Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83
84 #include "internal.h"
85
86 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
87 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
88 #endif
89
90 #ifndef CONFIG_NEED_MULTIPLE_NODES
91 /* use the per-pgdat data instead for discontigmem - mbligh */
92 unsigned long max_mapnr;
93 EXPORT_SYMBOL(max_mapnr);
94
95 struct page *mem_map;
96 EXPORT_SYMBOL(mem_map);
97 #endif
98
99 /*
100  * A number of key systems in x86 including ioremap() rely on the assumption
101  * that high_memory defines the upper bound on direct map memory, then end
102  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
103  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104  * and ZONE_HIGHMEM.
105  */
106 void *high_memory;
107 EXPORT_SYMBOL(high_memory);
108
109 /*
110  * Randomize the address space (stacks, mmaps, brk, etc.).
111  *
112  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
113  *   as ancient (libc5 based) binaries can segfault. )
114  */
115 int randomize_va_space __read_mostly =
116 #ifdef CONFIG_COMPAT_BRK
117                                         1;
118 #else
119                                         2;
120 #endif
121
122 #ifndef arch_faults_on_old_pte
123 static inline bool arch_faults_on_old_pte(void)
124 {
125         /*
126          * Those arches which don't have hw access flag feature need to
127          * implement their own helper. By default, "true" means pagefault
128          * will be hit on old pte.
129          */
130         return true;
131 }
132 #endif
133
134 static int __init disable_randmaps(char *s)
135 {
136         randomize_va_space = 0;
137         return 1;
138 }
139 __setup("norandmaps", disable_randmaps);
140
141 unsigned long zero_pfn __read_mostly;
142 EXPORT_SYMBOL(zero_pfn);
143
144 unsigned long highest_memmap_pfn __read_mostly;
145
146 /*
147  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
148  */
149 static int __init init_zero_pfn(void)
150 {
151         zero_pfn = page_to_pfn(ZERO_PAGE(0));
152         return 0;
153 }
154 core_initcall(init_zero_pfn);
155
156 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
157 {
158         trace_rss_stat(mm, member, count);
159 }
160
161 #if defined(SPLIT_RSS_COUNTING)
162
163 void sync_mm_rss(struct mm_struct *mm)
164 {
165         int i;
166
167         for (i = 0; i < NR_MM_COUNTERS; i++) {
168                 if (current->rss_stat.count[i]) {
169                         add_mm_counter(mm, i, current->rss_stat.count[i]);
170                         current->rss_stat.count[i] = 0;
171                 }
172         }
173         current->rss_stat.events = 0;
174 }
175
176 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
177 {
178         struct task_struct *task = current;
179
180         if (likely(task->mm == mm))
181                 task->rss_stat.count[member] += val;
182         else
183                 add_mm_counter(mm, member, val);
184 }
185 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
186 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
187
188 /* sync counter once per 64 page faults */
189 #define TASK_RSS_EVENTS_THRESH  (64)
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192         if (unlikely(task != current))
193                 return;
194         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
195                 sync_mm_rss(task->mm);
196 }
197 #else /* SPLIT_RSS_COUNTING */
198
199 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
200 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
201
202 static void check_sync_rss_stat(struct task_struct *task)
203 {
204 }
205
206 #endif /* SPLIT_RSS_COUNTING */
207
208 /*
209  * Note: this doesn't free the actual pages themselves. That
210  * has been handled earlier when unmapping all the memory regions.
211  */
212 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
213                            unsigned long addr)
214 {
215         pgtable_t token = pmd_pgtable(*pmd);
216         pmd_clear(pmd);
217         pte_free_tlb(tlb, token, addr);
218         mm_dec_nr_ptes(tlb->mm);
219 }
220
221 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
222                                 unsigned long addr, unsigned long end,
223                                 unsigned long floor, unsigned long ceiling)
224 {
225         pmd_t *pmd;
226         unsigned long next;
227         unsigned long start;
228
229         start = addr;
230         pmd = pmd_offset(pud, addr);
231         do {
232                 next = pmd_addr_end(addr, end);
233                 if (pmd_none_or_clear_bad(pmd))
234                         continue;
235                 free_pte_range(tlb, pmd, addr);
236         } while (pmd++, addr = next, addr != end);
237
238         start &= PUD_MASK;
239         if (start < floor)
240                 return;
241         if (ceiling) {
242                 ceiling &= PUD_MASK;
243                 if (!ceiling)
244                         return;
245         }
246         if (end - 1 > ceiling - 1)
247                 return;
248
249         pmd = pmd_offset(pud, start);
250         pud_clear(pud);
251         pmd_free_tlb(tlb, pmd, start);
252         mm_dec_nr_pmds(tlb->mm);
253 }
254
255 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
256                                 unsigned long addr, unsigned long end,
257                                 unsigned long floor, unsigned long ceiling)
258 {
259         pud_t *pud;
260         unsigned long next;
261         unsigned long start;
262
263         start = addr;
264         pud = pud_offset(p4d, addr);
265         do {
266                 next = pud_addr_end(addr, end);
267                 if (pud_none_or_clear_bad(pud))
268                         continue;
269                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
270         } while (pud++, addr = next, addr != end);
271
272         start &= P4D_MASK;
273         if (start < floor)
274                 return;
275         if (ceiling) {
276                 ceiling &= P4D_MASK;
277                 if (!ceiling)
278                         return;
279         }
280         if (end - 1 > ceiling - 1)
281                 return;
282
283         pud = pud_offset(p4d, start);
284         p4d_clear(p4d);
285         pud_free_tlb(tlb, pud, start);
286         mm_dec_nr_puds(tlb->mm);
287 }
288
289 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
290                                 unsigned long addr, unsigned long end,
291                                 unsigned long floor, unsigned long ceiling)
292 {
293         p4d_t *p4d;
294         unsigned long next;
295         unsigned long start;
296
297         start = addr;
298         p4d = p4d_offset(pgd, addr);
299         do {
300                 next = p4d_addr_end(addr, end);
301                 if (p4d_none_or_clear_bad(p4d))
302                         continue;
303                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
304         } while (p4d++, addr = next, addr != end);
305
306         start &= PGDIR_MASK;
307         if (start < floor)
308                 return;
309         if (ceiling) {
310                 ceiling &= PGDIR_MASK;
311                 if (!ceiling)
312                         return;
313         }
314         if (end - 1 > ceiling - 1)
315                 return;
316
317         p4d = p4d_offset(pgd, start);
318         pgd_clear(pgd);
319         p4d_free_tlb(tlb, p4d, start);
320 }
321
322 /*
323  * This function frees user-level page tables of a process.
324  */
325 void free_pgd_range(struct mmu_gather *tlb,
326                         unsigned long addr, unsigned long end,
327                         unsigned long floor, unsigned long ceiling)
328 {
329         pgd_t *pgd;
330         unsigned long next;
331
332         /*
333          * The next few lines have given us lots of grief...
334          *
335          * Why are we testing PMD* at this top level?  Because often
336          * there will be no work to do at all, and we'd prefer not to
337          * go all the way down to the bottom just to discover that.
338          *
339          * Why all these "- 1"s?  Because 0 represents both the bottom
340          * of the address space and the top of it (using -1 for the
341          * top wouldn't help much: the masks would do the wrong thing).
342          * The rule is that addr 0 and floor 0 refer to the bottom of
343          * the address space, but end 0 and ceiling 0 refer to the top
344          * Comparisons need to use "end - 1" and "ceiling - 1" (though
345          * that end 0 case should be mythical).
346          *
347          * Wherever addr is brought up or ceiling brought down, we must
348          * be careful to reject "the opposite 0" before it confuses the
349          * subsequent tests.  But what about where end is brought down
350          * by PMD_SIZE below? no, end can't go down to 0 there.
351          *
352          * Whereas we round start (addr) and ceiling down, by different
353          * masks at different levels, in order to test whether a table
354          * now has no other vmas using it, so can be freed, we don't
355          * bother to round floor or end up - the tests don't need that.
356          */
357
358         addr &= PMD_MASK;
359         if (addr < floor) {
360                 addr += PMD_SIZE;
361                 if (!addr)
362                         return;
363         }
364         if (ceiling) {
365                 ceiling &= PMD_MASK;
366                 if (!ceiling)
367                         return;
368         }
369         if (end - 1 > ceiling - 1)
370                 end -= PMD_SIZE;
371         if (addr > end - 1)
372                 return;
373         /*
374          * We add page table cache pages with PAGE_SIZE,
375          * (see pte_free_tlb()), flush the tlb if we need
376          */
377         tlb_change_page_size(tlb, PAGE_SIZE);
378         pgd = pgd_offset(tlb->mm, addr);
379         do {
380                 next = pgd_addr_end(addr, end);
381                 if (pgd_none_or_clear_bad(pgd))
382                         continue;
383                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
384         } while (pgd++, addr = next, addr != end);
385 }
386
387 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
388                 unsigned long floor, unsigned long ceiling)
389 {
390         while (vma) {
391                 struct vm_area_struct *next = vma->vm_next;
392                 unsigned long addr = vma->vm_start;
393
394                 /*
395                  * Hide vma from rmap and truncate_pagecache before freeing
396                  * pgtables
397                  */
398                 unlink_anon_vmas(vma);
399                 unlink_file_vma(vma);
400
401                 if (is_vm_hugetlb_page(vma)) {
402                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
403                                 floor, next ? next->vm_start : ceiling);
404                 } else {
405                         /*
406                          * Optimization: gather nearby vmas into one call down
407                          */
408                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
409                                && !is_vm_hugetlb_page(next)) {
410                                 vma = next;
411                                 next = vma->vm_next;
412                                 unlink_anon_vmas(vma);
413                                 unlink_file_vma(vma);
414                         }
415                         free_pgd_range(tlb, addr, vma->vm_end,
416                                 floor, next ? next->vm_start : ceiling);
417                 }
418                 vma = next;
419         }
420 }
421
422 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
423 {
424         spinlock_t *ptl;
425         pgtable_t new = pte_alloc_one(mm);
426         if (!new)
427                 return -ENOMEM;
428
429         /*
430          * Ensure all pte setup (eg. pte page lock and page clearing) are
431          * visible before the pte is made visible to other CPUs by being
432          * put into page tables.
433          *
434          * The other side of the story is the pointer chasing in the page
435          * table walking code (when walking the page table without locking;
436          * ie. most of the time). Fortunately, these data accesses consist
437          * of a chain of data-dependent loads, meaning most CPUs (alpha
438          * being the notable exception) will already guarantee loads are
439          * seen in-order. See the alpha page table accessors for the
440          * smp_rmb() barriers in page table walking code.
441          */
442         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
443
444         ptl = pmd_lock(mm, pmd);
445         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
446                 mm_inc_nr_ptes(mm);
447                 pmd_populate(mm, pmd, new);
448                 new = NULL;
449         }
450         spin_unlock(ptl);
451         if (new)
452                 pte_free(mm, new);
453         return 0;
454 }
455
456 int __pte_alloc_kernel(pmd_t *pmd)
457 {
458         pte_t *new = pte_alloc_one_kernel(&init_mm);
459         if (!new)
460                 return -ENOMEM;
461
462         smp_wmb(); /* See comment in __pte_alloc */
463
464         spin_lock(&init_mm.page_table_lock);
465         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
466                 pmd_populate_kernel(&init_mm, pmd, new);
467                 new = NULL;
468         }
469         spin_unlock(&init_mm.page_table_lock);
470         if (new)
471                 pte_free_kernel(&init_mm, new);
472         return 0;
473 }
474
475 static inline void init_rss_vec(int *rss)
476 {
477         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
478 }
479
480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
481 {
482         int i;
483
484         if (current->mm == mm)
485                 sync_mm_rss(mm);
486         for (i = 0; i < NR_MM_COUNTERS; i++)
487                 if (rss[i])
488                         add_mm_counter(mm, i, rss[i]);
489 }
490
491 /*
492  * This function is called to print an error when a bad pte
493  * is found. For example, we might have a PFN-mapped pte in
494  * a region that doesn't allow it.
