned long end,
2365                         unsigned long pfn, pgprot_t prot)
2366 {
2367         p4d_t *p4d;
2368         unsigned long next;
2369         int err;
2370
2371         pfn -= addr >> PAGE_SHIFT;
2372         p4d = p4d_alloc(mm, pgd, addr);
2373         if (!p4d)
2374                 return -ENOMEM;
2375         do {
2376                 next = p4d_addr_end(addr, end);
2377                 err = remap_pud_range(mm, p4d, addr, next,
2378                                 pfn + (addr >> PAGE_SHIFT), prot);
2379                 if (err)
2380                         return err;
2381         } while (p4d++, addr = next, addr != end);
2382         return 0;
2383 }
2384
2385 /*
2386  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2387  * must have pre-validated the caching bits of the pgprot_t.
2388  */
2389 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2390                 unsigned long pfn, unsigned long size, pgprot_t prot)
2391 {
2392         pgd_t *pgd;
2393         unsigned long next;
2394         unsigned long end = addr + PAGE_ALIGN(size);
2395         struct mm_struct *mm = vma->vm_mm;
2396         int err;
2397
2398         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2399                 return -EINVAL;
2400
2401         /*
2402          * Physically remapped pages are special. Tell the
2403          * rest of the world about it:
2404          *   VM_IO tells people not to look at these pages
2405          *      (accesses can have side effects).
2406          *   VM_PFNMAP tells the core MM that the base pages are just
2407          *      raw PFN mappings, and do not have a "struct page" associated
2408          *      with them.
2409          *   VM_DONTEXPAND
2410          *      Disable vma merging and expanding with mremap().
2411          *   VM_DONTDUMP
2412          *      Omit vma from core dump, even when VM_IO turned off.
2413          *
2414          * There's a horrible special case to handle copy-on-write
2415          * behaviour that some programs depend on. We mark the "original"
2416          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2417          * See vm_normal_page() for details.
2418          */
2419         if (is_cow_mapping(vma->vm_flags)) {
2420                 if (addr != vma->vm_start || end != vma->vm_end)
2421                         return -EINVAL;
2422                 vma->vm_pgoff = pfn;
2423         }
2424
2425         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2426
2427         BUG_ON(addr >= end);
2428         pfn -= addr >> PAGE_SHIFT;
2429         pgd = pgd_offset(mm, addr);
2430         flush_cache_range(vma, addr, end);
2431         do {
2432                 next = pgd_addr_end(addr, end);
2433                 err = remap_p4d_range(mm, pgd, addr, next,
2434                                 pfn + (addr >> PAGE_SHIFT), prot);
2435                 if (err)
2436                         return err;
2437         } while (pgd++, addr = next, addr != end);
2438
2439         return 0;
2440 }
2441
2442 /**
2443  * remap_pfn_range - remap kernel memory to userspace
2444  * @vma: user vma to map to
2445  * @addr: target page aligned user address to start at
2446  * @pfn: page frame number of kernel physical memory address
2447  * @size: size of mapping area
2448  * @prot: page protection flags for this mapping
2449  *
2450  * Note: this is only safe if the mm semaphore is held when called.
2451  *
2452  * Return: %0 on success, negative error code otherwise.
2453  */
2454 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2455                     unsigned long pfn, unsigned long size, pgprot_t prot)
2456 {
2457         int err;
2458
2459         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2460         if (err)
2461                 return -EINVAL;
2462
2463         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2464         if (err)
2465                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2466         return err;
2467 }
2468 EXPORT_SYMBOL(remap_pfn_range);
2469
2470 /**
2471  * vm_iomap_memory - remap memory to userspace
2472  * @vma: user vma to map to
2473  * @start: start of the physical memory to be mapped
2474  * @len: size of area
2475  *
2476  * This is a simplified io_remap_pfn_range() for common driver use. The
2477  * driver just needs to give us the physical memory range to be mapped,
2478  * we'll figure out the rest from the vma information.
2479  *
2480  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2481  * whatever write-combining details or similar.
2482  *
2483  * Return: %0 on success, negative error code otherwise.
2484  */
2485 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2486 {
2487         unsigned long vm_len, pfn, pages;
2488
2489         /* Check that the physical memory area passed in looks valid */
2490         if (start + len < start)
2491                 return -EINVAL;
2492         /*
2493          * You *really* shouldn't map things that aren't page-aligned,
2494          * but we've historically allowed it because IO memory might
2495          * just have smaller alignment.
2496          */
2497         len += start & ~PAGE_MASK;
2498         pfn = start >> PAGE_SHIFT;
2499         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2500         if (pfn + pages < pfn)
2501                 return -EINVAL;
2502
2503         /* We start the mapping 'vm_pgoff' pages into the area */
2504         if (vma->vm_pgoff > pages)
2505                 return -EINVAL;
2506         pfn += vma->vm_pgoff;
2507         pages -= vma->vm_pgoff;
2508
2509         /* Can we fit all of the mapping? */
2510         vm_len = vma->vm_end - vma->vm_start;
2511         if (vm_len >> PAGE_SHIFT > pages)
2512                 return -EINVAL;
2513
2514         /* Ok, let it rip */
2515         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2516 }
2517 EXPORT_SYMBOL(vm_iomap_memory);
2518
2519 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2520                                      unsigned long addr, unsigned long end,
2521                                      pte_fn_t fn, void *data, bool create,
2522                                      pgtbl_mod_mask *mask)
2523 {
2524         pte_t *pte, *mapped_pte;
2525         int err = 0;
2526         spinlock_t *ptl;
2527
2528         if (create) {
2529                 mapped_pte = pte = (mm == &init_mm) ?
2530                         pte_alloc_kernel_track(pmd, addr, mask) :
2531                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2532                 if (!pte)
2533                         return -ENOMEM;
2534         } else {
2535                 mapped_pte = pte = (mm == &init_mm) ?
2536                         pte_offset_kernel(pmd, addr) :
2537                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2538         }
2539
2540         BUG_ON(pmd_huge(*pmd));
2541
2542         arch_enter_lazy_mmu_mode();
2543
2544         if (fn) {
2545                 do {
2546                         if (create || !pte_none(*pte)) {
2547                                 err = fn(pte++, addr, data);
2548                                 if (err)
2549                                         break;
2550                         }
2551                 } while (addr += PAGE_SIZE, addr != end);
2552         }
2553         *mask |= PGTBL_PTE_MODIFIED;
2554
2555         arch_leave_lazy_mmu_mode();
2556
2557         if (mm != &init_mm)
2558                 pte_unmap_unlock(mapped_pte, ptl);
2559         return err;
2560 }
2561
2562 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2563                                      unsigned long addr, unsigned long end,
2564                                      pte_fn_t fn, void *data, bool create,
2565                                      pgtbl_mod_mask *mask)
2566 {
2567         pmd_t *pmd;
2568         unsigned long next;
2569         int err = 0;
2570
2571         BUG_ON(pud_huge(*pud));
2572
2573         if (create) {
2574                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2575                 if (!pmd)
2576                         return -ENOMEM;
2577         } else {
2578                 pmd = pmd_offset(pud, addr);
2579         }
2580         do {
2581                 next = pmd_addr_end(addr, end);
2582                 if (pmd_none(*pmd) && !create)
2583                         continue;
2584                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2585                         return -EINVAL;
2586                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2587                         if (!create)
2588                                 continue;
2589                         pmd_clear_bad(pmd);
2590                 }
2591                 err = apply_to_pte_range(mm, pmd, addr, next,
2592                                          fn, data, create, mask);
2593                 if (err)
2594                         break;
2595         } while (pmd++, addr = next, addr != end);
2596
2597         return err;
2598 }
2599
2600 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2601                                      unsigned long addr, unsigned long end,
2602                                      pte_fn_t fn, void *data, bool create,
2603                                      pgtbl_mod_mask *mask)
2604 {
2605         pud_t *pud;
2606         unsigned long next;
2607         int err = 0;
2608
2609         if (create) {
2610                 pud = pud_alloc_track(mm, p4d, addr, mask);
2611                 if (!pud)
2612                         return -ENOMEM;
2613         } else {
2614                 pud = pud_offset(p4d, addr);
2615         }
2616         do {
2617                 next = pud_addr_end(addr, end);
2618                 if (pud_none(*pud) && !create)
2619                         continue;
2620                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2621                         return -EINVAL;
2622                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2623                         if (!create)
2624                                 continue;
2625                         pud_clear_bad(pud);
2626                 }
2627                 err = apply_to_pmd_range(mm, pud, addr, next,
2628                                          fn, data, create, mask);
2629                 if (err)
2630                         break;
2631         } while (pud++, addr = next, addr != end);
2632
2633         return err;
2634 }
2635
2636 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2637                                      unsigned long addr, unsigned long end,
2638                                      pte_fn_t fn, void *data, bool create,
2639                                      pgtbl_mod_mask *mask)
2640 {
2641         p4d_t *p4d;
2642         unsigned long next;
2643         int err = 0;
2644
2645         if (create) {
2646                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2647                 if (!p4d)
2648                         return -ENOMEM;
2649         } else {
2650                 p4d = p4d_offset(pgd, addr);
2651         }
2652         do {
2653                 next = p4d_addr_end(addr, end);
2654                 if (p4d_none(*p4d) && !create)
2655                         continue;
2656                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2657                         return -EINVAL;
2658                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2659                         if (!create)
2660                                 continue;
2661                         p4d_clear_bad(p4d);
2662                 }
2663                 err = apply_to_pud_range(mm, p4d, addr, next,
2664                                          fn, data, create, mask);
2665                 if (err)
2666                         break;
2667         } while (p4d++, addr = next, addr != end);
2668
2669         return err;
2670 }
2671
2672 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2673                                  unsigned long size, pte_fn_t fn,
2674                                  void *data, bool create)
2675 {
2676         pgd_t *pgd;
2677         unsigned long start = addr, next;
2678         unsigned long end = addr + size;
2679         pgtbl_mod_mask mask = 0;
2680         int err = 0;
2681
2682         if (WARN_ON(addr >= end))
2683                 return -EINVAL;
2684
2685         pgd = pgd_offset(mm, addr);
2686         do {
2687                 next = pgd_addr_end(addr, end);
2688                 if (pgd_none(*pgd) && !create)
2689                         continue;
2690                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2691                         return -EINVAL;
2692                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2693                         if (!create)
2694                                 continue;
2695                         pgd_clear_bad(pgd);
2696                 }
2697                 err = apply_to_p4d_range(mm, pgd, addr, next,
2698                                          fn, data, create, &mask);
2699                 if (err)
2700                         break;
2701         } while (pgd++, addr = next, addr != end);
2702
2703         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2704                 arch_sync_kernel_mappings(start, start + size);
2705
2706         return err;
2707 }
2708
2709 /*
2710  * Scan a region of virtual memory, filling in page tables as necessary
2711  * and calling a provided function on each leaf page table.
2712  */
2713 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2714                         unsigned long size, pte_fn_t fn, void *data)
2715 {
2716         return __apply_to_page_range(mm, addr, size, fn, data, true);
2717 }
2718 EXPORT_SYMBOL_GPL(apply_to_page_range);
2719
2720 /*
2721  * Scan a region of virtual memory, calling a provided function on
2722  * each leaf page table where it exists.
2723  *
2724  * Unlike apply_to_page_range, this does _not_ fill in page tables
2725  * where they are absent.
2726  */
2727 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2728                                  unsigned long size, pte_fn_t fn, void *data)
2729 {
2730         return __apply_to_page_range(mm, addr, size, fn, data, false);
2731 }
2732 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2733
2734 /*
2735  * handle_pte_fault chooses page fault handler according to an entry which was
2736  * read non-atomically.  Before making any commitment, on those architectures
2737  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2738  * parts, do_swap_page must check under lock before unmapping the pte and
2739  * proceeding (but do_wp_page is only called after already making such a check;
2740  * and do_anonymous_page can safely check later on).
