Merge tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116                                         1;
117 #else
118                                         2;
119 #endif
120
121 static int __init disable_randmaps(char *s)
122 {
123         randomize_va_space = 0;
124         return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130
131 unsigned long highest_memmap_pfn __read_mostly;
132
133 /*
134  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135  */
136 static int __init init_zero_pfn(void)
137 {
138         zero_pfn = page_to_pfn(ZERO_PAGE(0));
139         return 0;
140 }
141 core_initcall(init_zero_pfn);
142
143
144 #if defined(SPLIT_RSS_COUNTING)
145
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148         int i;
149
150         for (i = 0; i < NR_MM_COUNTERS; i++) {
151                 if (current->rss_stat.count[i]) {
152                         add_mm_counter(mm, i, current->rss_stat.count[i]);
153                         current->rss_stat.count[i] = 0;
154                 }
155         }
156         current->rss_stat.events = 0;
157 }
158
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161         struct task_struct *task = current;
162
163         if (likely(task->mm == mm))
164                 task->rss_stat.count[member] += val;
165         else
166                 add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH  (64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175         if (unlikely(task != current))
176                 return;
177         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178                 sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188
189 #endif /* SPLIT_RSS_COUNTING */
190
191 /*
192  * Note: this doesn't free the actual pages themselves. That
193  * has been handled earlier when unmapping all the memory regions.
194  */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196                            unsigned long addr)
197 {
198         pgtable_t token = pmd_pgtable(*pmd);
199         pmd_clear(pmd);
200         pte_free_tlb(tlb, token, addr);
201         mm_dec_nr_ptes(tlb->mm);
202 }
203
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205                                 unsigned long addr, unsigned long end,
206                                 unsigned long floor, unsigned long ceiling)
207 {
208         pmd_t *pmd;
209         unsigned long next;
210         unsigned long start;
211
212         start = addr;
213         pmd = pmd_offset(pud, addr);
214         do {
215                 next = pmd_addr_end(addr, end);
216                 if (pmd_none_or_clear_bad(pmd))
217                         continue;
218                 free_pte_range(tlb, pmd, addr);
219         } while (pmd++, addr = next, addr != end);
220
221         start &= PUD_MASK;
222         if (start < floor)
223                 return;
224         if (ceiling) {
225                 ceiling &= PUD_MASK;
226                 if (!ceiling)
227                         return;
228         }
229         if (end - 1 > ceiling - 1)
230                 return;
231
232         pmd = pmd_offset(pud, start);
233         pud_clear(pud);
234         pmd_free_tlb(tlb, pmd, start);
235         mm_dec_nr_pmds(tlb->mm);
236 }
237
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239                                 unsigned long addr, unsigned long end,
240                                 unsigned long floor, unsigned long ceiling)
241 {
242         pud_t *pud;
243         unsigned long next;
244         unsigned long start;
245
246         start = addr;
247         pud = pud_offset(p4d, addr);
248         do {
249                 next = pud_addr_end(addr, end);
250                 if (pud_none_or_clear_bad(pud))
251                         continue;
252                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253         } while (pud++, addr = next, addr != end);
254
255         start &= P4D_MASK;
256         if (start < floor)
257                 return;
258         if (ceiling) {
259                 ceiling &= P4D_MASK;
260                 if (!ceiling)
261                         return;
262         }
263         if (end - 1 > ceiling - 1)
264                 return;
265
266         pud = pud_offset(p4d, start);
267         p4d_clear(p4d);
268         pud_free_tlb(tlb, pud, start);
269         mm_dec_nr_puds(tlb->mm);
270 }
271
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273                                 unsigned long addr, unsigned long end,
274                                 unsigned long floor, unsigned long ceiling)
275 {
276         p4d_t *p4d;
277         unsigned long next;
278         unsigned long start;
279
280         start = addr;
281         p4d = p4d_offset(pgd, addr);
282         do {
283                 next = p4d_addr_end(addr, end);
284                 if (p4d_none_or_clear_bad(p4d))
285                         continue;
286                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287         } while (p4d++, addr = next, addr != end);
288
289         start &= PGDIR_MASK;
290         if (start < floor)
291                 return;
292         if (ceiling) {
293                 ceiling &= PGDIR_MASK;
294                 if (!ceiling)
295                         return;
296         }
297         if (end - 1 > ceiling - 1)
298                 return;
299
300         p4d = p4d_offset(pgd, start);
301         pgd_clear(pgd);
302         p4d_free_tlb(tlb, p4d, start);
303 }
304
305 /*
306  * This function frees user-level page tables of a process.
307  */
308 void free_pgd_range(struct mmu_gather *tlb,
309                         unsigned long addr, unsigned long end,
310                         unsigned long floor, unsigned long ceiling)
311 {
312         pgd_t *pgd;
313         unsigned long next;
314
315         /*
316          * The next few lines have given us lots of grief...
317          *
318          * Why are we testing PMD* at this top level?  Because often
319          * there will be no work to do at all, and we'd prefer not to
320          * go all the way down to the bottom just to discover that.
321          *
322          * Why all these "- 1"s?  Because 0 represents both the bottom
323          * of the address space and the top of it (using -1 for the
324          * top wouldn't help much: the masks would do the wrong thing).
325          * The rule is that addr 0 and floor 0 refer to the bottom of
326          * the address space, but end 0 and ceiling 0 refer to the top
327          * Comparisons need to use "end - 1" and "ceiling - 1" (though
328          * that end 0 case should be mythical).
329          *
330          * Wherever addr is brought up or ceiling brought down, we must
331          * be careful to reject "the opposite 0" before it confuses the
332          * subsequent tests.  But what about where end is brought down
333          * by PMD_SIZE below? no, end can't go down to 0 there.
334          *
335          * Whereas we round start (addr) and ceiling down, by different
336          * masks at different levels, in order to test whether a table
337          * now has no other vmas using it, so can be freed, we don't
338          * bother to round floor or end up - the tests don't need that.
339          */
340
341         addr &= PMD_MASK;
342         if (addr < floor) {
343                 addr += PMD_SIZE;
344                 if (!addr)
345                         return;
346         }
347         if (ceiling) {
348                 ceiling &= PMD_MASK;
349                 if (!ceiling)
350                         return;
351         }
352         if (end - 1 > ceiling - 1)
353                 end -= PMD_SIZE;
354         if (addr > end - 1)
355                 return;
356         /*
357          * We add page table cache pages with PAGE_SIZE,
358          * (see pte_free_tlb()), flush the tlb if we need
359          */
360         tlb_change_page_size(tlb, PAGE_SIZE);
361         pgd = pgd_offset(tlb->mm, addr);
362         do {
363                 next = pgd_addr_end(addr, end);
364                 if (pgd_none_or_clear_bad(pgd))
365                         continue;
366                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367         } while (pgd++, addr = next, addr != end);
368 }
369
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371                 unsigned long floor, unsigned long ceiling)
372 {
373         while (vma) {
374                 struct vm_area_struct *next = vma->vm_next;
375                 unsigned long addr = vma->vm_start;
376
377                 /*
378                  * Hide vma from rmap and truncate_pagecache before freeing
379                  * pgtables
380                  */
381                 unlink_anon_vmas(vma);
382                 unlink_file_vma(vma);
383
384                 if (is_vm_hugetlb_page(vma)) {
385                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386                                 floor, next ? next->vm_start : ceiling);
387                 } else {
388                         /*
389                          * Optimization: gather nearby vmas into one call down
390                          */
391                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392                                && !is_vm_hugetlb_page(next)) {
393                                 vma = next;
394                                 next = vma->vm_next;
395                                 unlink_anon_vmas(vma);
396                                 unlink_file_vma(vma);
397                         }
398                         free_pgd_range(tlb, addr, vma->vm_end,
399                                 floor, next ? next->vm_start : ceiling);
400                 }
401                 vma = next;
402         }
403 }
404
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407         spinlock_t *ptl;
408         pgtable_t new = pte_alloc_one(mm);
409         if (!new)
410                 return -ENOMEM;
411
412         /*
413          * Ensure all pte setup (eg. pte page lock and page clearing) are
414          * visible before the pte is made visible to other CPUs by being
415          * put into page tables.
416          *
417          * The other side of the story is the pointer chasing in the page
418          * table walking code (when walking the page table without locking;
419          * ie. most of the time). Fortunately, these data accesses consist
420          * of a chain of data-dependent loads, meaning most CPUs (alpha
421          * being the notable exception) will already guarantee loads are
422          * seen in-order. See the alpha page table accessors for the
423          * smp_read_barrier_depends() barriers in page table walking code.
424          */
425         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
427         ptl = pmd_lock(mm, pmd);
428         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
429                 mm_inc_nr_ptes(mm);
430                 pmd_populate(mm, pmd, new);
431                 new = NULL;
432         }
433         spin_unlock(ptl);
434         if (new)
435                 pte_free(mm, new);
436         return 0;
437 }
438
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441         pte_t *new = pte_alloc_one_kernel(&init_mm);
442         if (!new)
443                 return -ENOMEM;
444
445         smp_wmb(); /* See comment in __pte_alloc */
446
447         spin_lock(&init_mm.page_table_lock);
448         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
449                 pmd_populate_kernel(&init_mm, pmd, new);
450                 new = NULL;
451         }
452         spin_unlock(&init_mm.page_table_lock);
453         if (new)
454                 pte_free_kernel(&init_mm, new);
455         return 0;
456 }
457
458 static inline void init_rss_vec(int *rss)
459 {
460         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465         int i;
466
467         if (current->mm == mm)
468                 sync_mm_rss(mm);
469         for (i = 0; i < NR_MM_COUNTERS; i++)
470                 if (rss[i])
471                         add_mm_counter(mm, i, rss[i]);
472 }
473
474 /*
475  * This function is called to print an error when a bad pte
476  * is found. For example, we might have a PFN-mapped pte in
477  * a region that doesn't allow it.
478  *
479  * The calling function must still handle the error.
480  */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482                           pte_t pte, struct page *page)
483 {
484         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485         p4d_t *p4d = p4d_offset(pgd, addr);
486         pud_t *pud = pud_offset(p4d, addr);
487         pmd_t *pmd = pmd_offset(pud, addr);
488         struct address_space *mapping;
489         pgoff_t index;
490         static unsigned long resume;
491         static unsigned long nr_shown;
492         static unsigned long nr_unshown;
493
494         /*
495          * Allow a burst of 60 reports, then keep quiet for that minute;
496          * or allow a steady drip of one report per second.
497          */
498         if (nr_shown == 60) {
499                 if (time_before(jiffies, resume)) {
500                         nr_unshown++;
501                         return;
502                 }
503                 if (nr_unshown) {
504                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505                                  nr_unshown);
506                         nr_unshown = 0;
507                 }
508                 nr_shown = 0;
509         }
510         if (nr_shown++ == 0)
511                 resume = jiffies + 60 * HZ;
512
513         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514         index = linear_page_index(vma, addr);
515
516         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
517                  current->comm,
518                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
519         if (page)
520                 dump_page(page, "bad pte");
521         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524                  vma->vm_file,
525                  vma->vm_ops ? vma->vm_ops->fault : NULL,
526                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527                  mapping ? mapping->a_ops->readpage : NULL);
528         dump_stack();
529         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531
532 /*
533  * vm_normal_page -- This function gets the "struct page" associated with a pte.
534  *
535  * "Special" mappings do not wish to be associated with a "struct page" (either
536  * it doesn't exist, or it exists but they don't want to touch it). In this
537  * case, NULL is returned here. "Normal" mappings do have a struct page.
538  *
539  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540  * pte bit, in which case this function is trivial. Secondly, an architecture
541  * may not have a spare pte bit, which requires a more complicated scheme,
542  * described below.
543  *
544  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545  * special mapping (even if there are underlying and valid "struct pages").
546  * COWed pages of a VM_PFNMAP are always normal.
547  *
548  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551  * mapping will always honor the rule
552  *
553  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554  *
555  * And for normal mappings this is false.
556  *
557  * This restricts such mappings to be a linear translation from virtual address
558  * to pfn. To get around this restriction, we allow arbitrary mappings so long
559  * as the vma is not a COW mapping; in that case, we know that all ptes are
560  * special (because none can have been COWed).
561  *
562  *
563  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564  *
565  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566  * page" backing, however the difference is that _all_ pages with a struct
567  * page (that is, those where pfn_valid is true) are refcounted and considered
568  * normal pages by the VM. The disadvantage is that pages are refcounted
569  * (which can be slower and simply not an option for some PFNMAP users). The
570  * advantage is that we don't have to follow the strict linearity rule of
571  * PFNMAP mappings in order to support COWable mappings.
572  *
573  */
574 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575                             pte_t pte)
576 {
577         unsigned long pfn = pte_pfn(pte);
578
579         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580                 if (likely(!pte_special(pte)))
581                         goto check_pfn;
582                 if (vma->vm_ops && vma->vm_ops->find_special_page)
583                         return vma->vm_ops->find_special_page(vma, addr);
584                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585                         return NULL;
586                 if (is_zero_pfn(pfn))
587                         return NULL;
588                 if (pte_devmap(pte))
589                         return NULL;
590
591                 print_bad_pte(vma, addr, pte, NULL);
592                 return NULL;
593         }
594
595         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
596
597         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598                 if (vma->vm_flags & VM_MIXEDMAP) {
599                         if (!pfn_valid(pfn))
600                                 return NULL;
601                         goto out;
602                 } else {
603                         unsigned long off;
604                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
605                         if (pfn == vma->vm_pgoff + off)
606                                 return NULL;
607                         if (!is_cow_mapping(vma->vm_flags))
608                                 return NULL;
609                 }
610         }
611
612         if (is_zero_pfn(pfn))
613                 return NULL;
614
615 check_pfn:
616         if (unlikely(pfn > highest_memmap_pfn)) {
617                 print_bad_pte(vma, addr, pte, NULL);
618                 return NULL;
619         }
620
621         /*
622          * NOTE! We still have PageReserved() pages in the page tables.
623          * eg. VDSO mappings can cause them to exist.
624          */
625 out:
626         return pfn_to_page(pfn);
627 }
628
629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631                                 pmd_t pmd)
632 {
633         unsigned long pfn = pmd_pfn(pmd);
634
635         /*
636          * There is no pmd_special() but there may be special pmds, e.g.
637          * in a direct-access (dax) mapping, so let's just replicate the
638          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
639          */
640         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641                 if (vma->vm_flags & VM_MIXEDMAP) {
642                         if (!pfn_valid(pfn))
643                                 return NULL;
644                         goto out;
645                 } else {
646                         unsigned long off;
647                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
648                         if (pfn == vma->vm_pgoff + off)
649                                 return NULL;
650                         if (!is_cow_mapping(vma->vm_flags))
651                                 return NULL;
652                 }
653         }
654
655         if (pmd_devmap(pmd))
656                 return NULL;
657         if (is_zero_pfn(pfn))
658                 return NULL;
659         if (unlikely(pfn > highest_memmap_pfn))
660                 return NULL;
661
662         /*
663          * NOTE! We still have PageReserved() pages in the page tables.
664          * eg. VDSO mappings can cause them to exist.
665          */
666 out:
667         return pfn_to_page(pfn);
668 }
669 #endif
670
671 /*
672  * copy one vm_area from one task to the other. Assumes the page tables
673  * already present in the new task to be cleared in the whole range
674  * covered by this vma.
675  */
676
677 static inline unsigned long
678 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
679                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
680                 unsigned long addr, int *rss)
681 {
682         unsigned long vm_flags = vma->vm_flags;
683         pte_t pte = *src_pte;
684         struct page *page;
685
686         /* pte contains position in swap or file, so copy. */
687         if (unlikely(!pte_present(pte))) {
688                 swp_entry_t entry = pte_to_swp_entry(pte);
689
690                 if (likely(!non_swap_entry(entry))) {
691                         if (swap_duplicate(entry) < 0)
692                                 return entry.val;
693
694                         /* make sure dst_mm is on swapoff's mmlist. */
695                         if (unlikely(list_empty(&dst_mm->mmlist))) {
696                                 spin_lock(&mmlist_lock);
697                                 if (list_empty(&dst_mm->mmlist))
698                                         list_add(&dst_mm->mmlist,
699                                                         &src_mm->mmlist);
700                                 spin_unlock(&mmlist_lock);
701                         }
702                         rss[MM_SWAPENTS]++;
703                 } else if (is_migration_entry(entry)) {
704                         page = migration_entry_to_page(entry);
705
706                         rss[mm_counter(page)]++;
707
708                         if (is_write_migration_entry(entry) &&
709                                         is_cow_mapping(vm_flags)) {
710                                 /*
711                                  * COW mappings require pages in both
712                                  * parent and child to be set to read.
713                                  */
714                                 make_migration_entry_read(&entry);
715                                 pte = swp_entry_to_pte(entry);
716                                 if (pte_swp_soft_dirty(*src_pte))
717                                         pte = pte_swp_mksoft_dirty(pte);
718                                 set_pte_at(src_mm, addr, src_pte, pte);
719                         }
720                 } else if (is_device_private_entry(entry)) {
721                         page = device_private_entry_to_page(entry);
722
723                         /*
724                          * Update rss count even for unaddressable pages, as
725                          * they should treated just like normal pages in this
726                          * respect.
