Merge tag 'riscv-for-linus-5.6-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118                                         1;
119 #else
120                                         2;
121 #endif
122
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126         /*
127          * Those arches which don't have hw access flag feature need to
128          * implement their own helper. By default, "true" means pagefault
129          * will be hit on old pte.
130          */
131         return true;
132 }
133 #endif
134
135 static int __init disable_randmaps(char *s)
136 {
137         randomize_va_space = 0;
138         return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144
145 unsigned long highest_memmap_pfn __read_mostly;
146
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152         zero_pfn = page_to_pfn(ZERO_PAGE(0));
153         return 0;
154 }
155 core_initcall(init_zero_pfn);
156
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159         trace_rss_stat(mm, member, count);
160 }
161
162 #if defined(SPLIT_RSS_COUNTING)
163
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166         int i;
167
168         for (i = 0; i < NR_MM_COUNTERS; i++) {
169                 if (current->rss_stat.count[i]) {
170                         add_mm_counter(mm, i, current->rss_stat.count[i]);
171                         current->rss_stat.count[i] = 0;
172                 }
173         }
174         current->rss_stat.events = 0;
175 }
176
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179         struct task_struct *task = current;
180
181         if (likely(task->mm == mm))
182                 task->rss_stat.count[member] += val;
183         else
184                 add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH  (64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193         if (unlikely(task != current))
194                 return;
195         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196                 sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206
207 #endif /* SPLIT_RSS_COUNTING */
208
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214                            unsigned long addr)
215 {
216         pgtable_t token = pmd_pgtable(*pmd);
217         pmd_clear(pmd);
218         pte_free_tlb(tlb, token, addr);
219         mm_dec_nr_ptes(tlb->mm);
220 }
221
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223                                 unsigned long addr, unsigned long end,
224                                 unsigned long floor, unsigned long ceiling)
225 {
226         pmd_t *pmd;
227         unsigned long next;
228         unsigned long start;
229
230         start = addr;
231         pmd = pmd_offset(pud, addr);
232         do {
233                 next = pmd_addr_end(addr, end);
234                 if (pmd_none_or_clear_bad(pmd))
235                         continue;
236                 free_pte_range(tlb, pmd, addr);
237         } while (pmd++, addr = next, addr != end);
238
239         start &= PUD_MASK;
240         if (start < floor)
241                 return;
242         if (ceiling) {
243                 ceiling &= PUD_MASK;
244                 if (!ceiling)
245                         return;
246         }
247         if (end - 1 > ceiling - 1)
248                 return;
249
250         pmd = pmd_offset(pud, start);
251         pud_clear(pud);
252         pmd_free_tlb(tlb, pmd, start);
253         mm_dec_nr_pmds(tlb->mm);
254 }
255
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257                                 unsigned long addr, unsigned long end,
258                                 unsigned long floor, unsigned long ceiling)
259 {
260         pud_t *pud;
261         unsigned long next;
262         unsigned long start;
263
264         start = addr;
265         pud = pud_offset(p4d, addr);
266         do {
267                 next = pud_addr_end(addr, end);
268                 if (pud_none_or_clear_bad(pud))
269                         continue;
270                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271         } while (pud++, addr = next, addr != end);
272
273         start &= P4D_MASK;
274         if (start < floor)
275                 return;
276         if (ceiling) {
277                 ceiling &= P4D_MASK;
278                 if (!ceiling)
279                         return;
280         }
281         if (end - 1 > ceiling - 1)
282                 return;
283
284         pud = pud_offset(p4d, start);
285         p4d_clear(p4d);
286         pud_free_tlb(tlb, pud, start);
287         mm_dec_nr_puds(tlb->mm);
288 }
289
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291                                 unsigned long addr, unsigned long end,
292                                 unsigned long floor, unsigned long ceiling)
293 {
294         p4d_t *p4d;
295         unsigned long next;
296         unsigned long start;
297
298         start = addr;
299         p4d = p4d_offset(pgd, addr);
300         do {
301                 next = p4d_addr_end(addr, end);
302                 if (p4d_none_or_clear_bad(p4d))
303                         continue;
304                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305         } while (p4d++, addr = next, addr != end);
306
307         start &= PGDIR_MASK;
308         if (start < floor)
309                 return;
310         if (ceiling) {
311                 ceiling &= PGDIR_MASK;
312                 if (!ceiling)
313                         return;
314         }
315         if (end - 1 > ceiling - 1)
316                 return;
317
318         p4d = p4d_offset(pgd, start);
319         pgd_clear(pgd);
320         p4d_free_tlb(tlb, p4d, start);
321 }
322
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327                         unsigned long addr, unsigned long end,
328                         unsigned long floor, unsigned long ceiling)
329 {
330         pgd_t *pgd;
331         unsigned long next;
332
333         /*
334          * The next few lines have given us lots of grief...
335          *
336          * Why are we testing PMD* at this top level?  Because often
337          * there will be no work to do at all, and we'd prefer not to
338          * go all the way down to the bottom just to discover that.
339          *
340          * Why all these "- 1"s?  Because 0 represents both the bottom
341          * of the address space and the top of it (using -1 for the
342          * top wouldn't help much: the masks would do the wrong thing).
343          * The rule is that addr 0 and floor 0 refer to the bottom of
344          * the address space, but end 0 and ceiling 0 refer to the top
345          * Comparisons need to use "end - 1" and "ceiling - 1" (though
346          * that end 0 case should be mythical).
347          *
348          * Wherever addr is brought up or ceiling brought down, we must
349          * be careful to reject "the opposite 0" before it confuses the
350          * subsequent tests.  But what about where end is brought down
351          * by PMD_SIZE below? no, end can't go down to 0 there.
352          *
353          * Whereas we round start (addr) and ceiling down, by different
354          * masks at different levels, in order to test whether a table
355          * now has no other vmas using it, so can be freed, we don't
356          * bother to round floor or end up - the tests don't need that.
357          */
358
359         addr &= PMD_MASK;
360         if (addr < floor) {
361                 addr += PMD_SIZE;
362                 if (!addr)
363                         return;
364         }
365         if (ceiling) {
366                 ceiling &= PMD_MASK;
367                 if (!ceiling)
368                         return;
369         }
370         if (end - 1 > ceiling - 1)
371                 end -= PMD_SIZE;
372         if (addr > end - 1)
373                 return;
374         /*
375          * We add page table cache pages with PAGE_SIZE,
376          * (see pte_free_tlb()), flush the tlb if we need
377          */
378         tlb_change_page_size(tlb, PAGE_SIZE);
379         pgd = pgd_offset(tlb->mm, addr);
380         do {
381                 next = pgd_addr_end(addr, end);
382                 if (pgd_none_or_clear_bad(pgd))
383                         continue;
384                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385         } while (pgd++, addr = next, addr != end);
386 }
387
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389                 unsigned long floor, unsigned long ceiling)
390 {
391         while (vma) {
392                 struct vm_area_struct *next = vma->vm_next;
393                 unsigned long addr = vma->vm_start;
394
395                 /*
396                  * Hide vma from rmap and truncate_pagecache before freeing
397                  * pgtables
398                  */
399                 unlink_anon_vmas(vma);
400                 unlink_file_vma(vma);
401
402                 if (is_vm_hugetlb_page(vma)) {
403                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404                                 floor, next ? next->vm_start : ceiling);
405                 } else {
406                         /*
407                          * Optimization: gather nearby vmas into one call down
408                          */
409                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410                                && !is_vm_hugetlb_page(next)) {
411                                 vma = next;
412                                 next = vma->vm_next;
413                                 unlink_anon_vmas(vma);
414                                 unlink_file_vma(vma);
415                         }
416                         free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 }
419                 vma = next;
420         }
421 }
422
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425         spinlock_t *ptl;
426         pgtable_t new = pte_alloc_one(mm);
427         if (!new)
428                 return -ENOMEM;
429
430         /*
431          * Ensure all pte setup (eg. pte page lock and page clearing) are
432          * visible before the pte is made visible to other CPUs by being
433          * put into page tables.
434          *
435          * The other side of the story is the pointer chasing in the page
436          * table walking code (when walking the page table without locking;
437          * ie. most of the time). Fortunately, these data accesses consist
438          * of a chain of data-dependent loads, meaning most CPUs (alpha
439          * being the notable exception) will already guarantee loads are
440          * seen in-order. See the alpha page table accessors for the
441          * smp_read_barrier_depends() barriers in page table walking code.
442          */
443         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
445         ptl = pmd_lock(mm, pmd);
446         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
447                 mm_inc_nr_ptes(mm);
448                 pmd_populate(mm, pmd, new);
449                 new = NULL;
450         }
451         spin_unlock(ptl);
452         if (new)
453                 pte_free(mm, new);
454         return 0;
455 }
456
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459         pte_t *new = pte_alloc_one_kernel(&init_mm);
460         if (!new)
461                 return -ENOMEM;
462
463         smp_wmb(); /* See comment in __pte_alloc */
464
465         spin_lock(&init_mm.page_table_lock);
466         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
467                 pmd_populate_kernel(&init_mm, pmd, new);
468                 new = NULL;
469         }
470         spin_unlock(&init_mm.page_table_lock);
471         if (new)
472                 pte_free_kernel(&init_mm, new);
473         return 0;
474 }
475
476 static inline void init_rss_vec(int *rss)
477 {
478         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483         int i;
484
485         if (current->mm == mm)
486                 sync_mm_rss(mm);
487         for (i = 0; i < NR_MM_COUNTERS; i++)
488                 if (rss[i])
489                         add_mm_counter(mm, i, rss[i]);
490 }
491
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500                           pte_t pte, struct page *page)
501 {
502         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503         p4d_t *p4d = p4d_offset(pgd, addr);
504         pud_t *pud = pud_offset(p4d, addr);
505         pmd_t *pmd = pmd_offset(pud, addr);
506         struct address_space *mapping;
507         pgoff_t index;
508         static unsigned long resume;
509         static unsigned long nr_shown;
510         static unsigned long nr_unshown;
511
512         /*
513          * Allow a burst of 60 reports, then keep quiet for that minute;
514          * or allow a steady drip of one report per second.
515          */
516         if (nr_shown == 60) {
517                 if (time_before(jiffies, resume)) {
518                         nr_unshown++;
519                         return;
520                 }
521                 if (nr_unshown) {
522                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523                                  nr_unshown);
524                         nr_unshown = 0;
525                 }
526                 nr_shown = 0;
527         }
528         if (nr_shown++ == 0)
529                 resume = jiffies + 60 * HZ;
530
531         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532         index = linear_page_index(vma, addr);
533
534         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535                  current->comm,
536                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
537         if (page)
538                 dump_page(page, "bad pte");
539         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542                  vma->vm_file,
543                  vma->vm_ops ? vma->vm_ops->fault : NULL,
544                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545                  mapping ? mapping->a_ops->readpage : NULL);
546         dump_stack();
547         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593                             pte_t pte)
594 {
595         unsigned long pfn = pte_pfn(pte);
596
597         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598                 if (likely(!pte_special(pte)))
599                         goto check_pfn;
600                 if (vma->vm_ops && vma->vm_ops->find_special_page)
601                         return vma->vm_ops->find_special_page(vma, addr);
602                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603                         return NULL;
604                 if (is_zero_pfn(pfn))
605                         return NULL;
606                 if (pte_devmap(pte))
607                         return NULL;
608
609                 print_bad_pte(vma, addr, pte, NULL);
610                 return NULL;
611         }
612
613         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616                 if (vma->vm_flags & VM_MIXEDMAP) {
617                         if (!pfn_valid(pfn))
618                                 return NULL;
619                         goto out;
620                 } else {
621                         unsigned long off;
622                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
623                         if (pfn == vma->vm_pgoff + off)
624                                 return NULL;
625                         if (!is_cow_mapping(vma->vm_flags))
626                                 return NULL;
627                 }
628         }
629
630         if (is_zero_pfn(pfn))
631                 return NULL;
632
633 check_pfn:
634         if (unlikely(pfn > highest_memmap_pfn)) {
635                 print_bad_pte(vma, addr, pte, NULL);
636                 return NULL;
637         }
638
639         /*
640          * NOTE! We still have PageReserved() pages in the page tables.
641          * eg. VDSO mappings can cause them to exist.
642          */
643 out:
644         return pfn_to_page(pfn);
645 }
646
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649                                 pmd_t pmd)
650 {
651         unsigned long pfn = pmd_pfn(pmd);
652
653         /*
654          * There is no pmd_special() but there may be special pmds, e.g.
655          * in a direct-access (dax) mapping, so let's just replicate the
656          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657          */
658         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659                 if (vma->vm_flags & VM_MIXEDMAP) {
660                         if (!pfn_valid(pfn))
661                                 return NULL;
662                         goto out;
663                 } else {
664                         unsigned long off;
665                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
666                         if (pfn == vma->vm_pgoff + off)
667                                 return NULL;
668                         if (!is_cow_mapping(vma->vm_flags))
669                                 return NULL;
670                 }
671         }
672
673         if (pmd_devmap(pmd))
674                 return NULL;
675         if (is_huge_zero_pmd(pmd))
676                 return NULL;
677         if (unlikely(pfn > highest_memmap_pfn))
678                 return NULL;
679
680         /*
681          * NOTE! We still have PageReserved() pages in the page tables.
682          * eg. VDSO mappings can cause them to exist.
683          */
684 out:
685         return pfn_to_page(pfn);
686 }
687 #endif
688
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698                 unsigned long addr, int *rss)
699 {
700         unsigned long vm_flags = vma->vm_flags;
701         pte_t pte = *src_pte;
702         struct page *page;
703
704         /* pte contains position in swap or file, so copy. */
705         if (unlikely(!pte_present(pte))) {
706                 swp_entry_t entry = pte_to_swp_entry(pte);
707
708                 if (likely(!non_swap_entry(entry))) {
709                         if (swap_duplicate(entry) < 0)
710                                 return entry.val;
711
712                         /* make sure dst_mm is on swapoff's mmlist. */
713                         if (unlikely(list_empty(&dst_mm->mmlist))) {
714                                 spin_lock(&mmlist_lock);
715                                 if (list_empty(&dst_mm->mmlist))
716                                         list_add(&dst_mm->mmlist,
717                                                         &src_mm->mmlist);
718                                 spin_unlock(&mmlist_lock);
719                         }
720                         rss[MM_SWAPENTS]++;
721                 } else if (is_migration_entry(entry)) {
722                         page = migration_entry_to_page(entry);
723
724                         rss[mm_counter(page)]++;
725
726                         if (is_write_migration_entry(entry) &&
727                                         is_cow_mapping(vm_flags)) {
728                                 /*
729                                  * COW mappings require pages in both
730                                  * parent and child to be set to read.
731                                  */
732                                 make_migration_entry_read(&entry);
733                                 pte = swp_entry_to_pte(entry);
734                                 if (pte_swp_soft_dirty(*src_pte))
735                                         pte = pte_swp_mksoft_dirty(pte);
736                                 set_pte_at(src_mm, addr, src_pte, pte);
737                         }
738                 } else if (is_device_private_entry(entry)) {
739                         page = device_private_entry_to_page(entry);
740
741                         /*
742                          * Update rss count even for unaddressable pages, as
743                          * they should treated just like normal pages in this
744                          * respect.
745                          *
746                          * We will likely want to have some new rss counters
747                          * for unaddressable pages, at some point. But for now
748                          * keep things as they are.
749                          */
750                         get_page(page);
751                         rss[mm_counter(page)]++;
752                         page_dup_rmap(page, false);
753
754                         /*
755                          * We do not preserve soft-dirty information, because so
756                          * far, checkpoint/restore is the only feature that
757                          * requires that. And checkpoint/restore does not work
758                          * when a device driver is involved (you cannot easily
759                          * save and restore device driver state).
760                          */
761                         if (is_write_device_private_entry(entry) &&
762                             is_cow_mapping(vm_flags)) {
763                                 make_device_private_entry_read(&entry);
764                                 pte = swp_entry_to_pte(entry);
765                                 set_pte_at(src_mm, addr, src_pte, pte);
766                         }
767                 }
768                 goto out_set_pte;
769         }
770
771         /*
772          * If it's a COW mapping, write protect it both
773          * in the parent and the child
774          */
775         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
776                 ptep_set_wrprotect(src_mm, addr, src_pte);
777                 pte = pte_wrprotect(pte);
778         }
779
780         /*
781          * If it's a shared mapping, mark it clean in
782          * the child
783          */
784         if (vm_flags & VM_SHARED)
785                 pte = pte_mkclean(pte);
786         pte = pte_mkold(pte);
787
788         page = vm_normal_page(vma, addr, pte);
789         if (page) {
790                 get_page(page);
791                 page_dup_rmap(page, false);
792                 rss[mm_counter(page)]++;
793         } else if (pte_devmap(pte)) {
794                 page = pte_page(pte);
795         }
796
797 out_set_pte:
798         set_pte_at(dst_mm, addr, dst_pte, pte);
799         return 0;
800 }
801
802 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
804                    unsigned long addr, unsigned long end)
805 {
806         pte_t *orig_src_pte, *orig_dst_pte;
807         pte_t *src_pte, *dst_pte;
808         spinlock_t *src_ptl, *dst_ptl;
809         int progress = 0;
810         int rss[NR_MM_COUNTERS];
811         swp_entry_t entry = (swp_entry_t){0};
812
813 again:
814         init_rss_vec(rss);
815
816         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
817         if (!dst_pte)
818                 return -ENOMEM;
819         src_pte = pte_offset_map(src_pmd, addr);
820         src_ptl = pte_lockptr(src_mm, src_pmd);
821         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
822         orig_src_pte = src_pte;
823         orig_dst_pte = dst_pte;
824         arch_enter_lazy_mmu_mode();
825
826         do {
827                 /*
828                  * We are holding two locks at this point - either of them
829                  * could generate latencies in another task on another CPU.