495  *
496  * The calling function must still handle the error.
497  */
498 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
499                           pte_t pte, struct page *page)
500 {
501         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
502         p4d_t *p4d = p4d_offset(pgd, addr);
503         pud_t *pud = pud_offset(p4d, addr);
504         pmd_t *pmd = pmd_offset(pud, addr);
505         struct address_space *mapping;
506         pgoff_t index;
507         static unsigned long resume;
508         static unsigned long nr_shown;
509         static unsigned long nr_unshown;
510
511         /*
512          * Allow a burst of 60 reports, then keep quiet for that minute;
513          * or allow a steady drip of one report per second.
514          */
515         if (nr_shown == 60) {
516                 if (time_before(jiffies, resume)) {
517                         nr_unshown++;
518                         return;
519                 }
520                 if (nr_unshown) {
521                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
522                                  nr_unshown);
523                         nr_unshown = 0;
524                 }
525                 nr_shown = 0;
526         }
527         if (nr_shown++ == 0)
528                 resume = jiffies + 60 * HZ;
529
530         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
531         index = linear_page_index(vma, addr);
532
533         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
534                  current->comm,
535                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
536         if (page)
537                 dump_page(page, "bad pte");
538         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
539                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
540         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
541                  vma->vm_file,
542                  vma->vm_ops ? vma->vm_ops->fault : NULL,
543                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
544                  mapping ? mapping->a_ops->readpage : NULL);
545         dump_stack();
546         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
547 }
548
549 /*
550  * vm_normal_page -- This function gets the "struct page" associated with a pte.
551  *
552  * "Special" mappings do not wish to be associated with a "struct page" (either
553  * it doesn't exist, or it exists but they don't want to touch it). In this
554  * case, NULL is returned here. "Normal" mappings do have a struct page.
555  *
556  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
557  * pte bit, in which case this function is trivial. Secondly, an architecture
558  * may not have a spare pte bit, which requires a more complicated scheme,
559  * described below.
560  *
561  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
562  * special mapping (even if there are underlying and valid "struct pages").
563  * COWed pages of a VM_PFNMAP are always normal.
564  *
565  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
566  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
567  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
568  * mapping will always honor the rule
569  *
570  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
571  *
572  * And for normal mappings this is false.
573  *
574  * This restricts such mappings to be a linear translation from virtual address
575  * to pfn. To get around this restriction, we allow arbitrary mappings so long
576  * as the vma is not a COW mapping; in that case, we know that all ptes are
577  * special (because none can have been COWed).
578  *
579  *
580  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
581  *
582  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
583  * page" backing, however the difference is that _all_ pages with a struct
584  * page (that is, those where pfn_valid is true) are refcounted and considered
585  * normal pages by the VM. The disadvantage is that pages are refcounted
586  * (which can be slower and simply not an option for some PFNMAP users). The
587  * advantage is that we don't have to follow the strict linearity rule of
588  * PFNMAP mappings in order to support COWable mappings.
589  *
590  */
591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592                             pte_t pte)
593 {
594         unsigned long pfn = pte_pfn(pte);
595
596         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597                 if (likely(!pte_special(pte)))
598                         goto check_pfn;
599                 if (vma->vm_ops && vma->vm_ops->find_special_page)
600                         return vma->vm_ops->find_special_page(vma, addr);
601                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602                         return NULL;
603                 if (is_zero_pfn(pfn))
604                         return NULL;
605                 if (pte_devmap(pte))
606                         return NULL;
607
608                 print_bad_pte(vma, addr, pte, NULL);
609                 return NULL;
610         }
611
612         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613
614         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615                 if (vma->vm_flags & VM_MIXEDMAP) {
616                         if (!pfn_valid(pfn))
617                                 return NULL;
618                         goto out;
619                 } else {
620                         unsigned long off;
621                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
622                         if (pfn == vma->vm_pgoff + off)
623                                 return NULL;
624                         if (!is_cow_mapping(vma->vm_flags))
625                                 return NULL;
626                 }
627         }
628
629         if (is_zero_pfn(pfn))
630                 return NULL;
631
632 check_pfn:
633         if (unlikely(pfn > highest_memmap_pfn)) {
634                 print_bad_pte(vma, addr, pte, NULL);
635                 return NULL;
636         }
637
638         /*
639          * NOTE! We still have PageReserved() pages in the page tables.
640          * eg. VDSO mappings can cause them to exist.
641          */
642 out:
643         return pfn_to_page(pfn);
644 }
645
646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
647 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
648                                 pmd_t pmd)
649 {
650         unsigned long pfn = pmd_pfn(pmd);
651
652         /*
653          * There is no pmd_special() but there may be special pmds, e.g.
654          * in a direct-access (dax) mapping, so let's just replicate the
655          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
656          */
657         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
658                 if (vma->vm_flags & VM_MIXEDMAP) {
659                         if (!pfn_valid(pfn))
660                                 return NULL;
661                         goto out;
662                 } else {
663                         unsigned long off;
664                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
665                         if (pfn == vma->vm_pgoff + off)
666                                 return NULL;
667                         if (!is_cow_mapping(vma->vm_flags))
668                                 return NULL;
669                 }
670         }
671
672         if (pmd_devmap(pmd))
673                 return NULL;
674         if (is_huge_zero_pmd(pmd))
675                 return NULL;
676         if (unlikely(pfn > highest_memmap_pfn))
677                 return NULL;
678
679         /*
680          * NOTE! We still have PageReserved() pages in the page tables.
681          * eg. VDSO mappings can cause them to exist.
682          */
683 out:
684         return pfn_to_page(pfn);
685 }
686 #endif
687
688 /*
689  * copy one vm_area from one task to the other. Assumes the page tables
690  * already present in the new task to be cleared in the whole range
691  * covered by this vma.
692  */
693
694 static inline unsigned long
695 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
696                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
697                 unsigned long addr, int *rss)
698 {
699         unsigned long vm_flags = vma->vm_flags;
700         pte_t pte = *src_pte;
701         struct page *page;
702
703         /* pte contains position in swap or file, so copy. */
704         if (unlikely(!pte_present(pte))) {
705                 swp_entry_t entry = pte_to_swp_entry(pte);
706
707                 if (likely(!non_swap_entry(entry))) {
708                         if (swap_duplicate(entry) < 0)
709                                 return entry.val;
710
711                         /* make sure dst_mm is on swapoff's mmlist. */
712                         if (unlikely(list_empty(&dst_mm->mmlist))) {
713                                 spin_lock(&mmlist_lock);
714                                 if (list_empty(&dst_mm->mmlist))
715                                         list_add(&dst_mm->mmlist,
716                                                         &src_mm->mmlist);
717                                 spin_unlock(&mmlist_lock);
718                         }
719                         rss[MM_SWAPENTS]++;
720                 } else if (is_migration_entry(entry)) {
721                         page = migration_entry_to_page(entry);
722
723                         rss[mm_counter(page)]++;
724
725                         if (is_write_migration_entry(entry) &&
726                                         is_cow_mapping(vm_flags)) {
727                                 /*
728                                  * COW mappings require pages in both
729                                  * parent and child to be set to read.
730                                  */
731                                 make_migration_entry_read(&entry);
732                                 pte = swp_entry_to_pte(entry);
733                                 if (pte_swp_soft_dirty(*src_pte))
734                                         pte = pte_swp_mksoft_dirty(pte);
735                                 if (pte_swp_uffd_wp(*src_pte))
736                                         pte = pte_swp_mkuffd_wp(pte);
737                                 set_pte_at(src_mm, addr, src_pte, pte);
738                         }
739                 } else if (is_device_private_entry(entry)) {
740                         page = device_private_entry_to_page(entry);
741
742                         /*
743                          * Update rss count even for unaddressable pages, as
744                          * they should treated just like normal pages in this
745                          * respect.
746                          *
747                          * We will likely want to have some new rss counters
748                          * for unaddressable pages, at some point. But for now
749                          * keep things as they are.
750                          */
751                         get_page(page);
752                         rss[mm_counter(page)]++;
753                         page_dup_rmap(page, false);
754
755                         /*
756                          * We do not preserve soft-dirty information, because so
757                          * far, checkpoint/restore is the only feature that
758                          * requires that. And checkpoint/restore does not work
759                          * when a device driver is involved (you cannot easily
760                          * save and restore device driver state).
761                          */
762                         if (is_write_device_private_entry(entry) &&
763                             is_cow_mapping(vm_flags)) {
764                                 make_device_private_entry_read(&entry);
765                                 pte = swp_entry_to_pte(entry);
766                                 if (pte_swp_uffd_wp(*src_pte))
767                                         pte = pte_swp_mkuffd_wp(pte);
768                                 set_pte_at(src_mm, addr, src_pte, pte);
769                         }
770                 }
771                 goto out_set_pte;
772         }
773
774         /*
775          * If it's a COW mapping, write protect it both
776          * in the parent and the child
777          */
778         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779                 ptep_set_wrprotect(src_mm, addr, src_pte);
780                 pte = pte_wrprotect(pte);
781         }
782
783         /*
784          * If it's a shared mapping, mark it clean in
785          * the child
786          */
787         if (vm_flags & VM_SHARED)
788                 pte = pte_mkclean(pte);
789         pte = pte_mkold(pte);
790
791         /*
792          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
793          * does not have the VM_UFFD_WP, which means that the uffd
794          * fork event is not enabled.
795          */
796         if (!(vm_flags & VM_UFFD_WP))
797                 pte = pte_clear_uffd_wp(pte);
798
799         page = vm_normal_page(vma, addr, pte);
800         if (page) {
801                 get_page(page);
802                 page_dup_rmap(page, false);
803                 rss[mm_counter(page)]++;
804         }
805
806 out_set_pte:
807         set_pte_at(dst_mm, addr, dst_pte, pte);
808         return 0;
809 }
810
811 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
812                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
813                    unsigned long addr, unsigned long end)
814 {
815         pte_t *orig_src_pte, *orig_dst_pte;
816         pte_t *src_pte, *dst_pte;
817         spinlock_t *src_ptl, *dst_ptl;
818         int progress = 0;
819         int rss[NR_MM_COUNTERS];
820         swp_entry_t entry = (swp_entry_t){0};
821
822 again:
823         init_rss_vec(rss);
824
825         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
826         if (!dst_pte)
827                 return -ENOMEM;
828         src_pte = pte_offset_map(src_pmd, addr);
829         src_ptl = pte_lockptr(src_mm, src_pmd);
830         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
831         orig_src_pte = src_pte;
832         orig_dst_pte = dst_pte;
833         arch_enter_lazy_mmu_mode();
834
835         do {
836                 /*
837                  * We are holding two locks at this point - either of them
838                  * could generate latencies in another task on another CPU.
