[PATCH] core remove PageReserved
[linux-2.6-microblaze.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_free_tlb(tlb, page);
118         dec_page_state(nr_page_table_pages);
119         tlb->mm->nr_ptes--;
120 }
121
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123                                 unsigned long addr, unsigned long end,
124                                 unsigned long floor, unsigned long ceiling)
125 {
126         pmd_t *pmd;
127         unsigned long next;
128         unsigned long start;
129
130         start = addr;
131         pmd = pmd_offset(pud, addr);
132         do {
133                 next = pmd_addr_end(addr, end);
134                 if (pmd_none_or_clear_bad(pmd))
135                         continue;
136                 free_pte_range(tlb, pmd);
137         } while (pmd++, addr = next, addr != end);
138
139         start &= PUD_MASK;
140         if (start < floor)
141                 return;
142         if (ceiling) {
143                 ceiling &= PUD_MASK;
144                 if (!ceiling)
145                         return;
146         }
147         if (end - 1 > ceiling - 1)
148                 return;
149
150         pmd = pmd_offset(pud, start);
151         pud_clear(pud);
152         pmd_free_tlb(tlb, pmd);
153 }
154
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156                                 unsigned long addr, unsigned long end,
157                                 unsigned long floor, unsigned long ceiling)
158 {
159         pud_t *pud;
160         unsigned long next;
161         unsigned long start;
162
163         start = addr;
164         pud = pud_offset(pgd, addr);
165         do {
166                 next = pud_addr_end(addr, end);
167                 if (pud_none_or_clear_bad(pud))
168                         continue;
169                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170         } while (pud++, addr = next, addr != end);
171
172         start &= PGDIR_MASK;
173         if (start < floor)
174                 return;
175         if (ceiling) {
176                 ceiling &= PGDIR_MASK;
177                 if (!ceiling)
178                         return;
179         }
180         if (end - 1 > ceiling - 1)
181                 return;
182
183         pud = pud_offset(pgd, start);
184         pgd_clear(pgd);
185         pud_free_tlb(tlb, pud);
186 }
187
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 void free_pgd_range(struct mmu_gather **tlb,
194                         unsigned long addr, unsigned long end,
195                         unsigned long floor, unsigned long ceiling)
196 {
197         pgd_t *pgd;
198         unsigned long next;
199         unsigned long start;
200
201         /*
202          * The next few lines have given us lots of grief...
203          *
204          * Why are we testing PMD* at this top level?  Because often
205          * there will be no work to do at all, and we'd prefer not to
206          * go all the way down to the bottom just to discover that.
207          *
208          * Why all these "- 1"s?  Because 0 represents both the bottom
209          * of the address space and the top of it (using -1 for the
210          * top wouldn't help much: the masks would do the wrong thing).
211          * The rule is that addr 0 and floor 0 refer to the bottom of
212          * the address space, but end 0 and ceiling 0 refer to the top
213          * Comparisons need to use "end - 1" and "ceiling - 1" (though
214          * that end 0 case should be mythical).
215          *
216          * Wherever addr is brought up or ceiling brought down, we must
217          * be careful to reject "the opposite 0" before it confuses the
218          * subsequent tests.  But what about where end is brought down
219          * by PMD_SIZE below? no, end can't go down to 0 there.
220          *
221          * Whereas we round start (addr) and ceiling down, by different
222          * masks at different levels, in order to test whether a table
223          * now has no other vmas using it, so can be freed, we don't
224          * bother to round floor or end up - the tests don't need that.
225          */
226
227         addr &= PMD_MASK;
228         if (addr < floor) {
229                 addr += PMD_SIZE;
230                 if (!addr)
231                         return;
232         }
233         if (ceiling) {
234                 ceiling &= PMD_MASK;
235                 if (!ceiling)
236                         return;
237         }
238         if (end - 1 > ceiling - 1)
239                 end -= PMD_SIZE;
240         if (addr > end - 1)
241                 return;
242
243         start = addr;
244         pgd = pgd_offset((*tlb)->mm, addr);
245         do {
246                 next = pgd_addr_end(addr, end);
247                 if (pgd_none_or_clear_bad(pgd))
248                         continue;
249                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250         } while (pgd++, addr = next, addr != end);
251
252         if (!(*tlb)->fullmm)
253                 flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257                 unsigned long floor, unsigned long ceiling)
258 {
259         while (vma) {
260                 struct vm_area_struct *next = vma->vm_next;
261                 unsigned long addr = vma->vm_start;
262
263                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265                                 floor, next? next->vm_start: ceiling);
266                 } else {
267                         /*
268                          * Optimization: gather nearby vmas into one call down
269                          */
270                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272                                                         HPAGE_SIZE)) {
273                                 vma = next;
274                                 next = vma->vm_next;
275                         }
276                         free_pgd_range(tlb, addr, vma->vm_end,
277                                 floor, next? next->vm_start: ceiling);
278                 }
279                 vma = next;
280         }
281 }
282
283 pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284                                 unsigned long address)
285 {
286         if (!pmd_present(*pmd)) {
287                 struct page *new;
288
289                 spin_unlock(&mm->page_table_lock);
290                 new = pte_alloc_one(mm, address);
291                 spin_lock(&mm->page_table_lock);
292                 if (!new)
293                         return NULL;
294                 /*
295                  * Because we dropped the lock, we should re-check the
296                  * entry, as somebody else could have populated it..
297                  */
298                 if (pmd_present(*pmd)) {
299                         pte_free(new);
300                         goto out;
301                 }
302                 mm->nr_ptes++;
303                 inc_page_state(nr_page_table_pages);
304                 pmd_populate(mm, pmd, new);
305         }
306 out:
307         return pte_offset_map(pmd, address);
308 }
309
310 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311 {
312         if (!pmd_present(*pmd)) {
313                 pte_t *new;
314
315                 spin_unlock(&mm->page_table_lock);
316                 new = pte_alloc_one_kernel(mm, address);
317                 spin_lock(&mm->page_table_lock);
318                 if (!new)
319                         return NULL;
320
321                 /*
322                  * Because we dropped the lock, we should re-check the
323                  * entry, as somebody else could have populated it..
324                  */
325                 if (pmd_present(*pmd)) {
326                         pte_free_kernel(new);
327                         goto out;
328                 }
329                 pmd_populate_kernel(mm, pmd, new);
330         }
331 out:
332         return pte_offset_kernel(pmd, address);
333 }
334
335 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
336 {
337         if (file_rss)
338                 add_mm_counter(mm, file_rss, file_rss);
339         if (anon_rss)
340                 add_mm_counter(mm, anon_rss, anon_rss);
341 }
342
343 #define NO_RSS 2        /* Increment neither file_rss nor anon_rss */
344
345 /*
346  * This function is called to print an error when a pte in a
347  * !VM_RESERVED region is found pointing to an invalid pfn (which
348  * is an error.
349  *
350  * The calling function must still handle the error.
351  */
352 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
353 {
354         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
355                         "vm_flags = %lx, vaddr = %lx\n",
356                 (long long)pte_val(pte),
357                 (vma->vm_mm == current->mm ? current->comm : "???"),
358                 vma->vm_flags, vaddr);
359         dump_stack();
360 }
361
362 /*
363  * copy one vm_area from one task to the other. Assumes the page tables
364  * already present in the new task to be cleared in the whole range
365  * covered by this vma.
366  *
367  * dst->page_table_lock is held on entry and exit,
368  * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
369  */
370
371 static inline int
372 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
373                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
374                 unsigned long addr)
375 {
376         unsigned long vm_flags = vma->vm_flags;
377         pte_t pte = *src_pte;
378         struct page *page;
379         unsigned long pfn;
380         int anon = NO_RSS;
381
382         /* pte contains position in swap or file, so copy. */
383         if (unlikely(!pte_present(pte))) {
384                 if (!pte_file(pte)) {
385                         swap_duplicate(pte_to_swp_entry(pte));
386                         /* make sure dst_mm is on swapoff's mmlist. */
387                         if (unlikely(list_empty(&dst_mm->mmlist))) {
388                                 spin_lock(&mmlist_lock);
389                                 list_add(&dst_mm->mmlist, &src_mm->mmlist);
390                                 spin_unlock(&mmlist_lock);
391                         }
392                 }
393                 goto out_set_pte;
394         }
395
396         /* If the region is VM_RESERVED, the mapping is not
397          * mapped via rmap - duplicate the pte as is.
398          */
399         if (vm_flags & VM_RESERVED)
400                 goto out_set_pte;
401
402         pfn = pte_pfn(pte);
403         /* If the pte points outside of valid memory but
404          * the region is not VM_RESERVED, we have a problem.
