PM: AVS: qcom-cpr: Move the driver to the qcom specific drivers
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 /* use the per-pgdat data instead for discontigmem - mbligh */
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102
103 /*
104  * A number of key systems in x86 including ioremap() rely on the assumption
105  * that high_memory defines the upper bound on direct map memory, then end
106  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
107  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108  * and ZONE_HIGHMEM.
109  */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112
113 /*
114  * Randomize the address space (stacks, mmaps, brk, etc.).
115  *
116  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117  *   as ancient (libc5 based) binaries can segfault. )
118  */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121                                         1;
122 #else
123                                         2;
124 #endif
125
126 #ifndef arch_faults_on_old_pte
127 static inline bool arch_faults_on_old_pte(void)
128 {
129         /*
130          * Those arches which don't have hw access flag feature need to
131          * implement their own helper. By default, "true" means pagefault
132          * will be hit on old pte.
133          */
134         return true;
135 }
136 #endif
137
138 static int __init disable_randmaps(char *s)
139 {
140         randomize_va_space = 0;
141         return 1;
142 }
143 __setup("norandmaps", disable_randmaps);
144
145 unsigned long zero_pfn __read_mostly;
146 EXPORT_SYMBOL(zero_pfn);
147
148 unsigned long highest_memmap_pfn __read_mostly;
149
150 /*
151  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152  */
153 static int __init init_zero_pfn(void)
154 {
155         zero_pfn = page_to_pfn(ZERO_PAGE(0));
156         return 0;
157 }
158 core_initcall(init_zero_pfn);
159
160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
161 {
162         trace_rss_stat(mm, member, count);
163 }
164
165 #if defined(SPLIT_RSS_COUNTING)
166
167 void sync_mm_rss(struct mm_struct *mm)
168 {
169         int i;
170
171         for (i = 0; i < NR_MM_COUNTERS; i++) {
172                 if (current->rss_stat.count[i]) {
173                         add_mm_counter(mm, i, current->rss_stat.count[i]);
174                         current->rss_stat.count[i] = 0;
175                 }
176         }
177         current->rss_stat.events = 0;
178 }
179
180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181 {
182         struct task_struct *task = current;
183
184         if (likely(task->mm == mm))
185                 task->rss_stat.count[member] += val;
186         else
187                 add_mm_counter(mm, member, val);
188 }
189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191
192 /* sync counter once per 64 page faults */
193 #define TASK_RSS_EVENTS_THRESH  (64)
194 static void check_sync_rss_stat(struct task_struct *task)
195 {
196         if (unlikely(task != current))
197                 return;
198         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
199                 sync_mm_rss(task->mm);
200 }
201 #else /* SPLIT_RSS_COUNTING */
202
203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205
206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 }
209
210 #endif /* SPLIT_RSS_COUNTING */
211
212 /*
213  * Note: this doesn't free the actual pages themselves. That
214  * has been handled earlier when unmapping all the memory regions.
215  */
216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217                            unsigned long addr)
218 {
219         pgtable_t token = pmd_pgtable(*pmd);
220         pmd_clear(pmd);
221         pte_free_tlb(tlb, token, addr);
222         mm_dec_nr_ptes(tlb->mm);
223 }
224
225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226                                 unsigned long addr, unsigned long end,
227                                 unsigned long floor, unsigned long ceiling)
228 {
229         pmd_t *pmd;
230         unsigned long next;
231         unsigned long start;
232
233         start = addr;
234         pmd = pmd_offset(pud, addr);
235         do {
236                 next = pmd_addr_end(addr, end);
237                 if (pmd_none_or_clear_bad(pmd))
238                         continue;
239                 free_pte_range(tlb, pmd, addr);
240         } while (pmd++, addr = next, addr != end);
241
242         start &= PUD_MASK;
243         if (start < floor)
244                 return;
245         if (ceiling) {
246                 ceiling &= PUD_MASK;
247                 if (!ceiling)
248                         return;
249         }
250         if (end - 1 > ceiling - 1)
251                 return;
252
253         pmd = pmd_offset(pud, start);
254         pud_clear(pud);
255         pmd_free_tlb(tlb, pmd, start);
256         mm_dec_nr_pmds(tlb->mm);
257 }
258
259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
260                                 unsigned long addr, unsigned long end,
261                                 unsigned long floor, unsigned long ceiling)
262 {
263         pud_t *pud;
264         unsigned long next;
265         unsigned long start;
266
267         start = addr;
268         pud = pud_offset(p4d, addr);
269         do {
270                 next = pud_addr_end(addr, end);
271                 if (pud_none_or_clear_bad(pud))
272                         continue;
273                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
274         } while (pud++, addr = next, addr != end);
275
276         start &= P4D_MASK;
277         if (start < floor)
278                 return;
279         if (ceiling) {
280                 ceiling &= P4D_MASK;
281                 if (!ceiling)
282                         return;
283         }
284         if (end - 1 > ceiling - 1)
285                 return;
286
287         pud = pud_offset(p4d, start);
288         p4d_clear(p4d);
289         pud_free_tlb(tlb, pud, start);
290         mm_dec_nr_puds(tlb->mm);
291 }
292
293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294                                 unsigned long addr, unsigned long end,
295                                 unsigned long floor, unsigned long ceiling)
296 {
297         p4d_t *p4d;
298         unsigned long next;
299         unsigned long start;
300
301         start = addr;
302         p4d = p4d_offset(pgd, addr);
303         do {
304                 next = p4d_addr_end(addr, end);
305                 if (p4d_none_or_clear_bad(p4d))
306                         continue;
307                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308         } while (p4d++, addr = next, addr != end);
309
310         start &= PGDIR_MASK;
311         if (start < floor)
312                 return;
313         if (ceiling) {
314                 ceiling &= PGDIR_MASK;
315                 if (!ceiling)
316                         return;
317         }
318         if (end - 1 > ceiling - 1)
319                 return;
320
321         p4d = p4d_offset(pgd, start);
322         pgd_clear(pgd);
323         p4d_free_tlb(tlb, p4d, start);
324 }
325
326 /*
327  * This function frees user-level page tables of a process.
328  */
329 void free_pgd_range(struct mmu_gather *tlb,
330                         unsigned long addr, unsigned long end,
331                         unsigned long floor, unsigned long ceiling)
332 {
333         pgd_t *pgd;
334         unsigned long next;
335
336         /*
337          * The next few lines have given us lots of grief...
338          *
339          * Why are we testing PMD* at this top level?  Because often
340          * there will be no work to do at all, and we'd prefer not to
341          * go all the way down to the bottom just to discover that.
342          *
343          * Why all these "- 1"s?  Because 0 represents both the bottom
344          * of the address space and the top of it (using -1 for the
345          * top wouldn't help much: the masks would do the wrong thing).
346          * The rule is that addr 0 and floor 0 refer to the bottom of
347          * the address space, but end 0 and ceiling 0 refer to the top
348          * Comparisons need to use "end - 1" and "ceiling - 1" (though
349          * that end 0 case should be mythical).
350          *
351          * Wherever addr is brought up or ceiling brought down, we must
352          * be careful to reject "the opposite 0" before it confuses the
353          * subsequent tests.  But what about where end is brought down
354          * by PMD_SIZE below? no, end can't go down to 0 there.
355          *
356          * Whereas we round start (addr) and ceiling down, by different
357          * masks at different levels, in order to test whether a table
358          * now has no other vmas using it, so can be freed, we don't
359          * bother to round floor or end up - the tests don't need that.
360          */
361
362         addr &= PMD_MASK;
363         if (addr < floor) {
364                 addr += PMD_SIZE;
365                 if (!addr)
366                         return;
367         }
368         if (ceiling) {
369                 ceiling &= PMD_MASK;
370                 if (!ceiling)
371                         return;
372         }
373         if (end - 1 > ceiling - 1)
374                 end -= PMD_SIZE;
375         if (addr > end - 1)
376                 return;
377         /*
378          * We add page table cache pages with PAGE_SIZE,
379          * (see pte_free_tlb()), flush the tlb if we need
380          */
381         tlb_change_page_size(tlb, PAGE_SIZE);
382         pgd = pgd_offset(tlb->mm, addr);
383         do {
384                 next = pgd_addr_end(addr, end);
385                 if (pgd_none_or_clear_bad(pgd))
386                         continue;
387                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
388         } while (pgd++, addr = next, addr != end);
389 }
390
391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
392                 unsigned long floor, unsigned long ceiling)
393 {
394         while (vma) {
395                 struct vm_area_struct *next = vma->vm_next;
396                 unsigned long addr = vma->vm_start;
397
398                 /*
399                  * Hide vma from rmap and truncate_pagecache before freeing
400                  * pgtables
401                  */
402                 unlink_anon_vmas(vma);
403                 unlink_file_vma(vma);
404
405                 if (is_vm_hugetlb_page(vma)) {
406                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
407                                 floor, next ? next->vm_start : ceiling);
408                 } else {
409                         /*
410                          * Optimization: gather nearby vmas into one call down
411                          */
412                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
413                                && !is_vm_hugetlb_page(next)) {
414                                 vma = next;
415                                 next = vma->vm_next;
416                                 unlink_anon_vmas(vma);
417                                 unlink_file_vma(vma);
418                         }
419                         free_pgd_range(tlb, addr, vma->vm_end,
420                                 floor, next ? next->vm_start : ceiling);
421                 }
422                 vma = next;
423         }
424 }
425
426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 {
428         spinlock_t *ptl;
429         pgtable_t new = pte_alloc_one(mm);
430         if (!new)
431                 return -ENOMEM;
432
433         /*
434          * Ensure all pte setup (eg. pte page lock and page clearing) are
435          * visible before the pte is made visible to other CPUs by being
436          * put into page tables.
437          *
438          * The other side of the story is the pointer chasing in the page
439          * table walking code (when walking the page table without locking;
440          * ie. most of the time). Fortunately, these data accesses consist
441          * of a chain of data-dependent loads, meaning most CPUs (alpha
442          * being the notable exception) will already guarantee loads are
443          * seen in-order. See the alpha page table accessors for the
444          * smp_rmb() barriers in page table walking code.
445          */
446         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447
448         ptl = pmd_lock(mm, pmd);
449         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
450                 mm_inc_nr_ptes(mm);
451                 pmd_populate(mm, pmd, new);
452                 new = NULL;
453         }
454         spin_unlock(ptl);
455         if (new)
456                 pte_free(mm, new);
457         return 0;
458 }
459
460 int __pte_alloc_kernel(pmd_t *pmd)
461 {
462         pte_t *new = pte_alloc_one_kernel(&init_mm);
463         if (!new)
464                 return -ENOMEM;
465
466         smp_wmb(); /* See comment in __pte_alloc */
467
468         spin_lock(&init_mm.page_table_lock);
469         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
470                 pmd_populate_kernel(&init_mm, pmd, new);
471                 new = NULL;
472         }
473         spin_unlock(&init_mm.page_table_lock);
474         if (new)
475                 pte_free_kernel(&init_mm, new);
476         return 0;
477 }
478
479 static inline void init_rss_vec(int *rss)
480 {
481         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483
484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486         int i;
487
488         if (current->mm == mm)
489                 sync_mm_rss(mm);
490         for (i = 0; i < NR_MM_COUNTERS; i++)
491                 if (rss[i])
492                         add_mm_counter(mm, i, rss[i]);
493 }
494
495 /*
496  * This function is called to print an error when a bad pte
497  * is found. For example, we might have a PFN-mapped pte in
498  * a region that doesn't allow it.
499  *
500  * The calling function must still handle the error.
501  */
502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503                           pte_t pte, struct page *page)
504 {
505         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
506         p4d_t *p4d = p4d_offset(pgd, addr);
507         pud_t *pud = pud_offset(p4d, addr);
508         pmd_t *pmd = pmd_offset(pud, addr);
509         struct address_space *mapping;
510         pgoff_t index;
511         static unsigned long resume;
512         static unsigned long nr_shown;
513         static unsigned long nr_unshown;
514
515         /*
516          * Allow a burst of 60 reports, then keep quiet for that minute;
517          * or allow a steady drip of one report per second.
518          */
519         if (nr_shown == 60) {
520                 if (time_before(jiffies, resume)) {
521                         nr_unshown++;
522                         return;
523                 }
524                 if (nr_unshown) {
525                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526                                  nr_unshown);
527                         nr_unshown = 0;
528                 }
529                 nr_shown = 0;
530         }
531         if (nr_shown++ == 0)
532                 resume = jiffies + 60 * HZ;
533
534         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535         index = linear_page_index(vma, addr);
536
537         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
538                  current->comm,
539                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
540         if (page)
541                 dump_page(page, "bad pte");
542         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
543                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
544         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
545                  vma->vm_file,
546                  vma->vm_ops ? vma->vm_ops->fault : NULL,
547                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548                  mapping ? mapping->a_ops->readpage : NULL);
549         dump_stack();
550         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552
553 /*
554  * vm_normal_page -- This function gets the "struct page" associated with a pte.
555  *
556  * "Special" mappings do not wish to be associated with a "struct page" (either
557  * it doesn't exist, or it exists but they don't want to touch it). In this
558  * case, NULL is returned here. "Normal" mappings do have a struct page.
559  *
560  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561  * pte bit, in which case this function is trivial. Secondly, an architecture
562  * may not have a spare pte bit, which requires a more complicated scheme,
563  * described below.
564  *
565  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566  * special mapping (even if there are underlying and valid "struct pages").
567  * COWed pages of a VM_PFNMAP are always normal.
568  *
569  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572  * mapping will always honor the rule
573  *
574  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575  *
576  * And for normal mappings this is false.
577  *
578  * This restricts such mappings to be a linear translation from virtual address
579  * to pfn. To get around this restriction, we allow arbitrary mappings so long
580  * as the vma is not a COW mapping; in that case, we know that all ptes are
581  * special (because none can have been COWed).
582  *
583  *
584  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585  *
586  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587  * page" backing, however the difference is that _all_ pages with a struct
588  * page (that is, those where pfn_valid is true) are refcounted and considered
589  * normal pages by the VM. The disadvantage is that pages are refcounted
590  * (which can be slower and simply not an option for some PFNMAP users). The
591  * advantage is that we don't have to follow the strict linearity rule of
592  * PFNMAP mappings in order to support COWable mappings.
593  *
594  */
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596                             pte_t pte)
597 {
598         unsigned long pfn = pte_pfn(pte);
599
600         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
601                 if (likely(!pte_special(pte)))
602                         goto check_pfn;
603                 if (vma->vm_ops && vma->vm_ops->find_special_page)
604                         return vma->vm_ops->find_special_page(vma, addr);
605                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606                         return NULL;
607                 if (is_zero_pfn(pfn))
608                         return NULL;
609                 if (pte_devmap(pte))
610                         return NULL;
611
612                 print_bad_pte(vma, addr, pte, NULL);
613                 return NULL;
614         }
615
616         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617
618         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619                 if (vma->vm_flags & VM_MIXEDMAP) {
620                         if (!pfn_valid(pfn))
621                                 return NULL;
622                         goto out;
623                 } else {
624                         unsigned long off;
625                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
626                         if (pfn == vma->vm_pgoff + off)
627                                 return NULL;
628                         if (!is_cow_mapping(vma->vm_flags))
629                                 return NULL;
630                 }
631         }
632
633         if (is_zero_pfn(pfn))
634                 return NULL;
635
636 check_pfn:
637         if (unlikely(pfn > highest_memmap_pfn)) {
638                 print_bad_pte(vma, addr, pte, NULL);
639                 return NULL;
640         }
641
642         /*
643          * NOTE! We still have PageReserved() pages in the page tables.
644          * eg. VDSO mappings can cause them to exist.
645          */
646 out:
647         return pfn_to_page(pfn);
648 }
649
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652                                 pmd_t pmd)
653 {
654         unsigned long pfn = pmd_pfn(pmd);
655
656         /*
657          * There is no pmd_special() but there may be special pmds, e.g.
658          * in a direct-access (dax) mapping, so let's just replicate the
659          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660          */
661         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662                 if (vma->vm_flags & VM_MIXEDMAP) {
663                         if (!pfn_valid(pfn))
664                                 return NULL;
665                         goto out;
666                 } else {
667                         unsigned long off;
668                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
669                         if (pfn == vma->vm_pgoff + off)
670                                 return NULL;
671                         if (!is_cow_mapping(vma->vm_flags))
672                                 return NULL;
673                 }
674         }
675
676         if (pmd_devmap(pmd))
677                 return NULL;
678         if (is_huge_zero_pmd(pmd))
679                 return NULL;
680         if (unlikely(pfn > highest_memmap_pfn))
681                 return NULL;
682
683         /*
684          * NOTE! We still have PageReserved() pages in the page tables.
685          * eg. VDSO mappings can cause them to exist.
686          */
687 out:
688         return pfn_to_page(pfn);
689 }
690 #endif
691
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697
698 static unsigned long
699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701                 unsigned long addr, int *rss)
702 {
703         unsigned long vm_flags = vma->vm_flags;
704         pte_t pte = *src_pte;
705         struct page *page;
706         swp_entry_t entry = pte_to_swp_entry(pte);
707
708         if (likely(!non_swap_entry(entry))) {
709                 if (swap_duplicate(entry) < 0)
710                         return entry.val;
711
712                 /* make sure dst_mm is on swapoff's mmlist. */
713                 if (unlikely(list_empty(&dst_mm->mmlist))) {
714                         spin_lock(&mmlist_lock);
715                         if (list_empty(&dst_mm->mmlist))
716                                 list_add(&dst_mm->mmlist,
717                                                 &src_mm->mmlist);
718                         spin_unlock(&mmlist_lock);
719                 }
720                 rss[MM_SWAPENTS]++;
721         } else if (is_migration_entry(entry)) {
722                 page = migration_entry_to_page(entry);
723
724                 rss[mm_counter(page)]++;
725
726                 if (is_write_migration_entry(entry) &&
727                                 is_cow_mapping(vm_flags)) {
728                         /*
729                          * COW mappings require pages in both
730                          * parent and child to be set to read.
731                          */
732                         make_migration_entry_read(&entry);
733                         pte = swp_entry_to_pte(entry);
734                         if (pte_swp_soft_dirty(*src_pte))
735                                 pte = pte_swp_mksoft_dirty(pte);
736                         if (pte_swp_uffd_wp(*src_pte))
737                                 pte = pte_swp_mkuffd_wp(pte);
738                         set_pte_at(src_mm, addr, src_pte, pte);
739                 }
740         } else if (is_device_private_entry(entry)) {
741                 page = device_private_entry_to_page(entry);
742
743                 /*
744                  * Update rss count even for unaddressable pages, as
745                  * they should treated just like normal pages in this
746                  * respect.
747                  *
748                  * We will likely want to have some new rss counters
749                  * for unaddressable pages, at some point. But for now
750                  * keep things as they are.
751                  */
752                 get_page(page);
753                 rss[mm_counter(page)]++;
754                 page_dup_rmap(page, false);
755
756                 /*
757                  * We do not preserve soft-dirty information, because so
758                  * far, checkpoint/restore is the only feature that
759                  * requires that. And checkpoint/restore does not work
760                  * when a device driver is involved (you cannot easily
761                  * save and restore device driver state).