839                  */
840                 if (progress >= 32) {
841                         progress = 0;
842                         if (need_resched() ||
843                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
844                                 break;
845                 }
846                 if (pte_none(*src_pte)) {
847                         progress++;
848                         continue;
849                 }
850                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
851                                                         vma, addr, rss);
852                 if (entry.val)
853                         break;
854                 progress += 8;
855         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
856
857         arch_leave_lazy_mmu_mode();
858         spin_unlock(src_ptl);
859         pte_unmap(orig_src_pte);
860         add_mm_rss_vec(dst_mm, rss);
861         pte_unmap_unlock(orig_dst_pte, dst_ptl);
862         cond_resched();
863
864         if (entry.val) {
865                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
866                         return -ENOMEM;
867                 progress = 0;
868         }
869         if (addr != end)
870                 goto again;
871         return 0;
872 }
873
874 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
876                 unsigned long addr, unsigned long end)
877 {
878         pmd_t *src_pmd, *dst_pmd;
879         unsigned long next;
880
881         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
882         if (!dst_pmd)
883                 return -ENOMEM;
884         src_pmd = pmd_offset(src_pud, addr);
885         do {
886                 next = pmd_addr_end(addr, end);
887                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
888                         || pmd_devmap(*src_pmd)) {
889                         int err;
890                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
891                         err = copy_huge_pmd(dst_mm, src_mm,
892                                             dst_pmd, src_pmd, addr, vma);
893                         if (err == -ENOMEM)
894                                 return -ENOMEM;
895                         if (!err)
896                                 continue;
897                         /* fall through */
898                 }
899                 if (pmd_none_or_clear_bad(src_pmd))
900                         continue;
901                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
902                                                 vma, addr, next))
903                         return -ENOMEM;
904         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
905         return 0;
906 }
907
908 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
909                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
910                 unsigned long addr, unsigned long end)
911 {
912         pud_t *src_pud, *dst_pud;
913         unsigned long next;
914
915         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
916         if (!dst_pud)
917                 return -ENOMEM;
918         src_pud = pud_offset(src_p4d, addr);
919         do {
920                 next = pud_addr_end(addr, end);
921                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
922                         int err;
923
924                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
925                         err = copy_huge_pud(dst_mm, src_mm,
926                                             dst_pud, src_pud, addr, vma);
927                         if (err == -ENOMEM)
928                                 return -ENOMEM;
929                         if (!err)
930                                 continue;
931                         /* fall through */
932                 }
933                 if (pud_none_or_clear_bad(src_pud))
934                         continue;
935                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
936                                                 vma, addr, next))
937                         return -ENOMEM;
938         } while (dst_pud++, src_pud++, addr = next, addr != end);
939         return 0;
940 }
941
942 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
944                 unsigned long addr, unsigned long end)
945 {
946         p4d_t *src_p4d, *dst_p4d;
947         unsigned long next;
948
949         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
950         if (!dst_p4d)
951                 return -ENOMEM;
952         src_p4d = p4d_offset(src_pgd, addr);
953         do {
954                 next = p4d_addr_end(addr, end);
955                 if (p4d_none_or_clear_bad(src_p4d))
956                         continue;
957                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
958                                                 vma, addr, next))
959                         return -ENOMEM;
960         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
961         return 0;
962 }
963
964 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
965                 struct vm_area_struct *vma)
966 {
967         pgd_t *src_pgd, *dst_pgd;
968         unsigned long next;
969         unsigned long addr = vma->vm_start;
970         unsigned long end = vma->vm_end;
971         struct mmu_notifier_range range;
972         bool is_cow;
973         int ret;
974
975         /*
976          * Don't copy ptes where a page fault will fill them correctly.
977          * Fork becomes much lighter when there are big shared or private
978          * readonly mappings. The tradeoff is that copy_page_range is more
979          * efficient than faulting.
980          */
981         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
982                         !vma->anon_vma)
983                 return 0;
984
985         if (is_vm_hugetlb_page(vma))
986                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
987
988         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
989                 /*
990                  * We do not free on error cases below as remove_vma
991                  * gets called on error from higher level routine
992                  */
993                 ret = track_pfn_copy(vma);
994                 if (ret)
995                         return ret;
996         }
997
998         /*
999          * We need to invalidate the secondary MMU mappings only when
1000          * there could be a permission downgrade on the ptes of the
1001          * parent mm. And a permission downgrade will only happen if
1002          * is_cow_mapping() returns true.
1003          */
1004         is_cow = is_cow_mapping(vma->vm_flags);
1005
1006         if (is_cow) {
1007                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1008                                         0, vma, src_mm, addr, end);
1009                 mmu_notifier_invalidate_range_start(&range);
1010         }
1011
1012         ret = 0;
1013         dst_pgd = pgd_offset(dst_mm, addr);
1014         src_pgd = pgd_offset(src_mm, addr);
1015         do {
1016                 next = pgd_addr_end(addr, end);
1017                 if (pgd_none_or_clear_bad(src_pgd))
1018                         continue;
1019                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1020                                             vma, addr, next))) {
1021                         ret = -ENOMEM;
1022                         break;
1023                 }
1024         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1025
1026         if (is_cow)
1027                 mmu_notifier_invalidate_range_end(&range);
1028         return ret;
1029 }
1030
1031 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1032                                 struct vm_area_struct *vma, pmd_t *pmd,
1033                                 unsigned long addr, unsigned long end,
1034                                 struct zap_details *details)
1035 {
1036         struct mm_struct *mm = tlb->mm;
1037         int force_flush = 0;
1038         int rss[NR_MM_COUNTERS];
1039         spinlock_t *ptl;
1040         pte_t *start_pte;
1041         pte_t *pte;
1042         swp_entry_t entry;
1043
1044         tlb_change_page_size(tlb, PAGE_SIZE);
1045 again:
1046         init_rss_vec(rss);
1047         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1048         pte = start_pte;
1049         flush_tlb_batched_pending(mm);
1050         arch_enter_lazy_mmu_mode();
1051         do {
1052                 pte_t ptent = *pte;
1053                 if (pte_none(ptent))
1054                         continue;
1055
1056                 if (need_resched())
1057                         break;
1058
1059                 if (pte_present(ptent)) {
1060                         struct page *page;
1061
1062                         page = vm_normal_page(vma, addr, ptent);
1063                         if (unlikely(details) && page) {
1064                                 /*
1065                                  * unmap_shared_mapping_pages() wants to
1066                                  * invalidate cache without truncating:
1067                                  * unmap shared but keep private pages.
1068                                  */
1069                                 if (details->check_mapping &&
1070                                     details->check_mapping != page_rmapping(page))
1071                                         continue;
1072                         }
1073                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1074                                                         tlb->fullmm);
1075                         tlb_remove_tlb_entry(tlb, pte, addr);
1076                         if (unlikely(!page))
1077                                 continue;
1078
1079                         if (!PageAnon(page)) {
1080                                 if (pte_dirty(ptent)) {
1081                                         force_flush = 1;
1082                                         set_page_dirty(page);
1083                                 }
1084                                 if (pte_young(ptent) &&
1085                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1086                                         mark_page_accessed(page);
1087                         }
1088                         rss[mm_counter(page)]--;
1089                         page_remove_rmap(page, false);
1090                         if (unlikely(page_mapcount(page) < 0))
1091                                 print_bad_pte(vma, addr, ptent, page);
1092                         if (unlikely(__tlb_remove_page(tlb, page))) {
1093                                 force_flush = 1;
1094                                 addr += PAGE_SIZE;
1095                                 break;
1096                         }
1097                         continue;
1098                 }
1099
1100                 entry = pte_to_swp_entry(ptent);
1101                 if (is_device_private_entry(entry)) {
1102                         struct page *page = device_private_entry_to_page(entry);
1103
1104                         if (unlikely(details && details->check_mapping)) {
1105                                 /*
1106                                  * unmap_shared_mapping_pages() wants to
1107                                  * invalidate cache without truncating:
1108                                  * unmap shared but keep private pages.
1109                                  */
1110                                 if (details->check_mapping !=
1111                                     page_rmapping(page))
1112                                         continue;
1113                         }
1114
1115                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1116                         rss[mm_counter(page)]--;
1117                         page_remove_rmap(page, false);
1118                         put_page(page);
1119                         continue;
1120                 }
1121
1122                 /* If details->check_mapping, we leave swap entries. */
1123                 if (unlikely(details))
1124                         continue;
1125
1126                 if (!non_swap_entry(entry))
1127                         rss[MM_SWAPENTS]--;
1128                 else if (is_migration_entry(entry)) {
1129                         struct page *page;
1130
1131                         page = migration_entry_to_page(entry);
1132                         rss[mm_counter(page)]--;
1133                 }
1134                 if (unlikely(!free_swap_and_cache(entry)))
1135                         print_bad_pte(vma, addr, ptent, NULL);
1136                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1137         } while (pte++, addr += PAGE_SIZE, addr != end);
1138
1139         add_mm_rss_vec(mm, rss);
1140         arch_leave_lazy_mmu_mode();
1141
1142         /* Do the actual TLB flush before dropping ptl */
1143         if (force_flush)
1144                 tlb_flush_mmu_tlbonly(tlb);
1145         pte_unmap_unlock(start_pte, ptl);
1146
1147         /*
1148          * If we forced a TLB flush (either due to running out of
1149          * batch buffers or because we needed to flush dirty TLB
1150          * entries before releasing the ptl), free the batched
1151          * memory too. Restart if we didn't do everything.
1152          */
1153         if (force_flush) {
1154                 force_flush = 0;
1155                 tlb_flush_mmu(tlb);
1156         }
1157
1158         if (addr != end) {
1159                 cond_resched();
1160                 goto again;
1161         }
1162
1163         return addr;
1164 }
1165
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167                                 struct vm_area_struct *vma, pud_t *pud,
1168                                 unsigned long addr, unsigned long end,
1169                                 struct zap_details *details)
1170 {
1171         pmd_t *pmd;
1172         unsigned long next;
1173
1174         pmd = pmd_offset(pud, addr);
1175         do {
1176                 next = pmd_addr_end(addr, end);
1177                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178                         if (next - addr != HPAGE_PMD_SIZE)
1179                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1180                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181                                 goto next;
1182                         /* fall through */
1183                 }
1184                 /*
1185                  * Here there can be other concurrent MADV_DONTNEED or
1186                  * trans huge page faults running, and if the pmd is
1187                  * none or trans huge it can change under us. This is
1188                  * because MADV_DONTNEED holds the mmap_lock in read
1189                  * mode.
1190                  */
1191                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192                         goto next;
1193                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195                 cond_resched();
1196         } while (pmd++, addr = next, addr != end);
1197
1198         return addr;
1199 }
1200
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202                                 struct vm_area_struct *vma, p4d_t *p4d,
1203                                 unsigned long addr, unsigned long end,
1204                                 struct zap_details *details)
1205 {
1206         pud_t *pud;
1207         unsigned long next;
1208
1209         pud = pud_offset(p4d, addr);
1210         do {
1211                 next = pud_addr_end(addr, end);
1212                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213                         if (next - addr != HPAGE_PUD_SIZE) {
1214                                 mmap_assert_locked(tlb->mm);
1215                                 split_huge_pud(vma, pud, addr);
1216                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1217                                 goto next;
1218                         /* fall through */
1219                 }
1220                 if (pud_none_or_clear_bad(pud))
1221                         continue;
1222                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224                 cond_resched();
1225         } while (pud++, addr = next, addr != end);
1226
1227         return addr;
1228 }
1229
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231                                 struct vm_area_struct *vma, pgd_t *pgd,
1232                                 unsigned long addr, unsigned long end,
1233                                 struct zap_details *details)
1234 {
1235         p4d_t *p4d;
1236         unsigned long next;
1237
1238         p4d = p4d_offset(pgd, addr);
1239         do {
1240                 next = p4d_addr_end(addr, end);
1241                 if (p4d_none_or_clear_bad(p4d))
1242                         continue;
1243                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244         } while (p4d++, addr = next, addr != end);
1245
1246         return addr;
1247 }
1248
1249 void unmap_page_range(struct mmu_gather *tlb,
1250                              struct vm_area_struct *vma,
1251                              unsigned long addr, unsigned long end,
1252                              struct zap_details *details)
1253 {
1254         pgd_t *pgd;
1255         unsigned long next;
1256
1257         BUG_ON(addr >= end);
1258         tlb_start_vma(tlb, vma);
1259         pgd = pgd_offset(vma->vm_mm, addr);
1260         do {
1261                 next = pgd_addr_end(addr, end);
1262                 if (pgd_none_or_clear_bad(pgd))
1263                         continue;
1264                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265         } while (pgd++, addr = next, addr != end);
1266         tlb_end_vma(tlb, vma);
1267 }
1268
1269
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271                 struct vm_area_struct *vma, unsigned long start_addr,
1272                 unsigned long end_addr,
1273                 struct zap_details *details)
1274 {
1275         unsigned long start = max(vma->vm_start, start_addr);
1276         unsigned long end;
1277
1278         if (start >= vma->vm_end)
1279                 return;
1280         end = min(vma->vm_end, end_addr);
1281         if (end <= vma->vm_start)
1282                 return;
1283
1284         if (vma->vm_file)
1285                 uprobe_munmap(vma, start, end);
1286
1287         if (unlikely(vma->vm_flags & VM_PFNMAP))
1288                 untrack_pfn(vma, 0, 0);
1289
1290         if (start != end) {
1291                 if (unlikely(is_vm_hugetlb_page(vma))) {
1292                         /*
1293                          * It is undesirable to test vma->vm_file as it
1294                          * should be non-null for valid hugetlb area.