830                  */
831                 if (progress >= 32) {
832                         progress = 0;
833                         if (need_resched() ||
834                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
835                                 break;
836                 }
837                 if (pte_none(*src_pte)) {
838                         progress++;
839                         continue;
840                 }
841                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
842                                                         vma, addr, rss);
843                 if (entry.val)
844                         break;
845                 progress += 8;
846         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
847
848         arch_leave_lazy_mmu_mode();
849         spin_unlock(src_ptl);
850         pte_unmap(orig_src_pte);
851         add_mm_rss_vec(dst_mm, rss);
852         pte_unmap_unlock(orig_dst_pte, dst_ptl);
853         cond_resched();
854
855         if (entry.val) {
856                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
857                         return -ENOMEM;
858                 progress = 0;
859         }
860         if (addr != end)
861                 goto again;
862         return 0;
863 }
864
865 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
866                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
867                 unsigned long addr, unsigned long end)
868 {
869         pmd_t *src_pmd, *dst_pmd;
870         unsigned long next;
871
872         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
873         if (!dst_pmd)
874                 return -ENOMEM;
875         src_pmd = pmd_offset(src_pud, addr);
876         do {
877                 next = pmd_addr_end(addr, end);
878                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
879                         || pmd_devmap(*src_pmd)) {
880                         int err;
881                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
882                         err = copy_huge_pmd(dst_mm, src_mm,
883                                             dst_pmd, src_pmd, addr, vma);
884                         if (err == -ENOMEM)
885                                 return -ENOMEM;
886                         if (!err)
887                                 continue;
888                         /* fall through */
889                 }
890                 if (pmd_none_or_clear_bad(src_pmd))
891                         continue;
892                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
893                                                 vma, addr, next))
894                         return -ENOMEM;
895         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
896         return 0;
897 }
898
899 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
900                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
901                 unsigned long addr, unsigned long end)
902 {
903         pud_t *src_pud, *dst_pud;
904         unsigned long next;
905
906         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
907         if (!dst_pud)
908                 return -ENOMEM;
909         src_pud = pud_offset(src_p4d, addr);
910         do {
911                 next = pud_addr_end(addr, end);
912                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
913                         int err;
914
915                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
916                         err = copy_huge_pud(dst_mm, src_mm,
917                                             dst_pud, src_pud, addr, vma);
918                         if (err == -ENOMEM)
919                                 return -ENOMEM;
920                         if (!err)
921                                 continue;
922                         /* fall through */
923                 }
924                 if (pud_none_or_clear_bad(src_pud))
925                         continue;
926                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
927                                                 vma, addr, next))
928                         return -ENOMEM;
929         } while (dst_pud++, src_pud++, addr = next, addr != end);
930         return 0;
931 }
932
933 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
934                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
935                 unsigned long addr, unsigned long end)
936 {
937         p4d_t *src_p4d, *dst_p4d;
938         unsigned long next;
939
940         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
941         if (!dst_p4d)
942                 return -ENOMEM;
943         src_p4d = p4d_offset(src_pgd, addr);
944         do {
945                 next = p4d_addr_end(addr, end);
946                 if (p4d_none_or_clear_bad(src_p4d))
947                         continue;
948                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
949                                                 vma, addr, next))
950                         return -ENOMEM;
951         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
952         return 0;
953 }
954
955 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
956                 struct vm_area_struct *vma)
957 {
958         pgd_t *src_pgd, *dst_pgd;
959         unsigned long next;
960         unsigned long addr = vma->vm_start;
961         unsigned long end = vma->vm_end;
962         struct mmu_notifier_range range;
963         bool is_cow;
964         int ret;
965
966         /*
967          * Don't copy ptes where a page fault will fill them correctly.
968          * Fork becomes much lighter when there are big shared or private
969          * readonly mappings. The tradeoff is that copy_page_range is more
970          * efficient than faulting.
971          */
972         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
973                         !vma->anon_vma)
974                 return 0;
975
976         if (is_vm_hugetlb_page(vma))
977                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
978
979         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
980                 /*
981                  * We do not free on error cases below as remove_vma
982                  * gets called on error from higher level routine
983                  */
984                 ret = track_pfn_copy(vma);
985                 if (ret)
986                         return ret;
987         }
988
989         /*
990          * We need to invalidate the secondary MMU mappings only when
991          * there could be a permission downgrade on the ptes of the
992          * parent mm. And a permission downgrade will only happen if
993          * is_cow_mapping() returns true.
994          */
995         is_cow = is_cow_mapping(vma->vm_flags);
996
997         if (is_cow) {
998                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
999                                         0, vma, src_mm, addr, end);
1000                 mmu_notifier_invalidate_range_start(&range);
1001         }
1002
1003         ret = 0;
1004         dst_pgd = pgd_offset(dst_mm, addr);
1005         src_pgd = pgd_offset(src_mm, addr);
1006         do {
1007                 next = pgd_addr_end(addr, end);
1008                 if (pgd_none_or_clear_bad(src_pgd))
1009                         continue;
1010                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1011                                             vma, addr, next))) {
1012                         ret = -ENOMEM;
1013                         break;
1014                 }
1015         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1016
1017         if (is_cow)
1018                 mmu_notifier_invalidate_range_end(&range);
1019         return ret;
1020 }
1021
1022 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1023                                 struct vm_area_struct *vma, pmd_t *pmd,
1024                                 unsigned long addr, unsigned long end,
1025                                 struct zap_details *details)
1026 {
1027         struct mm_struct *mm = tlb->mm;
1028         int force_flush = 0;
1029         int rss[NR_MM_COUNTERS];
1030         spinlock_t *ptl;
1031         pte_t *start_pte;
1032         pte_t *pte;
1033         swp_entry_t entry;
1034
1035         tlb_change_page_size(tlb, PAGE_SIZE);
1036 again:
1037         init_rss_vec(rss);
1038         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1039         pte = start_pte;
1040         flush_tlb_batched_pending(mm);
1041         arch_enter_lazy_mmu_mode();
1042         do {
1043                 pte_t ptent = *pte;
1044                 if (pte_none(ptent))
1045                         continue;
1046
1047                 if (need_resched())
1048                         break;
1049
1050                 if (pte_present(ptent)) {
1051                         struct page *page;
1052
1053                         page = vm_normal_page(vma, addr, ptent);
1054                         if (unlikely(details) && page) {
1055                                 /*
1056                                  * unmap_shared_mapping_pages() wants to
1057                                  * invalidate cache without truncating:
1058                                  * unmap shared but keep private pages.
1059                                  */
1060                                 if (details->check_mapping &&
1061                                     details->check_mapping != page_rmapping(page))
1062                                         continue;
1063                         }
1064                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1065                                                         tlb->fullmm);
1066                         tlb_remove_tlb_entry(tlb, pte, addr);
1067                         if (unlikely(!page))
1068                                 continue;
1069
1070                         if (!PageAnon(page)) {
1071                                 if (pte_dirty(ptent)) {
1072                                         force_flush = 1;
1073                                         set_page_dirty(page);
1074                                 }
1075                                 if (pte_young(ptent) &&
1076                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1077                                         mark_page_accessed(page);
1078                         }
1079                         rss[mm_counter(page)]--;
1080                         page_remove_rmap(page, false);
1081                         if (unlikely(page_mapcount(page) < 0))
1082                                 print_bad_pte(vma, addr, ptent, page);
1083                         if (unlikely(__tlb_remove_page(tlb, page))) {
1084                                 force_flush = 1;
1085                                 addr += PAGE_SIZE;
1086                                 break;
1087                         }
1088                         continue;
1089                 }
1090
1091                 entry = pte_to_swp_entry(ptent);
1092                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1093                         struct page *page = device_private_entry_to_page(entry);
1094
1095                         if (unlikely(details && details->check_mapping)) {
1096                                 /*
1097                                  * unmap_shared_mapping_pages() wants to
1098                                  * invalidate cache without truncating:
1099                                  * unmap shared but keep private pages.
1100                                  */
1101                                 if (details->check_mapping !=
1102                                     page_rmapping(page))
1103                                         continue;
1104                         }
1105
1106                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1107                         rss[mm_counter(page)]--;
1108                         page_remove_rmap(page, false);
1109                         put_page(page);
1110                         continue;
1111                 }
1112
1113                 /* If details->check_mapping, we leave swap entries. */
1114                 if (unlikely(details))
1115                         continue;
1116
1117                 if (!non_swap_entry(entry))
1118                         rss[MM_SWAPENTS]--;
1119                 else if (is_migration_entry(entry)) {
1120                         struct page *page;
1121
1122                         page = migration_entry_to_page(entry);
1123                         rss[mm_counter(page)]--;
1124                 }
1125                 if (unlikely(!free_swap_and_cache(entry)))
1126                         print_bad_pte(vma, addr, ptent, NULL);
1127                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1128         } while (pte++, addr += PAGE_SIZE, addr != end);
1129
1130         add_mm_rss_vec(mm, rss);
1131         arch_leave_lazy_mmu_mode();
1132
1133         /* Do the actual TLB flush before dropping ptl */
1134         if (force_flush)
1135                 tlb_flush_mmu_tlbonly(tlb);
1136         pte_unmap_unlock(start_pte, ptl);
1137
1138         /*
1139          * If we forced a TLB flush (either due to running out of
1140          * batch buffers or because we needed to flush dirty TLB
1141          * entries before releasing the ptl), free the batched
1142          * memory too. Restart if we didn't do everything.
1143          */
1144         if (force_flush) {
1145                 force_flush = 0;
1146                 tlb_flush_mmu(tlb);
1147         }
1148
1149         if (addr != end) {
1150                 cond_resched();
1151                 goto again;
1152         }
1153
1154         return addr;
1155 }
1156
1157 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1158                                 struct vm_area_struct *vma, pud_t *pud,
1159                                 unsigned long addr, unsigned long end,
1160                                 struct zap_details *details)
1161 {
1162         pmd_t *pmd;
1163         unsigned long next;
1164
1165         pmd = pmd_offset(pud, addr);
1166         do {
1167                 next = pmd_addr_end(addr, end);
1168                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1169                         if (next - addr != HPAGE_PMD_SIZE)
1170                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1171                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1172                                 goto next;
1173                         /* fall through */
1174                 }
1175                 /*
1176                  * Here there can be other concurrent MADV_DONTNEED or
1177                  * trans huge page faults running, and if the pmd is
1178                  * none or trans huge it can change under us. This is
1179                  * because MADV_DONTNEED holds the mmap_sem in read
1180                  * mode.
1181                  */
1182                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1183                         goto next;
1184                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1185 next:
1186                 cond_resched();
1187         } while (pmd++, addr = next, addr != end);
1188
1189         return addr;
1190 }
1191
1192 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1193                                 struct vm_area_struct *vma, p4d_t *p4d,
1194                                 unsigned long addr, unsigned long end,
1195                                 struct zap_details *details)
1196 {
1197         pud_t *pud;
1198         unsigned long next;
1199
1200         pud = pud_offset(p4d, addr);
1201         do {
1202                 next = pud_addr_end(addr, end);
1203                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1204                         if (next - addr != HPAGE_PUD_SIZE) {
1205                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1206                                 split_huge_pud(vma, pud, addr);
1207                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1208                                 goto next;
1209                         /* fall through */
1210                 }
1211                 if (pud_none_or_clear_bad(pud))
1212                         continue;
1213                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1214 next:
1215                 cond_resched();
1216         } while (pud++, addr = next, addr != end);
1217
1218         return addr;
1219 }
1220
1221 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1222                                 struct vm_area_struct *vma, pgd_t *pgd,
1223                                 unsigned long addr, unsigned long end,
1224                                 struct zap_details *details)
1225 {
1226         p4d_t *p4d;
1227         unsigned long next;
1228
1229         p4d = p4d_offset(pgd, addr);
1230         do {
1231                 next = p4d_addr_end(addr, end);
1232                 if (p4d_none_or_clear_bad(p4d))
1233                         continue;
1234                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1235         } while (p4d++, addr = next, addr != end);
1236
1237         return addr;
1238 }
1239
1240 void unmap_page_range(struct mmu_gather *tlb,
1241                              struct vm_area_struct *vma,
1242                              unsigned long addr, unsigned long end,
1243                              struct zap_details *details)
1244 {
1245         pgd_t *pgd;
1246         unsigned long next;
1247
1248         BUG_ON(addr >= end);
1249         tlb_start_vma(tlb, vma);
1250         pgd = pgd_offset(vma->vm_mm, addr);
1251         do {
1252                 next = pgd_addr_end(addr, end);
1253                 if (pgd_none_or_clear_bad(pgd))
1254                         continue;
1255                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1256         } while (pgd++, addr = next, addr != end);
1257         tlb_end_vma(tlb, vma);
1258 }
1259
1260
1261 static void unmap_single_vma(struct mmu_gather *tlb,
1262                 struct vm_area_struct *vma, unsigned long start_addr,
1263                 unsigned long end_addr,
1264                 struct zap_details *details)
1265 {
1266         unsigned long start = max(vma->vm_start, start_addr);
1267         unsigned long end;
1268
1269         if (start >= vma->vm_end)
1270                 return;
1271         end = min(vma->vm_end, end_addr);
1272         if (end <= vma->vm_start)
1273                 return;
1274
1275         if (vma->vm_file)
1276                 uprobe_munmap(vma, start, end);
1277
1278         if (unlikely(vma->vm_flags & VM_PFNMAP))
1279                 untrack_pfn(vma, 0, 0);
1280
1281         if (start != end) {
1282                 if (unlikely(is_vm_hugetlb_page(vma))) {
1283                         /*
1284                          * It is undesirable to test vma->vm_file as it
1285                          * should be non-null for valid hugetlb area.
1286                          * However, vm_file will be NULL in the error
1287                          * cleanup path of mmap_region. When
1288                          * hugetlbfs ->mmap method fails,
1289                          * mmap_region() nullifies vma->vm_file
1290                          * before calling this function to clean up.
1291                          * Since no pte has actually been setup, it is
1292                          * safe to do nothing in this case.
1293                          */
1294                         if (vma->vm_file) {
1295                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1296                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1297                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1298                         }
1299                 } else
1300                         unmap_page_range(tlb, vma, start, end, details);
1301         }
1302 }
1303
1304 /**
1305  * unmap_vmas - unmap a range of memory covered by a list of vma's
1306  * @tlb: address of the caller's struct mmu_gather
1307  * @vma: the starting vma
1308  * @start_addr: virtual address at which to start unmapping
1309  * @end_addr: virtual address at which to end unmapping
1310  *
1311  * Unmap all pages in the vma list.
1312  *
1313  * Only addresses between `start' and `end' will be unmapped.
1314  *
1315  * The VMA list must be sorted in ascending virtual address order.
1316  *
1317  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318  * range after unmap_vmas() returns.  So the only responsibility here is to
1319  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320  * drops the lock and schedules.
1321  */
1322 void unmap_vmas(struct mmu_gather *tlb,
1323                 struct vm_area_struct *vma, unsigned long start_addr,
1324                 unsigned long end_addr)
1325 {
1326         struct mmu_notifier_range range;
1327
1328         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1329                                 start_addr, end_addr);
1330         mmu_notifier_invalidate_range_start(&range);
1331         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1332                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1333         mmu_notifier_invalidate_range_end(&range);
1334 }
1335
1336 /**
1337  * zap_page_range - remove user pages in a given range
1338  * @vma: vm_area_struct holding the applicable pages
1339  * @start: starting address of pages to zap
1340  * @size: number of bytes to zap
1341  *
1342  * Caller must protect the VMA list
1343  */
1344 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1345                 unsigned long size)
1346 {
1347         struct mmu_notifier_range range;
1348         struct mmu_gather tlb;
1349
1350         lru_add_drain();
1351         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1352                                 start, start + size);
1353         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1354         update_hiwater_rss(vma->vm_mm);
1355         mmu_notifier_invalidate_range_start(&range);
1356         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1357                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1358         mmu_notifier_invalidate_range_end(&range);
1359         tlb_finish_mmu(&tlb, start, range.end);
1360 }
1361
1362 /**
1363  * zap_page_range_single - remove user pages in a given range
1364  * @vma: vm_area_struct holding the applicable pages
1365  * @address: starting address of pages to zap
1366  * @size: number of bytes to zap
1367  * @details: details of shared cache invalidation
1368  *
1369  * The range must fit into one VMA.
1370  */
1371 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1372                 unsigned long size, struct zap_details *details)
1373 {
1374         struct mmu_notifier_range range;
1375         struct mmu_gather tlb;
1376
1377         lru_add_drain();
1378         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1379                                 address, address + size);
1380         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1381         update_hiwater_rss(vma->vm_mm);
1382         mmu_notifier_invalidate_range_start(&range);
1383         unmap_single_vma(&tlb, vma, address, range.end, details);
1384         mmu_notifier_invalidate_range_end(&range);
1385         tlb_finish_mmu(&tlb, address, range.end);
1386 }
1387
1388 /**
1389  * zap_vma_ptes - remove ptes mapping the vma
1390  * @vma: vm_area_struct holding ptes to be zapped
1391  * @address: starting address of pages to zap
1392  * @size: number of bytes to zap
1393  *
1394  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1395  *
1396  * The entire address range must be fully contained within the vma.