762                  */
763                 if (is_write_device_private_entry(entry) &&
764                     is_cow_mapping(vm_flags)) {
765                         make_device_private_entry_read(&entry);
766                         pte = swp_entry_to_pte(entry);
767                         if (pte_swp_uffd_wp(*src_pte))
768                                 pte = pte_swp_mkuffd_wp(pte);
769                         set_pte_at(src_mm, addr, src_pte, pte);
770                 }
771         }
772         set_pte_at(dst_mm, addr, dst_pte, pte);
773         return 0;
774 }
775
776 /*
777  * Copy a present and normal page if necessary.
778  *
779  * NOTE! The usual case is that this doesn't need to do
780  * anything, and can just return a positive value. That
781  * will let the caller know that it can just increase
782  * the page refcount and re-use the pte the traditional
783  * way.
784  *
785  * But _if_ we need to copy it because it needs to be
786  * pinned in the parent (and the child should get its own
787  * copy rather than just a reference to the same page),
788  * we'll do that here and return zero to let the caller
789  * know we're done.
790  *
791  * And if we need a pre-allocated page but don't yet have
792  * one, return a negative error to let the preallocation
793  * code know so that it can do so outside the page table
794  * lock.
795  */
796 static inline int
797 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
798                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
799                   struct page **prealloc, pte_t pte, struct page *page)
800 {
801         struct mm_struct *src_mm = src_vma->vm_mm;
802         struct page *new_page;
803
804         if (!is_cow_mapping(src_vma->vm_flags))
805                 return 1;
806
807         /*
808          * What we want to do is to check whether this page may
809          * have been pinned by the parent process.  If so,
810          * instead of wrprotect the pte on both sides, we copy
811          * the page immediately so that we'll always guarantee
812          * the pinned page won't be randomly replaced in the
813          * future.
814          *
815          * The page pinning checks are just "has this mm ever
816          * seen pinning", along with the (inexact) check of
817          * the page count. That might give false positives for
818          * for pinning, but it will work correctly.
819          */
820         if (likely(!atomic_read(&src_mm->has_pinned)))
821                 return 1;
822         if (likely(!page_maybe_dma_pinned(page)))
823                 return 1;
824
825         new_page = *prealloc;
826         if (!new_page)
827                 return -EAGAIN;
828
829         /*
830          * We have a prealloc page, all good!  Take it
831          * over and copy the page & arm it.
832          */
833         *prealloc = NULL;
834         copy_user_highpage(new_page, page, addr, src_vma);
835         __SetPageUptodate(new_page);
836         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
837         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
838         rss[mm_counter(new_page)]++;
839
840         /* All done, just insert the new page copy in the child */
841         pte = mk_pte(new_page, dst_vma->vm_page_prot);
842         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
843         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
844         return 0;
845 }
846
847 /*
848  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
849  * is required to copy this pte.
850  */
851 static inline int
852 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
853                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
854                  struct page **prealloc)
855 {
856         struct mm_struct *src_mm = src_vma->vm_mm;
857         unsigned long vm_flags = src_vma->vm_flags;
858         pte_t pte = *src_pte;
859         struct page *page;
860
861         page = vm_normal_page(src_vma, addr, pte);
862         if (page) {
863                 int retval;
864
865                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
866                                            addr, rss, prealloc, pte, page);
867                 if (retval <= 0)
868                         return retval;
869
870                 get_page(page);
871                 page_dup_rmap(page, false);
872                 rss[mm_counter(page)]++;
873         }
874
875         /*
876          * If it's a COW mapping, write protect it both
877          * in the parent and the child
878          */
879         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
880                 ptep_set_wrprotect(src_mm, addr, src_pte);
881                 pte = pte_wrprotect(pte);
882         }
883
884         /*
885          * If it's a shared mapping, mark it clean in
886          * the child
887          */
888         if (vm_flags & VM_SHARED)
889                 pte = pte_mkclean(pte);
890         pte = pte_mkold(pte);
891
892         /*
893          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
894          * does not have the VM_UFFD_WP, which means that the uffd
895          * fork event is not enabled.
896          */
897         if (!(vm_flags & VM_UFFD_WP))
898                 pte = pte_clear_uffd_wp(pte);
899
900         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
901         return 0;
902 }
903
904 static inline struct page *
905 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
906                    unsigned long addr)
907 {
908         struct page *new_page;
909
910         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
911         if (!new_page)
912                 return NULL;
913
914         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
915                 put_page(new_page);
916                 return NULL;
917         }
918         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
919
920         return new_page;
921 }
922
923 static int
924 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
925                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
926                unsigned long end)
927 {
928         struct mm_struct *dst_mm = dst_vma->vm_mm;
929         struct mm_struct *src_mm = src_vma->vm_mm;
930         pte_t *orig_src_pte, *orig_dst_pte;
931         pte_t *src_pte, *dst_pte;
932         spinlock_t *src_ptl, *dst_ptl;
933         int progress, ret = 0;
934         int rss[NR_MM_COUNTERS];
935         swp_entry_t entry = (swp_entry_t){0};
936         struct page *prealloc = NULL;
937
938 again:
939         progress = 0;
940         init_rss_vec(rss);
941
942         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
943         if (!dst_pte) {
944                 ret = -ENOMEM;
945                 goto out;
946         }
947         src_pte = pte_offset_map(src_pmd, addr);
948         src_ptl = pte_lockptr(src_mm, src_pmd);
949         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
950         orig_src_pte = src_pte;
951         orig_dst_pte = dst_pte;
952         arch_enter_lazy_mmu_mode();
953
954         do {
955                 /*
956                  * We are holding two locks at this point - either of them
957                  * could generate latencies in another task on another CPU.
958                  */
959                 if (progress >= 32) {
960                         progress = 0;
961                         if (need_resched() ||
962                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
963                                 break;
964                 }
965                 if (pte_none(*src_pte)) {
966                         progress++;
967                         continue;
968                 }
969                 if (unlikely(!pte_present(*src_pte))) {
970                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
971                                                         dst_pte, src_pte,
972                                                         src_vma, addr, rss);
973                         if (entry.val)
974                                 break;
975                         progress += 8;
976                         continue;
977                 }
978                 /* copy_present_pte() will clear `*prealloc' if consumed */
979                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
980                                        addr, rss, &prealloc);
981                 /*
982                  * If we need a pre-allocated page for this pte, drop the
983                  * locks, allocate, and try again.
984                  */
985                 if (unlikely(ret == -EAGAIN))
986                         break;
987                 if (unlikely(prealloc)) {
988                         /*
989                          * pre-alloc page cannot be reused by next time so as
990                          * to strictly follow mempolicy (e.g., alloc_page_vma()
991                          * will allocate page according to address).  This
992                          * could only happen if one pinned pte changed.
993                          */
994                         put_page(prealloc);
995                         prealloc = NULL;
996                 }
997                 progress += 8;
998         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
999
1000         arch_leave_lazy_mmu_mode();
1001         spin_unlock(src_ptl);
1002         pte_unmap(orig_src_pte);
1003         add_mm_rss_vec(dst_mm, rss);
1004         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1005         cond_resched();
1006
1007         if (entry.val) {
1008                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1009                         ret = -ENOMEM;
1010                         goto out;
1011                 }
1012                 entry.val = 0;
1013         } else if (ret) {
1014                 WARN_ON_ONCE(ret != -EAGAIN);
1015                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1016                 if (!prealloc)
1017                         return -ENOMEM;
1018                 /* We've captured and resolved the error. Reset, try again. */
1019                 ret = 0;
1020         }
1021         if (addr != end)
1022                 goto again;
1023 out:
1024         if (unlikely(prealloc))
1025                 put_page(prealloc);
1026         return ret;
1027 }
1028
1029 static inline int
1030 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1031                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1032                unsigned long end)
1033 {
1034         struct mm_struct *dst_mm = dst_vma->vm_mm;
1035         struct mm_struct *src_mm = src_vma->vm_mm;
1036         pmd_t *src_pmd, *dst_pmd;
1037         unsigned long next;
1038
1039         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1040         if (!dst_pmd)
1041                 return -ENOMEM;
1042         src_pmd = pmd_offset(src_pud, addr);
1043         do {
1044                 next = pmd_addr_end(addr, end);
1045                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1046                         || pmd_devmap(*src_pmd)) {
1047                         int err;
1048                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1049                         err = copy_huge_pmd(dst_mm, src_mm,
1050                                             dst_pmd, src_pmd, addr, src_vma);
1051                         if (err == -ENOMEM)
1052                                 return -ENOMEM;
1053                         if (!err)
1054                                 continue;
1055                         /* fall through */
1056                 }
1057                 if (pmd_none_or_clear_bad(src_pmd))
1058                         continue;
1059                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1060                                    addr, next))
1061                         return -ENOMEM;
1062         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1063         return 0;
1064 }
1065
1066 static inline int
1067 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1068                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1069                unsigned long end)
1070 {
1071         struct mm_struct *dst_mm = dst_vma->vm_mm;
1072         struct mm_struct *src_mm = src_vma->vm_mm;
1073         pud_t *src_pud, *dst_pud;
1074         unsigned long next;
1075
1076         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1077         if (!dst_pud)
1078                 return -ENOMEM;
1079         src_pud = pud_offset(src_p4d, addr);
1080         do {
1081                 next = pud_addr_end(addr, end);
1082                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1083                         int err;
1084
1085                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1086                         err = copy_huge_pud(dst_mm, src_mm,
1087                                             dst_pud, src_pud, addr, src_vma);
1088                         if (err == -ENOMEM)
1089                                 return -ENOMEM;
1090                         if (!err)
1091                                 continue;
1092                         /* fall through */
1093                 }
1094                 if (pud_none_or_clear_bad(src_pud))
1095                         continue;
1096                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1097                                    addr, next))
1098                         return -ENOMEM;
1099         } while (dst_pud++, src_pud++, addr = next, addr != end);
1100         return 0;
1101 }
1102
1103 static inline int
1104 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1105                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1106                unsigned long end)
1107 {
1108         struct mm_struct *dst_mm = dst_vma->vm_mm;
1109         p4d_t *src_p4d, *dst_p4d;
1110         unsigned long next;
1111
1112         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1113         if (!dst_p4d)
1114                 return -ENOMEM;
1115         src_p4d = p4d_offset(src_pgd, addr);
1116         do {
1117                 next = p4d_addr_end(addr, end);
1118                 if (p4d_none_or_clear_bad(src_p4d))
1119                         continue;
1120                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1121                                    addr, next))
1122                         return -ENOMEM;
1123         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1124         return 0;
1125 }
1126
1127 int
1128 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1129 {
1130         pgd_t *src_pgd, *dst_pgd;
1131         unsigned long next;
1132         unsigned long addr = src_vma->vm_start;
1133         unsigned long end = src_vma->vm_end;
1134         struct mm_struct *dst_mm = dst_vma->vm_mm;
1135         struct mm_struct *src_mm = src_vma->vm_mm;
1136         struct mmu_notifier_range range;
1137         bool is_cow;
1138         int ret;
1139
1140         /*
1141          * Don't copy ptes where a page fault will fill them correctly.
1142          * Fork becomes much lighter when there are big shared or private
1143          * readonly mappings. The tradeoff is that copy_page_range is more
1144          * efficient than faulting.
1145          */
1146         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1147             !src_vma->anon_vma)
1148                 return 0;
1149
1150         if (is_vm_hugetlb_page(src_vma))
1151                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1152
1153         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1154                 /*
1155                  * We do not free on error cases below as remove_vma
1156                  * gets called on error from higher level routine
1157                  */
1158                 ret = track_pfn_copy(src_vma);
1159                 if (ret)
1160                         return ret;
1161         }
1162
1163         /*
1164          * We need to invalidate the secondary MMU mappings only when
1165          * there could be a permission downgrade on the ptes of the
1166          * parent mm. And a permission downgrade will only happen if
1167          * is_cow_mapping() returns true.
1168          */
1169         is_cow = is_cow_mapping(src_vma->vm_flags);
1170
1171         if (is_cow) {
1172                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1173                                         0, src_vma, src_mm, addr, end);
1174                 mmu_notifier_invalidate_range_start(&range);
1175         }
1176
1177         ret = 0;
1178         dst_pgd = pgd_offset(dst_mm, addr);
1179         src_pgd = pgd_offset(src_mm, addr);
1180         do {
1181                 next = pgd_addr_end(addr, end);
1182                 if (pgd_none_or_clear_bad(src_pgd))
1183                         continue;
1184                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1185                                             addr, next))) {
1186                         ret = -ENOMEM;
1187                         break;
1188                 }
1189         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1190
1191         if (is_cow)
1192                 mmu_notifier_invalidate_range_end(&range);
1193         return ret;
1194 }
1195
1196 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1197                                 struct vm_area_struct *vma, pmd_t *pmd,
1198                                 unsigned long addr, unsigned long end,
1199                                 struct zap_details *details)
1200 {
1201         struct mm_struct *mm = tlb->mm;
1202         int force_flush = 0;
1203         int rss[NR_MM_COUNTERS];
1204         spinlock_t *ptl;
1205         pte_t *start_pte;
1206         pte_t *pte;
1207         swp_entry_t entry;
1208
1209         tlb_change_page_size(tlb, PAGE_SIZE);
1210 again:
1211         init_rss_vec(rss);
1212         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1213         pte = start_pte;
1214         flush_tlb_batched_pending(mm);
1215         arch_enter_lazy_mmu_mode();
1216         do {
1217                 pte_t ptent = *pte;
1218                 if (pte_none(ptent))
1219                         continue;
1220
1221                 if (need_resched())
1222                         break;
1223
1224                 if (pte_present(ptent)) {
1225                         struct page *page;
1226
1227                         page = vm_normal_page(vma, addr, ptent);
1228                         if (unlikely(details) && page) {
1229                                 /*
1230                                  * unmap_shared_mapping_pages() wants to
1231                                  * invalidate cache without truncating:
1232                                  * unmap shared but keep private pages.
1233                                  */
1234                                 if (details->check_mapping &&
1235                                     details->check_mapping != page_rmapping(page))
1236                                         continue;
1237                         }
1238                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1239                                                         tlb->fullmm);
1240                         tlb_remove_tlb_entry(tlb, pte, addr);
1241                         if (unlikely(!page))
1242                                 continue;
1243
1244                         if (!PageAnon(page)) {
1245                                 if (pte_dirty(ptent)) {
1246                                         force_flush = 1;
1247                                         set_page_dirty(page);
1248                                 }
1249                                 if (pte_young(ptent) &&
1250                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1251                                         mark_page_accessed(page);
1252                         }
1253                         rss[mm_counter(page)]--;
1254                         page_remove_rmap(page, false);
1255                         if (unlikely(page_mapcount(page) < 0))
1256                                 print_bad_pte(vma, addr, ptent, page);
1257                         if (unlikely(__tlb_remove_page(tlb, page))) {
1258                                 force_flush = 1;
1259                                 addr += PAGE_SIZE;
1260                                 break;
1261                         }
1262                         continue;
1263                 }
1264
1265                 entry = pte_to_swp_entry(ptent);
1266                 if (is_device_private_entry(entry)) {
1267                         struct page *page = device_private_entry_to_page(entry);
1268
1269                         if (unlikely(details && details->check_mapping)) {
1270                                 /*
1271                                  * unmap_shared_mapping_pages() wants to
1272                                  * invalidate cache without truncating:
1273                                  * unmap shared but keep private pages.
1274                                  */
1275                                 if (details->check_mapping !=
1276                                     page_rmapping(page))
1277                                         continue;
1278                         }
1279
1280                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1281                         rss[mm_counter(page)]--;
1282                         page_remove_rmap(page, false);
1283                         put_page(page);
1284                         continue;
1285                 }
1286
1287                 /* If details->check_mapping, we leave swap entries. */
1288                 if (unlikely(details))
1289                         continue;
1290
1291                 if (!non_swap_entry(entry))
1292                         rss[MM_SWAPENTS]--;
1293                 else if (is_migration_entry(entry)) {
1294                         struct page *page;
1295
1296                         page = migration_entry_to_page(entry);
1297                         rss[mm_counter(page)]--;
1298                 }
1299                 if (unlikely(!free_swap_and_cache(entry)))
1300                         print_bad_pte(vma, addr, ptent, NULL);
1301                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1302         } while (pte++, addr += PAGE_SIZE, addr != end);
1303
1304         add_mm_rss_vec(mm, rss);
1305         arch_leave_lazy_mmu_mode();
1306
1307         /* Do the actual TLB flush before dropping ptl */
1308         if (force_flush)
1309                 tlb_flush_mmu_tlbonly(tlb);
1310         pte_unmap_unlock(start_pte, ptl);
1311
1312         /*
1313          * If we forced a TLB flush (either due to running out of
1314          * batch buffers or because we needed to flush dirty TLB
1315          * entries before releasing the ptl), free the batched
1316          * memory too. Restart if we didn't do everything.
1317          */
1318         if (force_flush) {
1319                 force_flush = 0;
1320                 tlb_flush_mmu(tlb);
1321         }
1322
1323         if (addr != end) {
1324                 cond_resched();
1325                 goto again;
1326         }
1327
1328         return addr;
1329 }
1330
1331 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1332                                 struct vm_area_struct *vma, pud_t *pud,
1333                                 unsigned long addr, unsigned long end,
1334                                 struct zap_details *details)
1335 {
1336         pmd_t *pmd;
1337         unsigned long next;
1338
1339         pmd = pmd_offset(pud, addr);
1340         do {
1341                 next = pmd_addr_end(addr, end);
1342                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1343                         if (next - addr != HPAGE_PMD_SIZE)
1344                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1345                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1346                                 goto next;
1347                         /* fall through */
1348                 }
1349                 /*
1350                  * Here there can be other concurrent MADV_DONTNEED or
1351                  * trans huge page faults running, and if the pmd is
1352                  * none or trans huge it can change under us. This is
1353                  * because MADV_DONTNEED holds the mmap_lock in read
1354                  * mode.
1355                  */
1356                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1357                         goto next;
1358                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1359 next:
1360                 cond_resched();
1361         } while (pmd++, addr = next, addr != end);
1362
1363         return addr;
1364 }
1365
1366 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1367                                 struct vm_area_struct *vma, p4d_t *p4d,
1368                                 unsigned long addr, unsigned long end,
1369                                 struct zap_details *details)
1370 {
1371         pud_t *pud;
1372         unsigned long next;
1373
1374         pud = pud_offset(p4d, addr);
1375         do {
1376                 next = pud_addr_end(addr, end);
1377                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1378                         if (next - addr != HPAGE_PUD_SIZE) {
1379                                 mmap_assert_locked(tlb->mm);
1380                                 split_huge_pud(vma, pud, addr);
1381                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1382                                 goto next;
1383                         /* fall through */
1384                 }
1385                 if (pud_none_or_clear_bad(pud))
1386                         continue;
1387                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1388 next:
1389                 cond_resched();
1390         } while (pud++, addr = next, addr != end);
1391
1392         return addr;
1393 }
1394
1395 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1396                                 struct vm_area_struct *vma, pgd_t *pgd,
1397                                 unsigned long addr, unsigned long end,
1398                                 struct zap_details *details)
1399 {
1400         p4d_t *p4d;
1401         unsigned long next;
1402
1403         p4d = p4d_offset(pgd, addr);
1404         do {
1405                 next = p4d_addr_end(addr, end);
1406                 if (p4d_none_or_clear_bad(p4d))
1407                         continue;
1408                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1409         } while (p4d++, addr = next, addr != end);
1410
1411         return addr;
1412 }
1413
1414 void unmap_page_range(struct mmu_gather *tlb,
1415                              struct vm_area_struct *vma,
1416                              unsigned long addr, unsigned long end,
1417                              struct zap_details *details)
1418 {
1419         pgd_t *pgd;
1420         unsigned long next;
1421
1422         BUG_ON(addr >= end);
1423         tlb_start_vma(tlb, vma);
1424         pgd = pgd_offset(vma->vm_mm, addr);
1425         do {
1426                 next = pgd_addr_end(addr, end);
1427                 if (pgd_none_or_clear_bad(pgd))
1428                         continue;
1429                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1430         } while (pgd++, addr = next, addr != end);
1431         tlb_end_vma(tlb, vma);
1432 }
1433
1434
1435 static void unmap_single_vma(struct mmu_gather *tlb,
1436                 struct vm_area_struct *vma, unsigned long start_addr,
1437                 unsigned long end_addr,
1438                 struct zap_details *details)
1439 {
1440         unsigned long start = max(vma->vm_start, start_addr);
1441         unsigned long end;
1442
1443         if (start >= vma->vm_end)
1444                 return;
1445         end = min(vma->vm_end, end_addr);
1446         if (end <= vma->vm_start)
1447                 return;
1448
1449         if (vma->vm_file)
1450                 uprobe_munmap(vma, start, end);
1451
1452         if (unlikely(vma->vm_flags & VM_PFNMAP))
1453                 untrack_pfn(vma, 0, 0);
1454
1455         if (start != end) {
1456                 if (unlikely(is_vm_hugetlb_page(vma))) {
1457                         /*
1458                          * It is undesirable to test vma->vm_file as it
1459                          * should be non-null for valid hugetlb area.