2741  */
2742 static inline int pte_unmap_same(struct vm_fault *vmf)
2743 {
2744         int same = 1;
2745 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2746         if (sizeof(pte_t) > sizeof(unsigned long)) {
2747                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2748                 spin_lock(ptl);
2749                 same = pte_same(*vmf->pte, vmf->orig_pte);
2750                 spin_unlock(ptl);
2751         }
2752 #endif
2753         pte_unmap(vmf->pte);
2754         vmf->pte = NULL;
2755         return same;
2756 }
2757
2758 static inline bool cow_user_page(struct page *dst, struct page *src,
2759                                  struct vm_fault *vmf)
2760 {
2761         bool ret;
2762         void *kaddr;
2763         void __user *uaddr;
2764         bool locked = false;
2765         struct vm_area_struct *vma = vmf->vma;
2766         struct mm_struct *mm = vma->vm_mm;
2767         unsigned long addr = vmf->address;
2768
2769         if (likely(src)) {
2770                 copy_user_highpage(dst, src, addr, vma);
2771                 return true;
2772         }
2773
2774         /*
2775          * If the source page was a PFN mapping, we don't have
2776          * a "struct page" for it. We do a best-effort copy by
2777          * just copying from the original user address. If that
2778          * fails, we just zero-fill it. Live with it.
2779          */
2780         kaddr = kmap_atomic(dst);
2781         uaddr = (void __user *)(addr & PAGE_MASK);
2782
2783         /*
2784          * On architectures with software "accessed" bits, we would
2785          * take a double page fault, so mark it accessed here.
2786          */
2787         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2788                 pte_t entry;
2789
2790                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2791                 locked = true;
2792                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2793                         /*
2794                          * Other thread has already handled the fault
2795                          * and update local tlb only
2796                          */
2797                         update_mmu_tlb(vma, addr, vmf->pte);
2798                         ret = false;
2799                         goto pte_unlock;
2800                 }
2801
2802                 entry = pte_mkyoung(vmf->orig_pte);
2803                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2804                         update_mmu_cache(vma, addr, vmf->pte);
2805         }
2806
2807         /*
2808          * This really shouldn't fail, because the page is there
2809          * in the page tables. But it might just be unreadable,
2810          * in which case we just give up and fill the result with
2811          * zeroes.
2812          */
2813         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2814                 if (locked)
2815                         goto warn;
2816
2817                 /* Re-validate under PTL if the page is still mapped */
2818                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2819                 locked = true;
2820                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2821                         /* The PTE changed under us, update local tlb */
2822                         update_mmu_tlb(vma, addr, vmf->pte);
2823                         ret = false;
2824                         goto pte_unlock;
2825                 }
2826
2827                 /*
2828                  * The same page can be mapped back since last copy attempt.
2829                  * Try to copy again under PTL.
2830                  */
2831                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2832                         /*
2833                          * Give a warn in case there can be some obscure
2834                          * use-case
2835                          */
2836 warn:
2837                         WARN_ON_ONCE(1);
2838                         clear_page(kaddr);
2839                 }
2840         }
2841
2842         ret = true;
2843
2844 pte_unlock:
2845         if (locked)
2846                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2847         kunmap_atomic(kaddr);
2848         flush_dcache_page(dst);
2849
2850         return ret;
2851 }
2852
2853 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2854 {
2855         struct file *vm_file = vma->vm_file;
2856
2857         if (vm_file)
2858                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2859
2860         /*
2861          * Special mappings (e.g. VDSO) do not have any file so fake
2862          * a default GFP_KERNEL for them.
2863          */
2864         return GFP_KERNEL;
2865 }
2866
2867 /*
2868  * Notify the address space that the page is about to become writable so that
2869  * it can prohibit this or wait for the page to get into an appropriate state.
2870  *
2871  * We do this without the lock held, so that it can sleep if it needs to.
2872  */
2873 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2874 {
2875         vm_fault_t ret;
2876         struct page *page = vmf->page;
2877         unsigned int old_flags = vmf->flags;
2878
2879         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2880
2881         if (vmf->vma->vm_file &&
2882             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2883                 return VM_FAULT_SIGBUS;
2884
2885         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2886         /* Restore original flags so that caller is not surprised */
2887         vmf->flags = old_flags;
2888         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2889                 return ret;
2890         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2891                 lock_page(page);
2892                 if (!page->mapping) {
2893                         unlock_page(page);
2894                         return 0; /* retry */
2895                 }
2896                 ret |= VM_FAULT_LOCKED;
2897         } else
2898                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2899         return ret;
2900 }
2901
2902 /*
2903  * Handle dirtying of a page in shared file mapping on a write fault.
2904  *
2905  * The function expects the page to be locked and unlocks it.
2906  */
2907 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2908 {
2909         struct vm_area_struct *vma = vmf->vma;
2910         struct address_space *mapping;
2911         struct page *page = vmf->page;
2912         bool dirtied;
2913         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2914
2915         dirtied = set_page_dirty(page);
2916         VM_BUG_ON_PAGE(PageAnon(page), page);
2917         /*
2918          * Take a local copy of the address_space - page.mapping may be zeroed
2919          * by truncate after unlock_page().   The address_space itself remains
2920          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2921          * release semantics to prevent the compiler from undoing this copying.
2922          */
2923         mapping = page_rmapping(page);
2924         unlock_page(page);
2925
2926         if (!page_mkwrite)
2927                 file_update_time(vma->vm_file);
2928
2929         /*
2930          * Throttle page dirtying rate down to writeback speed.
2931          *
2932          * mapping may be NULL here because some device drivers do not
2933          * set page.mapping but still dirty their pages
2934          *
2935          * Drop the mmap_lock before waiting on IO, if we can. The file
2936          * is pinning the mapping, as per above.
2937          */
2938         if ((dirtied || page_mkwrite) && mapping) {
2939                 struct file *fpin;
2940
2941                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2942                 balance_dirty_pages_ratelimited(mapping);
2943                 if (fpin) {
2944                         fput(fpin);
2945                         return VM_FAULT_RETRY;
2946                 }
2947         }
2948
2949         return 0;
2950 }
2951
2952 /*
2953  * Handle write page faults for pages that can be reused in the current vma
2954  *
2955  * This can happen either due to the mapping being with the VM_SHARED flag,
2956  * or due to us being the last reference standing to the page. In either
2957  * case, all we need to do here is to mark the page as writable and update
2958  * any related book-keeping.
2959  */
2960 static inline void wp_page_reuse(struct vm_fault *vmf)
2961         __releases(vmf->ptl)
2962 {
2963         struct vm_area_struct *vma = vmf->vma;
2964         struct page *page = vmf->page;
2965         pte_t entry;
2966         /*
2967          * Clear the pages cpupid information as the existing
2968          * information potentially belongs to a now completely
2969          * unrelated process.
2970          */
2971         if (page)
2972                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2973
2974         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2975         entry = pte_mkyoung(vmf->orig_pte);
2976         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2977         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2978                 update_mmu_cache(vma, vmf->address, vmf->pte);
2979         pte_unmap_unlock(vmf->pte, vmf->ptl);
2980         count_vm_event(PGREUSE);
2981 }
2982
2983 /*
2984  * Handle the case of a page which we actually need to copy to a new page.
2985  *
2986  * Called with mmap_lock locked and the old page referenced, but
2987  * without the ptl held.
2988  *
2989  * High level logic flow:
2990  *
2991  * - Allocate a page, copy the content of the old page to the new one.
2992  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2993  * - Take the PTL. If the pte changed, bail out and release the allocated page
2994  * - If the pte is still the way we remember it, update the page table and all
2995  *   relevant references. This includes dropping the reference the page-table
2996  *   held to the old page, as well as updating the rmap.
2997  * - In any case, unlock the PTL and drop the reference we took to the old page.
2998  */
2999 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3000 {
3001         struct vm_area_struct *vma = vmf->vma;
3002         struct mm_struct *mm = vma->vm_mm;
3003         struct page *old_page = vmf->page;
3004         struct page *new_page = NULL;
3005         pte_t entry;
3006         int page_copied = 0;
3007         struct mmu_notifier_range range;
3008
3009         if (unlikely(anon_vma_prepare(vma)))
3010                 goto oom;
3011
3012         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3013                 new_page = alloc_zeroed_user_highpage_movable(vma,
3014                                                               vmf->address);
3015                 if (!new_page)
3016                         goto oom;
3017         } else {
3018                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3019                                 vmf->address);
3020                 if (!new_page)
3021                         goto oom;
3022
3023                 if (!cow_user_page(new_page, old_page, vmf)) {
3024                         /*
3025                          * COW failed, if the fault was solved by other,
3026                          * it's fine. If not, userspace would re-fault on
3027                          * the same address and we will handle the fault
3028                          * from the second attempt.
3029                          */
3030                         put_page(new_page);
3031                         if (old_page)
3032                                 put_page(old_page);
3033                         return 0;
3034                 }
3035         }
3036
3037         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3038                 goto oom_free_new;
3039         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3040
3041         __SetPageUptodate(new_page);
3042
3043         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3044                                 vmf->address & PAGE_MASK,
3045                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3046         mmu_notifier_invalidate_range_start(&range);
3047
3048         /*
3049          * Re-check the pte - we dropped the lock
3050          */
3051         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3052         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3053                 if (old_page) {
3054                         if (!PageAnon(old_page)) {
3055                                 dec_mm_counter_fast(mm,
3056                                                 mm_counter_file(old_page));
3057                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3058                         }
3059                 } else {
3060                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3061                 }
3062                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3063                 entry = mk_pte(new_page, vma->vm_page_prot);
3064                 entry = pte_sw_mkyoung(entry);
3065                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3066
3067                 /*
3068                  * Clear the pte entry and flush it first, before updating the
3069                  * pte with the new entry, to keep TLBs on different CPUs in
3070                  * sync. This code used to set the new PTE then flush TLBs, but
3071                  * that left a window where the new PTE could be loaded into
3072                  * some TLBs while the old PTE remains in others.
3073                  */
3074                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3075                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3076                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3077                 /*
3078                  * We call the notify macro here because, when using secondary
3079                  * mmu page tables (such as kvm shadow page tables), we want the
3080                  * new page to be mapped directly into the secondary page table.
3081                  */
3082                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3083                 update_mmu_cache(vma, vmf->address, vmf->pte);
3084                 if (old_page) {
3085                         /*
3086                          * Only after switching the pte to the new page may
3087                          * we remove the mapcount here. Otherwise another
3088                          * process may come and find the rmap count decremented
3089                          * before the pte is switched to the new page, and
3090                          * "reuse" the old page writing into it while our pte
3091                          * here still points into it and can be read by other
3092                          * threads.
3093                          *
3094                          * The critical issue is to order this
3095                          * page_remove_rmap with the ptp_clear_flush above.
3096                          * Those stores are ordered by (if nothing else,)
3097                          * the barrier present in the atomic_add_negative
3098                          * in page_remove_rmap.
3099                          *
3100                          * Then the TLB flush in ptep_clear_flush ensures that
3101                          * no process can access the old page before the
3102                          * decremented mapcount is visible. And the old page
3103                          * cannot be reused until after the decremented
3104                          * mapcount is visible. So transitively, TLBs to
3105                          * old page will be flushed before it can be reused.
3106                          */
3107                         page_remove_rmap(old_page, vma, false);
3108                 }
3109
3110                 /* Free the old page.. */
3111                 new_page = old_page;
3112                 page_copied = 1;
3113         } else {
3114                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3115         }
3116
3117         if (new_page)
3118                 put_page(new_page);
3119
3120         pte_unmap_unlock(vmf->pte, vmf->ptl);
3121         /*
3122          * No need to double call mmu_notifier->invalidate_range() callback as
3123          * the above ptep_clear_flush_notify() did already call it.
3124          */
3125         mmu_notifier_invalidate_range_only_end(&range);
3126         if (old_page) {
3127                 if (page_copied)
3128                         free_swap_cache(old_page);
3129                 put_page(old_page);
3130         }
3131         return page_copied ? VM_FAULT_WRITE : 0;
3132 oom_free_new:
3133         put_page(new_page);
3134 oom:
3135         if (old_page)
3136                 put_page(old_page);
3137         return VM_FAULT_OOM;
3138 }
3139
3140 /**
3141  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3142  *                        writeable once the page is prepared
3143  *
3144  * @vmf: structure describing the fault
3145  *
3146  * This function handles all that is needed to finish a write page fault in a
3147  * shared mapping due to PTE being read-only once the mapped page is prepared.
3148  * It handles locking of PTE and modifying it.
3149  *
3150  * The function expects the page to be locked or other protection against
3151  * concurrent faults / writeback (such as DAX radix tree locks).
3152  *
3153  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3154  * we acquired PTE lock.