405          */
406         if (unlikely(!pfn_valid(pfn))) {
407                 print_bad_pte(vma, pte, addr);
408                 goto out_set_pte; /* try to do something sane */
409         }
410
411         page = pfn_to_page(pfn);
412
413         /*
414          * If it's a COW mapping, write protect it both
415          * in the parent and the child
416          */
417         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
418                 ptep_set_wrprotect(src_mm, addr, src_pte);
419                 pte = *src_pte;
420         }
421
422         /*
423          * If it's a shared mapping, mark it clean in
424          * the child
425          */
426         if (vm_flags & VM_SHARED)
427                 pte = pte_mkclean(pte);
428         pte = pte_mkold(pte);
429         get_page(page);
430         page_dup_rmap(page);
431         anon = !!PageAnon(page);
432
433 out_set_pte:
434         set_pte_at(dst_mm, addr, dst_pte, pte);
435         return anon;
436 }
437
438 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
439                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
440                 unsigned long addr, unsigned long end)
441 {
442         pte_t *src_pte, *dst_pte;
443         int progress = 0;
444         int rss[NO_RSS+1], anon;
445
446 again:
447         rss[1] = rss[0] = 0;
448         dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
449         if (!dst_pte)
450                 return -ENOMEM;
451         src_pte = pte_offset_map_nested(src_pmd, addr);
452
453         spin_lock(&src_mm->page_table_lock);
454         do {
455                 /*
456                  * We are holding two locks at this point - either of them
457                  * could generate latencies in another task on another CPU.
458                  */
459                 if (progress >= 32) {
460                         progress = 0;
461                         if (need_resched() ||
462                             need_lockbreak(&src_mm->page_table_lock) ||
463                             need_lockbreak(&dst_mm->page_table_lock))
464                                 break;
465                 }
466                 if (pte_none(*src_pte)) {
467                         progress++;
468                         continue;
469                 }
470                 anon = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma,addr);
471                 rss[anon]++;
472                 progress += 8;
473         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
474         spin_unlock(&src_mm->page_table_lock);
475
476         pte_unmap_nested(src_pte - 1);
477         pte_unmap(dst_pte - 1);
478         add_mm_rss(dst_mm, rss[0], rss[1]);
479         cond_resched_lock(&dst_mm->page_table_lock);
480         if (addr != end)
481                 goto again;
482         return 0;
483 }
484
485 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
486                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
487                 unsigned long addr, unsigned long end)
488 {
489         pmd_t *src_pmd, *dst_pmd;
490         unsigned long next;
491
492         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
493         if (!dst_pmd)
494                 return -ENOMEM;
495         src_pmd = pmd_offset(src_pud, addr);
496         do {
497                 next = pmd_addr_end(addr, end);
498                 if (pmd_none_or_clear_bad(src_pmd))
499                         continue;
500                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
501                                                 vma, addr, next))
502                         return -ENOMEM;
503         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
504         return 0;
505 }
506
507 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
508                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
509                 unsigned long addr, unsigned long end)
510 {
511         pud_t *src_pud, *dst_pud;
512         unsigned long next;
513
514         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
515         if (!dst_pud)
516                 return -ENOMEM;
517         src_pud = pud_offset(src_pgd, addr);
518         do {
519                 next = pud_addr_end(addr, end);
520                 if (pud_none_or_clear_bad(src_pud))
521                         continue;
522                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
523                                                 vma, addr, next))
524                         return -ENOMEM;
525         } while (dst_pud++, src_pud++, addr = next, addr != end);
526         return 0;
527 }
528
529 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
530                 struct vm_area_struct *vma)
531 {
532         pgd_t *src_pgd, *dst_pgd;
533         unsigned long next;
534         unsigned long addr = vma->vm_start;
535         unsigned long end = vma->vm_end;
536
537         /*
538          * Don't copy ptes where a page fault will fill them correctly.
539          * Fork becomes much lighter when there are big shared or private
540          * readonly mappings. The tradeoff is that copy_page_range is more
541          * efficient than faulting.
542          */
543         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
544                 if (!vma->anon_vma)
545                         return 0;
546         }
547
548         if (is_vm_hugetlb_page(vma))
549                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
550
551         dst_pgd = pgd_offset(dst_mm, addr);
552         src_pgd = pgd_offset(src_mm, addr);
553         do {
554                 next = pgd_addr_end(addr, end);
555                 if (pgd_none_or_clear_bad(src_pgd))
556                         continue;
557                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
558                                                 vma, addr, next))
559                         return -ENOMEM;
560         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
561         return 0;
562 }
563
564 static void zap_pte_range(struct mmu_gather *tlb,
565                                 struct vm_area_struct *vma, pmd_t *pmd,
566                                 unsigned long addr, unsigned long end,
567                                 struct zap_details *details)
568 {
569         struct mm_struct *mm = tlb->mm;
570         pte_t *pte;
571         int file_rss = 0;
572         int anon_rss = 0;
573
574         pte = pte_offset_map(pmd, addr);
575         do {
576                 pte_t ptent = *pte;
577                 if (pte_none(ptent))
578                         continue;
579                 if (pte_present(ptent)) {
580                         struct page *page = NULL;
581                         if (!(vma->vm_flags & VM_RESERVED)) {
582                                 unsigned long pfn = pte_pfn(ptent);
583                                 if (unlikely(!pfn_valid(pfn)))
584                                         print_bad_pte(vma, ptent, addr);
585                                 else
586                                         page = pfn_to_page(pfn);
587                         }
588                         if (unlikely(details) && page) {
589                                 /*
590                                  * unmap_shared_mapping_pages() wants to
591                                  * invalidate cache without truncating:
592                                  * unmap shared but keep private pages.
593                                  */
594                                 if (details->check_mapping &&
595                                     details->check_mapping != page->mapping)
596                                         continue;
597                                 /*
598                                  * Each page->index must be checked when
599                                  * invalidating or truncating nonlinear.
600                                  */
601                                 if (details->nonlinear_vma &&
602                                     (page->index < details->first_index ||
603                                      page->index > details->last_index))
604                                         continue;
605                         }
606                         ptent = ptep_get_and_clear_full(mm, addr, pte,
607                                                         tlb->fullmm);
608                         tlb_remove_tlb_entry(tlb, pte, addr);
609                         if (unlikely(!page))
610                                 continue;
611                         if (unlikely(details) && details->nonlinear_vma
612                             && linear_page_index(details->nonlinear_vma,
613                                                 addr) != page->index)
614                                 set_pte_at(mm, addr, pte,
615                                            pgoff_to_pte(page->index));
616                         if (PageAnon(page))
617                                 anon_rss++;
618                         else {
619                                 if (pte_dirty(ptent))
620                                         set_page_dirty(page);
621                                 if (pte_young(ptent))
622                                         mark_page_accessed(page);
623                                 file_rss++;
624                         }
625                         page_remove_rmap(page);
626                         tlb_remove_page(tlb, page);
627                         continue;
628                 }
629                 /*
630                  * If details->check_mapping, we leave swap entries;
631                  * if details->nonlinear_vma, we leave file entries.
632                  */
633                 if (unlikely(details))
634                         continue;
635                 if (!pte_file(ptent))
636                         free_swap_and_cache(pte_to_swp_entry(ptent));
637                 pte_clear_full(mm, addr, pte, tlb->fullmm);
638         } while (pte++, addr += PAGE_SIZE, addr != end);
639
640         add_mm_rss(mm, -file_rss, -anon_rss);
641         pte_unmap(pte - 1);
642 }
643
644 static inline void zap_pmd_range(struct mmu_gather *tlb,
645                                 struct vm_area_struct *vma, pud_t *pud,
646                                 unsigned long addr, unsigned long end,
647                                 struct zap_details *details)
648 {
649         pmd_t *pmd;
650         unsigned long next;
651
652         pmd = pmd_offset(pud, addr);
653         do {
654                 next = pmd_addr_end(addr, end);
655                 if (pmd_none_or_clear_bad(pmd))
656                         continue;
657                 zap_pte_range(tlb, vma, pmd, addr, next, details);
658         } while (pmd++, addr = next, addr != end);
659 }
660
661 static inline void zap_pud_range(struct mmu_gather *tlb,
662                                 struct vm_area_struct *vma, pgd_t *pgd,
663                                 unsigned long addr, unsigned long end,
664                                 struct zap_details *details)
665 {
666         pud_t *pud;
667         unsigned long next;
668
669         pud = pud_offset(pgd, addr);
670         do {
671                 next = pud_addr_end(addr, end);
672                 if (pud_none_or_clear_bad(pud))
673                         continue;
674                 zap_pmd_range(tlb, vma, pud, addr, next, details);
675         } while (pud++, addr = next, addr != end);
676 }
677
678 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
679                                 unsigned long addr, unsigned long end,
680                                 struct zap_details *details)
681 {
682         pgd_t *pgd;
683         unsigned long next;
684
685         if (details && !details->check_mapping && !details->nonlinear_vma)
686                 details = NULL;
687
688         BUG_ON(addr >= end);
689         tlb_start_vma(tlb, vma);
690         pgd = pgd_offset(vma->vm_mm, addr);
691         do {
692                 next = pgd_addr_end(addr, end);
693                 if (pgd_none_or_clear_bad(pgd))
694                         continue;
695                 zap_pud_range(tlb, vma, pgd, addr, next, details);
696         } while (pgd++, addr = next, addr != end);
697         tlb_end_vma(tlb, vma);
698 }
699
700 #ifdef CONFIG_PREEMPT
701 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
702 #else
703 /* No preempt: go for improved straight-line efficiency */
704 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
705 #endif
706
707 /**
708  * unmap_vmas - unmap a range of memory covered by a list of vma's
709  * @tlbp: address of the caller's struct mmu_gather
710  * @mm: the controlling mm_struct
711  * @vma: the starting vma
712  * @start_addr: virtual address at which to start unmapping
713  * @end_addr: virtual address at which to end unmapping
714  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
715  * @details: details of nonlinear truncation or shared cache invalidation
716  *
717  * Returns the end address of the unmapping (restart addr if interrupted).