1397  *
1398  */
1399 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1400                 unsigned long size)
1401 {
1402         if (address < vma->vm_start || address + size > vma->vm_end ||
1403                         !(vma->vm_flags & VM_PFNMAP))
1404                 return;
1405
1406         zap_page_range_single(vma, address, size, NULL);
1407 }
1408 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1409
1410 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1411                         spinlock_t **ptl)
1412 {
1413         pgd_t *pgd;
1414         p4d_t *p4d;
1415         pud_t *pud;
1416         pmd_t *pmd;
1417
1418         pgd = pgd_offset(mm, addr);
1419         p4d = p4d_alloc(mm, pgd, addr);
1420         if (!p4d)
1421                 return NULL;
1422         pud = pud_alloc(mm, p4d, addr);
1423         if (!pud)
1424                 return NULL;
1425         pmd = pmd_alloc(mm, pud, addr);
1426         if (!pmd)
1427                 return NULL;
1428
1429         VM_BUG_ON(pmd_trans_huge(*pmd));
1430         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1431 }
1432
1433 /*
1434  * This is the old fallback for page remapping.
1435  *
1436  * For historical reasons, it only allows reserved pages. Only
1437  * old drivers should use this, and they needed to mark their
1438  * pages reserved for the old functions anyway.
1439  */
1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441                         struct page *page, pgprot_t prot)
1442 {
1443         struct mm_struct *mm = vma->vm_mm;
1444         int retval;
1445         pte_t *pte;
1446         spinlock_t *ptl;
1447
1448         retval = -EINVAL;
1449         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1450                 goto out;
1451         retval = -ENOMEM;
1452         flush_dcache_page(page);
1453         pte = get_locked_pte(mm, addr, &ptl);
1454         if (!pte)
1455                 goto out;
1456         retval = -EBUSY;
1457         if (!pte_none(*pte))
1458                 goto out_unlock;
1459
1460         /* Ok, finally just insert the thing.. */
1461         get_page(page);
1462         inc_mm_counter_fast(mm, mm_counter_file(page));
1463         page_add_file_rmap(page, false);
1464         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465
1466         retval = 0;
1467 out_unlock:
1468         pte_unmap_unlock(pte, ptl);
1469 out:
1470         return retval;
1471 }
1472
1473 /**
1474  * vm_insert_page - insert single page into user vma
1475  * @vma: user vma to map to
1476  * @addr: target user address of this page
1477  * @page: source kernel page
1478  *
1479  * This allows drivers to insert individual pages they've allocated
1480  * into a user vma.
1481  *
1482  * The page has to be a nice clean _individual_ kernel allocation.
1483  * If you allocate a compound page, you need to have marked it as
1484  * such (__GFP_COMP), or manually just split the page up yourself
1485  * (see split_page()).
1486  *
1487  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488  * took an arbitrary page protection parameter. This doesn't allow
1489  * that. Your vma protection will have to be set up correctly, which
1490  * means that if you want a shared writable mapping, you'd better
1491  * ask for a shared writable mapping!
1492  *
1493  * The page does not need to be reserved.
1494  *
1495  * Usually this function is called from f_op->mmap() handler
1496  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498  * function from other places, for example from page-fault handler.
1499  *
1500  * Return: %0 on success, negative error code otherwise.
1501  */
1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503                         struct page *page)
1504 {
1505         if (addr < vma->vm_start || addr >= vma->vm_end)
1506                 return -EFAULT;
1507         if (!page_count(page))
1508                 return -EINVAL;
1509         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1512                 vma->vm_flags |= VM_MIXEDMAP;
1513         }
1514         return insert_page(vma, addr, page, vma->vm_page_prot);
1515 }
1516 EXPORT_SYMBOL(vm_insert_page);
1517
1518 /*
1519  * __vm_map_pages - maps range of kernel pages into user vma
1520  * @vma: user vma to map to
1521  * @pages: pointer to array of source kernel pages
1522  * @num: number of pages in page array
1523  * @offset: user's requested vm_pgoff
1524  *
1525  * This allows drivers to map range of kernel pages into a user vma.
1526  *
1527  * Return: 0 on success and error code otherwise.
1528  */
1529 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1530                                 unsigned long num, unsigned long offset)
1531 {
1532         unsigned long count = vma_pages(vma);
1533         unsigned long uaddr = vma->vm_start;
1534         int ret, i;
1535
1536         /* Fail if the user requested offset is beyond the end of the object */
1537         if (offset >= num)
1538                 return -ENXIO;
1539
1540         /* Fail if the user requested size exceeds available object size */
1541         if (count > num - offset)
1542                 return -ENXIO;
1543
1544         for (i = 0; i < count; i++) {
1545                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1546                 if (ret < 0)
1547                         return ret;
1548                 uaddr += PAGE_SIZE;
1549         }
1550
1551         return 0;
1552 }
1553
1554 /**
1555  * vm_map_pages - maps range of kernel pages starts with non zero offset
1556  * @vma: user vma to map to
1557  * @pages: pointer to array of source kernel pages
1558  * @num: number of pages in page array
1559  *
1560  * Maps an object consisting of @num pages, catering for the user's
1561  * requested vm_pgoff
1562  *
1563  * If we fail to insert any page into the vma, the function will return
1564  * immediately leaving any previously inserted pages present.  Callers
1565  * from the mmap handler may immediately return the error as their caller
1566  * will destroy the vma, removing any successfully inserted pages. Other
1567  * callers should make their own arrangements for calling unmap_region().
1568  *
1569  * Context: Process context. Called by mmap handlers.
1570  * Return: 0 on success and error code otherwise.
1571  */
1572 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1573                                 unsigned long num)
1574 {
1575         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1576 }
1577 EXPORT_SYMBOL(vm_map_pages);
1578
1579 /**
1580  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1581  * @vma: user vma to map to
1582  * @pages: pointer to array of source kernel pages
1583  * @num: number of pages in page array
1584  *
1585  * Similar to vm_map_pages(), except that it explicitly sets the offset
1586  * to 0. This function is intended for the drivers that did not consider
1587  * vm_pgoff.
1588  *
1589  * Context: Process context. Called by mmap handlers.
1590  * Return: 0 on success and error code otherwise.
1591  */
1592 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1593                                 unsigned long num)
1594 {
1595         return __vm_map_pages(vma, pages, num, 0);
1596 }
1597 EXPORT_SYMBOL(vm_map_pages_zero);
1598
1599 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1600                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1601 {
1602         struct mm_struct *mm = vma->vm_mm;
1603         pte_t *pte, entry;
1604         spinlock_t *ptl;
1605
1606         pte = get_locked_pte(mm, addr, &ptl);
1607         if (!pte)
1608                 return VM_FAULT_OOM;
1609         if (!pte_none(*pte)) {
1610                 if (mkwrite) {
1611                         /*
1612                          * For read faults on private mappings the PFN passed
1613                          * in may not match the PFN we have mapped if the
1614                          * mapped PFN is a writeable COW page.  In the mkwrite
1615                          * case we are creating a writable PTE for a shared
1616                          * mapping and we expect the PFNs to match. If they
1617                          * don't match, we are likely racing with block
1618                          * allocation and mapping invalidation so just skip the
1619                          * update.
1620                          */
1621                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1622                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1623                                 goto out_unlock;
1624                         }
1625                         entry = pte_mkyoung(*pte);
1626                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1627                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1628                                 update_mmu_cache(vma, addr, pte);
1629                 }
1630                 goto out_unlock;
1631         }
1632
1633         /* Ok, finally just insert the thing.. */
1634         if (pfn_t_devmap(pfn))
1635                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1636         else
1637                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1638
1639         if (mkwrite) {
1640                 entry = pte_mkyoung(entry);
1641                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1642         }
1643
1644         set_pte_at(mm, addr, pte, entry);
1645         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1646
1647 out_unlock:
1648         pte_unmap_unlock(pte, ptl);
1649         return VM_FAULT_NOPAGE;
1650 }
1651
1652 /**
1653  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1654  * @vma: user vma to map to
1655  * @addr: target user address of this page
1656  * @pfn: source kernel pfn
1657  * @pgprot: pgprot flags for the inserted page
1658  *
1659  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1660  * to override pgprot on a per-page basis.
1661  *
1662  * This only makes sense for IO mappings, and it makes no sense for
1663  * COW mappings.  In general, using multiple vmas is preferable;
1664  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1665  * impractical.
1666  *
1667  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1668  * a value of @pgprot different from that of @vma->vm_page_prot.
1669  *
1670  * Context: Process context.  May allocate using %GFP_KERNEL.
1671  * Return: vm_fault_t value.
1672  */
1673 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1674                         unsigned long pfn, pgprot_t pgprot)
1675 {
1676         /*
1677          * Technically, architectures with pte_special can avoid all these
1678          * restrictions (same for remap_pfn_range).  However we would like
1679          * consistency in testing and feature parity among all, so we should
1680          * try to keep these invariants in place for everybody.
1681          */
1682         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1683         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1684                                                 (VM_PFNMAP|VM_MIXEDMAP));
1685         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1686         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1687
1688         if (addr < vma->vm_start || addr >= vma->vm_end)
1689                 return VM_FAULT_SIGBUS;
1690
1691         if (!pfn_modify_allowed(pfn, pgprot))
1692                 return VM_FAULT_SIGBUS;
1693
1694         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1695
1696         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1697                         false);
1698 }
1699 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1700
1701 /**
1702  * vmf_insert_pfn - insert single pfn into user vma
1703  * @vma: user vma to map to
1704  * @addr: target user address of this page
1705  * @pfn: source kernel pfn
1706  *
1707  * Similar to vm_insert_page, this allows drivers to insert individual pages
1708  * they've allocated into a user vma. Same comments apply.
1709  *
1710  * This function should only be called from a vm_ops->fault handler, and
1711  * in that case the handler should return the result of this function.
1712  *
1713  * vma cannot be a COW mapping.
1714  *
1715  * As this is called only for pages that do not currently exist, we
1716  * do not need to flush old virtual caches or the TLB.
1717  *
1718  * Context: Process context.  May allocate using %GFP_KERNEL.
1719  * Return: vm_fault_t value.
1720  */
1721 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1722                         unsigned long pfn)
1723 {
1724         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1725 }
1726 EXPORT_SYMBOL(vmf_insert_pfn);
1727
1728 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1729 {
1730         /* these checks mirror the abort conditions in vm_normal_page */
1731         if (vma->vm_flags & VM_MIXEDMAP)
1732                 return true;
1733         if (pfn_t_devmap(pfn))
1734                 return true;
1735         if (pfn_t_special(pfn))
1736                 return true;
1737         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1738                 return true;
1739         return false;
1740 }
1741
1742 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1743                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1744                 bool mkwrite)
1745 {
1746         int err;
1747
1748         BUG_ON(!vm_mixed_ok(vma, pfn));
1749
1750         if (addr < vma->vm_start || addr >= vma->vm_end)
1751                 return VM_FAULT_SIGBUS;
1752
1753         track_pfn_insert(vma, &pgprot, pfn);
1754
1755         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1756                 return VM_FAULT_SIGBUS;
1757
1758         /*
1759          * If we don't have pte special, then we have to use the pfn_valid()
1760          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761          * refcount the page if pfn_valid is true (hence insert_page rather
1762          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1763          * without pte special, it would there be refcounted as a normal page.
1764          */
1765         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1766             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1767                 struct page *page;
1768
1769                 /*
1770                  * At this point we are committed to insert_page()
1771                  * regardless of whether the caller specified flags that
1772                  * result in pfn_t_has_page() == false.
1773                  */
1774                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1775                 err = insert_page(vma, addr, page, pgprot);
1776         } else {
1777                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1778         }
1779
1780         if (err == -ENOMEM)
1781                 return VM_FAULT_OOM;
1782         if (err < 0 && err != -EBUSY)
1783                 return VM_FAULT_SIGBUS;
1784
1785         return VM_FAULT_NOPAGE;
1786 }
1787
1788 /**
1789  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1790  * @vma: user vma to map to
1791  * @addr: target user address of this page
1792  * @pfn: source kernel pfn
1793  * @pgprot: pgprot flags for the inserted page
1794  *
1795  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1796  * to override pgprot on a per-page basis.
1797  *
1798  * Typically this function should be used by drivers to set caching- and
1799  * encryption bits different than those of @vma->vm_page_prot, because
1800  * the caching- or encryption mode may not be known at mmap() time.
1801  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1802  * to set caching and encryption bits for those vmas (except for COW pages).
1803  * This is ensured by core vm only modifying these page table entries using
1804  * functions that don't touch caching- or encryption bits, using pte_modify()
1805  * if needed. (See for example mprotect()).
1806  * Also when new page-table entries are created, this is only done using the
1807  * fault() callback, and never using the value of vma->vm_page_prot,
1808  * except for page-table entries that point to anonymous pages as the result
1809  * of COW.
1810  *
1811  * Context: Process context.  May allocate using %GFP_KERNEL.
1812  * Return: vm_fault_t value.
1813  */
1814 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1815                                  pfn_t pfn, pgprot_t pgprot)
1816 {
1817         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1818 }
1819 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1820
1821 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1822                 pfn_t pfn)
1823 {
1824         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1825 }
1826 EXPORT_SYMBOL(vmf_insert_mixed);
1827
1828 /*
1829  *  If the insertion of PTE failed because someone else already added a
1830  *  different entry in the mean time, we treat that as success as we assume
1831  *  the same entry was actually inserted.
1832  */
1833 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1834                 unsigned long addr, pfn_t pfn)
1835 {
1836         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1837 }
1838 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1839
1840 /*
1841  * maps a range of physical memory into the requested pages. the old
1842  * mappings are removed. any references to nonexistent pages results
1843  * in null mappings (currently treated as "copy-on-access")
1844  */
1845 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1846                         unsigned long addr, unsigned long end,
1847                         unsigned long pfn, pgprot_t prot)
1848 {
1849         pte_t *pte;
1850         spinlock_t *ptl;
1851         int err = 0;
1852
1853         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1854         if (!pte)
1855                 return -ENOMEM;
1856         arch_enter_lazy_mmu_mode();
1857         do {
1858                 BUG_ON(!pte_none(*pte));
1859                 if (!pfn_modify_allowed(pfn, prot)) {
1860                         err = -EACCES;
1861                         break;
1862                 }
1863                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1864                 pfn++;
1865         } while (pte++, addr += PAGE_SIZE, addr != end);
1866         arch_leave_lazy_mmu_mode();
1867         pte_unmap_unlock(pte - 1, ptl);
1868         return err;
1869 }
1870
1871 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1872                         unsigned long addr, unsigned long end,
1873                         unsigned long pfn, pgprot_t prot)
1874 {
1875         pmd_t *pmd;
1876         unsigned long next;
1877         int err;
1878
1879         pfn -= addr >> PAGE_SHIFT;
1880         pmd = pmd_alloc(mm, pud, addr);
1881         if (!pmd)
1882                 return -ENOMEM;
1883         VM_BUG_ON(pmd_trans_huge(*pmd));
1884         do {
1885                 next = pmd_addr_end(addr, end);
1886                 err = remap_pte_range(mm, pmd, addr, next,
1887                                 pfn + (addr >> PAGE_SHIFT), prot);
1888                 if (err)
1889                         return err;
1890         } while (pmd++, addr = next, addr != end);
1891         return 0;
1892 }
1893
1894 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1895                         unsigned long addr, unsigned long end,
1896                         unsigned long pfn, pgprot_t prot)
1897 {
1898         pud_t *pud;
1899         unsigned long next;
1900         int err;
1901
1902         pfn -= addr >> PAGE_SHIFT;
1903         pud = pud_alloc(mm, p4d, addr);
1904         if (!pud)
1905                 return -ENOMEM;
1906         do {
1907                 next = pud_addr_end(addr, end);
1908                 err = remap_pmd_range(mm, pud, addr, next,
1909                                 pfn + (addr >> PAGE_SHIFT), prot);
1910                 if (err)
1911                         return err;
1912         } while (pud++, addr = next, addr != end);
1913         return 0;
1914 }
1915
1916 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1917                         unsigned long addr, unsigned long end,
1918                         unsigned long pfn, pgprot_t prot)
1919 {
1920         p4d_t *p4d;
1921         unsigned long next;
1922         int err;
1923
1924         pfn -= addr >> PAGE_SHIFT;
1925         p4d = p4d_alloc(mm, pgd, addr);
1926         if (!p4d)
1927                 return -ENOMEM;
1928         do {
1929                 next = p4d_addr_end(addr, end);
1930                 err = remap_pud_range(mm, p4d, addr, next,
1931                                 pfn + (addr >> PAGE_SHIFT), prot);
1932                 if (err)
1933                         return err;
1934         } while (p4d++, addr = next, addr != end);
1935         return 0;
1936 }
1937
1938 /**
1939  * remap_pfn_range - remap kernel memory to userspace
1940  * @vma: user vma to map to
1941  * @addr: target user address to start at
1942  * @pfn: physical address of kernel memory
1943  * @size: size of map area
1944  * @prot: page protection flags for this mapping
1945  *
1946  * Note: this is only safe if the mm semaphore is held when called.
1947  *
1948  * Return: %0 on success, negative error code otherwise.
1949  */
1950 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1951                     unsigned long pfn, unsigned long size, pgprot_t prot)
1952 {
1953         pgd_t *pgd;
1954         unsigned long next;
1955         unsigned long end = addr + PAGE_ALIGN(size);
1956         struct mm_struct *mm = vma->vm_mm;
1957         unsigned long remap_pfn = pfn;
1958         int err;
1959
1960         /*
1961          * Physically remapped pages are special. Tell the
1962          * rest of the world about it:
1963          *   VM_IO tells people not to look at these pages
1964          *      (accesses can have side effects).
1965          *   VM_PFNMAP tells the core MM that the base pages are just
1966          *      raw PFN mappings, and do not have a "struct page" associated
1967          *      with them.