1295                          * However, vm_file will be NULL in the error
1296                          * cleanup path of mmap_region. When
1297                          * hugetlbfs ->mmap method fails,
1298                          * mmap_region() nullifies vma->vm_file
1299                          * before calling this function to clean up.
1300                          * Since no pte has actually been setup, it is
1301                          * safe to do nothing in this case.
1302                          */
1303                         if (vma->vm_file) {
1304                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1305                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1307                         }
1308                 } else
1309                         unmap_page_range(tlb, vma, start, end, details);
1310         }
1311 }
1312
1313 /**
1314  * unmap_vmas - unmap a range of memory covered by a list of vma's
1315  * @tlb: address of the caller's struct mmu_gather
1316  * @vma: the starting vma
1317  * @start_addr: virtual address at which to start unmapping
1318  * @end_addr: virtual address at which to end unmapping
1319  *
1320  * Unmap all pages in the vma list.
1321  *
1322  * Only addresses between `start' and `end' will be unmapped.
1323  *
1324  * The VMA list must be sorted in ascending virtual address order.
1325  *
1326  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327  * range after unmap_vmas() returns.  So the only responsibility here is to
1328  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329  * drops the lock and schedules.
1330  */
1331 void unmap_vmas(struct mmu_gather *tlb,
1332                 struct vm_area_struct *vma, unsigned long start_addr,
1333                 unsigned long end_addr)
1334 {
1335         struct mmu_notifier_range range;
1336
1337         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1338                                 start_addr, end_addr);
1339         mmu_notifier_invalidate_range_start(&range);
1340         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342         mmu_notifier_invalidate_range_end(&range);
1343 }
1344
1345 /**
1346  * zap_page_range - remove user pages in a given range
1347  * @vma: vm_area_struct holding the applicable pages
1348  * @start: starting address of pages to zap
1349  * @size: number of bytes to zap
1350  *
1351  * Caller must protect the VMA list
1352  */
1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354                 unsigned long size)
1355 {
1356         struct mmu_notifier_range range;
1357         struct mmu_gather tlb;
1358
1359         lru_add_drain();
1360         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361                                 start, start + size);
1362         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1363         update_hiwater_rss(vma->vm_mm);
1364         mmu_notifier_invalidate_range_start(&range);
1365         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1366                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1367         mmu_notifier_invalidate_range_end(&range);
1368         tlb_finish_mmu(&tlb, start, range.end);
1369 }
1370
1371 /**
1372  * zap_page_range_single - remove user pages in a given range
1373  * @vma: vm_area_struct holding the applicable pages
1374  * @address: starting address of pages to zap
1375  * @size: number of bytes to zap
1376  * @details: details of shared cache invalidation
1377  *
1378  * The range must fit into one VMA.
1379  */
1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381                 unsigned long size, struct zap_details *details)
1382 {
1383         struct mmu_notifier_range range;
1384         struct mmu_gather tlb;
1385
1386         lru_add_drain();
1387         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1388                                 address, address + size);
1389         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1390         update_hiwater_rss(vma->vm_mm);
1391         mmu_notifier_invalidate_range_start(&range);
1392         unmap_single_vma(&tlb, vma, address, range.end, details);
1393         mmu_notifier_invalidate_range_end(&range);
1394         tlb_finish_mmu(&tlb, address, range.end);
1395 }
1396
1397 /**
1398  * zap_vma_ptes - remove ptes mapping the vma
1399  * @vma: vm_area_struct holding ptes to be zapped
1400  * @address: starting address of pages to zap
1401  * @size: number of bytes to zap
1402  *
1403  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404  *
1405  * The entire address range must be fully contained within the vma.
1406  *
1407  */
1408 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409                 unsigned long size)
1410 {
1411         if (address < vma->vm_start || address + size > vma->vm_end ||
1412                         !(vma->vm_flags & VM_PFNMAP))
1413                 return;
1414
1415         zap_page_range_single(vma, address, size, NULL);
1416 }
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418
1419 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1420 {
1421         pgd_t *pgd;
1422         p4d_t *p4d;
1423         pud_t *pud;
1424         pmd_t *pmd;
1425
1426         pgd = pgd_offset(mm, addr);
1427         p4d = p4d_alloc(mm, pgd, addr);
1428         if (!p4d)
1429                 return NULL;
1430         pud = pud_alloc(mm, p4d, addr);
1431         if (!pud)
1432                 return NULL;
1433         pmd = pmd_alloc(mm, pud, addr);
1434         if (!pmd)
1435                 return NULL;
1436
1437         VM_BUG_ON(pmd_trans_huge(*pmd));
1438         return pmd;
1439 }
1440
1441 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1442                         spinlock_t **ptl)
1443 {
1444         pmd_t *pmd = walk_to_pmd(mm, addr);
1445
1446         if (!pmd)
1447                 return NULL;
1448         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1449 }
1450
1451 static int validate_page_before_insert(struct page *page)
1452 {
1453         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1454                 return -EINVAL;
1455         flush_dcache_page(page);
1456         return 0;
1457 }
1458
1459 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1460                         unsigned long addr, struct page *page, pgprot_t prot)
1461 {
1462         if (!pte_none(*pte))
1463                 return -EBUSY;
1464         /* Ok, finally just insert the thing.. */
1465         get_page(page);
1466         inc_mm_counter_fast(mm, mm_counter_file(page));
1467         page_add_file_rmap(page, false);
1468         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1469         return 0;
1470 }
1471
1472 /*
1473  * This is the old fallback for page remapping.
1474  *
1475  * For historical reasons, it only allows reserved pages. Only
1476  * old drivers should use this, and they needed to mark their
1477  * pages reserved for the old functions anyway.
1478  */
1479 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1480                         struct page *page, pgprot_t prot)
1481 {
1482         struct mm_struct *mm = vma->vm_mm;
1483         int retval;
1484         pte_t *pte;
1485         spinlock_t *ptl;
1486
1487         retval = validate_page_before_insert(page);
1488         if (retval)
1489                 goto out;
1490         retval = -ENOMEM;
1491         pte = get_locked_pte(mm, addr, &ptl);
1492         if (!pte)
1493                 goto out;
1494         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1495         pte_unmap_unlock(pte, ptl);
1496 out:
1497         return retval;
1498 }
1499
1500 #ifdef pte_index
1501 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1502                         unsigned long addr, struct page *page, pgprot_t prot)
1503 {
1504         int err;
1505
1506         if (!page_count(page))
1507                 return -EINVAL;
1508         err = validate_page_before_insert(page);
1509         if (err)
1510                 return err;
1511         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1512 }
1513
1514 /* insert_pages() amortizes the cost of spinlock operations
1515  * when inserting pages in a loop. Arch *must* define pte_index.
1516  */
1517 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1518                         struct page **pages, unsigned long *num, pgprot_t prot)
1519 {
1520         pmd_t *pmd = NULL;
1521         pte_t *start_pte, *pte;
1522         spinlock_t *pte_lock;
1523         struct mm_struct *const mm = vma->vm_mm;
1524         unsigned long curr_page_idx = 0;
1525         unsigned long remaining_pages_total = *num;
1526         unsigned long pages_to_write_in_pmd;
1527         int ret;
1528 more:
1529         ret = -EFAULT;
1530         pmd = walk_to_pmd(mm, addr);
1531         if (!pmd)
1532                 goto out;
1533
1534         pages_to_write_in_pmd = min_t(unsigned long,
1535                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1536
1537         /* Allocate the PTE if necessary; takes PMD lock once only. */
1538         ret = -ENOMEM;
1539         if (pte_alloc(mm, pmd))
1540                 goto out;
1541
1542         while (pages_to_write_in_pmd) {
1543                 int pte_idx = 0;
1544                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1545
1546                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1547                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1548                         int err = insert_page_in_batch_locked(mm, pte,
1549                                 addr, pages[curr_page_idx], prot);
1550                         if (unlikely(err)) {
1551                                 pte_unmap_unlock(start_pte, pte_lock);
1552                                 ret = err;
1553                                 remaining_pages_total -= pte_idx;
1554                                 goto out;
1555                         }
1556                         addr += PAGE_SIZE;
1557                         ++curr_page_idx;
1558                 }
1559                 pte_unmap_unlock(start_pte, pte_lock);
1560                 pages_to_write_in_pmd -= batch_size;
1561                 remaining_pages_total -= batch_size;
1562         }
1563         if (remaining_pages_total)
1564                 goto more;
1565         ret = 0;
1566 out:
1567         *num = remaining_pages_total;
1568         return ret;
1569 }
1570 #endif  /* ifdef pte_index */
1571
1572 /**
1573  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1574  * @vma: user vma to map to
1575  * @addr: target start user address of these pages
1576  * @pages: source kernel pages
1577  * @num: in: number of pages to map. out: number of pages that were *not*
1578  * mapped. (0 means all pages were successfully mapped).
1579  *
1580  * Preferred over vm_insert_page() when inserting multiple pages.
1581  *
1582  * In case of error, we may have mapped a subset of the provided
1583  * pages. It is the caller's responsibility to account for this case.
1584  *
1585  * The same restrictions apply as in vm_insert_page().
1586  */
1587 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1588                         struct page **pages, unsigned long *num)
1589 {
1590 #ifdef pte_index
1591         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1592
1593         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1594                 return -EFAULT;
1595         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1596                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1597                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1598                 vma->vm_flags |= VM_MIXEDMAP;
1599         }
1600         /* Defer page refcount checking till we're about to map that page. */
1601         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1602 #else
1603         unsigned long idx = 0, pgcount = *num;
1604         int err = -EINVAL;
1605
1606         for (; idx < pgcount; ++idx) {
1607                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1608                 if (err)
1609                         break;
1610         }
1611         *num = pgcount - idx;
1612         return err;
1613 #endif  /* ifdef pte_index */
1614 }
1615 EXPORT_SYMBOL(vm_insert_pages);
1616
1617 /**
1618  * vm_insert_page - insert single page into user vma
1619  * @vma: user vma to map to
1620  * @addr: target user address of this page
1621  * @page: source kernel page
1622  *
1623  * This allows drivers to insert individual pages they've allocated
1624  * into a user vma.
1625  *
1626  * The page has to be a nice clean _individual_ kernel allocation.
1627  * If you allocate a compound page, you need to have marked it as
1628  * such (__GFP_COMP), or manually just split the page up yourself
1629  * (see split_page()).