3155  */
3156 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3157 {
3158         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3159         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3160                                        &vmf->ptl);
3161         /*
3162          * We might have raced with another page fault while we released the
3163          * pte_offset_map_lock.
3164          */
3165         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3166                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3167                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3168                 return VM_FAULT_NOPAGE;
3169         }
3170         wp_page_reuse(vmf);
3171         return 0;
3172 }
3173
3174 /*
3175  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3176  * mapping
3177  */
3178 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3179 {
3180         struct vm_area_struct *vma = vmf->vma;
3181
3182         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3183                 vm_fault_t ret;
3184
3185                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3186                 vmf->flags |= FAULT_FLAG_MKWRITE;
3187                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3188                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3189                         return ret;
3190                 return finish_mkwrite_fault(vmf);
3191         }
3192         wp_page_reuse(vmf);
3193         return VM_FAULT_WRITE;
3194 }
3195
3196 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3197         __releases(vmf->ptl)
3198 {
3199         struct vm_area_struct *vma = vmf->vma;
3200         vm_fault_t ret = VM_FAULT_WRITE;
3201
3202         get_page(vmf->page);
3203
3204         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3205                 vm_fault_t tmp;
3206
3207                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3208                 tmp = do_page_mkwrite(vmf);
3209                 if (unlikely(!tmp || (tmp &
3210                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3211                         put_page(vmf->page);
3212                         return tmp;
3213                 }
3214                 tmp = finish_mkwrite_fault(vmf);
3215                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3216                         unlock_page(vmf->page);
3217                         put_page(vmf->page);
3218                         return tmp;
3219                 }
3220         } else {
3221                 wp_page_reuse(vmf);
3222                 lock_page(vmf->page);
3223         }
3224         ret |= fault_dirty_shared_page(vmf);
3225         put_page(vmf->page);
3226
3227         return ret;
3228 }
3229
3230 /*
3231  * This routine handles present pages, when users try to write
3232  * to a shared page. It is done by copying the page to a new address
3233  * and decrementing the shared-page counter for the old page.
3234  *
3235  * Note that this routine assumes that the protection checks have been
3236  * done by the caller (the low-level page fault routine in most cases).
3237  * Thus we can safely just mark it writable once we've done any necessary
3238  * COW.
3239  *
3240  * We also mark the page dirty at this point even though the page will
3241  * change only once the write actually happens. This avoids a few races,
3242  * and potentially makes it more efficient.
3243  *
3244  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3245  * but allow concurrent faults), with pte both mapped and locked.
3246  * We return with mmap_lock still held, but pte unmapped and unlocked.
3247  */
3248 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3249         __releases(vmf->ptl)
3250 {
3251         struct vm_area_struct *vma = vmf->vma;
3252
3253         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3254                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3255                 return handle_userfault(vmf, VM_UFFD_WP);
3256         }
3257
3258         /*
3259          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3260          * is flushed in this case before copying.
3261          */
3262         if (unlikely(userfaultfd_wp(vmf->vma) &&
3263                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3264                 flush_tlb_page(vmf->vma, vmf->address);
3265
3266         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3267         if (!vmf->page) {
3268                 /*
3269                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3270                  * VM_PFNMAP VMA.
3271                  *
3272                  * We should not cow pages in a shared writeable mapping.
3273                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3274                  */
3275                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3276                                      (VM_WRITE|VM_SHARED))
3277                         return wp_pfn_shared(vmf);
3278
3279                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3280                 return wp_page_copy(vmf);
3281         }
3282
3283         /*
3284          * Take out anonymous pages first, anonymous shared vmas are
3285          * not dirty accountable.
3286          */
3287         if (PageAnon(vmf->page)) {
3288                 struct page *page = vmf->page;
3289
3290                 /*
3291                  * We have to verify under page lock: these early checks are
3292                  * just an optimization to avoid locking the page and freeing
3293                  * the swapcache if there is little hope that we can reuse.
3294                  *
3295                  * PageKsm() doesn't necessarily raise the page refcount.
3296                  */
3297                 if (PageKsm(page) || page_count(page) > 3)
3298                         goto copy;
3299                 if (!PageLRU(page))
3300                         /*
3301                          * Note: We cannot easily detect+handle references from
3302                          * remote LRU pagevecs or references to PageLRU() pages.
3303                          */
3304                         lru_add_drain();
3305                 if (page_count(page) > 1 + PageSwapCache(page))
3306                         goto copy;
3307                 if (!trylock_page(page))
3308                         goto copy;
3309                 if (PageSwapCache(page))
3310                         try_to_free_swap(page);
3311                 if (PageKsm(page) || page_count(page) != 1) {
3312                         unlock_page(page);
3313                         goto copy;
3314                 }
3315                 /*
3316                  * Ok, we've got the only page reference from our mapping
3317                  * and the page is locked, it's dark out, and we're wearing
3318                  * sunglasses. Hit it.
3319                  */
3320                 unlock_page(page);
3321                 wp_page_reuse(vmf);
3322                 return VM_FAULT_WRITE;
3323         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3324                                         (VM_WRITE|VM_SHARED))) {
3325                 return wp_page_shared(vmf);
3326         }
3327 copy:
3328         /*
3329          * Ok, we need to copy. Oh, well..
3330          */
3331         get_page(vmf->page);
3332
3333         pte_unmap_unlock(vmf->pte, vmf->ptl);
3334         return wp_page_copy(vmf);
3335 }
3336
3337 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3338                 unsigned long start_addr, unsigned long end_addr,
3339                 struct zap_details *details)
3340 {
3341         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3342 }
3343
3344 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3345                                             pgoff_t first_index,
3346                                             pgoff_t last_index,
3347                                             struct zap_details *details)
3348 {
3349         struct vm_area_struct *vma;
3350         pgoff_t vba, vea, zba, zea;
3351
3352         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3353                 vba = vma->vm_pgoff;
3354                 vea = vba + vma_pages(vma) - 1;
3355                 zba = max(first_index, vba);
3356                 zea = min(last_index, vea);
3357
3358                 unmap_mapping_range_vma(vma,
3359                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3360                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3361                                 details);
3362         }
3363 }
3364
3365 /**
3366  * unmap_mapping_folio() - Unmap single folio from processes.
3367  * @folio: The locked folio to be unmapped.
3368  *
3369  * Unmap this folio from any userspace process which still has it mmaped.
3370  * Typically, for efficiency, the range of nearby pages has already been
3371  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3372  * truncation or invalidation holds the lock on a folio, it may find that
3373  * the page has been remapped again: and then uses unmap_mapping_folio()
3374  * to unmap it finally.
3375  */
3376 void unmap_mapping_folio(struct folio *folio)
3377 {
3378         struct address_space *mapping = folio->mapping;
3379         struct zap_details details = { };
3380         pgoff_t first_index;
3381         pgoff_t last_index;
3382
3383         VM_BUG_ON(!folio_test_locked(folio));
3384
3385         first_index = folio->index;
3386         last_index = folio->index + folio_nr_pages(folio) - 1;
3387
3388         details.even_cows = false;
3389         details.single_folio = folio;
3390
3391         i_mmap_lock_read(mapping);
3392         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3393                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3394                                          last_index, &details);
3395         i_mmap_unlock_read(mapping);
3396 }
3397
3398 /**
3399  * unmap_mapping_pages() - Unmap pages from processes.
3400  * @mapping: The address space containing pages to be unmapped.
3401  * @start: Index of first page to be unmapped.
3402  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3403  * @even_cows: Whether to unmap even private COWed pages.
3404  *
3405  * Unmap the pages in this address space from any userspace process which
3406  * has them mmaped.  Generally, you want to remove COWed pages as well when
3407  * a file is being truncated, but not when invalidating pages from the page
3408  * cache.
3409  */
3410 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3411                 pgoff_t nr, bool even_cows)
3412 {
3413         struct zap_details details = { };
3414         pgoff_t first_index = start;
3415         pgoff_t last_index = start + nr - 1;
3416
3417         details.even_cows = even_cows;
3418         if (last_index < first_index)
3419                 last_index = ULONG_MAX;
3420
3421         i_mmap_lock_read(mapping);
3422         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3423                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3424                                          last_index, &details);
3425         i_mmap_unlock_read(mapping);
3426 }
3427 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3428
3429 /**
3430  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3431  * address_space corresponding to the specified byte range in the underlying
3432  * file.
3433  *
3434  * @mapping: the address space containing mmaps to be unmapped.
3435  * @holebegin: byte in first page to unmap, relative to the start of
3436  * the underlying file.  This will be rounded down to a PAGE_SIZE
3437  * boundary.  Note that this is different from truncate_pagecache(), which
3438  * must keep the partial page.  In contrast, we must get rid of
3439  * partial pages.
3440  * @holelen: size of prospective hole in bytes.  This will be rounded
3441  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3442  * end of the file.
3443  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3444  * but 0 when invalidating pagecache, don't throw away private data.
3445  */
3446 void unmap_mapping_range(struct address_space *mapping,
3447                 loff_t const holebegin, loff_t const holelen, int even_cows)
3448 {
3449         pgoff_t hba = holebegin >> PAGE_SHIFT;
3450         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3451
3452         /* Check for overflow. */
3453         if (sizeof(holelen) > sizeof(hlen)) {
3454                 long long holeend =
3455                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3456                 if (holeend & ~(long long)ULONG_MAX)
3457                         hlen = ULONG_MAX - hba + 1;
3458         }
3459
3460         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3461 }
3462 EXPORT_SYMBOL(unmap_mapping_range);
3463
3464 /*
3465  * Restore a potential device exclusive pte to a working pte entry
3466  */
3467 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3468 {
3469         struct page *page = vmf->page;
3470         struct vm_area_struct *vma = vmf->vma;
3471         struct mmu_notifier_range range;
3472
3473         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3474                 return VM_FAULT_RETRY;
3475         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3476                                 vma->vm_mm, vmf->address & PAGE_MASK,
3477                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3478         mmu_notifier_invalidate_range_start(&range);
3479
3480         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3481                                 &vmf->ptl);
3482         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3483                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3484
3485         pte_unmap_unlock(vmf->pte, vmf->ptl);
3486         unlock_page(page);
3487
3488         mmu_notifier_invalidate_range_end(&range);
3489         return 0;
3490 }
3491
3492 static inline bool should_try_to_free_swap(struct page *page,
3493                                            struct vm_area_struct *vma,
3494                                            unsigned int fault_flags)
3495 {
3496         if (!PageSwapCache(page))
3497                 return false;
3498         if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3499             PageMlocked(page))
3500                 return true;
3501         /*
3502          * If we want to map a page that's in the swapcache writable, we
3503          * have to detect via the refcount if we're really the exclusive
3504          * user. Try freeing the swapcache to get rid of the swapcache
3505          * reference only in case it's likely that we'll be the exlusive user.
3506          */
3507         return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3508                 page_count(page) == 2;
3509 }
3510
3511 /*
3512  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3513  * but allow concurrent faults), and pte mapped but not yet locked.
3514  * We return with pte unmapped and unlocked.
3515  *
3516  * We return with the mmap_lock locked or unlocked in the same cases
3517  * as does filemap_fault().