1968          *   VM_DONTEXPAND
1969          *      Disable vma merging and expanding with mremap().
1970          *   VM_DONTDUMP
1971          *      Omit vma from core dump, even when VM_IO turned off.
1972          *
1973          * There's a horrible special case to handle copy-on-write
1974          * behaviour that some programs depend on. We mark the "original"
1975          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1976          * See vm_normal_page() for details.
1977          */
1978         if (is_cow_mapping(vma->vm_flags)) {
1979                 if (addr != vma->vm_start || end != vma->vm_end)
1980                         return -EINVAL;
1981                 vma->vm_pgoff = pfn;
1982         }
1983
1984         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1985         if (err)
1986                 return -EINVAL;
1987
1988         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1989
1990         BUG_ON(addr >= end);
1991         pfn -= addr >> PAGE_SHIFT;
1992         pgd = pgd_offset(mm, addr);
1993         flush_cache_range(vma, addr, end);
1994         do {
1995                 next = pgd_addr_end(addr, end);
1996                 err = remap_p4d_range(mm, pgd, addr, next,
1997                                 pfn + (addr >> PAGE_SHIFT), prot);
1998                 if (err)
1999                         break;
2000         } while (pgd++, addr = next, addr != end);
2001
2002         if (err)
2003                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2004
2005         return err;
2006 }
2007 EXPORT_SYMBOL(remap_pfn_range);
2008
2009 /**
2010  * vm_iomap_memory - remap memory to userspace
2011  * @vma: user vma to map to
2012  * @start: start of area
2013  * @len: size of area
2014  *
2015  * This is a simplified io_remap_pfn_range() for common driver use. The
2016  * driver just needs to give us the physical memory range to be mapped,
2017  * we'll figure out the rest from the vma information.
2018  *
2019  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2020  * whatever write-combining details or similar.
2021  *
2022  * Return: %0 on success, negative error code otherwise.
2023  */
2024 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2025 {
2026         unsigned long vm_len, pfn, pages;
2027
2028         /* Check that the physical memory area passed in looks valid */
2029         if (start + len < start)
2030                 return -EINVAL;
2031         /*
2032          * You *really* shouldn't map things that aren't page-aligned,
2033          * but we've historically allowed it because IO memory might
2034          * just have smaller alignment.
2035          */
2036         len += start & ~PAGE_MASK;
2037         pfn = start >> PAGE_SHIFT;
2038         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2039         if (pfn + pages < pfn)
2040                 return -EINVAL;
2041
2042         /* We start the mapping 'vm_pgoff' pages into the area */
2043         if (vma->vm_pgoff > pages)
2044                 return -EINVAL;
2045         pfn += vma->vm_pgoff;
2046         pages -= vma->vm_pgoff;
2047
2048         /* Can we fit all of the mapping? */
2049         vm_len = vma->vm_end - vma->vm_start;
2050         if (vm_len >> PAGE_SHIFT > pages)
2051                 return -EINVAL;
2052
2053         /* Ok, let it rip */
2054         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2055 }
2056 EXPORT_SYMBOL(vm_iomap_memory);
2057
2058 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2059                                      unsigned long addr, unsigned long end,
2060                                      pte_fn_t fn, void *data, bool create)
2061 {
2062         pte_t *pte;
2063         int err = 0;
2064         spinlock_t *uninitialized_var(ptl);
2065
2066         if (create) {
2067                 pte = (mm == &init_mm) ?
2068                         pte_alloc_kernel(pmd, addr) :
2069                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2070                 if (!pte)
2071                         return -ENOMEM;
2072         } else {
2073                 pte = (mm == &init_mm) ?
2074                         pte_offset_kernel(pmd, addr) :
2075                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2076         }
2077
2078         BUG_ON(pmd_huge(*pmd));
2079
2080         arch_enter_lazy_mmu_mode();
2081
2082         do {
2083                 if (create || !pte_none(*pte)) {
2084                         err = fn(pte++, addr, data);
2085                         if (err)
2086                                 break;
2087                 }
2088         } while (addr += PAGE_SIZE, addr != end);
2089
2090         arch_leave_lazy_mmu_mode();
2091
2092         if (mm != &init_mm)
2093                 pte_unmap_unlock(pte-1, ptl);
2094         return err;
2095 }
2096
2097 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2098                                      unsigned long addr, unsigned long end,
2099                                      pte_fn_t fn, void *data, bool create)
2100 {
2101         pmd_t *pmd;
2102         unsigned long next;
2103         int err = 0;
2104
2105         BUG_ON(pud_huge(*pud));
2106
2107         if (create) {
2108                 pmd = pmd_alloc(mm, pud, addr);
2109                 if (!pmd)
2110                         return -ENOMEM;
2111         } else {
2112                 pmd = pmd_offset(pud, addr);
2113         }
2114         do {
2115                 next = pmd_addr_end(addr, end);
2116                 if (create || !pmd_none_or_clear_bad(pmd)) {
2117                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2118                                                  create);
2119                         if (err)
2120                                 break;
2121                 }
2122         } while (pmd++, addr = next, addr != end);
2123         return err;
2124 }
2125
2126 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2127                                      unsigned long addr, unsigned long end,
2128                                      pte_fn_t fn, void *data, bool create)
2129 {
2130         pud_t *pud;
2131         unsigned long next;
2132         int err = 0;
2133
2134         if (create) {
2135                 pud = pud_alloc(mm, p4d, addr);
2136                 if (!pud)
2137                         return -ENOMEM;
2138         } else {
2139                 pud = pud_offset(p4d, addr);
2140         }
2141         do {
2142                 next = pud_addr_end(addr, end);
2143                 if (create || !pud_none_or_clear_bad(pud)) {
2144                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2145                                                  create);
2146                         if (err)
2147                                 break;
2148                 }
2149         } while (pud++, addr = next, addr != end);
2150         return err;
2151 }
2152
2153 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2154                                      unsigned long addr, unsigned long end,
2155                                      pte_fn_t fn, void *data, bool create)
2156 {
2157         p4d_t *p4d;
2158         unsigned long next;
2159         int err = 0;
2160
2161         if (create) {
2162                 p4d = p4d_alloc(mm, pgd, addr);
2163                 if (!p4d)
2164                         return -ENOMEM;
2165         } else {
2166                 p4d = p4d_offset(pgd, addr);
2167         }
2168         do {
2169                 next = p4d_addr_end(addr, end);
2170                 if (create || !p4d_none_or_clear_bad(p4d)) {
2171                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2172                                                  create);
2173                         if (err)
2174                                 break;
2175                 }
2176         } while (p4d++, addr = next, addr != end);
2177         return err;
2178 }
2179
2180 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2181                                  unsigned long size, pte_fn_t fn,
2182                                  void *data, bool create)
2183 {
2184         pgd_t *pgd;
2185         unsigned long next;
2186         unsigned long end = addr + size;
2187         int err = 0;
2188
2189         if (WARN_ON(addr >= end))
2190                 return -EINVAL;
2191
2192         pgd = pgd_offset(mm, addr);
2193         do {
2194                 next = pgd_addr_end(addr, end);
2195                 if (!create && pgd_none_or_clear_bad(pgd))
2196                         continue;
2197                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2198                 if (err)
2199                         break;
2200         } while (pgd++, addr = next, addr != end);
2201
2202         return err;
2203 }
2204
2205 /*
2206  * Scan a region of virtual memory, filling in page tables as necessary
2207  * and calling a provided function on each leaf page table.
2208  */
2209 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2210                         unsigned long size, pte_fn_t fn, void *data)
2211 {
2212         return __apply_to_page_range(mm, addr, size, fn, data, true);
2213 }
2214 EXPORT_SYMBOL_GPL(apply_to_page_range);
2215
2216 /*
2217  * Scan a region of virtual memory, calling a provided function on
2218  * each leaf page table where it exists.
2219  *
2220  * Unlike apply_to_page_range, this does _not_ fill in page tables
2221  * where they are absent.
2222  */
2223 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2224                                  unsigned long size, pte_fn_t fn, void *data)
2225 {
2226         return __apply_to_page_range(mm, addr, size, fn, data, false);
2227 }
2228 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2229
2230 /*
2231  * handle_pte_fault chooses page fault handler according to an entry which was
2232  * read non-atomically.  Before making any commitment, on those architectures
2233  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2234  * parts, do_swap_page must check under lock before unmapping the pte and
2235  * proceeding (but do_wp_page is only called after already making such a check;
2236  * and do_anonymous_page can safely check later on).
2237  */
2238 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2239                                 pte_t *page_table, pte_t orig_pte)
2240 {
2241         int same = 1;
2242 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2243         if (sizeof(pte_t) > sizeof(unsigned long)) {
2244                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2245                 spin_lock(ptl);
2246                 same = pte_same(*page_table, orig_pte);
2247                 spin_unlock(ptl);
2248         }
2249 #endif
2250         pte_unmap(page_table);
2251         return same;
2252 }
2253
2254 static inline bool cow_user_page(struct page *dst, struct page *src,
2255                                  struct vm_fault *vmf)
2256 {
2257         bool ret;
2258         void *kaddr;
2259         void __user *uaddr;
2260         bool locked = false;
2261         struct vm_area_struct *vma = vmf->vma;
2262         struct mm_struct *mm = vma->vm_mm;
2263         unsigned long addr = vmf->address;
2264
2265         debug_dma_assert_idle(src);
2266
2267         if (likely(src)) {
2268                 copy_user_highpage(dst, src, addr, vma);
2269                 return true;
2270         }
2271
2272         /*
2273          * If the source page was a PFN mapping, we don't have
2274          * a "struct page" for it. We do a best-effort copy by
2275          * just copying from the original user address. If that
2276          * fails, we just zero-fill it. Live with it.
2277          */
2278         kaddr = kmap_atomic(dst);
2279         uaddr = (void __user *)(addr & PAGE_MASK);
2280
2281         /*
2282          * On architectures with software "accessed" bits, we would
2283          * take a double page fault, so mark it accessed here.
2284          */
2285         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2286                 pte_t entry;
2287
2288                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2289                 locked = true;
2290                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2291                         /*
2292                          * Other thread has already handled the fault
2293                          * and we don't need to do anything. If it's
2294                          * not the case, the fault will be triggered
2295                          * again on the same address.
2296                          */
2297                         ret = false;
2298                         goto pte_unlock;
2299                 }
2300
2301                 entry = pte_mkyoung(vmf->orig_pte);
2302                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2303                         update_mmu_cache(vma, addr, vmf->pte);
2304         }
2305
2306         /*
2307          * This really shouldn't fail, because the page is there
2308          * in the page tables. But it might just be unreadable,
2309          * in which case we just give up and fill the result with
2310          * zeroes.
2311          */
2312         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2313                 if (locked)
2314                         goto warn;
2315
2316                 /* Re-validate under PTL if the page is still mapped */
2317                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2318                 locked = true;
2319                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2320                         /* The PTE changed under us. Retry page fault. */
2321                         ret = false;
2322                         goto pte_unlock;
2323                 }
2324
2325                 /*
2326                  * The same page can be mapped back since last copy attampt.
2327                  * Try to copy again under PTL.
2328                  */
2329                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2330                         /*
2331                          * Give a warn in case there can be some obscure
2332                          * use-case
2333                          */
2334 warn:
2335                         WARN_ON_ONCE(1);
2336                         clear_page(kaddr);
2337                 }
2338         }
2339
2340         ret = true;
2341
2342 pte_unlock:
2343         if (locked)
2344                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2345         kunmap_atomic(kaddr);
2346         flush_dcache_page(dst);
2347
2348         return ret;
2349 }
2350
2351 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2352 {
2353         struct file *vm_file = vma->vm_file;
2354
2355         if (vm_file)
2356                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2357
2358         /*
2359          * Special mappings (e.g. VDSO) do not have any file so fake
2360          * a default GFP_KERNEL for them.
2361          */
2362         return GFP_KERNEL;
2363 }
2364
2365 /*
2366  * Notify the address space that the page is about to become writable so that
2367  * it can prohibit this or wait for the page to get into an appropriate state.
2368  *
2369  * We do this without the lock held, so that it can sleep if it needs to.
2370  */
2371 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2372 {
2373         vm_fault_t ret;
2374         struct page *page = vmf->page;
2375         unsigned int old_flags = vmf->flags;
2376
2377         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2378
2379         if (vmf->vma->vm_file &&
2380             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2381                 return VM_FAULT_SIGBUS;
2382
2383         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2384         /* Restore original flags so that caller is not surprised */
2385         vmf->flags = old_flags;
2386         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2387                 return ret;
2388         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2389                 lock_page(page);
2390                 if (!page->mapping) {
2391                         unlock_page(page);
2392                         return 0; /* retry */
2393                 }
2394                 ret |= VM_FAULT_LOCKED;
2395         } else
2396                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2397         return ret;
2398 }
2399
2400 /*
2401  * Handle dirtying of a page in shared file mapping on a write fault.
2402  *
2403  * The function expects the page to be locked and unlocks it.
2404  */
2405 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2406 {
2407         struct vm_area_struct *vma = vmf->vma;
2408         struct address_space *mapping;
2409         struct page *page = vmf->page;
2410         bool dirtied;
2411         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2412
2413         dirtied = set_page_dirty(page);
2414         VM_BUG_ON_PAGE(PageAnon(page), page);
2415         /*
2416          * Take a local copy of the address_space - page.mapping may be zeroed
2417          * by truncate after unlock_page().   The address_space itself remains
2418          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2419          * release semantics to prevent the compiler from undoing this copying.
2420          */
2421         mapping = page_rmapping(page);
2422         unlock_page(page);
2423
2424         if (!page_mkwrite)
2425                 file_update_time(vma->vm_file);
2426
2427         /*
2428          * Throttle page dirtying rate down to writeback speed.
2429          *
2430          * mapping may be NULL here because some device drivers do not
2431          * set page.mapping but still dirty their pages
2432          *
2433          * Drop the mmap_sem before waiting on IO, if we can. The file
2434          * is pinning the mapping, as per above.
2435          */
2436         if ((dirtied || page_mkwrite) && mapping) {
2437                 struct file *fpin;
2438
2439                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2440                 balance_dirty_pages_ratelimited(mapping);
2441                 if (fpin) {
2442                         fput(fpin);
2443                         return VM_FAULT_RETRY;
2444                 }
2445         }
2446
2447         return 0;
2448 }
2449
2450 /*
2451  * Handle write page faults for pages that can be reused in the current vma
2452  *
2453  * This can happen either due to the mapping being with the VM_SHARED flag,
2454  * or due to us being the last reference standing to the page. In either
2455  * case, all we need to do here is to mark the page as writable and update
2456  * any related book-keeping.
2457  */
2458 static inline void wp_page_reuse(struct vm_fault *vmf)
2459         __releases(vmf->ptl)
2460 {
2461         struct vm_area_struct *vma = vmf->vma;
2462         struct page *page = vmf->page;
2463         pte_t entry;
2464         /*
2465          * Clear the pages cpupid information as the existing
2466          * information potentially belongs to a now completely
2467          * unrelated process.
2468          */
2469         if (page)
2470                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2471
2472         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2473         entry = pte_mkyoung(vmf->orig_pte);
2474         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2475         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2476                 update_mmu_cache(vma, vmf->address, vmf->pte);
2477         pte_unmap_unlock(vmf->pte, vmf->ptl);
2478 }
2479
2480 /*
2481  * Handle the case of a page which we actually need to copy to a new page.
2482  *
2483  * Called with mmap_sem locked and the old page referenced, but
2484  * without the ptl held.
2485  *
2486  * High level logic flow:
2487  *
2488  * - Allocate a page, copy the content of the old page to the new one.
2489  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2490  * - Take the PTL. If the pte changed, bail out and release the allocated page
2491  * - If the pte is still the way we remember it, update the page table and all
2492  *   relevant references. This includes dropping the reference the page-table
2493  *   held to the old page, as well as updating the rmap.
2494  * - In any case, unlock the PTL and drop the reference we took to the old page.
2495  */
2496 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2497 {
2498         struct vm_area_struct *vma = vmf->vma;
2499         struct mm_struct *mm = vma->vm_mm;
2500         struct page *old_page = vmf->page;
2501         struct page *new_page = NULL;
2502         pte_t entry;
2503         int page_copied = 0;
2504         struct mem_cgroup *memcg;
2505         struct mmu_notifier_range range;
2506
2507         if (unlikely(anon_vma_prepare(vma)))
2508                 goto oom;
2509
2510         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2511                 new_page = alloc_zeroed_user_highpage_movable(vma,
2512                                                               vmf->address);
2513                 if (!new_page)
2514                         goto oom;
2515         } else {
2516                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2517                                 vmf->address);
2518                 if (!new_page)
2519                         goto oom;
2520
2521                 if (!cow_user_page(new_page, old_page, vmf)) {
2522                         /*
2523                          * COW failed, if the fault was solved by other,
2524                          * it's fine. If not, userspace would re-fault on
2525                          * the same address and we will handle the fault
2526                          * from the second attempt.
2527                          */
2528                         put_page(new_page);
2529                         if (old_page)
2530                                 put_page(old_page);
2531                         return 0;
2532                 }
2533         }
2534
2535         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2536                 goto oom_free_new;
2537
2538         __SetPageUptodate(new_page);
2539
2540         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2541                                 vmf->address & PAGE_MASK,
2542                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2543         mmu_notifier_invalidate_range_start(&range);
2544
2545         /*
2546          * Re-check the pte - we dropped the lock
2547          */
2548         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2549         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2550                 if (old_page) {
2551                         if (!PageAnon(old_page)) {
2552                                 dec_mm_counter_fast(mm,
2553                                                 mm_counter_file(old_page));
2554                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2555                         }
2556                 } else {
2557                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2558                 }
2559                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2560                 entry = mk_pte(new_page, vma->vm_page_prot);
2561                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2562                 /*
2563                  * Clear the pte entry and flush it first, before updating the
2564                  * pte with the new entry. This will avoid a race condition
2565                  * seen in the presence of one thread doing SMC and another
2566                  * thread doing COW.