727                          *
728                          * We will likely want to have some new rss counters
729                          * for unaddressable pages, at some point. But for now
730                          * keep things as they are.
731                          */
732                         get_page(page);
733                         rss[mm_counter(page)]++;
734                         page_dup_rmap(page, false);
735
736                         /*
737                          * We do not preserve soft-dirty information, because so
738                          * far, checkpoint/restore is the only feature that
739                          * requires that. And checkpoint/restore does not work
740                          * when a device driver is involved (you cannot easily
741                          * save and restore device driver state).
742                          */
743                         if (is_write_device_private_entry(entry) &&
744                             is_cow_mapping(vm_flags)) {
745                                 make_device_private_entry_read(&entry);
746                                 pte = swp_entry_to_pte(entry);
747                                 set_pte_at(src_mm, addr, src_pte, pte);
748                         }
749                 }
750                 goto out_set_pte;
751         }
752
753         /*
754          * If it's a COW mapping, write protect it both
755          * in the parent and the child
756          */
757         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
758                 ptep_set_wrprotect(src_mm, addr, src_pte);
759                 pte = pte_wrprotect(pte);
760         }
761
762         /*
763          * If it's a shared mapping, mark it clean in
764          * the child
765          */
766         if (vm_flags & VM_SHARED)
767                 pte = pte_mkclean(pte);
768         pte = pte_mkold(pte);
769
770         page = vm_normal_page(vma, addr, pte);
771         if (page) {
772                 get_page(page);
773                 page_dup_rmap(page, false);
774                 rss[mm_counter(page)]++;
775         } else if (pte_devmap(pte)) {
776                 page = pte_page(pte);
777         }
778
779 out_set_pte:
780         set_pte_at(dst_mm, addr, dst_pte, pte);
781         return 0;
782 }
783
784 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
785                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786                    unsigned long addr, unsigned long end)
787 {
788         pte_t *orig_src_pte, *orig_dst_pte;
789         pte_t *src_pte, *dst_pte;
790         spinlock_t *src_ptl, *dst_ptl;
791         int progress = 0;
792         int rss[NR_MM_COUNTERS];
793         swp_entry_t entry = (swp_entry_t){0};
794
795 again:
796         init_rss_vec(rss);
797
798         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
799         if (!dst_pte)
800                 return -ENOMEM;
801         src_pte = pte_offset_map(src_pmd, addr);
802         src_ptl = pte_lockptr(src_mm, src_pmd);
803         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
804         orig_src_pte = src_pte;
805         orig_dst_pte = dst_pte;
806         arch_enter_lazy_mmu_mode();
807
808         do {
809                 /*
810                  * We are holding two locks at this point - either of them
811                  * could generate latencies in another task on another CPU.
812                  */
813                 if (progress >= 32) {
814                         progress = 0;
815                         if (need_resched() ||
816                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
817                                 break;
818                 }
819                 if (pte_none(*src_pte)) {
820                         progress++;
821                         continue;
822                 }
823                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824                                                         vma, addr, rss);
825                 if (entry.val)
826                         break;
827                 progress += 8;
828         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
829
830         arch_leave_lazy_mmu_mode();
831         spin_unlock(src_ptl);
832         pte_unmap(orig_src_pte);
833         add_mm_rss_vec(dst_mm, rss);
834         pte_unmap_unlock(orig_dst_pte, dst_ptl);
835         cond_resched();
836
837         if (entry.val) {
838                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839                         return -ENOMEM;
840                 progress = 0;
841         }
842         if (addr != end)
843                 goto again;
844         return 0;
845 }
846
847 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849                 unsigned long addr, unsigned long end)
850 {
851         pmd_t *src_pmd, *dst_pmd;
852         unsigned long next;
853
854         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855         if (!dst_pmd)
856                 return -ENOMEM;
857         src_pmd = pmd_offset(src_pud, addr);
858         do {
859                 next = pmd_addr_end(addr, end);
860                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861                         || pmd_devmap(*src_pmd)) {
862                         int err;
863                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
864                         err = copy_huge_pmd(dst_mm, src_mm,
865                                             dst_pmd, src_pmd, addr, vma);
866                         if (err == -ENOMEM)
867                                 return -ENOMEM;
868                         if (!err)
869                                 continue;
870                         /* fall through */
871                 }
872                 if (pmd_none_or_clear_bad(src_pmd))
873                         continue;
874                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875                                                 vma, addr, next))
876                         return -ENOMEM;
877         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
878         return 0;
879 }
880
881 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
883                 unsigned long addr, unsigned long end)
884 {
885         pud_t *src_pud, *dst_pud;
886         unsigned long next;
887
888         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
889         if (!dst_pud)
890                 return -ENOMEM;
891         src_pud = pud_offset(src_p4d, addr);
892         do {
893                 next = pud_addr_end(addr, end);
894                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895                         int err;
896
897                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898                         err = copy_huge_pud(dst_mm, src_mm,
899                                             dst_pud, src_pud, addr, vma);
900                         if (err == -ENOMEM)
901                                 return -ENOMEM;
902                         if (!err)
903                                 continue;
904                         /* fall through */
905                 }
906                 if (pud_none_or_clear_bad(src_pud))
907                         continue;
908                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909                                                 vma, addr, next))
910                         return -ENOMEM;
911         } while (dst_pud++, src_pud++, addr = next, addr != end);
912         return 0;
913 }
914
915 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917                 unsigned long addr, unsigned long end)
918 {
919         p4d_t *src_p4d, *dst_p4d;
920         unsigned long next;
921
922         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923         if (!dst_p4d)
924                 return -ENOMEM;
925         src_p4d = p4d_offset(src_pgd, addr);
926         do {
927                 next = p4d_addr_end(addr, end);
928                 if (p4d_none_or_clear_bad(src_p4d))
929                         continue;
930                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931                                                 vma, addr, next))
932                         return -ENOMEM;
933         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
934         return 0;
935 }
936
937 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938                 struct vm_area_struct *vma)
939 {
940         pgd_t *src_pgd, *dst_pgd;
941         unsigned long next;
942         unsigned long addr = vma->vm_start;
943         unsigned long end = vma->vm_end;
944         struct mmu_notifier_range range;
945         bool is_cow;
946         int ret;
947
948         /*
949          * Don't copy ptes where a page fault will fill them correctly.
950          * Fork becomes much lighter when there are big shared or private
951          * readonly mappings. The tradeoff is that copy_page_range is more
952          * efficient than faulting.
953          */
954         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955                         !vma->anon_vma)
956                 return 0;
957
958         if (is_vm_hugetlb_page(vma))
959                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
960
961         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
962                 /*
963                  * We do not free on error cases below as remove_vma
964                  * gets called on error from higher level routine
965                  */
966                 ret = track_pfn_copy(vma);
967                 if (ret)
968                         return ret;
969         }
970
971         /*
972          * We need to invalidate the secondary MMU mappings only when
973          * there could be a permission downgrade on the ptes of the
974          * parent mm. And a permission downgrade will only happen if
975          * is_cow_mapping() returns true.
976          */
977         is_cow = is_cow_mapping(vma->vm_flags);
978
979         if (is_cow) {
980                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981                                         0, vma, src_mm, addr, end);
982                 mmu_notifier_invalidate_range_start(&range);
983         }
984
985         ret = 0;
986         dst_pgd = pgd_offset(dst_mm, addr);
987         src_pgd = pgd_offset(src_mm, addr);
988         do {
989                 next = pgd_addr_end(addr, end);
990                 if (pgd_none_or_clear_bad(src_pgd))
991                         continue;
992                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
993                                             vma, addr, next))) {
994                         ret = -ENOMEM;
995                         break;
996                 }
997         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
998
999         if (is_cow)
1000                 mmu_notifier_invalidate_range_end(&range);
1001         return ret;
1002 }
1003
1004 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005                                 struct vm_area_struct *vma, pmd_t *pmd,
1006                                 unsigned long addr, unsigned long end,
1007                                 struct zap_details *details)
1008 {
1009         struct mm_struct *mm = tlb->mm;
1010         int force_flush = 0;
1011         int rss[NR_MM_COUNTERS];
1012         spinlock_t *ptl;
1013         pte_t *start_pte;
1014         pte_t *pte;
1015         swp_entry_t entry;
1016
1017         tlb_change_page_size(tlb, PAGE_SIZE);
1018 again:
1019         init_rss_vec(rss);
1020         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021         pte = start_pte;
1022         flush_tlb_batched_pending(mm);
1023         arch_enter_lazy_mmu_mode();
1024         do {
1025                 pte_t ptent = *pte;
1026                 if (pte_none(ptent))
1027                         continue;
1028
1029                 if (pte_present(ptent)) {
1030                         struct page *page;
1031
1032                         page = vm_normal_page(vma, addr, ptent);
1033                         if (unlikely(details) && page) {
1034                                 /*
1035                                  * unmap_shared_mapping_pages() wants to
1036                                  * invalidate cache without truncating:
1037                                  * unmap shared but keep private pages.
1038                                  */
1039                                 if (details->check_mapping &&
1040                                     details->check_mapping != page_rmapping(page))
1041                                         continue;
1042                         }
1043                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1044                                                         tlb->fullmm);
1045                         tlb_remove_tlb_entry(tlb, pte, addr);
1046                         if (unlikely(!page))
1047                                 continue;
1048
1049                         if (!PageAnon(page)) {
1050                                 if (pte_dirty(ptent)) {
1051                                         force_flush = 1;
1052                                         set_page_dirty(page);
1053                                 }
1054                                 if (pte_young(ptent) &&
1055                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1056                                         mark_page_accessed(page);
1057                         }
1058                         rss[mm_counter(page)]--;
1059                         page_remove_rmap(page, false);
1060                         if (unlikely(page_mapcount(page) < 0))
1061                                 print_bad_pte(vma, addr, ptent, page);
1062                         if (unlikely(__tlb_remove_page(tlb, page))) {
1063                                 force_flush = 1;
1064                                 addr += PAGE_SIZE;
1065                                 break;
1066                         }
1067                         continue;
1068                 }
1069
1070                 entry = pte_to_swp_entry(ptent);
1071                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1072                         struct page *page = device_private_entry_to_page(entry);
1073
1074                         if (unlikely(details && details->check_mapping)) {
1075                                 /*
1076                                  * unmap_shared_mapping_pages() wants to
1077                                  * invalidate cache without truncating:
1078                                  * unmap shared but keep private pages.
1079                                  */
1080                                 if (details->check_mapping !=
1081                                     page_rmapping(page))
1082                                         continue;
1083                         }
1084
1085                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1086                         rss[mm_counter(page)]--;
1087                         page_remove_rmap(page, false);
1088                         put_page(page);
1089                         continue;
1090                 }
1091
1092                 /* If details->check_mapping, we leave swap entries. */
1093                 if (unlikely(details))
1094                         continue;
1095
1096                 entry = pte_to_swp_entry(ptent);
1097                 if (!non_swap_entry(entry))
1098                         rss[MM_SWAPENTS]--;
1099                 else if (is_migration_entry(entry)) {
1100                         struct page *page;
1101
1102                         page = migration_entry_to_page(entry);
1103                         rss[mm_counter(page)]--;
1104                 }
1105                 if (unlikely(!free_swap_and_cache(entry)))
1106                         print_bad_pte(vma, addr, ptent, NULL);
1107                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1108         } while (pte++, addr += PAGE_SIZE, addr != end);
1109
1110         add_mm_rss_vec(mm, rss);
1111         arch_leave_lazy_mmu_mode();
1112
1113         /* Do the actual TLB flush before dropping ptl */
1114         if (force_flush)
1115                 tlb_flush_mmu_tlbonly(tlb);
1116         pte_unmap_unlock(start_pte, ptl);
1117
1118         /*
1119          * If we forced a TLB flush (either due to running out of
1120          * batch buffers or because we needed to flush dirty TLB
1121          * entries before releasing the ptl), free the batched
1122          * memory too. Restart if we didn't do everything.
1123          */
1124         if (force_flush) {
1125                 force_flush = 0;
1126                 tlb_flush_mmu(tlb);
1127                 if (addr != end)
1128                         goto again;
1129         }
1130
1131         return addr;
1132 }
1133
1134 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1135                                 struct vm_area_struct *vma, pud_t *pud,
1136                                 unsigned long addr, unsigned long end,
1137                                 struct zap_details *details)
1138 {
1139         pmd_t *pmd;
1140         unsigned long next;
1141
1142         pmd = pmd_offset(pud, addr);
1143         do {
1144                 next = pmd_addr_end(addr, end);
1145                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1146                         if (next - addr != HPAGE_PMD_SIZE)
1147                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1148                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1149                                 goto next;
1150                         /* fall through */
1151                 }
1152                 /*
1153                  * Here there can be other concurrent MADV_DONTNEED or
1154                  * trans huge page faults running, and if the pmd is
1155                  * none or trans huge it can change under us. This is
1156                  * because MADV_DONTNEED holds the mmap_sem in read
1157                  * mode.
1158                  */
1159                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1160                         goto next;
1161                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1162 next:
1163                 cond_resched();
1164         } while (pmd++, addr = next, addr != end);
1165
1166         return addr;
1167 }
1168
1169 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1170                                 struct vm_area_struct *vma, p4d_t *p4d,
1171                                 unsigned long addr, unsigned long end,
1172                                 struct zap_details *details)
1173 {
1174         pud_t *pud;
1175         unsigned long next;
1176
1177         pud = pud_offset(p4d, addr);
1178         do {
1179                 next = pud_addr_end(addr, end);
1180                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1181                         if (next - addr != HPAGE_PUD_SIZE) {
1182                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1183                                 split_huge_pud(vma, pud, addr);
1184                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1185                                 goto next;
1186                         /* fall through */
1187                 }
1188                 if (pud_none_or_clear_bad(pud))
1189                         continue;
1190                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1191 next:
1192                 cond_resched();
1193         } while (pud++, addr = next, addr != end);
1194
1195         return addr;
1196 }
1197
1198 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1199                                 struct vm_area_struct *vma, pgd_t *pgd,
1200                                 unsigned long addr, unsigned long end,
1201                                 struct zap_details *details)
1202 {
1203         p4d_t *p4d;
1204         unsigned long next;
1205
1206         p4d = p4d_offset(pgd, addr);
1207         do {
1208                 next = p4d_addr_end(addr, end);
1209                 if (p4d_none_or_clear_bad(p4d))
1210                         continue;
1211                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1212         } while (p4d++, addr = next, addr != end);
1213
1214         return addr;
1215 }
1216
1217 void unmap_page_range(struct mmu_gather *tlb,
1218                              struct vm_area_struct *vma,
1219                              unsigned long addr, unsigned long end,
1220                              struct zap_details *details)
1221 {
1222         pgd_t *pgd;
1223         unsigned long next;
1224
1225         BUG_ON(addr >= end);
1226         tlb_start_vma(tlb, vma);
1227         pgd = pgd_offset(vma->vm_mm, addr);
1228         do {
1229                 next = pgd_addr_end(addr, end);
1230                 if (pgd_none_or_clear_bad(pgd))
1231                         continue;
1232                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1233         } while (pgd++, addr = next, addr != end);
1234         tlb_end_vma(tlb, vma);
1235 }
1236
1237
1238 static void unmap_single_vma(struct mmu_gather *tlb,
1239                 struct vm_area_struct *vma, unsigned long start_addr,
1240                 unsigned long end_addr,
1241                 struct zap_details *details)
1242 {
1243         unsigned long start = max(vma->vm_start, start_addr);
1244         unsigned long end;
1245
1246         if (start >= vma->vm_end)
1247                 return;
1248         end = min(vma->vm_end, end_addr);
1249         if (end <= vma->vm_start)
1250                 return;
1251
1252         if (vma->vm_file)
1253                 uprobe_munmap(vma, start, end);
1254
1255         if (unlikely(vma->vm_flags & VM_PFNMAP))
1256                 untrack_pfn(vma, 0, 0);
1257
1258         if (start != end) {
1259                 if (unlikely(is_vm_hugetlb_page(vma))) {
1260                         /*
1261                          * It is undesirable to test vma->vm_file as it
1262                          * should be non-null for valid hugetlb area.
1263                          * However, vm_file will be NULL in the error
1264                          * cleanup path of mmap_region. When
1265                          * hugetlbfs ->mmap method fails,
1266                          * mmap_region() nullifies vma->vm_file
1267                          * before calling this function to clean up.
1268                          * Since no pte has actually been setup, it is
1269                          * safe to do nothing in this case.
1270                          */
1271                         if (vma->vm_file) {
1272                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1273                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1274                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1275                         }
1276                 } else
1277                         unmap_page_range(tlb, vma, start, end, details);
1278         }
1279 }
1280
1281 /**
1282  * unmap_vmas - unmap a range of memory covered by a list of vma's
1283  * @tlb: address of the caller's struct mmu_gather
1284  * @vma: the starting vma
1285  * @start_addr: virtual address at which to start unmapping
1286  * @end_addr: virtual address at which to end unmapping
1287  *
1288  * Unmap all pages in the vma list.
1289  *
1290  * Only addresses between `start' and `end' will be unmapped.
1291  *
1292  * The VMA list must be sorted in ascending virtual address order.