3518  */
3519 vm_fault_t do_swap_page(struct vm_fault *vmf)
3520 {
3521         struct vm_area_struct *vma = vmf->vma;
3522         struct page *page = NULL, *swapcache;
3523         struct swap_info_struct *si = NULL;
3524         swp_entry_t entry;
3525         pte_t pte;
3526         int locked;
3527         int exclusive = 0;
3528         vm_fault_t ret = 0;
3529         void *shadow = NULL;
3530
3531         if (!pte_unmap_same(vmf))
3532                 goto out;
3533
3534         entry = pte_to_swp_entry(vmf->orig_pte);
3535         if (unlikely(non_swap_entry(entry))) {
3536                 if (is_migration_entry(entry)) {
3537                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3538                                              vmf->address);
3539                 } else if (is_device_exclusive_entry(entry)) {
3540                         vmf->page = pfn_swap_entry_to_page(entry);
3541                         ret = remove_device_exclusive_entry(vmf);
3542                 } else if (is_device_private_entry(entry)) {
3543                         vmf->page = pfn_swap_entry_to_page(entry);
3544                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3545                 } else if (is_hwpoison_entry(entry)) {
3546                         ret = VM_FAULT_HWPOISON;
3547                 } else {
3548                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3549                         ret = VM_FAULT_SIGBUS;
3550                 }
3551                 goto out;
3552         }
3553
3554         /* Prevent swapoff from happening to us. */
3555         si = get_swap_device(entry);
3556         if (unlikely(!si))
3557                 goto out;
3558
3559         page = lookup_swap_cache(entry, vma, vmf->address);
3560         swapcache = page;
3561
3562         if (!page) {
3563                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3564                     __swap_count(entry) == 1) {
3565                         /* skip swapcache */
3566                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3567                                                         vmf->address);
3568                         if (page) {
3569                                 __SetPageLocked(page);
3570                                 __SetPageSwapBacked(page);
3571
3572                                 if (mem_cgroup_swapin_charge_page(page,
3573                                         vma->vm_mm, GFP_KERNEL, entry)) {
3574                                         ret = VM_FAULT_OOM;
3575                                         goto out_page;
3576                                 }
3577                                 mem_cgroup_swapin_uncharge_swap(entry);
3578
3579                                 shadow = get_shadow_from_swap_cache(entry);
3580                                 if (shadow)
3581                                         workingset_refault(page_folio(page),
3582                                                                 shadow);
3583
3584                                 lru_cache_add(page);
3585
3586                                 /* To provide entry to swap_readpage() */
3587                                 set_page_private(page, entry.val);
3588                                 swap_readpage(page, true);
3589                                 set_page_private(page, 0);
3590                         }
3591                 } else {
3592                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3593                                                 vmf);
3594                         swapcache = page;
3595                 }
3596
3597                 if (!page) {
3598                         /*
3599                          * Back out if somebody else faulted in this pte
3600                          * while we released the pte lock.
3601                          */
3602                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3603                                         vmf->address, &vmf->ptl);
3604                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3605                                 ret = VM_FAULT_OOM;
3606                         goto unlock;
3607                 }
3608
3609                 /* Had to read the page from swap area: Major fault */
3610                 ret = VM_FAULT_MAJOR;
3611                 count_vm_event(PGMAJFAULT);
3612                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3613         } else if (PageHWPoison(page)) {
3614                 /*
3615                  * hwpoisoned dirty swapcache pages are kept for killing
3616                  * owner processes (which may be unknown at hwpoison time)
3617                  */
3618                 ret = VM_FAULT_HWPOISON;
3619                 goto out_release;
3620         }
3621
3622         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3623
3624         if (!locked) {
3625                 ret |= VM_FAULT_RETRY;
3626                 goto out_release;
3627         }
3628
3629         if (swapcache) {
3630                 /*
3631                  * Make sure try_to_free_swap or swapoff did not release the
3632                  * swapcache from under us.  The page pin, and pte_same test
3633                  * below, are not enough to exclude that.  Even if it is still
3634                  * swapcache, we need to check that the page's swap has not
3635                  * changed.
3636                  */
3637                 if (unlikely(!PageSwapCache(page) ||
3638                              page_private(page) != entry.val))
3639                         goto out_page;
3640
3641                 /*
3642                  * KSM sometimes has to copy on read faults, for example, if
3643                  * page->index of !PageKSM() pages would be nonlinear inside the
3644                  * anon VMA -- PageKSM() is lost on actual swapout.
3645                  */
3646                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3647                 if (unlikely(!page)) {
3648                         ret = VM_FAULT_OOM;
3649                         page = swapcache;
3650                         goto out_page;
3651                 }
3652
3653                 /*
3654                  * If we want to map a page that's in the swapcache writable, we
3655                  * have to detect via the refcount if we're really the exclusive
3656                  * owner. Try removing the extra reference from the local LRU
3657                  * pagevecs if required.
3658                  */
3659                 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3660                     !PageKsm(page) && !PageLRU(page))
3661                         lru_add_drain();
3662         }
3663
3664         cgroup_throttle_swaprate(page, GFP_KERNEL);
3665
3666         /*
3667          * Back out if somebody else already faulted in this pte.
3668          */
3669         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3670                         &vmf->ptl);
3671         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3672                 goto out_nomap;
3673
3674         if (unlikely(!PageUptodate(page))) {
3675                 ret = VM_FAULT_SIGBUS;
3676                 goto out_nomap;
3677         }
3678
3679         /*
3680          * Remove the swap entry and conditionally try to free up the swapcache.
3681          * We're already holding a reference on the page but haven't mapped it
3682          * yet.
3683          */
3684         swap_free(entry);
3685         if (should_try_to_free_swap(page, vma, vmf->flags))
3686                 try_to_free_swap(page);
3687
3688         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3689         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3690         pte = mk_pte(page, vma->vm_page_prot);
3691
3692         /*
3693          * Same logic as in do_wp_page(); however, optimize for fresh pages
3694          * that are certainly not shared because we just allocated them without
3695          * exposing them to the swapcache.
3696          */
3697         if ((vmf->flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3698             (page != swapcache || page_count(page) == 1)) {
3699                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3700                 vmf->flags &= ~FAULT_FLAG_WRITE;
3701                 ret |= VM_FAULT_WRITE;
3702                 exclusive = RMAP_EXCLUSIVE;
3703         }
3704         flush_icache_page(vma, page);
3705         if (pte_swp_soft_dirty(vmf->orig_pte))
3706                 pte = pte_mksoft_dirty(pte);
3707         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3708                 pte = pte_mkuffd_wp(pte);
3709                 pte = pte_wrprotect(pte);
3710         }
3711         vmf->orig_pte = pte;
3712
3713         /* ksm created a completely new copy */
3714         if (unlikely(page != swapcache && swapcache)) {
3715                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3716                 lru_cache_add_inactive_or_unevictable(page, vma);
3717         } else {
3718                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3719         }
3720
3721         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3722         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3723
3724         unlock_page(page);
3725         if (page != swapcache && swapcache) {
3726                 /*
3727                  * Hold the lock to avoid the swap entry to be reused
3728                  * until we take the PT lock for the pte_same() check
3729                  * (to avoid false positives from pte_same). For
3730                  * further safety release the lock after the swap_free
3731                  * so that the swap count won't change under a
3732                  * parallel locked swapcache.
3733                  */
3734                 unlock_page(swapcache);
3735                 put_page(swapcache);
3736         }
3737
3738         if (vmf->flags & FAULT_FLAG_WRITE) {
3739                 ret |= do_wp_page(vmf);
3740                 if (ret & VM_FAULT_ERROR)
3741                         ret &= VM_FAULT_ERROR;
3742                 goto out;
3743         }
3744
3745         /* No need to invalidate - it was non-present before */
3746         update_mmu_cache(vma, vmf->address, vmf->pte);
3747 unlock:
3748         pte_unmap_unlock(vmf->pte, vmf->ptl);
3749 out:
3750         if (si)
3751                 put_swap_device(si);
3752         return ret;
3753 out_nomap:
3754         pte_unmap_unlock(vmf->pte, vmf->ptl);
3755 out_page:
3756         unlock_page(page);
3757 out_release:
3758         put_page(page);
3759         if (page != swapcache && swapcache) {
3760                 unlock_page(swapcache);
3761                 put_page(swapcache);
3762         }
3763         if (si)
3764                 put_swap_device(si);
3765         return ret;
3766 }
3767
3768 /*
3769  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3770  * but allow concurrent faults), and pte mapped but not yet locked.
3771  * We return with mmap_lock still held, but pte unmapped and unlocked.
3772  */
3773 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3774 {
3775         struct vm_area_struct *vma = vmf->vma;
3776         struct page *page;
3777         vm_fault_t ret = 0;
3778         pte_t entry;
3779
3780         /* File mapping without ->vm_ops ? */
3781         if (vma->vm_flags & VM_SHARED)
3782                 return VM_FAULT_SIGBUS;
3783
3784         /*
3785          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3786          * pte_offset_map() on pmds where a huge pmd might be created
3787          * from a different thread.
3788          *
3789          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3790          * parallel threads are excluded by other means.
3791          *
3792          * Here we only have mmap_read_lock(mm).
3793          */
3794         if (pte_alloc(vma->vm_mm, vmf->pmd))
3795                 return VM_FAULT_OOM;
3796
3797         /* See comment in handle_pte_fault() */
3798         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3799                 return 0;
3800
3801         /* Use the zero-page for reads */
3802         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3803                         !mm_forbids_zeropage(vma->vm_mm)) {
3804                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3805                                                 vma->vm_page_prot));
3806                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3807                                 vmf->address, &vmf->ptl);
3808                 if (!pte_none(*vmf->pte)) {
3809                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3810                         goto unlock;
3811                 }
3812                 ret = check_stable_address_space(vma->vm_mm);
3813                 if (ret)
3814                         goto unlock;
3815                 /* Deliver the page fault to userland, check inside PT lock */
3816                 if (userfaultfd_missing(vma)) {
3817                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3818                         return handle_userfault(vmf, VM_UFFD_MISSING);
3819                 }
3820                 goto setpte;
3821         }
3822
3823         /* Allocate our own private page. */
3824         if (unlikely(anon_vma_prepare(vma)))
3825                 goto oom;
3826         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3827         if (!page)
3828                 goto oom;
3829
3830         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3831                 goto oom_free_page;
3832         cgroup_throttle_swaprate(page, GFP_KERNEL);
3833
3834         /*
3835          * The memory barrier inside __SetPageUptodate makes sure that
3836          * preceding stores to the page contents become visible before
3837          * the set_pte_at() write.
3838          */
3839         __SetPageUptodate(page);
3840
3841         entry = mk_pte(page, vma->vm_page_prot);
3842         entry = pte_sw_mkyoung(entry);
3843         if (vma->vm_flags & VM_WRITE)
3844                 entry = pte_mkwrite(pte_mkdirty(entry));
3845
3846         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3847                         &vmf->ptl);
3848         if (!pte_none(*vmf->pte)) {
3849                 update_mmu_cache(vma, vmf->address, vmf->pte);
3850                 goto release;
3851         }
3852
3853         ret = check_stable_address_space(vma->vm_mm);
3854         if (ret)
3855                 goto release;
3856
3857         /* Deliver the page fault to userland, check inside PT lock */
3858         if (userfaultfd_missing(vma)) {
3859                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3860                 put_page(page);
3861                 return handle_userfault(vmf, VM_UFFD_MISSING);
3862         }
3863
3864         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3865         page_add_new_anon_rmap(page, vma, vmf->address, false);
3866         lru_cache_add_inactive_or_unevictable(page, vma);
3867 setpte:
3868         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3869
3870         /* No need to invalidate - it was non-present before */
3871         update_mmu_cache(vma, vmf->address, vmf->pte);
3872 unlock:
3873         pte_unmap_unlock(vmf->pte, vmf->ptl);
3874         return ret;
3875 release:
3876         put_page(page);
3877         goto unlock;
3878 oom_free_page:
3879         put_page(page);
3880 oom:
3881         return VM_FAULT_OOM;
3882 }
3883
3884 /*
3885  * The mmap_lock must have been held on entry, and may have been
3886  * released depending on flags and vma->vm_ops->fault() return value.
3887  * See filemap_fault() and __lock_page_retry().
3888  */
3889 static vm_fault_t __do_fault(struct vm_fault *vmf)
3890 {
3891         struct vm_area_struct *vma = vmf->vma;
3892         vm_fault_t ret;
3893
3894         /*
3895          * Preallocate pte before we take page_lock because this might lead to
3896          * deadlocks for memcg reclaim which waits for pages under writeback:
3897          *                              lock_page(A)
3898          *                              SetPageWriteback(A)
3899          *                              unlock_page(A)
3900          * lock_page(B)
3901          *                              lock_page(B)
3902          * pte_alloc_one
3903          *   shrink_page_list
3904          *     wait_on_page_writeback(A)
3905          *                              SetPageWriteback(B)
3906          *                              unlock_page(B)
3907          *                              # flush A, B to clear the writeback
3908          */
3909         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3910                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3911                 if (!vmf->prealloc_pte)
3912                         return VM_FAULT_OOM;
3913         }
3914
3915         ret = vma->vm_ops->fault(vmf);
3916         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3917                             VM_FAULT_DONE_COW)))
3918                 return ret;
3919
3920         if (unlikely(PageHWPoison(vmf->page))) {
3921                 struct page *page = vmf->page;
3922                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3923                 if (ret & VM_FAULT_LOCKED) {
3924                         if (page_mapped(page))
3925                                 unmap_mapping_pages(page_mapping(page),
3926                                                     page->index, 1, false);
3927                         /* Retry if a clean page was removed from the cache. */
3928                         if (invalidate_inode_page(page))
3929                                 poisonret = VM_FAULT_NOPAGE;
3930                         unlock_page(page);
3931                 }
3932                 put_page(page);
3933                 vmf->page = NULL;
3934                 return poisonret;
3935         }
3936
3937         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3938                 lock_page(vmf->page);
3939         else
3940                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3941
3942         return ret;
3943 }
3944
3945 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3946 static void deposit_prealloc_pte(struct vm_fault *vmf)
3947 {
3948         struct vm_area_struct *vma = vmf->vma;
3949
3950         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3951         /*
3952          * We are going to consume the prealloc table,
3953          * count that as nr_ptes.