718  *
719  * Unmap all pages in the vma list.  Called under page_table_lock.
720  *
721  * We aim to not hold page_table_lock for too long (for scheduling latency
722  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
723  * return the ending mmu_gather to the caller.
724  *
725  * Only addresses between `start' and `end' will be unmapped.
726  *
727  * The VMA list must be sorted in ascending virtual address order.
728  *
729  * unmap_vmas() assumes that the caller will flush the whole unmapped address
730  * range after unmap_vmas() returns.  So the only responsibility here is to
731  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
732  * drops the lock and schedules.
733  */
734 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
735                 struct vm_area_struct *vma, unsigned long start_addr,
736                 unsigned long end_addr, unsigned long *nr_accounted,
737                 struct zap_details *details)
738 {
739         unsigned long zap_bytes = ZAP_BLOCK_SIZE;
740         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
741         int tlb_start_valid = 0;
742         unsigned long start = start_addr;
743         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
744         int fullmm = (*tlbp)->fullmm;
745
746         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
747                 unsigned long end;
748
749                 start = max(vma->vm_start, start_addr);
750                 if (start >= vma->vm_end)
751                         continue;
752                 end = min(vma->vm_end, end_addr);
753                 if (end <= vma->vm_start)
754                         continue;
755
756                 if (vma->vm_flags & VM_ACCOUNT)
757                         *nr_accounted += (end - start) >> PAGE_SHIFT;
758
759                 while (start != end) {
760                         unsigned long block;
761
762                         if (!tlb_start_valid) {
763                                 tlb_start = start;
764                                 tlb_start_valid = 1;
765                         }
766
767                         if (is_vm_hugetlb_page(vma)) {
768                                 block = end - start;
769                                 unmap_hugepage_range(vma, start, end);
770                         } else {
771                                 block = min(zap_bytes, end - start);
772                                 unmap_page_range(*tlbp, vma, start,
773                                                 start + block, details);
774                         }
775
776                         start += block;
777                         zap_bytes -= block;
778                         if ((long)zap_bytes > 0)
779                                 continue;
780
781                         tlb_finish_mmu(*tlbp, tlb_start, start);
782
783                         if (need_resched() ||
784                                 need_lockbreak(&mm->page_table_lock) ||
785                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
786                                 if (i_mmap_lock) {
787                                         /* must reset count of rss freed */
788                                         *tlbp = tlb_gather_mmu(mm, fullmm);
789                                         goto out;
790                                 }
791                                 spin_unlock(&mm->page_table_lock);
792                                 cond_resched();
793                                 spin_lock(&mm->page_table_lock);
794                         }
795
796                         *tlbp = tlb_gather_mmu(mm, fullmm);
797                         tlb_start_valid = 0;
798                         zap_bytes = ZAP_BLOCK_SIZE;
799                 }
800         }
801 out:
802         return start;   /* which is now the end (or restart) address */
803 }
804
805 /**
806  * zap_page_range - remove user pages in a given range
807  * @vma: vm_area_struct holding the applicable pages
808  * @address: starting address of pages to zap
809  * @size: number of bytes to zap
810  * @details: details of nonlinear truncation or shared cache invalidation
811  */
812 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
813                 unsigned long size, struct zap_details *details)
814 {
815         struct mm_struct *mm = vma->vm_mm;
816         struct mmu_gather *tlb;
817         unsigned long end = address + size;
818         unsigned long nr_accounted = 0;
819
820         if (is_vm_hugetlb_page(vma)) {
821                 zap_hugepage_range(vma, address, size);
822                 return end;
823         }
824
825         lru_add_drain();
826         spin_lock(&mm->page_table_lock);
827         tlb = tlb_gather_mmu(mm, 0);
828         end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
829         tlb_finish_mmu(tlb, address, end);
830         spin_unlock(&mm->page_table_lock);
831         return end;
832 }
833
834 /*
835  * Do a quick page-table lookup for a single page.
836  * mm->page_table_lock must be held.
837  */
838 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
839                         int read, int write, int accessed)
840 {
841         pgd_t *pgd;
842         pud_t *pud;
843         pmd_t *pmd;
844         pte_t *ptep, pte;
845         unsigned long pfn;
846         struct page *page;
847
848         page = follow_huge_addr(mm, address, write);
849         if (! IS_ERR(page))
850                 return page;
851
852         pgd = pgd_offset(mm, address);
853         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
854                 goto out;
855
856         pud = pud_offset(pgd, address);
857         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
858                 goto out;
859         
860         pmd = pmd_offset(pud, address);
861         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
862                 goto out;
863         if (pmd_huge(*pmd))
864                 return follow_huge_pmd(mm, address, pmd, write);
865
866         ptep = pte_offset_map(pmd, address);
867         if (!ptep)
868                 goto out;
869
870         pte = *ptep;
871         pte_unmap(ptep);
872         if (pte_present(pte)) {
873                 if (write && !pte_write(pte))
874                         goto out;
875                 if (read && !pte_read(pte))
876                         goto out;
877                 pfn = pte_pfn(pte);
878                 if (pfn_valid(pfn)) {
879                         page = pfn_to_page(pfn);
880                         if (accessed) {
881                                 if (write && !pte_dirty(pte) &&!PageDirty(page))
882                                         set_page_dirty(page);
883                                 mark_page_accessed(page);
884                         }
885                         return page;
886                 }
887         }
888
889 out:
890         return NULL;
891 }
892
893 inline struct page *
894 follow_page(struct mm_struct *mm, unsigned long address, int write)
895 {
896         return __follow_page(mm, address, 0, write, 1);
897 }
898
899 /*
900  * check_user_page_readable() can be called frm niterrupt context by oprofile,
901  * so we need to avoid taking any non-irq-safe locks
902  */
903 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
904 {
905         return __follow_page(mm, address, 1, 0, 0) != NULL;
906 }
907 EXPORT_SYMBOL(check_user_page_readable);
908
909 static inline int
910 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
911                          unsigned long address)
912 {
913         pgd_t *pgd;
914         pud_t *pud;
915         pmd_t *pmd;
916
917         /* Check if the vma is for an anonymous mapping. */
918         if (vma->vm_ops && vma->vm_ops->nopage)
919                 return 0;
920
921         /* Check if page directory entry exists. */
922         pgd = pgd_offset(mm, address);
923         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
924                 return 1;
925
926         pud = pud_offset(pgd, address);
927         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
928                 return 1;
929
930         /* Check if page middle directory entry exists. */
931         pmd = pmd_offset(pud, address);
932         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
933                 return 1;
934
935         /* There is a pte slot for 'address' in 'mm'. */
936         return 0;
937 }
938
939 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
940                 unsigned long start, int len, int write, int force,
941                 struct page **pages, struct vm_area_struct **vmas)
942 {
943         int i;
944         unsigned int flags;
945
946         /* 
947          * Require read or write permissions.
948          * If 'force' is set, we only require the "MAY" flags.
949          */
950         flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
951         flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
952         i = 0;
953
954         do {
955                 struct vm_area_struct * vma;
956
957                 vma = find_extend_vma(mm, start);
958                 if (!vma && in_gate_area(tsk, start)) {
959                         unsigned long pg = start & PAGE_MASK;
960                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
961                         pgd_t *pgd;
962                         pud_t *pud;
963                         pmd_t *pmd;
964                         pte_t *pte;
965                         if (write) /* user gate pages are read-only */
966                                 return i ? : -EFAULT;
967                         if (pg > TASK_SIZE)
968                                 pgd = pgd_offset_k(pg);
969                         else
970                                 pgd = pgd_offset_gate(mm, pg);
971                         BUG_ON(pgd_none(*pgd));
972                         pud = pud_offset(pgd, pg);
973                         BUG_ON(pud_none(*pud));
974                         pmd = pmd_offset(pud, pg);
975                         if (pmd_none(*pmd))
976                                 return i ? : -EFAULT;
977                         pte = pte_offset_map(pmd, pg);
978                         if (pte_none(*pte)) {
979                                 pte_unmap(pte);
980                                 return i ? : -EFAULT;
981                         }
982                         if (pages) {
983                                 pages[i] = pte_page(*pte);
984                                 get_page(pages[i]);
985                         }
986                         pte_unmap(pte);
987                         if (vmas)
988                                 vmas[i] = gate_vma;
989                         i++;
990                         start += PAGE_SIZE;
991                         len--;
992                         continue;
993                 }
994
995                 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
996                                 || !(flags & vma->vm_flags))
997                         return i ? : -EFAULT;
998
999                 if (is_vm_hugetlb_page(vma)) {
1000                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1001                                                 &start, &len, i);
1002                         continue;
1003                 }
1004                 spin_lock(&mm->page_table_lock);
1005                 do {
1006                         int write_access = write;
1007                         struct page *page;
1008
1009                         cond_resched_lock(&mm->page_table_lock);
1010                         while (!(page = follow_page(mm, start, write_access))) {
1011                                 int ret;
1012
1013                                 /*
1014                                  * Shortcut for anonymous pages. We don't want
1015                                  * to force the creation of pages tables for
1016                                  * insanely big anonymously mapped areas that
1017                                  * nobody touched so far. This is important
1018                                  * for doing a core dump for these mappings.