1293  *
1294  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1295  * range after unmap_vmas() returns.  So the only responsibility here is to
1296  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1297  * drops the lock and schedules.
1298  */
1299 void unmap_vmas(struct mmu_gather *tlb,
1300                 struct vm_area_struct *vma, unsigned long start_addr,
1301                 unsigned long end_addr)
1302 {
1303         struct mmu_notifier_range range;
1304
1305         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1306                                 start_addr, end_addr);
1307         mmu_notifier_invalidate_range_start(&range);
1308         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1309                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1310         mmu_notifier_invalidate_range_end(&range);
1311 }
1312
1313 /**
1314  * zap_page_range - remove user pages in a given range
1315  * @vma: vm_area_struct holding the applicable pages
1316  * @start: starting address of pages to zap
1317  * @size: number of bytes to zap
1318  *
1319  * Caller must protect the VMA list
1320  */
1321 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1322                 unsigned long size)
1323 {
1324         struct mmu_notifier_range range;
1325         struct mmu_gather tlb;
1326
1327         lru_add_drain();
1328         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1329                                 start, start + size);
1330         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1331         update_hiwater_rss(vma->vm_mm);
1332         mmu_notifier_invalidate_range_start(&range);
1333         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1334                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1335         mmu_notifier_invalidate_range_end(&range);
1336         tlb_finish_mmu(&tlb, start, range.end);
1337 }
1338
1339 /**
1340  * zap_page_range_single - remove user pages in a given range
1341  * @vma: vm_area_struct holding the applicable pages
1342  * @address: starting address of pages to zap
1343  * @size: number of bytes to zap
1344  * @details: details of shared cache invalidation
1345  *
1346  * The range must fit into one VMA.
1347  */
1348 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1349                 unsigned long size, struct zap_details *details)
1350 {
1351         struct mmu_notifier_range range;
1352         struct mmu_gather tlb;
1353
1354         lru_add_drain();
1355         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1356                                 address, address + size);
1357         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1358         update_hiwater_rss(vma->vm_mm);
1359         mmu_notifier_invalidate_range_start(&range);
1360         unmap_single_vma(&tlb, vma, address, range.end, details);
1361         mmu_notifier_invalidate_range_end(&range);
1362         tlb_finish_mmu(&tlb, address, range.end);
1363 }
1364
1365 /**
1366  * zap_vma_ptes - remove ptes mapping the vma
1367  * @vma: vm_area_struct holding ptes to be zapped
1368  * @address: starting address of pages to zap
1369  * @size: number of bytes to zap
1370  *
1371  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1372  *
1373  * The entire address range must be fully contained within the vma.
1374  *
1375  */
1376 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1377                 unsigned long size)
1378 {
1379         if (address < vma->vm_start || address + size > vma->vm_end ||
1380                         !(vma->vm_flags & VM_PFNMAP))
1381                 return;
1382
1383         zap_page_range_single(vma, address, size, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1386
1387 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1388                         spinlock_t **ptl)
1389 {
1390         pgd_t *pgd;
1391         p4d_t *p4d;
1392         pud_t *pud;
1393         pmd_t *pmd;
1394
1395         pgd = pgd_offset(mm, addr);
1396         p4d = p4d_alloc(mm, pgd, addr);
1397         if (!p4d)
1398                 return NULL;
1399         pud = pud_alloc(mm, p4d, addr);
1400         if (!pud)
1401                 return NULL;
1402         pmd = pmd_alloc(mm, pud, addr);
1403         if (!pmd)
1404                 return NULL;
1405
1406         VM_BUG_ON(pmd_trans_huge(*pmd));
1407         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1408 }
1409
1410 /*
1411  * This is the old fallback for page remapping.
1412  *
1413  * For historical reasons, it only allows reserved pages. Only
1414  * old drivers should use this, and they needed to mark their
1415  * pages reserved for the old functions anyway.
1416  */
1417 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1418                         struct page *page, pgprot_t prot)
1419 {
1420         struct mm_struct *mm = vma->vm_mm;
1421         int retval;
1422         pte_t *pte;
1423         spinlock_t *ptl;
1424
1425         retval = -EINVAL;
1426         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1427                 goto out;
1428         retval = -ENOMEM;
1429         flush_dcache_page(page);
1430         pte = get_locked_pte(mm, addr, &ptl);
1431         if (!pte)
1432                 goto out;
1433         retval = -EBUSY;
1434         if (!pte_none(*pte))
1435                 goto out_unlock;
1436
1437         /* Ok, finally just insert the thing.. */
1438         get_page(page);
1439         inc_mm_counter_fast(mm, mm_counter_file(page));
1440         page_add_file_rmap(page, false);
1441         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1442
1443         retval = 0;
1444 out_unlock:
1445         pte_unmap_unlock(pte, ptl);
1446 out:
1447         return retval;
1448 }
1449
1450 /**
1451  * vm_insert_page - insert single page into user vma
1452  * @vma: user vma to map to
1453  * @addr: target user address of this page
1454  * @page: source kernel page
1455  *
1456  * This allows drivers to insert individual pages they've allocated
1457  * into a user vma.
1458  *
1459  * The page has to be a nice clean _individual_ kernel allocation.
1460  * If you allocate a compound page, you need to have marked it as
1461  * such (__GFP_COMP), or manually just split the page up yourself
1462  * (see split_page()).
1463  *
1464  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1465  * took an arbitrary page protection parameter. This doesn't allow
1466  * that. Your vma protection will have to be set up correctly, which
1467  * means that if you want a shared writable mapping, you'd better
1468  * ask for a shared writable mapping!
1469  *
1470  * The page does not need to be reserved.
1471  *
1472  * Usually this function is called from f_op->mmap() handler
1473  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1474  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1475  * function from other places, for example from page-fault handler.
1476  *
1477  * Return: %0 on success, negative error code otherwise.
1478  */
1479 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1480                         struct page *page)
1481 {
1482         if (addr < vma->vm_start || addr >= vma->vm_end)
1483                 return -EFAULT;
1484         if (!page_count(page))
1485                 return -EINVAL;
1486         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1487                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1488                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1489                 vma->vm_flags |= VM_MIXEDMAP;
1490         }
1491         return insert_page(vma, addr, page, vma->vm_page_prot);
1492 }
1493 EXPORT_SYMBOL(vm_insert_page);
1494
1495 /*
1496  * __vm_map_pages - maps range of kernel pages into user vma
1497  * @vma: user vma to map to
1498  * @pages: pointer to array of source kernel pages
1499  * @num: number of pages in page array
1500  * @offset: user's requested vm_pgoff
1501  *
1502  * This allows drivers to map range of kernel pages into a user vma.
1503  *
1504  * Return: 0 on success and error code otherwise.
1505  */
1506 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1507                                 unsigned long num, unsigned long offset)
1508 {
1509         unsigned long count = vma_pages(vma);
1510         unsigned long uaddr = vma->vm_start;
1511         int ret, i;
1512
1513         /* Fail if the user requested offset is beyond the end of the object */
1514         if (offset >= num)
1515                 return -ENXIO;
1516
1517         /* Fail if the user requested size exceeds available object size */
1518         if (count > num - offset)
1519                 return -ENXIO;
1520
1521         for (i = 0; i < count; i++) {
1522                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1523                 if (ret < 0)
1524                         return ret;
1525                 uaddr += PAGE_SIZE;
1526         }
1527
1528         return 0;
1529 }
1530
1531 /**
1532  * vm_map_pages - maps range of kernel pages starts with non zero offset
1533  * @vma: user vma to map to
1534  * @pages: pointer to array of source kernel pages
1535  * @num: number of pages in page array
1536  *
1537  * Maps an object consisting of @num pages, catering for the user's
1538  * requested vm_pgoff
1539  *
1540  * If we fail to insert any page into the vma, the function will return
1541  * immediately leaving any previously inserted pages present.  Callers
1542  * from the mmap handler may immediately return the error as their caller
1543  * will destroy the vma, removing any successfully inserted pages. Other
1544  * callers should make their own arrangements for calling unmap_region().
1545  *
1546  * Context: Process context. Called by mmap handlers.
1547  * Return: 0 on success and error code otherwise.
1548  */
1549 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1550                                 unsigned long num)
1551 {
1552         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1553 }
1554 EXPORT_SYMBOL(vm_map_pages);
1555
1556 /**
1557  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1558  * @vma: user vma to map to
1559  * @pages: pointer to array of source kernel pages
1560  * @num: number of pages in page array
1561  *
1562  * Similar to vm_map_pages(), except that it explicitly sets the offset
1563  * to 0. This function is intended for the drivers that did not consider
1564  * vm_pgoff.
1565  *
1566  * Context: Process context. Called by mmap handlers.
1567  * Return: 0 on success and error code otherwise.
1568  */
1569 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1570                                 unsigned long num)
1571 {
1572         return __vm_map_pages(vma, pages, num, 0);
1573 }
1574 EXPORT_SYMBOL(vm_map_pages_zero);
1575
1576 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1577                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1578 {
1579         struct mm_struct *mm = vma->vm_mm;
1580         pte_t *pte, entry;
1581         spinlock_t *ptl;
1582
1583         pte = get_locked_pte(mm, addr, &ptl);
1584         if (!pte)
1585                 return VM_FAULT_OOM;
1586         if (!pte_none(*pte)) {
1587                 if (mkwrite) {
1588                         /*
1589                          * For read faults on private mappings the PFN passed
1590                          * in may not match the PFN we have mapped if the
1591                          * mapped PFN is a writeable COW page.  In the mkwrite
1592                          * case we are creating a writable PTE for a shared
1593                          * mapping and we expect the PFNs to match. If they
1594                          * don't match, we are likely racing with block
1595                          * allocation and mapping invalidation so just skip the
1596                          * update.
1597                          */
1598                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1599                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1600                                 goto out_unlock;
1601                         }
1602                         entry = pte_mkyoung(*pte);
1603                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1604                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1605                                 update_mmu_cache(vma, addr, pte);
1606                 }
1607                 goto out_unlock;
1608         }
1609
1610         /* Ok, finally just insert the thing.. */
1611         if (pfn_t_devmap(pfn))
1612                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1613         else
1614                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1615
1616         if (mkwrite) {
1617                 entry = pte_mkyoung(entry);
1618                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1619         }
1620
1621         set_pte_at(mm, addr, pte, entry);
1622         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1623
1624 out_unlock:
1625         pte_unmap_unlock(pte, ptl);
1626         return VM_FAULT_NOPAGE;
1627 }
1628
1629 /**
1630  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1631  * @vma: user vma to map to
1632  * @addr: target user address of this page
1633  * @pfn: source kernel pfn
1634  * @pgprot: pgprot flags for the inserted page
1635  *
1636  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1637  * to override pgprot on a per-page basis.
1638  *
1639  * This only makes sense for IO mappings, and it makes no sense for
1640  * COW mappings.  In general, using multiple vmas is preferable;
1641  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1642  * impractical.
1643  *
1644  * Context: Process context.  May allocate using %GFP_KERNEL.
1645  * Return: vm_fault_t value.
1646  */
1647 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1648                         unsigned long pfn, pgprot_t pgprot)
1649 {
1650         /*
1651          * Technically, architectures with pte_special can avoid all these
1652          * restrictions (same for remap_pfn_range).  However we would like
1653          * consistency in testing and feature parity among all, so we should
1654          * try to keep these invariants in place for everybody.
1655          */
1656         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1657         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1658                                                 (VM_PFNMAP|VM_MIXEDMAP));
1659         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1660         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1661
1662         if (addr < vma->vm_start || addr >= vma->vm_end)
1663                 return VM_FAULT_SIGBUS;
1664
1665         if (!pfn_modify_allowed(pfn, pgprot))
1666                 return VM_FAULT_SIGBUS;
1667
1668         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1669
1670         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1671                         false);
1672 }
1673 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1674
1675 /**
1676  * vmf_insert_pfn - insert single pfn into user vma
1677  * @vma: user vma to map to
1678  * @addr: target user address of this page
1679  * @pfn: source kernel pfn
1680  *
1681  * Similar to vm_insert_page, this allows drivers to insert individual pages
1682  * they've allocated into a user vma. Same comments apply.
1683  *
1684  * This function should only be called from a vm_ops->fault handler, and
1685  * in that case the handler should return the result of this function.
1686  *
1687  * vma cannot be a COW mapping.
1688  *
1689  * As this is called only for pages that do not currently exist, we
1690  * do not need to flush old virtual caches or the TLB.
1691  *
1692  * Context: Process context.  May allocate using %GFP_KERNEL.
1693  * Return: vm_fault_t value.
1694  */
1695 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1696                         unsigned long pfn)
1697 {
1698         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1699 }
1700 EXPORT_SYMBOL(vmf_insert_pfn);
1701
1702 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1703 {
1704         /* these checks mirror the abort conditions in vm_normal_page */
1705         if (vma->vm_flags & VM_MIXEDMAP)
1706                 return true;
1707         if (pfn_t_devmap(pfn))
1708                 return true;
1709         if (pfn_t_special(pfn))
1710                 return true;
1711         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1712                 return true;
1713         return false;
1714 }
1715
1716 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1717                 unsigned long addr, pfn_t pfn, bool mkwrite)
1718 {
1719         pgprot_t pgprot = vma->vm_page_prot;
1720         int err;
1721
1722         BUG_ON(!vm_mixed_ok(vma, pfn));
1723
1724         if (addr < vma->vm_start || addr >= vma->vm_end)
1725                 return VM_FAULT_SIGBUS;
1726
1727         track_pfn_insert(vma, &pgprot, pfn);
1728
1729         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1730                 return VM_FAULT_SIGBUS;
1731
1732         /*
1733          * If we don't have pte special, then we have to use the pfn_valid()
1734          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1735          * refcount the page if pfn_valid is true (hence insert_page rather
1736          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1737          * without pte special, it would there be refcounted as a normal page.
1738          */
1739         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1740             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1741                 struct page *page;
1742
1743                 /*
1744                  * At this point we are committed to insert_page()
1745                  * regardless of whether the caller specified flags that
1746                  * result in pfn_t_has_page() == false.
1747                  */
1748                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1749                 err = insert_page(vma, addr, page, pgprot);
1750         } else {
1751                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1752         }
1753
1754         if (err == -ENOMEM)
1755                 return VM_FAULT_OOM;
1756         if (err < 0 && err != -EBUSY)
1757                 return VM_FAULT_SIGBUS;
1758
1759         return VM_FAULT_NOPAGE;
1760 }
1761
1762 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1763                 pfn_t pfn)
1764 {
1765         return __vm_insert_mixed(vma, addr, pfn, false);
1766 }
1767 EXPORT_SYMBOL(vmf_insert_mixed);
1768
1769 /*
1770  *  If the insertion of PTE failed because someone else already added a
1771  *  different entry in the mean time, we treat that as success as we assume
1772  *  the same entry was actually inserted.
1773  */
1774 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1775                 unsigned long addr, pfn_t pfn)
1776 {
1777         return __vm_insert_mixed(vma, addr, pfn, true);
1778 }
1779 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1780
1781 /*
1782  * maps a range of physical memory into the requested pages. the old
1783  * mappings are removed. any references to nonexistent pages results
1784  * in null mappings (currently treated as "copy-on-access")
1785  */
1786 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1787                         unsigned long addr, unsigned long end,
1788                         unsigned long pfn, pgprot_t prot)
1789 {
1790         pte_t *pte;
1791         spinlock_t *ptl;
1792         int err = 0;
1793
1794         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1795         if (!pte)
1796                 return -ENOMEM;
1797         arch_enter_lazy_mmu_mode();
1798         do {
1799                 BUG_ON(!pte_none(*pte));
1800                 if (!pfn_modify_allowed(pfn, prot)) {
1801                         err = -EACCES;
1802                         break;
1803                 }
1804                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1805                 pfn++;
1806         } while (pte++, addr += PAGE_SIZE, addr != end);
1807         arch_leave_lazy_mmu_mode();
1808         pte_unmap_unlock(pte - 1, ptl);
1809         return err;
1810 }
1811
1812 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1813                         unsigned long addr, unsigned long end,
1814                         unsigned long pfn, pgprot_t prot)
1815 {
1816         pmd_t *pmd;
1817         unsigned long next;
1818         int err;
1819
1820         pfn -= addr >> PAGE_SHIFT;
1821         pmd = pmd_alloc(mm, pud, addr);
1822         if (!pmd)
1823                 return -ENOMEM;
1824         VM_BUG_ON(pmd_trans_huge(*pmd));
1825         do {
1826                 next = pmd_addr_end(addr, end);
1827                 err = remap_pte_range(mm, pmd, addr, next,
1828                                 pfn + (addr >> PAGE_SHIFT), prot);
1829                 if (err)
1830                         return err;
1831         } while (pmd++, addr = next, addr != end);
1832         return 0;
1833 }
1834
1835 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1836                         unsigned long addr, unsigned long end,
1837                         unsigned long pfn, pgprot_t prot)
1838 {
1839         pud_t *pud;
1840         unsigned long next;
1841         int err;
1842
1843         pfn -= addr >> PAGE_SHIFT;
1844         pud = pud_alloc(mm, p4d, addr);
1845         if (!pud)
1846                 return -ENOMEM;
1847         do {
1848                 next = pud_addr_end(addr, end);
1849                 err = remap_pmd_range(mm, pud, addr, next,
1850                                 pfn + (addr >> PAGE_SHIFT), prot);
1851                 if (err)
1852                         return err;
1853         } while (pud++, addr = next, addr != end);
1854         return 0;
1855 }
1856
1857 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1858                         unsigned long addr, unsigned long end,
1859                         unsigned long pfn, pgprot_t prot)
1860 {
1861         p4d_t *p4d;
1862         unsigned long next;
1863         int err;
1864
1865         pfn -= addr >> PAGE_SHIFT;
1866         p4d = p4d_alloc(mm, pgd, addr);
1867         if (!p4d)
1868                 return -ENOMEM;
1869         do {
1870                 next = p4d_addr_end(addr, end);
1871                 err = remap_pud_range(mm, p4d, addr, next,
1872                                 pfn + (addr >> PAGE_SHIFT), prot);
1873                 if (err)
1874                         return err;
1875         } while (p4d++, addr = next, addr != end);
1876         return 0;
1877 }
1878
1879 /**
1880  * remap_pfn_range - remap kernel memory to userspace
1881  * @vma: user vma to map to
1882  * @addr: target user address to start at
1883  * @pfn: physical address of kernel memory
1884  * @size: size of map area
1885  * @prot: page protection flags for this mapping
1886  *
1887  * Note: this is only safe if the mm semaphore is held when called.