1460                          * However, vm_file will be NULL in the error
1461                          * cleanup path of mmap_region. When
1462                          * hugetlbfs ->mmap method fails,
1463                          * mmap_region() nullifies vma->vm_file
1464                          * before calling this function to clean up.
1465                          * Since no pte has actually been setup, it is
1466                          * safe to do nothing in this case.
1467                          */
1468                         if (vma->vm_file) {
1469                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1470                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1471                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1472                         }
1473                 } else
1474                         unmap_page_range(tlb, vma, start, end, details);
1475         }
1476 }
1477
1478 /**
1479  * unmap_vmas - unmap a range of memory covered by a list of vma's
1480  * @tlb: address of the caller's struct mmu_gather
1481  * @vma: the starting vma
1482  * @start_addr: virtual address at which to start unmapping
1483  * @end_addr: virtual address at which to end unmapping
1484  *
1485  * Unmap all pages in the vma list.
1486  *
1487  * Only addresses between `start' and `end' will be unmapped.
1488  *
1489  * The VMA list must be sorted in ascending virtual address order.
1490  *
1491  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1492  * range after unmap_vmas() returns.  So the only responsibility here is to
1493  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1494  * drops the lock and schedules.
1495  */
1496 void unmap_vmas(struct mmu_gather *tlb,
1497                 struct vm_area_struct *vma, unsigned long start_addr,
1498                 unsigned long end_addr)
1499 {
1500         struct mmu_notifier_range range;
1501
1502         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1503                                 start_addr, end_addr);
1504         mmu_notifier_invalidate_range_start(&range);
1505         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1506                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1507         mmu_notifier_invalidate_range_end(&range);
1508 }
1509
1510 /**
1511  * zap_page_range - remove user pages in a given range
1512  * @vma: vm_area_struct holding the applicable pages
1513  * @start: starting address of pages to zap
1514  * @size: number of bytes to zap
1515  *
1516  * Caller must protect the VMA list
1517  */
1518 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1519                 unsigned long size)
1520 {
1521         struct mmu_notifier_range range;
1522         struct mmu_gather tlb;
1523
1524         lru_add_drain();
1525         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1526                                 start, start + size);
1527         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1528         update_hiwater_rss(vma->vm_mm);
1529         mmu_notifier_invalidate_range_start(&range);
1530         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1531                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1532         mmu_notifier_invalidate_range_end(&range);
1533         tlb_finish_mmu(&tlb, start, range.end);
1534 }
1535
1536 /**
1537  * zap_page_range_single - remove user pages in a given range
1538  * @vma: vm_area_struct holding the applicable pages
1539  * @address: starting address of pages to zap
1540  * @size: number of bytes to zap
1541  * @details: details of shared cache invalidation
1542  *
1543  * The range must fit into one VMA.
1544  */
1545 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1546                 unsigned long size, struct zap_details *details)
1547 {
1548         struct mmu_notifier_range range;
1549         struct mmu_gather tlb;
1550
1551         lru_add_drain();
1552         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1553                                 address, address + size);
1554         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1555         update_hiwater_rss(vma->vm_mm);
1556         mmu_notifier_invalidate_range_start(&range);
1557         unmap_single_vma(&tlb, vma, address, range.end, details);
1558         mmu_notifier_invalidate_range_end(&range);
1559         tlb_finish_mmu(&tlb, address, range.end);
1560 }
1561
1562 /**
1563  * zap_vma_ptes - remove ptes mapping the vma
1564  * @vma: vm_area_struct holding ptes to be zapped
1565  * @address: starting address of pages to zap
1566  * @size: number of bytes to zap
1567  *
1568  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1569  *
1570  * The entire address range must be fully contained within the vma.
1571  *
1572  */
1573 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1574                 unsigned long size)
1575 {
1576         if (address < vma->vm_start || address + size > vma->vm_end ||
1577                         !(vma->vm_flags & VM_PFNMAP))
1578                 return;
1579
1580         zap_page_range_single(vma, address, size, NULL);
1581 }
1582 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1583
1584 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1585 {
1586         pgd_t *pgd;
1587         p4d_t *p4d;
1588         pud_t *pud;
1589         pmd_t *pmd;
1590
1591         pgd = pgd_offset(mm, addr);
1592         p4d = p4d_alloc(mm, pgd, addr);
1593         if (!p4d)
1594                 return NULL;
1595         pud = pud_alloc(mm, p4d, addr);
1596         if (!pud)
1597                 return NULL;
1598         pmd = pmd_alloc(mm, pud, addr);
1599         if (!pmd)
1600                 return NULL;
1601
1602         VM_BUG_ON(pmd_trans_huge(*pmd));
1603         return pmd;
1604 }
1605
1606 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1607                         spinlock_t **ptl)
1608 {
1609         pmd_t *pmd = walk_to_pmd(mm, addr);
1610
1611         if (!pmd)
1612                 return NULL;
1613         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1614 }
1615
1616 static int validate_page_before_insert(struct page *page)
1617 {
1618         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1619                 return -EINVAL;
1620         flush_dcache_page(page);
1621         return 0;
1622 }
1623
1624 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1625                         unsigned long addr, struct page *page, pgprot_t prot)
1626 {
1627         if (!pte_none(*pte))
1628                 return -EBUSY;
1629         /* Ok, finally just insert the thing.. */
1630         get_page(page);
1631         inc_mm_counter_fast(mm, mm_counter_file(page));
1632         page_add_file_rmap(page, false);
1633         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1634         return 0;
1635 }
1636
1637 /*
1638  * This is the old fallback for page remapping.
1639  *
1640  * For historical reasons, it only allows reserved pages. Only
1641  * old drivers should use this, and they needed to mark their
1642  * pages reserved for the old functions anyway.
1643  */
1644 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1645                         struct page *page, pgprot_t prot)
1646 {
1647         struct mm_struct *mm = vma->vm_mm;
1648         int retval;
1649         pte_t *pte;
1650         spinlock_t *ptl;
1651
1652         retval = validate_page_before_insert(page);
1653         if (retval)
1654                 goto out;
1655         retval = -ENOMEM;
1656         pte = get_locked_pte(mm, addr, &ptl);
1657         if (!pte)
1658                 goto out;
1659         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1660         pte_unmap_unlock(pte, ptl);
1661 out:
1662         return retval;
1663 }
1664
1665 #ifdef pte_index
1666 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1667                         unsigned long addr, struct page *page, pgprot_t prot)
1668 {
1669         int err;
1670
1671         if (!page_count(page))
1672                 return -EINVAL;
1673         err = validate_page_before_insert(page);
1674         if (err)
1675                 return err;
1676         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1677 }
1678
1679 /* insert_pages() amortizes the cost of spinlock operations
1680  * when inserting pages in a loop. Arch *must* define pte_index.
1681  */
1682 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1683                         struct page **pages, unsigned long *num, pgprot_t prot)
1684 {
1685         pmd_t *pmd = NULL;
1686         pte_t *start_pte, *pte;
1687         spinlock_t *pte_lock;
1688         struct mm_struct *const mm = vma->vm_mm;
1689         unsigned long curr_page_idx = 0;
1690         unsigned long remaining_pages_total = *num;
1691         unsigned long pages_to_write_in_pmd;
1692         int ret;
1693 more:
1694         ret = -EFAULT;
1695         pmd = walk_to_pmd(mm, addr);
1696         if (!pmd)
1697                 goto out;
1698
1699         pages_to_write_in_pmd = min_t(unsigned long,
1700                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1701
1702         /* Allocate the PTE if necessary; takes PMD lock once only. */
1703         ret = -ENOMEM;
1704         if (pte_alloc(mm, pmd))
1705                 goto out;
1706
1707         while (pages_to_write_in_pmd) {
1708                 int pte_idx = 0;
1709                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1710
1711                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1712                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1713                         int err = insert_page_in_batch_locked(mm, pte,
1714                                 addr, pages[curr_page_idx], prot);
1715                         if (unlikely(err)) {
1716                                 pte_unmap_unlock(start_pte, pte_lock);
1717                                 ret = err;
1718                                 remaining_pages_total -= pte_idx;
1719                                 goto out;
1720                         }
1721                         addr += PAGE_SIZE;
1722                         ++curr_page_idx;
1723                 }
1724                 pte_unmap_unlock(start_pte, pte_lock);
1725                 pages_to_write_in_pmd -= batch_size;
1726                 remaining_pages_total -= batch_size;
1727         }
1728         if (remaining_pages_total)
1729                 goto more;
1730         ret = 0;
1731 out:
1732         *num = remaining_pages_total;
1733         return ret;
1734 }
1735 #endif  /* ifdef pte_index */
1736
1737 /**
1738  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1739  * @vma: user vma to map to
1740  * @addr: target start user address of these pages
1741  * @pages: source kernel pages
1742  * @num: in: number of pages to map. out: number of pages that were *not*
1743  * mapped. (0 means all pages were successfully mapped).
1744  *
1745  * Preferred over vm_insert_page() when inserting multiple pages.
1746  *
1747  * In case of error, we may have mapped a subset of the provided
1748  * pages. It is the caller's responsibility to account for this case.
1749  *
1750  * The same restrictions apply as in vm_insert_page().
1751  */
1752 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1753                         struct page **pages, unsigned long *num)
1754 {
1755 #ifdef pte_index
1756         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1757
1758         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1759                 return -EFAULT;
1760         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1761                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1762                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1763                 vma->vm_flags |= VM_MIXEDMAP;
1764         }
1765         /* Defer page refcount checking till we're about to map that page. */
1766         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1767 #else
1768         unsigned long idx = 0, pgcount = *num;
1769         int err = -EINVAL;
1770
1771         for (; idx < pgcount; ++idx) {
1772                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1773                 if (err)
1774                         break;
1775         }
1776         *num = pgcount - idx;
1777         return err;
1778 #endif  /* ifdef pte_index */
1779 }
1780 EXPORT_SYMBOL(vm_insert_pages);
1781
1782 /**
1783  * vm_insert_page - insert single page into user vma
1784  * @vma: user vma to map to
1785  * @addr: target user address of this page
1786  * @page: source kernel page
1787  *
1788  * This allows drivers to insert individual pages they've allocated
1789  * into a user vma.
1790  *
1791  * The page has to be a nice clean _individual_ kernel allocation.
1792  * If you allocate a compound page, you need to have marked it as
1793  * such (__GFP_COMP), or manually just split the page up yourself
1794  * (see split_page()).
1795  *
1796  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1797  * took an arbitrary page protection parameter. This doesn't allow
1798  * that. Your vma protection will have to be set up correctly, which
1799  * means that if you want a shared writable mapping, you'd better
1800  * ask for a shared writable mapping!
1801  *
1802  * The page does not need to be reserved.
1803  *
1804  * Usually this function is called from f_op->mmap() handler
1805  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1806  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1807  * function from other places, for example from page-fault handler.
1808  *
1809  * Return: %0 on success, negative error code otherwise.
1810  */
1811 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1812                         struct page *page)
1813 {
1814         if (addr < vma->vm_start || addr >= vma->vm_end)
1815                 return -EFAULT;
1816         if (!page_count(page))
1817                 return -EINVAL;
1818         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1819                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1820                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1821                 vma->vm_flags |= VM_MIXEDMAP;
1822         }
1823         return insert_page(vma, addr, page, vma->vm_page_prot);
1824 }
1825 EXPORT_SYMBOL(vm_insert_page);
1826
1827 /*
1828  * __vm_map_pages - maps range of kernel pages into user vma
1829  * @vma: user vma to map to
1830  * @pages: pointer to array of source kernel pages
1831  * @num: number of pages in page array
1832  * @offset: user's requested vm_pgoff
1833  *
1834  * This allows drivers to map range of kernel pages into a user vma.
1835  *
1836  * Return: 0 on success and error code otherwise.
1837  */
1838 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1839                                 unsigned long num, unsigned long offset)
1840 {
1841         unsigned long count = vma_pages(vma);
1842         unsigned long uaddr = vma->vm_start;
1843         int ret, i;
1844
1845         /* Fail if the user requested offset is beyond the end of the object */
1846         if (offset >= num)
1847                 return -ENXIO;
1848
1849         /* Fail if the user requested size exceeds available object size */
1850         if (count > num - offset)
1851                 return -ENXIO;
1852
1853         for (i = 0; i < count; i++) {
1854                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1855                 if (ret < 0)
1856                         return ret;
1857                 uaddr += PAGE_SIZE;
1858         }
1859
1860         return 0;
1861 }
1862
1863 /**
1864  * vm_map_pages - maps range of kernel pages starts with non zero offset
1865  * @vma: user vma to map to
1866  * @pages: pointer to array of source kernel pages
1867  * @num: number of pages in page array
1868  *
1869  * Maps an object consisting of @num pages, catering for the user's
1870  * requested vm_pgoff
1871  *
1872  * If we fail to insert any page into the vma, the function will return
1873  * immediately leaving any previously inserted pages present.  Callers
1874  * from the mmap handler may immediately return the error as their caller
1875  * will destroy the vma, removing any successfully inserted pages. Other
1876  * callers should make their own arrangements for calling unmap_region().
1877  *
1878  * Context: Process context. Called by mmap handlers.
1879  * Return: 0 on success and error code otherwise.
1880  */
1881 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1882                                 unsigned long num)
1883 {
1884         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1885 }
1886 EXPORT_SYMBOL(vm_map_pages);
1887
1888 /**
1889  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1890  * @vma: user vma to map to
1891  * @pages: pointer to array of source kernel pages
1892  * @num: number of pages in page array
1893  *
1894  * Similar to vm_map_pages(), except that it explicitly sets the offset
1895  * to 0. This function is intended for the drivers that did not consider
1896  * vm_pgoff.
1897  *
1898  * Context: Process context. Called by mmap handlers.
1899  * Return: 0 on success and error code otherwise.
1900  */
1901 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1902                                 unsigned long num)
1903 {
1904         return __vm_map_pages(vma, pages, num, 0);
1905 }
1906 EXPORT_SYMBOL(vm_map_pages_zero);
1907
1908 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1909                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1910 {
1911         struct mm_struct *mm = vma->vm_mm;
1912         pte_t *pte, entry;
1913         spinlock_t *ptl;
1914
1915         pte = get_locked_pte(mm, addr, &ptl);
1916         if (!pte)
1917                 return VM_FAULT_OOM;
1918         if (!pte_none(*pte)) {
1919                 if (mkwrite) {
1920                         /*
1921                          * For read faults on private mappings the PFN passed
1922                          * in may not match the PFN we have mapped if the
1923                          * mapped PFN is a writeable COW page.  In the mkwrite
1924                          * case we are creating a writable PTE for a shared
1925                          * mapping and we expect the PFNs to match. If they
1926                          * don't match, we are likely racing with block
1927                          * allocation and mapping invalidation so just skip the
1928                          * update.
1929                          */
1930                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1931                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1932                                 goto out_unlock;
1933                         }
1934                         entry = pte_mkyoung(*pte);
1935                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1936                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1937                                 update_mmu_cache(vma, addr, pte);
1938                 }
1939                 goto out_unlock;
1940         }
1941
1942         /* Ok, finally just insert the thing.. */
1943         if (pfn_t_devmap(pfn))
1944                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1945         else
1946                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1947
1948         if (mkwrite) {
1949                 entry = pte_mkyoung(entry);
1950                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1951         }
1952
1953         set_pte_at(mm, addr, pte, entry);
1954         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1955
1956 out_unlock:
1957         pte_unmap_unlock(pte, ptl);
1958         return VM_FAULT_NOPAGE;
1959 }
1960
1961 /**
1962  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1963  * @vma: user vma to map to
1964  * @addr: target user address of this page
1965  * @pfn: source kernel pfn
1966  * @pgprot: pgprot flags for the inserted page
1967  *
1968  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1969  * to override pgprot on a per-page basis.
1970  *
1971  * This only makes sense for IO mappings, and it makes no sense for
1972  * COW mappings.  In general, using multiple vmas is preferable;
1973  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1974  * impractical.
1975  *
1976  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1977  * a value of @pgprot different from that of @vma->vm_page_prot.
1978  *
1979  * Context: Process context.  May allocate using %GFP_KERNEL.
1980  * Return: vm_fault_t value.
1981  */
1982 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1983                         unsigned long pfn, pgprot_t pgprot)
1984 {
1985         /*
1986          * Technically, architectures with pte_special can avoid all these
1987          * restrictions (same for remap_pfn_range).  However we would like
1988          * consistency in testing and feature parity among all, so we should
1989          * try to keep these invariants in place for everybody.
1990          */
1991         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1992         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1993                                                 (VM_PFNMAP|VM_MIXEDMAP));
1994         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1995         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1996
1997         if (addr < vma->vm_start || addr >= vma->vm_end)
1998                 return VM_FAULT_SIGBUS;
1999
2000         if (!pfn_modify_allowed(pfn, pgprot))
2001                 return VM_FAULT_SIGBUS;
2002
2003         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2004
2005         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2006                         false);
2007 }
2008 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2009
2010 /**
2011  * vmf_insert_pfn - insert single pfn into user vma
2012  * @vma: user vma to map to
2013  * @addr: target user address of this page
2014  * @pfn: source kernel pfn
2015  *
2016  * Similar to vm_insert_page, this allows drivers to insert individual pages
2017  * they've allocated into a user vma. Same comments apply.
2018  *
2019  * This function should only be called from a vm_ops->fault handler, and
2020  * in that case the handler should return the result of this function.
2021  *
2022  * vma cannot be a COW mapping.
2023  *
2024  * As this is called only for pages that do not currently exist, we
2025  * do not need to flush old virtual caches or the TLB.
2026  *
2027  * Context: Process context.  May allocate using %GFP_KERNEL.
2028  * Return: vm_fault_t value.