1019                                  */
1020                                 if (!write && untouched_anonymous_page(mm,vma,start)) {
1021                                         page = ZERO_PAGE(start);
1022                                         break;
1023                                 }
1024                                 spin_unlock(&mm->page_table_lock);
1025                                 ret = __handle_mm_fault(mm, vma, start, write_access);
1026
1027                                 /*
1028                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
1029                                  * broken COW when necessary, even if maybe_mkwrite
1030                                  * decided not to set pte_write. We can thus safely do
1031                                  * subsequent page lookups as if they were reads.
1032                                  */
1033                                 if (ret & VM_FAULT_WRITE)
1034                                         write_access = 0;
1035                                 
1036                                 switch (ret & ~VM_FAULT_WRITE) {
1037                                 case VM_FAULT_MINOR:
1038                                         tsk->min_flt++;
1039                                         break;
1040                                 case VM_FAULT_MAJOR:
1041                                         tsk->maj_flt++;
1042                                         break;
1043                                 case VM_FAULT_SIGBUS:
1044                                         return i ? i : -EFAULT;
1045                                 case VM_FAULT_OOM:
1046                                         return i ? i : -ENOMEM;
1047                                 default:
1048                                         BUG();
1049                                 }
1050                                 spin_lock(&mm->page_table_lock);
1051                         }
1052                         if (pages) {
1053                                 pages[i] = page;
1054                                 flush_dcache_page(page);
1055                                 page_cache_get(page);
1056                         }
1057                         if (vmas)
1058                                 vmas[i] = vma;
1059                         i++;
1060                         start += PAGE_SIZE;
1061                         len--;
1062                 } while (len && start < vma->vm_end);
1063                 spin_unlock(&mm->page_table_lock);
1064         } while (len);
1065         return i;
1066 }
1067 EXPORT_SYMBOL(get_user_pages);
1068
1069 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1070                         unsigned long addr, unsigned long end, pgprot_t prot)
1071 {
1072         pte_t *pte;
1073
1074         pte = pte_alloc_map(mm, pmd, addr);
1075         if (!pte)
1076                 return -ENOMEM;
1077         do {
1078                 struct page *page = ZERO_PAGE(addr);
1079                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1080                 page_cache_get(page);
1081                 page_add_file_rmap(page);
1082                 inc_mm_counter(mm, file_rss);
1083                 BUG_ON(!pte_none(*pte));
1084                 set_pte_at(mm, addr, pte, zero_pte);
1085         } while (pte++, addr += PAGE_SIZE, addr != end);
1086         pte_unmap(pte - 1);
1087         return 0;
1088 }
1089
1090 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1091                         unsigned long addr, unsigned long end, pgprot_t prot)
1092 {
1093         pmd_t *pmd;
1094         unsigned long next;
1095
1096         pmd = pmd_alloc(mm, pud, addr);
1097         if (!pmd)
1098                 return -ENOMEM;
1099         do {
1100                 next = pmd_addr_end(addr, end);
1101                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1102                         return -ENOMEM;
1103         } while (pmd++, addr = next, addr != end);
1104         return 0;
1105 }
1106
1107 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1108                         unsigned long addr, unsigned long end, pgprot_t prot)
1109 {
1110         pud_t *pud;
1111         unsigned long next;
1112
1113         pud = pud_alloc(mm, pgd, addr);
1114         if (!pud)
1115                 return -ENOMEM;
1116         do {
1117                 next = pud_addr_end(addr, end);
1118                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1119                         return -ENOMEM;
1120         } while (pud++, addr = next, addr != end);
1121         return 0;
1122 }
1123
1124 int zeromap_page_range(struct vm_area_struct *vma,
1125                         unsigned long addr, unsigned long size, pgprot_t prot)
1126 {
1127         pgd_t *pgd;
1128         unsigned long next;
1129         unsigned long end = addr + size;
1130         struct mm_struct *mm = vma->vm_mm;
1131         int err;
1132
1133         BUG_ON(addr >= end);
1134         pgd = pgd_offset(mm, addr);
1135         flush_cache_range(vma, addr, end);
1136         spin_lock(&mm->page_table_lock);
1137         do {
1138                 next = pgd_addr_end(addr, end);
1139                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1140                 if (err)
1141                         break;
1142         } while (pgd++, addr = next, addr != end);
1143         spin_unlock(&mm->page_table_lock);
1144         return err;
1145 }
1146
1147 /*
1148  * maps a range of physical memory into the requested pages. the old
1149  * mappings are removed. any references to nonexistent pages results
1150  * in null mappings (currently treated as "copy-on-access")
1151  */
1152 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1153                         unsigned long addr, unsigned long end,
1154                         unsigned long pfn, pgprot_t prot)
1155 {
1156         pte_t *pte;
1157
1158         pte = pte_alloc_map(mm, pmd, addr);
1159         if (!pte)
1160                 return -ENOMEM;
1161         do {
1162                 BUG_ON(!pte_none(*pte));
1163                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1164                 pfn++;
1165         } while (pte++, addr += PAGE_SIZE, addr != end);
1166         pte_unmap(pte - 1);
1167         return 0;
1168 }
1169
1170 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1171                         unsigned long addr, unsigned long end,
1172                         unsigned long pfn, pgprot_t prot)
1173 {
1174         pmd_t *pmd;
1175         unsigned long next;
1176
1177         pfn -= addr >> PAGE_SHIFT;
1178         pmd = pmd_alloc(mm, pud, addr);
1179         if (!pmd)
1180                 return -ENOMEM;
1181         do {
1182                 next = pmd_addr_end(addr, end);
1183                 if (remap_pte_range(mm, pmd, addr, next,
1184                                 pfn + (addr >> PAGE_SHIFT), prot))
1185                         return -ENOMEM;
1186         } while (pmd++, addr = next, addr != end);
1187         return 0;
1188 }
1189
1190 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1191                         unsigned long addr, unsigned long end,
1192                         unsigned long pfn, pgprot_t prot)
1193 {
1194         pud_t *pud;
1195         unsigned long next;
1196
1197         pfn -= addr >> PAGE_SHIFT;
1198         pud = pud_alloc(mm, pgd, addr);
1199         if (!pud)
1200                 return -ENOMEM;
1201         do {
1202                 next = pud_addr_end(addr, end);
1203                 if (remap_pmd_range(mm, pud, addr, next,
1204                                 pfn + (addr >> PAGE_SHIFT), prot))
1205                         return -ENOMEM;
1206         } while (pud++, addr = next, addr != end);
1207         return 0;
1208 }
1209
1210 /*  Note: this is only safe if the mm semaphore is held when called. */
1211 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1212                     unsigned long pfn, unsigned long size, pgprot_t prot)
1213 {
1214         pgd_t *pgd;
1215         unsigned long next;
1216         unsigned long end = addr + PAGE_ALIGN(size);
1217         struct mm_struct *mm = vma->vm_mm;
1218         int err;
1219
1220         /*
1221          * Physically remapped pages are special. Tell the
1222          * rest of the world about it:
1223          *   VM_IO tells people not to look at these pages
1224          *      (accesses can have side effects).
1225          *   VM_RESERVED tells the core MM not to "manage" these pages
1226          *      (e.g. refcount, mapcount, try to swap them out).
1227          */
1228         vma->vm_flags |= VM_IO | VM_RESERVED;
1229
1230         BUG_ON(addr >= end);
1231         pfn -= addr >> PAGE_SHIFT;
1232         pgd = pgd_offset(mm, addr);
1233         flush_cache_range(vma, addr, end);
1234         spin_lock(&mm->page_table_lock);
1235         do {
1236                 next = pgd_addr_end(addr, end);
1237                 err = remap_pud_range(mm, pgd, addr, next,
1238                                 pfn + (addr >> PAGE_SHIFT), prot);
1239                 if (err)
1240                         break;
1241         } while (pgd++, addr = next, addr != end);
1242         spin_unlock(&mm->page_table_lock);
1243         return err;
1244 }
1245 EXPORT_SYMBOL(remap_pfn_range);
1246
1247 /*
1248  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1249  * servicing faults for write access.  In the normal case, do always want
1250  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1251  * that do not have writing enabled, when used by access_process_vm.