1888  *
1889  * Return: %0 on success, negative error code otherwise.
1890  */
1891 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1892                     unsigned long pfn, unsigned long size, pgprot_t prot)
1893 {
1894         pgd_t *pgd;
1895         unsigned long next;
1896         unsigned long end = addr + PAGE_ALIGN(size);
1897         struct mm_struct *mm = vma->vm_mm;
1898         unsigned long remap_pfn = pfn;
1899         int err;
1900
1901         /*
1902          * Physically remapped pages are special. Tell the
1903          * rest of the world about it:
1904          *   VM_IO tells people not to look at these pages
1905          *      (accesses can have side effects).
1906          *   VM_PFNMAP tells the core MM that the base pages are just
1907          *      raw PFN mappings, and do not have a "struct page" associated
1908          *      with them.
1909          *   VM_DONTEXPAND
1910          *      Disable vma merging and expanding with mremap().
1911          *   VM_DONTDUMP
1912          *      Omit vma from core dump, even when VM_IO turned off.
1913          *
1914          * There's a horrible special case to handle copy-on-write
1915          * behaviour that some programs depend on. We mark the "original"
1916          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1917          * See vm_normal_page() for details.
1918          */
1919         if (is_cow_mapping(vma->vm_flags)) {
1920                 if (addr != vma->vm_start || end != vma->vm_end)
1921                         return -EINVAL;
1922                 vma->vm_pgoff = pfn;
1923         }
1924
1925         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1926         if (err)
1927                 return -EINVAL;
1928
1929         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1930
1931         BUG_ON(addr >= end);
1932         pfn -= addr >> PAGE_SHIFT;
1933         pgd = pgd_offset(mm, addr);
1934         flush_cache_range(vma, addr, end);
1935         do {
1936                 next = pgd_addr_end(addr, end);
1937                 err = remap_p4d_range(mm, pgd, addr, next,
1938                                 pfn + (addr >> PAGE_SHIFT), prot);
1939                 if (err)
1940                         break;
1941         } while (pgd++, addr = next, addr != end);
1942
1943         if (err)
1944                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1945
1946         return err;
1947 }
1948 EXPORT_SYMBOL(remap_pfn_range);
1949
1950 /**
1951  * vm_iomap_memory - remap memory to userspace
1952  * @vma: user vma to map to
1953  * @start: start of area
1954  * @len: size of area
1955  *
1956  * This is a simplified io_remap_pfn_range() for common driver use. The
1957  * driver just needs to give us the physical memory range to be mapped,
1958  * we'll figure out the rest from the vma information.
1959  *
1960  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1961  * whatever write-combining details or similar.
1962  *
1963  * Return: %0 on success, negative error code otherwise.
1964  */
1965 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1966 {
1967         unsigned long vm_len, pfn, pages;
1968
1969         /* Check that the physical memory area passed in looks valid */
1970         if (start + len < start)
1971                 return -EINVAL;
1972         /*
1973          * You *really* shouldn't map things that aren't page-aligned,
1974          * but we've historically allowed it because IO memory might
1975          * just have smaller alignment.
1976          */
1977         len += start & ~PAGE_MASK;
1978         pfn = start >> PAGE_SHIFT;
1979         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1980         if (pfn + pages < pfn)
1981                 return -EINVAL;
1982
1983         /* We start the mapping 'vm_pgoff' pages into the area */
1984         if (vma->vm_pgoff > pages)
1985                 return -EINVAL;
1986         pfn += vma->vm_pgoff;
1987         pages -= vma->vm_pgoff;
1988
1989         /* Can we fit all of the mapping? */
1990         vm_len = vma->vm_end - vma->vm_start;
1991         if (vm_len >> PAGE_SHIFT > pages)
1992                 return -EINVAL;
1993
1994         /* Ok, let it rip */
1995         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1996 }
1997 EXPORT_SYMBOL(vm_iomap_memory);
1998
1999 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2000                                      unsigned long addr, unsigned long end,
2001                                      pte_fn_t fn, void *data)
2002 {
2003         pte_t *pte;
2004         int err;
2005         spinlock_t *uninitialized_var(ptl);
2006
2007         pte = (mm == &init_mm) ?
2008                 pte_alloc_kernel(pmd, addr) :
2009                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2010         if (!pte)
2011                 return -ENOMEM;
2012
2013         BUG_ON(pmd_huge(*pmd));
2014
2015         arch_enter_lazy_mmu_mode();
2016
2017         do {
2018                 err = fn(pte++, addr, data);
2019                 if (err)
2020                         break;
2021         } while (addr += PAGE_SIZE, addr != end);
2022
2023         arch_leave_lazy_mmu_mode();
2024
2025         if (mm != &init_mm)
2026                 pte_unmap_unlock(pte-1, ptl);
2027         return err;
2028 }
2029
2030 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2031                                      unsigned long addr, unsigned long end,
2032                                      pte_fn_t fn, void *data)
2033 {
2034         pmd_t *pmd;
2035         unsigned long next;
2036         int err;
2037
2038         BUG_ON(pud_huge(*pud));
2039
2040         pmd = pmd_alloc(mm, pud, addr);
2041         if (!pmd)
2042                 return -ENOMEM;
2043         do {
2044                 next = pmd_addr_end(addr, end);
2045                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2046                 if (err)
2047                         break;
2048         } while (pmd++, addr = next, addr != end);
2049         return err;
2050 }
2051
2052 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2053                                      unsigned long addr, unsigned long end,
2054                                      pte_fn_t fn, void *data)
2055 {
2056         pud_t *pud;
2057         unsigned long next;
2058         int err;
2059
2060         pud = pud_alloc(mm, p4d, addr);
2061         if (!pud)
2062                 return -ENOMEM;
2063         do {
2064                 next = pud_addr_end(addr, end);
2065                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2066                 if (err)
2067                         break;
2068         } while (pud++, addr = next, addr != end);
2069         return err;
2070 }
2071
2072 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2073                                      unsigned long addr, unsigned long end,
2074                                      pte_fn_t fn, void *data)
2075 {
2076         p4d_t *p4d;
2077         unsigned long next;
2078         int err;
2079
2080         p4d = p4d_alloc(mm, pgd, addr);
2081         if (!p4d)
2082                 return -ENOMEM;
2083         do {
2084                 next = p4d_addr_end(addr, end);
2085                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2086                 if (err)
2087                         break;
2088         } while (p4d++, addr = next, addr != end);
2089         return err;
2090 }
2091
2092 /*
2093  * Scan a region of virtual memory, filling in page tables as necessary
2094  * and calling a provided function on each leaf page table.
2095  */
2096 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2097                         unsigned long size, pte_fn_t fn, void *data)
2098 {
2099         pgd_t *pgd;
2100         unsigned long next;
2101         unsigned long end = addr + size;
2102         int err;
2103
2104         if (WARN_ON(addr >= end))
2105                 return -EINVAL;
2106
2107         pgd = pgd_offset(mm, addr);
2108         do {
2109                 next = pgd_addr_end(addr, end);
2110                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2111                 if (err)
2112                         break;
2113         } while (pgd++, addr = next, addr != end);
2114
2115         return err;
2116 }
2117 EXPORT_SYMBOL_GPL(apply_to_page_range);
2118
2119 /*
2120  * handle_pte_fault chooses page fault handler according to an entry which was
2121  * read non-atomically.  Before making any commitment, on those architectures
2122  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2123  * parts, do_swap_page must check under lock before unmapping the pte and
2124  * proceeding (but do_wp_page is only called after already making such a check;
2125  * and do_anonymous_page can safely check later on).
2126  */
2127 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2128                                 pte_t *page_table, pte_t orig_pte)
2129 {
2130         int same = 1;
2131 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2132         if (sizeof(pte_t) > sizeof(unsigned long)) {
2133                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2134                 spin_lock(ptl);
2135                 same = pte_same(*page_table, orig_pte);
2136                 spin_unlock(ptl);
2137         }
2138 #endif
2139         pte_unmap(page_table);
2140         return same;
2141 }
2142
2143 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2144 {
2145         debug_dma_assert_idle(src);
2146
2147         /*
2148          * If the source page was a PFN mapping, we don't have
2149          * a "struct page" for it. We do a best-effort copy by
2150          * just copying from the original user address. If that
2151          * fails, we just zero-fill it. Live with it.
2152          */
2153         if (unlikely(!src)) {
2154                 void *kaddr = kmap_atomic(dst);
2155                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2156
2157                 /*
2158                  * This really shouldn't fail, because the page is there
2159                  * in the page tables. But it might just be unreadable,
2160                  * in which case we just give up and fill the result with
2161                  * zeroes.
2162                  */
2163                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2164                         clear_page(kaddr);
2165                 kunmap_atomic(kaddr);
2166                 flush_dcache_page(dst);
2167         } else
2168                 copy_user_highpage(dst, src, va, vma);
2169 }
2170
2171 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2172 {
2173         struct file *vm_file = vma->vm_file;
2174
2175         if (vm_file)
2176                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2177
2178         /*
2179          * Special mappings (e.g. VDSO) do not have any file so fake
2180          * a default GFP_KERNEL for them.
2181          */
2182         return GFP_KERNEL;
2183 }
2184
2185 /*
2186  * Notify the address space that the page is about to become writable so that
2187  * it can prohibit this or wait for the page to get into an appropriate state.
2188  *
2189  * We do this without the lock held, so that it can sleep if it needs to.
2190  */
2191 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2192 {
2193         vm_fault_t ret;
2194         struct page *page = vmf->page;
2195         unsigned int old_flags = vmf->flags;
2196
2197         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2198
2199         if (vmf->vma->vm_file &&
2200             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2201                 return VM_FAULT_SIGBUS;
2202
2203         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2204         /* Restore original flags so that caller is not surprised */
2205         vmf->flags = old_flags;
2206         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2207                 return ret;
2208         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2209                 lock_page(page);
2210                 if (!page->mapping) {
2211                         unlock_page(page);
2212                         return 0; /* retry */
2213                 }
2214                 ret |= VM_FAULT_LOCKED;
2215         } else
2216                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2217         return ret;
2218 }
2219
2220 /*
2221  * Handle dirtying of a page in shared file mapping on a write fault.
2222  *
2223  * The function expects the page to be locked and unlocks it.
2224  */
2225 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2226                                     struct page *page)
2227 {
2228         struct address_space *mapping;
2229         bool dirtied;
2230         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2231
2232         dirtied = set_page_dirty(page);
2233         VM_BUG_ON_PAGE(PageAnon(page), page);
2234         /*
2235          * Take a local copy of the address_space - page.mapping may be zeroed
2236          * by truncate after unlock_page().   The address_space itself remains
2237          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2238          * release semantics to prevent the compiler from undoing this copying.
2239          */
2240         mapping = page_rmapping(page);
2241         unlock_page(page);
2242
2243         if ((dirtied || page_mkwrite) && mapping) {
2244                 /*
2245                  * Some device drivers do not set page.mapping
2246                  * but still dirty their pages
2247                  */
2248                 balance_dirty_pages_ratelimited(mapping);
2249         }
2250
2251         if (!page_mkwrite)
2252                 file_update_time(vma->vm_file);
2253 }
2254
2255 /*
2256  * Handle write page faults for pages that can be reused in the current vma
2257  *
2258  * This can happen either due to the mapping being with the VM_SHARED flag,
2259  * or due to us being the last reference standing to the page. In either
2260  * case, all we need to do here is to mark the page as writable and update
2261  * any related book-keeping.
2262  */
2263 static inline void wp_page_reuse(struct vm_fault *vmf)
2264         __releases(vmf->ptl)
2265 {
2266         struct vm_area_struct *vma = vmf->vma;
2267         struct page *page = vmf->page;
2268         pte_t entry;
2269         /*
2270          * Clear the pages cpupid information as the existing
2271          * information potentially belongs to a now completely
2272          * unrelated process.
2273          */
2274         if (page)
2275                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2276
2277         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2278         entry = pte_mkyoung(vmf->orig_pte);
2279         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2280         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2281                 update_mmu_cache(vma, vmf->address, vmf->pte);
2282         pte_unmap_unlock(vmf->pte, vmf->ptl);
2283 }
2284
2285 /*
2286  * Handle the case of a page which we actually need to copy to a new page.
2287  *
2288  * Called with mmap_sem locked and the old page referenced, but
2289  * without the ptl held.
2290  *
2291  * High level logic flow:
2292  *
2293  * - Allocate a page, copy the content of the old page to the new one.
2294  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2295  * - Take the PTL. If the pte changed, bail out and release the allocated page
2296  * - If the pte is still the way we remember it, update the page table and all
2297  *   relevant references. This includes dropping the reference the page-table
2298  *   held to the old page, as well as updating the rmap.
2299  * - In any case, unlock the PTL and drop the reference we took to the old page.
2300  */
2301 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2302 {
2303         struct vm_area_struct *vma = vmf->vma;
2304         struct mm_struct *mm = vma->vm_mm;
2305         struct page *old_page = vmf->page;
2306         struct page *new_page = NULL;
2307         pte_t entry;
2308         int page_copied = 0;
2309         struct mem_cgroup *memcg;
2310         struct mmu_notifier_range range;
2311
2312         if (unlikely(anon_vma_prepare(vma)))
2313                 goto oom;
2314
2315         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2316                 new_page = alloc_zeroed_user_highpage_movable(vma,
2317                                                               vmf->address);
2318                 if (!new_page)
2319                         goto oom;
2320         } else {
2321                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2322                                 vmf->address);
2323                 if (!new_page)
2324                         goto oom;
2325                 cow_user_page(new_page, old_page, vmf->address, vma);
2326         }
2327
2328         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2329                 goto oom_free_new;
2330
2331         __SetPageUptodate(new_page);
2332
2333         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2334                                 vmf->address & PAGE_MASK,
2335                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2336         mmu_notifier_invalidate_range_start(&range);
2337
2338         /*
2339          * Re-check the pte - we dropped the lock
2340          */
2341         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2342         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2343                 if (old_page) {
2344                         if (!PageAnon(old_page)) {
2345                                 dec_mm_counter_fast(mm,
2346                                                 mm_counter_file(old_page));
2347                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2348                         }
2349                 } else {
2350                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2351                 }
2352                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2353                 entry = mk_pte(new_page, vma->vm_page_prot);
2354                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2355                 /*
2356                  * Clear the pte entry and flush it first, before updating the
2357                  * pte with the new entry. This will avoid a race condition
2358                  * seen in the presence of one thread doing SMC and another
2359                  * thread doing COW.
2360                  */
2361                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2362                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2363                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2364                 lru_cache_add_active_or_unevictable(new_page, vma);
2365                 /*
2366                  * We call the notify macro here because, when using secondary
2367                  * mmu page tables (such as kvm shadow page tables), we want the
2368                  * new page to be mapped directly into the secondary page table.
2369                  */
2370                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2371                 update_mmu_cache(vma, vmf->address, vmf->pte);
2372                 if (old_page) {
2373                         /*
2374                          * Only after switching the pte to the new page may
2375                          * we remove the mapcount here. Otherwise another
2376                          * process may come and find the rmap count decremented
2377                          * before the pte is switched to the new page, and
2378                          * "reuse" the old page writing into it while our pte
2379                          * here still points into it and can be read by other
2380                          * threads.
2381                          *
2382                          * The critical issue is to order this
2383                          * page_remove_rmap with the ptp_clear_flush above.
2384                          * Those stores are ordered by (if nothing else,)
2385                          * the barrier present in the atomic_add_negative
2386                          * in page_remove_rmap.
2387                          *
2388                          * Then the TLB flush in ptep_clear_flush ensures that
2389                          * no process can access the old page before the
2390                          * decremented mapcount is visible. And the old page
2391                          * cannot be reused until after the decremented
2392                          * mapcount is visible. So transitively, TLBs to
2393                          * old page will be flushed before it can be reused.