1630  *
1631  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1632  * took an arbitrary page protection parameter. This doesn't allow
1633  * that. Your vma protection will have to be set up correctly, which
1634  * means that if you want a shared writable mapping, you'd better
1635  * ask for a shared writable mapping!
1636  *
1637  * The page does not need to be reserved.
1638  *
1639  * Usually this function is called from f_op->mmap() handler
1640  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1641  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1642  * function from other places, for example from page-fault handler.
1643  *
1644  * Return: %0 on success, negative error code otherwise.
1645  */
1646 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1647                         struct page *page)
1648 {
1649         if (addr < vma->vm_start || addr >= vma->vm_end)
1650                 return -EFAULT;
1651         if (!page_count(page))
1652                 return -EINVAL;
1653         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1654                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1655                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1656                 vma->vm_flags |= VM_MIXEDMAP;
1657         }
1658         return insert_page(vma, addr, page, vma->vm_page_prot);
1659 }
1660 EXPORT_SYMBOL(vm_insert_page);
1661
1662 /*
1663  * __vm_map_pages - maps range of kernel pages into user vma
1664  * @vma: user vma to map to
1665  * @pages: pointer to array of source kernel pages
1666  * @num: number of pages in page array
1667  * @offset: user's requested vm_pgoff
1668  *
1669  * This allows drivers to map range of kernel pages into a user vma.
1670  *
1671  * Return: 0 on success and error code otherwise.
1672  */
1673 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1674                                 unsigned long num, unsigned long offset)
1675 {
1676         unsigned long count = vma_pages(vma);
1677         unsigned long uaddr = vma->vm_start;
1678         int ret, i;
1679
1680         /* Fail if the user requested offset is beyond the end of the object */
1681         if (offset >= num)
1682                 return -ENXIO;
1683
1684         /* Fail if the user requested size exceeds available object size */
1685         if (count > num - offset)
1686                 return -ENXIO;
1687
1688         for (i = 0; i < count; i++) {
1689                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1690                 if (ret < 0)
1691                         return ret;
1692                 uaddr += PAGE_SIZE;
1693         }
1694
1695         return 0;
1696 }
1697
1698 /**
1699  * vm_map_pages - maps range of kernel pages starts with non zero offset
1700  * @vma: user vma to map to
1701  * @pages: pointer to array of source kernel pages
1702  * @num: number of pages in page array
1703  *
1704  * Maps an object consisting of @num pages, catering for the user's
1705  * requested vm_pgoff
1706  *
1707  * If we fail to insert any page into the vma, the function will return
1708  * immediately leaving any previously inserted pages present.  Callers
1709  * from the mmap handler may immediately return the error as their caller
1710  * will destroy the vma, removing any successfully inserted pages. Other
1711  * callers should make their own arrangements for calling unmap_region().
1712  *
1713  * Context: Process context. Called by mmap handlers.
1714  * Return: 0 on success and error code otherwise.
1715  */
1716 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1717                                 unsigned long num)
1718 {
1719         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1720 }
1721 EXPORT_SYMBOL(vm_map_pages);
1722
1723 /**
1724  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1725  * @vma: user vma to map to
1726  * @pages: pointer to array of source kernel pages
1727  * @num: number of pages in page array
1728  *
1729  * Similar to vm_map_pages(), except that it explicitly sets the offset
1730  * to 0. This function is intended for the drivers that did not consider
1731  * vm_pgoff.
1732  *
1733  * Context: Process context. Called by mmap handlers.
1734  * Return: 0 on success and error code otherwise.
1735  */
1736 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1737                                 unsigned long num)
1738 {
1739         return __vm_map_pages(vma, pages, num, 0);
1740 }
1741 EXPORT_SYMBOL(vm_map_pages_zero);
1742
1743 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1744                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1745 {
1746         struct mm_struct *mm = vma->vm_mm;
1747         pte_t *pte, entry;
1748         spinlock_t *ptl;
1749
1750         pte = get_locked_pte(mm, addr, &ptl);
1751         if (!pte)
1752                 return VM_FAULT_OOM;
1753         if (!pte_none(*pte)) {
1754                 if (mkwrite) {
1755                         /*
1756                          * For read faults on private mappings the PFN passed
1757                          * in may not match the PFN we have mapped if the
1758                          * mapped PFN is a writeable COW page.  In the mkwrite
1759                          * case we are creating a writable PTE for a shared
1760                          * mapping and we expect the PFNs to match. If they
1761                          * don't match, we are likely racing with block
1762                          * allocation and mapping invalidation so just skip the
1763                          * update.
1764                          */
1765                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1766                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1767                                 goto out_unlock;
1768                         }
1769                         entry = pte_mkyoung(*pte);
1770                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1771                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1772                                 update_mmu_cache(vma, addr, pte);
1773                 }
1774                 goto out_unlock;
1775         }
1776
1777         /* Ok, finally just insert the thing.. */
1778         if (pfn_t_devmap(pfn))
1779                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1780         else
1781                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1782
1783         if (mkwrite) {
1784                 entry = pte_mkyoung(entry);
1785                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1786         }
1787
1788         set_pte_at(mm, addr, pte, entry);
1789         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1790
1791 out_unlock:
1792         pte_unmap_unlock(pte, ptl);
1793         return VM_FAULT_NOPAGE;
1794 }
1795
1796 /**
1797  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1798  * @vma: user vma to map to
1799  * @addr: target user address of this page
1800  * @pfn: source kernel pfn
1801  * @pgprot: pgprot flags for the inserted page
1802  *
1803  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1804  * to override pgprot on a per-page basis.
1805  *
1806  * This only makes sense for IO mappings, and it makes no sense for
1807  * COW mappings.  In general, using multiple vmas is preferable;
1808  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1809  * impractical.
1810  *
1811  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1812  * a value of @pgprot different from that of @vma->vm_page_prot.
1813  *
1814  * Context: Process context.  May allocate using %GFP_KERNEL.
1815  * Return: vm_fault_t value.
1816  */
1817 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1818                         unsigned long pfn, pgprot_t pgprot)
1819 {
1820         /*
1821          * Technically, architectures with pte_special can avoid all these
1822          * restrictions (same for remap_pfn_range).  However we would like
1823          * consistency in testing and feature parity among all, so we should
1824          * try to keep these invariants in place for everybody.
1825          */
1826         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1827         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1828                                                 (VM_PFNMAP|VM_MIXEDMAP));
1829         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1830         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1831
1832         if (addr < vma->vm_start || addr >= vma->vm_end)
1833                 return VM_FAULT_SIGBUS;
1834
1835         if (!pfn_modify_allowed(pfn, pgprot))
1836                 return VM_FAULT_SIGBUS;
1837
1838         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1839
1840         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1841                         false);
1842 }
1843 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1844
1845 /**
1846  * vmf_insert_pfn - insert single pfn into user vma
1847  * @vma: user vma to map to
1848  * @addr: target user address of this page
1849  * @pfn: source kernel pfn
1850  *
1851  * Similar to vm_insert_page, this allows drivers to insert individual pages
1852  * they've allocated into a user vma. Same comments apply.
1853  *
1854  * This function should only be called from a vm_ops->fault handler, and
1855  * in that case the handler should return the result of this function.
1856  *
1857  * vma cannot be a COW mapping.
1858  *
1859  * As this is called only for pages that do not currently exist, we
1860  * do not need to flush old virtual caches or the TLB.
1861  *
1862  * Context: Process context.  May allocate using %GFP_KERNEL.
1863  * Return: vm_fault_t value.
1864  */
1865 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1866                         unsigned long pfn)
1867 {
1868         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1869 }
1870 EXPORT_SYMBOL(vmf_insert_pfn);
1871
1872 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1873 {
1874         /* these checks mirror the abort conditions in vm_normal_page */
1875         if (vma->vm_flags & VM_MIXEDMAP)
1876                 return true;
1877         if (pfn_t_devmap(pfn))
1878                 return true;
1879         if (pfn_t_special(pfn))
1880                 return true;
1881         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1882                 return true;
1883         return false;
1884 }
1885
1886 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1887                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1888                 bool mkwrite)
1889 {
1890         int err;
1891
1892         BUG_ON(!vm_mixed_ok(vma, pfn));
1893
1894         if (addr < vma->vm_start || addr >= vma->vm_end)
1895                 return VM_FAULT_SIGBUS;
1896
1897         track_pfn_insert(vma, &pgprot, pfn);
1898
1899         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1900                 return VM_FAULT_SIGBUS;
1901
1902         /*
1903          * If we don't have pte special, then we have to use the pfn_valid()
1904          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1905          * refcount the page if pfn_valid is true (hence insert_page rather
1906          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1907          * without pte special, it would there be refcounted as a normal page.
1908          */
1909         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1910             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1911                 struct page *page;
1912
1913                 /*
1914                  * At this point we are committed to insert_page()
1915                  * regardless of whether the caller specified flags that
1916                  * result in pfn_t_has_page() == false.
1917                  */
1918                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1919                 err = insert_page(vma, addr, page, pgprot);
1920         } else {
1921                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1922         }
1923
1924         if (err == -ENOMEM)
1925                 return VM_FAULT_OOM;
1926         if (err < 0 && err != -EBUSY)
1927                 return VM_FAULT_SIGBUS;
1928
1929         return VM_FAULT_NOPAGE;
1930 }
1931
1932 /**
1933  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1934  * @vma: user vma to map to
1935  * @addr: target user address of this page
1936  * @pfn: source kernel pfn
1937  * @pgprot: pgprot flags for the inserted page
1938  *
1939  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1940  * to override pgprot on a per-page basis.
1941  *
1942  * Typically this function should be used by drivers to set caching- and
1943  * encryption bits different than those of @vma->vm_page_prot, because
1944  * the caching- or encryption mode may not be known at mmap() time.
1945  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1946  * to set caching and encryption bits for those vmas (except for COW pages).
1947  * This is ensured by core vm only modifying these page table entries using
1948  * functions that don't touch caching- or encryption bits, using pte_modify()
1949  * if needed. (See for example mprotect()).
1950  * Also when new page-table entries are created, this is only done using the
1951  * fault() callback, and never using the value of vma->vm_page_prot,
1952  * except for page-table entries that point to anonymous pages as the result
1953  * of COW.
1954  *
1955  * Context: Process context.  May allocate using %GFP_KERNEL.
1956  * Return: vm_fault_t value.
1957  */
1958 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1959                                  pfn_t pfn, pgprot_t pgprot)
1960 {
1961         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1962 }
1963 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1964
1965 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1966                 pfn_t pfn)
1967 {
1968         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1969 }
1970 EXPORT_SYMBOL(vmf_insert_mixed);
1971
1972 /*
1973  *  If the insertion of PTE failed because someone else already added a
1974  *  different entry in the mean time, we treat that as success as we assume
1975  *  the same entry was actually inserted.