3954          */
3955         mm_inc_nr_ptes(vma->vm_mm);
3956         vmf->prealloc_pte = NULL;
3957 }
3958
3959 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3960 {
3961         struct vm_area_struct *vma = vmf->vma;
3962         bool write = vmf->flags & FAULT_FLAG_WRITE;
3963         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3964         pmd_t entry;
3965         int i;
3966         vm_fault_t ret = VM_FAULT_FALLBACK;
3967
3968         if (!transhuge_vma_suitable(vma, haddr))
3969                 return ret;
3970
3971         page = compound_head(page);
3972         if (compound_order(page) != HPAGE_PMD_ORDER)
3973                 return ret;
3974
3975         /*
3976          * Just backoff if any subpage of a THP is corrupted otherwise
3977          * the corrupted page may mapped by PMD silently to escape the
3978          * check.  This kind of THP just can be PTE mapped.  Access to
3979          * the corrupted subpage should trigger SIGBUS as expected.
3980          */
3981         if (unlikely(PageHasHWPoisoned(page)))
3982                 return ret;
3983
3984         /*
3985          * Archs like ppc64 need additional space to store information
3986          * related to pte entry. Use the preallocated table for that.
3987          */
3988         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3989                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3990                 if (!vmf->prealloc_pte)
3991                         return VM_FAULT_OOM;
3992         }
3993
3994         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3995         if (unlikely(!pmd_none(*vmf->pmd)))
3996                 goto out;
3997
3998         for (i = 0; i < HPAGE_PMD_NR; i++)
3999                 flush_icache_page(vma, page + i);
4000
4001         entry = mk_huge_pmd(page, vma->vm_page_prot);
4002         if (write)
4003                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4004
4005         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4006         page_add_file_rmap(page, vma, true);
4007
4008         /*
4009          * deposit and withdraw with pmd lock held
4010          */
4011         if (arch_needs_pgtable_deposit())
4012                 deposit_prealloc_pte(vmf);
4013
4014         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4015
4016         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4017
4018         /* fault is handled */
4019         ret = 0;
4020         count_vm_event(THP_FILE_MAPPED);
4021 out:
4022         spin_unlock(vmf->ptl);
4023         return ret;
4024 }
4025 #else
4026 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4027 {
4028         return VM_FAULT_FALLBACK;
4029 }
4030 #endif
4031
4032 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4033 {
4034         struct vm_area_struct *vma = vmf->vma;
4035         bool write = vmf->flags & FAULT_FLAG_WRITE;
4036         bool prefault = vmf->address != addr;
4037         pte_t entry;
4038
4039         flush_icache_page(vma, page);
4040         entry = mk_pte(page, vma->vm_page_prot);
4041
4042         if (prefault && arch_wants_old_prefaulted_pte())
4043                 entry = pte_mkold(entry);
4044         else
4045                 entry = pte_sw_mkyoung(entry);
4046
4047         if (write)
4048                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4049         /* copy-on-write page */
4050         if (write && !(vma->vm_flags & VM_SHARED)) {
4051                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4052                 page_add_new_anon_rmap(page, vma, addr, false);
4053                 lru_cache_add_inactive_or_unevictable(page, vma);
4054         } else {
4055                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4056                 page_add_file_rmap(page, vma, false);
4057         }
4058         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4059 }
4060
4061 /**
4062  * finish_fault - finish page fault once we have prepared the page to fault
4063  *
4064  * @vmf: structure describing the fault
4065  *
4066  * This function handles all that is needed to finish a page fault once the
4067  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4068  * given page, adds reverse page mapping, handles memcg charges and LRU
4069  * addition.
4070  *
4071  * The function expects the page to be locked and on success it consumes a
4072  * reference of a page being mapped (for the PTE which maps it).
4073  *
4074  * Return: %0 on success, %VM_FAULT_ code in case of error.
4075  */
4076 vm_fault_t finish_fault(struct vm_fault *vmf)
4077 {
4078         struct vm_area_struct *vma = vmf->vma;
4079         struct page *page;
4080         vm_fault_t ret;
4081
4082         /* Did we COW the page? */
4083         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4084                 page = vmf->cow_page;
4085         else
4086                 page = vmf->page;
4087
4088         /*
4089          * check even for read faults because we might have lost our CoWed
4090          * page
4091          */
4092         if (!(vma->vm_flags & VM_SHARED)) {
4093                 ret = check_stable_address_space(vma->vm_mm);
4094                 if (ret)
4095                         return ret;
4096         }
4097
4098         if (pmd_none(*vmf->pmd)) {
4099                 if (PageTransCompound(page)) {
4100                         ret = do_set_pmd(vmf, page);
4101                         if (ret != VM_FAULT_FALLBACK)
4102                                 return ret;
4103                 }
4104
4105                 if (vmf->prealloc_pte)
4106                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4107                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4108                         return VM_FAULT_OOM;
4109         }
4110
4111         /* See comment in handle_pte_fault() */
4112         if (pmd_devmap_trans_unstable(vmf->pmd))
4113                 return 0;
4114
4115         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4116                                       vmf->address, &vmf->ptl);
4117         ret = 0;
4118         /* Re-check under ptl */
4119         if (likely(pte_none(*vmf->pte)))
4120                 do_set_pte(vmf, page, vmf->address);
4121         else
4122                 ret = VM_FAULT_NOPAGE;
4123
4124         update_mmu_tlb(vma, vmf->address, vmf->pte);
4125         pte_unmap_unlock(vmf->pte, vmf->ptl);
4126         return ret;
4127 }
4128
4129 static unsigned long fault_around_bytes __read_mostly =
4130         rounddown_pow_of_two(65536);
4131
4132 #ifdef CONFIG_DEBUG_FS
4133 static int fault_around_bytes_get(void *data, u64 *val)
4134 {
4135         *val = fault_around_bytes;
4136         return 0;
4137 }
4138
4139 /*
4140  * fault_around_bytes must be rounded down to the nearest page order as it's
4141  * what do_fault_around() expects to see.
4142  */
4143 static int fault_around_bytes_set(void *data, u64 val)
4144 {
4145         if (val / PAGE_SIZE > PTRS_PER_PTE)
4146                 return -EINVAL;
4147         if (val > PAGE_SIZE)
4148                 fault_around_bytes = rounddown_pow_of_two(val);
4149         else
4150                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4151         return 0;
4152 }
4153 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4154                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4155
4156 static int __init fault_around_debugfs(void)
4157 {
4158         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4159                                    &fault_around_bytes_fops);
4160         return 0;
4161 }
4162 late_initcall(fault_around_debugfs);
4163 #endif
4164
4165 /*
4166  * do_fault_around() tries to map few pages around the fault address. The hope
4167  * is that the pages will be needed soon and this will lower the number of
4168  * faults to handle.
4169  *
4170  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4171  * not ready to be mapped: not up-to-date, locked, etc.
4172  *
4173  * This function is called with the page table lock taken. In the split ptlock
4174  * case the page table lock only protects only those entries which belong to
4175  * the page table corresponding to the fault address.
4176  *
4177  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4178  * only once.
4179  *
4180  * fault_around_bytes defines how many bytes we'll try to map.
4181  * do_fault_around() expects it to be set to a power of two less than or equal
4182  * to PTRS_PER_PTE.
4183  *
4184  * The virtual address of the area that we map is naturally aligned to
4185  * fault_around_bytes rounded down to the machine page size
4186  * (and therefore to page order).  This way it's easier to guarantee
4187  * that we don't cross page table boundaries.
4188  */
4189 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4190 {
4191         unsigned long address = vmf->address, nr_pages, mask;
4192         pgoff_t start_pgoff = vmf->pgoff;
4193         pgoff_t end_pgoff;
4194         int off;
4195
4196         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4197         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4198
4199         address = max(address & mask, vmf->vma->vm_start);
4200         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4201         start_pgoff -= off;
4202
4203         /*
4204          *  end_pgoff is either the end of the page table, the end of
4205          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4206          */
4207         end_pgoff = start_pgoff -
4208                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4209                 PTRS_PER_PTE - 1;
4210         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4211                         start_pgoff + nr_pages - 1);
4212
4213         if (pmd_none(*vmf->pmd)) {
4214                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4215                 if (!vmf->prealloc_pte)
4216                         return VM_FAULT_OOM;
4217         }
4218
4219         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4220 }
4221
4222 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4223 {
4224         struct vm_area_struct *vma = vmf->vma;
4225         vm_fault_t ret = 0;
4226
4227         /*
4228          * Let's call ->map_pages() first and use ->fault() as fallback
4229          * if page by the offset is not ready to be mapped (cold cache or
4230          * something).
4231          */
4232         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4233                 if (likely(!userfaultfd_minor(vmf->vma))) {
4234                         ret = do_fault_around(vmf);
4235                         if (ret)
4236                                 return ret;
4237                 }
4238         }
4239
4240         ret = __do_fault(vmf);
4241         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4242                 return ret;
4243
4244         ret |= finish_fault(vmf);
4245         unlock_page(vmf->page);
4246         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4247                 put_page(vmf->page);
4248         return ret;
4249 }
4250
4251 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4252 {
4253         struct vm_area_struct *vma = vmf->vma;
4254         vm_fault_t ret;
4255
4256         if (unlikely(anon_vma_prepare(vma)))
4257                 return VM_FAULT_OOM;
4258
4259         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4260         if (!vmf->cow_page)
4261                 return VM_FAULT_OOM;
4262
4263         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4264                                 GFP_KERNEL)) {
4265                 put_page(vmf->cow_page);
4266                 return VM_FAULT_OOM;
4267         }
4268         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4269
4270         ret = __do_fault(vmf);
4271         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4272                 goto uncharge_out;
4273         if (ret & VM_FAULT_DONE_COW)
4274                 return ret;
4275
4276         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4277         __SetPageUptodate(vmf->cow_page);
4278
4279         ret |= finish_fault(vmf);
4280         unlock_page(vmf->page);
4281         put_page(vmf->page);
4282         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4283                 goto uncharge_out;
4284         return ret;
4285 uncharge_out:
4286         put_page(vmf->cow_page);
4287         return ret;
4288 }
4289
4290 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4291 {
4292         struct vm_area_struct *vma = vmf->vma;
4293         vm_fault_t ret, tmp;
4294
4295         ret = __do_fault(vmf);
4296         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4297                 return ret;
4298
4299         /*
4300          * Check if the backing address space wants to know that the page is
4301          * about to become writable
4302          */
4303         if (vma->vm_ops->page_mkwrite) {
4304                 unlock_page(vmf->page);
4305                 tmp = do_page_mkwrite(vmf);
4306                 if (unlikely(!tmp ||
4307                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4308                         put_page(vmf->page);
4309                         return tmp;
4310                 }
4311         }
4312
4313         ret |= finish_fault(vmf);
4314         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4315                                         VM_FAULT_RETRY))) {
4316                 unlock_page(vmf->page);
4317                 put_page(vmf->page);
4318                 return ret;
4319         }
4320
4321         ret |= fault_dirty_shared_page(vmf);
4322         return ret;
4323 }
4324
4325 /*
4326  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4327  * but allow concurrent faults).
4328  * The mmap_lock may have been released depending on flags and our
4329  * return value.  See filemap_fault() and __folio_lock_or_retry().
4330  * If mmap_lock is released, vma may become invalid (for example
4331  * by other thread calling munmap()).