2394                          */
2395                         page_remove_rmap(old_page, false);
2396                 }
2397
2398                 /* Free the old page.. */
2399                 new_page = old_page;
2400                 page_copied = 1;
2401         } else {
2402                 mem_cgroup_cancel_charge(new_page, memcg, false);
2403         }
2404
2405         if (new_page)
2406                 put_page(new_page);
2407
2408         pte_unmap_unlock(vmf->pte, vmf->ptl);
2409         /*
2410          * No need to double call mmu_notifier->invalidate_range() callback as
2411          * the above ptep_clear_flush_notify() did already call it.
2412          */
2413         mmu_notifier_invalidate_range_only_end(&range);
2414         if (old_page) {
2415                 /*
2416                  * Don't let another task, with possibly unlocked vma,
2417                  * keep the mlocked page.
2418                  */
2419                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2420                         lock_page(old_page);    /* LRU manipulation */
2421                         if (PageMlocked(old_page))
2422                                 munlock_vma_page(old_page);
2423                         unlock_page(old_page);
2424                 }
2425                 put_page(old_page);
2426         }
2427         return page_copied ? VM_FAULT_WRITE : 0;
2428 oom_free_new:
2429         put_page(new_page);
2430 oom:
2431         if (old_page)
2432                 put_page(old_page);
2433         return VM_FAULT_OOM;
2434 }
2435
2436 /**
2437  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2438  *                        writeable once the page is prepared
2439  *
2440  * @vmf: structure describing the fault
2441  *
2442  * This function handles all that is needed to finish a write page fault in a
2443  * shared mapping due to PTE being read-only once the mapped page is prepared.
2444  * It handles locking of PTE and modifying it.
2445  *
2446  * The function expects the page to be locked or other protection against
2447  * concurrent faults / writeback (such as DAX radix tree locks).
2448  *
2449  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2450  * we acquired PTE lock.
2451  */
2452 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2453 {
2454         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2455         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2456                                        &vmf->ptl);
2457         /*
2458          * We might have raced with another page fault while we released the
2459          * pte_offset_map_lock.
2460          */
2461         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2462                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2463                 return VM_FAULT_NOPAGE;
2464         }
2465         wp_page_reuse(vmf);
2466         return 0;
2467 }
2468
2469 /*
2470  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2471  * mapping
2472  */
2473 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2474 {
2475         struct vm_area_struct *vma = vmf->vma;
2476
2477         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2478                 vm_fault_t ret;
2479
2480                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2481                 vmf->flags |= FAULT_FLAG_MKWRITE;
2482                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2483                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2484                         return ret;
2485                 return finish_mkwrite_fault(vmf);
2486         }
2487         wp_page_reuse(vmf);
2488         return VM_FAULT_WRITE;
2489 }
2490
2491 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2492         __releases(vmf->ptl)
2493 {
2494         struct vm_area_struct *vma = vmf->vma;
2495
2496         get_page(vmf->page);
2497
2498         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2499                 vm_fault_t tmp;
2500
2501                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2502                 tmp = do_page_mkwrite(vmf);
2503                 if (unlikely(!tmp || (tmp &
2504                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2505                         put_page(vmf->page);
2506                         return tmp;
2507                 }
2508                 tmp = finish_mkwrite_fault(vmf);
2509                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2510                         unlock_page(vmf->page);
2511                         put_page(vmf->page);
2512                         return tmp;
2513                 }
2514         } else {
2515                 wp_page_reuse(vmf);
2516                 lock_page(vmf->page);
2517         }
2518         fault_dirty_shared_page(vma, vmf->page);
2519         put_page(vmf->page);
2520
2521         return VM_FAULT_WRITE;
2522 }
2523
2524 /*
2525  * This routine handles present pages, when users try to write
2526  * to a shared page. It is done by copying the page to a new address
2527  * and decrementing the shared-page counter for the old page.
2528  *
2529  * Note that this routine assumes that the protection checks have been
2530  * done by the caller (the low-level page fault routine in most cases).
2531  * Thus we can safely just mark it writable once we've done any necessary
2532  * COW.
2533  *
2534  * We also mark the page dirty at this point even though the page will
2535  * change only once the write actually happens. This avoids a few races,
2536  * and potentially makes it more efficient.
2537  *
2538  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2539  * but allow concurrent faults), with pte both mapped and locked.
2540  * We return with mmap_sem still held, but pte unmapped and unlocked.
2541  */
2542 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2543         __releases(vmf->ptl)
2544 {
2545         struct vm_area_struct *vma = vmf->vma;
2546
2547         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2548         if (!vmf->page) {
2549                 /*
2550                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2551                  * VM_PFNMAP VMA.
2552                  *
2553                  * We should not cow pages in a shared writeable mapping.
2554                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2555                  */
2556                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2557                                      (VM_WRITE|VM_SHARED))
2558                         return wp_pfn_shared(vmf);
2559
2560                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2561                 return wp_page_copy(vmf);
2562         }
2563
2564         /*
2565          * Take out anonymous pages first, anonymous shared vmas are
2566          * not dirty accountable.
2567          */
2568         if (PageAnon(vmf->page)) {
2569                 int total_map_swapcount;
2570                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2571                                            page_count(vmf->page) != 1))
2572                         goto copy;
2573                 if (!trylock_page(vmf->page)) {
2574                         get_page(vmf->page);
2575                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2576                         lock_page(vmf->page);
2577                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2578                                         vmf->address, &vmf->ptl);
2579                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2580                                 unlock_page(vmf->page);
2581                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2582                                 put_page(vmf->page);
2583                                 return 0;
2584                         }
2585                         put_page(vmf->page);
2586                 }
2587                 if (PageKsm(vmf->page)) {
2588                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2589                                                      vmf->address);
2590                         unlock_page(vmf->page);
2591                         if (!reused)
2592                                 goto copy;
2593                         wp_page_reuse(vmf);
2594                         return VM_FAULT_WRITE;
2595                 }
2596                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2597                         if (total_map_swapcount == 1) {
2598                                 /*
2599                                  * The page is all ours. Move it to
2600                                  * our anon_vma so the rmap code will
2601                                  * not search our parent or siblings.
2602                                  * Protected against the rmap code by
2603                                  * the page lock.
2604                                  */
2605                                 page_move_anon_rmap(vmf->page, vma);
2606                         }
2607                         unlock_page(vmf->page);
2608                         wp_page_reuse(vmf);
2609                         return VM_FAULT_WRITE;
2610                 }
2611                 unlock_page(vmf->page);
2612         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2613                                         (VM_WRITE|VM_SHARED))) {
2614                 return wp_page_shared(vmf);
2615         }
2616 copy:
2617         /*
2618          * Ok, we need to copy. Oh, well..
2619          */
2620         get_page(vmf->page);
2621
2622         pte_unmap_unlock(vmf->pte, vmf->ptl);
2623         return wp_page_copy(vmf);
2624 }
2625
2626 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2627                 unsigned long start_addr, unsigned long end_addr,
2628                 struct zap_details *details)
2629 {
2630         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2631 }
2632
2633 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2634                                             struct zap_details *details)
2635 {
2636         struct vm_area_struct *vma;
2637         pgoff_t vba, vea, zba, zea;
2638
2639         vma_interval_tree_foreach(vma, root,
2640                         details->first_index, details->last_index) {
2641
2642                 vba = vma->vm_pgoff;
2643                 vea = vba + vma_pages(vma) - 1;
2644                 zba = details->first_index;
2645                 if (zba < vba)
2646                         zba = vba;
2647                 zea = details->last_index;
2648                 if (zea > vea)
2649                         zea = vea;
2650
2651                 unmap_mapping_range_vma(vma,
2652                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2653                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2654                                 details);
2655         }
2656 }
2657
2658 /**
2659  * unmap_mapping_pages() - Unmap pages from processes.
2660  * @mapping: The address space containing pages to be unmapped.
2661  * @start: Index of first page to be unmapped.
2662  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2663  * @even_cows: Whether to unmap even private COWed pages.
2664  *
2665  * Unmap the pages in this address space from any userspace process which
2666  * has them mmaped.  Generally, you want to remove COWed pages as well when
2667  * a file is being truncated, but not when invalidating pages from the page
2668  * cache.
2669  */
2670 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2671                 pgoff_t nr, bool even_cows)
2672 {
2673         struct zap_details details = { };
2674
2675         details.check_mapping = even_cows ? NULL : mapping;
2676         details.first_index = start;
2677         details.last_index = start + nr - 1;
2678         if (details.last_index < details.first_index)
2679                 details.last_index = ULONG_MAX;
2680
2681         i_mmap_lock_write(mapping);
2682         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2683                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2684         i_mmap_unlock_write(mapping);
2685 }
2686
2687 /**
2688  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2689  * address_space corresponding to the specified byte range in the underlying
2690  * file.
2691  *
2692  * @mapping: the address space containing mmaps to be unmapped.
2693  * @holebegin: byte in first page to unmap, relative to the start of
2694  * the underlying file.  This will be rounded down to a PAGE_SIZE
2695  * boundary.  Note that this is different from truncate_pagecache(), which
2696  * must keep the partial page.  In contrast, we must get rid of
2697  * partial pages.
2698  * @holelen: size of prospective hole in bytes.  This will be rounded
2699  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2700  * end of the file.
2701  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2702  * but 0 when invalidating pagecache, don't throw away private data.
2703  */
2704 void unmap_mapping_range(struct address_space *mapping,
2705                 loff_t const holebegin, loff_t const holelen, int even_cows)
2706 {
2707         pgoff_t hba = holebegin >> PAGE_SHIFT;
2708         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2709
2710         /* Check for overflow. */
2711         if (sizeof(holelen) > sizeof(hlen)) {
2712                 long long holeend =
2713                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2714                 if (holeend & ~(long long)ULONG_MAX)
2715                         hlen = ULONG_MAX - hba + 1;
2716         }
2717
2718         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2719 }
2720 EXPORT_SYMBOL(unmap_mapping_range);
2721
2722 /*
2723  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2724  * but allow concurrent faults), and pte mapped but not yet locked.
2725  * We return with pte unmapped and unlocked.
2726  *
2727  * We return with the mmap_sem locked or unlocked in the same cases
2728  * as does filemap_fault().
2729  */
2730 vm_fault_t do_swap_page(struct vm_fault *vmf)
2731 {
2732         struct vm_area_struct *vma = vmf->vma;
2733         struct page *page = NULL, *swapcache;
2734         struct mem_cgroup *memcg;
2735         swp_entry_t entry;
2736         pte_t pte;
2737         int locked;
2738         int exclusive = 0;
2739         vm_fault_t ret = 0;
2740
2741         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2742                 goto out;
2743
2744         entry = pte_to_swp_entry(vmf->orig_pte);
2745         if (unlikely(non_swap_entry(entry))) {
2746                 if (is_migration_entry(entry)) {
2747                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2748                                              vmf->address);
2749                 } else if (is_device_private_entry(entry)) {
2750                         vmf->page = device_private_entry_to_page(entry);
2751                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2752                 } else if (is_hwpoison_entry(entry)) {
2753                         ret = VM_FAULT_HWPOISON;
2754                 } else {
2755                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2756                         ret = VM_FAULT_SIGBUS;
2757                 }
2758                 goto out;
2759         }
2760
2761
2762         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2763         page = lookup_swap_cache(entry, vma, vmf->address);
2764         swapcache = page;
2765
2766         if (!page) {
2767                 struct swap_info_struct *si = swp_swap_info(entry);
2768
2769                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2770                                 __swap_count(entry) == 1) {
2771                         /* skip swapcache */
2772                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2773                                                         vmf->address);
2774                         if (page) {
2775                                 __SetPageLocked(page);
2776                                 __SetPageSwapBacked(page);
2777                                 set_page_private(page, entry.val);
2778                                 lru_cache_add_anon(page);
2779                                 swap_readpage(page, true);
2780                         }
2781                 } else {
2782                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2783                                                 vmf);
2784                         swapcache = page;
2785                 }
2786
2787                 if (!page) {
2788                         /*
2789                          * Back out if somebody else faulted in this pte
2790                          * while we released the pte lock.
2791                          */
2792                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2793                                         vmf->address, &vmf->ptl);
2794                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2795                                 ret = VM_FAULT_OOM;
2796                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2797                         goto unlock;
2798                 }
2799
2800                 /* Had to read the page from swap area: Major fault */
2801                 ret = VM_FAULT_MAJOR;
2802                 count_vm_event(PGMAJFAULT);
2803                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2804         } else if (PageHWPoison(page)) {
2805                 /*
2806                  * hwpoisoned dirty swapcache pages are kept for killing
2807                  * owner processes (which may be unknown at hwpoison time)
2808                  */
2809                 ret = VM_FAULT_HWPOISON;
2810                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2811                 goto out_release;
2812         }
2813
2814         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2815
2816         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2817         if (!locked) {
2818                 ret |= VM_FAULT_RETRY;
2819                 goto out_release;
2820         }
2821
2822         /*
2823          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2824          * release the swapcache from under us.  The page pin, and pte_same
2825          * test below, are not enough to exclude that.  Even if it is still
2826          * swapcache, we need to check that the page's swap has not changed.
2827          */
2828         if (unlikely((!PageSwapCache(page) ||
2829                         page_private(page) != entry.val)) && swapcache)
2830                 goto out_page;
2831
2832         page = ksm_might_need_to_copy(page, vma, vmf->address);
2833         if (unlikely(!page)) {
2834                 ret = VM_FAULT_OOM;
2835                 page = swapcache;
2836                 goto out_page;
2837         }
2838
2839         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2840                                         &memcg, false)) {
2841                 ret = VM_FAULT_OOM;
2842                 goto out_page;
2843         }
2844
2845         /*
2846          * Back out if somebody else already faulted in this pte.
2847          */
2848         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2849                         &vmf->ptl);
2850         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2851                 goto out_nomap;
2852
2853         if (unlikely(!PageUptodate(page))) {
2854                 ret = VM_FAULT_SIGBUS;
2855                 goto out_nomap;
2856         }
2857
2858         /*
2859          * The page isn't present yet, go ahead with the fault.
2860          *
2861          * Be careful about the sequence of operations here.
2862          * To get its accounting right, reuse_swap_page() must be called
2863          * while the page is counted on swap but not yet in mapcount i.e.
2864          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2865          * must be called after the swap_free(), or it will never succeed.
2866          */
2867
2868         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2869         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2870         pte = mk_pte(page, vma->vm_page_prot);
2871         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2872                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2873                 vmf->flags &= ~FAULT_FLAG_WRITE;
2874                 ret |= VM_FAULT_WRITE;
2875                 exclusive = RMAP_EXCLUSIVE;
2876         }
2877         flush_icache_page(vma, page);
2878         if (pte_swp_soft_dirty(vmf->orig_pte))
2879                 pte = pte_mksoft_dirty(pte);
2880         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2881         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2882         vmf->orig_pte = pte;
2883
2884         /* ksm created a completely new copy */
2885         if (unlikely(page != swapcache && swapcache)) {
2886                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2887                 mem_cgroup_commit_charge(page, memcg, false, false);
2888                 lru_cache_add_active_or_unevictable(page, vma);
2889         } else {
2890                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2891                 mem_cgroup_commit_charge(page, memcg, true, false);
2892                 activate_page(page);
2893         }
2894
2895         swap_free(entry);
2896         if (mem_cgroup_swap_full(page) ||
2897             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2898                 try_to_free_swap(page);
2899         unlock_page(page);
2900         if (page != swapcache && swapcache) {
2901                 /*
2902                  * Hold the lock to avoid the swap entry to be reused
2903                  * until we take the PT lock for the pte_same() check
2904                  * (to avoid false positives from pte_same). For
2905                  * further safety release the lock after the swap_free
2906                  * so that the swap count won't change under a
2907                  * parallel locked swapcache.
2908                  */
2909                 unlock_page(swapcache);
2910                 put_page(swapcache);
2911         }
2912
2913         if (vmf->flags & FAULT_FLAG_WRITE) {
2914                 ret |= do_wp_page(vmf);
2915                 if (ret & VM_FAULT_ERROR)
2916                         ret &= VM_FAULT_ERROR;
2917                 goto out;
2918         }
2919
2920         /* No need to invalidate - it was non-present before */
2921         update_mmu_cache(vma, vmf->address, vmf->pte);
2922 unlock:
2923         pte_unmap_unlock(vmf->pte, vmf->ptl);
2924 out:
2925         return ret;
2926 out_nomap:
2927         mem_cgroup_cancel_charge(page, memcg, false);
2928         pte_unmap_unlock(vmf->pte, vmf->ptl);
2929 out_page:
2930         unlock_page(page);
2931 out_release:
2932         put_page(page);
2933         if (page != swapcache && swapcache) {
2934                 unlock_page(swapcache);
2935                 put_page(swapcache);
2936         }
2937         return ret;
2938 }
2939
2940 /*
2941  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2942  * but allow concurrent faults), and pte mapped but not yet locked.
2943  * We return with mmap_sem still held, but pte unmapped and unlocked.
2944  */
2945 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2946 {
2947         struct vm_area_struct *vma = vmf->vma;
2948         struct mem_cgroup *memcg;
2949         struct page *page;
2950         vm_fault_t ret = 0;
2951         pte_t entry;
2952
2953         /* File mapping without ->vm_ops ? */
2954         if (vma->vm_flags & VM_SHARED)
2955                 return VM_FAULT_SIGBUS;
2956
2957         /*
2958          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2959          * pte_offset_map() on pmds where a huge pmd might be created
2960          * from a different thread.