1976  */
1977 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1978                 unsigned long addr, pfn_t pfn)
1979 {
1980         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1981 }
1982 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1983
1984 /*
1985  * maps a range of physical memory into the requested pages. the old
1986  * mappings are removed. any references to nonexistent pages results
1987  * in null mappings (currently treated as "copy-on-access")
1988  */
1989 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1990                         unsigned long addr, unsigned long end,
1991                         unsigned long pfn, pgprot_t prot)
1992 {
1993         pte_t *pte;
1994         spinlock_t *ptl;
1995         int err = 0;
1996
1997         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1998         if (!pte)
1999                 return -ENOMEM;
2000         arch_enter_lazy_mmu_mode();
2001         do {
2002                 BUG_ON(!pte_none(*pte));
2003                 if (!pfn_modify_allowed(pfn, prot)) {
2004                         err = -EACCES;
2005                         break;
2006                 }
2007                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2008                 pfn++;
2009         } while (pte++, addr += PAGE_SIZE, addr != end);
2010         arch_leave_lazy_mmu_mode();
2011         pte_unmap_unlock(pte - 1, ptl);
2012         return err;
2013 }
2014
2015 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2016                         unsigned long addr, unsigned long end,
2017                         unsigned long pfn, pgprot_t prot)
2018 {
2019         pmd_t *pmd;
2020         unsigned long next;
2021         int err;
2022
2023         pfn -= addr >> PAGE_SHIFT;
2024         pmd = pmd_alloc(mm, pud, addr);
2025         if (!pmd)
2026                 return -ENOMEM;
2027         VM_BUG_ON(pmd_trans_huge(*pmd));
2028         do {
2029                 next = pmd_addr_end(addr, end);
2030                 err = remap_pte_range(mm, pmd, addr, next,
2031                                 pfn + (addr >> PAGE_SHIFT), prot);
2032                 if (err)
2033                         return err;
2034         } while (pmd++, addr = next, addr != end);
2035         return 0;
2036 }
2037
2038 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2039                         unsigned long addr, unsigned long end,
2040                         unsigned long pfn, pgprot_t prot)
2041 {
2042         pud_t *pud;
2043         unsigned long next;
2044         int err;
2045
2046         pfn -= addr >> PAGE_SHIFT;
2047         pud = pud_alloc(mm, p4d, addr);
2048         if (!pud)
2049                 return -ENOMEM;
2050         do {
2051                 next = pud_addr_end(addr, end);
2052                 err = remap_pmd_range(mm, pud, addr, next,
2053                                 pfn + (addr >> PAGE_SHIFT), prot);
2054                 if (err)
2055                         return err;
2056         } while (pud++, addr = next, addr != end);
2057         return 0;
2058 }
2059
2060 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2061                         unsigned long addr, unsigned long end,
2062                         unsigned long pfn, pgprot_t prot)
2063 {
2064         p4d_t *p4d;
2065         unsigned long next;
2066         int err;
2067
2068         pfn -= addr >> PAGE_SHIFT;
2069         p4d = p4d_alloc(mm, pgd, addr);
2070         if (!p4d)
2071                 return -ENOMEM;
2072         do {
2073                 next = p4d_addr_end(addr, end);
2074                 err = remap_pud_range(mm, p4d, addr, next,
2075                                 pfn + (addr >> PAGE_SHIFT), prot);
2076                 if (err)
2077                         return err;
2078         } while (p4d++, addr = next, addr != end);
2079         return 0;
2080 }
2081
2082 /**
2083  * remap_pfn_range - remap kernel memory to userspace
2084  * @vma: user vma to map to
2085  * @addr: target page aligned user address to start at
2086  * @pfn: page frame number of kernel physical memory address
2087  * @size: size of mapping area
2088  * @prot: page protection flags for this mapping
2089  *
2090  * Note: this is only safe if the mm semaphore is held when called.
2091  *
2092  * Return: %0 on success, negative error code otherwise.
2093  */
2094 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2095                     unsigned long pfn, unsigned long size, pgprot_t prot)
2096 {
2097         pgd_t *pgd;
2098         unsigned long next;
2099         unsigned long end = addr + PAGE_ALIGN(size);
2100         struct mm_struct *mm = vma->vm_mm;
2101         unsigned long remap_pfn = pfn;
2102         int err;
2103
2104         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2105                 return -EINVAL;
2106
2107         /*
2108          * Physically remapped pages are special. Tell the
2109          * rest of the world about it:
2110          *   VM_IO tells people not to look at these pages
2111          *      (accesses can have side effects).
2112          *   VM_PFNMAP tells the core MM that the base pages are just
2113          *      raw PFN mappings, and do not have a "struct page" associated
2114          *      with them.
2115          *   VM_DONTEXPAND
2116          *      Disable vma merging and expanding with mremap().
2117          *   VM_DONTDUMP
2118          *      Omit vma from core dump, even when VM_IO turned off.
2119          *
2120          * There's a horrible special case to handle copy-on-write
2121          * behaviour that some programs depend on. We mark the "original"
2122          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2123          * See vm_normal_page() for details.
2124          */
2125         if (is_cow_mapping(vma->vm_flags)) {
2126                 if (addr != vma->vm_start || end != vma->vm_end)
2127                         return -EINVAL;
2128                 vma->vm_pgoff = pfn;
2129         }
2130
2131         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2132         if (err)
2133                 return -EINVAL;
2134
2135         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2136
2137         BUG_ON(addr >= end);
2138         pfn -= addr >> PAGE_SHIFT;
2139         pgd = pgd_offset(mm, addr);
2140         flush_cache_range(vma, addr, end);
2141         do {
2142                 next = pgd_addr_end(addr, end);
2143                 err = remap_p4d_range(mm, pgd, addr, next,
2144                                 pfn + (addr >> PAGE_SHIFT), prot);
2145                 if (err)
2146                         break;
2147         } while (pgd++, addr = next, addr != end);
2148
2149         if (err)
2150                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2151
2152         return err;
2153 }
2154 EXPORT_SYMBOL(remap_pfn_range);
2155
2156 /**
2157  * vm_iomap_memory - remap memory to userspace
2158  * @vma: user vma to map to
2159  * @start: start of the physical memory to be mapped
2160  * @len: size of area
2161  *
2162  * This is a simplified io_remap_pfn_range() for common driver use. The
2163  * driver just needs to give us the physical memory range to be mapped,
2164  * we'll figure out the rest from the vma information.
2165  *
2166  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2167  * whatever write-combining details or similar.
2168  *
2169  * Return: %0 on success, negative error code otherwise.
2170  */
2171 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2172 {
2173         unsigned long vm_len, pfn, pages;
2174
2175         /* Check that the physical memory area passed in looks valid */
2176         if (start + len < start)
2177                 return -EINVAL;
2178         /*
2179          * You *really* shouldn't map things that aren't page-aligned,
2180          * but we've historically allowed it because IO memory might
2181          * just have smaller alignment.
2182          */
2183         len += start & ~PAGE_MASK;
2184         pfn = start >> PAGE_SHIFT;
2185         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2186         if (pfn + pages < pfn)
2187                 return -EINVAL;
2188
2189         /* We start the mapping 'vm_pgoff' pages into the area */
2190         if (vma->vm_pgoff > pages)
2191                 return -EINVAL;
2192         pfn += vma->vm_pgoff;
2193         pages -= vma->vm_pgoff;
2194
2195         /* Can we fit all of the mapping? */
2196         vm_len = vma->vm_end - vma->vm_start;
2197         if (vm_len >> PAGE_SHIFT > pages)
2198                 return -EINVAL;
2199
2200         /* Ok, let it rip */
2201         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2202 }
2203 EXPORT_SYMBOL(vm_iomap_memory);
2204
2205 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2206                                      unsigned long addr, unsigned long end,
2207                                      pte_fn_t fn, void *data, bool create)
2208 {
2209         pte_t *pte;
2210         int err = 0;
2211         spinlock_t *ptl;
2212
2213         if (create) {
2214                 pte = (mm == &init_mm) ?
2215                         pte_alloc_kernel(pmd, addr) :
2216                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2217                 if (!pte)
2218                         return -ENOMEM;
2219         } else {
2220                 pte = (mm == &init_mm) ?
2221                         pte_offset_kernel(pmd, addr) :
2222                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2223         }
2224
2225         BUG_ON(pmd_huge(*pmd));
2226
2227         arch_enter_lazy_mmu_mode();
2228
2229         do {
2230                 if (create || !pte_none(*pte)) {
2231                         err = fn(pte++, addr, data);
2232                         if (err)
2233                                 break;
2234                 }
2235         } while (addr += PAGE_SIZE, addr != end);
2236
2237         arch_leave_lazy_mmu_mode();
2238
2239         if (mm != &init_mm)
2240                 pte_unmap_unlock(pte-1, ptl);
2241         return err;
2242 }
2243
2244 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2245                                      unsigned long addr, unsigned long end,
2246                                      pte_fn_t fn, void *data, bool create)
2247 {
2248         pmd_t *pmd;
2249         unsigned long next;
2250         int err = 0;
2251
2252         BUG_ON(pud_huge(*pud));
2253
2254         if (create) {
2255                 pmd = pmd_alloc(mm, pud, addr);
2256                 if (!pmd)
2257                         return -ENOMEM;
2258         } else {
2259                 pmd = pmd_offset(pud, addr);
2260         }
2261         do {
2262                 next = pmd_addr_end(addr, end);
2263                 if (create || !pmd_none_or_clear_bad(pmd)) {
2264                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2265                                                  create);
2266                         if (err)
2267                                 break;
2268                 }
2269         } while (pmd++, addr = next, addr != end);
2270         return err;
2271 }
2272
2273 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2274                                      unsigned long addr, unsigned long end,
2275                                      pte_fn_t fn, void *data, bool create)
2276 {
2277         pud_t *pud;
2278         unsigned long next;
2279         int err = 0;
2280
2281         if (create) {
2282                 pud = pud_alloc(mm, p4d, addr);
2283                 if (!pud)
2284                         return -ENOMEM;
2285         } else {
2286                 pud = pud_offset(p4d, addr);
2287         }
2288         do {
2289                 next = pud_addr_end(addr, end);
2290                 if (create || !pud_none_or_clear_bad(pud)) {
2291                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2292                                                  create);
2293                         if (err)
2294                                 break;
2295                 }
2296         } while (pud++, addr = next, addr != end);
2297         return err;
2298 }
2299
2300 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2301                                      unsigned long addr, unsigned long end,
2302                                      pte_fn_t fn, void *data, bool create)
2303 {
2304         p4d_t *p4d;
2305         unsigned long next;
2306         int err = 0;
2307
2308         if (create) {
2309                 p4d = p4d_alloc(mm, pgd, addr);
2310                 if (!p4d)
2311                         return -ENOMEM;
2312         } else {
2313                 p4d = p4d_offset(pgd, addr);
2314         }
2315         do {
2316                 next = p4d_addr_end(addr, end);
2317                 if (create || !p4d_none_or_clear_bad(p4d)) {
2318                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2319                                                  create);
2320                         if (err)
2321                                 break;
2322                 }
2323         } while (p4d++, addr = next, addr != end);
2324         return err;
2325 }
2326
2327 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2328                                  unsigned long size, pte_fn_t fn,
2329                                  void *data, bool create)
2330 {
2331         pgd_t *pgd;
2332         unsigned long next;
2333         unsigned long end = addr + size;
2334         int err = 0;
2335
2336         if (WARN_ON(addr >= end))
2337                 return -EINVAL;
2338
2339         pgd = pgd_offset(mm, addr);
2340         do {
2341                 next = pgd_addr_end(addr, end);
2342                 if (!create && pgd_none_or_clear_bad(pgd))
2343                         continue;
2344                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2345                 if (err)
2346                         break;
2347         } while (pgd++, addr = next, addr != end);
2348
2349         return err;
2350 }
2351
2352 /*
2353  * Scan a region of virtual memory, filling in page tables as necessary
2354  * and calling a provided function on each leaf page table.
2355  */
2356 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2357                         unsigned long size, pte_fn_t fn, void *data)
2358 {
2359         return __apply_to_page_range(mm, addr, size, fn, data, true);
2360 }
2361 EXPORT_SYMBOL_GPL(apply_to_page_range);
2362
2363 /*
2364  * Scan a region of virtual memory, calling a provided function on
2365  * each leaf page table where it exists.
2366  *
2367  * Unlike apply_to_page_range, this does _not_ fill in page tables
2368  * where they are absent.