4332  */
4333 static vm_fault_t do_fault(struct vm_fault *vmf)
4334 {
4335         struct vm_area_struct *vma = vmf->vma;
4336         struct mm_struct *vm_mm = vma->vm_mm;
4337         vm_fault_t ret;
4338
4339         /*
4340          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4341          */
4342         if (!vma->vm_ops->fault) {
4343                 /*
4344                  * If we find a migration pmd entry or a none pmd entry, which
4345                  * should never happen, return SIGBUS
4346                  */
4347                 if (unlikely(!pmd_present(*vmf->pmd)))
4348                         ret = VM_FAULT_SIGBUS;
4349                 else {
4350                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4351                                                        vmf->pmd,
4352                                                        vmf->address,
4353                                                        &vmf->ptl);
4354                         /*
4355                          * Make sure this is not a temporary clearing of pte
4356                          * by holding ptl and checking again. A R/M/W update
4357                          * of pte involves: take ptl, clearing the pte so that
4358                          * we don't have concurrent modification by hardware
4359                          * followed by an update.
4360                          */
4361                         if (unlikely(pte_none(*vmf->pte)))
4362                                 ret = VM_FAULT_SIGBUS;
4363                         else
4364                                 ret = VM_FAULT_NOPAGE;
4365
4366                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4367                 }
4368         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4369                 ret = do_read_fault(vmf);
4370         else if (!(vma->vm_flags & VM_SHARED))
4371                 ret = do_cow_fault(vmf);
4372         else
4373                 ret = do_shared_fault(vmf);
4374
4375         /* preallocated pagetable is unused: free it */
4376         if (vmf->prealloc_pte) {
4377                 pte_free(vm_mm, vmf->prealloc_pte);
4378                 vmf->prealloc_pte = NULL;
4379         }
4380         return ret;
4381 }
4382
4383 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4384                       unsigned long addr, int page_nid, int *flags)
4385 {
4386         get_page(page);
4387
4388         count_vm_numa_event(NUMA_HINT_FAULTS);
4389         if (page_nid == numa_node_id()) {
4390                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4391                 *flags |= TNF_FAULT_LOCAL;
4392         }
4393
4394         return mpol_misplaced(page, vma, addr);
4395 }
4396
4397 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4398 {
4399         struct vm_area_struct *vma = vmf->vma;
4400         struct page *page = NULL;
4401         int page_nid = NUMA_NO_NODE;
4402         int last_cpupid;
4403         int target_nid;
4404         pte_t pte, old_pte;
4405         bool was_writable = pte_savedwrite(vmf->orig_pte);
4406         int flags = 0;
4407
4408         /*
4409          * The "pte" at this point cannot be used safely without
4410          * validation through pte_unmap_same(). It's of NUMA type but
4411          * the pfn may be screwed if the read is non atomic.
4412          */
4413         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4414         spin_lock(vmf->ptl);
4415         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4416                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4417                 goto out;
4418         }
4419
4420         /* Get the normal PTE  */
4421         old_pte = ptep_get(vmf->pte);
4422         pte = pte_modify(old_pte, vma->vm_page_prot);
4423
4424         page = vm_normal_page(vma, vmf->address, pte);
4425         if (!page)
4426                 goto out_map;
4427
4428         /* TODO: handle PTE-mapped THP */
4429         if (PageCompound(page))
4430                 goto out_map;
4431
4432         /*
4433          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4434          * much anyway since they can be in shared cache state. This misses
4435          * the case where a mapping is writable but the process never writes
4436          * to it but pte_write gets cleared during protection updates and
4437          * pte_dirty has unpredictable behaviour between PTE scan updates,
4438          * background writeback, dirty balancing and application behaviour.
4439          */
4440         if (!was_writable)
4441                 flags |= TNF_NO_GROUP;
4442
4443         /*
4444          * Flag if the page is shared between multiple address spaces. This
4445          * is later used when determining whether to group tasks together
4446          */
4447         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4448                 flags |= TNF_SHARED;
4449
4450         last_cpupid = page_cpupid_last(page);
4451         page_nid = page_to_nid(page);
4452         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4453                         &flags);
4454         if (target_nid == NUMA_NO_NODE) {
4455                 put_page(page);
4456                 goto out_map;
4457         }
4458         pte_unmap_unlock(vmf->pte, vmf->ptl);
4459
4460         /* Migrate to the requested node */
4461         if (migrate_misplaced_page(page, vma, target_nid)) {
4462                 page_nid = target_nid;
4463                 flags |= TNF_MIGRATED;
4464         } else {
4465                 flags |= TNF_MIGRATE_FAIL;
4466                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4467                 spin_lock(vmf->ptl);
4468                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4469                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4470                         goto out;
4471                 }
4472                 goto out_map;
4473         }
4474
4475 out:
4476         if (page_nid != NUMA_NO_NODE)
4477                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4478         return 0;
4479 out_map:
4480         /*
4481          * Make it present again, depending on how arch implements
4482          * non-accessible ptes, some can allow access by kernel mode.
4483          */
4484         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4485         pte = pte_modify(old_pte, vma->vm_page_prot);
4486         pte = pte_mkyoung(pte);
4487         if (was_writable)
4488                 pte = pte_mkwrite(pte);
4489         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4490         update_mmu_cache(vma, vmf->address, vmf->pte);
4491         pte_unmap_unlock(vmf->pte, vmf->ptl);
4492         goto out;
4493 }
4494
4495 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4496 {
4497         if (vma_is_anonymous(vmf->vma))
4498                 return do_huge_pmd_anonymous_page(vmf);
4499         if (vmf->vma->vm_ops->huge_fault)
4500                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4501         return VM_FAULT_FALLBACK;
4502 }
4503
4504 /* `inline' is required to avoid gcc 4.1.2 build error */
4505 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4506 {
4507         if (vma_is_anonymous(vmf->vma)) {
4508                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4509                         return handle_userfault(vmf, VM_UFFD_WP);
4510                 return do_huge_pmd_wp_page(vmf);
4511         }
4512         if (vmf->vma->vm_ops->huge_fault) {
4513                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4514
4515                 if (!(ret & VM_FAULT_FALLBACK))
4516                         return ret;
4517         }
4518
4519         /* COW or write-notify handled on pte level: split pmd. */
4520         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4521
4522         return VM_FAULT_FALLBACK;
4523 }
4524
4525 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4526 {
4527 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4528         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4529         /* No support for anonymous transparent PUD pages yet */
4530         if (vma_is_anonymous(vmf->vma))
4531                 goto split;
4532         if (vmf->vma->vm_ops->huge_fault) {
4533                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4534
4535                 if (!(ret & VM_FAULT_FALLBACK))
4536                         return ret;
4537         }
4538 split:
4539         /* COW or write-notify not handled on PUD level: split pud.*/
4540         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4541 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4542         return VM_FAULT_FALLBACK;
4543 }
4544
4545 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4546 {
4547 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4548         /* No support for anonymous transparent PUD pages yet */
4549         if (vma_is_anonymous(vmf->vma))
4550                 return VM_FAULT_FALLBACK;
4551         if (vmf->vma->vm_ops->huge_fault)
4552                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4553 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4554         return VM_FAULT_FALLBACK;
4555 }
4556
4557 /*
4558  * These routines also need to handle stuff like marking pages dirty
4559  * and/or accessed for architectures that don't do it in hardware (most
4560  * RISC architectures).  The early dirtying is also good on the i386.
4561  *
4562  * There is also a hook called "update_mmu_cache()" that architectures
4563  * with external mmu caches can use to update those (ie the Sparc or
4564  * PowerPC hashed page tables that act as extended TLBs).
4565  *
4566  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4567  * concurrent faults).
4568  *
4569  * The mmap_lock may have been released depending on flags and our return value.
4570  * See filemap_fault() and __folio_lock_or_retry().
4571  */
4572 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4573 {
4574         pte_t entry;
4575
4576         if (unlikely(pmd_none(*vmf->pmd))) {
4577                 /*
4578                  * Leave __pte_alloc() until later: because vm_ops->fault may
4579                  * want to allocate huge page, and if we expose page table
4580                  * for an instant, it will be difficult to retract from
4581                  * concurrent faults and from rmap lookups.
4582                  */
4583                 vmf->pte = NULL;
4584         } else {
4585                 /*
4586                  * If a huge pmd materialized under us just retry later.  Use
4587                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4588                  * of pmd_trans_huge() to ensure the pmd didn't become
4589                  * pmd_trans_huge under us and then back to pmd_none, as a
4590                  * result of MADV_DONTNEED running immediately after a huge pmd
4591                  * fault in a different thread of this mm, in turn leading to a
4592                  * misleading pmd_trans_huge() retval. All we have to ensure is
4593                  * that it is a regular pmd that we can walk with
4594                  * pte_offset_map() and we can do that through an atomic read
4595                  * in C, which is what pmd_trans_unstable() provides.
4596                  */
4597                 if (pmd_devmap_trans_unstable(vmf->pmd))
4598                         return 0;
4599                 /*
4600                  * A regular pmd is established and it can't morph into a huge
4601                  * pmd from under us anymore at this point because we hold the
4602                  * mmap_lock read mode and khugepaged takes it in write mode.
4603                  * So now it's safe to run pte_offset_map().
4604                  */
4605                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4606                 vmf->orig_pte = *vmf->pte;
4607
4608                 /*
4609                  * some architectures can have larger ptes than wordsize,
4610                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4611                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4612                  * accesses.  The code below just needs a consistent view
4613                  * for the ifs and we later double check anyway with the
4614                  * ptl lock held. So here a barrier will do.
4615                  */
4616                 barrier();
4617                 if (pte_none(vmf->orig_pte)) {
4618                         pte_unmap(vmf->pte);
4619                         vmf->pte = NULL;
4620                 }
4621         }
4622
4623         if (!vmf->pte) {
4624                 if (vma_is_anonymous(vmf->vma))
4625                         return do_anonymous_page(vmf);
4626                 else
4627                         return do_fault(vmf);
4628         }
4629
4630         if (!pte_present(vmf->orig_pte))
4631                 return do_swap_page(vmf);
4632
4633         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4634                 return do_numa_page(vmf);
4635
4636         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4637         spin_lock(vmf->ptl);
4638         entry = vmf->orig_pte;
4639         if (unlikely(!pte_same(*vmf->pte, entry))) {
4640                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4641                 goto unlock;
4642         }
4643         if (vmf->flags & FAULT_FLAG_WRITE) {
4644                 if (!pte_write(entry))
4645                         return do_wp_page(vmf);
4646                 entry = pte_mkdirty(entry);
4647         }
4648         entry = pte_mkyoung(entry);
4649         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4650                                 vmf->flags & FAULT_FLAG_WRITE)) {
4651                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4652         } else {
4653                 /* Skip spurious TLB flush for retried page fault */
4654                 if (vmf->flags & FAULT_FLAG_TRIED)
4655                         goto unlock;
4656                 /*
4657                  * This is needed only for protection faults but the arch code
4658                  * is not yet telling us if this is a protection fault or not.
4659                  * This still avoids useless tlb flushes for .text page faults
4660                  * with threads.
4661                  */
4662                 if (vmf->flags & FAULT_FLAG_WRITE)
4663                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4664         }
4665 unlock:
4666         pte_unmap_unlock(vmf->pte, vmf->ptl);
4667         return 0;
4668 }
4669
4670 /*
4671  * By the time we get here, we already hold the mm semaphore
4672  *
4673  * The mmap_lock may have been released depending on flags and our
4674  * return value.  See filemap_fault() and __folio_lock_or_retry().