2029  */
2030 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2031                         unsigned long pfn)
2032 {
2033         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2034 }
2035 EXPORT_SYMBOL(vmf_insert_pfn);
2036
2037 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2038 {
2039         /* these checks mirror the abort conditions in vm_normal_page */
2040         if (vma->vm_flags & VM_MIXEDMAP)
2041                 return true;
2042         if (pfn_t_devmap(pfn))
2043                 return true;
2044         if (pfn_t_special(pfn))
2045                 return true;
2046         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2047                 return true;
2048         return false;
2049 }
2050
2051 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2052                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2053                 bool mkwrite)
2054 {
2055         int err;
2056
2057         BUG_ON(!vm_mixed_ok(vma, pfn));
2058
2059         if (addr < vma->vm_start || addr >= vma->vm_end)
2060                 return VM_FAULT_SIGBUS;
2061
2062         track_pfn_insert(vma, &pgprot, pfn);
2063
2064         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2065                 return VM_FAULT_SIGBUS;
2066
2067         /*
2068          * If we don't have pte special, then we have to use the pfn_valid()
2069          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2070          * refcount the page if pfn_valid is true (hence insert_page rather
2071          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2072          * without pte special, it would there be refcounted as a normal page.
2073          */
2074         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2075             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2076                 struct page *page;
2077
2078                 /*
2079                  * At this point we are committed to insert_page()
2080                  * regardless of whether the caller specified flags that
2081                  * result in pfn_t_has_page() == false.
2082                  */
2083                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2084                 err = insert_page(vma, addr, page, pgprot);
2085         } else {
2086                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2087         }
2088
2089         if (err == -ENOMEM)
2090                 return VM_FAULT_OOM;
2091         if (err < 0 && err != -EBUSY)
2092                 return VM_FAULT_SIGBUS;
2093
2094         return VM_FAULT_NOPAGE;
2095 }
2096
2097 /**
2098  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2099  * @vma: user vma to map to
2100  * @addr: target user address of this page
2101  * @pfn: source kernel pfn
2102  * @pgprot: pgprot flags for the inserted page
2103  *
2104  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2105  * to override pgprot on a per-page basis.
2106  *
2107  * Typically this function should be used by drivers to set caching- and
2108  * encryption bits different than those of @vma->vm_page_prot, because
2109  * the caching- or encryption mode may not be known at mmap() time.
2110  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2111  * to set caching and encryption bits for those vmas (except for COW pages).
2112  * This is ensured by core vm only modifying these page table entries using
2113  * functions that don't touch caching- or encryption bits, using pte_modify()
2114  * if needed. (See for example mprotect()).
2115  * Also when new page-table entries are created, this is only done using the
2116  * fault() callback, and never using the value of vma->vm_page_prot,
2117  * except for page-table entries that point to anonymous pages as the result
2118  * of COW.
2119  *
2120  * Context: Process context.  May allocate using %GFP_KERNEL.
2121  * Return: vm_fault_t value.
2122  */
2123 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2124                                  pfn_t pfn, pgprot_t pgprot)
2125 {
2126         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2127 }
2128 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2129
2130 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2131                 pfn_t pfn)
2132 {
2133         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2134 }
2135 EXPORT_SYMBOL(vmf_insert_mixed);
2136
2137 /*
2138  *  If the insertion of PTE failed because someone else already added a
2139  *  different entry in the mean time, we treat that as success as we assume
2140  *  the same entry was actually inserted.
2141  */
2142 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2143                 unsigned long addr, pfn_t pfn)
2144 {
2145         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2146 }
2147 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2148
2149 /*
2150  * maps a range of physical memory into the requested pages. the old
2151  * mappings are removed. any references to nonexistent pages results
2152  * in null mappings (currently treated as "copy-on-access")
2153  */
2154 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2155                         unsigned long addr, unsigned long end,
2156                         unsigned long pfn, pgprot_t prot)
2157 {
2158         pte_t *pte;
2159         spinlock_t *ptl;
2160         int err = 0;
2161
2162         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2163         if (!pte)
2164                 return -ENOMEM;
2165         arch_enter_lazy_mmu_mode();
2166         do {
2167                 BUG_ON(!pte_none(*pte));
2168                 if (!pfn_modify_allowed(pfn, prot)) {
2169                         err = -EACCES;
2170                         break;
2171                 }
2172                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2173                 pfn++;
2174         } while (pte++, addr += PAGE_SIZE, addr != end);
2175         arch_leave_lazy_mmu_mode();
2176         pte_unmap_unlock(pte - 1, ptl);
2177         return err;
2178 }
2179
2180 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2181                         unsigned long addr, unsigned long end,
2182                         unsigned long pfn, pgprot_t prot)
2183 {
2184         pmd_t *pmd;
2185         unsigned long next;
2186         int err;
2187
2188         pfn -= addr >> PAGE_SHIFT;
2189         pmd = pmd_alloc(mm, pud, addr);
2190         if (!pmd)
2191                 return -ENOMEM;
2192         VM_BUG_ON(pmd_trans_huge(*pmd));
2193         do {
2194                 next = pmd_addr_end(addr, end);
2195                 err = remap_pte_range(mm, pmd, addr, next,
2196                                 pfn + (addr >> PAGE_SHIFT), prot);
2197                 if (err)
2198                         return err;
2199         } while (pmd++, addr = next, addr != end);
2200         return 0;
2201 }
2202
2203 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2204                         unsigned long addr, unsigned long end,
2205                         unsigned long pfn, pgprot_t prot)
2206 {
2207         pud_t *pud;
2208         unsigned long next;
2209         int err;
2210
2211         pfn -= addr >> PAGE_SHIFT;
2212         pud = pud_alloc(mm, p4d, addr);
2213         if (!pud)
2214                 return -ENOMEM;
2215         do {
2216                 next = pud_addr_end(addr, end);
2217                 err = remap_pmd_range(mm, pud, addr, next,
2218                                 pfn + (addr >> PAGE_SHIFT), prot);
2219                 if (err)
2220                         return err;
2221         } while (pud++, addr = next, addr != end);
2222         return 0;
2223 }
2224
2225 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2226                         unsigned long addr, unsigned long end,
2227                         unsigned long pfn, pgprot_t prot)
2228 {
2229         p4d_t *p4d;
2230         unsigned long next;
2231         int err;
2232
2233         pfn -= addr >> PAGE_SHIFT;
2234         p4d = p4d_alloc(mm, pgd, addr);
2235         if (!p4d)
2236                 return -ENOMEM;
2237         do {
2238                 next = p4d_addr_end(addr, end);
2239                 err = remap_pud_range(mm, p4d, addr, next,
2240                                 pfn + (addr >> PAGE_SHIFT), prot);
2241                 if (err)
2242                         return err;
2243         } while (p4d++, addr = next, addr != end);
2244         return 0;
2245 }
2246
2247 /**
2248  * remap_pfn_range - remap kernel memory to userspace
2249  * @vma: user vma to map to
2250  * @addr: target page aligned user address to start at
2251  * @pfn: page frame number of kernel physical memory address
2252  * @size: size of mapping area
2253  * @prot: page protection flags for this mapping
2254  *
2255  * Note: this is only safe if the mm semaphore is held when called.
2256  *
2257  * Return: %0 on success, negative error code otherwise.
2258  */
2259 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2260                     unsigned long pfn, unsigned long size, pgprot_t prot)
2261 {
2262         pgd_t *pgd;
2263         unsigned long next;
2264         unsigned long end = addr + PAGE_ALIGN(size);
2265         struct mm_struct *mm = vma->vm_mm;
2266         unsigned long remap_pfn = pfn;
2267         int err;
2268
2269         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2270                 return -EINVAL;
2271
2272         /*
2273          * Physically remapped pages are special. Tell the
2274          * rest of the world about it:
2275          *   VM_IO tells people not to look at these pages
2276          *      (accesses can have side effects).
2277          *   VM_PFNMAP tells the core MM that the base pages are just
2278          *      raw PFN mappings, and do not have a "struct page" associated
2279          *      with them.
2280          *   VM_DONTEXPAND
2281          *      Disable vma merging and expanding with mremap().
2282          *   VM_DONTDUMP
2283          *      Omit vma from core dump, even when VM_IO turned off.
2284          *
2285          * There's a horrible special case to handle copy-on-write
2286          * behaviour that some programs depend on. We mark the "original"
2287          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2288          * See vm_normal_page() for details.
2289          */
2290         if (is_cow_mapping(vma->vm_flags)) {
2291                 if (addr != vma->vm_start || end != vma->vm_end)
2292                         return -EINVAL;
2293                 vma->vm_pgoff = pfn;
2294         }
2295
2296         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2297         if (err)
2298                 return -EINVAL;
2299
2300         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2301
2302         BUG_ON(addr >= end);
2303         pfn -= addr >> PAGE_SHIFT;
2304         pgd = pgd_offset(mm, addr);
2305         flush_cache_range(vma, addr, end);
2306         do {
2307                 next = pgd_addr_end(addr, end);
2308                 err = remap_p4d_range(mm, pgd, addr, next,
2309                                 pfn + (addr >> PAGE_SHIFT), prot);
2310                 if (err)
2311                         break;
2312         } while (pgd++, addr = next, addr != end);
2313
2314         if (err)
2315                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2316
2317         return err;
2318 }
2319 EXPORT_SYMBOL(remap_pfn_range);
2320
2321 /**
2322  * vm_iomap_memory - remap memory to userspace
2323  * @vma: user vma to map to
2324  * @start: start of the physical memory to be mapped
2325  * @len: size of area
2326  *
2327  * This is a simplified io_remap_pfn_range() for common driver use. The
2328  * driver just needs to give us the physical memory range to be mapped,
2329  * we'll figure out the rest from the vma information.
2330  *
2331  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2332  * whatever write-combining details or similar.
2333  *
2334  * Return: %0 on success, negative error code otherwise.
2335  */
2336 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2337 {
2338         unsigned long vm_len, pfn, pages;
2339
2340         /* Check that the physical memory area passed in looks valid */
2341         if (start + len < start)
2342                 return -EINVAL;
2343         /*
2344          * You *really* shouldn't map things that aren't page-aligned,
2345          * but we've historically allowed it because IO memory might
2346          * just have smaller alignment.
2347          */
2348         len += start & ~PAGE_MASK;
2349         pfn = start >> PAGE_SHIFT;
2350         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2351         if (pfn + pages < pfn)
2352                 return -EINVAL;
2353
2354         /* We start the mapping 'vm_pgoff' pages into the area */
2355         if (vma->vm_pgoff > pages)
2356                 return -EINVAL;
2357         pfn += vma->vm_pgoff;
2358         pages -= vma->vm_pgoff;
2359
2360         /* Can we fit all of the mapping? */
2361         vm_len = vma->vm_end - vma->vm_start;
2362         if (vm_len >> PAGE_SHIFT > pages)
2363                 return -EINVAL;
2364
2365         /* Ok, let it rip */
2366         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2367 }
2368 EXPORT_SYMBOL(vm_iomap_memory);
2369
2370 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2371                                      unsigned long addr, unsigned long end,
2372                                      pte_fn_t fn, void *data, bool create,
2373                                      pgtbl_mod_mask *mask)
2374 {
2375         pte_t *pte;
2376         int err = 0;
2377         spinlock_t *ptl;
2378
2379         if (create) {
2380                 pte = (mm == &init_mm) ?
2381                         pte_alloc_kernel_track(pmd, addr, mask) :
2382                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2383                 if (!pte)
2384                         return -ENOMEM;
2385         } else {
2386                 pte = (mm == &init_mm) ?
2387                         pte_offset_kernel(pmd, addr) :
2388                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2389         }
2390
2391         BUG_ON(pmd_huge(*pmd));
2392
2393         arch_enter_lazy_mmu_mode();
2394
2395         do {
2396                 if (create || !pte_none(*pte)) {
2397                         err = fn(pte++, addr, data);
2398                         if (err)
2399                                 break;
2400                 }
2401         } while (addr += PAGE_SIZE, addr != end);
2402         *mask |= PGTBL_PTE_MODIFIED;
2403
2404         arch_leave_lazy_mmu_mode();
2405
2406         if (mm != &init_mm)
2407                 pte_unmap_unlock(pte-1, ptl);
2408         return err;
2409 }
2410
2411 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2412                                      unsigned long addr, unsigned long end,
2413                                      pte_fn_t fn, void *data, bool create,
2414                                      pgtbl_mod_mask *mask)
2415 {
2416         pmd_t *pmd;
2417         unsigned long next;
2418         int err = 0;
2419
2420         BUG_ON(pud_huge(*pud));
2421
2422         if (create) {
2423                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2424                 if (!pmd)
2425                         return -ENOMEM;
2426         } else {
2427                 pmd = pmd_offset(pud, addr);
2428         }
2429         do {
2430                 next = pmd_addr_end(addr, end);
2431                 if (create || !pmd_none_or_clear_bad(pmd)) {
2432                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2433                                                  create, mask);
2434                         if (err)
2435                                 break;
2436                 }
2437         } while (pmd++, addr = next, addr != end);
2438         return err;
2439 }
2440
2441 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2442                                      unsigned long addr, unsigned long end,
2443                                      pte_fn_t fn, void *data, bool create,
2444                                      pgtbl_mod_mask *mask)
2445 {
2446         pud_t *pud;
2447         unsigned long next;
2448         int err = 0;
2449
2450         if (create) {
2451                 pud = pud_alloc_track(mm, p4d, addr, mask);
2452                 if (!pud)
2453                         return -ENOMEM;
2454         } else {
2455                 pud = pud_offset(p4d, addr);
2456         }
2457         do {
2458                 next = pud_addr_end(addr, end);
2459                 if (create || !pud_none_or_clear_bad(pud)) {
2460                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2461                                                  create, mask);
2462                         if (err)
2463                                 break;
2464                 }
2465         } while (pud++, addr = next, addr != end);
2466         return err;
2467 }
2468
2469 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2470                                      unsigned long addr, unsigned long end,
2471                                      pte_fn_t fn, void *data, bool create,
2472                                      pgtbl_mod_mask *mask)
2473 {
2474         p4d_t *p4d;
2475         unsigned long next;
2476         int err = 0;
2477
2478         if (create) {
2479                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2480                 if (!p4d)
2481                         return -ENOMEM;
2482         } else {
2483                 p4d = p4d_offset(pgd, addr);
2484         }
2485         do {
2486                 next = p4d_addr_end(addr, end);
2487                 if (create || !p4d_none_or_clear_bad(p4d)) {
2488                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2489                                                  create, mask);
2490                         if (err)
2491                                 break;
2492                 }
2493         } while (p4d++, addr = next, addr != end);
2494         return err;
2495 }
2496
2497 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2498                                  unsigned long size, pte_fn_t fn,
2499                                  void *data, bool create)
2500 {
2501         pgd_t *pgd;
2502         unsigned long start = addr, next;
2503         unsigned long end = addr + size;
2504         pgtbl_mod_mask mask = 0;
2505         int err = 0;
2506
2507         if (WARN_ON(addr >= end))
2508                 return -EINVAL;
2509
2510         pgd = pgd_offset(mm, addr);
2511         do {
2512                 next = pgd_addr_end(addr, end);
2513                 if (!create && pgd_none_or_clear_bad(pgd))
2514                         continue;
2515                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2516                 if (err)
2517                         break;
2518         } while (pgd++, addr = next, addr != end);
2519
2520         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2521                 arch_sync_kernel_mappings(start, start + size);
2522
2523         return err;
2524 }
2525
2526 /*
2527  * Scan a region of virtual memory, filling in page tables as necessary
2528  * and calling a provided function on each leaf page table.
2529  */
2530 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2531                         unsigned long size, pte_fn_t fn, void *data)
2532 {
2533         return __apply_to_page_range(mm, addr, size, fn, data, true);
2534 }
2535 EXPORT_SYMBOL_GPL(apply_to_page_range);
2536
2537 /*
2538  * Scan a region of virtual memory, calling a provided function on
2539  * each leaf page table where it exists.
2540  *
2541  * Unlike apply_to_page_range, this does _not_ fill in page tables
2542  * where they are absent.
2543  */
2544 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2545                                  unsigned long size, pte_fn_t fn, void *data)
2546 {
2547         return __apply_to_page_range(mm, addr, size, fn, data, false);
2548 }
2549 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2550
2551 /*
2552  * handle_pte_fault chooses page fault handler according to an entry which was
2553  * read non-atomically.  Before making any commitment, on those architectures
2554  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2555  * parts, do_swap_page must check under lock before unmapping the pte and
2556  * proceeding (but do_wp_page is only called after already making such a check;
2557  * and do_anonymous_page can safely check later on).
2558  */
2559 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2560                                 pte_t *page_table, pte_t orig_pte)
2561 {
2562         int same = 1;
2563 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2564         if (sizeof(pte_t) > sizeof(unsigned long)) {
2565                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2566                 spin_lock(ptl);
2567                 same = pte_same(*page_table, orig_pte);
2568                 spin_unlock(ptl);
2569         }
2570 #endif
2571         pte_unmap(page_table);
2572         return same;
2573 }
2574
2575 static inline bool cow_user_page(struct page *dst, struct page *src,
2576                                  struct vm_fault *vmf)
2577 {
2578         bool ret;
2579         void *kaddr;
2580         void __user *uaddr;
2581         bool locked = false;
2582         struct vm_area_struct *vma = vmf->vma;
2583         struct mm_struct *mm = vma->vm_mm;
2584         unsigned long addr = vmf->address;
2585
2586         if (likely(src)) {
2587                 copy_user_highpage(dst, src, addr, vma);
2588                 return true;
2589         }
2590
2591         /*
2592          * If the source page was a PFN mapping, we don't have
2593          * a "struct page" for it. We do a best-effort copy by
2594          * just copying from the original user address. If that
2595          * fails, we just zero-fill it. Live with it.
2596          */
2597         kaddr = kmap_atomic(dst);
2598         uaddr = (void __user *)(addr & PAGE_MASK);
2599
2600         /*
2601          * On architectures with software "accessed" bits, we would
2602          * take a double page fault, so mark it accessed here.
2603          */
2604         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2605                 pte_t entry;
2606
2607                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2608                 locked = true;
2609                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2610                         /*
2611                          * Other thread has already handled the fault
2612                          * and update local tlb only
2613                          */
2614                         update_mmu_tlb(vma, addr, vmf->pte);
2615                         ret = false;
2616                         goto pte_unlock;
2617                 }
2618
2619                 entry = pte_mkyoung(vmf->orig_pte);
2620                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2621                         update_mmu_cache(vma, addr, vmf->pte);
2622         }
2623
2624         /*
2625          * This really shouldn't fail, because the page is there
2626          * in the page tables. But it might just be unreadable,
2627          * in which case we just give up and fill the result with
2628          * zeroes.
2629          */
2630         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2631                 if (locked)
2632                         goto warn;
2633
2634                 /* Re-validate under PTL if the page is still mapped */
2635                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2636                 locked = true;
2637                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2638                         /* The PTE changed under us, update local tlb */
2639                         update_mmu_tlb(vma, addr, vmf->pte);
2640                         ret = false;
2641                         goto pte_unlock;
2642                 }
2643
2644                 /*
2645                  * The same page can be mapped back since last copy attempt.
2646                  * Try to copy again under PTL.
2647                  */
2648                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2649                         /*
2650                          * Give a warn in case there can be some obscure
2651                          * use-case
2652                          */
2653 warn:
2654                         WARN_ON_ONCE(1);
2655                         clear_page(kaddr);
2656                 }
2657         }
2658
2659         ret = true;
2660
2661 pte_unlock:
2662         if (locked)
2663                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2664         kunmap_atomic(kaddr);
2665         flush_dcache_page(dst);
2666
2667         return ret;
2668 }
2669
2670 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2671 {
2672         struct file *vm_file = vma->vm_file;
2673
2674         if (vm_file)
2675                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2676
2677         /*
2678          * Special mappings (e.g. VDSO) do not have any file so fake
2679          * a default GFP_KERNEL for them.