1252  */
1253 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1254 {
1255         if (likely(vma->vm_flags & VM_WRITE))
1256                 pte = pte_mkwrite(pte);
1257         return pte;
1258 }
1259
1260 /*
1261  * This routine handles present pages, when users try to write
1262  * to a shared page. It is done by copying the page to a new address
1263  * and decrementing the shared-page counter for the old page.
1264  *
1265  * Note that this routine assumes that the protection checks have been
1266  * done by the caller (the low-level page fault routine in most cases).
1267  * Thus we can safely just mark it writable once we've done any necessary
1268  * COW.
1269  *
1270  * We also mark the page dirty at this point even though the page will
1271  * change only once the write actually happens. This avoids a few races,
1272  * and potentially makes it more efficient.
1273  *
1274  * We hold the mm semaphore and the page_table_lock on entry and exit
1275  * with the page_table_lock released.
1276  */
1277 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1278                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1279                 pte_t orig_pte)
1280 {
1281         struct page *old_page, *new_page;
1282         unsigned long pfn = pte_pfn(orig_pte);
1283         pte_t entry;
1284         int ret = VM_FAULT_MINOR;
1285
1286         BUG_ON(vma->vm_flags & VM_RESERVED);
1287
1288         if (unlikely(!pfn_valid(pfn))) {
1289                 /*
1290                  * Page table corrupted: show pte and kill process.
1291                  */
1292                 print_bad_pte(vma, orig_pte, address);
1293                 ret = VM_FAULT_OOM;
1294                 goto unlock;
1295         }
1296         old_page = pfn_to_page(pfn);
1297
1298         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1299                 int reuse = can_share_swap_page(old_page);
1300                 unlock_page(old_page);
1301                 if (reuse) {
1302                         flush_cache_page(vma, address, pfn);
1303                         entry = pte_mkyoung(orig_pte);
1304                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1305                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1306                         update_mmu_cache(vma, address, entry);
1307                         lazy_mmu_prot_update(entry);
1308                         ret |= VM_FAULT_WRITE;
1309                         goto unlock;
1310                 }
1311         }
1312
1313         /*
1314          * Ok, we need to copy. Oh, well..
1315          */
1316         page_cache_get(old_page);
1317         pte_unmap(page_table);
1318         spin_unlock(&mm->page_table_lock);
1319
1320         if (unlikely(anon_vma_prepare(vma)))
1321                 goto oom;
1322         if (old_page == ZERO_PAGE(address)) {
1323                 new_page = alloc_zeroed_user_highpage(vma, address);
1324                 if (!new_page)
1325                         goto oom;
1326         } else {
1327                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1328                 if (!new_page)
1329                         goto oom;
1330                 copy_user_highpage(new_page, old_page, address);
1331         }
1332
1333         /*
1334          * Re-check the pte - we dropped the lock
1335          */
1336         spin_lock(&mm->page_table_lock);
1337         page_table = pte_offset_map(pmd, address);
1338         if (likely(pte_same(*page_table, orig_pte))) {
1339                 page_remove_rmap(old_page);
1340                 if (!PageAnon(old_page)) {
1341                         inc_mm_counter(mm, anon_rss);
1342                         dec_mm_counter(mm, file_rss);
1343                 }
1344                 flush_cache_page(vma, address, pfn);
1345                 entry = mk_pte(new_page, vma->vm_page_prot);
1346                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1347                 ptep_establish(vma, address, page_table, entry);
1348                 update_mmu_cache(vma, address, entry);
1349                 lazy_mmu_prot_update(entry);
1350
1351                 lru_cache_add_active(new_page);
1352                 page_add_anon_rmap(new_page, vma, address);
1353
1354                 /* Free the old page.. */
1355                 new_page = old_page;
1356                 ret |= VM_FAULT_WRITE;
1357         }
1358         page_cache_release(new_page);
1359         page_cache_release(old_page);
1360 unlock:
1361         pte_unmap(page_table);
1362         spin_unlock(&mm->page_table_lock);
1363         return ret;
1364 oom:
1365         page_cache_release(old_page);
1366         return VM_FAULT_OOM;
1367 }
1368
1369 /*
1370  * Helper functions for unmap_mapping_range().
1371  *
1372  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1373  *
1374  * We have to restart searching the prio_tree whenever we drop the lock,
1375  * since the iterator is only valid while the lock is held, and anyway
1376  * a later vma might be split and reinserted earlier while lock dropped.
1377  *
1378  * The list of nonlinear vmas could be handled more efficiently, using
1379  * a placeholder, but handle it in the same way until a need is shown.
1380  * It is important to search the prio_tree before nonlinear list: a vma
1381  * may become nonlinear and be shifted from prio_tree to nonlinear list
1382  * while the lock is dropped; but never shifted from list to prio_tree.
1383  *
1384  * In order to make forward progress despite restarting the search,
1385  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1386  * quickly skip it next time around.  Since the prio_tree search only
1387  * shows us those vmas affected by unmapping the range in question, we
1388  * can't efficiently keep all vmas in step with mapping->truncate_count:
1389  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1390  * mapping->truncate_count and vma->vm_truncate_count are protected by
1391  * i_mmap_lock.
1392  *
1393  * In order to make forward progress despite repeatedly restarting some
1394  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1395  * and restart from that address when we reach that vma again.  It might
1396  * have been split or merged, shrunk or extended, but never shifted: so
1397  * restart_addr remains valid so long as it remains in the vma's range.
1398  * unmap_mapping_range forces truncate_count to leap over page-aligned
1399  * values so we can save vma's restart_addr in its truncate_count field.
1400  */
1401 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1402
1403 static void reset_vma_truncate_counts(struct address_space *mapping)
1404 {
1405         struct vm_area_struct *vma;
1406         struct prio_tree_iter iter;
1407
1408         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1409                 vma->vm_truncate_count = 0;
1410         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1411                 vma->vm_truncate_count = 0;
1412 }
1413
1414 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1415                 unsigned long start_addr, unsigned long end_addr,
1416                 struct zap_details *details)
1417 {
1418         unsigned long restart_addr;
1419         int need_break;
1420
1421 again:
1422         restart_addr = vma->vm_truncate_count;
1423         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1424                 start_addr = restart_addr;
1425                 if (start_addr >= end_addr) {
1426                         /* Top of vma has been split off since last time */
1427                         vma->vm_truncate_count = details->truncate_count;
1428                         return 0;
1429                 }
1430         }
1431
1432         restart_addr = zap_page_range(vma, start_addr,
1433                                         end_addr - start_addr, details);
1434
1435         /*
1436          * We cannot rely on the break test in unmap_vmas:
1437          * on the one hand, we don't want to restart our loop
1438          * just because that broke out for the page_table_lock;
1439          * on the other hand, it does no test when vma is small.
1440          */
1441         need_break = need_resched() ||
1442                         need_lockbreak(details->i_mmap_lock);
1443
1444         if (restart_addr >= end_addr) {
1445                 /* We have now completed this vma: mark it so */
1446                 vma->vm_truncate_count = details->truncate_count;
1447                 if (!need_break)
1448                         return 0;
1449         } else {
1450                 /* Note restart_addr in vma's truncate_count field */
1451                 vma->vm_truncate_count = restart_addr;
1452                 if (!need_break)
1453                         goto again;
1454         }
1455
1456         spin_unlock(details->i_mmap_lock);
1457         cond_resched();
1458         spin_lock(details->i_mmap_lock);
1459         return -EINTR;
1460 }
1461
1462 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1463                                             struct zap_details *details)
1464 {
1465         struct vm_area_struct *vma;
1466         struct prio_tree_iter iter;
1467         pgoff_t vba, vea, zba, zea;
1468
1469 restart:
1470         vma_prio_tree_foreach(vma, &iter, root,
1471                         details->first_index, details->last_index) {
1472                 /* Skip quickly over those we have already dealt with */
1473                 if (vma->vm_truncate_count == details->truncate_count)
1474                         continue;
1475
1476                 vba = vma->vm_pgoff;
1477                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1478                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1479                 zba = details->first_index;
1480                 if (zba < vba)
1481                         zba = vba;
1482                 zea = details->last_index;
1483                 if (zea > vea)
1484                         zea = vea;
1485
1486                 if (unmap_mapping_range_vma(vma,
1487                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1488                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1489                                 details) < 0)
1490                         goto restart;
1491         }
1492 }
1493
1494 static inline void unmap_mapping_range_list(struct list_head *head,
1495                                             struct zap_details *details)
1496 {
1497         struct vm_area_struct *vma;
1498
1499         /*
1500          * In nonlinear VMAs there is no correspondence between virtual address
1501          * offset and file offset.  So we must perform an exhaustive search
1502          * across *all* the pages in each nonlinear VMA, not just the pages
1503          * whose virtual address lies outside the file truncation point.