2369  */
2370 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2371                                  unsigned long size, pte_fn_t fn, void *data)
2372 {
2373         return __apply_to_page_range(mm, addr, size, fn, data, false);
2374 }
2375 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2376
2377 /*
2378  * handle_pte_fault chooses page fault handler according to an entry which was
2379  * read non-atomically.  Before making any commitment, on those architectures
2380  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2381  * parts, do_swap_page must check under lock before unmapping the pte and
2382  * proceeding (but do_wp_page is only called after already making such a check;
2383  * and do_anonymous_page can safely check later on).
2384  */
2385 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2386                                 pte_t *page_table, pte_t orig_pte)
2387 {
2388         int same = 1;
2389 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2390         if (sizeof(pte_t) > sizeof(unsigned long)) {
2391                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2392                 spin_lock(ptl);
2393                 same = pte_same(*page_table, orig_pte);
2394                 spin_unlock(ptl);
2395         }
2396 #endif
2397         pte_unmap(page_table);
2398         return same;
2399 }
2400
2401 static inline bool cow_user_page(struct page *dst, struct page *src,
2402                                  struct vm_fault *vmf)
2403 {
2404         bool ret;
2405         void *kaddr;
2406         void __user *uaddr;
2407         bool locked = false;
2408         struct vm_area_struct *vma = vmf->vma;
2409         struct mm_struct *mm = vma->vm_mm;
2410         unsigned long addr = vmf->address;
2411
2412         debug_dma_assert_idle(src);
2413
2414         if (likely(src)) {
2415                 copy_user_highpage(dst, src, addr, vma);
2416                 return true;
2417         }
2418
2419         /*
2420          * If the source page was a PFN mapping, we don't have
2421          * a "struct page" for it. We do a best-effort copy by
2422          * just copying from the original user address. If that
2423          * fails, we just zero-fill it. Live with it.
2424          */
2425         kaddr = kmap_atomic(dst);
2426         uaddr = (void __user *)(addr & PAGE_MASK);
2427
2428         /*
2429          * On architectures with software "accessed" bits, we would
2430          * take a double page fault, so mark it accessed here.
2431          */
2432         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2433                 pte_t entry;
2434
2435                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2436                 locked = true;
2437                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2438                         /*
2439                          * Other thread has already handled the fault
2440                          * and update local tlb only
2441                          */
2442                         update_mmu_tlb(vma, addr, vmf->pte);
2443                         ret = false;
2444                         goto pte_unlock;
2445                 }
2446
2447                 entry = pte_mkyoung(vmf->orig_pte);
2448                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2449                         update_mmu_cache(vma, addr, vmf->pte);
2450         }
2451
2452         /*
2453          * This really shouldn't fail, because the page is there
2454          * in the page tables. But it might just be unreadable,
2455          * in which case we just give up and fill the result with
2456          * zeroes.
2457          */
2458         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2459                 if (locked)
2460                         goto warn;
2461
2462                 /* Re-validate under PTL if the page is still mapped */
2463                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2464                 locked = true;
2465                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2466                         /* The PTE changed under us, update local tlb */
2467                         update_mmu_tlb(vma, addr, vmf->pte);
2468                         ret = false;
2469                         goto pte_unlock;
2470                 }
2471
2472                 /*
2473                  * The same page can be mapped back since last copy attempt.
2474                  * Try to copy again under PTL.
2475                  */
2476                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2477                         /*
2478                          * Give a warn in case there can be some obscure
2479                          * use-case
2480                          */
2481 warn:
2482                         WARN_ON_ONCE(1);
2483                         clear_page(kaddr);
2484                 }
2485         }
2486
2487         ret = true;
2488
2489 pte_unlock:
2490         if (locked)
2491                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2492         kunmap_atomic(kaddr);
2493         flush_dcache_page(dst);
2494
2495         return ret;
2496 }
2497
2498 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2499 {
2500         struct file *vm_file = vma->vm_file;
2501
2502         if (vm_file)
2503                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2504
2505         /*
2506          * Special mappings (e.g. VDSO) do not have any file so fake
2507          * a default GFP_KERNEL for them.
2508          */
2509         return GFP_KERNEL;
2510 }
2511
2512 /*
2513  * Notify the address space that the page is about to become writable so that
2514  * it can prohibit this or wait for the page to get into an appropriate state.
2515  *
2516  * We do this without the lock held, so that it can sleep if it needs to.
2517  */
2518 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2519 {
2520         vm_fault_t ret;
2521         struct page *page = vmf->page;
2522         unsigned int old_flags = vmf->flags;
2523
2524         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2525
2526         if (vmf->vma->vm_file &&
2527             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2528                 return VM_FAULT_SIGBUS;
2529
2530         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2531         /* Restore original flags so that caller is not surprised */
2532         vmf->flags = old_flags;
2533         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2534                 return ret;
2535         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2536                 lock_page(page);
2537                 if (!page->mapping) {
2538                         unlock_page(page);
2539                         return 0; /* retry */
2540                 }
2541                 ret |= VM_FAULT_LOCKED;
2542         } else
2543                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2544         return ret;
2545 }
2546
2547 /*
2548  * Handle dirtying of a page in shared file mapping on a write fault.
2549  *
2550  * The function expects the page to be locked and unlocks it.
2551  */
2552 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2553 {
2554         struct vm_area_struct *vma = vmf->vma;
2555         struct address_space *mapping;
2556         struct page *page = vmf->page;
2557         bool dirtied;
2558         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2559
2560         dirtied = set_page_dirty(page);
2561         VM_BUG_ON_PAGE(PageAnon(page), page);
2562         /*
2563          * Take a local copy of the address_space - page.mapping may be zeroed
2564          * by truncate after unlock_page().   The address_space itself remains
2565          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2566          * release semantics to prevent the compiler from undoing this copying.
2567          */
2568         mapping = page_rmapping(page);
2569         unlock_page(page);
2570
2571         if (!page_mkwrite)
2572                 file_update_time(vma->vm_file);
2573
2574         /*
2575          * Throttle page dirtying rate down to writeback speed.
2576          *
2577          * mapping may be NULL here because some device drivers do not
2578          * set page.mapping but still dirty their pages
2579          *
2580          * Drop the mmap_lock before waiting on IO, if we can. The file
2581          * is pinning the mapping, as per above.
2582          */
2583         if ((dirtied || page_mkwrite) && mapping) {
2584                 struct file *fpin;
2585
2586                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2587                 balance_dirty_pages_ratelimited(mapping);
2588                 if (fpin) {
2589                         fput(fpin);
2590                         return VM_FAULT_RETRY;
2591                 }
2592         }
2593
2594         return 0;
2595 }
2596
2597 /*
2598  * Handle write page faults for pages that can be reused in the current vma
2599  *
2600  * This can happen either due to the mapping being with the VM_SHARED flag,
2601  * or due to us being the last reference standing to the page. In either
2602  * case, all we need to do here is to mark the page as writable and update
2603  * any related book-keeping.
2604  */
2605 static inline void wp_page_reuse(struct vm_fault *vmf)
2606         __releases(vmf->ptl)
2607 {
2608         struct vm_area_struct *vma = vmf->vma;
2609         struct page *page = vmf->page;
2610         pte_t entry;
2611         /*
2612          * Clear the pages cpupid information as the existing
2613          * information potentially belongs to a now completely
2614          * unrelated process.
2615          */
2616         if (page)
2617                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2618
2619         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2620         entry = pte_mkyoung(vmf->orig_pte);
2621         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2622         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2623                 update_mmu_cache(vma, vmf->address, vmf->pte);
2624         pte_unmap_unlock(vmf->pte, vmf->ptl);
2625 }
2626
2627 /*
2628  * Handle the case of a page which we actually need to copy to a new page.
2629  *
2630  * Called with mmap_lock locked and the old page referenced, but
2631  * without the ptl held.
2632  *
2633  * High level logic flow:
2634  *
2635  * - Allocate a page, copy the content of the old page to the new one.
2636  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2637  * - Take the PTL. If the pte changed, bail out and release the allocated page
2638  * - If the pte is still the way we remember it, update the page table and all
2639  *   relevant references. This includes dropping the reference the page-table
2640  *   held to the old page, as well as updating the rmap.
2641  * - In any case, unlock the PTL and drop the reference we took to the old page.
2642  */
2643 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2644 {
2645         struct vm_area_struct *vma = vmf->vma;
2646         struct mm_struct *mm = vma->vm_mm;
2647         struct page *old_page = vmf->page;
2648         struct page *new_page = NULL;
2649         pte_t entry;
2650         int page_copied = 0;
2651         struct mmu_notifier_range range;
2652
2653         if (unlikely(anon_vma_prepare(vma)))
2654                 goto oom;
2655
2656         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2657                 new_page = alloc_zeroed_user_highpage_movable(vma,
2658                                                               vmf->address);
2659                 if (!new_page)
2660                         goto oom;
2661         } else {
2662                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2663                                 vmf->address);
2664                 if (!new_page)
2665                         goto oom;
2666
2667                 if (!cow_user_page(new_page, old_page, vmf)) {
2668                         /*
2669                          * COW failed, if the fault was solved by other,
2670                          * it's fine. If not, userspace would re-fault on
2671                          * the same address and we will handle the fault
2672                          * from the second attempt.
2673                          */
2674                         put_page(new_page);
2675                         if (old_page)
2676                                 put_page(old_page);
2677                         return 0;
2678                 }
2679         }
2680
2681         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2682                 goto oom_free_new;
2683         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2684
2685         __SetPageUptodate(new_page);
2686
2687         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2688                                 vmf->address & PAGE_MASK,
2689                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2690         mmu_notifier_invalidate_range_start(&range);
2691
2692         /*
2693          * Re-check the pte - we dropped the lock
2694          */
2695         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2696         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2697                 if (old_page) {
2698                         if (!PageAnon(old_page)) {
2699                                 dec_mm_counter_fast(mm,
2700                                                 mm_counter_file(old_page));
2701                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2702                         }
2703                 } else {
2704                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2705                 }
2706                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2707                 entry = mk_pte(new_page, vma->vm_page_prot);
2708                 entry = pte_sw_mkyoung(entry);
2709                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2710                 /*
2711                  * Clear the pte entry and flush it first, before updating the
2712                  * pte with the new entry. This will avoid a race condition
2713                  * seen in the presence of one thread doing SMC and another
2714                  * thread doing COW.
2715                  */
2716                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2717                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2718                 lru_cache_add_active_or_unevictable(new_page, vma);
2719                 /*
2720                  * We call the notify macro here because, when using secondary
2721                  * mmu page tables (such as kvm shadow page tables), we want the
2722                  * new page to be mapped directly into the secondary page table.
2723                  */
2724                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2725                 update_mmu_cache(vma, vmf->address, vmf->pte);
2726                 if (old_page) {
2727                         /*
2728                          * Only after switching the pte to the new page may
2729                          * we remove the mapcount here. Otherwise another
2730                          * process may come and find the rmap count decremented
2731                          * before the pte is switched to the new page, and
2732                          * "reuse" the old page writing into it while our pte
2733                          * here still points into it and can be read by other
2734                          * threads.
2735                          *
2736                          * The critical issue is to order this
2737                          * page_remove_rmap with the ptp_clear_flush above.
2738                          * Those stores are ordered by (if nothing else,)
2739                          * the barrier present in the atomic_add_negative
2740                          * in page_remove_rmap.
2741                          *
2742                          * Then the TLB flush in ptep_clear_flush ensures that
2743                          * no process can access the old page before the
2744                          * decremented mapcount is visible. And the old page
2745                          * cannot be reused until after the decremented
2746                          * mapcount is visible. So transitively, TLBs to
2747                          * old page will be flushed before it can be reused.