2680          */
2681         return GFP_KERNEL;
2682 }
2683
2684 /*
2685  * Notify the address space that the page is about to become writable so that
2686  * it can prohibit this or wait for the page to get into an appropriate state.
2687  *
2688  * We do this without the lock held, so that it can sleep if it needs to.
2689  */
2690 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2691 {
2692         vm_fault_t ret;
2693         struct page *page = vmf->page;
2694         unsigned int old_flags = vmf->flags;
2695
2696         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2697
2698         if (vmf->vma->vm_file &&
2699             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2700                 return VM_FAULT_SIGBUS;
2701
2702         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2703         /* Restore original flags so that caller is not surprised */
2704         vmf->flags = old_flags;
2705         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2706                 return ret;
2707         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2708                 lock_page(page);
2709                 if (!page->mapping) {
2710                         unlock_page(page);
2711                         return 0; /* retry */
2712                 }
2713                 ret |= VM_FAULT_LOCKED;
2714         } else
2715                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2716         return ret;
2717 }
2718
2719 /*
2720  * Handle dirtying of a page in shared file mapping on a write fault.
2721  *
2722  * The function expects the page to be locked and unlocks it.
2723  */
2724 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2725 {
2726         struct vm_area_struct *vma = vmf->vma;
2727         struct address_space *mapping;
2728         struct page *page = vmf->page;
2729         bool dirtied;
2730         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2731
2732         dirtied = set_page_dirty(page);
2733         VM_BUG_ON_PAGE(PageAnon(page), page);
2734         /*
2735          * Take a local copy of the address_space - page.mapping may be zeroed
2736          * by truncate after unlock_page().   The address_space itself remains
2737          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2738          * release semantics to prevent the compiler from undoing this copying.
2739          */
2740         mapping = page_rmapping(page);
2741         unlock_page(page);
2742
2743         if (!page_mkwrite)
2744                 file_update_time(vma->vm_file);
2745
2746         /*
2747          * Throttle page dirtying rate down to writeback speed.
2748          *
2749          * mapping may be NULL here because some device drivers do not
2750          * set page.mapping but still dirty their pages
2751          *
2752          * Drop the mmap_lock before waiting on IO, if we can. The file
2753          * is pinning the mapping, as per above.
2754          */
2755         if ((dirtied || page_mkwrite) && mapping) {
2756                 struct file *fpin;
2757
2758                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2759                 balance_dirty_pages_ratelimited(mapping);
2760                 if (fpin) {
2761                         fput(fpin);
2762                         return VM_FAULT_RETRY;
2763                 }
2764         }
2765
2766         return 0;
2767 }
2768
2769 /*
2770  * Handle write page faults for pages that can be reused in the current vma
2771  *
2772  * This can happen either due to the mapping being with the VM_SHARED flag,
2773  * or due to us being the last reference standing to the page. In either
2774  * case, all we need to do here is to mark the page as writable and update
2775  * any related book-keeping.
2776  */
2777 static inline void wp_page_reuse(struct vm_fault *vmf)
2778         __releases(vmf->ptl)
2779 {
2780         struct vm_area_struct *vma = vmf->vma;
2781         struct page *page = vmf->page;
2782         pte_t entry;
2783         /*
2784          * Clear the pages cpupid information as the existing
2785          * information potentially belongs to a now completely
2786          * unrelated process.
2787          */
2788         if (page)
2789                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2790
2791         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2792         entry = pte_mkyoung(vmf->orig_pte);
2793         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2794         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2795                 update_mmu_cache(vma, vmf->address, vmf->pte);
2796         pte_unmap_unlock(vmf->pte, vmf->ptl);
2797         count_vm_event(PGREUSE);
2798 }
2799
2800 /*
2801  * Handle the case of a page which we actually need to copy to a new page.
2802  *
2803  * Called with mmap_lock locked and the old page referenced, but
2804  * without the ptl held.
2805  *
2806  * High level logic flow:
2807  *
2808  * - Allocate a page, copy the content of the old page to the new one.
2809  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2810  * - Take the PTL. If the pte changed, bail out and release the allocated page
2811  * - If the pte is still the way we remember it, update the page table and all
2812  *   relevant references. This includes dropping the reference the page-table
2813  *   held to the old page, as well as updating the rmap.
2814  * - In any case, unlock the PTL and drop the reference we took to the old page.
2815  */
2816 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2817 {
2818         struct vm_area_struct *vma = vmf->vma;
2819         struct mm_struct *mm = vma->vm_mm;
2820         struct page *old_page = vmf->page;
2821         struct page *new_page = NULL;
2822         pte_t entry;
2823         int page_copied = 0;
2824         struct mmu_notifier_range range;
2825
2826         if (unlikely(anon_vma_prepare(vma)))
2827                 goto oom;
2828
2829         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2830                 new_page = alloc_zeroed_user_highpage_movable(vma,
2831                                                               vmf->address);
2832                 if (!new_page)
2833                         goto oom;
2834         } else {
2835                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2836                                 vmf->address);
2837                 if (!new_page)
2838                         goto oom;
2839
2840                 if (!cow_user_page(new_page, old_page, vmf)) {
2841                         /*
2842                          * COW failed, if the fault was solved by other,
2843                          * it's fine. If not, userspace would re-fault on
2844                          * the same address and we will handle the fault
2845                          * from the second attempt.
2846                          */
2847                         put_page(new_page);
2848                         if (old_page)
2849                                 put_page(old_page);
2850                         return 0;
2851                 }
2852         }
2853
2854         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2855                 goto oom_free_new;
2856         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2857
2858         __SetPageUptodate(new_page);
2859
2860         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2861                                 vmf->address & PAGE_MASK,
2862                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2863         mmu_notifier_invalidate_range_start(&range);
2864
2865         /*
2866          * Re-check the pte - we dropped the lock
2867          */
2868         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2869         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2870                 if (old_page) {
2871                         if (!PageAnon(old_page)) {
2872                                 dec_mm_counter_fast(mm,
2873                                                 mm_counter_file(old_page));
2874                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2875                         }
2876                 } else {
2877                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2878                 }
2879                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2880                 entry = mk_pte(new_page, vma->vm_page_prot);
2881                 entry = pte_sw_mkyoung(entry);
2882                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2883                 /*
2884                  * Clear the pte entry and flush it first, before updating the
2885                  * pte with the new entry. This will avoid a race condition
2886                  * seen in the presence of one thread doing SMC and another
2887                  * thread doing COW.
2888                  */
2889                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2890                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2891                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2892                 /*
2893                  * We call the notify macro here because, when using secondary
2894                  * mmu page tables (such as kvm shadow page tables), we want the
2895                  * new page to be mapped directly into the secondary page table.
2896                  */
2897                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2898                 update_mmu_cache(vma, vmf->address, vmf->pte);
2899                 if (old_page) {
2900                         /*
2901                          * Only after switching the pte to the new page may
2902                          * we remove the mapcount here. Otherwise another
2903                          * process may come and find the rmap count decremented
2904                          * before the pte is switched to the new page, and
2905                          * "reuse" the old page writing into it while our pte
2906                          * here still points into it and can be read by other
2907                          * threads.
2908                          *
2909                          * The critical issue is to order this
2910                          * page_remove_rmap with the ptp_clear_flush above.
2911                          * Those stores are ordered by (if nothing else,)
2912                          * the barrier present in the atomic_add_negative
2913                          * in page_remove_rmap.
2914                          *
2915                          * Then the TLB flush in ptep_clear_flush ensures that
2916                          * no process can access the old page before the
2917                          * decremented mapcount is visible. And the old page
2918                          * cannot be reused until after the decremented
2919                          * mapcount is visible. So transitively, TLBs to
2920                          * old page will be flushed before it can be reused.
2921                          */
2922                         page_remove_rmap(old_page, false);
2923                 }
2924
2925                 /* Free the old page.. */
2926                 new_page = old_page;
2927                 page_copied = 1;
2928         } else {
2929                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2930         }
2931
2932         if (new_page)
2933                 put_page(new_page);
2934
2935         pte_unmap_unlock(vmf->pte, vmf->ptl);
2936         /*
2937          * No need to double call mmu_notifier->invalidate_range() callback as
2938          * the above ptep_clear_flush_notify() did already call it.
2939          */
2940         mmu_notifier_invalidate_range_only_end(&range);
2941         if (old_page) {
2942                 /*
2943                  * Don't let another task, with possibly unlocked vma,
2944                  * keep the mlocked page.
2945                  */
2946                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2947                         lock_page(old_page);    /* LRU manipulation */
2948                         if (PageMlocked(old_page))
2949                                 munlock_vma_page(old_page);
2950                         unlock_page(old_page);
2951                 }
2952                 put_page(old_page);
2953         }
2954         return page_copied ? VM_FAULT_WRITE : 0;
2955 oom_free_new:
2956         put_page(new_page);
2957 oom:
2958         if (old_page)
2959                 put_page(old_page);
2960         return VM_FAULT_OOM;
2961 }
2962
2963 /**
2964  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2965  *                        writeable once the page is prepared
2966  *
2967  * @vmf: structure describing the fault
2968  *
2969  * This function handles all that is needed to finish a write page fault in a
2970  * shared mapping due to PTE being read-only once the mapped page is prepared.
2971  * It handles locking of PTE and modifying it.
2972  *
2973  * The function expects the page to be locked or other protection against
2974  * concurrent faults / writeback (such as DAX radix tree locks).
2975  *
2976  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2977  * we acquired PTE lock.
2978  */
2979 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2980 {
2981         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2982         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2983                                        &vmf->ptl);
2984         /*
2985          * We might have raced with another page fault while we released the
2986          * pte_offset_map_lock.
2987          */
2988         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2989                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2990                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2991                 return VM_FAULT_NOPAGE;
2992         }
2993         wp_page_reuse(vmf);
2994         return 0;
2995 }
2996
2997 /*
2998  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2999  * mapping
3000  */
3001 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3002 {
3003         struct vm_area_struct *vma = vmf->vma;
3004
3005         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3006                 vm_fault_t ret;
3007
3008                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3009                 vmf->flags |= FAULT_FLAG_MKWRITE;
3010                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3011                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3012                         return ret;
3013                 return finish_mkwrite_fault(vmf);
3014         }
3015         wp_page_reuse(vmf);
3016         return VM_FAULT_WRITE;
3017 }
3018
3019 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3020         __releases(vmf->ptl)
3021 {
3022         struct vm_area_struct *vma = vmf->vma;
3023         vm_fault_t ret = VM_FAULT_WRITE;
3024
3025         get_page(vmf->page);
3026
3027         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3028                 vm_fault_t tmp;
3029
3030                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3031                 tmp = do_page_mkwrite(vmf);
3032                 if (unlikely(!tmp || (tmp &
3033                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3034                         put_page(vmf->page);
3035                         return tmp;
3036                 }
3037                 tmp = finish_mkwrite_fault(vmf);
3038                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3039                         unlock_page(vmf->page);
3040                         put_page(vmf->page);
3041                         return tmp;
3042                 }
3043         } else {
3044                 wp_page_reuse(vmf);
3045                 lock_page(vmf->page);
3046         }
3047         ret |= fault_dirty_shared_page(vmf);
3048         put_page(vmf->page);
3049
3050         return ret;
3051 }
3052
3053 /*
3054  * This routine handles present pages, when users try to write
3055  * to a shared page. It is done by copying the page to a new address
3056  * and decrementing the shared-page counter for the old page.
3057  *
3058  * Note that this routine assumes that the protection checks have been
3059  * done by the caller (the low-level page fault routine in most cases).
3060  * Thus we can safely just mark it writable once we've done any necessary
3061  * COW.
3062  *
3063  * We also mark the page dirty at this point even though the page will
3064  * change only once the write actually happens. This avoids a few races,
3065  * and potentially makes it more efficient.
3066  *
3067  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3068  * but allow concurrent faults), with pte both mapped and locked.
3069  * We return with mmap_lock still held, but pte unmapped and unlocked.
3070  */
3071 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3072         __releases(vmf->ptl)
3073 {
3074         struct vm_area_struct *vma = vmf->vma;
3075
3076         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3077                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3078                 return handle_userfault(vmf, VM_UFFD_WP);
3079         }
3080
3081         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3082         if (!vmf->page) {
3083                 /*
3084                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3085                  * VM_PFNMAP VMA.
3086                  *
3087                  * We should not cow pages in a shared writeable mapping.
3088                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3089                  */
3090                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3091                                      (VM_WRITE|VM_SHARED))
3092                         return wp_pfn_shared(vmf);
3093
3094                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3095                 return wp_page_copy(vmf);
3096         }
3097
3098         /*
3099          * Take out anonymous pages first, anonymous shared vmas are
3100          * not dirty accountable.
3101          */
3102         if (PageAnon(vmf->page)) {
3103                 struct page *page = vmf->page;
3104
3105                 /* PageKsm() doesn't necessarily raise the page refcount */
3106                 if (PageKsm(page) || page_count(page) != 1)
3107                         goto copy;
3108                 if (!trylock_page(page))
3109                         goto copy;
3110                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3111                         unlock_page(page);
3112                         goto copy;
3113                 }
3114                 /*
3115                  * Ok, we've got the only map reference, and the only
3116                  * page count reference, and the page is locked,
3117                  * it's dark out, and we're wearing sunglasses. Hit it.
3118                  */
3119                 unlock_page(page);
3120                 wp_page_reuse(vmf);
3121                 return VM_FAULT_WRITE;
3122         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3123                                         (VM_WRITE|VM_SHARED))) {
3124                 return wp_page_shared(vmf);
3125         }
3126 copy:
3127         /*
3128          * Ok, we need to copy. Oh, well..
3129          */
3130         get_page(vmf->page);
3131
3132         pte_unmap_unlock(vmf->pte, vmf->ptl);
3133         return wp_page_copy(vmf);
3134 }
3135
3136 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3137                 unsigned long start_addr, unsigned long end_addr,
3138                 struct zap_details *details)
3139 {
3140         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3141 }
3142
3143 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3144                                             struct zap_details *details)
3145 {
3146         struct vm_area_struct *vma;
3147         pgoff_t vba, vea, zba, zea;
3148
3149         vma_interval_tree_foreach(vma, root,
3150                         details->first_index, details->last_index) {
3151
3152                 vba = vma->vm_pgoff;
3153                 vea = vba + vma_pages(vma) - 1;
3154                 zba = details->first_index;
3155                 if (zba < vba)
3156                         zba = vba;
3157                 zea = details->last_index;
3158                 if (zea > vea)
3159                         zea = vea;
3160
3161                 unmap_mapping_range_vma(vma,
3162                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3163                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3164                                 details);
3165         }
3166 }
3167
3168 /**
3169  * unmap_mapping_pages() - Unmap pages from processes.
3170  * @mapping: The address space containing pages to be unmapped.
3171  * @start: Index of first page to be unmapped.
3172  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3173  * @even_cows: Whether to unmap even private COWed pages.
3174  *
3175  * Unmap the pages in this address space from any userspace process which
3176  * has them mmaped.  Generally, you want to remove COWed pages as well when
3177  * a file is being truncated, but not when invalidating pages from the page
3178  * cache.
3179  */
3180 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3181                 pgoff_t nr, bool even_cows)
3182 {
3183         struct zap_details details = { };
3184
3185         details.check_mapping = even_cows ? NULL : mapping;
3186         details.first_index = start;
3187         details.last_index = start + nr - 1;
3188         if (details.last_index < details.first_index)
3189                 details.last_index = ULONG_MAX;
3190
3191         i_mmap_lock_write(mapping);
3192         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3193                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3194         i_mmap_unlock_write(mapping);
3195 }
3196
3197 /**
3198  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3199  * address_space corresponding to the specified byte range in the underlying
3200  * file.
3201  *
3202  * @mapping: the address space containing mmaps to be unmapped.
3203  * @holebegin: byte in first page to unmap, relative to the start of
3204  * the underlying file.  This will be rounded down to a PAGE_SIZE
3205  * boundary.  Note that this is different from truncate_pagecache(), which
3206  * must keep the partial page.  In contrast, we must get rid of
3207  * partial pages.
3208  * @holelen: size of prospective hole in bytes.  This will be rounded
3209  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3210  * end of the file.
3211  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3212  * but 0 when invalidating pagecache, don't throw away private data.
3213  */
3214 void unmap_mapping_range(struct address_space *mapping,
3215                 loff_t const holebegin, loff_t const holelen, int even_cows)
3216 {
3217         pgoff_t hba = holebegin >> PAGE_SHIFT;
3218         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3219
3220         /* Check for overflow. */
3221         if (sizeof(holelen) > sizeof(hlen)) {
3222                 long long holeend =
3223                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3224                 if (holeend & ~(long long)ULONG_MAX)
3225                         hlen = ULONG_MAX - hba + 1;
3226         }
3227
3228         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3229 }
3230 EXPORT_SYMBOL(unmap_mapping_range);
3231
3232 /*
3233  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3234  * but allow concurrent faults), and pte mapped but not yet locked.
3235  * We return with pte unmapped and unlocked.
3236  *
3237  * We return with the mmap_lock locked or unlocked in the same cases
3238  * as does filemap_fault().
3239  */
3240 vm_fault_t do_swap_page(struct vm_fault *vmf)
3241 {
3242         struct vm_area_struct *vma = vmf->vma;
3243         struct page *page = NULL, *swapcache;
3244         swp_entry_t entry;
3245         pte_t pte;
3246         int locked;
3247         int exclusive = 0;
3248         vm_fault_t ret = 0;
3249         void *shadow = NULL;
3250
3251         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3252                 goto out;
3253
3254         entry = pte_to_swp_entry(vmf->orig_pte);
3255         if (unlikely(non_swap_entry(entry))) {
3256                 if (is_migration_entry(entry)) {
3257                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3258                                              vmf->address);
3259                 } else if (is_device_private_entry(entry)) {
3260                         vmf->page = device_private_entry_to_page(entry);
3261                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3262                 } else if (is_hwpoison_entry(entry)) {
3263                         ret = VM_FAULT_HWPOISON;
3264                 } else {
3265                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3266                         ret = VM_FAULT_SIGBUS;
3267                 }
3268                 goto out;
3269         }
3270
3271
3272         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3273         page = lookup_swap_cache(entry, vma, vmf->address);
3274         swapcache = page;
3275
3276         if (!page) {
3277                 struct swap_info_struct *si = swp_swap_info(entry);
3278
3279                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3280                     __swap_count(entry) == 1) {
3281                         /* skip swapcache */
3282                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3283                                                         vmf->address);
3284                         if (page) {
3285                                 int err;
3286
3287                                 __SetPageLocked(page);
3288                                 __SetPageSwapBacked(page);
3289                                 set_page_private(page, entry.val);
3290
3291                                 /* Tell memcg to use swap ownership records */
3292                                 SetPageSwapCache(page);
3293                                 err = mem_cgroup_charge(page, vma->vm_mm,
3294                                                         GFP_KERNEL);
3295                                 ClearPageSwapCache(page);
3296                                 if (err) {
3297                                         ret = VM_FAULT_OOM;
3298                                         goto out_page;
3299                                 }
3300
3301                                 shadow = get_shadow_from_swap_cache(entry);
3302                                 if (shadow)
3303                                         workingset_refault(page, shadow);
3304
3305                                 lru_cache_add(page);
3306                                 swap_readpage(page, true);
3307                         }
3308                 } else {
3309                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3310                                                 vmf);
3311                         swapcache = page;
3312                 }
3313
3314                 if (!page) {
3315                         /*
3316                          * Back out if somebody else faulted in this pte
3317                          * while we released the pte lock.