1504          */
1505 restart:
1506         list_for_each_entry(vma, head, shared.vm_set.list) {
1507                 /* Skip quickly over those we have already dealt with */
1508                 if (vma->vm_truncate_count == details->truncate_count)
1509                         continue;
1510                 details->nonlinear_vma = vma;
1511                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1512                                         vma->vm_end, details) < 0)
1513                         goto restart;
1514         }
1515 }
1516
1517 /**
1518  * unmap_mapping_range - unmap the portion of all mmaps
1519  * in the specified address_space corresponding to the specified
1520  * page range in the underlying file.
1521  * @mapping: the address space containing mmaps to be unmapped.
1522  * @holebegin: byte in first page to unmap, relative to the start of
1523  * the underlying file.  This will be rounded down to a PAGE_SIZE
1524  * boundary.  Note that this is different from vmtruncate(), which
1525  * must keep the partial page.  In contrast, we must get rid of
1526  * partial pages.
1527  * @holelen: size of prospective hole in bytes.  This will be rounded
1528  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1529  * end of the file.
1530  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1531  * but 0 when invalidating pagecache, don't throw away private data.
1532  */
1533 void unmap_mapping_range(struct address_space *mapping,
1534                 loff_t const holebegin, loff_t const holelen, int even_cows)
1535 {
1536         struct zap_details details;
1537         pgoff_t hba = holebegin >> PAGE_SHIFT;
1538         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1539
1540         /* Check for overflow. */
1541         if (sizeof(holelen) > sizeof(hlen)) {
1542                 long long holeend =
1543                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1544                 if (holeend & ~(long long)ULONG_MAX)
1545                         hlen = ULONG_MAX - hba + 1;
1546         }
1547
1548         details.check_mapping = even_cows? NULL: mapping;
1549         details.nonlinear_vma = NULL;
1550         details.first_index = hba;
1551         details.last_index = hba + hlen - 1;
1552         if (details.last_index < details.first_index)
1553                 details.last_index = ULONG_MAX;
1554         details.i_mmap_lock = &mapping->i_mmap_lock;
1555
1556         spin_lock(&mapping->i_mmap_lock);
1557
1558         /* serialize i_size write against truncate_count write */
1559         smp_wmb();
1560         /* Protect against page faults, and endless unmapping loops */
1561         mapping->truncate_count++;
1562         /*
1563          * For archs where spin_lock has inclusive semantics like ia64
1564          * this smp_mb() will prevent to read pagetable contents
1565          * before the truncate_count increment is visible to
1566          * other cpus.
1567          */
1568         smp_mb();
1569         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1570                 if (mapping->truncate_count == 0)
1571                         reset_vma_truncate_counts(mapping);
1572                 mapping->truncate_count++;
1573         }
1574         details.truncate_count = mapping->truncate_count;
1575
1576         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1577                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1578         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1579                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1580         spin_unlock(&mapping->i_mmap_lock);
1581 }
1582 EXPORT_SYMBOL(unmap_mapping_range);
1583
1584 /*
1585  * Handle all mappings that got truncated by a "truncate()"
1586  * system call.
1587  *
1588  * NOTE! We have to be ready to update the memory sharing
1589  * between the file and the memory map for a potential last
1590  * incomplete page.  Ugly, but necessary.
1591  */
1592 int vmtruncate(struct inode * inode, loff_t offset)
1593 {
1594         struct address_space *mapping = inode->i_mapping;
1595         unsigned long limit;
1596
1597         if (inode->i_size < offset)
1598                 goto do_expand;
1599         /*
1600          * truncation of in-use swapfiles is disallowed - it would cause
1601          * subsequent swapout to scribble on the now-freed blocks.
1602          */
1603         if (IS_SWAPFILE(inode))
1604                 goto out_busy;
1605         i_size_write(inode, offset);
1606         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1607         truncate_inode_pages(mapping, offset);
1608         goto out_truncate;
1609
1610 do_expand:
1611         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1612         if (limit != RLIM_INFINITY && offset > limit)
1613                 goto out_sig;
1614         if (offset > inode->i_sb->s_maxbytes)
1615                 goto out_big;
1616         i_size_write(inode, offset);
1617
1618 out_truncate:
1619         if (inode->i_op && inode->i_op->truncate)
1620                 inode->i_op->truncate(inode);
1621         return 0;
1622 out_sig:
1623         send_sig(SIGXFSZ, current, 0);
1624 out_big:
1625         return -EFBIG;
1626 out_busy:
1627         return -ETXTBSY;
1628 }
1629
1630 EXPORT_SYMBOL(vmtruncate);
1631
1632 /* 
1633  * Primitive swap readahead code. We simply read an aligned block of
1634  * (1 << page_cluster) entries in the swap area. This method is chosen
1635  * because it doesn't cost us any seek time.  We also make sure to queue
1636  * the 'original' request together with the readahead ones...  
1637  *
1638  * This has been extended to use the NUMA policies from the mm triggering
1639  * the readahead.
1640  *
1641  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1642  */
1643 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1644 {
1645 #ifdef CONFIG_NUMA
1646         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1647 #endif
1648         int i, num;
1649         struct page *new_page;
1650         unsigned long offset;
1651
1652         /*
1653          * Get the number of handles we should do readahead io to.
1654          */
1655         num = valid_swaphandles(entry, &offset);
1656         for (i = 0; i < num; offset++, i++) {
1657                 /* Ok, do the async read-ahead now */
1658                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1659                                                            offset), vma, addr);
1660                 if (!new_page)
1661                         break;
1662                 page_cache_release(new_page);
1663 #ifdef CONFIG_NUMA
1664                 /*
1665                  * Find the next applicable VMA for the NUMA policy.
1666                  */
1667                 addr += PAGE_SIZE;
1668                 if (addr == 0)
1669                         vma = NULL;
1670                 if (vma) {
1671                         if (addr >= vma->vm_end) {
1672                                 vma = next_vma;
1673                                 next_vma = vma ? vma->vm_next : NULL;
1674                         }
1675                         if (vma && addr < vma->vm_start)
1676                                 vma = NULL;
1677                 } else {
1678                         if (next_vma && addr >= next_vma->vm_start) {
1679                                 vma = next_vma;
1680                                 next_vma = vma->vm_next;
1681                         }
1682                 }
1683 #endif
1684         }
1685         lru_add_drain();        /* Push any new pages onto the LRU now */
1686 }
1687
1688 /*
1689  * We hold the mm semaphore and the page_table_lock on entry and
1690  * should release the pagetable lock on exit..
1691  */
1692 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1693                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1694                 int write_access, pte_t orig_pte)
1695 {
1696         struct page *page;
1697         swp_entry_t entry;
1698         pte_t pte;
1699         int ret = VM_FAULT_MINOR;
1700
1701         pte_unmap(page_table);
1702         spin_unlock(&mm->page_table_lock);
1703
1704         entry = pte_to_swp_entry(orig_pte);
1705         page = lookup_swap_cache(entry);
1706         if (!page) {
1707                 swapin_readahead(entry, address, vma);
1708                 page = read_swap_cache_async(entry, vma, address);
1709                 if (!page) {
1710                         /*
1711                          * Back out if somebody else faulted in this pte while
1712                          * we released the page table lock.
1713                          */
1714                         spin_lock(&mm->page_table_lock);
1715                         page_table = pte_offset_map(pmd, address);
1716                         if (likely(pte_same(*page_table, orig_pte)))
1717                                 ret = VM_FAULT_OOM;
1718                         goto unlock;
1719                 }
1720
1721                 /* Had to read the page from swap area: Major fault */
1722                 ret = VM_FAULT_MAJOR;
1723                 inc_page_state(pgmajfault);
1724                 grab_swap_token();
1725         }
1726
1727         mark_page_accessed(page);
1728         lock_page(page);
1729
1730         /*
1731          * Back out if somebody else faulted in this pte while we
1732          * released the page table lock.