2567                  */
2568                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2569                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2570                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2571                 lru_cache_add_active_or_unevictable(new_page, vma);
2572                 /*
2573                  * We call the notify macro here because, when using secondary
2574                  * mmu page tables (such as kvm shadow page tables), we want the
2575                  * new page to be mapped directly into the secondary page table.
2576                  */
2577                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2578                 update_mmu_cache(vma, vmf->address, vmf->pte);
2579                 if (old_page) {
2580                         /*
2581                          * Only after switching the pte to the new page may
2582                          * we remove the mapcount here. Otherwise another
2583                          * process may come and find the rmap count decremented
2584                          * before the pte is switched to the new page, and
2585                          * "reuse" the old page writing into it while our pte
2586                          * here still points into it and can be read by other
2587                          * threads.
2588                          *
2589                          * The critical issue is to order this
2590                          * page_remove_rmap with the ptp_clear_flush above.
2591                          * Those stores are ordered by (if nothing else,)
2592                          * the barrier present in the atomic_add_negative
2593                          * in page_remove_rmap.
2594                          *
2595                          * Then the TLB flush in ptep_clear_flush ensures that
2596                          * no process can access the old page before the
2597                          * decremented mapcount is visible. And the old page
2598                          * cannot be reused until after the decremented
2599                          * mapcount is visible. So transitively, TLBs to
2600                          * old page will be flushed before it can be reused.
2601                          */
2602                         page_remove_rmap(old_page, false);
2603                 }
2604
2605                 /* Free the old page.. */
2606                 new_page = old_page;
2607                 page_copied = 1;
2608         } else {
2609                 mem_cgroup_cancel_charge(new_page, memcg, false);
2610         }
2611
2612         if (new_page)
2613                 put_page(new_page);
2614
2615         pte_unmap_unlock(vmf->pte, vmf->ptl);
2616         /*
2617          * No need to double call mmu_notifier->invalidate_range() callback as
2618          * the above ptep_clear_flush_notify() did already call it.
2619          */
2620         mmu_notifier_invalidate_range_only_end(&range);
2621         if (old_page) {
2622                 /*
2623                  * Don't let another task, with possibly unlocked vma,
2624                  * keep the mlocked page.
2625                  */
2626                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2627                         lock_page(old_page);    /* LRU manipulation */
2628                         if (PageMlocked(old_page))
2629                                 munlock_vma_page(old_page);
2630                         unlock_page(old_page);
2631                 }
2632                 put_page(old_page);
2633         }
2634         return page_copied ? VM_FAULT_WRITE : 0;
2635 oom_free_new:
2636         put_page(new_page);
2637 oom:
2638         if (old_page)
2639                 put_page(old_page);
2640         return VM_FAULT_OOM;
2641 }
2642
2643 /**
2644  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2645  *                        writeable once the page is prepared
2646  *
2647  * @vmf: structure describing the fault
2648  *
2649  * This function handles all that is needed to finish a write page fault in a
2650  * shared mapping due to PTE being read-only once the mapped page is prepared.
2651  * It handles locking of PTE and modifying it.
2652  *
2653  * The function expects the page to be locked or other protection against
2654  * concurrent faults / writeback (such as DAX radix tree locks).
2655  *
2656  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2657  * we acquired PTE lock.
2658  */
2659 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2660 {
2661         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2662         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2663                                        &vmf->ptl);
2664         /*
2665          * We might have raced with another page fault while we released the
2666          * pte_offset_map_lock.
2667          */
2668         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2669                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2670                 return VM_FAULT_NOPAGE;
2671         }
2672         wp_page_reuse(vmf);
2673         return 0;
2674 }
2675
2676 /*
2677  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2678  * mapping
2679  */
2680 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2681 {
2682         struct vm_area_struct *vma = vmf->vma;
2683
2684         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2685                 vm_fault_t ret;
2686
2687                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2688                 vmf->flags |= FAULT_FLAG_MKWRITE;
2689                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2690                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2691                         return ret;
2692                 return finish_mkwrite_fault(vmf);
2693         }
2694         wp_page_reuse(vmf);
2695         return VM_FAULT_WRITE;
2696 }
2697
2698 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2699         __releases(vmf->ptl)
2700 {
2701         struct vm_area_struct *vma = vmf->vma;
2702         vm_fault_t ret = VM_FAULT_WRITE;
2703
2704         get_page(vmf->page);
2705
2706         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2707                 vm_fault_t tmp;
2708
2709                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2710                 tmp = do_page_mkwrite(vmf);
2711                 if (unlikely(!tmp || (tmp &
2712                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2713                         put_page(vmf->page);
2714                         return tmp;
2715                 }
2716                 tmp = finish_mkwrite_fault(vmf);
2717                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2718                         unlock_page(vmf->page);
2719                         put_page(vmf->page);
2720                         return tmp;
2721                 }
2722         } else {
2723                 wp_page_reuse(vmf);
2724                 lock_page(vmf->page);
2725         }
2726         ret |= fault_dirty_shared_page(vmf);
2727         put_page(vmf->page);
2728
2729         return ret;
2730 }
2731
2732 /*
2733  * This routine handles present pages, when users try to write
2734  * to a shared page. It is done by copying the page to a new address
2735  * and decrementing the shared-page counter for the old page.
2736  *
2737  * Note that this routine assumes that the protection checks have been
2738  * done by the caller (the low-level page fault routine in most cases).
2739  * Thus we can safely just mark it writable once we've done any necessary
2740  * COW.
2741  *
2742  * We also mark the page dirty at this point even though the page will
2743  * change only once the write actually happens. This avoids a few races,
2744  * and potentially makes it more efficient.
2745  *
2746  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2747  * but allow concurrent faults), with pte both mapped and locked.
2748  * We return with mmap_sem still held, but pte unmapped and unlocked.
2749  */
2750 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2751         __releases(vmf->ptl)
2752 {
2753         struct vm_area_struct *vma = vmf->vma;
2754
2755         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2756         if (!vmf->page) {
2757                 /*
2758                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2759                  * VM_PFNMAP VMA.
2760                  *
2761                  * We should not cow pages in a shared writeable mapping.
2762                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2763                  */
2764                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2765                                      (VM_WRITE|VM_SHARED))
2766                         return wp_pfn_shared(vmf);
2767
2768                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2769                 return wp_page_copy(vmf);
2770         }
2771
2772         /*
2773          * Take out anonymous pages first, anonymous shared vmas are
2774          * not dirty accountable.
2775          */
2776         if (PageAnon(vmf->page)) {
2777                 int total_map_swapcount;
2778                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2779                                            page_count(vmf->page) != 1))
2780                         goto copy;
2781                 if (!trylock_page(vmf->page)) {
2782                         get_page(vmf->page);
2783                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2784                         lock_page(vmf->page);
2785                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2786                                         vmf->address, &vmf->ptl);
2787                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2788                                 unlock_page(vmf->page);
2789                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2790                                 put_page(vmf->page);
2791                                 return 0;
2792                         }
2793                         put_page(vmf->page);
2794                 }
2795                 if (PageKsm(vmf->page)) {
2796                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2797                                                      vmf->address);
2798                         unlock_page(vmf->page);
2799                         if (!reused)
2800                                 goto copy;
2801                         wp_page_reuse(vmf);
2802                         return VM_FAULT_WRITE;
2803                 }
2804                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2805                         if (total_map_swapcount == 1) {
2806                                 /*
2807                                  * The page is all ours. Move it to
2808                                  * our anon_vma so the rmap code will
2809                                  * not search our parent or siblings.
2810                                  * Protected against the rmap code by
2811                                  * the page lock.
2812                                  */
2813                                 page_move_anon_rmap(vmf->page, vma);
2814                         }
2815                         unlock_page(vmf->page);
2816                         wp_page_reuse(vmf);
2817                         return VM_FAULT_WRITE;
2818                 }
2819                 unlock_page(vmf->page);
2820         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2821                                         (VM_WRITE|VM_SHARED))) {
2822                 return wp_page_shared(vmf);
2823         }
2824 copy:
2825         /*
2826          * Ok, we need to copy. Oh, well..
2827          */
2828         get_page(vmf->page);
2829
2830         pte_unmap_unlock(vmf->pte, vmf->ptl);
2831         return wp_page_copy(vmf);
2832 }
2833
2834 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2835                 unsigned long start_addr, unsigned long end_addr,
2836                 struct zap_details *details)
2837 {
2838         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2839 }
2840
2841 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2842                                             struct zap_details *details)
2843 {
2844         struct vm_area_struct *vma;
2845         pgoff_t vba, vea, zba, zea;
2846
2847         vma_interval_tree_foreach(vma, root,
2848                         details->first_index, details->last_index) {
2849
2850                 vba = vma->vm_pgoff;
2851                 vea = vba + vma_pages(vma) - 1;
2852                 zba = details->first_index;
2853                 if (zba < vba)
2854                         zba = vba;
2855                 zea = details->last_index;
2856                 if (zea > vea)
2857                         zea = vea;
2858
2859                 unmap_mapping_range_vma(vma,
2860                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2861                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2862                                 details);
2863         }
2864 }
2865
2866 /**
2867  * unmap_mapping_pages() - Unmap pages from processes.
2868  * @mapping: The address space containing pages to be unmapped.
2869  * @start: Index of first page to be unmapped.
2870  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2871  * @even_cows: Whether to unmap even private COWed pages.
2872  *
2873  * Unmap the pages in this address space from any userspace process which
2874  * has them mmaped.  Generally, you want to remove COWed pages as well when
2875  * a file is being truncated, but not when invalidating pages from the page
2876  * cache.
2877  */
2878 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2879                 pgoff_t nr, bool even_cows)
2880 {
2881         struct zap_details details = { };
2882
2883         details.check_mapping = even_cows ? NULL : mapping;
2884         details.first_index = start;
2885         details.last_index = start + nr - 1;
2886         if (details.last_index < details.first_index)
2887                 details.last_index = ULONG_MAX;
2888
2889         i_mmap_lock_write(mapping);
2890         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2891                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2892         i_mmap_unlock_write(mapping);
2893 }
2894
2895 /**
2896  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2897  * address_space corresponding to the specified byte range in the underlying
2898  * file.
2899  *
2900  * @mapping: the address space containing mmaps to be unmapped.
2901  * @holebegin: byte in first page to unmap, relative to the start of
2902  * the underlying file.  This will be rounded down to a PAGE_SIZE
2903  * boundary.  Note that this is different from truncate_pagecache(), which
2904  * must keep the partial page.  In contrast, we must get rid of
2905  * partial pages.
2906  * @holelen: size of prospective hole in bytes.  This will be rounded
2907  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2908  * end of the file.
2909  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2910  * but 0 when invalidating pagecache, don't throw away private data.
2911  */
2912 void unmap_mapping_range(struct address_space *mapping,
2913                 loff_t const holebegin, loff_t const holelen, int even_cows)
2914 {
2915         pgoff_t hba = holebegin >> PAGE_SHIFT;
2916         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2917
2918         /* Check for overflow. */
2919         if (sizeof(holelen) > sizeof(hlen)) {
2920                 long long holeend =
2921                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2922                 if (holeend & ~(long long)ULONG_MAX)
2923                         hlen = ULONG_MAX - hba + 1;
2924         }
2925
2926         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2927 }
2928 EXPORT_SYMBOL(unmap_mapping_range);
2929
2930 /*
2931  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2932  * but allow concurrent faults), and pte mapped but not yet locked.
2933  * We return with pte unmapped and unlocked.
2934  *
2935  * We return with the mmap_sem locked or unlocked in the same cases
2936  * as does filemap_fault().
2937  */
2938 vm_fault_t do_swap_page(struct vm_fault *vmf)
2939 {
2940         struct vm_area_struct *vma = vmf->vma;
2941         struct page *page = NULL, *swapcache;
2942         struct mem_cgroup *memcg;
2943         swp_entry_t entry;
2944         pte_t pte;
2945         int locked;
2946         int exclusive = 0;
2947         vm_fault_t ret = 0;
2948
2949         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2950                 goto out;
2951
2952         entry = pte_to_swp_entry(vmf->orig_pte);
2953         if (unlikely(non_swap_entry(entry))) {
2954                 if (is_migration_entry(entry)) {
2955                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2956                                              vmf->address);
2957                 } else if (is_device_private_entry(entry)) {
2958                         vmf->page = device_private_entry_to_page(entry);
2959                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2960                 } else if (is_hwpoison_entry(entry)) {
2961                         ret = VM_FAULT_HWPOISON;
2962                 } else {
2963                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2964                         ret = VM_FAULT_SIGBUS;
2965                 }
2966                 goto out;
2967         }
2968
2969
2970         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2971         page = lookup_swap_cache(entry, vma, vmf->address);
2972         swapcache = page;
2973
2974         if (!page) {
2975                 struct swap_info_struct *si = swp_swap_info(entry);
2976
2977                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2978                                 __swap_count(entry) == 1) {
2979                         /* skip swapcache */
2980                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2981                                                         vmf->address);
2982                         if (page) {
2983                                 __SetPageLocked(page);
2984                                 __SetPageSwapBacked(page);
2985                                 set_page_private(page, entry.val);
2986                                 lru_cache_add_anon(page);
2987                                 swap_readpage(page, true);
2988                         }
2989                 } else {
2990                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2991                                                 vmf);
2992                         swapcache = page;
2993                 }
2994
2995                 if (!page) {
2996                         /*
2997                          * Back out if somebody else faulted in this pte
2998                          * while we released the pte lock.
2999                          */
3000                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3001                                         vmf->address, &vmf->ptl);
3002                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3003                                 ret = VM_FAULT_OOM;
3004                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3005                         goto unlock;
3006                 }
3007
3008                 /* Had to read the page from swap area: Major fault */
3009                 ret = VM_FAULT_MAJOR;
3010                 count_vm_event(PGMAJFAULT);
3011                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3012         } else if (PageHWPoison(page)) {
3013                 /*
3014                  * hwpoisoned dirty swapcache pages are kept for killing
3015                  * owner processes (which may be unknown at hwpoison time)
3016                  */
3017                 ret = VM_FAULT_HWPOISON;
3018                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3019                 goto out_release;
3020         }
3021
3022         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3023
3024         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3025         if (!locked) {
3026                 ret |= VM_FAULT_RETRY;
3027                 goto out_release;
3028         }
3029
3030         /*
3031          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3032          * release the swapcache from under us.  The page pin, and pte_same
3033          * test below, are not enough to exclude that.  Even if it is still
3034          * swapcache, we need to check that the page's swap has not changed.
3035          */
3036         if (unlikely((!PageSwapCache(page) ||
3037                         page_private(page) != entry.val)) && swapcache)
3038                 goto out_page;
3039
3040         page = ksm_might_need_to_copy(page, vma, vmf->address);
3041         if (unlikely(!page)) {
3042                 ret = VM_FAULT_OOM;
3043                 page = swapcache;
3044                 goto out_page;
3045         }
3046
3047         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3048                                         &memcg, false)) {
3049                 ret = VM_FAULT_OOM;
3050                 goto out_page;
3051         }
3052
3053         /*
3054          * Back out if somebody else already faulted in this pte.
3055          */
3056         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3057                         &vmf->ptl);
3058         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3059                 goto out_nomap;
3060
3061         if (unlikely(!PageUptodate(page))) {
3062                 ret = VM_FAULT_SIGBUS;
3063                 goto out_nomap;
3064         }
3065
3066         /*
3067          * The page isn't present yet, go ahead with the fault.
3068          *
3069          * Be careful about the sequence of operations here.
3070          * To get its accounting right, reuse_swap_page() must be called
3071          * while the page is counted on swap but not yet in mapcount i.e.
3072          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3073          * must be called after the swap_free(), or it will never succeed.
3074          */
3075
3076         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3077         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3078         pte = mk_pte(page, vma->vm_page_prot);
3079         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3080                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3081                 vmf->flags &= ~FAULT_FLAG_WRITE;
3082                 ret |= VM_FAULT_WRITE;
3083                 exclusive = RMAP_EXCLUSIVE;
3084         }
3085         flush_icache_page(vma, page);
3086         if (pte_swp_soft_dirty(vmf->orig_pte))
3087                 pte = pte_mksoft_dirty(pte);
3088         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3089         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3090         vmf->orig_pte = pte;
3091
3092         /* ksm created a completely new copy */
3093         if (unlikely(page != swapcache && swapcache)) {
3094                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3095                 mem_cgroup_commit_charge(page, memcg, false, false);
3096                 lru_cache_add_active_or_unevictable(page, vma);
3097         } else {
3098                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3099                 mem_cgroup_commit_charge(page, memcg, true, false);
3100                 activate_page(page);
3101         }
3102
3103         swap_free(entry);
3104         if (mem_cgroup_swap_full(page) ||
3105             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3106                 try_to_free_swap(page);
3107         unlock_page(page);
3108         if (page != swapcache && swapcache) {
3109                 /*
3110                  * Hold the lock to avoid the swap entry to be reused
3111                  * until we take the PT lock for the pte_same() check
3112                  * (to avoid false positives from pte_same). For
3113                  * further safety release the lock after the swap_free
3114                  * so that the swap count won't change under a
3115                  * parallel locked swapcache.