3318                          */
3319                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3320                                         vmf->address, &vmf->ptl);
3321                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3322                                 ret = VM_FAULT_OOM;
3323                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3324                         goto unlock;
3325                 }
3326
3327                 /* Had to read the page from swap area: Major fault */
3328                 ret = VM_FAULT_MAJOR;
3329                 count_vm_event(PGMAJFAULT);
3330                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3331         } else if (PageHWPoison(page)) {
3332                 /*
3333                  * hwpoisoned dirty swapcache pages are kept for killing
3334                  * owner processes (which may be unknown at hwpoison time)
3335                  */
3336                 ret = VM_FAULT_HWPOISON;
3337                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3338                 goto out_release;
3339         }
3340
3341         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3342
3343         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3344         if (!locked) {
3345                 ret |= VM_FAULT_RETRY;
3346                 goto out_release;
3347         }
3348
3349         /*
3350          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3351          * release the swapcache from under us.  The page pin, and pte_same
3352          * test below, are not enough to exclude that.  Even if it is still
3353          * swapcache, we need to check that the page's swap has not changed.
3354          */
3355         if (unlikely((!PageSwapCache(page) ||
3356                         page_private(page) != entry.val)) && swapcache)
3357                 goto out_page;
3358
3359         page = ksm_might_need_to_copy(page, vma, vmf->address);
3360         if (unlikely(!page)) {
3361                 ret = VM_FAULT_OOM;
3362                 page = swapcache;
3363                 goto out_page;
3364         }
3365
3366         cgroup_throttle_swaprate(page, GFP_KERNEL);
3367
3368         /*
3369          * Back out if somebody else already faulted in this pte.
3370          */
3371         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3372                         &vmf->ptl);
3373         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3374                 goto out_nomap;
3375
3376         if (unlikely(!PageUptodate(page))) {
3377                 ret = VM_FAULT_SIGBUS;
3378                 goto out_nomap;
3379         }
3380
3381         /*
3382          * The page isn't present yet, go ahead with the fault.
3383          *
3384          * Be careful about the sequence of operations here.
3385          * To get its accounting right, reuse_swap_page() must be called
3386          * while the page is counted on swap but not yet in mapcount i.e.
3387          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3388          * must be called after the swap_free(), or it will never succeed.
3389          */
3390
3391         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3392         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3393         pte = mk_pte(page, vma->vm_page_prot);
3394         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3395                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3396                 vmf->flags &= ~FAULT_FLAG_WRITE;
3397                 ret |= VM_FAULT_WRITE;
3398                 exclusive = RMAP_EXCLUSIVE;
3399         }
3400         flush_icache_page(vma, page);
3401         if (pte_swp_soft_dirty(vmf->orig_pte))
3402                 pte = pte_mksoft_dirty(pte);
3403         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3404                 pte = pte_mkuffd_wp(pte);
3405                 pte = pte_wrprotect(pte);
3406         }
3407         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3408         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3409         vmf->orig_pte = pte;
3410
3411         /* ksm created a completely new copy */
3412         if (unlikely(page != swapcache && swapcache)) {
3413                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3414                 lru_cache_add_inactive_or_unevictable(page, vma);
3415         } else {
3416                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3417         }
3418
3419         swap_free(entry);
3420         if (mem_cgroup_swap_full(page) ||
3421             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3422                 try_to_free_swap(page);
3423         unlock_page(page);
3424         if (page != swapcache && swapcache) {
3425                 /*
3426                  * Hold the lock to avoid the swap entry to be reused
3427                  * until we take the PT lock for the pte_same() check
3428                  * (to avoid false positives from pte_same). For
3429                  * further safety release the lock after the swap_free
3430                  * so that the swap count won't change under a
3431                  * parallel locked swapcache.
3432                  */
3433                 unlock_page(swapcache);
3434                 put_page(swapcache);
3435         }
3436
3437         if (vmf->flags & FAULT_FLAG_WRITE) {
3438                 ret |= do_wp_page(vmf);
3439                 if (ret & VM_FAULT_ERROR)
3440                         ret &= VM_FAULT_ERROR;
3441                 goto out;
3442         }
3443
3444         /* No need to invalidate - it was non-present before */
3445         update_mmu_cache(vma, vmf->address, vmf->pte);
3446 unlock:
3447         pte_unmap_unlock(vmf->pte, vmf->ptl);
3448 out:
3449         return ret;
3450 out_nomap:
3451         pte_unmap_unlock(vmf->pte, vmf->ptl);
3452 out_page:
3453         unlock_page(page);
3454 out_release:
3455         put_page(page);
3456         if (page != swapcache && swapcache) {
3457                 unlock_page(swapcache);
3458                 put_page(swapcache);
3459         }
3460         return ret;
3461 }
3462
3463 /*
3464  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3465  * but allow concurrent faults), and pte mapped but not yet locked.
3466  * We return with mmap_lock still held, but pte unmapped and unlocked.
3467  */
3468 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3469 {
3470         struct vm_area_struct *vma = vmf->vma;
3471         struct page *page;
3472         vm_fault_t ret = 0;
3473         pte_t entry;
3474
3475         /* File mapping without ->vm_ops ? */
3476         if (vma->vm_flags & VM_SHARED)
3477                 return VM_FAULT_SIGBUS;
3478
3479         /*
3480          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3481          * pte_offset_map() on pmds where a huge pmd might be created
3482          * from a different thread.
3483          *
3484          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3485          * parallel threads are excluded by other means.
3486          *
3487          * Here we only have mmap_read_lock(mm).
3488          */
3489         if (pte_alloc(vma->vm_mm, vmf->pmd))
3490                 return VM_FAULT_OOM;
3491
3492         /* See the comment in pte_alloc_one_map() */
3493         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3494                 return 0;
3495
3496         /* Use the zero-page for reads */
3497         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3498                         !mm_forbids_zeropage(vma->vm_mm)) {
3499                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3500                                                 vma->vm_page_prot));
3501                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3502                                 vmf->address, &vmf->ptl);
3503                 if (!pte_none(*vmf->pte)) {
3504                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3505                         goto unlock;
3506                 }
3507                 ret = check_stable_address_space(vma->vm_mm);
3508                 if (ret)
3509                         goto unlock;
3510                 /* Deliver the page fault to userland, check inside PT lock */
3511                 if (userfaultfd_missing(vma)) {
3512                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3513                         return handle_userfault(vmf, VM_UFFD_MISSING);
3514                 }
3515                 goto setpte;
3516         }
3517
3518         /* Allocate our own private page. */
3519         if (unlikely(anon_vma_prepare(vma)))
3520                 goto oom;
3521         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3522         if (!page)
3523                 goto oom;
3524
3525         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3526                 goto oom_free_page;
3527         cgroup_throttle_swaprate(page, GFP_KERNEL);
3528
3529         /*
3530          * The memory barrier inside __SetPageUptodate makes sure that
3531          * preceding stores to the page contents become visible before
3532          * the set_pte_at() write.
3533          */
3534         __SetPageUptodate(page);
3535
3536         entry = mk_pte(page, vma->vm_page_prot);
3537         entry = pte_sw_mkyoung(entry);
3538         if (vma->vm_flags & VM_WRITE)
3539                 entry = pte_mkwrite(pte_mkdirty(entry));
3540
3541         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3542                         &vmf->ptl);
3543         if (!pte_none(*vmf->pte)) {
3544                 update_mmu_cache(vma, vmf->address, vmf->pte);
3545                 goto release;
3546         }
3547
3548         ret = check_stable_address_space(vma->vm_mm);
3549         if (ret)
3550                 goto release;
3551
3552         /* Deliver the page fault to userland, check inside PT lock */
3553         if (userfaultfd_missing(vma)) {
3554                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3555                 put_page(page);
3556                 return handle_userfault(vmf, VM_UFFD_MISSING);
3557         }
3558
3559         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3560         page_add_new_anon_rmap(page, vma, vmf->address, false);
3561         lru_cache_add_inactive_or_unevictable(page, vma);
3562 setpte:
3563         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3564
3565         /* No need to invalidate - it was non-present before */
3566         update_mmu_cache(vma, vmf->address, vmf->pte);
3567 unlock:
3568         pte_unmap_unlock(vmf->pte, vmf->ptl);
3569         return ret;
3570 release:
3571         put_page(page);
3572         goto unlock;
3573 oom_free_page:
3574         put_page(page);
3575 oom:
3576         return VM_FAULT_OOM;
3577 }
3578
3579 /*
3580  * The mmap_lock must have been held on entry, and may have been
3581  * released depending on flags and vma->vm_ops->fault() return value.
3582  * See filemap_fault() and __lock_page_retry().
3583  */
3584 static vm_fault_t __do_fault(struct vm_fault *vmf)
3585 {
3586         struct vm_area_struct *vma = vmf->vma;
3587         vm_fault_t ret;
3588
3589         /*
3590          * Preallocate pte before we take page_lock because this might lead to
3591          * deadlocks for memcg reclaim which waits for pages under writeback:
3592          *                              lock_page(A)
3593          *                              SetPageWriteback(A)
3594          *                              unlock_page(A)
3595          * lock_page(B)
3596          *                              lock_page(B)
3597          * pte_alloc_one
3598          *   shrink_page_list
3599          *     wait_on_page_writeback(A)
3600          *                              SetPageWriteback(B)
3601          *                              unlock_page(B)
3602          *                              # flush A, B to clear the writeback
3603          */
3604         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3605                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3606                 if (!vmf->prealloc_pte)
3607                         return VM_FAULT_OOM;
3608                 smp_wmb(); /* See comment in __pte_alloc() */
3609         }
3610
3611         ret = vma->vm_ops->fault(vmf);
3612         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3613                             VM_FAULT_DONE_COW)))
3614                 return ret;
3615
3616         if (unlikely(PageHWPoison(vmf->page))) {
3617                 if (ret & VM_FAULT_LOCKED)
3618                         unlock_page(vmf->page);
3619                 put_page(vmf->page);
3620                 vmf->page = NULL;
3621                 return VM_FAULT_HWPOISON;
3622         }
3623
3624         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3625                 lock_page(vmf->page);
3626         else
3627                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3628
3629         return ret;
3630 }
3631
3632 /*
3633  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3634  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3635  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3636  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3637  */
3638 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3639 {
3640         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3641 }
3642
3643 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3644 {
3645         struct vm_area_struct *vma = vmf->vma;
3646
3647         if (!pmd_none(*vmf->pmd))
3648                 goto map_pte;
3649         if (vmf->prealloc_pte) {
3650                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3651                 if (unlikely(!pmd_none(*vmf->pmd))) {
3652                         spin_unlock(vmf->ptl);
3653                         goto map_pte;
3654                 }
3655
3656                 mm_inc_nr_ptes(vma->vm_mm);
3657                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3658                 spin_unlock(vmf->ptl);
3659                 vmf->prealloc_pte = NULL;
3660         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3661                 return VM_FAULT_OOM;
3662         }
3663 map_pte:
3664         /*
3665          * If a huge pmd materialized under us just retry later.  Use
3666          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3667          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3668          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3669          * running immediately after a huge pmd fault in a different thread of
3670          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3671          * All we have to ensure is that it is a regular pmd that we can walk
3672          * with pte_offset_map() and we can do that through an atomic read in
3673          * C, which is what pmd_trans_unstable() provides.
3674          */
3675         if (pmd_devmap_trans_unstable(vmf->pmd))
3676                 return VM_FAULT_NOPAGE;
3677
3678         /*
3679          * At this point we know that our vmf->pmd points to a page of ptes
3680          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3681          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3682          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3683          * be valid and we will re-check to make sure the vmf->pte isn't
3684          * pte_none() under vmf->ptl protection when we return to
3685          * alloc_set_pte().
3686          */
3687         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3688                         &vmf->ptl);
3689         return 0;
3690 }
3691
3692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3693 static void deposit_prealloc_pte(struct vm_fault *vmf)
3694 {
3695         struct vm_area_struct *vma = vmf->vma;
3696
3697         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3698         /*
3699          * We are going to consume the prealloc table,
3700          * count that as nr_ptes.
3701          */
3702         mm_inc_nr_ptes(vma->vm_mm);
3703         vmf->prealloc_pte = NULL;
3704 }
3705
3706 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3707 {
3708         struct vm_area_struct *vma = vmf->vma;
3709         bool write = vmf->flags & FAULT_FLAG_WRITE;
3710         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3711         pmd_t entry;
3712         int i;
3713         vm_fault_t ret;
3714
3715         if (!transhuge_vma_suitable(vma, haddr))
3716                 return VM_FAULT_FALLBACK;
3717
3718         ret = VM_FAULT_FALLBACK;
3719         page = compound_head(page);
3720
3721         /*
3722          * Archs like ppc64 need additonal space to store information
3723          * related to pte entry. Use the preallocated table for that.
3724          */
3725         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3726                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3727                 if (!vmf->prealloc_pte)
3728                         return VM_FAULT_OOM;
3729                 smp_wmb(); /* See comment in __pte_alloc() */
3730         }
3731
3732         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3733         if (unlikely(!pmd_none(*vmf->pmd)))
3734                 goto out;
3735
3736         for (i = 0; i < HPAGE_PMD_NR; i++)
3737                 flush_icache_page(vma, page + i);
3738
3739         entry = mk_huge_pmd(page, vma->vm_page_prot);
3740         if (write)
3741                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3742
3743         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3744         page_add_file_rmap(page, true);
3745         /*
3746          * deposit and withdraw with pmd lock held
3747          */
3748         if (arch_needs_pgtable_deposit())
3749                 deposit_prealloc_pte(vmf);
3750
3751         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3752
3753         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3754
3755         /* fault is handled */
3756         ret = 0;
3757         count_vm_event(THP_FILE_MAPPED);
3758 out:
3759         spin_unlock(vmf->ptl);
3760         return ret;
3761 }
3762 #else
3763 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3764 {
3765         BUILD_BUG();
3766         return 0;
3767 }
3768 #endif
3769
3770 /**
3771  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3772  * mapping. If needed, the function allocates page table or use pre-allocated.
3773  *
3774  * @vmf: fault environment
3775  * @page: page to map
3776  *
3777  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3778  * return.
3779  *
3780  * Target users are page handler itself and implementations of
3781  * vm_ops->map_pages.
3782  *
3783  * Return: %0 on success, %VM_FAULT_ code in case of error.
3784  */
3785 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3786 {
3787         struct vm_area_struct *vma = vmf->vma;
3788         bool write = vmf->flags & FAULT_FLAG_WRITE;
3789         pte_t entry;
3790         vm_fault_t ret;
3791
3792         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3793                 ret = do_set_pmd(vmf, page);
3794                 if (ret != VM_FAULT_FALLBACK)
3795                         return ret;
3796         }
3797
3798         if (!vmf->pte) {
3799                 ret = pte_alloc_one_map(vmf);
3800                 if (ret)
3801                         return ret;
3802         }
3803
3804         /* Re-check under ptl */
3805         if (unlikely(!pte_none(*vmf->pte))) {
3806                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3807                 return VM_FAULT_NOPAGE;
3808         }
3809
3810         flush_icache_page(vma, page);
3811         entry = mk_pte(page, vma->vm_page_prot);
3812         entry = pte_sw_mkyoung(entry);
3813         if (write)
3814                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3815         /* copy-on-write page */
3816         if (write && !(vma->vm_flags & VM_SHARED)) {
3817                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3818                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3819                 lru_cache_add_inactive_or_unevictable(page, vma);
3820         } else {
3821                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3822                 page_add_file_rmap(page, false);
3823         }
3824         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3825
3826         /* no need to invalidate: a not-present page won't be cached */
3827         update_mmu_cache(vma, vmf->address, vmf->pte);
3828
3829         return 0;
3830 }
3831
3832
3833 /**
3834  * finish_fault - finish page fault once we have prepared the page to fault
3835  *
3836  * @vmf: structure describing the fault
3837  *
3838  * This function handles all that is needed to finish a page fault once the
3839  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3840  * given page, adds reverse page mapping, handles memcg charges and LRU
3841  * addition.
3842  *
3843  * The function expects the page to be locked and on success it consumes a
3844  * reference of a page being mapped (for the PTE which maps it).
3845  *
3846  * Return: %0 on success, %VM_FAULT_ code in case of error.
3847  */
3848 vm_fault_t finish_fault(struct vm_fault *vmf)
3849 {
3850         struct page *page;
3851         vm_fault_t ret = 0;
3852
3853         /* Did we COW the page? */
3854         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3855             !(vmf->vma->vm_flags & VM_SHARED))
3856                 page = vmf->cow_page;
3857         else
3858                 page = vmf->page;
3859
3860         /*
3861          * check even for read faults because we might have lost our CoWed
3862          * page
3863          */
3864         if (!(vmf->vma->vm_flags & VM_SHARED))
3865                 ret = check_stable_address_space(vmf->vma->vm_mm);
3866         if (!ret)
3867                 ret = alloc_set_pte(vmf, page);
3868         if (vmf->pte)
3869                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3870         return ret;
3871 }
3872
3873 static unsigned long fault_around_bytes __read_mostly =
3874         rounddown_pow_of_two(65536);
3875
3876 #ifdef CONFIG_DEBUG_FS
3877 static int fault_around_bytes_get(void *data, u64 *val)
3878 {
3879         *val = fault_around_bytes;
3880         return 0;
3881 }
3882
3883 /*
3884  * fault_around_bytes must be rounded down to the nearest page order as it's
3885  * what do_fault_around() expects to see.
3886  */
3887 static int fault_around_bytes_set(void *data, u64 val)
3888 {
3889         if (val / PAGE_SIZE > PTRS_PER_PTE)
3890                 return -EINVAL;
3891         if (val > PAGE_SIZE)
3892                 fault_around_bytes = rounddown_pow_of_two(val);
3893         else
3894                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3895         return 0;
3896 }
3897 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3898                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3899
3900 static int __init fault_around_debugfs(void)
3901 {
3902         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3903                                    &fault_around_bytes_fops);
3904         return 0;
3905 }
3906 late_initcall(fault_around_debugfs);
3907 #endif
3908
3909 /*
3910  * do_fault_around() tries to map few pages around the fault address. The hope
3911  * is that the pages will be needed soon and this will lower the number of
3912  * faults to handle.
3913  *
3914  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3915  * not ready to be mapped: not up-to-date, locked, etc.
3916  *
3917  * This function is called with the page table lock taken. In the split ptlock
3918  * case the page table lock only protects only those entries which belong to
3919  * the page table corresponding to the fault address.
3920  *
3921  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3922  * only once.
3923  *
3924  * fault_around_bytes defines how many bytes we'll try to map.
3925  * do_fault_around() expects it to be set to a power of two less than or equal
3926  * to PTRS_PER_PTE.
3927  *
3928  * The virtual address of the area that we map is naturally aligned to
3929  * fault_around_bytes rounded down to the machine page size
3930  * (and therefore to page order).  This way it's easier to guarantee
3931  * that we don't cross page table boundaries.