2961          *
2962          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2963          * parallel threads are excluded by other means.
2964          *
2965          * Here we only have down_read(mmap_sem).
2966          */
2967         if (pte_alloc(vma->vm_mm, vmf->pmd))
2968                 return VM_FAULT_OOM;
2969
2970         /* See the comment in pte_alloc_one_map() */
2971         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2972                 return 0;
2973
2974         /* Use the zero-page for reads */
2975         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2976                         !mm_forbids_zeropage(vma->vm_mm)) {
2977                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2978                                                 vma->vm_page_prot));
2979                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2980                                 vmf->address, &vmf->ptl);
2981                 if (!pte_none(*vmf->pte))
2982                         goto unlock;
2983                 ret = check_stable_address_space(vma->vm_mm);
2984                 if (ret)
2985                         goto unlock;
2986                 /* Deliver the page fault to userland, check inside PT lock */
2987                 if (userfaultfd_missing(vma)) {
2988                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2989                         return handle_userfault(vmf, VM_UFFD_MISSING);
2990                 }
2991                 goto setpte;
2992         }
2993
2994         /* Allocate our own private page. */
2995         if (unlikely(anon_vma_prepare(vma)))
2996                 goto oom;
2997         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2998         if (!page)
2999                 goto oom;
3000
3001         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3002                                         false))
3003                 goto oom_free_page;
3004
3005         /*
3006          * The memory barrier inside __SetPageUptodate makes sure that
3007          * preceeding stores to the page contents become visible before
3008          * the set_pte_at() write.
3009          */
3010         __SetPageUptodate(page);
3011
3012         entry = mk_pte(page, vma->vm_page_prot);
3013         if (vma->vm_flags & VM_WRITE)
3014                 entry = pte_mkwrite(pte_mkdirty(entry));
3015
3016         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3017                         &vmf->ptl);
3018         if (!pte_none(*vmf->pte))
3019                 goto release;
3020
3021         ret = check_stable_address_space(vma->vm_mm);
3022         if (ret)
3023                 goto release;
3024
3025         /* Deliver the page fault to userland, check inside PT lock */
3026         if (userfaultfd_missing(vma)) {
3027                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3028                 mem_cgroup_cancel_charge(page, memcg, false);
3029                 put_page(page);
3030                 return handle_userfault(vmf, VM_UFFD_MISSING);
3031         }
3032
3033         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3034         page_add_new_anon_rmap(page, vma, vmf->address, false);
3035         mem_cgroup_commit_charge(page, memcg, false, false);
3036         lru_cache_add_active_or_unevictable(page, vma);
3037 setpte:
3038         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3039
3040         /* No need to invalidate - it was non-present before */
3041         update_mmu_cache(vma, vmf->address, vmf->pte);
3042 unlock:
3043         pte_unmap_unlock(vmf->pte, vmf->ptl);
3044         return ret;
3045 release:
3046         mem_cgroup_cancel_charge(page, memcg, false);
3047         put_page(page);
3048         goto unlock;
3049 oom_free_page:
3050         put_page(page);
3051 oom:
3052         return VM_FAULT_OOM;
3053 }
3054
3055 /*
3056  * The mmap_sem must have been held on entry, and may have been
3057  * released depending on flags and vma->vm_ops->fault() return value.
3058  * See filemap_fault() and __lock_page_retry().
3059  */
3060 static vm_fault_t __do_fault(struct vm_fault *vmf)
3061 {
3062         struct vm_area_struct *vma = vmf->vma;
3063         vm_fault_t ret;
3064
3065         /*
3066          * Preallocate pte before we take page_lock because this might lead to
3067          * deadlocks for memcg reclaim which waits for pages under writeback:
3068          *                              lock_page(A)
3069          *                              SetPageWriteback(A)
3070          *                              unlock_page(A)
3071          * lock_page(B)
3072          *                              lock_page(B)
3073          * pte_alloc_pne
3074          *   shrink_page_list
3075          *     wait_on_page_writeback(A)
3076          *                              SetPageWriteback(B)
3077          *                              unlock_page(B)
3078          *                              # flush A, B to clear the writeback
3079          */
3080         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3081                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3082                 if (!vmf->prealloc_pte)
3083                         return VM_FAULT_OOM;
3084                 smp_wmb(); /* See comment in __pte_alloc() */
3085         }
3086
3087         ret = vma->vm_ops->fault(vmf);
3088         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3089                             VM_FAULT_DONE_COW)))
3090                 return ret;
3091
3092         if (unlikely(PageHWPoison(vmf->page))) {
3093                 if (ret & VM_FAULT_LOCKED)
3094                         unlock_page(vmf->page);
3095                 put_page(vmf->page);
3096                 vmf->page = NULL;
3097                 return VM_FAULT_HWPOISON;
3098         }
3099
3100         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3101                 lock_page(vmf->page);
3102         else
3103                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3104
3105         return ret;
3106 }
3107
3108 /*
3109  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3110  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3111  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3112  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3113  */
3114 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3115 {
3116         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3117 }
3118
3119 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3120 {
3121         struct vm_area_struct *vma = vmf->vma;
3122
3123         if (!pmd_none(*vmf->pmd))
3124                 goto map_pte;
3125         if (vmf->prealloc_pte) {
3126                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3127                 if (unlikely(!pmd_none(*vmf->pmd))) {
3128                         spin_unlock(vmf->ptl);
3129                         goto map_pte;
3130                 }
3131
3132                 mm_inc_nr_ptes(vma->vm_mm);
3133                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3134                 spin_unlock(vmf->ptl);
3135                 vmf->prealloc_pte = NULL;
3136         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3137                 return VM_FAULT_OOM;
3138         }
3139 map_pte:
3140         /*
3141          * If a huge pmd materialized under us just retry later.  Use
3142          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3143          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3144          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3145          * running immediately after a huge pmd fault in a different thread of
3146          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3147          * All we have to ensure is that it is a regular pmd that we can walk
3148          * with pte_offset_map() and we can do that through an atomic read in
3149          * C, which is what pmd_trans_unstable() provides.
3150          */
3151         if (pmd_devmap_trans_unstable(vmf->pmd))
3152                 return VM_FAULT_NOPAGE;
3153
3154         /*
3155          * At this point we know that our vmf->pmd points to a page of ptes
3156          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3157          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3158          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3159          * be valid and we will re-check to make sure the vmf->pte isn't
3160          * pte_none() under vmf->ptl protection when we return to
3161          * alloc_set_pte().
3162          */
3163         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3164                         &vmf->ptl);
3165         return 0;
3166 }
3167
3168 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3169 static void deposit_prealloc_pte(struct vm_fault *vmf)
3170 {
3171         struct vm_area_struct *vma = vmf->vma;
3172
3173         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3174         /*
3175          * We are going to consume the prealloc table,
3176          * count that as nr_ptes.
3177          */
3178         mm_inc_nr_ptes(vma->vm_mm);
3179         vmf->prealloc_pte = NULL;
3180 }
3181
3182 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3183 {
3184         struct vm_area_struct *vma = vmf->vma;
3185         bool write = vmf->flags & FAULT_FLAG_WRITE;
3186         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3187         pmd_t entry;
3188         int i;
3189         vm_fault_t ret;
3190
3191         if (!transhuge_vma_suitable(vma, haddr))
3192                 return VM_FAULT_FALLBACK;
3193
3194         ret = VM_FAULT_FALLBACK;
3195         page = compound_head(page);
3196
3197         /*
3198          * Archs like ppc64 need additonal space to store information
3199          * related to pte entry. Use the preallocated table for that.
3200          */
3201         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3202                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3203                 if (!vmf->prealloc_pte)
3204                         return VM_FAULT_OOM;
3205                 smp_wmb(); /* See comment in __pte_alloc() */
3206         }
3207
3208         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3209         if (unlikely(!pmd_none(*vmf->pmd)))
3210                 goto out;
3211
3212         for (i = 0; i < HPAGE_PMD_NR; i++)
3213                 flush_icache_page(vma, page + i);
3214
3215         entry = mk_huge_pmd(page, vma->vm_page_prot);
3216         if (write)
3217                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3218
3219         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3220         page_add_file_rmap(page, true);
3221         /*
3222          * deposit and withdraw with pmd lock held
3223          */
3224         if (arch_needs_pgtable_deposit())
3225                 deposit_prealloc_pte(vmf);
3226
3227         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3228
3229         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3230
3231         /* fault is handled */
3232         ret = 0;
3233         count_vm_event(THP_FILE_MAPPED);
3234 out:
3235         spin_unlock(vmf->ptl);
3236         return ret;
3237 }
3238 #else
3239 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3240 {
3241         BUILD_BUG();
3242         return 0;
3243 }
3244 #endif
3245
3246 /**
3247  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3248  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3249  *
3250  * @vmf: fault environment
3251  * @memcg: memcg to charge page (only for private mappings)
3252  * @page: page to map
3253  *
3254  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3255  * return.
3256  *
3257  * Target users are page handler itself and implementations of
3258  * vm_ops->map_pages.
3259  *
3260  * Return: %0 on success, %VM_FAULT_ code in case of error.
3261  */
3262 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3263                 struct page *page)
3264 {
3265         struct vm_area_struct *vma = vmf->vma;
3266         bool write = vmf->flags & FAULT_FLAG_WRITE;
3267         pte_t entry;
3268         vm_fault_t ret;
3269
3270         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3271                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3272                 /* THP on COW? */
3273                 VM_BUG_ON_PAGE(memcg, page);
3274
3275                 ret = do_set_pmd(vmf, page);
3276                 if (ret != VM_FAULT_FALLBACK)
3277                         return ret;
3278         }
3279
3280         if (!vmf->pte) {
3281                 ret = pte_alloc_one_map(vmf);
3282                 if (ret)
3283                         return ret;
3284         }
3285
3286         /* Re-check under ptl */
3287         if (unlikely(!pte_none(*vmf->pte)))
3288                 return VM_FAULT_NOPAGE;
3289
3290         flush_icache_page(vma, page);
3291         entry = mk_pte(page, vma->vm_page_prot);
3292         if (write)
3293                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3294         /* copy-on-write page */
3295         if (write && !(vma->vm_flags & VM_SHARED)) {
3296                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3297                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3298                 mem_cgroup_commit_charge(page, memcg, false, false);
3299                 lru_cache_add_active_or_unevictable(page, vma);
3300         } else {
3301                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3302                 page_add_file_rmap(page, false);
3303         }
3304         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3305
3306         /* no need to invalidate: a not-present page won't be cached */
3307         update_mmu_cache(vma, vmf->address, vmf->pte);
3308
3309         return 0;
3310 }
3311
3312
3313 /**
3314  * finish_fault - finish page fault once we have prepared the page to fault
3315  *
3316  * @vmf: structure describing the fault
3317  *
3318  * This function handles all that is needed to finish a page fault once the
3319  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3320  * given page, adds reverse page mapping, handles memcg charges and LRU
3321  * addition.
3322  *
3323  * The function expects the page to be locked and on success it consumes a
3324  * reference of a page being mapped (for the PTE which maps it).
3325  *
3326  * Return: %0 on success, %VM_FAULT_ code in case of error.
3327  */
3328 vm_fault_t finish_fault(struct vm_fault *vmf)
3329 {
3330         struct page *page;
3331         vm_fault_t ret = 0;
3332
3333         /* Did we COW the page? */
3334         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3335             !(vmf->vma->vm_flags & VM_SHARED))
3336                 page = vmf->cow_page;
3337         else
3338                 page = vmf->page;
3339
3340         /*
3341          * check even for read faults because we might have lost our CoWed
3342          * page
3343          */
3344         if (!(vmf->vma->vm_flags & VM_SHARED))
3345                 ret = check_stable_address_space(vmf->vma->vm_mm);
3346         if (!ret)
3347                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3348         if (vmf->pte)
3349                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3350         return ret;
3351 }
3352
3353 static unsigned long fault_around_bytes __read_mostly =
3354         rounddown_pow_of_two(65536);
3355
3356 #ifdef CONFIG_DEBUG_FS
3357 static int fault_around_bytes_get(void *data, u64 *val)
3358 {
3359         *val = fault_around_bytes;
3360         return 0;
3361 }
3362
3363 /*
3364  * fault_around_bytes must be rounded down to the nearest page order as it's
3365  * what do_fault_around() expects to see.
3366  */
3367 static int fault_around_bytes_set(void *data, u64 val)
3368 {
3369         if (val / PAGE_SIZE > PTRS_PER_PTE)
3370                 return -EINVAL;
3371         if (val > PAGE_SIZE)
3372                 fault_around_bytes = rounddown_pow_of_two(val);
3373         else
3374                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3375         return 0;
3376 }
3377 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3378                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3379
3380 static int __init fault_around_debugfs(void)
3381 {
3382         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3383                                    &fault_around_bytes_fops);
3384         return 0;
3385 }
3386 late_initcall(fault_around_debugfs);
3387 #endif
3388
3389 /*
3390  * do_fault_around() tries to map few pages around the fault address. The hope
3391  * is that the pages will be needed soon and this will lower the number of
3392  * faults to handle.
3393  *
3394  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3395  * not ready to be mapped: not up-to-date, locked, etc.
3396  *
3397  * This function is called with the page table lock taken. In the split ptlock
3398  * case the page table lock only protects only those entries which belong to
3399  * the page table corresponding to the fault address.
3400  *
3401  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3402  * only once.
3403  *
3404  * fault_around_bytes defines how many bytes we'll try to map.
3405  * do_fault_around() expects it to be set to a power of two less than or equal
3406  * to PTRS_PER_PTE.
3407  *
3408  * The virtual address of the area that we map is naturally aligned to
3409  * fault_around_bytes rounded down to the machine page size
3410  * (and therefore to page order).  This way it's easier to guarantee
3411  * that we don't cross page table boundaries.
3412  */
3413 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3414 {
3415         unsigned long address = vmf->address, nr_pages, mask;
3416         pgoff_t start_pgoff = vmf->pgoff;
3417         pgoff_t end_pgoff;
3418         int off;
3419         vm_fault_t ret = 0;
3420
3421         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3422         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3423
3424         vmf->address = max(address & mask, vmf->vma->vm_start);
3425         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3426         start_pgoff -= off;
3427
3428         /*
3429          *  end_pgoff is either the end of the page table, the end of
3430          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3431          */
3432         end_pgoff = start_pgoff -
3433                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3434                 PTRS_PER_PTE - 1;
3435         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3436                         start_pgoff + nr_pages - 1);
3437
3438         if (pmd_none(*vmf->pmd)) {
3439                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3440                 if (!vmf->prealloc_pte)
3441                         goto out;
3442                 smp_wmb(); /* See comment in __pte_alloc() */
3443         }
3444
3445         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3446
3447         /* Huge page is mapped? Page fault is solved */
3448         if (pmd_trans_huge(*vmf->pmd)) {
3449                 ret = VM_FAULT_NOPAGE;
3450                 goto out;
3451         }
3452
3453         /* ->map_pages() haven't done anything useful. Cold page cache? */
3454         if (!vmf->pte)
3455                 goto out;
3456
3457         /* check if the page fault is solved */
3458         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3459         if (!pte_none(*vmf->pte))
3460                 ret = VM_FAULT_NOPAGE;
3461         pte_unmap_unlock(vmf->pte, vmf->ptl);
3462 out:
3463         vmf->address = address;
3464         vmf->pte = NULL;
3465         return ret;
3466 }
3467
3468 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3469 {
3470         struct vm_area_struct *vma = vmf->vma;
3471         vm_fault_t ret = 0;
3472
3473         /*
3474          * Let's call ->map_pages() first and use ->fault() as fallback
3475          * if page by the offset is not ready to be mapped (cold cache or
3476          * something).
3477          */
3478         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3479                 ret = do_fault_around(vmf);
3480                 if (ret)
3481                         return ret;
3482         }
3483
3484         ret = __do_fault(vmf);
3485         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3486                 return ret;
3487
3488         ret |= finish_fault(vmf);
3489         unlock_page(vmf->page);
3490         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491                 put_page(vmf->page);
3492         return ret;
3493 }
3494
3495 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3496 {
3497         struct vm_area_struct *vma = vmf->vma;
3498         vm_fault_t ret;
3499
3500         if (unlikely(anon_vma_prepare(vma)))
3501                 return VM_FAULT_OOM;
3502
3503         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3504         if (!vmf->cow_page)
3505                 return VM_FAULT_OOM;
3506
3507         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3508                                 &vmf->memcg, false)) {
3509                 put_page(vmf->cow_page);
3510                 return VM_FAULT_OOM;
3511         }
3512
3513         ret = __do_fault(vmf);
3514         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3515                 goto uncharge_out;
3516         if (ret & VM_FAULT_DONE_COW)
3517                 return ret;
3518
3519         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3520         __SetPageUptodate(vmf->cow_page);
3521
3522         ret |= finish_fault(vmf);
3523         unlock_page(vmf->page);
3524         put_page(vmf->page);
3525         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3526                 goto uncharge_out;
3527         return ret;
3528 uncharge_out:
3529         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3530         put_page(vmf->cow_page);
3531         return ret;
3532 }
3533
3534 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3535 {
3536         struct vm_area_struct *vma = vmf->vma;
3537         vm_fault_t ret, tmp;
3538
3539         ret = __do_fault(vmf);
3540         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3541                 return ret;
3542
3543         /*
3544          * Check if the backing address space wants to know that the page is
3545          * about to become writable
3546          */
3547         if (vma->vm_ops->page_mkwrite) {
3548                 unlock_page(vmf->page);
3549                 tmp = do_page_mkwrite(vmf);
3550                 if (unlikely(!tmp ||
3551                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3552                         put_page(vmf->page);
3553                         return tmp;
3554                 }
3555         }
3556
3557         ret |= finish_fault(vmf);
3558         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3559                                         VM_FAULT_RETRY))) {
3560                 unlock_page(vmf->page);
3561                 put_page(vmf->page);
3562                 return ret;
3563         }
3564
3565         fault_dirty_shared_page(vma, vmf->page);
3566         return ret;
3567 }
3568
3569 /*
3570  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3571  * but allow concurrent faults).