3116                  */
3117                 unlock_page(swapcache);
3118                 put_page(swapcache);
3119         }
3120
3121         if (vmf->flags & FAULT_FLAG_WRITE) {
3122                 ret |= do_wp_page(vmf);
3123                 if (ret & VM_FAULT_ERROR)
3124                         ret &= VM_FAULT_ERROR;
3125                 goto out;
3126         }
3127
3128         /* No need to invalidate - it was non-present before */
3129         update_mmu_cache(vma, vmf->address, vmf->pte);
3130 unlock:
3131         pte_unmap_unlock(vmf->pte, vmf->ptl);
3132 out:
3133         return ret;
3134 out_nomap:
3135         mem_cgroup_cancel_charge(page, memcg, false);
3136         pte_unmap_unlock(vmf->pte, vmf->ptl);
3137 out_page:
3138         unlock_page(page);
3139 out_release:
3140         put_page(page);
3141         if (page != swapcache && swapcache) {
3142                 unlock_page(swapcache);
3143                 put_page(swapcache);
3144         }
3145         return ret;
3146 }
3147
3148 /*
3149  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3150  * but allow concurrent faults), and pte mapped but not yet locked.
3151  * We return with mmap_sem still held, but pte unmapped and unlocked.
3152  */
3153 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3154 {
3155         struct vm_area_struct *vma = vmf->vma;
3156         struct mem_cgroup *memcg;
3157         struct page *page;
3158         vm_fault_t ret = 0;
3159         pte_t entry;
3160
3161         /* File mapping without ->vm_ops ? */
3162         if (vma->vm_flags & VM_SHARED)
3163                 return VM_FAULT_SIGBUS;
3164
3165         /*
3166          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3167          * pte_offset_map() on pmds where a huge pmd might be created
3168          * from a different thread.
3169          *
3170          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3171          * parallel threads are excluded by other means.
3172          *
3173          * Here we only have down_read(mmap_sem).
3174          */
3175         if (pte_alloc(vma->vm_mm, vmf->pmd))
3176                 return VM_FAULT_OOM;
3177
3178         /* See the comment in pte_alloc_one_map() */
3179         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3180                 return 0;
3181
3182         /* Use the zero-page for reads */
3183         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3184                         !mm_forbids_zeropage(vma->vm_mm)) {
3185                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3186                                                 vma->vm_page_prot));
3187                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3188                                 vmf->address, &vmf->ptl);
3189                 if (!pte_none(*vmf->pte))
3190                         goto unlock;
3191                 ret = check_stable_address_space(vma->vm_mm);
3192                 if (ret)
3193                         goto unlock;
3194                 /* Deliver the page fault to userland, check inside PT lock */
3195                 if (userfaultfd_missing(vma)) {
3196                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3197                         return handle_userfault(vmf, VM_UFFD_MISSING);
3198                 }
3199                 goto setpte;
3200         }
3201
3202         /* Allocate our own private page. */
3203         if (unlikely(anon_vma_prepare(vma)))
3204                 goto oom;
3205         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3206         if (!page)
3207                 goto oom;
3208
3209         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3210                                         false))
3211                 goto oom_free_page;
3212
3213         /*
3214          * The memory barrier inside __SetPageUptodate makes sure that
3215          * preceding stores to the page contents become visible before
3216          * the set_pte_at() write.
3217          */
3218         __SetPageUptodate(page);
3219
3220         entry = mk_pte(page, vma->vm_page_prot);
3221         if (vma->vm_flags & VM_WRITE)
3222                 entry = pte_mkwrite(pte_mkdirty(entry));
3223
3224         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3225                         &vmf->ptl);
3226         if (!pte_none(*vmf->pte))
3227                 goto release;
3228
3229         ret = check_stable_address_space(vma->vm_mm);
3230         if (ret)
3231                 goto release;
3232
3233         /* Deliver the page fault to userland, check inside PT lock */
3234         if (userfaultfd_missing(vma)) {
3235                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3236                 mem_cgroup_cancel_charge(page, memcg, false);
3237                 put_page(page);
3238                 return handle_userfault(vmf, VM_UFFD_MISSING);
3239         }
3240
3241         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3242         page_add_new_anon_rmap(page, vma, vmf->address, false);
3243         mem_cgroup_commit_charge(page, memcg, false, false);
3244         lru_cache_add_active_or_unevictable(page, vma);
3245 setpte:
3246         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3247
3248         /* No need to invalidate - it was non-present before */
3249         update_mmu_cache(vma, vmf->address, vmf->pte);
3250 unlock:
3251         pte_unmap_unlock(vmf->pte, vmf->ptl);
3252         return ret;
3253 release:
3254         mem_cgroup_cancel_charge(page, memcg, false);
3255         put_page(page);
3256         goto unlock;
3257 oom_free_page:
3258         put_page(page);
3259 oom:
3260         return VM_FAULT_OOM;
3261 }
3262
3263 /*
3264  * The mmap_sem must have been held on entry, and may have been
3265  * released depending on flags and vma->vm_ops->fault() return value.
3266  * See filemap_fault() and __lock_page_retry().
3267  */
3268 static vm_fault_t __do_fault(struct vm_fault *vmf)
3269 {
3270         struct vm_area_struct *vma = vmf->vma;
3271         vm_fault_t ret;
3272
3273         /*
3274          * Preallocate pte before we take page_lock because this might lead to
3275          * deadlocks for memcg reclaim which waits for pages under writeback:
3276          *                              lock_page(A)
3277          *                              SetPageWriteback(A)
3278          *                              unlock_page(A)
3279          * lock_page(B)
3280          *                              lock_page(B)
3281          * pte_alloc_pne
3282          *   shrink_page_list
3283          *     wait_on_page_writeback(A)
3284          *                              SetPageWriteback(B)
3285          *                              unlock_page(B)
3286          *                              # flush A, B to clear the writeback
3287          */
3288         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3289                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3290                 if (!vmf->prealloc_pte)
3291                         return VM_FAULT_OOM;
3292                 smp_wmb(); /* See comment in __pte_alloc() */
3293         }
3294
3295         ret = vma->vm_ops->fault(vmf);
3296         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3297                             VM_FAULT_DONE_COW)))
3298                 return ret;
3299
3300         if (unlikely(PageHWPoison(vmf->page))) {
3301                 if (ret & VM_FAULT_LOCKED)
3302                         unlock_page(vmf->page);
3303                 put_page(vmf->page);
3304                 vmf->page = NULL;
3305                 return VM_FAULT_HWPOISON;
3306         }
3307
3308         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3309                 lock_page(vmf->page);
3310         else
3311                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3312
3313         return ret;
3314 }
3315
3316 /*
3317  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3318  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3319  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3320  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3321  */
3322 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3323 {
3324         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3325 }
3326
3327 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3328 {
3329         struct vm_area_struct *vma = vmf->vma;
3330
3331         if (!pmd_none(*vmf->pmd))
3332                 goto map_pte;
3333         if (vmf->prealloc_pte) {
3334                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3335                 if (unlikely(!pmd_none(*vmf->pmd))) {
3336                         spin_unlock(vmf->ptl);
3337                         goto map_pte;
3338                 }
3339
3340                 mm_inc_nr_ptes(vma->vm_mm);
3341                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3342                 spin_unlock(vmf->ptl);
3343                 vmf->prealloc_pte = NULL;
3344         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3345                 return VM_FAULT_OOM;
3346         }
3347 map_pte:
3348         /*
3349          * If a huge pmd materialized under us just retry later.  Use
3350          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3351          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3352          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3353          * running immediately after a huge pmd fault in a different thread of
3354          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3355          * All we have to ensure is that it is a regular pmd that we can walk
3356          * with pte_offset_map() and we can do that through an atomic read in
3357          * C, which is what pmd_trans_unstable() provides.
3358          */
3359         if (pmd_devmap_trans_unstable(vmf->pmd))
3360                 return VM_FAULT_NOPAGE;
3361
3362         /*
3363          * At this point we know that our vmf->pmd points to a page of ptes
3364          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3365          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3366          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3367          * be valid and we will re-check to make sure the vmf->pte isn't
3368          * pte_none() under vmf->ptl protection when we return to
3369          * alloc_set_pte().
3370          */
3371         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3372                         &vmf->ptl);
3373         return 0;
3374 }
3375
3376 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3377 static void deposit_prealloc_pte(struct vm_fault *vmf)
3378 {
3379         struct vm_area_struct *vma = vmf->vma;
3380
3381         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3382         /*
3383          * We are going to consume the prealloc table,
3384          * count that as nr_ptes.
3385          */
3386         mm_inc_nr_ptes(vma->vm_mm);
3387         vmf->prealloc_pte = NULL;
3388 }
3389
3390 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3391 {
3392         struct vm_area_struct *vma = vmf->vma;
3393         bool write = vmf->flags & FAULT_FLAG_WRITE;
3394         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3395         pmd_t entry;
3396         int i;
3397         vm_fault_t ret;
3398
3399         if (!transhuge_vma_suitable(vma, haddr))
3400                 return VM_FAULT_FALLBACK;
3401
3402         ret = VM_FAULT_FALLBACK;
3403         page = compound_head(page);
3404
3405         /*
3406          * Archs like ppc64 need additonal space to store information
3407          * related to pte entry. Use the preallocated table for that.
3408          */
3409         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3410                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3411                 if (!vmf->prealloc_pte)
3412                         return VM_FAULT_OOM;
3413                 smp_wmb(); /* See comment in __pte_alloc() */
3414         }
3415
3416         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3417         if (unlikely(!pmd_none(*vmf->pmd)))
3418                 goto out;
3419
3420         for (i = 0; i < HPAGE_PMD_NR; i++)
3421                 flush_icache_page(vma, page + i);
3422
3423         entry = mk_huge_pmd(page, vma->vm_page_prot);
3424         if (write)
3425                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3426
3427         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3428         page_add_file_rmap(page, true);
3429         /*
3430          * deposit and withdraw with pmd lock held
3431          */
3432         if (arch_needs_pgtable_deposit())
3433                 deposit_prealloc_pte(vmf);
3434
3435         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3436
3437         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3438
3439         /* fault is handled */
3440         ret = 0;
3441         count_vm_event(THP_FILE_MAPPED);
3442 out:
3443         spin_unlock(vmf->ptl);
3444         return ret;
3445 }
3446 #else
3447 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3448 {
3449         BUILD_BUG();
3450         return 0;
3451 }
3452 #endif
3453
3454 /**
3455  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3456  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3457  *
3458  * @vmf: fault environment
3459  * @memcg: memcg to charge page (only for private mappings)
3460  * @page: page to map
3461  *
3462  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3463  * return.
3464  *
3465  * Target users are page handler itself and implementations of
3466  * vm_ops->map_pages.
3467  *
3468  * Return: %0 on success, %VM_FAULT_ code in case of error.
3469  */
3470 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3471                 struct page *page)
3472 {
3473         struct vm_area_struct *vma = vmf->vma;
3474         bool write = vmf->flags & FAULT_FLAG_WRITE;
3475         pte_t entry;
3476         vm_fault_t ret;
3477
3478         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3479                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3480                 /* THP on COW? */
3481                 VM_BUG_ON_PAGE(memcg, page);
3482
3483                 ret = do_set_pmd(vmf, page);
3484                 if (ret != VM_FAULT_FALLBACK)
3485                         return ret;
3486         }
3487
3488         if (!vmf->pte) {
3489                 ret = pte_alloc_one_map(vmf);
3490                 if (ret)
3491                         return ret;
3492         }
3493
3494         /* Re-check under ptl */
3495         if (unlikely(!pte_none(*vmf->pte)))
3496                 return VM_FAULT_NOPAGE;
3497
3498         flush_icache_page(vma, page);
3499         entry = mk_pte(page, vma->vm_page_prot);
3500         if (write)
3501                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3502         /* copy-on-write page */
3503         if (write && !(vma->vm_flags & VM_SHARED)) {
3504                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3505                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3506                 mem_cgroup_commit_charge(page, memcg, false, false);
3507                 lru_cache_add_active_or_unevictable(page, vma);
3508         } else {
3509                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3510                 page_add_file_rmap(page, false);
3511         }
3512         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3513
3514         /* no need to invalidate: a not-present page won't be cached */
3515         update_mmu_cache(vma, vmf->address, vmf->pte);
3516
3517         return 0;
3518 }
3519
3520
3521 /**
3522  * finish_fault - finish page fault once we have prepared the page to fault
3523  *
3524  * @vmf: structure describing the fault
3525  *
3526  * This function handles all that is needed to finish a page fault once the
3527  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3528  * given page, adds reverse page mapping, handles memcg charges and LRU
3529  * addition.
3530  *
3531  * The function expects the page to be locked and on success it consumes a
3532  * reference of a page being mapped (for the PTE which maps it).
3533  *
3534  * Return: %0 on success, %VM_FAULT_ code in case of error.
3535  */
3536 vm_fault_t finish_fault(struct vm_fault *vmf)
3537 {
3538         struct page *page;
3539         vm_fault_t ret = 0;
3540
3541         /* Did we COW the page? */
3542         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3543             !(vmf->vma->vm_flags & VM_SHARED))
3544                 page = vmf->cow_page;
3545         else
3546                 page = vmf->page;
3547
3548         /*
3549          * check even for read faults because we might have lost our CoWed
3550          * page
3551          */
3552         if (!(vmf->vma->vm_flags & VM_SHARED))
3553                 ret = check_stable_address_space(vmf->vma->vm_mm);
3554         if (!ret)
3555                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3556         if (vmf->pte)
3557                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3558         return ret;
3559 }
3560
3561 static unsigned long fault_around_bytes __read_mostly =
3562         rounddown_pow_of_two(65536);
3563
3564 #ifdef CONFIG_DEBUG_FS
3565 static int fault_around_bytes_get(void *data, u64 *val)
3566 {
3567         *val = fault_around_bytes;
3568         return 0;
3569 }
3570
3571 /*
3572  * fault_around_bytes must be rounded down to the nearest page order as it's
3573  * what do_fault_around() expects to see.
3574  */
3575 static int fault_around_bytes_set(void *data, u64 val)
3576 {
3577         if (val / PAGE_SIZE > PTRS_PER_PTE)
3578                 return -EINVAL;
3579         if (val > PAGE_SIZE)
3580                 fault_around_bytes = rounddown_pow_of_two(val);
3581         else
3582                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3583         return 0;
3584 }
3585 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3586                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3587
3588 static int __init fault_around_debugfs(void)
3589 {
3590         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3591                                    &fault_around_bytes_fops);
3592         return 0;
3593 }
3594 late_initcall(fault_around_debugfs);
3595 #endif
3596
3597 /*
3598  * do_fault_around() tries to map few pages around the fault address. The hope
3599  * is that the pages will be needed soon and this will lower the number of
3600  * faults to handle.
3601  *
3602  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3603  * not ready to be mapped: not up-to-date, locked, etc.
3604  *
3605  * This function is called with the page table lock taken. In the split ptlock
3606  * case the page table lock only protects only those entries which belong to
3607  * the page table corresponding to the fault address.
3608  *
3609  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3610  * only once.
3611  *
3612  * fault_around_bytes defines how many bytes we'll try to map.
3613  * do_fault_around() expects it to be set to a power of two less than or equal
3614  * to PTRS_PER_PTE.
3615  *
3616  * The virtual address of the area that we map is naturally aligned to
3617  * fault_around_bytes rounded down to the machine page size
3618  * (and therefore to page order).  This way it's easier to guarantee
3619  * that we don't cross page table boundaries.
3620  */
3621 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3622 {
3623         unsigned long address = vmf->address, nr_pages, mask;
3624         pgoff_t start_pgoff = vmf->pgoff;
3625         pgoff_t end_pgoff;
3626         int off;
3627         vm_fault_t ret = 0;
3628
3629         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3630         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3631
3632         vmf->address = max(address & mask, vmf->vma->vm_start);
3633         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3634         start_pgoff -= off;
3635
3636         /*
3637          *  end_pgoff is either the end of the page table, the end of
3638          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3639          */
3640         end_pgoff = start_pgoff -
3641                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3642                 PTRS_PER_PTE - 1;
3643         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3644                         start_pgoff + nr_pages - 1);
3645
3646         if (pmd_none(*vmf->pmd)) {
3647                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3648                 if (!vmf->prealloc_pte)
3649                         goto out;
3650                 smp_wmb(); /* See comment in __pte_alloc() */
3651         }
3652
3653         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3654
3655         /* Huge page is mapped? Page fault is solved */
3656         if (pmd_trans_huge(*vmf->pmd)) {
3657                 ret = VM_FAULT_NOPAGE;
3658                 goto out;
3659         }
3660
3661         /* ->map_pages() haven't done anything useful. Cold page cache? */
3662         if (!vmf->pte)
3663                 goto out;
3664
3665         /* check if the page fault is solved */
3666         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3667         if (!pte_none(*vmf->pte))
3668                 ret = VM_FAULT_NOPAGE;
3669         pte_unmap_unlock(vmf->pte, vmf->ptl);
3670 out:
3671         vmf->address = address;
3672         vmf->pte = NULL;
3673         return ret;
3674 }
3675
3676 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3677 {
3678         struct vm_area_struct *vma = vmf->vma;
3679         vm_fault_t ret = 0;
3680
3681         /*
3682          * Let's call ->map_pages() first and use ->fault() as fallback
3683          * if page by the offset is not ready to be mapped (cold cache or
3684          * something).