3932  */
3933 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3934 {
3935         unsigned long address = vmf->address, nr_pages, mask;
3936         pgoff_t start_pgoff = vmf->pgoff;
3937         pgoff_t end_pgoff;
3938         int off;
3939         vm_fault_t ret = 0;
3940
3941         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3942         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3943
3944         vmf->address = max(address & mask, vmf->vma->vm_start);
3945         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3946         start_pgoff -= off;
3947
3948         /*
3949          *  end_pgoff is either the end of the page table, the end of
3950          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3951          */
3952         end_pgoff = start_pgoff -
3953                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3954                 PTRS_PER_PTE - 1;
3955         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3956                         start_pgoff + nr_pages - 1);
3957
3958         if (pmd_none(*vmf->pmd)) {
3959                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3960                 if (!vmf->prealloc_pte)
3961                         goto out;
3962                 smp_wmb(); /* See comment in __pte_alloc() */
3963         }
3964
3965         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3966
3967         /* Huge page is mapped? Page fault is solved */
3968         if (pmd_trans_huge(*vmf->pmd)) {
3969                 ret = VM_FAULT_NOPAGE;
3970                 goto out;
3971         }
3972
3973         /* ->map_pages() haven't done anything useful. Cold page cache? */
3974         if (!vmf->pte)
3975                 goto out;
3976
3977         /* check if the page fault is solved */
3978         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3979         if (!pte_none(*vmf->pte))
3980                 ret = VM_FAULT_NOPAGE;
3981         pte_unmap_unlock(vmf->pte, vmf->ptl);
3982 out:
3983         vmf->address = address;
3984         vmf->pte = NULL;
3985         return ret;
3986 }
3987
3988 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3989 {
3990         struct vm_area_struct *vma = vmf->vma;
3991         vm_fault_t ret = 0;
3992
3993         /*
3994          * Let's call ->map_pages() first and use ->fault() as fallback
3995          * if page by the offset is not ready to be mapped (cold cache or
3996          * something).
3997          */
3998         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3999                 ret = do_fault_around(vmf);
4000                 if (ret)
4001                         return ret;
4002         }
4003
4004         ret = __do_fault(vmf);
4005         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4006                 return ret;
4007
4008         ret |= finish_fault(vmf);
4009         unlock_page(vmf->page);
4010         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4011                 put_page(vmf->page);
4012         return ret;
4013 }
4014
4015 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4016 {
4017         struct vm_area_struct *vma = vmf->vma;
4018         vm_fault_t ret;
4019
4020         if (unlikely(anon_vma_prepare(vma)))
4021                 return VM_FAULT_OOM;
4022
4023         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4024         if (!vmf->cow_page)
4025                 return VM_FAULT_OOM;
4026
4027         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4028                 put_page(vmf->cow_page);
4029                 return VM_FAULT_OOM;
4030         }
4031         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4032
4033         ret = __do_fault(vmf);
4034         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4035                 goto uncharge_out;
4036         if (ret & VM_FAULT_DONE_COW)
4037                 return ret;
4038
4039         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4040         __SetPageUptodate(vmf->cow_page);
4041
4042         ret |= finish_fault(vmf);
4043         unlock_page(vmf->page);
4044         put_page(vmf->page);
4045         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4046                 goto uncharge_out;
4047         return ret;
4048 uncharge_out:
4049         put_page(vmf->cow_page);
4050         return ret;
4051 }
4052
4053 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4054 {
4055         struct vm_area_struct *vma = vmf->vma;
4056         vm_fault_t ret, tmp;
4057
4058         ret = __do_fault(vmf);
4059         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4060                 return ret;
4061
4062         /*
4063          * Check if the backing address space wants to know that the page is
4064          * about to become writable
4065          */
4066         if (vma->vm_ops->page_mkwrite) {
4067                 unlock_page(vmf->page);
4068                 tmp = do_page_mkwrite(vmf);
4069                 if (unlikely(!tmp ||
4070                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4071                         put_page(vmf->page);
4072                         return tmp;
4073                 }
4074         }
4075
4076         ret |= finish_fault(vmf);
4077         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4078                                         VM_FAULT_RETRY))) {
4079                 unlock_page(vmf->page);
4080                 put_page(vmf->page);
4081                 return ret;
4082         }
4083
4084         ret |= fault_dirty_shared_page(vmf);
4085         return ret;
4086 }
4087
4088 /*
4089  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4090  * but allow concurrent faults).
4091  * The mmap_lock may have been released depending on flags and our
4092  * return value.  See filemap_fault() and __lock_page_or_retry().
4093  * If mmap_lock is released, vma may become invalid (for example
4094  * by other thread calling munmap()).
4095  */
4096 static vm_fault_t do_fault(struct vm_fault *vmf)
4097 {
4098         struct vm_area_struct *vma = vmf->vma;
4099         struct mm_struct *vm_mm = vma->vm_mm;
4100         vm_fault_t ret;
4101
4102         /*
4103          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4104          */
4105         if (!vma->vm_ops->fault) {
4106                 /*
4107                  * If we find a migration pmd entry or a none pmd entry, which
4108                  * should never happen, return SIGBUS
4109                  */
4110                 if (unlikely(!pmd_present(*vmf->pmd)))
4111                         ret = VM_FAULT_SIGBUS;
4112                 else {
4113                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4114                                                        vmf->pmd,
4115                                                        vmf->address,
4116                                                        &vmf->ptl);
4117                         /*
4118                          * Make sure this is not a temporary clearing of pte
4119                          * by holding ptl and checking again. A R/M/W update
4120                          * of pte involves: take ptl, clearing the pte so that
4121                          * we don't have concurrent modification by hardware
4122                          * followed by an update.
4123                          */
4124                         if (unlikely(pte_none(*vmf->pte)))
4125                                 ret = VM_FAULT_SIGBUS;
4126                         else
4127                                 ret = VM_FAULT_NOPAGE;
4128
4129                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4130                 }
4131         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4132                 ret = do_read_fault(vmf);
4133         else if (!(vma->vm_flags & VM_SHARED))
4134                 ret = do_cow_fault(vmf);
4135         else
4136                 ret = do_shared_fault(vmf);
4137
4138         /* preallocated pagetable is unused: free it */
4139         if (vmf->prealloc_pte) {
4140                 pte_free(vm_mm, vmf->prealloc_pte);
4141                 vmf->prealloc_pte = NULL;
4142         }
4143         return ret;
4144 }
4145
4146 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4147                                 unsigned long addr, int page_nid,
4148                                 int *flags)
4149 {
4150         get_page(page);
4151
4152         count_vm_numa_event(NUMA_HINT_FAULTS);
4153         if (page_nid == numa_node_id()) {
4154                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4155                 *flags |= TNF_FAULT_LOCAL;
4156         }
4157
4158         return mpol_misplaced(page, vma, addr);
4159 }
4160
4161 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4162 {
4163         struct vm_area_struct *vma = vmf->vma;
4164         struct page *page = NULL;
4165         int page_nid = NUMA_NO_NODE;
4166         int last_cpupid;
4167         int target_nid;
4168         bool migrated = false;
4169         pte_t pte, old_pte;
4170         bool was_writable = pte_savedwrite(vmf->orig_pte);
4171         int flags = 0;
4172
4173         /*
4174          * The "pte" at this point cannot be used safely without
4175          * validation through pte_unmap_same(). It's of NUMA type but
4176          * the pfn may be screwed if the read is non atomic.
4177          */
4178         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4179         spin_lock(vmf->ptl);
4180         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4181                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4182                 goto out;
4183         }
4184
4185         /*
4186          * Make it present again, Depending on how arch implementes non
4187          * accessible ptes, some can allow access by kernel mode.
4188          */
4189         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4190         pte = pte_modify(old_pte, vma->vm_page_prot);
4191         pte = pte_mkyoung(pte);
4192         if (was_writable)
4193                 pte = pte_mkwrite(pte);
4194         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4195         update_mmu_cache(vma, vmf->address, vmf->pte);
4196
4197         page = vm_normal_page(vma, vmf->address, pte);
4198         if (!page) {
4199                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4200                 return 0;
4201         }
4202
4203         /* TODO: handle PTE-mapped THP */
4204         if (PageCompound(page)) {
4205                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4206                 return 0;
4207         }
4208
4209         /*
4210          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4211          * much anyway since they can be in shared cache state. This misses
4212          * the case where a mapping is writable but the process never writes
4213          * to it but pte_write gets cleared during protection updates and
4214          * pte_dirty has unpredictable behaviour between PTE scan updates,
4215          * background writeback, dirty balancing and application behaviour.
4216          */
4217         if (!pte_write(pte))
4218                 flags |= TNF_NO_GROUP;
4219
4220         /*
4221          * Flag if the page is shared between multiple address spaces. This
4222          * is later used when determining whether to group tasks together
4223          */
4224         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4225                 flags |= TNF_SHARED;
4226
4227         last_cpupid = page_cpupid_last(page);
4228         page_nid = page_to_nid(page);
4229         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4230                         &flags);
4231         pte_unmap_unlock(vmf->pte, vmf->ptl);
4232         if (target_nid == NUMA_NO_NODE) {
4233                 put_page(page);
4234                 goto out;
4235         }
4236
4237         /* Migrate to the requested node */
4238         migrated = migrate_misplaced_page(page, vma, target_nid);
4239         if (migrated) {
4240                 page_nid = target_nid;
4241                 flags |= TNF_MIGRATED;
4242         } else
4243                 flags |= TNF_MIGRATE_FAIL;
4244
4245 out:
4246         if (page_nid != NUMA_NO_NODE)
4247                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4248         return 0;
4249 }
4250
4251 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4252 {
4253         if (vma_is_anonymous(vmf->vma))
4254                 return do_huge_pmd_anonymous_page(vmf);
4255         if (vmf->vma->vm_ops->huge_fault)
4256                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4257         return VM_FAULT_FALLBACK;
4258 }
4259
4260 /* `inline' is required to avoid gcc 4.1.2 build error */
4261 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4262 {
4263         if (vma_is_anonymous(vmf->vma)) {
4264                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4265                         return handle_userfault(vmf, VM_UFFD_WP);
4266                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4267         }
4268         if (vmf->vma->vm_ops->huge_fault) {
4269                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4270
4271                 if (!(ret & VM_FAULT_FALLBACK))
4272                         return ret;
4273         }
4274
4275         /* COW or write-notify handled on pte level: split pmd. */
4276         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4277
4278         return VM_FAULT_FALLBACK;
4279 }
4280
4281 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4282 {
4283 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4284         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4285         /* No support for anonymous transparent PUD pages yet */
4286         if (vma_is_anonymous(vmf->vma))
4287                 goto split;
4288         if (vmf->vma->vm_ops->huge_fault) {
4289                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4290
4291                 if (!(ret & VM_FAULT_FALLBACK))
4292                         return ret;
4293         }
4294 split:
4295         /* COW or write-notify not handled on PUD level: split pud.*/
4296         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4297 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4298         return VM_FAULT_FALLBACK;
4299 }
4300
4301 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4302 {
4303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4304         /* No support for anonymous transparent PUD pages yet */
4305         if (vma_is_anonymous(vmf->vma))
4306                 return VM_FAULT_FALLBACK;
4307         if (vmf->vma->vm_ops->huge_fault)
4308                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4309 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4310         return VM_FAULT_FALLBACK;
4311 }
4312
4313 /*
4314  * These routines also need to handle stuff like marking pages dirty
4315  * and/or accessed for architectures that don't do it in hardware (most
4316  * RISC architectures).  The early dirtying is also good on the i386.
4317  *
4318  * There is also a hook called "update_mmu_cache()" that architectures
4319  * with external mmu caches can use to update those (ie the Sparc or
4320  * PowerPC hashed page tables that act as extended TLBs).
4321  *
4322  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4323  * concurrent faults).
4324  *
4325  * The mmap_lock may have been released depending on flags and our return value.
4326  * See filemap_fault() and __lock_page_or_retry().
4327  */
4328 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4329 {
4330         pte_t entry;
4331
4332         if (unlikely(pmd_none(*vmf->pmd))) {
4333                 /*
4334                  * Leave __pte_alloc() until later: because vm_ops->fault may
4335                  * want to allocate huge page, and if we expose page table
4336                  * for an instant, it will be difficult to retract from
4337                  * concurrent faults and from rmap lookups.
4338                  */
4339                 vmf->pte = NULL;
4340         } else {
4341                 /* See comment in pte_alloc_one_map() */
4342                 if (pmd_devmap_trans_unstable(vmf->pmd))
4343                         return 0;
4344                 /*
4345                  * A regular pmd is established and it can't morph into a huge
4346                  * pmd from under us anymore at this point because we hold the
4347                  * mmap_lock read mode and khugepaged takes it in write mode.
4348                  * So now it's safe to run pte_offset_map().
4349                  */
4350                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4351                 vmf->orig_pte = *vmf->pte;
4352
4353                 /*
4354                  * some architectures can have larger ptes than wordsize,
4355                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4356                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4357                  * accesses.  The code below just needs a consistent view
4358                  * for the ifs and we later double check anyway with the
4359                  * ptl lock held. So here a barrier will do.
4360                  */
4361                 barrier();
4362                 if (pte_none(vmf->orig_pte)) {
4363                         pte_unmap(vmf->pte);
4364                         vmf->pte = NULL;
4365                 }
4366         }
4367
4368         if (!vmf->pte) {
4369                 if (vma_is_anonymous(vmf->vma))
4370                         return do_anonymous_page(vmf);
4371                 else
4372                         return do_fault(vmf);
4373         }
4374
4375         if (!pte_present(vmf->orig_pte))
4376                 return do_swap_page(vmf);
4377
4378         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4379                 return do_numa_page(vmf);
4380
4381         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4382         spin_lock(vmf->ptl);
4383         entry = vmf->orig_pte;
4384         if (unlikely(!pte_same(*vmf->pte, entry))) {
4385                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4386                 goto unlock;
4387         }
4388         if (vmf->flags & FAULT_FLAG_WRITE) {
4389                 if (!pte_write(entry))
4390                         return do_wp_page(vmf);
4391                 entry = pte_mkdirty(entry);
4392         }
4393         entry = pte_mkyoung(entry);
4394         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4395                                 vmf->flags & FAULT_FLAG_WRITE)) {
4396                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4397         } else {
4398                 /* Skip spurious TLB flush for retried page fault */
4399                 if (vmf->flags & FAULT_FLAG_TRIED)
4400                         goto unlock;
4401                 /*
4402                  * This is needed only for protection faults but the arch code
4403                  * is not yet telling us if this is a protection fault or not.
4404                  * This still avoids useless tlb flushes for .text page faults
4405                  * with threads.
4406                  */
4407                 if (vmf->flags & FAULT_FLAG_WRITE)
4408                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4409         }
4410 unlock:
4411         pte_unmap_unlock(vmf->pte, vmf->ptl);
4412         return 0;
4413 }
4414
4415 /*
4416  * By the time we get here, we already hold the mm semaphore
4417  *
4418  * The mmap_lock may have been released depending on flags and our
4419  * return value.  See filemap_fault() and __lock_page_or_retry().
4420  */
4421 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4422                 unsigned long address, unsigned int flags)
4423 {
4424         struct vm_fault vmf = {
4425                 .vma = vma,
4426                 .address = address & PAGE_MASK,
4427                 .flags = flags,
4428                 .pgoff = linear_page_index(vma, address),
4429                 .gfp_mask = __get_fault_gfp_mask(vma),
4430         };
4431         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4432         struct mm_struct *mm = vma->vm_mm;
4433         pgd_t *pgd;
4434         p4d_t *p4d;
4435         vm_fault_t ret;
4436
4437         pgd = pgd_offset(mm, address);
4438         p4d = p4d_alloc(mm, pgd, address);
4439         if (!p4d)
4440                 return VM_FAULT_OOM;
4441
4442         vmf.pud = pud_alloc(mm, p4d, address);
4443         if (!vmf.pud)
4444                 return VM_FAULT_OOM;
4445 retry_pud:
4446         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4447                 ret = create_huge_pud(&vmf);
4448                 if (!(ret & VM_FAULT_FALLBACK))
4449                         return ret;
4450         } else {
4451                 pud_t orig_pud = *vmf.pud;
4452
4453                 barrier();
4454                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4455
4456                         /* NUMA case for anonymous PUDs would go here */
4457
4458                         if (dirty && !pud_write(orig_pud)) {
4459                                 ret = wp_huge_pud(&vmf, orig_pud);
4460                                 if (!(ret & VM_FAULT_FALLBACK))
4461                                         return ret;
4462                         } else {
4463                                 huge_pud_set_accessed(&vmf, orig_pud);
4464                                 return 0;
4465                         }
4466                 }
4467         }
4468
4469         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4470         if (!vmf.pmd)
4471                 return VM_FAULT_OOM;
4472
4473         /* Huge pud page fault raced with pmd_alloc? */
4474         if (pud_trans_unstable(vmf.pud))
4475                 goto retry_pud;
4476
4477         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4478                 ret = create_huge_pmd(&vmf);
4479                 if (!(ret & VM_FAULT_FALLBACK))
4480                         return ret;
4481         } else {
4482                 pmd_t orig_pmd = *vmf.pmd;
4483
4484                 barrier();
4485                 if (unlikely(is_swap_pmd(orig_pmd))) {
4486                         VM_BUG_ON(thp_migration_supported() &&
4487                                           !is_pmd_migration_entry(orig_pmd));
4488                         if (is_pmd_migration_entry(orig_pmd))
4489                                 pmd_migration_entry_wait(mm, vmf.pmd);
4490                         return 0;
4491                 }
4492                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4493                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4494                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4495
4496                         if (dirty && !pmd_write(orig_pmd)) {
4497                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4498                                 if (!(ret & VM_FAULT_FALLBACK))
4499                                         return ret;
4500                         } else {
4501                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4502                                 return 0;
4503                         }
4504                 }
4505         }
4506
4507         return handle_pte_fault(&vmf);
4508 }
4509
4510 /**
4511  * mm_account_fault - Do page fault accountings
4512  *
4513  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4514  *        of perf event counters, but we'll still do the per-task accounting to
4515  *        the task who triggered this page fault.
4516  * @address: the faulted address.
4517  * @flags: the fault flags.
4518  * @ret: the fault retcode.
4519  *
4520  * This will take care of most of the page fault accountings.  Meanwhile, it
4521  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4522  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4523  * still be in per-arch page fault handlers at the entry of page fault.
4524  */
4525 static inline void mm_account_fault(struct pt_regs *regs,
4526                                     unsigned long address, unsigned int flags,
4527                                     vm_fault_t ret)
4528 {
4529         bool major;
4530
4531         /*
4532          * We don't do accounting for some specific faults:
4533          *
4534          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4535          *   includes arch_vma_access_permitted() failing before reaching here.
4536          *   So this is not a "this many hardware page faults" counter.  We
4537          *   should use the hw profiling for that.
4538          *
4539          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4540          *   once they're completed.
4541          */
4542         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4543                 return;
4544
4545         /*
4546          * We define the fault as a major fault when the final successful fault
4547          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4548          * handle it immediately previously).
4549          */
4550         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4551
4552         if (major)
4553                 current->maj_flt++;
4554         else
4555                 current->min_flt++;
4556
4557         /*
4558          * If the fault is done for GUP, regs will be NULL.  We only do the
4559          * accounting for the per thread fault counters who triggered the
4560          * fault, and we skip the perf event updates.
4561          */
4562         if (!regs)
4563                 return;
4564
4565         if (major)
4566                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4567         else
4568                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4569 }
4570
4571 /*
4572  * By the time we get here, we already hold the mm semaphore
4573  *
4574  * The mmap_lock may have been released depending on flags and our
4575  * return value.  See filemap_fault() and __lock_page_or_retry().