1733          */
1734         spin_lock(&mm->page_table_lock);
1735         page_table = pte_offset_map(pmd, address);
1736         if (unlikely(!pte_same(*page_table, orig_pte))) {
1737                 ret = VM_FAULT_MINOR;
1738                 goto out_nomap;
1739         }
1740
1741         if (unlikely(!PageUptodate(page))) {
1742                 ret = VM_FAULT_SIGBUS;
1743                 goto out_nomap;
1744         }
1745
1746         /* The page isn't present yet, go ahead with the fault. */
1747
1748         inc_mm_counter(mm, anon_rss);
1749         pte = mk_pte(page, vma->vm_page_prot);
1750         if (write_access && can_share_swap_page(page)) {
1751                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1752                 write_access = 0;
1753         }
1754
1755         flush_icache_page(vma, page);
1756         set_pte_at(mm, address, page_table, pte);
1757         page_add_anon_rmap(page, vma, address);
1758
1759         swap_free(entry);
1760         if (vm_swap_full())
1761                 remove_exclusive_swap_page(page);
1762         unlock_page(page);
1763
1764         if (write_access) {
1765                 if (do_wp_page(mm, vma, address,
1766                                 page_table, pmd, pte) == VM_FAULT_OOM)
1767                         ret = VM_FAULT_OOM;
1768                 goto out;
1769         }
1770
1771         /* No need to invalidate - it was non-present before */
1772         update_mmu_cache(vma, address, pte);
1773         lazy_mmu_prot_update(pte);
1774 unlock:
1775         pte_unmap(page_table);
1776         spin_unlock(&mm->page_table_lock);
1777 out:
1778         return ret;
1779 out_nomap:
1780         pte_unmap(page_table);
1781         spin_unlock(&mm->page_table_lock);
1782         unlock_page(page);
1783         page_cache_release(page);
1784         return ret;
1785 }
1786
1787 /*
1788  * We are called with the MM semaphore and page_table_lock
1789  * spinlock held to protect against concurrent faults in
1790  * multithreaded programs. 
1791  */
1792 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1793                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1794                 int write_access)
1795 {
1796         struct page *page = ZERO_PAGE(addr);
1797         pte_t entry;
1798
1799         /* Mapping of ZERO_PAGE - vm_page_prot is readonly */
1800         entry = mk_pte(page, vma->vm_page_prot);
1801
1802         if (write_access) {
1803                 /* Allocate our own private page. */
1804                 pte_unmap(page_table);
1805                 spin_unlock(&mm->page_table_lock);
1806
1807                 if (unlikely(anon_vma_prepare(vma)))
1808                         goto oom;
1809                 page = alloc_zeroed_user_highpage(vma, address);
1810                 if (!page)
1811                         goto oom;
1812
1813                 spin_lock(&mm->page_table_lock);
1814                 page_table = pte_offset_map(pmd, address);
1815
1816                 if (!pte_none(*page_table)) {
1817                         page_cache_release(page);
1818                         goto unlock;
1819                 }
1820                 inc_mm_counter(mm, anon_rss);
1821                 entry = mk_pte(page, vma->vm_page_prot);
1822                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1823                 lru_cache_add_active(page);
1824                 SetPageReferenced(page);
1825                 page_add_anon_rmap(page, vma, address);
1826         } else {
1827                 inc_mm_counter(mm, file_rss);
1828                 page_add_file_rmap(page);
1829                 page_cache_get(page);
1830         }
1831
1832         set_pte_at(mm, address, page_table, entry);
1833
1834         /* No need to invalidate - it was non-present before */
1835         update_mmu_cache(vma, address, entry);
1836         lazy_mmu_prot_update(entry);
1837 unlock:
1838         pte_unmap(page_table);
1839         spin_unlock(&mm->page_table_lock);
1840         return VM_FAULT_MINOR;
1841 oom:
1842         return VM_FAULT_OOM;
1843 }
1844
1845 /*
1846  * do_no_page() tries to create a new page mapping. It aggressively
1847  * tries to share with existing pages, but makes a separate copy if
1848  * the "write_access" parameter is true in order to avoid the next
1849  * page fault.
1850  *
1851  * As this is called only for pages that do not currently exist, we
1852  * do not need to flush old virtual caches or the TLB.
1853  *
1854  * This is called with the MM semaphore held and the page table
1855  * spinlock held. Exit with the spinlock released.
1856  */
1857 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1858                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1859                 int write_access)
1860 {
1861         struct page *new_page;
1862         struct address_space *mapping = NULL;
1863         pte_t entry;
1864         unsigned int sequence = 0;
1865         int ret = VM_FAULT_MINOR;
1866         int anon = 0;
1867
1868         pte_unmap(page_table);
1869         spin_unlock(&mm->page_table_lock);
1870
1871         if (vma->vm_file) {
1872                 mapping = vma->vm_file->f_mapping;
1873                 sequence = mapping->truncate_count;
1874                 smp_rmb(); /* serializes i_size against truncate_count */
1875         }
1876 retry:
1877         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1878         /*
1879          * No smp_rmb is needed here as long as there's a full
1880          * spin_lock/unlock sequence inside the ->nopage callback
1881          * (for the pagecache lookup) that acts as an implicit
1882          * smp_mb() and prevents the i_size read to happen
1883          * after the next truncate_count read.
1884          */
1885
1886         /* no page was available -- either SIGBUS or OOM */
1887         if (new_page == NOPAGE_SIGBUS)
1888                 return VM_FAULT_SIGBUS;
1889         if (new_page == NOPAGE_OOM)
1890                 return VM_FAULT_OOM;
1891
1892         /*
1893          * Should we do an early C-O-W break?
1894          */
1895         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1896                 struct page *page;
1897
1898                 if (unlikely(anon_vma_prepare(vma)))
1899                         goto oom;
1900                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1901                 if (!page)
1902                         goto oom;
1903                 copy_user_highpage(page, new_page, address);
1904                 page_cache_release(new_page);
1905                 new_page = page;
1906                 anon = 1;
1907         }
1908
1909         spin_lock(&mm->page_table_lock);
1910         /*
1911          * For a file-backed vma, someone could have truncated or otherwise
1912          * invalidated this page.  If unmap_mapping_range got called,
1913          * retry getting the page.
1914          */
1915         if (mapping && unlikely(sequence != mapping->truncate_count)) {
1916                 spin_unlock(&mm->page_table_lock);
1917                 page_cache_release(new_page);
1918                 cond_resched();
1919                 sequence = mapping->truncate_count;
1920                 smp_rmb();
1921                 goto retry;
1922         }
1923         page_table = pte_offset_map(pmd, address);
1924
1925         /*
1926          * This silly early PAGE_DIRTY setting removes a race
1927          * due to the bad i386 page protection. But it's valid
1928          * for other architectures too.
1929          *
1930          * Note that if write_access is true, we either now have
1931          * an exclusive copy of the page, or this is a shared mapping,
1932          * so we can make it writable and dirty to avoid having to
1933          * handle that later.
1934          */
1935         /* Only go through if we didn't race with anybody else... */
1936         if (pte_none(*page_table)) {
1937                 flush_icache_page(vma, new_page);
1938                 entry = mk_pte(new_page, vma->vm_page_prot);
1939                 if (write_access)
1940                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1941                 set_pte_at(mm, address, page_table, entry);
1942                 if (anon) {
1943                         inc_mm_counter(mm, anon_rss);
1944                         lru_cache_add_active(new_page);
1945                         page_add_anon_rmap(new_page, vma, address);
1946                 } else if (!(vma->vm_flags & VM_RESERVED)) {
1947                         inc_mm_counter(mm, file_rss);
1948                         page_add_file_rmap(new_page);
1949                 }
1950         } else {
1951                 /* One of our sibling threads was faster, back out. */
1952                 page_cache_release(new_page);
1953                 goto unlock;
1954         }
1955
1956         /* no need to invalidate: a not-present page shouldn't be cached */
1957         update_mmu_cache(vma, address, entry);
1958         lazy_mmu_prot_update(entry);
1959 unlock:
1960         pte_unmap(page_table);
1961         spin_unlock(&mm->page_table_lock);
1962         return ret;
1963 oom:
1964         page_cache_release(new_page);
1965         return VM_FAULT_OOM;
1966 }
1967
1968 /*
1969  * Fault of a previously existing named mapping. Repopulate the pte
1970  * from the encoded file_pte if possible. This enables swappable
1971  * nonlinear vmas.
1972  */
1973 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1974                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1975                 int write_access, pte_t orig_pte)
1976 {
1977         pgoff_t pgoff;
1978         int err;
1979
1980         pte_unmap(page_table);
1981         spin_unlock(&mm->page_table_lock);
1982
1983         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1984                 /*
1985                  * Page table corrupted: show pte and kill process.
1986                  */
1987                 print_bad_pte(vma, orig_pte, address);
1988                 return VM_FAULT_OOM;
1989         }
1990         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1991
1992         pgoff = pte_to_pgoff(orig_pte);
1993         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1994                                         vma->vm_page_prot, pgoff, 0);
1995         if (err == -ENOMEM)
1996                 return VM_FAULT_OOM;
1997         if (err)
1998                 return VM_FAULT_SIGBUS;
1999         return VM_FAULT_MAJOR;
2000 }
2001
2002 /*
2003  * These routines also need to handle stuff like marking pages dirty
2004  * and/or accessed for architectures that don't do it in hardware (most
2005  * RISC architectures).  The early dirtying is also good on the i386.
2006  *
2007  * There is also a hook called "update_mmu_cache()" that architectures
2008  * with external mmu caches can use to update those (ie the Sparc or
2009  * PowerPC hashed page tables that act as extended TLBs).
2010  *
2011  * Note the "page_table_lock". It is to protect against kswapd removing
2012  * pages from under us. Note that kswapd only ever _removes_ pages, never
2013  * adds them. As such, once we have noticed that the page is not present,
2014  * we can drop the lock early.