3685          */
3686         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3687                 ret = do_fault_around(vmf);
3688                 if (ret)
3689                         return ret;
3690         }
3691
3692         ret = __do_fault(vmf);
3693         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3694                 return ret;
3695
3696         ret |= finish_fault(vmf);
3697         unlock_page(vmf->page);
3698         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3699                 put_page(vmf->page);
3700         return ret;
3701 }
3702
3703 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3704 {
3705         struct vm_area_struct *vma = vmf->vma;
3706         vm_fault_t ret;
3707
3708         if (unlikely(anon_vma_prepare(vma)))
3709                 return VM_FAULT_OOM;
3710
3711         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3712         if (!vmf->cow_page)
3713                 return VM_FAULT_OOM;
3714
3715         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3716                                 &vmf->memcg, false)) {
3717                 put_page(vmf->cow_page);
3718                 return VM_FAULT_OOM;
3719         }
3720
3721         ret = __do_fault(vmf);
3722         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3723                 goto uncharge_out;
3724         if (ret & VM_FAULT_DONE_COW)
3725                 return ret;
3726
3727         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3728         __SetPageUptodate(vmf->cow_page);
3729
3730         ret |= finish_fault(vmf);
3731         unlock_page(vmf->page);
3732         put_page(vmf->page);
3733         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3734                 goto uncharge_out;
3735         return ret;
3736 uncharge_out:
3737         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3738         put_page(vmf->cow_page);
3739         return ret;
3740 }
3741
3742 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3743 {
3744         struct vm_area_struct *vma = vmf->vma;
3745         vm_fault_t ret, tmp;
3746
3747         ret = __do_fault(vmf);
3748         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3749                 return ret;
3750
3751         /*
3752          * Check if the backing address space wants to know that the page is
3753          * about to become writable
3754          */
3755         if (vma->vm_ops->page_mkwrite) {
3756                 unlock_page(vmf->page);
3757                 tmp = do_page_mkwrite(vmf);
3758                 if (unlikely(!tmp ||
3759                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3760                         put_page(vmf->page);
3761                         return tmp;
3762                 }
3763         }
3764
3765         ret |= finish_fault(vmf);
3766         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3767                                         VM_FAULT_RETRY))) {
3768                 unlock_page(vmf->page);
3769                 put_page(vmf->page);
3770                 return ret;
3771         }
3772
3773         ret |= fault_dirty_shared_page(vmf);
3774         return ret;
3775 }
3776
3777 /*
3778  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3779  * but allow concurrent faults).
3780  * The mmap_sem may have been released depending on flags and our
3781  * return value.  See filemap_fault() and __lock_page_or_retry().
3782  * If mmap_sem is released, vma may become invalid (for example
3783  * by other thread calling munmap()).
3784  */
3785 static vm_fault_t do_fault(struct vm_fault *vmf)
3786 {
3787         struct vm_area_struct *vma = vmf->vma;
3788         struct mm_struct *vm_mm = vma->vm_mm;
3789         vm_fault_t ret;
3790
3791         /*
3792          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3793          */
3794         if (!vma->vm_ops->fault) {
3795                 /*
3796                  * If we find a migration pmd entry or a none pmd entry, which
3797                  * should never happen, return SIGBUS
3798                  */
3799                 if (unlikely(!pmd_present(*vmf->pmd)))
3800                         ret = VM_FAULT_SIGBUS;
3801                 else {
3802                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3803                                                        vmf->pmd,
3804                                                        vmf->address,
3805                                                        &vmf->ptl);
3806                         /*
3807                          * Make sure this is not a temporary clearing of pte
3808                          * by holding ptl and checking again. A R/M/W update
3809                          * of pte involves: take ptl, clearing the pte so that
3810                          * we don't have concurrent modification by hardware
3811                          * followed by an update.
3812                          */
3813                         if (unlikely(pte_none(*vmf->pte)))
3814                                 ret = VM_FAULT_SIGBUS;
3815                         else
3816                                 ret = VM_FAULT_NOPAGE;
3817
3818                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3819                 }
3820         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3821                 ret = do_read_fault(vmf);
3822         else if (!(vma->vm_flags & VM_SHARED))
3823                 ret = do_cow_fault(vmf);
3824         else
3825                 ret = do_shared_fault(vmf);
3826
3827         /* preallocated pagetable is unused: free it */
3828         if (vmf->prealloc_pte) {
3829                 pte_free(vm_mm, vmf->prealloc_pte);
3830                 vmf->prealloc_pte = NULL;
3831         }
3832         return ret;
3833 }
3834
3835 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3836                                 unsigned long addr, int page_nid,
3837                                 int *flags)
3838 {
3839         get_page(page);
3840
3841         count_vm_numa_event(NUMA_HINT_FAULTS);
3842         if (page_nid == numa_node_id()) {
3843                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3844                 *flags |= TNF_FAULT_LOCAL;
3845         }
3846
3847         return mpol_misplaced(page, vma, addr);
3848 }
3849
3850 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3851 {
3852         struct vm_area_struct *vma = vmf->vma;
3853         struct page *page = NULL;
3854         int page_nid = NUMA_NO_NODE;
3855         int last_cpupid;
3856         int target_nid;
3857         bool migrated = false;
3858         pte_t pte, old_pte;
3859         bool was_writable = pte_savedwrite(vmf->orig_pte);
3860         int flags = 0;
3861
3862         /*
3863          * The "pte" at this point cannot be used safely without
3864          * validation through pte_unmap_same(). It's of NUMA type but
3865          * the pfn may be screwed if the read is non atomic.
3866          */
3867         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3868         spin_lock(vmf->ptl);
3869         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3870                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3871                 goto out;
3872         }
3873
3874         /*
3875          * Make it present again, Depending on how arch implementes non
3876          * accessible ptes, some can allow access by kernel mode.
3877          */
3878         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3879         pte = pte_modify(old_pte, vma->vm_page_prot);
3880         pte = pte_mkyoung(pte);
3881         if (was_writable)
3882                 pte = pte_mkwrite(pte);
3883         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3884         update_mmu_cache(vma, vmf->address, vmf->pte);
3885
3886         page = vm_normal_page(vma, vmf->address, pte);
3887         if (!page) {
3888                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3889                 return 0;
3890         }
3891
3892         /* TODO: handle PTE-mapped THP */
3893         if (PageCompound(page)) {
3894                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3895                 return 0;
3896         }
3897
3898         /*
3899          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3900          * much anyway since they can be in shared cache state. This misses
3901          * the case where a mapping is writable but the process never writes
3902          * to it but pte_write gets cleared during protection updates and
3903          * pte_dirty has unpredictable behaviour between PTE scan updates,
3904          * background writeback, dirty balancing and application behaviour.
3905          */
3906         if (!pte_write(pte))
3907                 flags |= TNF_NO_GROUP;
3908
3909         /*
3910          * Flag if the page is shared between multiple address spaces. This
3911          * is later used when determining whether to group tasks together
3912          */
3913         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3914                 flags |= TNF_SHARED;
3915
3916         last_cpupid = page_cpupid_last(page);
3917         page_nid = page_to_nid(page);
3918         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3919                         &flags);
3920         pte_unmap_unlock(vmf->pte, vmf->ptl);
3921         if (target_nid == NUMA_NO_NODE) {
3922                 put_page(page);
3923                 goto out;
3924         }
3925
3926         /* Migrate to the requested node */
3927         migrated = migrate_misplaced_page(page, vma, target_nid);
3928         if (migrated) {
3929                 page_nid = target_nid;
3930                 flags |= TNF_MIGRATED;
3931         } else
3932                 flags |= TNF_MIGRATE_FAIL;
3933
3934 out:
3935         if (page_nid != NUMA_NO_NODE)
3936                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3937         return 0;
3938 }
3939
3940 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3941 {
3942         if (vma_is_anonymous(vmf->vma))
3943                 return do_huge_pmd_anonymous_page(vmf);
3944         if (vmf->vma->vm_ops->huge_fault)
3945                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3946         return VM_FAULT_FALLBACK;
3947 }
3948
3949 /* `inline' is required to avoid gcc 4.1.2 build error */
3950 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3951 {
3952         if (vma_is_anonymous(vmf->vma))
3953                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3954         if (vmf->vma->vm_ops->huge_fault)
3955                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3956
3957         /* COW handled on pte level: split pmd */
3958         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3959         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3960
3961         return VM_FAULT_FALLBACK;
3962 }
3963
3964 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3965 {
3966         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3967 }
3968
3969 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3970 {
3971 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3972         /* No support for anonymous transparent PUD pages yet */
3973         if (vma_is_anonymous(vmf->vma))
3974                 return VM_FAULT_FALLBACK;
3975         if (vmf->vma->vm_ops->huge_fault)
3976                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3977 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3978         return VM_FAULT_FALLBACK;
3979 }
3980
3981 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3982 {
3983 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3984         /* No support for anonymous transparent PUD pages yet */
3985         if (vma_is_anonymous(vmf->vma))
3986                 return VM_FAULT_FALLBACK;
3987         if (vmf->vma->vm_ops->huge_fault)
3988                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3990         return VM_FAULT_FALLBACK;
3991 }
3992
3993 /*
3994  * These routines also need to handle stuff like marking pages dirty
3995  * and/or accessed for architectures that don't do it in hardware (most
3996  * RISC architectures).  The early dirtying is also good on the i386.
3997  *
3998  * There is also a hook called "update_mmu_cache()" that architectures
3999  * with external mmu caches can use to update those (ie the Sparc or
4000  * PowerPC hashed page tables that act as extended TLBs).
4001  *
4002  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4003  * concurrent faults).
4004  *
4005  * The mmap_sem may have been released depending on flags and our return value.
4006  * See filemap_fault() and __lock_page_or_retry().
4007  */
4008 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4009 {
4010         pte_t entry;
4011
4012         if (unlikely(pmd_none(*vmf->pmd))) {
4013                 /*
4014                  * Leave __pte_alloc() until later: because vm_ops->fault may
4015                  * want to allocate huge page, and if we expose page table
4016                  * for an instant, it will be difficult to retract from
4017                  * concurrent faults and from rmap lookups.
4018                  */
4019                 vmf->pte = NULL;
4020         } else {
4021                 /* See comment in pte_alloc_one_map() */
4022                 if (pmd_devmap_trans_unstable(vmf->pmd))
4023                         return 0;
4024                 /*
4025                  * A regular pmd is established and it can't morph into a huge
4026                  * pmd from under us anymore at this point because we hold the
4027                  * mmap_sem read mode and khugepaged takes it in write mode.
4028                  * So now it's safe to run pte_offset_map().
4029                  */
4030                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4031                 vmf->orig_pte = *vmf->pte;
4032
4033                 /*
4034                  * some architectures can have larger ptes than wordsize,
4035                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4036                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4037                  * accesses.  The code below just needs a consistent view
4038                  * for the ifs and we later double check anyway with the
4039                  * ptl lock held. So here a barrier will do.
4040                  */
4041                 barrier();
4042                 if (pte_none(vmf->orig_pte)) {
4043                         pte_unmap(vmf->pte);
4044                         vmf->pte = NULL;
4045                 }
4046         }
4047
4048         if (!vmf->pte) {
4049                 if (vma_is_anonymous(vmf->vma))
4050                         return do_anonymous_page(vmf);
4051                 else
4052                         return do_fault(vmf);
4053         }
4054
4055         if (!pte_present(vmf->orig_pte))
4056                 return do_swap_page(vmf);
4057
4058         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4059                 return do_numa_page(vmf);
4060
4061         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4062         spin_lock(vmf->ptl);
4063         entry = vmf->orig_pte;
4064         if (unlikely(!pte_same(*vmf->pte, entry)))
4065                 goto unlock;
4066         if (vmf->flags & FAULT_FLAG_WRITE) {
4067                 if (!pte_write(entry))
4068                         return do_wp_page(vmf);
4069                 entry = pte_mkdirty(entry);
4070         }
4071         entry = pte_mkyoung(entry);
4072         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4073                                 vmf->flags & FAULT_FLAG_WRITE)) {
4074                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4075         } else {
4076                 /*
4077                  * This is needed only for protection faults but the arch code
4078                  * is not yet telling us if this is a protection fault or not.
4079                  * This still avoids useless tlb flushes for .text page faults
4080                  * with threads.
4081                  */
4082                 if (vmf->flags & FAULT_FLAG_WRITE)
4083                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4084         }
4085 unlock:
4086         pte_unmap_unlock(vmf->pte, vmf->ptl);
4087         return 0;
4088 }
4089
4090 /*
4091  * By the time we get here, we already hold the mm semaphore
4092  *
4093  * The mmap_sem may have been released depending on flags and our
4094  * return value.  See filemap_fault() and __lock_page_or_retry().
4095  */
4096 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4097                 unsigned long address, unsigned int flags)
4098 {
4099         struct vm_fault vmf = {
4100                 .vma = vma,
4101                 .address = address & PAGE_MASK,
4102                 .flags = flags,
4103                 .pgoff = linear_page_index(vma, address),
4104                 .gfp_mask = __get_fault_gfp_mask(vma),
4105         };
4106         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4107         struct mm_struct *mm = vma->vm_mm;
4108         pgd_t *pgd;
4109         p4d_t *p4d;
4110         vm_fault_t ret;
4111
4112         pgd = pgd_offset(mm, address);
4113         p4d = p4d_alloc(mm, pgd, address);
4114         if (!p4d)
4115                 return VM_FAULT_OOM;
4116
4117         vmf.pud = pud_alloc(mm, p4d, address);
4118         if (!vmf.pud)
4119                 return VM_FAULT_OOM;
4120 retry_pud:
4121         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4122                 ret = create_huge_pud(&vmf);
4123                 if (!(ret & VM_FAULT_FALLBACK))
4124                         return ret;
4125         } else {
4126                 pud_t orig_pud = *vmf.pud;
4127
4128                 barrier();
4129                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4130
4131                         /* NUMA case for anonymous PUDs would go here */
4132
4133                         if (dirty && !pud_write(orig_pud)) {
4134                                 ret = wp_huge_pud(&vmf, orig_pud);
4135                                 if (!(ret & VM_FAULT_FALLBACK))
4136                                         return ret;
4137                         } else {
4138                                 huge_pud_set_accessed(&vmf, orig_pud);
4139                                 return 0;
4140                         }
4141                 }
4142         }
4143
4144         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4145         if (!vmf.pmd)
4146                 return VM_FAULT_OOM;
4147
4148         /* Huge pud page fault raced with pmd_alloc? */
4149         if (pud_trans_unstable(vmf.pud))
4150                 goto retry_pud;
4151
4152         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4153                 ret = create_huge_pmd(&vmf);
4154                 if (!(ret & VM_FAULT_FALLBACK))
4155                         return ret;
4156         } else {
4157                 pmd_t orig_pmd = *vmf.pmd;
4158
4159                 barrier();
4160                 if (unlikely(is_swap_pmd(orig_pmd))) {
4161                         VM_BUG_ON(thp_migration_supported() &&
4162                                           !is_pmd_migration_entry(orig_pmd));
4163                         if (is_pmd_migration_entry(orig_pmd))
4164                                 pmd_migration_entry_wait(mm, vmf.pmd);
4165                         return 0;
4166                 }
4167                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4168                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4169                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4170
4171                         if (dirty && !pmd_write(orig_pmd)) {
4172                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4173                                 if (!(ret & VM_FAULT_FALLBACK))
4174                                         return ret;
4175                         } else {
4176                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4177                                 return 0;
4178                         }
4179                 }
4180         }
4181
4182         return handle_pte_fault(&vmf);
4183 }
4184
4185 /*
4186  * By the time we get here, we already hold the mm semaphore
4187  *
4188  * The mmap_sem may have been released depending on flags and our
4189  * return value.  See filemap_fault() and __lock_page_or_retry().
4190  */
4191 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4192                 unsigned int flags)
4193 {
4194         vm_fault_t ret;
4195
4196         __set_current_state(TASK_RUNNING);
4197
4198         count_vm_event(PGFAULT);
4199         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4200
4201         /* do counter updates before entering really critical section. */
4202         check_sync_rss_stat(current);
4203
4204         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4205                                             flags & FAULT_FLAG_INSTRUCTION,
4206                                             flags & FAULT_FLAG_REMOTE))
4207                 return VM_FAULT_SIGSEGV;
4208
4209         /*
4210          * Enable the memcg OOM handling for faults triggered in user
4211          * space.  Kernel faults are handled more gracefully.
4212          */
4213         if (flags & FAULT_FLAG_USER)
4214                 mem_cgroup_enter_user_fault();
4215
4216         if (unlikely(is_vm_hugetlb_page(vma)))
4217                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4218         else
4219                 ret = __handle_mm_fault(vma, address, flags);
4220
4221         if (flags & FAULT_FLAG_USER) {
4222                 mem_cgroup_exit_user_fault();
4223                 /*
4224                  * The task may have entered a memcg OOM situation but
4225                  * if the allocation error was handled gracefully (no
4226                  * VM_FAULT_OOM), there is no need to kill anything.
4227                  * Just clean up the OOM state peacefully.
4228                  */
4229                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4230                         mem_cgroup_oom_synchronize(false);
4231         }
4232
4233         return ret;
4234 }
4235 EXPORT_SYMBOL_GPL(handle_mm_fault);
4236
4237 #ifndef __PAGETABLE_P4D_FOLDED
4238 /*
4239  * Allocate p4d page table.
4240  * We've already handled the fast-path in-line.
4241  */
4242 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4243 {
4244         p4d_t *new = p4d_alloc_one(mm, address);
4245         if (!new)
4246                 return -ENOMEM;
4247
4248         smp_wmb(); /* See comment in __pte_alloc */
4249
4250         spin_lock(&mm->page_table_lock);
4251         if (pgd_present(*pgd))          /* Another has populated it */
4252                 p4d_free(mm, new);
4253         else
4254                 pgd_populate(mm, pgd, new);
4255         spin_unlock(&mm->page_table_lock);
4256         return 0;
4257 }
4258 #endif /* __PAGETABLE_P4D_FOLDED */
4259
4260 #ifndef __PAGETABLE_PUD_FOLDED
4261 /*
4262  * Allocate page upper directory.