4576  */
4577 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4578                            unsigned int flags, struct pt_regs *regs)
4579 {
4580         vm_fault_t ret;
4581
4582         __set_current_state(TASK_RUNNING);
4583
4584         count_vm_event(PGFAULT);
4585         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4586
4587         /* do counter updates before entering really critical section. */
4588         check_sync_rss_stat(current);
4589
4590         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4591                                             flags & FAULT_FLAG_INSTRUCTION,
4592                                             flags & FAULT_FLAG_REMOTE))
4593                 return VM_FAULT_SIGSEGV;
4594
4595         /*
4596          * Enable the memcg OOM handling for faults triggered in user
4597          * space.  Kernel faults are handled more gracefully.
4598          */
4599         if (flags & FAULT_FLAG_USER)
4600                 mem_cgroup_enter_user_fault();
4601
4602         if (unlikely(is_vm_hugetlb_page(vma)))
4603                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4604         else
4605                 ret = __handle_mm_fault(vma, address, flags);
4606
4607         if (flags & FAULT_FLAG_USER) {
4608                 mem_cgroup_exit_user_fault();
4609                 /*
4610                  * The task may have entered a memcg OOM situation but
4611                  * if the allocation error was handled gracefully (no
4612                  * VM_FAULT_OOM), there is no need to kill anything.
4613                  * Just clean up the OOM state peacefully.
4614                  */
4615                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4616                         mem_cgroup_oom_synchronize(false);
4617         }
4618
4619         mm_account_fault(regs, address, flags, ret);
4620
4621         return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(handle_mm_fault);
4624
4625 #ifndef __PAGETABLE_P4D_FOLDED
4626 /*
4627  * Allocate p4d page table.
4628  * We've already handled the fast-path in-line.
4629  */
4630 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4631 {
4632         p4d_t *new = p4d_alloc_one(mm, address);
4633         if (!new)
4634                 return -ENOMEM;
4635
4636         smp_wmb(); /* See comment in __pte_alloc */
4637
4638         spin_lock(&mm->page_table_lock);
4639         if (pgd_present(*pgd))          /* Another has populated it */
4640                 p4d_free(mm, new);
4641         else
4642                 pgd_populate(mm, pgd, new);
4643         spin_unlock(&mm->page_table_lock);
4644         return 0;
4645 }
4646 #endif /* __PAGETABLE_P4D_FOLDED */
4647
4648 #ifndef __PAGETABLE_PUD_FOLDED
4649 /*
4650  * Allocate page upper directory.
4651  * We've already handled the fast-path in-line.
4652  */
4653 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4654 {
4655         pud_t *new = pud_alloc_one(mm, address);
4656         if (!new)
4657                 return -ENOMEM;
4658
4659         smp_wmb(); /* See comment in __pte_alloc */
4660
4661         spin_lock(&mm->page_table_lock);
4662         if (!p4d_present(*p4d)) {
4663                 mm_inc_nr_puds(mm);
4664                 p4d_populate(mm, p4d, new);
4665         } else  /* Another has populated it */
4666                 pud_free(mm, new);
4667         spin_unlock(&mm->page_table_lock);
4668         return 0;
4669 }
4670 #endif /* __PAGETABLE_PUD_FOLDED */
4671
4672 #ifndef __PAGETABLE_PMD_FOLDED
4673 /*
4674  * Allocate page middle directory.
4675  * We've already handled the fast-path in-line.
4676  */
4677 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4678 {
4679         spinlock_t *ptl;
4680         pmd_t *new = pmd_alloc_one(mm, address);
4681         if (!new)
4682                 return -ENOMEM;
4683
4684         smp_wmb(); /* See comment in __pte_alloc */
4685
4686         ptl = pud_lock(mm, pud);
4687         if (!pud_present(*pud)) {
4688                 mm_inc_nr_pmds(mm);
4689                 pud_populate(mm, pud, new);
4690         } else  /* Another has populated it */
4691                 pmd_free(mm, new);
4692         spin_unlock(ptl);
4693         return 0;
4694 }
4695 #endif /* __PAGETABLE_PMD_FOLDED */
4696
4697 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4698                             struct mmu_notifier_range *range,
4699                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4700 {
4701         pgd_t *pgd;
4702         p4d_t *p4d;
4703         pud_t *pud;
4704         pmd_t *pmd;
4705         pte_t *ptep;
4706
4707         pgd = pgd_offset(mm, address);
4708         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4709                 goto out;
4710
4711         p4d = p4d_offset(pgd, address);
4712         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4713                 goto out;
4714
4715         pud = pud_offset(p4d, address);
4716         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4717                 goto out;
4718
4719         pmd = pmd_offset(pud, address);
4720         VM_BUG_ON(pmd_trans_huge(*pmd));
4721
4722         if (pmd_huge(*pmd)) {
4723                 if (!pmdpp)
4724                         goto out;
4725
4726                 if (range) {
4727                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4728                                                 NULL, mm, address & PMD_MASK,
4729                                                 (address & PMD_MASK) + PMD_SIZE);
4730                         mmu_notifier_invalidate_range_start(range);
4731                 }
4732                 *ptlp = pmd_lock(mm, pmd);
4733                 if (pmd_huge(*pmd)) {
4734                         *pmdpp = pmd;
4735                         return 0;
4736                 }
4737                 spin_unlock(*ptlp);
4738                 if (range)
4739                         mmu_notifier_invalidate_range_end(range);
4740         }
4741
4742         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4743                 goto out;
4744
4745         if (range) {
4746                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4747                                         address & PAGE_MASK,
4748                                         (address & PAGE_MASK) + PAGE_SIZE);
4749                 mmu_notifier_invalidate_range_start(range);
4750         }
4751         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4752         if (!pte_present(*ptep))
4753                 goto unlock;
4754         *ptepp = ptep;
4755         return 0;
4756 unlock:
4757         pte_unmap_unlock(ptep, *ptlp);
4758         if (range)
4759                 mmu_notifier_invalidate_range_end(range);
4760 out:
4761         return -EINVAL;
4762 }
4763
4764 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4765                              pte_t **ptepp, spinlock_t **ptlp)
4766 {
4767         int res;
4768
4769         /* (void) is needed to make gcc happy */
4770         (void) __cond_lock(*ptlp,
4771                            !(res = __follow_pte_pmd(mm, address, NULL,
4772                                                     ptepp, NULL, ptlp)));
4773         return res;
4774 }
4775
4776 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4777                    struct mmu_notifier_range *range,
4778                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4779 {
4780         int res;
4781
4782         /* (void) is needed to make gcc happy */
4783         (void) __cond_lock(*ptlp,
4784                            !(res = __follow_pte_pmd(mm, address, range,
4785                                                     ptepp, pmdpp, ptlp)));
4786         return res;
4787 }
4788 EXPORT_SYMBOL(follow_pte_pmd);
4789
4790 /**
4791  * follow_pfn - look up PFN at a user virtual address
4792  * @vma: memory mapping
4793  * @address: user virtual address
4794  * @pfn: location to store found PFN
4795  *
4796  * Only IO mappings and raw PFN mappings are allowed.
4797  *
4798  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4799  */
4800 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4801         unsigned long *pfn)
4802 {
4803         int ret = -EINVAL;
4804         spinlock_t *ptl;
4805         pte_t *ptep;
4806
4807         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4808                 return ret;
4809
4810         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4811         if (ret)
4812                 return ret;
4813         *pfn = pte_pfn(*ptep);
4814         pte_unmap_unlock(ptep, ptl);
4815         return 0;
4816 }
4817 EXPORT_SYMBOL(follow_pfn);
4818
4819 #ifdef CONFIG_HAVE_IOREMAP_PROT
4820 int follow_phys(struct vm_area_struct *vma,
4821                 unsigned long address, unsigned int flags,
4822                 unsigned long *prot, resource_size_t *phys)
4823 {
4824         int ret = -EINVAL;
4825         pte_t *ptep, pte;
4826         spinlock_t *ptl;
4827
4828         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4829                 goto out;
4830
4831         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4832                 goto out;
4833         pte = *ptep;
4834
4835         if ((flags & FOLL_WRITE) && !pte_write(pte))
4836                 goto unlock;
4837
4838         *prot = pgprot_val(pte_pgprot(pte));
4839         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4840
4841         ret = 0;
4842 unlock:
4843         pte_unmap_unlock(ptep, ptl);
4844 out:
4845         return ret;
4846 }
4847
4848 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4849                         void *buf, int len, int write)
4850 {
4851         resource_size_t phys_addr;
4852         unsigned long prot = 0;
4853         void __iomem *maddr;
4854         int offset = addr & (PAGE_SIZE-1);
4855
4856         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4857                 return -EINVAL;
4858
4859         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4860         if (!maddr)
4861                 return -ENOMEM;
4862
4863         if (write)
4864                 memcpy_toio(maddr + offset, buf, len);
4865         else
4866                 memcpy_fromio(buf, maddr + offset, len);
4867         iounmap(maddr);
4868
4869         return len;
4870 }
4871 EXPORT_SYMBOL_GPL(generic_access_phys);
4872 #endif
4873
4874 /*
4875  * Access another process' address space as given in mm.  If non-NULL, use the
4876  * given task for page fault accounting.
4877  */
4878 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4879                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4880 {
4881         struct vm_area_struct *vma;
4882         void *old_buf = buf;
4883         int write = gup_flags & FOLL_WRITE;
4884
4885         if (mmap_read_lock_killable(mm))
4886                 return 0;
4887
4888         /* ignore errors, just check how much was successfully transferred */
4889         while (len) {
4890                 int bytes, ret, offset;
4891                 void *maddr;
4892                 struct page *page = NULL;
4893
4894                 ret = get_user_pages_remote(mm, addr, 1,
4895                                 gup_flags, &page, &vma, NULL);
4896                 if (ret <= 0) {
4897 #ifndef CONFIG_HAVE_IOREMAP_PROT
4898                         break;
4899 #else
4900                         /*
4901                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4902                          * we can access using slightly different code.
4903                          */
4904                         vma = find_vma(mm, addr);
4905                         if (!vma || vma->vm_start > addr)
4906                                 break;
4907                         if (vma->vm_ops && vma->vm_ops->access)
4908                                 ret = vma->vm_ops->access(vma, addr, buf,
4909                                                           len, write);
4910                         if (ret <= 0)
4911                                 break;
4912                         bytes = ret;
4913 #endif
4914                 } else {
4915                         bytes = len;
4916                         offset = addr & (PAGE_SIZE-1);
4917                         if (bytes > PAGE_SIZE-offset)
4918                                 bytes = PAGE_SIZE-offset;
4919
4920                         maddr = kmap(page);
4921                         if (write) {
4922                                 copy_to_user_page(vma, page, addr,
4923                                                   maddr + offset, buf, bytes);
4924                                 set_page_dirty_lock(page);
4925                         } else {
4926                                 copy_from_user_page(vma, page, addr,
4927                                                     buf, maddr + offset, bytes);
4928                         }
4929                         kunmap(page);
4930                         put_page(page);
4931                 }
4932                 len -= bytes;
4933                 buf += bytes;
4934                 addr += bytes;
4935         }
4936         mmap_read_unlock(mm);
4937
4938         return buf - old_buf;
4939 }
4940
4941 /**
4942  * access_remote_vm - access another process' address space
4943  * @mm:         the mm_struct of the target address space
4944  * @addr:       start address to access
4945  * @buf:        source or destination buffer
4946  * @len:        number of bytes to transfer
4947  * @gup_flags:  flags modifying lookup behaviour
4948  *
4949  * The caller must hold a reference on @mm.
4950  *
4951  * Return: number of bytes copied from source to destination.
4952  */
4953 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4954                 void *buf, int len, unsigned int gup_flags)
4955 {
4956         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4957 }
4958
4959 /*
4960  * Access another process' address space.
4961  * Source/target buffer must be kernel space,
4962  * Do not walk the page table directly, use get_user_pages
4963  */
4964 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4965                 void *buf, int len, unsigned int gup_flags)
4966 {
4967         struct mm_struct *mm;
4968         int ret;
4969
4970         mm = get_task_mm(tsk);
4971         if (!mm)
4972                 return 0;
4973
4974         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4975
4976         mmput(mm);
4977
4978         return ret;
4979 }
4980 EXPORT_SYMBOL_GPL(access_process_vm);
4981
4982 /*
4983  * Print the name of a VMA.
4984  */
4985 void print_vma_addr(char *prefix, unsigned long ip)
4986 {
4987         struct mm_struct *mm = current->mm;
4988         struct vm_area_struct *vma;
4989
4990         /*
4991          * we might be running from an atomic context so we cannot sleep
4992          */
4993         if (!mmap_read_trylock(mm))
4994                 return;
4995
4996         vma = find_vma(mm, ip);
4997         if (vma && vma->vm_file) {
4998                 struct file *f = vma->vm_file;
4999                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5000                 if (buf) {
5001                         char *p;
5002
5003                         p = file_path(f, buf, PAGE_SIZE);
5004                         if (IS_ERR(p))
5005                                 p = "?";
5006                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5007                                         vma->vm_start,
5008                                         vma->vm_end - vma->vm_start);
5009                         free_page((unsigned long)buf);
5010                 }
5011         }
5012         mmap_read_unlock(mm);
5013 }
5014
5015 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5016 void __might_fault(const char *file, int line)
5017 {
5018         /*
5019          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5020          * holding the mmap_lock, this is safe because kernel memory doesn't
5021          * get paged out, therefore we'll never actually fault, and the
5022          * below annotations will generate false positives.
5023          */
5024         if (uaccess_kernel())
5025                 return;
5026         if (pagefault_disabled())
5027                 return;
5028         __might_sleep(file, line, 0);
5029 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5030         if (current->mm)
5031                 might_lock_read(&current->mm->mmap_lock);
5032 #endif
5033 }
5034 EXPORT_SYMBOL(__might_fault);
5035 #endif
5036
5037 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5038 /*
5039  * Process all subpages of the specified huge page with the specified
5040  * operation.  The target subpage will be processed last to keep its
5041  * cache lines hot.
5042  */
5043 static inline void process_huge_page(
5044         unsigned long addr_hint, unsigned int pages_per_huge_page,
5045         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5046         void *arg)
5047 {
5048         int i, n, base, l;
5049         unsigned long addr = addr_hint &
5050                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5051
5052         /* Process target subpage last to keep its cache lines hot */
5053         might_sleep();
5054         n = (addr_hint - addr) / PAGE_SIZE;
5055         if (2 * n <= pages_per_huge_page) {
5056                 /* If target subpage in first half of huge page */
5057                 base = 0;
5058                 l = n;
5059                 /* Process subpages at the end of huge page */
5060                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5061                         cond_resched();
5062                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5063                 }
5064         } else {
5065                 /* If target subpage in second half of huge page */
5066                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5067                 l = pages_per_huge_page - n;
5068                 /* Process subpages at the begin of huge page */
5069                 for (i = 0; i < base; i++) {
5070                         cond_resched();
5071                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5072                 }
5073         }
5074         /*
5075          * Process remaining subpages in left-right-left-right pattern
5076          * towards the target subpage
5077          */
5078         for (i = 0; i < l; i++) {
5079                 int left_idx = base + i;
5080                 int right_idx = base + 2 * l - 1 - i;
5081
5082                 cond_resched();
5083                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5084                 cond_resched();
5085                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5086         }
5087 }
5088
5089 static void clear_gigantic_page(struct page *page,
5090                                 unsigned long addr,
5091                                 unsigned int pages_per_huge_page)
5092 {
5093         int i;
5094         struct page *p = page;
5095
5096         might_sleep();
5097         for (i = 0; i < pages_per_huge_page;
5098              i++, p = mem_map_next(p, page, i)) {
5099                 cond_resched();
5100                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5101         }
5102 }
5103
5104 static void clear_subpage(unsigned long addr, int idx, void *arg)
5105 {
5106         struct page *page = arg;
5107
5108         clear_user_highpage(page + idx, addr);
5109 }
5110
5111 void clear_huge_page(struct page *page,
5112                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5113 {
5114         unsigned long addr = addr_hint &
5115                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5116
5117         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5118                 clear_gigantic_page(page, addr, pages_per_huge_page);
5119                 return;
5120         }
5121
5122         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5123 }
5124
5125 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5126                                     unsigned long addr,
5127                                     struct vm_area_struct *vma,
5128                                     unsigned int pages_per_huge_page)
5129 {
5130         int i;
5131         struct page *dst_base = dst;
5132         struct page *src_base = src;
5133
5134         for (i = 0; i < pages_per_huge_page; ) {
5135                 cond_resched();
5136                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5137
5138                 i++;
5139                 dst = mem_map_next(dst, dst_base, i);
5140                 src = mem_map_next(src, src_base, i);
5141         }
5142 }
5143
5144 struct copy_subpage_arg {
5145         struct page *dst;
5146         struct page *src;
5147         struct vm_area_struct *vma;
5148 };
5149
5150 static void copy_subpage(unsigned long addr, int idx, void *arg)
5151 {
5152         struct copy_subpage_arg *copy_arg = arg;
5153
5154         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5155                            addr, copy_arg->vma);
5156 }
5157
5158 void copy_user_huge_page(struct page *dst, struct page *src,
5159                          unsigned long addr_hint, struct vm_area_struct *vma,
5160                          unsigned int pages_per_huge_page)
5161 {
5162         unsigned long addr = addr_hint &
5163                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5164         struct copy_subpage_arg arg = {
5165                 .dst = dst,
5166                 .src = src,
5167                 .vma = vma,
5168         };
5169
5170         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5171                 copy_user_gigantic_page(dst, src, addr, vma,
5172                                         pages_per_huge_page);
5173                 return;
5174         }
5175
5176         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5177 }
5178
5179 long copy_huge_page_from_user(struct page *dst_page,
5180                                 const void __user *usr_src,
5181                                 unsigned int pages_per_huge_page,
5182                                 bool allow_pagefault)
5183 {
5184         void *src = (void *)usr_src;
5185         void *page_kaddr;
5186         unsigned long i, rc = 0;
5187         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5188
5189         for (i = 0; i < pages_per_huge_page; i++) {
5190                 if (allow_pagefault)
5191                         page_kaddr = kmap(dst_page + i);
5192                 else
5193                         page_kaddr = kmap_atomic(dst_page + i);
5194                 rc = copy_from_user(page_kaddr,
5195                                 (const void __user *)(src + i * PAGE_SIZE),
5196                                 PAGE_SIZE);
5197                 if (allow_pagefault)
5198                         kunmap(dst_page + i);
5199                 else
5200                         kunmap_atomic(page_kaddr);
5201
5202                 ret_val -= (PAGE_SIZE - rc);
5203                 if (rc)
5204                         break;
5205
5206                 cond_resched();
5207         }
5208         return ret_val;
5209 }
5210 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5211
5212 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5213
5214 static struct kmem_cache *page_ptl_cachep;
5215
5216 void __init ptlock_cache_init(void)
5217 {
5218         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5219                         SLAB_PANIC, NULL);
5220 }
5221
5222 bool ptlock_alloc(struct page *page)
5223 {
5224         spinlock_t *ptl;
5225
5226         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5227         if (!ptl)
5228                 return false;
5229         page->ptl = ptl;
5230         return true;
5231 }
5232
5233 void ptlock_free(struct page *page)
5234 {
5235         kmem_cache_free(page_ptl_cachep, page->ptl);
5236 }
5237 #endif