3572  * The mmap_sem may have been released depending on flags and our
3573  * return value.  See filemap_fault() and __lock_page_or_retry().
3574  * If mmap_sem is released, vma may become invalid (for example
3575  * by other thread calling munmap()).
3576  */
3577 static vm_fault_t do_fault(struct vm_fault *vmf)
3578 {
3579         struct vm_area_struct *vma = vmf->vma;
3580         struct mm_struct *vm_mm = vma->vm_mm;
3581         vm_fault_t ret;
3582
3583         /*
3584          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3585          */
3586         if (!vma->vm_ops->fault) {
3587                 /*
3588                  * If we find a migration pmd entry or a none pmd entry, which
3589                  * should never happen, return SIGBUS
3590                  */
3591                 if (unlikely(!pmd_present(*vmf->pmd)))
3592                         ret = VM_FAULT_SIGBUS;
3593                 else {
3594                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3595                                                        vmf->pmd,
3596                                                        vmf->address,
3597                                                        &vmf->ptl);
3598                         /*
3599                          * Make sure this is not a temporary clearing of pte
3600                          * by holding ptl and checking again. A R/M/W update
3601                          * of pte involves: take ptl, clearing the pte so that
3602                          * we don't have concurrent modification by hardware
3603                          * followed by an update.
3604                          */
3605                         if (unlikely(pte_none(*vmf->pte)))
3606                                 ret = VM_FAULT_SIGBUS;
3607                         else
3608                                 ret = VM_FAULT_NOPAGE;
3609
3610                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3611                 }
3612         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3613                 ret = do_read_fault(vmf);
3614         else if (!(vma->vm_flags & VM_SHARED))
3615                 ret = do_cow_fault(vmf);
3616         else
3617                 ret = do_shared_fault(vmf);
3618
3619         /* preallocated pagetable is unused: free it */
3620         if (vmf->prealloc_pte) {
3621                 pte_free(vm_mm, vmf->prealloc_pte);
3622                 vmf->prealloc_pte = NULL;
3623         }
3624         return ret;
3625 }
3626
3627 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3628                                 unsigned long addr, int page_nid,
3629                                 int *flags)
3630 {
3631         get_page(page);
3632
3633         count_vm_numa_event(NUMA_HINT_FAULTS);
3634         if (page_nid == numa_node_id()) {
3635                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3636                 *flags |= TNF_FAULT_LOCAL;
3637         }
3638
3639         return mpol_misplaced(page, vma, addr);
3640 }
3641
3642 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3643 {
3644         struct vm_area_struct *vma = vmf->vma;
3645         struct page *page = NULL;
3646         int page_nid = NUMA_NO_NODE;
3647         int last_cpupid;
3648         int target_nid;
3649         bool migrated = false;
3650         pte_t pte, old_pte;
3651         bool was_writable = pte_savedwrite(vmf->orig_pte);
3652         int flags = 0;
3653
3654         /*
3655          * The "pte" at this point cannot be used safely without
3656          * validation through pte_unmap_same(). It's of NUMA type but
3657          * the pfn may be screwed if the read is non atomic.
3658          */
3659         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3660         spin_lock(vmf->ptl);
3661         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3662                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3663                 goto out;
3664         }
3665
3666         /*
3667          * Make it present again, Depending on how arch implementes non
3668          * accessible ptes, some can allow access by kernel mode.
3669          */
3670         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3671         pte = pte_modify(old_pte, vma->vm_page_prot);
3672         pte = pte_mkyoung(pte);
3673         if (was_writable)
3674                 pte = pte_mkwrite(pte);
3675         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3676         update_mmu_cache(vma, vmf->address, vmf->pte);
3677
3678         page = vm_normal_page(vma, vmf->address, pte);
3679         if (!page) {
3680                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3681                 return 0;
3682         }
3683
3684         /* TODO: handle PTE-mapped THP */
3685         if (PageCompound(page)) {
3686                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3687                 return 0;
3688         }
3689
3690         /*
3691          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3692          * much anyway since they can be in shared cache state. This misses
3693          * the case where a mapping is writable but the process never writes
3694          * to it but pte_write gets cleared during protection updates and
3695          * pte_dirty has unpredictable behaviour between PTE scan updates,
3696          * background writeback, dirty balancing and application behaviour.
3697          */
3698         if (!pte_write(pte))
3699                 flags |= TNF_NO_GROUP;
3700
3701         /*
3702          * Flag if the page is shared between multiple address spaces. This
3703          * is later used when determining whether to group tasks together
3704          */
3705         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3706                 flags |= TNF_SHARED;
3707
3708         last_cpupid = page_cpupid_last(page);
3709         page_nid = page_to_nid(page);
3710         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3711                         &flags);
3712         pte_unmap_unlock(vmf->pte, vmf->ptl);
3713         if (target_nid == NUMA_NO_NODE) {
3714                 put_page(page);
3715                 goto out;
3716         }
3717
3718         /* Migrate to the requested node */
3719         migrated = migrate_misplaced_page(page, vma, target_nid);
3720         if (migrated) {
3721                 page_nid = target_nid;
3722                 flags |= TNF_MIGRATED;
3723         } else
3724                 flags |= TNF_MIGRATE_FAIL;
3725
3726 out:
3727         if (page_nid != NUMA_NO_NODE)
3728                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3729         return 0;
3730 }
3731
3732 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3733 {
3734         if (vma_is_anonymous(vmf->vma))
3735                 return do_huge_pmd_anonymous_page(vmf);
3736         if (vmf->vma->vm_ops->huge_fault)
3737                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3738         return VM_FAULT_FALLBACK;
3739 }
3740
3741 /* `inline' is required to avoid gcc 4.1.2 build error */
3742 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3743 {
3744         if (vma_is_anonymous(vmf->vma))
3745                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3746         if (vmf->vma->vm_ops->huge_fault)
3747                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3748
3749         /* COW handled on pte level: split pmd */
3750         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3751         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3752
3753         return VM_FAULT_FALLBACK;
3754 }
3755
3756 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3757 {
3758         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3759 }
3760
3761 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3762 {
3763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3764         /* No support for anonymous transparent PUD pages yet */
3765         if (vma_is_anonymous(vmf->vma))
3766                 return VM_FAULT_FALLBACK;
3767         if (vmf->vma->vm_ops->huge_fault)
3768                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3769 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3770         return VM_FAULT_FALLBACK;
3771 }
3772
3773 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3774 {
3775 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3776         /* No support for anonymous transparent PUD pages yet */
3777         if (vma_is_anonymous(vmf->vma))
3778                 return VM_FAULT_FALLBACK;
3779         if (vmf->vma->vm_ops->huge_fault)
3780                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3782         return VM_FAULT_FALLBACK;
3783 }
3784
3785 /*
3786  * These routines also need to handle stuff like marking pages dirty
3787  * and/or accessed for architectures that don't do it in hardware (most
3788  * RISC architectures).  The early dirtying is also good on the i386.
3789  *
3790  * There is also a hook called "update_mmu_cache()" that architectures
3791  * with external mmu caches can use to update those (ie the Sparc or
3792  * PowerPC hashed page tables that act as extended TLBs).
3793  *
3794  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3795  * concurrent faults).
3796  *
3797  * The mmap_sem may have been released depending on flags and our return value.
3798  * See filemap_fault() and __lock_page_or_retry().
3799  */
3800 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3801 {
3802         pte_t entry;
3803
3804         if (unlikely(pmd_none(*vmf->pmd))) {
3805                 /*
3806                  * Leave __pte_alloc() until later: because vm_ops->fault may
3807                  * want to allocate huge page, and if we expose page table
3808                  * for an instant, it will be difficult to retract from
3809                  * concurrent faults and from rmap lookups.
3810                  */
3811                 vmf->pte = NULL;
3812         } else {
3813                 /* See comment in pte_alloc_one_map() */
3814                 if (pmd_devmap_trans_unstable(vmf->pmd))
3815                         return 0;
3816                 /*
3817                  * A regular pmd is established and it can't morph into a huge
3818                  * pmd from under us anymore at this point because we hold the
3819                  * mmap_sem read mode and khugepaged takes it in write mode.
3820                  * So now it's safe to run pte_offset_map().
3821                  */
3822                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3823                 vmf->orig_pte = *vmf->pte;
3824
3825                 /*
3826                  * some architectures can have larger ptes than wordsize,
3827                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3828                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3829                  * accesses.  The code below just needs a consistent view
3830                  * for the ifs and we later double check anyway with the
3831                  * ptl lock held. So here a barrier will do.
3832                  */
3833                 barrier();
3834                 if (pte_none(vmf->orig_pte)) {
3835                         pte_unmap(vmf->pte);
3836                         vmf->pte = NULL;
3837                 }
3838         }
3839
3840         if (!vmf->pte) {
3841                 if (vma_is_anonymous(vmf->vma))
3842                         return do_anonymous_page(vmf);
3843                 else
3844                         return do_fault(vmf);
3845         }
3846
3847         if (!pte_present(vmf->orig_pte))
3848                 return do_swap_page(vmf);
3849
3850         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3851                 return do_numa_page(vmf);
3852
3853         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3854         spin_lock(vmf->ptl);
3855         entry = vmf->orig_pte;
3856         if (unlikely(!pte_same(*vmf->pte, entry)))
3857                 goto unlock;
3858         if (vmf->flags & FAULT_FLAG_WRITE) {
3859                 if (!pte_write(entry))
3860                         return do_wp_page(vmf);
3861                 entry = pte_mkdirty(entry);
3862         }
3863         entry = pte_mkyoung(entry);
3864         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3865                                 vmf->flags & FAULT_FLAG_WRITE)) {
3866                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3867         } else {
3868                 /*
3869                  * This is needed only for protection faults but the arch code
3870                  * is not yet telling us if this is a protection fault or not.
3871                  * This still avoids useless tlb flushes for .text page faults
3872                  * with threads.
3873                  */
3874                 if (vmf->flags & FAULT_FLAG_WRITE)
3875                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3876         }
3877 unlock:
3878         pte_unmap_unlock(vmf->pte, vmf->ptl);
3879         return 0;
3880 }
3881
3882 /*
3883  * By the time we get here, we already hold the mm semaphore
3884  *
3885  * The mmap_sem may have been released depending on flags and our
3886  * return value.  See filemap_fault() and __lock_page_or_retry().
3887  */
3888 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3889                 unsigned long address, unsigned int flags)
3890 {
3891         struct vm_fault vmf = {
3892                 .vma = vma,
3893                 .address = address & PAGE_MASK,
3894                 .flags = flags,
3895                 .pgoff = linear_page_index(vma, address),
3896                 .gfp_mask = __get_fault_gfp_mask(vma),
3897         };
3898         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3899         struct mm_struct *mm = vma->vm_mm;
3900         pgd_t *pgd;
3901         p4d_t *p4d;
3902         vm_fault_t ret;
3903
3904         pgd = pgd_offset(mm, address);
3905         p4d = p4d_alloc(mm, pgd, address);
3906         if (!p4d)
3907                 return VM_FAULT_OOM;
3908
3909         vmf.pud = pud_alloc(mm, p4d, address);
3910         if (!vmf.pud)
3911                 return VM_FAULT_OOM;
3912         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3913                 ret = create_huge_pud(&vmf);
3914                 if (!(ret & VM_FAULT_FALLBACK))
3915                         return ret;
3916         } else {
3917                 pud_t orig_pud = *vmf.pud;
3918
3919                 barrier();
3920                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3921
3922                         /* NUMA case for anonymous PUDs would go here */
3923
3924                         if (dirty && !pud_write(orig_pud)) {
3925                                 ret = wp_huge_pud(&vmf, orig_pud);
3926                                 if (!(ret & VM_FAULT_FALLBACK))
3927                                         return ret;
3928                         } else {
3929                                 huge_pud_set_accessed(&vmf, orig_pud);
3930                                 return 0;
3931                         }
3932                 }
3933         }
3934
3935         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3936         if (!vmf.pmd)
3937                 return VM_FAULT_OOM;
3938         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3939                 ret = create_huge_pmd(&vmf);
3940                 if (!(ret & VM_FAULT_FALLBACK))
3941                         return ret;
3942         } else {
3943                 pmd_t orig_pmd = *vmf.pmd;
3944
3945                 barrier();
3946                 if (unlikely(is_swap_pmd(orig_pmd))) {
3947                         VM_BUG_ON(thp_migration_supported() &&
3948                                           !is_pmd_migration_entry(orig_pmd));
3949                         if (is_pmd_migration_entry(orig_pmd))
3950                                 pmd_migration_entry_wait(mm, vmf.pmd);
3951                         return 0;
3952                 }
3953                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3954                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3955                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3956
3957                         if (dirty && !pmd_write(orig_pmd)) {
3958                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3959                                 if (!(ret & VM_FAULT_FALLBACK))
3960                                         return ret;
3961                         } else {
3962                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3963                                 return 0;
3964                         }
3965                 }
3966         }
3967
3968         return handle_pte_fault(&vmf);
3969 }
3970
3971 /*
3972  * By the time we get here, we already hold the mm semaphore
3973  *
3974  * The mmap_sem may have been released depending on flags and our
3975  * return value.  See filemap_fault() and __lock_page_or_retry().
3976  */
3977 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3978                 unsigned int flags)
3979 {
3980         vm_fault_t ret;
3981
3982         __set_current_state(TASK_RUNNING);
3983
3984         count_vm_event(PGFAULT);
3985         count_memcg_event_mm(vma->vm_mm, PGFAULT);
3986
3987         /* do counter updates before entering really critical section. */
3988         check_sync_rss_stat(current);
3989
3990         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3991                                             flags & FAULT_FLAG_INSTRUCTION,
3992                                             flags & FAULT_FLAG_REMOTE))
3993                 return VM_FAULT_SIGSEGV;
3994
3995         /*
3996          * Enable the memcg OOM handling for faults triggered in user
3997          * space.  Kernel faults are handled more gracefully.
3998          */
3999         if (flags & FAULT_FLAG_USER)
4000                 mem_cgroup_enter_user_fault();
4001
4002         if (unlikely(is_vm_hugetlb_page(vma)))
4003                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4004         else
4005                 ret = __handle_mm_fault(vma, address, flags);
4006
4007         if (flags & FAULT_FLAG_USER) {
4008                 mem_cgroup_exit_user_fault();
4009                 /*
4010                  * The task may have entered a memcg OOM situation but
4011                  * if the allocation error was handled gracefully (no
4012                  * VM_FAULT_OOM), there is no need to kill anything.
4013                  * Just clean up the OOM state peacefully.
4014                  */
4015                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4016                         mem_cgroup_oom_synchronize(false);
4017         }
4018
4019         return ret;
4020 }
4021 EXPORT_SYMBOL_GPL(handle_mm_fault);
4022
4023 #ifndef __PAGETABLE_P4D_FOLDED
4024 /*
4025  * Allocate p4d page table.
4026  * We've already handled the fast-path in-line.
4027  */
4028 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4029 {
4030         p4d_t *new = p4d_alloc_one(mm, address);
4031         if (!new)
4032                 return -ENOMEM;
4033
4034         smp_wmb(); /* See comment in __pte_alloc */
4035
4036         spin_lock(&mm->page_table_lock);
4037         if (pgd_present(*pgd))          /* Another has populated it */
4038                 p4d_free(mm, new);
4039         else
4040                 pgd_populate(mm, pgd, new);
4041         spin_unlock(&mm->page_table_lock);
4042         return 0;
4043 }
4044 #endif /* __PAGETABLE_P4D_FOLDED */
4045
4046 #ifndef __PAGETABLE_PUD_FOLDED
4047 /*
4048  * Allocate page upper directory.
4049  * We've already handled the fast-path in-line.