4675  */
4676 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4677                 unsigned long address, unsigned int flags)
4678 {
4679         struct vm_fault vmf = {
4680                 .vma = vma,
4681                 .address = address & PAGE_MASK,
4682                 .real_address = address,
4683                 .flags = flags,
4684                 .pgoff = linear_page_index(vma, address),
4685                 .gfp_mask = __get_fault_gfp_mask(vma),
4686         };
4687         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4688         struct mm_struct *mm = vma->vm_mm;
4689         pgd_t *pgd;
4690         p4d_t *p4d;
4691         vm_fault_t ret;
4692
4693         pgd = pgd_offset(mm, address);
4694         p4d = p4d_alloc(mm, pgd, address);
4695         if (!p4d)
4696                 return VM_FAULT_OOM;
4697
4698         vmf.pud = pud_alloc(mm, p4d, address);
4699         if (!vmf.pud)
4700                 return VM_FAULT_OOM;
4701 retry_pud:
4702         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4703                 ret = create_huge_pud(&vmf);
4704                 if (!(ret & VM_FAULT_FALLBACK))
4705                         return ret;
4706         } else {
4707                 pud_t orig_pud = *vmf.pud;
4708
4709                 barrier();
4710                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4711
4712                         /* NUMA case for anonymous PUDs would go here */
4713
4714                         if (dirty && !pud_write(orig_pud)) {
4715                                 ret = wp_huge_pud(&vmf, orig_pud);
4716                                 if (!(ret & VM_FAULT_FALLBACK))
4717                                         return ret;
4718                         } else {
4719                                 huge_pud_set_accessed(&vmf, orig_pud);
4720                                 return 0;
4721                         }
4722                 }
4723         }
4724
4725         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4726         if (!vmf.pmd)
4727                 return VM_FAULT_OOM;
4728
4729         /* Huge pud page fault raced with pmd_alloc? */
4730         if (pud_trans_unstable(vmf.pud))
4731                 goto retry_pud;
4732
4733         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4734                 ret = create_huge_pmd(&vmf);
4735                 if (!(ret & VM_FAULT_FALLBACK))
4736                         return ret;
4737         } else {
4738                 vmf.orig_pmd = *vmf.pmd;
4739
4740                 barrier();
4741                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4742                         VM_BUG_ON(thp_migration_supported() &&
4743                                           !is_pmd_migration_entry(vmf.orig_pmd));
4744                         if (is_pmd_migration_entry(vmf.orig_pmd))
4745                                 pmd_migration_entry_wait(mm, vmf.pmd);
4746                         return 0;
4747                 }
4748                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4749                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4750                                 return do_huge_pmd_numa_page(&vmf);
4751
4752                         if (dirty && !pmd_write(vmf.orig_pmd)) {
4753                                 ret = wp_huge_pmd(&vmf);
4754                                 if (!(ret & VM_FAULT_FALLBACK))
4755                                         return ret;
4756                         } else {
4757                                 huge_pmd_set_accessed(&vmf);
4758                                 return 0;
4759                         }
4760                 }
4761         }
4762
4763         return handle_pte_fault(&vmf);
4764 }
4765
4766 /**
4767  * mm_account_fault - Do page fault accounting
4768  *
4769  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4770  *        of perf event counters, but we'll still do the per-task accounting to
4771  *        the task who triggered this page fault.
4772  * @address: the faulted address.
4773  * @flags: the fault flags.
4774  * @ret: the fault retcode.
4775  *
4776  * This will take care of most of the page fault accounting.  Meanwhile, it
4777  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4778  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4779  * still be in per-arch page fault handlers at the entry of page fault.
4780  */
4781 static inline void mm_account_fault(struct pt_regs *regs,
4782                                     unsigned long address, unsigned int flags,
4783                                     vm_fault_t ret)
4784 {
4785         bool major;
4786
4787         /*
4788          * We don't do accounting for some specific faults:
4789          *
4790          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4791          *   includes arch_vma_access_permitted() failing before reaching here.
4792          *   So this is not a "this many hardware page faults" counter.  We
4793          *   should use the hw profiling for that.
4794          *
4795          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4796          *   once they're completed.
4797          */
4798         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4799                 return;
4800
4801         /*
4802          * We define the fault as a major fault when the final successful fault
4803          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4804          * handle it immediately previously).
4805          */
4806         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4807
4808         if (major)
4809                 current->maj_flt++;
4810         else
4811                 current->min_flt++;
4812
4813         /*
4814          * If the fault is done for GUP, regs will be NULL.  We only do the
4815          * accounting for the per thread fault counters who triggered the
4816          * fault, and we skip the perf event updates.
4817          */
4818         if (!regs)
4819                 return;
4820
4821         if (major)
4822                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4823         else
4824                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4825 }
4826
4827 /*
4828  * By the time we get here, we already hold the mm semaphore
4829  *
4830  * The mmap_lock may have been released depending on flags and our
4831  * return value.  See filemap_fault() and __folio_lock_or_retry().
4832  */
4833 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4834                            unsigned int flags, struct pt_regs *regs)
4835 {
4836         vm_fault_t ret;
4837
4838         __set_current_state(TASK_RUNNING);
4839
4840         count_vm_event(PGFAULT);
4841         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4842
4843         /* do counter updates before entering really critical section. */
4844         check_sync_rss_stat(current);
4845
4846         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4847                                             flags & FAULT_FLAG_INSTRUCTION,
4848                                             flags & FAULT_FLAG_REMOTE))
4849                 return VM_FAULT_SIGSEGV;
4850
4851         /*
4852          * Enable the memcg OOM handling for faults triggered in user
4853          * space.  Kernel faults are handled more gracefully.
4854          */
4855         if (flags & FAULT_FLAG_USER)
4856                 mem_cgroup_enter_user_fault();
4857
4858         if (unlikely(is_vm_hugetlb_page(vma)))
4859                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4860         else
4861                 ret = __handle_mm_fault(vma, address, flags);
4862
4863         if (flags & FAULT_FLAG_USER) {
4864                 mem_cgroup_exit_user_fault();
4865                 /*
4866                  * The task may have entered a memcg OOM situation but
4867                  * if the allocation error was handled gracefully (no
4868                  * VM_FAULT_OOM), there is no need to kill anything.
4869                  * Just clean up the OOM state peacefully.
4870                  */
4871                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4872                         mem_cgroup_oom_synchronize(false);
4873         }
4874
4875         mm_account_fault(regs, address, flags, ret);
4876
4877         return ret;
4878 }
4879 EXPORT_SYMBOL_GPL(handle_mm_fault);
4880
4881 #ifndef __PAGETABLE_P4D_FOLDED
4882 /*
4883  * Allocate p4d page table.
4884  * We've already handled the fast-path in-line.
4885  */
4886 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4887 {
4888         p4d_t *new = p4d_alloc_one(mm, address);
4889         if (!new)
4890                 return -ENOMEM;
4891
4892         spin_lock(&mm->page_table_lock);
4893         if (pgd_present(*pgd)) {        /* Another has populated it */
4894                 p4d_free(mm, new);
4895         } else {
4896                 smp_wmb(); /* See comment in pmd_install() */
4897                 pgd_populate(mm, pgd, new);
4898         }
4899         spin_unlock(&mm->page_table_lock);
4900         return 0;
4901 }
4902 #endif /* __PAGETABLE_P4D_FOLDED */
4903
4904 #ifndef __PAGETABLE_PUD_FOLDED
4905 /*
4906  * Allocate page upper directory.
4907  * We've already handled the fast-path in-line.
4908  */
4909 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4910 {
4911         pud_t *new = pud_alloc_one(mm, address);
4912         if (!new)
4913                 return -ENOMEM;
4914
4915         spin_lock(&mm->page_table_lock);
4916         if (!p4d_present(*p4d)) {
4917                 mm_inc_nr_puds(mm);
4918                 smp_wmb(); /* See comment in pmd_install() */
4919                 p4d_populate(mm, p4d, new);
4920         } else  /* Another has populated it */
4921                 pud_free(mm, new);
4922         spin_unlock(&mm->page_table_lock);
4923         return 0;
4924 }
4925 #endif /* __PAGETABLE_PUD_FOLDED */
4926
4927 #ifndef __PAGETABLE_PMD_FOLDED
4928 /*
4929  * Allocate page middle directory.
4930  * We've already handled the fast-path in-line.
4931  */
4932 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4933 {
4934         spinlock_t *ptl;
4935         pmd_t *new = pmd_alloc_one(mm, address);
4936         if (!new)
4937                 return -ENOMEM;
4938
4939         ptl = pud_lock(mm, pud);
4940         if (!pud_present(*pud)) {
4941                 mm_inc_nr_pmds(mm);
4942                 smp_wmb(); /* See comment in pmd_install() */
4943                 pud_populate(mm, pud, new);
4944         } else {        /* Another has populated it */
4945                 pmd_free(mm, new);
4946         }
4947         spin_unlock(ptl);
4948         return 0;
4949 }
4950 #endif /* __PAGETABLE_PMD_FOLDED */
4951
4952 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4953                           struct mmu_notifier_range *range, pte_t **ptepp,
4954                           pmd_t **pmdpp, spinlock_t **ptlp)
4955 {
4956         pgd_t *pgd;
4957         p4d_t *p4d;
4958         pud_t *pud;
4959         pmd_t *pmd;
4960         pte_t *ptep;
4961
4962         pgd = pgd_offset(mm, address);
4963         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4964                 goto out;
4965
4966         p4d = p4d_offset(pgd, address);
4967         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4968                 goto out;
4969
4970         pud = pud_offset(p4d, address);
4971         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4972                 goto out;
4973
4974         pmd = pmd_offset(pud, address);
4975         VM_BUG_ON(pmd_trans_huge(*pmd));
4976
4977         if (pmd_huge(*pmd)) {
4978                 if (!pmdpp)
4979                         goto out;
4980
4981                 if (range) {
4982                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4983                                                 NULL, mm, address & PMD_MASK,
4984                                                 (address & PMD_MASK) + PMD_SIZE);
4985                         mmu_notifier_invalidate_range_start(range);
4986                 }
4987                 *ptlp = pmd_lock(mm, pmd);
4988                 if (pmd_huge(*pmd)) {
4989                         *pmdpp = pmd;
4990                         return 0;
4991                 }
4992                 spin_unlock(*ptlp);
4993                 if (range)
4994                         mmu_notifier_invalidate_range_end(range);
4995         }
4996
4997         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4998                 goto out;
4999
5000         if (range) {
5001                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
5002                                         address & PAGE_MASK,
5003                                         (address & PAGE_MASK) + PAGE_SIZE);
5004                 mmu_notifier_invalidate_range_start(range);
5005         }
5006         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5007         if (!pte_present(*ptep))
5008                 goto unlock;
5009         *ptepp = ptep;
5010         return 0;
5011 unlock:
5012         pte_unmap_unlock(ptep, *ptlp);
5013         if (range)
5014                 mmu_notifier_invalidate_range_end(range);
5015 out:
5016         return -EINVAL;
5017 }
5018
5019 /**
5020  * follow_pte - look up PTE at a user virtual address
5021  * @mm: the mm_struct of the target address space
5022  * @address: user virtual address
5023  * @ptepp: location to store found PTE
5024  * @ptlp: location to store the lock for the PTE
5025  *
5026  * On a successful return, the pointer to the PTE is stored in @ptepp;
5027  * the corresponding lock is taken and its location is stored in @ptlp.
5028  * The contents of the PTE are only stable until @ptlp is released;
5029  * any further use, if any, must be protected against invalidation
5030  * with MMU notifiers.
5031  *
5032  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5033  * should be taken for read.
5034  *
5035  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5036  * it is not a good general-purpose API.
5037  *
5038  * Return: zero on success, -ve otherwise.
5039  */
5040 int follow_pte(struct mm_struct *mm, unsigned long address,
5041                pte_t **ptepp, spinlock_t **ptlp)
5042 {
5043         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
5044 }
5045 EXPORT_SYMBOL_GPL(follow_pte);
5046
5047 /**
5048  * follow_pfn - look up PFN at a user virtual address
5049  * @vma: memory mapping
5050  * @address: user virtual address
5051  * @pfn: location to store found PFN
5052  *
5053  * Only IO mappings and raw PFN mappings are allowed.
5054  *
5055  * This function does not allow the caller to read the permissions
5056  * of the PTE.  Do not use it.
5057  *
5058  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5059  */
5060 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5061         unsigned long *pfn)
5062 {
5063         int ret = -EINVAL;
5064         spinlock_t *ptl;
5065         pte_t *ptep;
5066
5067         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5068                 return ret;
5069
5070         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5071         if (ret)
5072                 return ret;
5073         *pfn = pte_pfn(*ptep);
5074         pte_unmap_unlock(ptep, ptl);
5075         return 0;
5076 }
5077 EXPORT_SYMBOL(follow_pfn);
5078
5079 #ifdef CONFIG_HAVE_IOREMAP_PROT
5080 int follow_phys(struct vm_area_struct *vma,
5081                 unsigned long address, unsigned int flags,
5082                 unsigned long *prot, resource_size_t *phys)
5083 {
5084         int ret = -EINVAL;
5085         pte_t *ptep, pte;
5086         spinlock_t *ptl;
5087
5088         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5089                 goto out;
5090
5091         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5092                 goto out;
5093         pte = *ptep;
5094
5095         if ((flags & FOLL_WRITE) && !pte_write(pte))
5096                 goto unlock;
5097
5098         *prot = pgprot_val(pte_pgprot(pte));
5099         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5100
5101         ret = 0;
5102 unlock:
5103         pte_unmap_unlock(ptep, ptl);
5104 out:
5105         return ret;
5106 }
5107
5108 /**
5109  * generic_access_phys - generic implementation for iomem mmap access
5110  * @vma: the vma to access
5111  * @addr: userspace address, not relative offset within @vma
5112  * @buf: buffer to read/write
5113  * @len: length of transfer
5114  * @write: set to FOLL_WRITE when writing, otherwise reading
5115  *
5116  * This is a generic implementation for &vm_operations_struct.access for an
5117  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5118  * not page based.