2015  *
2016  * The adding of pages is protected by the MM semaphore (which we hold),
2017  * so we don't need to worry about a page being suddenly been added into
2018  * our VM.
2019  *
2020  * We enter with the pagetable spinlock held, we are supposed to
2021  * release it when done.
2022  */
2023 static inline int handle_pte_fault(struct mm_struct *mm,
2024                 struct vm_area_struct *vma, unsigned long address,
2025                 pte_t *pte, pmd_t *pmd, int write_access)
2026 {
2027         pte_t entry;
2028
2029         entry = *pte;
2030         if (!pte_present(entry)) {
2031                 if (pte_none(entry)) {
2032                         if (!vma->vm_ops || !vma->vm_ops->nopage)
2033                                 return do_anonymous_page(mm, vma, address,
2034                                         pte, pmd, write_access);
2035                         return do_no_page(mm, vma, address,
2036                                         pte, pmd, write_access);
2037                 }
2038                 if (pte_file(entry))
2039                         return do_file_page(mm, vma, address,
2040                                         pte, pmd, write_access, entry);
2041                 return do_swap_page(mm, vma, address,
2042                                         pte, pmd, write_access, entry);
2043         }
2044
2045         if (write_access) {
2046                 if (!pte_write(entry))
2047                         return do_wp_page(mm, vma, address, pte, pmd, entry);
2048                 entry = pte_mkdirty(entry);
2049         }
2050         entry = pte_mkyoung(entry);
2051         ptep_set_access_flags(vma, address, pte, entry, write_access);
2052         update_mmu_cache(vma, address, entry);
2053         lazy_mmu_prot_update(entry);
2054         pte_unmap(pte);
2055         spin_unlock(&mm->page_table_lock);
2056         return VM_FAULT_MINOR;
2057 }
2058
2059 /*
2060  * By the time we get here, we already hold the mm semaphore
2061  */
2062 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2063                 unsigned long address, int write_access)
2064 {
2065         pgd_t *pgd;
2066         pud_t *pud;
2067         pmd_t *pmd;
2068         pte_t *pte;
2069
2070         __set_current_state(TASK_RUNNING);
2071
2072         inc_page_state(pgfault);
2073
2074         if (unlikely(is_vm_hugetlb_page(vma)))
2075                 return hugetlb_fault(mm, vma, address, write_access);
2076
2077         /*
2078          * We need the page table lock to synchronize with kswapd
2079          * and the SMP-safe atomic PTE updates.
2080          */
2081         pgd = pgd_offset(mm, address);
2082         spin_lock(&mm->page_table_lock);
2083
2084         pud = pud_alloc(mm, pgd, address);
2085         if (!pud)
2086                 goto oom;
2087
2088         pmd = pmd_alloc(mm, pud, address);
2089         if (!pmd)
2090                 goto oom;
2091
2092         pte = pte_alloc_map(mm, pmd, address);
2093         if (!pte)
2094                 goto oom;
2095         
2096         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2097
2098  oom:
2099         spin_unlock(&mm->page_table_lock);
2100         return VM_FAULT_OOM;
2101 }
2102
2103 #ifndef __PAGETABLE_PUD_FOLDED
2104 /*
2105  * Allocate page upper directory.
2106  *
2107  * We've already handled the fast-path in-line, and we own the
2108  * page table lock.
2109  */
2110 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2111 {
2112         pud_t *new;
2113
2114         spin_unlock(&mm->page_table_lock);
2115         new = pud_alloc_one(mm, address);
2116         spin_lock(&mm->page_table_lock);
2117         if (!new)
2118                 return NULL;
2119
2120         /*
2121          * Because we dropped the lock, we should re-check the
2122          * entry, as somebody else could have populated it..
2123          */
2124         if (pgd_present(*pgd)) {
2125                 pud_free(new);
2126                 goto out;
2127         }
2128         pgd_populate(mm, pgd, new);
2129  out:
2130         return pud_offset(pgd, address);
2131 }
2132 #endif /* __PAGETABLE_PUD_FOLDED */
2133
2134 #ifndef __PAGETABLE_PMD_FOLDED
2135 /*
2136  * Allocate page middle directory.
2137  *
2138  * We've already handled the fast-path in-line, and we own the
2139  * page table lock.
2140  */
2141 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2142 {
2143         pmd_t *new;
2144
2145         spin_unlock(&mm->page_table_lock);
2146         new = pmd_alloc_one(mm, address);
2147         spin_lock(&mm->page_table_lock);
2148         if (!new)
2149                 return NULL;
2150
2151         /*
2152          * Because we dropped the lock, we should re-check the
2153          * entry, as somebody else could have populated it..
2154          */
2155 #ifndef __ARCH_HAS_4LEVEL_HACK
2156         if (pud_present(*pud)) {
2157                 pmd_free(new);
2158                 goto out;
2159         }
2160         pud_populate(mm, pud, new);
2161 #else
2162         if (pgd_present(*pud)) {
2163                 pmd_free(new);
2164                 goto out;
2165         }
2166         pgd_populate(mm, pud, new);
2167 #endif /* __ARCH_HAS_4LEVEL_HACK */
2168
2169  out:
2170         return pmd_offset(pud, address);
2171 }
2172 #endif /* __PAGETABLE_PMD_FOLDED */
2173
2174 int make_pages_present(unsigned long addr, unsigned long end)
2175 {
2176         int ret, len, write;
2177         struct vm_area_struct * vma;
2178
2179         vma = find_vma(current->mm, addr);
2180         if (!vma)
2181                 return -1;
2182         write = (vma->vm_flags & VM_WRITE) != 0;
2183         if (addr >= end)
2184                 BUG();
2185         if (end > vma->vm_end)
2186                 BUG();
2187         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2188         ret = get_user_pages(current, current->mm, addr,
2189                         len, write, 0, NULL, NULL);
2190         if (ret < 0)
2191                 return ret;
2192         return ret == len ? 0 : -1;
2193 }
2194
2195 /* 
2196  * Map a vmalloc()-space virtual address to the physical page.
2197  */
2198 struct page * vmalloc_to_page(void * vmalloc_addr)
2199 {
2200         unsigned long addr = (unsigned long) vmalloc_addr;
2201         struct page *page = NULL;
2202         pgd_t *pgd = pgd_offset_k(addr);
2203         pud_t *pud;
2204         pmd_t *pmd;
2205         pte_t *ptep, pte;
2206   
2207         if (!pgd_none(*pgd)) {
2208                 pud = pud_offset(pgd, addr);
2209                 if (!pud_none(*pud)) {
2210                         pmd = pmd_offset(pud, addr);
2211                         if (!pmd_none(*pmd)) {
2212                                 ptep = pte_offset_map(pmd, addr);
2213                                 pte = *ptep;
2214                                 if (pte_present(pte))
2215                                         page = pte_page(pte);
2216                                 pte_unmap(ptep);
2217                         }
2218                 }
2219         }
2220         return page;
2221 }
2222
2223 EXPORT_SYMBOL(vmalloc_to_page);
2224
2225 /*
2226  * Map a vmalloc()-space virtual address to the physical page frame number.
2227  */
2228 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2229 {
2230         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2231 }
2232
2233 EXPORT_SYMBOL(vmalloc_to_pfn);
2234
2235 /*
2236  * update_mem_hiwater
2237  *      - update per process rss and vm high water data
2238  */
2239 void update_mem_hiwater(struct task_struct *tsk)
2240 {
2241         if (tsk->mm) {
2242                 unsigned long rss = get_mm_rss(tsk->mm);
2243
2244                 if (tsk->mm->hiwater_rss < rss)
2245                         tsk->mm->hiwater_rss = rss;
2246                 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2247                         tsk->mm->hiwater_vm = tsk->mm->total_vm;
2248         }
2249 }
2250
2251 #if !defined(__HAVE_ARCH_GATE_AREA)
2252
2253 #if defined(AT_SYSINFO_EHDR)
2254 static struct vm_area_struct gate_vma;
2255
2256 static int __init gate_vma_init(void)
2257 {
2258         gate_vma.vm_mm = NULL;
2259         gate_vma.vm_start = FIXADDR_USER_START;
2260         gate_vma.vm_end = FIXADDR_USER_END;
2261         gate_vma.vm_page_prot = PAGE_READONLY;
2262         gate_vma.vm_flags = VM_RESERVED;
2263         return 0;
2264 }
2265 __initcall(gate_vma_init);
2266 #endif
2267
2268 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2269 {
2270 #ifdef AT_SYSINFO_EHDR
2271         return &gate_vma;
2272 #else
2273         return NULL;
2274 #endif
2275 }
2276
2277 int in_gate_area_no_task(unsigned long addr)
2278 {
2279 #ifdef AT_SYSINFO_EHDR
2280         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2281                 return 1;
2282 #endif
2283         return 0;
2284 }
2285
2286 #endif  /* __HAVE_ARCH_GATE_AREA */