4263  * We've already handled the fast-path in-line.
4264  */
4265 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4266 {
4267         pud_t *new = pud_alloc_one(mm, address);
4268         if (!new)
4269                 return -ENOMEM;
4270
4271         smp_wmb(); /* See comment in __pte_alloc */
4272
4273         spin_lock(&mm->page_table_lock);
4274 #ifndef __ARCH_HAS_5LEVEL_HACK
4275         if (!p4d_present(*p4d)) {
4276                 mm_inc_nr_puds(mm);
4277                 p4d_populate(mm, p4d, new);
4278         } else  /* Another has populated it */
4279                 pud_free(mm, new);
4280 #else
4281         if (!pgd_present(*p4d)) {
4282                 mm_inc_nr_puds(mm);
4283                 pgd_populate(mm, p4d, new);
4284         } else  /* Another has populated it */
4285                 pud_free(mm, new);
4286 #endif /* __ARCH_HAS_5LEVEL_HACK */
4287         spin_unlock(&mm->page_table_lock);
4288         return 0;
4289 }
4290 #endif /* __PAGETABLE_PUD_FOLDED */
4291
4292 #ifndef __PAGETABLE_PMD_FOLDED
4293 /*
4294  * Allocate page middle directory.
4295  * We've already handled the fast-path in-line.
4296  */
4297 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4298 {
4299         spinlock_t *ptl;
4300         pmd_t *new = pmd_alloc_one(mm, address);
4301         if (!new)
4302                 return -ENOMEM;
4303
4304         smp_wmb(); /* See comment in __pte_alloc */
4305
4306         ptl = pud_lock(mm, pud);
4307         if (!pud_present(*pud)) {
4308                 mm_inc_nr_pmds(mm);
4309                 pud_populate(mm, pud, new);
4310         } else  /* Another has populated it */
4311                 pmd_free(mm, new);
4312         spin_unlock(ptl);
4313         return 0;
4314 }
4315 #endif /* __PAGETABLE_PMD_FOLDED */
4316
4317 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4318                             struct mmu_notifier_range *range,
4319                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4320 {
4321         pgd_t *pgd;
4322         p4d_t *p4d;
4323         pud_t *pud;
4324         pmd_t *pmd;
4325         pte_t *ptep;
4326
4327         pgd = pgd_offset(mm, address);
4328         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4329                 goto out;
4330
4331         p4d = p4d_offset(pgd, address);
4332         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4333                 goto out;
4334
4335         pud = pud_offset(p4d, address);
4336         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4337                 goto out;
4338
4339         pmd = pmd_offset(pud, address);
4340         VM_BUG_ON(pmd_trans_huge(*pmd));
4341
4342         if (pmd_huge(*pmd)) {
4343                 if (!pmdpp)
4344                         goto out;
4345
4346                 if (range) {
4347                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4348                                                 NULL, mm, address & PMD_MASK,
4349                                                 (address & PMD_MASK) + PMD_SIZE);
4350                         mmu_notifier_invalidate_range_start(range);
4351                 }
4352                 *ptlp = pmd_lock(mm, pmd);
4353                 if (pmd_huge(*pmd)) {
4354                         *pmdpp = pmd;
4355                         return 0;
4356                 }
4357                 spin_unlock(*ptlp);
4358                 if (range)
4359                         mmu_notifier_invalidate_range_end(range);
4360         }
4361
4362         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4363                 goto out;
4364
4365         if (range) {
4366                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4367                                         address & PAGE_MASK,
4368                                         (address & PAGE_MASK) + PAGE_SIZE);
4369                 mmu_notifier_invalidate_range_start(range);
4370         }
4371         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4372         if (!pte_present(*ptep))
4373                 goto unlock;
4374         *ptepp = ptep;
4375         return 0;
4376 unlock:
4377         pte_unmap_unlock(ptep, *ptlp);
4378         if (range)
4379                 mmu_notifier_invalidate_range_end(range);
4380 out:
4381         return -EINVAL;
4382 }
4383
4384 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4385                              pte_t **ptepp, spinlock_t **ptlp)
4386 {
4387         int res;
4388
4389         /* (void) is needed to make gcc happy */
4390         (void) __cond_lock(*ptlp,
4391                            !(res = __follow_pte_pmd(mm, address, NULL,
4392                                                     ptepp, NULL, ptlp)));
4393         return res;
4394 }
4395
4396 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4397                    struct mmu_notifier_range *range,
4398                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4399 {
4400         int res;
4401
4402         /* (void) is needed to make gcc happy */
4403         (void) __cond_lock(*ptlp,
4404                            !(res = __follow_pte_pmd(mm, address, range,
4405                                                     ptepp, pmdpp, ptlp)));
4406         return res;
4407 }
4408 EXPORT_SYMBOL(follow_pte_pmd);
4409
4410 /**
4411  * follow_pfn - look up PFN at a user virtual address
4412  * @vma: memory mapping
4413  * @address: user virtual address
4414  * @pfn: location to store found PFN
4415  *
4416  * Only IO mappings and raw PFN mappings are allowed.
4417  *
4418  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4419  */
4420 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4421         unsigned long *pfn)
4422 {
4423         int ret = -EINVAL;
4424         spinlock_t *ptl;
4425         pte_t *ptep;
4426
4427         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4428                 return ret;
4429
4430         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4431         if (ret)
4432                 return ret;
4433         *pfn = pte_pfn(*ptep);
4434         pte_unmap_unlock(ptep, ptl);
4435         return 0;
4436 }
4437 EXPORT_SYMBOL(follow_pfn);
4438
4439 #ifdef CONFIG_HAVE_IOREMAP_PROT
4440 int follow_phys(struct vm_area_struct *vma,
4441                 unsigned long address, unsigned int flags,
4442                 unsigned long *prot, resource_size_t *phys)
4443 {
4444         int ret = -EINVAL;
4445         pte_t *ptep, pte;
4446         spinlock_t *ptl;
4447
4448         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4449                 goto out;
4450
4451         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4452                 goto out;
4453         pte = *ptep;
4454
4455         if ((flags & FOLL_WRITE) && !pte_write(pte))
4456                 goto unlock;
4457
4458         *prot = pgprot_val(pte_pgprot(pte));
4459         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4460
4461         ret = 0;
4462 unlock:
4463         pte_unmap_unlock(ptep, ptl);
4464 out:
4465         return ret;
4466 }
4467
4468 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4469                         void *buf, int len, int write)
4470 {
4471         resource_size_t phys_addr;
4472         unsigned long prot = 0;
4473         void __iomem *maddr;
4474         int offset = addr & (PAGE_SIZE-1);
4475
4476         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4477                 return -EINVAL;
4478
4479         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4480         if (!maddr)
4481                 return -ENOMEM;
4482
4483         if (write)
4484                 memcpy_toio(maddr + offset, buf, len);
4485         else
4486                 memcpy_fromio(buf, maddr + offset, len);
4487         iounmap(maddr);
4488
4489         return len;
4490 }
4491 EXPORT_SYMBOL_GPL(generic_access_phys);
4492 #endif
4493
4494 /*
4495  * Access another process' address space as given in mm.  If non-NULL, use the
4496  * given task for page fault accounting.
4497  */
4498 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4499                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4500 {
4501         struct vm_area_struct *vma;
4502         void *old_buf = buf;
4503         int write = gup_flags & FOLL_WRITE;
4504
4505         if (down_read_killable(&mm->mmap_sem))
4506                 return 0;
4507
4508         /* ignore errors, just check how much was successfully transferred */
4509         while (len) {
4510                 int bytes, ret, offset;
4511                 void *maddr;
4512                 struct page *page = NULL;
4513
4514                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4515                                 gup_flags, &page, &vma, NULL);
4516                 if (ret <= 0) {
4517 #ifndef CONFIG_HAVE_IOREMAP_PROT
4518                         break;
4519 #else
4520                         /*
4521                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4522                          * we can access using slightly different code.
4523                          */
4524                         vma = find_vma(mm, addr);
4525                         if (!vma || vma->vm_start > addr)
4526                                 break;
4527                         if (vma->vm_ops && vma->vm_ops->access)
4528                                 ret = vma->vm_ops->access(vma, addr, buf,
4529                                                           len, write);
4530                         if (ret <= 0)
4531                                 break;
4532                         bytes = ret;
4533 #endif
4534                 } else {
4535                         bytes = len;
4536                         offset = addr & (PAGE_SIZE-1);
4537                         if (bytes > PAGE_SIZE-offset)
4538                                 bytes = PAGE_SIZE-offset;
4539
4540                         maddr = kmap(page);
4541                         if (write) {
4542                                 copy_to_user_page(vma, page, addr,
4543                                                   maddr + offset, buf, bytes);
4544                                 set_page_dirty_lock(page);
4545                         } else {
4546                                 copy_from_user_page(vma, page, addr,
4547                                                     buf, maddr + offset, bytes);
4548                         }
4549                         kunmap(page);
4550                         put_page(page);
4551                 }
4552                 len -= bytes;
4553                 buf += bytes;
4554                 addr += bytes;
4555         }
4556         up_read(&mm->mmap_sem);
4557
4558         return buf - old_buf;
4559 }
4560
4561 /**
4562  * access_remote_vm - access another process' address space
4563  * @mm:         the mm_struct of the target address space
4564  * @addr:       start address to access
4565  * @buf:        source or destination buffer
4566  * @len:        number of bytes to transfer
4567  * @gup_flags:  flags modifying lookup behaviour
4568  *
4569  * The caller must hold a reference on @mm.
4570  *
4571  * Return: number of bytes copied from source to destination.
4572  */
4573 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4574                 void *buf, int len, unsigned int gup_flags)
4575 {
4576         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4577 }
4578
4579 /*
4580  * Access another process' address space.
4581  * Source/target buffer must be kernel space,
4582  * Do not walk the page table directly, use get_user_pages
4583  */
4584 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4585                 void *buf, int len, unsigned int gup_flags)
4586 {
4587         struct mm_struct *mm;
4588         int ret;
4589
4590         mm = get_task_mm(tsk);
4591         if (!mm)
4592                 return 0;
4593
4594         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4595
4596         mmput(mm);
4597
4598         return ret;
4599 }
4600 EXPORT_SYMBOL_GPL(access_process_vm);
4601
4602 /*
4603  * Print the name of a VMA.
4604  */
4605 void print_vma_addr(char *prefix, unsigned long ip)
4606 {
4607         struct mm_struct *mm = current->mm;
4608         struct vm_area_struct *vma;
4609
4610         /*
4611          * we might be running from an atomic context so we cannot sleep
4612          */
4613         if (!down_read_trylock(&mm->mmap_sem))
4614                 return;
4615
4616         vma = find_vma(mm, ip);
4617         if (vma && vma->vm_file) {
4618                 struct file *f = vma->vm_file;
4619                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4620                 if (buf) {
4621                         char *p;
4622
4623                         p = file_path(f, buf, PAGE_SIZE);
4624                         if (IS_ERR(p))
4625                                 p = "?";
4626                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4627                                         vma->vm_start,
4628                                         vma->vm_end - vma->vm_start);
4629                         free_page((unsigned long)buf);
4630                 }
4631         }
4632         up_read(&mm->mmap_sem);
4633 }
4634
4635 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4636 void __might_fault(const char *file, int line)
4637 {
4638         /*
4639          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4640          * holding the mmap_sem, this is safe because kernel memory doesn't
4641          * get paged out, therefore we'll never actually fault, and the
4642          * below annotations will generate false positives.
4643          */
4644         if (uaccess_kernel())
4645                 return;
4646         if (pagefault_disabled())
4647                 return;
4648         __might_sleep(file, line, 0);
4649 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4650         if (current->mm)
4651                 might_lock_read(&current->mm->mmap_sem);
4652 #endif
4653 }
4654 EXPORT_SYMBOL(__might_fault);
4655 #endif
4656
4657 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4658 /*
4659  * Process all subpages of the specified huge page with the specified
4660  * operation.  The target subpage will be processed last to keep its
4661  * cache lines hot.
4662  */
4663 static inline void process_huge_page(
4664         unsigned long addr_hint, unsigned int pages_per_huge_page,
4665         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4666         void *arg)
4667 {
4668         int i, n, base, l;
4669         unsigned long addr = addr_hint &
4670                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4671
4672         /* Process target subpage last to keep its cache lines hot */
4673         might_sleep();
4674         n = (addr_hint - addr) / PAGE_SIZE;
4675         if (2 * n <= pages_per_huge_page) {
4676                 /* If target subpage in first half of huge page */
4677                 base = 0;
4678                 l = n;
4679                 /* Process subpages at the end of huge page */
4680                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4681                         cond_resched();
4682                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4683                 }
4684         } else {
4685                 /* If target subpage in second half of huge page */
4686                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4687                 l = pages_per_huge_page - n;
4688                 /* Process subpages at the begin of huge page */
4689                 for (i = 0; i < base; i++) {
4690                         cond_resched();
4691                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4692                 }
4693         }
4694         /*
4695          * Process remaining subpages in left-right-left-right pattern
4696          * towards the target subpage
4697          */
4698         for (i = 0; i < l; i++) {
4699                 int left_idx = base + i;
4700                 int right_idx = base + 2 * l - 1 - i;
4701
4702                 cond_resched();
4703                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4704                 cond_resched();
4705                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4706         }
4707 }
4708
4709 static void clear_gigantic_page(struct page *page,
4710                                 unsigned long addr,
4711                                 unsigned int pages_per_huge_page)
4712 {
4713         int i;
4714         struct page *p = page;
4715
4716         might_sleep();
4717         for (i = 0; i < pages_per_huge_page;
4718              i++, p = mem_map_next(p, page, i)) {
4719                 cond_resched();
4720                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4721         }
4722 }
4723
4724 static void clear_subpage(unsigned long addr, int idx, void *arg)
4725 {
4726         struct page *page = arg;
4727
4728         clear_user_highpage(page + idx, addr);
4729 }
4730
4731 void clear_huge_page(struct page *page,
4732                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4733 {
4734         unsigned long addr = addr_hint &
4735                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4736
4737         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4738                 clear_gigantic_page(page, addr, pages_per_huge_page);
4739                 return;
4740         }
4741
4742         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4743 }
4744
4745 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4746                                     unsigned long addr,
4747                                     struct vm_area_struct *vma,
4748                                     unsigned int pages_per_huge_page)
4749 {
4750         int i;
4751         struct page *dst_base = dst;
4752         struct page *src_base = src;
4753
4754         for (i = 0; i < pages_per_huge_page; ) {
4755                 cond_resched();
4756                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4757
4758                 i++;
4759                 dst = mem_map_next(dst, dst_base, i);
4760                 src = mem_map_next(src, src_base, i);
4761         }
4762 }
4763
4764 struct copy_subpage_arg {
4765         struct page *dst;
4766         struct page *src;
4767         struct vm_area_struct *vma;
4768 };
4769
4770 static void copy_subpage(unsigned long addr, int idx, void *arg)
4771 {
4772         struct copy_subpage_arg *copy_arg = arg;
4773
4774         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4775                            addr, copy_arg->vma);
4776 }
4777
4778 void copy_user_huge_page(struct page *dst, struct page *src,
4779                          unsigned long addr_hint, struct vm_area_struct *vma,
4780                          unsigned int pages_per_huge_page)
4781 {
4782         unsigned long addr = addr_hint &
4783                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4784         struct copy_subpage_arg arg = {
4785                 .dst = dst,
4786                 .src = src,
4787                 .vma = vma,
4788         };
4789
4790         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4791                 copy_user_gigantic_page(dst, src, addr, vma,
4792                                         pages_per_huge_page);
4793                 return;
4794         }
4795
4796         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4797 }
4798
4799 long copy_huge_page_from_user(struct page *dst_page,
4800                                 const void __user *usr_src,
4801                                 unsigned int pages_per_huge_page,
4802                                 bool allow_pagefault)
4803 {
4804         void *src = (void *)usr_src;
4805         void *page_kaddr;
4806         unsigned long i, rc = 0;
4807         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4808
4809         for (i = 0; i < pages_per_huge_page; i++) {
4810                 if (allow_pagefault)
4811                         page_kaddr = kmap(dst_page + i);
4812                 else
4813                         page_kaddr = kmap_atomic(dst_page + i);
4814                 rc = copy_from_user(page_kaddr,
4815                                 (const void __user *)(src + i * PAGE_SIZE),
4816                                 PAGE_SIZE);
4817                 if (allow_pagefault)
4818                         kunmap(dst_page + i);
4819                 else
4820                         kunmap_atomic(page_kaddr);
4821
4822                 ret_val -= (PAGE_SIZE - rc);
4823                 if (rc)
4824                         break;
4825
4826                 cond_resched();
4827         }
4828         return ret_val;
4829 }
4830 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4831
4832 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4833
4834 static struct kmem_cache *page_ptl_cachep;
4835
4836 void __init ptlock_cache_init(void)
4837 {
4838         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4839                         SLAB_PANIC, NULL);
4840 }
4841
4842 bool ptlock_alloc(struct page *page)
4843 {
4844         spinlock_t *ptl;
4845
4846         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4847         if (!ptl)
4848                 return false;
4849         page->ptl = ptl;
4850         return true;
4851 }
4852
4853 void ptlock_free(struct page *page)
4854 {
4855         kmem_cache_free(page_ptl_cachep, page->ptl);
4856 }
4857 #endif