5119  */
5120 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5121                         void *buf, int len, int write)
5122 {
5123         resource_size_t phys_addr;
5124         unsigned long prot = 0;
5125         void __iomem *maddr;
5126         pte_t *ptep, pte;
5127         spinlock_t *ptl;
5128         int offset = offset_in_page(addr);
5129         int ret = -EINVAL;
5130
5131         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5132                 return -EINVAL;
5133
5134 retry:
5135         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5136                 return -EINVAL;
5137         pte = *ptep;
5138         pte_unmap_unlock(ptep, ptl);
5139
5140         prot = pgprot_val(pte_pgprot(pte));
5141         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5142
5143         if ((write & FOLL_WRITE) && !pte_write(pte))
5144                 return -EINVAL;
5145
5146         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5147         if (!maddr)
5148                 return -ENOMEM;
5149
5150         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5151                 goto out_unmap;
5152
5153         if (!pte_same(pte, *ptep)) {
5154                 pte_unmap_unlock(ptep, ptl);
5155                 iounmap(maddr);
5156
5157                 goto retry;
5158         }
5159
5160         if (write)
5161                 memcpy_toio(maddr + offset, buf, len);
5162         else
5163                 memcpy_fromio(buf, maddr + offset, len);
5164         ret = len;
5165         pte_unmap_unlock(ptep, ptl);
5166 out_unmap:
5167         iounmap(maddr);
5168
5169         return ret;
5170 }
5171 EXPORT_SYMBOL_GPL(generic_access_phys);
5172 #endif
5173
5174 /*
5175  * Access another process' address space as given in mm.
5176  */
5177 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5178                        int len, unsigned int gup_flags)
5179 {
5180         struct vm_area_struct *vma;
5181         void *old_buf = buf;
5182         int write = gup_flags & FOLL_WRITE;
5183
5184         if (mmap_read_lock_killable(mm))
5185                 return 0;
5186
5187         /* ignore errors, just check how much was successfully transferred */
5188         while (len) {
5189                 int bytes, ret, offset;
5190                 void *maddr;
5191                 struct page *page = NULL;
5192
5193                 ret = get_user_pages_remote(mm, addr, 1,
5194                                 gup_flags, &page, &vma, NULL);
5195                 if (ret <= 0) {
5196 #ifndef CONFIG_HAVE_IOREMAP_PROT
5197                         break;
5198 #else
5199                         /*
5200                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5201                          * we can access using slightly different code.
5202                          */
5203                         vma = vma_lookup(mm, addr);
5204                         if (!vma)
5205                                 break;
5206                         if (vma->vm_ops && vma->vm_ops->access)
5207                                 ret = vma->vm_ops->access(vma, addr, buf,
5208                                                           len, write);
5209                         if (ret <= 0)
5210                                 break;
5211                         bytes = ret;
5212 #endif
5213                 } else {
5214                         bytes = len;
5215                         offset = addr & (PAGE_SIZE-1);
5216                         if (bytes > PAGE_SIZE-offset)
5217                                 bytes = PAGE_SIZE-offset;
5218
5219                         maddr = kmap(page);
5220                         if (write) {
5221                                 copy_to_user_page(vma, page, addr,
5222                                                   maddr + offset, buf, bytes);
5223                                 set_page_dirty_lock(page);
5224                         } else {
5225                                 copy_from_user_page(vma, page, addr,
5226                                                     buf, maddr + offset, bytes);
5227                         }
5228                         kunmap(page);
5229                         put_page(page);
5230                 }
5231                 len -= bytes;
5232                 buf += bytes;
5233                 addr += bytes;
5234         }
5235         mmap_read_unlock(mm);
5236
5237         return buf - old_buf;
5238 }
5239
5240 /**
5241  * access_remote_vm - access another process' address space
5242  * @mm:         the mm_struct of the target address space
5243  * @addr:       start address to access
5244  * @buf:        source or destination buffer
5245  * @len:        number of bytes to transfer
5246  * @gup_flags:  flags modifying lookup behaviour
5247  *
5248  * The caller must hold a reference on @mm.
5249  *
5250  * Return: number of bytes copied from source to destination.
5251  */
5252 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5253                 void *buf, int len, unsigned int gup_flags)
5254 {
5255         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5256 }
5257
5258 /*
5259  * Access another process' address space.
5260  * Source/target buffer must be kernel space,
5261  * Do not walk the page table directly, use get_user_pages
5262  */
5263 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5264                 void *buf, int len, unsigned int gup_flags)
5265 {
5266         struct mm_struct *mm;
5267         int ret;
5268
5269         mm = get_task_mm(tsk);
5270         if (!mm)
5271                 return 0;
5272
5273         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5274
5275         mmput(mm);
5276
5277         return ret;
5278 }
5279 EXPORT_SYMBOL_GPL(access_process_vm);
5280
5281 /*
5282  * Print the name of a VMA.
5283  */
5284 void print_vma_addr(char *prefix, unsigned long ip)
5285 {
5286         struct mm_struct *mm = current->mm;
5287         struct vm_area_struct *vma;
5288
5289         /*
5290          * we might be running from an atomic context so we cannot sleep
5291          */
5292         if (!mmap_read_trylock(mm))
5293                 return;
5294
5295         vma = find_vma(mm, ip);
5296         if (vma && vma->vm_file) {
5297                 struct file *f = vma->vm_file;
5298                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5299                 if (buf) {
5300                         char *p;
5301
5302                         p = file_path(f, buf, PAGE_SIZE);
5303                         if (IS_ERR(p))
5304                                 p = "?";
5305                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5306                                         vma->vm_start,
5307                                         vma->vm_end - vma->vm_start);
5308                         free_page((unsigned long)buf);
5309                 }
5310         }
5311         mmap_read_unlock(mm);
5312 }
5313
5314 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5315 void __might_fault(const char *file, int line)
5316 {
5317         if (pagefault_disabled())
5318                 return;
5319         __might_sleep(file, line);
5320 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5321         if (current->mm)
5322                 might_lock_read(&current->mm->mmap_lock);
5323 #endif
5324 }
5325 EXPORT_SYMBOL(__might_fault);
5326 #endif
5327
5328 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5329 /*
5330  * Process all subpages of the specified huge page with the specified
5331  * operation.  The target subpage will be processed last to keep its
5332  * cache lines hot.
5333  */
5334 static inline void process_huge_page(
5335         unsigned long addr_hint, unsigned int pages_per_huge_page,
5336         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5337         void *arg)
5338 {
5339         int i, n, base, l;
5340         unsigned long addr = addr_hint &
5341                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5342
5343         /* Process target subpage last to keep its cache lines hot */
5344         might_sleep();
5345         n = (addr_hint - addr) / PAGE_SIZE;
5346         if (2 * n <= pages_per_huge_page) {
5347                 /* If target subpage in first half of huge page */
5348                 base = 0;
5349                 l = n;
5350                 /* Process subpages at the end of huge page */
5351                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5352                         cond_resched();
5353                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5354                 }
5355         } else {
5356                 /* If target subpage in second half of huge page */
5357                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5358                 l = pages_per_huge_page - n;
5359                 /* Process subpages at the begin of huge page */
5360                 for (i = 0; i < base; i++) {
5361                         cond_resched();
5362                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5363                 }
5364         }
5365         /*
5366          * Process remaining subpages in left-right-left-right pattern
5367          * towards the target subpage
5368          */
5369         for (i = 0; i < l; i++) {
5370                 int left_idx = base + i;
5371                 int right_idx = base + 2 * l - 1 - i;
5372
5373                 cond_resched();
5374                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5375                 cond_resched();
5376                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5377         }
5378 }
5379
5380 static void clear_gigantic_page(struct page *page,
5381                                 unsigned long addr,
5382                                 unsigned int pages_per_huge_page)
5383 {
5384         int i;
5385         struct page *p = page;
5386
5387         might_sleep();
5388         for (i = 0; i < pages_per_huge_page;
5389              i++, p = mem_map_next(p, page, i)) {
5390                 cond_resched();
5391                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5392         }
5393 }
5394
5395 static void clear_subpage(unsigned long addr, int idx, void *arg)
5396 {
5397         struct page *page = arg;
5398
5399         clear_user_highpage(page + idx, addr);
5400 }
5401
5402 void clear_huge_page(struct page *page,
5403                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5404 {
5405         unsigned long addr = addr_hint &
5406                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5407
5408         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5409                 clear_gigantic_page(page, addr, pages_per_huge_page);
5410                 return;
5411         }
5412
5413         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5414 }
5415
5416 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5417                                     unsigned long addr,
5418                                     struct vm_area_struct *vma,
5419                                     unsigned int pages_per_huge_page)
5420 {
5421         int i;
5422         struct page *dst_base = dst;
5423         struct page *src_base = src;
5424
5425         for (i = 0; i < pages_per_huge_page; ) {
5426                 cond_resched();
5427                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5428
5429                 i++;
5430                 dst = mem_map_next(dst, dst_base, i);
5431                 src = mem_map_next(src, src_base, i);
5432         }
5433 }
5434
5435 struct copy_subpage_arg {
5436         struct page *dst;
5437         struct page *src;
5438         struct vm_area_struct *vma;
5439 };
5440
5441 static void copy_subpage(unsigned long addr, int idx, void *arg)
5442 {
5443         struct copy_subpage_arg *copy_arg = arg;
5444
5445         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5446                            addr, copy_arg->vma);
5447 }
5448
5449 void copy_user_huge_page(struct page *dst, struct page *src,
5450                          unsigned long addr_hint, struct vm_area_struct *vma,
5451                          unsigned int pages_per_huge_page)
5452 {
5453         unsigned long addr = addr_hint &
5454                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5455         struct copy_subpage_arg arg = {
5456                 .dst = dst,
5457                 .src = src,
5458                 .vma = vma,
5459         };
5460
5461         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5462                 copy_user_gigantic_page(dst, src, addr, vma,
5463                                         pages_per_huge_page);
5464                 return;
5465         }
5466
5467         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5468 }
5469
5470 long copy_huge_page_from_user(struct page *dst_page,
5471                                 const void __user *usr_src,
5472                                 unsigned int pages_per_huge_page,
5473                                 bool allow_pagefault)
5474 {
5475         void *page_kaddr;
5476         unsigned long i, rc = 0;
5477         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5478         struct page *subpage = dst_page;
5479
5480         for (i = 0; i < pages_per_huge_page;
5481              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5482                 if (allow_pagefault)
5483                         page_kaddr = kmap(subpage);
5484                 else
5485                         page_kaddr = kmap_atomic(subpage);
5486                 rc = copy_from_user(page_kaddr,
5487                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5488                 if (allow_pagefault)
5489                         kunmap(subpage);
5490                 else
5491                         kunmap_atomic(page_kaddr);
5492
5493                 ret_val -= (PAGE_SIZE - rc);
5494                 if (rc)
5495                         break;
5496
5497                 flush_dcache_page(subpage);
5498
5499                 cond_resched();
5500         }
5501         return ret_val;
5502 }
5503 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5504
5505 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5506
5507 static struct kmem_cache *page_ptl_cachep;
5508
5509 void __init ptlock_cache_init(void)
5510 {
5511         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5512                         SLAB_PANIC, NULL);
5513 }
5514
5515 bool ptlock_alloc(struct page *page)
5516 {
5517         spinlock_t *ptl;
5518
5519         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5520         if (!ptl)
5521                 return false;
5522         page->ptl = ptl;
5523         return true;
5524 }
5525
5526 void ptlock_free(struct page *page)
5527 {
5528         kmem_cache_free(page_ptl_cachep, page->ptl);
5529 }
5530 #endif