4050  */
4051 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4052 {
4053         pud_t *new = pud_alloc_one(mm, address);
4054         if (!new)
4055                 return -ENOMEM;
4056
4057         smp_wmb(); /* See comment in __pte_alloc */
4058
4059         spin_lock(&mm->page_table_lock);
4060 #ifndef __ARCH_HAS_5LEVEL_HACK
4061         if (!p4d_present(*p4d)) {
4062                 mm_inc_nr_puds(mm);
4063                 p4d_populate(mm, p4d, new);
4064         } else  /* Another has populated it */
4065                 pud_free(mm, new);
4066 #else
4067         if (!pgd_present(*p4d)) {
4068                 mm_inc_nr_puds(mm);
4069                 pgd_populate(mm, p4d, new);
4070         } else  /* Another has populated it */
4071                 pud_free(mm, new);
4072 #endif /* __ARCH_HAS_5LEVEL_HACK */
4073         spin_unlock(&mm->page_table_lock);
4074         return 0;
4075 }
4076 #endif /* __PAGETABLE_PUD_FOLDED */
4077
4078 #ifndef __PAGETABLE_PMD_FOLDED
4079 /*
4080  * Allocate page middle directory.
4081  * We've already handled the fast-path in-line.
4082  */
4083 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4084 {
4085         spinlock_t *ptl;
4086         pmd_t *new = pmd_alloc_one(mm, address);
4087         if (!new)
4088                 return -ENOMEM;
4089
4090         smp_wmb(); /* See comment in __pte_alloc */
4091
4092         ptl = pud_lock(mm, pud);
4093 #ifndef __ARCH_HAS_4LEVEL_HACK
4094         if (!pud_present(*pud)) {
4095                 mm_inc_nr_pmds(mm);
4096                 pud_populate(mm, pud, new);
4097         } else  /* Another has populated it */
4098                 pmd_free(mm, new);
4099 #else
4100         if (!pgd_present(*pud)) {
4101                 mm_inc_nr_pmds(mm);
4102                 pgd_populate(mm, pud, new);
4103         } else /* Another has populated it */
4104                 pmd_free(mm, new);
4105 #endif /* __ARCH_HAS_4LEVEL_HACK */
4106         spin_unlock(ptl);
4107         return 0;
4108 }
4109 #endif /* __PAGETABLE_PMD_FOLDED */
4110
4111 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4112                             struct mmu_notifier_range *range,
4113                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4114 {
4115         pgd_t *pgd;
4116         p4d_t *p4d;
4117         pud_t *pud;
4118         pmd_t *pmd;
4119         pte_t *ptep;
4120
4121         pgd = pgd_offset(mm, address);
4122         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4123                 goto out;
4124
4125         p4d = p4d_offset(pgd, address);
4126         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4127                 goto out;
4128
4129         pud = pud_offset(p4d, address);
4130         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4131                 goto out;
4132
4133         pmd = pmd_offset(pud, address);
4134         VM_BUG_ON(pmd_trans_huge(*pmd));
4135
4136         if (pmd_huge(*pmd)) {
4137                 if (!pmdpp)
4138                         goto out;
4139
4140                 if (range) {
4141                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4142                                                 NULL, mm, address & PMD_MASK,
4143                                                 (address & PMD_MASK) + PMD_SIZE);
4144                         mmu_notifier_invalidate_range_start(range);
4145                 }
4146                 *ptlp = pmd_lock(mm, pmd);
4147                 if (pmd_huge(*pmd)) {
4148                         *pmdpp = pmd;
4149                         return 0;
4150                 }
4151                 spin_unlock(*ptlp);
4152                 if (range)
4153                         mmu_notifier_invalidate_range_end(range);
4154         }
4155
4156         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4157                 goto out;
4158
4159         if (range) {
4160                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4161                                         address & PAGE_MASK,
4162                                         (address & PAGE_MASK) + PAGE_SIZE);
4163                 mmu_notifier_invalidate_range_start(range);
4164         }
4165         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4166         if (!pte_present(*ptep))
4167                 goto unlock;
4168         *ptepp = ptep;
4169         return 0;
4170 unlock:
4171         pte_unmap_unlock(ptep, *ptlp);
4172         if (range)
4173                 mmu_notifier_invalidate_range_end(range);
4174 out:
4175         return -EINVAL;
4176 }
4177
4178 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4179                              pte_t **ptepp, spinlock_t **ptlp)
4180 {
4181         int res;
4182
4183         /* (void) is needed to make gcc happy */
4184         (void) __cond_lock(*ptlp,
4185                            !(res = __follow_pte_pmd(mm, address, NULL,
4186                                                     ptepp, NULL, ptlp)));
4187         return res;
4188 }
4189
4190 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4191                    struct mmu_notifier_range *range,
4192                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4193 {
4194         int res;
4195
4196         /* (void) is needed to make gcc happy */
4197         (void) __cond_lock(*ptlp,
4198                            !(res = __follow_pte_pmd(mm, address, range,
4199                                                     ptepp, pmdpp, ptlp)));
4200         return res;
4201 }
4202 EXPORT_SYMBOL(follow_pte_pmd);
4203
4204 /**
4205  * follow_pfn - look up PFN at a user virtual address
4206  * @vma: memory mapping
4207  * @address: user virtual address
4208  * @pfn: location to store found PFN
4209  *
4210  * Only IO mappings and raw PFN mappings are allowed.
4211  *
4212  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4213  */
4214 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4215         unsigned long *pfn)
4216 {
4217         int ret = -EINVAL;
4218         spinlock_t *ptl;
4219         pte_t *ptep;
4220
4221         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4222                 return ret;
4223
4224         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4225         if (ret)
4226                 return ret;
4227         *pfn = pte_pfn(*ptep);
4228         pte_unmap_unlock(ptep, ptl);
4229         return 0;
4230 }
4231 EXPORT_SYMBOL(follow_pfn);
4232
4233 #ifdef CONFIG_HAVE_IOREMAP_PROT
4234 int follow_phys(struct vm_area_struct *vma,
4235                 unsigned long address, unsigned int flags,
4236                 unsigned long *prot, resource_size_t *phys)
4237 {
4238         int ret = -EINVAL;
4239         pte_t *ptep, pte;
4240         spinlock_t *ptl;
4241
4242         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4243                 goto out;
4244
4245         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4246                 goto out;
4247         pte = *ptep;
4248
4249         if ((flags & FOLL_WRITE) && !pte_write(pte))
4250                 goto unlock;
4251
4252         *prot = pgprot_val(pte_pgprot(pte));
4253         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4254
4255         ret = 0;
4256 unlock:
4257         pte_unmap_unlock(ptep, ptl);
4258 out:
4259         return ret;
4260 }
4261
4262 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4263                         void *buf, int len, int write)
4264 {
4265         resource_size_t phys_addr;
4266         unsigned long prot = 0;
4267         void __iomem *maddr;
4268         int offset = addr & (PAGE_SIZE-1);
4269
4270         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4271                 return -EINVAL;
4272
4273         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4274         if (!maddr)
4275                 return -ENOMEM;
4276
4277         if (write)
4278                 memcpy_toio(maddr + offset, buf, len);
4279         else
4280                 memcpy_fromio(buf, maddr + offset, len);
4281         iounmap(maddr);
4282
4283         return len;
4284 }
4285 EXPORT_SYMBOL_GPL(generic_access_phys);
4286 #endif
4287
4288 /*
4289  * Access another process' address space as given in mm.  If non-NULL, use the
4290  * given task for page fault accounting.
4291  */
4292 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4293                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4294 {
4295         struct vm_area_struct *vma;
4296         void *old_buf = buf;
4297         int write = gup_flags & FOLL_WRITE;
4298
4299         if (down_read_killable(&mm->mmap_sem))
4300                 return 0;
4301
4302         /* ignore errors, just check how much was successfully transferred */
4303         while (len) {
4304                 int bytes, ret, offset;
4305                 void *maddr;
4306                 struct page *page = NULL;
4307
4308                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4309                                 gup_flags, &page, &vma, NULL);
4310                 if (ret <= 0) {
4311 #ifndef CONFIG_HAVE_IOREMAP_PROT
4312                         break;
4313 #else
4314                         /*
4315                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4316                          * we can access using slightly different code.
4317                          */
4318                         vma = find_vma(mm, addr);
4319                         if (!vma || vma->vm_start > addr)
4320                                 break;
4321                         if (vma->vm_ops && vma->vm_ops->access)
4322                                 ret = vma->vm_ops->access(vma, addr, buf,
4323                                                           len, write);
4324                         if (ret <= 0)
4325                                 break;
4326                         bytes = ret;
4327 #endif
4328                 } else {
4329                         bytes = len;
4330                         offset = addr & (PAGE_SIZE-1);
4331                         if (bytes > PAGE_SIZE-offset)
4332                                 bytes = PAGE_SIZE-offset;
4333
4334                         maddr = kmap(page);
4335                         if (write) {
4336                                 copy_to_user_page(vma, page, addr,
4337                                                   maddr + offset, buf, bytes);
4338                                 set_page_dirty_lock(page);
4339                         } else {
4340                                 copy_from_user_page(vma, page, addr,
4341                                                     buf, maddr + offset, bytes);
4342                         }
4343                         kunmap(page);
4344                         put_page(page);
4345                 }
4346                 len -= bytes;
4347                 buf += bytes;
4348                 addr += bytes;
4349         }
4350         up_read(&mm->mmap_sem);
4351
4352         return buf - old_buf;
4353 }
4354
4355 /**
4356  * access_remote_vm - access another process' address space
4357  * @mm:         the mm_struct of the target address space
4358  * @addr:       start address to access
4359  * @buf:        source or destination buffer
4360  * @len:        number of bytes to transfer
4361  * @gup_flags:  flags modifying lookup behaviour
4362  *
4363  * The caller must hold a reference on @mm.
4364  *
4365  * Return: number of bytes copied from source to destination.
4366  */
4367 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4368                 void *buf, int len, unsigned int gup_flags)
4369 {
4370         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4371 }
4372
4373 /*
4374  * Access another process' address space.
4375  * Source/target buffer must be kernel space,
4376  * Do not walk the page table directly, use get_user_pages
4377  */
4378 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4379                 void *buf, int len, unsigned int gup_flags)
4380 {
4381         struct mm_struct *mm;
4382         int ret;
4383
4384         mm = get_task_mm(tsk);
4385         if (!mm)
4386                 return 0;
4387
4388         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4389
4390         mmput(mm);
4391
4392         return ret;
4393 }
4394 EXPORT_SYMBOL_GPL(access_process_vm);
4395
4396 /*
4397  * Print the name of a VMA.
4398  */
4399 void print_vma_addr(char *prefix, unsigned long ip)
4400 {
4401         struct mm_struct *mm = current->mm;
4402         struct vm_area_struct *vma;
4403
4404         /*
4405          * we might be running from an atomic context so we cannot sleep
4406          */
4407         if (!down_read_trylock(&mm->mmap_sem))
4408                 return;
4409
4410         vma = find_vma(mm, ip);
4411         if (vma && vma->vm_file) {
4412                 struct file *f = vma->vm_file;
4413                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4414                 if (buf) {
4415                         char *p;
4416
4417                         p = file_path(f, buf, PAGE_SIZE);
4418                         if (IS_ERR(p))
4419                                 p = "?";
4420                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4421                                         vma->vm_start,
4422                                         vma->vm_end - vma->vm_start);
4423                         free_page((unsigned long)buf);
4424                 }
4425         }
4426         up_read(&mm->mmap_sem);
4427 }
4428
4429 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4430 void __might_fault(const char *file, int line)
4431 {
4432         /*
4433          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4434          * holding the mmap_sem, this is safe because kernel memory doesn't
4435          * get paged out, therefore we'll never actually fault, and the
4436          * below annotations will generate false positives.
4437          */
4438         if (uaccess_kernel())
4439                 return;
4440         if (pagefault_disabled())
4441                 return;
4442         __might_sleep(file, line, 0);
4443 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4444         if (current->mm)
4445                 might_lock_read(&current->mm->mmap_sem);
4446 #endif
4447 }
4448 EXPORT_SYMBOL(__might_fault);
4449 #endif
4450
4451 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4452 /*
4453  * Process all subpages of the specified huge page with the specified
4454  * operation.  The target subpage will be processed last to keep its
4455  * cache lines hot.
4456  */
4457 static inline void process_huge_page(
4458         unsigned long addr_hint, unsigned int pages_per_huge_page,
4459         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4460         void *arg)
4461 {
4462         int i, n, base, l;
4463         unsigned long addr = addr_hint &
4464                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4465
4466         /* Process target subpage last to keep its cache lines hot */
4467         might_sleep();
4468         n = (addr_hint - addr) / PAGE_SIZE;
4469         if (2 * n <= pages_per_huge_page) {
4470                 /* If target subpage in first half of huge page */
4471                 base = 0;
4472                 l = n;
4473                 /* Process subpages at the end of huge page */
4474                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4475                         cond_resched();
4476                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4477                 }
4478         } else {
4479                 /* If target subpage in second half of huge page */
4480                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4481                 l = pages_per_huge_page - n;
4482                 /* Process subpages at the begin of huge page */
4483                 for (i = 0; i < base; i++) {
4484                         cond_resched();
4485                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4486                 }
4487         }
4488         /*
4489          * Process remaining subpages in left-right-left-right pattern
4490          * towards the target subpage
4491          */
4492         for (i = 0; i < l; i++) {
4493                 int left_idx = base + i;
4494                 int right_idx = base + 2 * l - 1 - i;
4495
4496                 cond_resched();
4497                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4498                 cond_resched();
4499                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4500         }
4501 }
4502
4503 static void clear_gigantic_page(struct page *page,
4504                                 unsigned long addr,
4505                                 unsigned int pages_per_huge_page)
4506 {
4507         int i;
4508         struct page *p = page;
4509
4510         might_sleep();
4511         for (i = 0; i < pages_per_huge_page;
4512              i++, p = mem_map_next(p, page, i)) {
4513                 cond_resched();
4514                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4515         }
4516 }
4517
4518 static void clear_subpage(unsigned long addr, int idx, void *arg)
4519 {
4520         struct page *page = arg;
4521
4522         clear_user_highpage(page + idx, addr);
4523 }
4524
4525 void clear_huge_page(struct page *page,
4526                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4527 {
4528         unsigned long addr = addr_hint &
4529                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4530
4531         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4532                 clear_gigantic_page(page, addr, pages_per_huge_page);
4533                 return;
4534         }
4535
4536         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4537 }
4538
4539 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4540                                     unsigned long addr,
4541                                     struct vm_area_struct *vma,
4542                                     unsigned int pages_per_huge_page)
4543 {
4544         int i;
4545         struct page *dst_base = dst;
4546         struct page *src_base = src;
4547
4548         for (i = 0; i < pages_per_huge_page; ) {
4549                 cond_resched();
4550                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4551
4552                 i++;
4553                 dst = mem_map_next(dst, dst_base, i);
4554                 src = mem_map_next(src, src_base, i);
4555         }
4556 }
4557
4558 struct copy_subpage_arg {
4559         struct page *dst;
4560         struct page *src;
4561         struct vm_area_struct *vma;
4562 };
4563
4564 static void copy_subpage(unsigned long addr, int idx, void *arg)
4565 {
4566         struct copy_subpage_arg *copy_arg = arg;
4567
4568         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4569                            addr, copy_arg->vma);
4570 }
4571
4572 void copy_user_huge_page(struct page *dst, struct page *src,
4573                          unsigned long addr_hint, struct vm_area_struct *vma,
4574                          unsigned int pages_per_huge_page)
4575 {
4576         unsigned long addr = addr_hint &
4577                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4578         struct copy_subpage_arg arg = {
4579                 .dst = dst,
4580                 .src = src,
4581                 .vma = vma,
4582         };
4583
4584         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4585                 copy_user_gigantic_page(dst, src, addr, vma,
4586                                         pages_per_huge_page);
4587                 return;
4588         }
4589
4590         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4591 }
4592
4593 long copy_huge_page_from_user(struct page *dst_page,
4594                                 const void __user *usr_src,
4595                                 unsigned int pages_per_huge_page,
4596                                 bool allow_pagefault)
4597 {
4598         void *src = (void *)usr_src;
4599         void *page_kaddr;
4600         unsigned long i, rc = 0;
4601         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4602
4603         for (i = 0; i < pages_per_huge_page; i++) {
4604                 if (allow_pagefault)
4605                         page_kaddr = kmap(dst_page + i);
4606                 else
4607                         page_kaddr = kmap_atomic(dst_page + i);
4608                 rc = copy_from_user(page_kaddr,
4609                                 (const void __user *)(src + i * PAGE_SIZE),
4610                                 PAGE_SIZE);
4611                 if (allow_pagefault)
4612                         kunmap(dst_page + i);
4613                 else
4614                         kunmap_atomic(page_kaddr);
4615
4616                 ret_val -= (PAGE_SIZE - rc);
4617                 if (rc)
4618                         break;
4619
4620                 cond_resched();
4621         }
4622         return ret_val;
4623 }
4624 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4625
4626 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4627
4628 static struct kmem_cache *page_ptl_cachep;
4629
4630 void __init ptlock_cache_init(void)
4631 {
4632         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4633                         SLAB_PANIC, NULL);
4634 }
4635
4636 bool ptlock_alloc(struct page *page)
4637 {
4638         spinlock_t *ptl;
4639
4640         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4641         if (!ptl)
4642                 return false;
4643         page->ptl = ptl;
4644         return true;
4645 }
4646
4647 void ptlock_free(struct page *page)
4648 {
4649         kmem_cache_free(page_ptl_cachep, page->ptl);
4650 }
4651 #endif