2748                          */
2749                         page_remove_rmap(old_page, false);
2750                 }
2751
2752                 /* Free the old page.. */
2753                 new_page = old_page;
2754                 page_copied = 1;
2755         } else {
2756                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2757         }
2758
2759         if (new_page)
2760                 put_page(new_page);
2761
2762         pte_unmap_unlock(vmf->pte, vmf->ptl);
2763         /*
2764          * No need to double call mmu_notifier->invalidate_range() callback as
2765          * the above ptep_clear_flush_notify() did already call it.
2766          */
2767         mmu_notifier_invalidate_range_only_end(&range);
2768         if (old_page) {
2769                 /*
2770                  * Don't let another task, with possibly unlocked vma,
2771                  * keep the mlocked page.
2772                  */
2773                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2774                         lock_page(old_page);    /* LRU manipulation */
2775                         if (PageMlocked(old_page))
2776                                 munlock_vma_page(old_page);
2777                         unlock_page(old_page);
2778                 }
2779                 put_page(old_page);
2780         }
2781         return page_copied ? VM_FAULT_WRITE : 0;
2782 oom_free_new:
2783         put_page(new_page);
2784 oom:
2785         if (old_page)
2786                 put_page(old_page);
2787         return VM_FAULT_OOM;
2788 }
2789
2790 /**
2791  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2792  *                        writeable once the page is prepared
2793  *
2794  * @vmf: structure describing the fault
2795  *
2796  * This function handles all that is needed to finish a write page fault in a
2797  * shared mapping due to PTE being read-only once the mapped page is prepared.
2798  * It handles locking of PTE and modifying it.
2799  *
2800  * The function expects the page to be locked or other protection against
2801  * concurrent faults / writeback (such as DAX radix tree locks).
2802  *
2803  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2804  * we acquired PTE lock.
2805  */
2806 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2807 {
2808         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2809         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2810                                        &vmf->ptl);
2811         /*
2812          * We might have raced with another page fault while we released the
2813          * pte_offset_map_lock.
2814          */
2815         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2816                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2817                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2818                 return VM_FAULT_NOPAGE;
2819         }
2820         wp_page_reuse(vmf);
2821         return 0;
2822 }
2823
2824 /*
2825  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2826  * mapping
2827  */
2828 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2829 {
2830         struct vm_area_struct *vma = vmf->vma;
2831
2832         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2833                 vm_fault_t ret;
2834
2835                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2836                 vmf->flags |= FAULT_FLAG_MKWRITE;
2837                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2838                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2839                         return ret;
2840                 return finish_mkwrite_fault(vmf);
2841         }
2842         wp_page_reuse(vmf);
2843         return VM_FAULT_WRITE;
2844 }
2845
2846 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2847         __releases(vmf->ptl)
2848 {
2849         struct vm_area_struct *vma = vmf->vma;
2850         vm_fault_t ret = VM_FAULT_WRITE;
2851
2852         get_page(vmf->page);
2853
2854         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2855                 vm_fault_t tmp;
2856
2857                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2858                 tmp = do_page_mkwrite(vmf);
2859                 if (unlikely(!tmp || (tmp &
2860                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2861                         put_page(vmf->page);
2862                         return tmp;
2863                 }
2864                 tmp = finish_mkwrite_fault(vmf);
2865                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2866                         unlock_page(vmf->page);
2867                         put_page(vmf->page);
2868                         return tmp;
2869                 }
2870         } else {
2871                 wp_page_reuse(vmf);
2872                 lock_page(vmf->page);
2873         }
2874         ret |= fault_dirty_shared_page(vmf);
2875         put_page(vmf->page);
2876
2877         return ret;
2878 }
2879
2880 /*
2881  * This routine handles present pages, when users try to write
2882  * to a shared page. It is done by copying the page to a new address
2883  * and decrementing the shared-page counter for the old page.
2884  *
2885  * Note that this routine assumes that the protection checks have been
2886  * done by the caller (the low-level page fault routine in most cases).
2887  * Thus we can safely just mark it writable once we've done any necessary
2888  * COW.
2889  *
2890  * We also mark the page dirty at this point even though the page will
2891  * change only once the write actually happens. This avoids a few races,
2892  * and potentially makes it more efficient.
2893  *
2894  * We enter with non-exclusive mmap_lock (to exclude vma changes,
2895  * but allow concurrent faults), with pte both mapped and locked.
2896  * We return with mmap_lock still held, but pte unmapped and unlocked.
2897  */
2898 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2899         __releases(vmf->ptl)
2900 {
2901         struct vm_area_struct *vma = vmf->vma;
2902
2903         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2904                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2905                 return handle_userfault(vmf, VM_UFFD_WP);
2906         }
2907
2908         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2909         if (!vmf->page) {
2910                 /*
2911                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2912                  * VM_PFNMAP VMA.
2913                  *
2914                  * We should not cow pages in a shared writeable mapping.
2915                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2916                  */
2917                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2918                                      (VM_WRITE|VM_SHARED))
2919                         return wp_pfn_shared(vmf);
2920
2921                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2922                 return wp_page_copy(vmf);
2923         }
2924
2925         /*
2926          * Take out anonymous pages first, anonymous shared vmas are
2927          * not dirty accountable.
2928          */
2929         if (PageAnon(vmf->page)) {
2930                 int total_map_swapcount;
2931                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2932                                            page_count(vmf->page) != 1))
2933                         goto copy;
2934                 if (!trylock_page(vmf->page)) {
2935                         get_page(vmf->page);
2936                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2937                         lock_page(vmf->page);
2938                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2939                                         vmf->address, &vmf->ptl);
2940                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2941                                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2942                                 unlock_page(vmf->page);
2943                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2944                                 put_page(vmf->page);
2945                                 return 0;
2946                         }
2947                         put_page(vmf->page);
2948                 }
2949                 if (PageKsm(vmf->page)) {
2950                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2951                                                      vmf->address);
2952                         unlock_page(vmf->page);
2953                         if (!reused)
2954                                 goto copy;
2955                         wp_page_reuse(vmf);
2956                         return VM_FAULT_WRITE;
2957                 }
2958                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2959                         if (total_map_swapcount == 1) {
2960                                 /*
2961                                  * The page is all ours. Move it to
2962                                  * our anon_vma so the rmap code will
2963                                  * not search our parent or siblings.
2964                                  * Protected against the rmap code by
2965                                  * the page lock.
2966                                  */
2967                                 page_move_anon_rmap(vmf->page, vma);
2968                         }
2969                         unlock_page(vmf->page);
2970                         wp_page_reuse(vmf);
2971                         return VM_FAULT_WRITE;
2972                 }
2973                 unlock_page(vmf->page);
2974         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2975                                         (VM_WRITE|VM_SHARED))) {
2976                 return wp_page_shared(vmf);
2977         }
2978 copy:
2979         /*
2980          * Ok, we need to copy. Oh, well..
2981          */
2982         get_page(vmf->page);
2983
2984         pte_unmap_unlock(vmf->pte, vmf->ptl);
2985         return wp_page_copy(vmf);
2986 }
2987
2988 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2989                 unsigned long start_addr, unsigned long end_addr,
2990                 struct zap_details *details)
2991 {
2992         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2993 }
2994
2995 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2996                                             struct zap_details *details)
2997 {
2998         struct vm_area_struct *vma;
2999         pgoff_t vba, vea, zba, zea;
3000
3001         vma_interval_tree_foreach(vma, root,
3002                         details->first_index, details->last_index) {
3003
3004                 vba = vma->vm_pgoff;
3005                 vea = vba + vma_pages(vma) - 1;
3006                 zba = details->first_index;
3007                 if (zba < vba)
3008                         zba = vba;
3009                 zea = details->last_index;
3010                 if (zea > vea)
3011                         zea = vea;
3012
3013                 unmap_mapping_range_vma(vma,
3014                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3015                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3016                                 details);
3017         }
3018 }
3019
3020 /**
3021  * unmap_mapping_pages() - Unmap pages from processes.
3022  * @mapping: The address space containing pages to be unmapped.
3023  * @start: Index of first page to be unmapped.
3024  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3025  * @even_cows: Whether to unmap even private COWed pages.
3026  *
3027  * Unmap the pages in this address space from any userspace process which
3028  * has them mmaped.  Generally, you want to remove COWed pages as well when
3029  * a file is being truncated, but not when invalidating pages from the page
3030  * cache.
3031  */
3032 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3033                 pgoff_t nr, bool even_cows)
3034 {
3035         struct zap_details details = { };
3036
3037         details.check_mapping = even_cows ? NULL : mapping;
3038         details.first_index = start;
3039         details.last_index = start + nr - 1;
3040         if (details.last_index < details.first_index)
3041                 details.last_index = ULONG_MAX;
3042
3043         i_mmap_lock_write(mapping);
3044         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3045                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3046         i_mmap_unlock_write(mapping);
3047 }
3048
3049 /**
3050  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3051  * address_space corresponding to the specified byte range in the underlying
3052  * file.
3053  *
3054  * @mapping: the address space containing mmaps to be unmapped.
3055  * @holebegin: byte in first page to unmap, relative to the start of
3056  * the underlying file.  This will be rounded down to a PAGE_SIZE
3057  * boundary.  Note that this is different from truncate_pagecache(), which
3058  * must keep the partial page.  In contrast, we must get rid of
3059  * partial pages.
3060  * @holelen: size of prospective hole in bytes.  This will be rounded
3061  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3062  * end of the file.
3063  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3064  * but 0 when invalidating pagecache, don't throw away private data.
3065  */
3066 void unmap_mapping_range(struct address_space *mapping,
3067                 loff_t const holebegin, loff_t const holelen, int even_cows)
3068 {
3069         pgoff_t hba = holebegin >> PAGE_SHIFT;
3070         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3071
3072         /* Check for overflow. */
3073         if (sizeof(holelen) > sizeof(hlen)) {
3074                 long long holeend =
3075                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3076                 if (holeend & ~(long long)ULONG_MAX)
3077                         hlen = ULONG_MAX - hba + 1;
3078         }
3079
3080         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3081 }
3082 EXPORT_SYMBOL(unmap_mapping_range);
3083
3084 /*
3085  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3086  * but allow concurrent faults), and pte mapped but not yet locked.
3087  * We return with pte unmapped and unlocked.
3088  *
3089  * We return with the mmap_lock locked or unlocked in the same cases
3090  * as does filemap_fault().
3091  */
3092 vm_fault_t do_swap_page(struct vm_fault *vmf)
3093 {
3094         struct vm_area_struct *vma = vmf->vma;
3095         struct page *page = NULL, *swapcache;
3096         swp_entry_t entry;
3097         pte_t pte;
3098         int locked;
3099         int exclusive = 0;
3100         vm_fault_t ret = 0;
3101
3102         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3103                 goto out;
3104
3105         entry = pte_to_swp_entry(vmf->orig_pte);
3106         if (unlikely(non_swap_entry(entry))) {
3107                 if (is_migration_entry(entry)) {
3108                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3109                                              vmf->address);
3110                 } else if (is_device_private_entry(entry)) {
3111                         vmf->page = device_private_entry_to_page(entry);
3112                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3113                 } else if (is_hwpoison_entry(entry)) {
3114                         ret = VM_FAULT_HWPOISON;
3115                 } else {
3116                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3117                         ret = VM_FAULT_SIGBUS;
3118                 }
3119                 goto out;
3120         }
3121
3122
3123         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3124         page = lookup_swap_cache(entry, vma, vmf->address);
3125         swapcache = page;
3126
3127         if (!page) {
3128                 struct swap_info_struct *si = swp_swap_info(entry);
3129
3130                 if (si->flags & SWP_SYNCHRONOUS_IO &&
3131                                 __swap_count(entry) == 1) {
3132                         /* skip swapcache */
3133                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3134                                                         vmf->address);
3135                         if (page) {
3136                                 int err;
3137
3138                                 __SetPageLocked(page);
3139                                 __SetPageSwapBacked(page);
3140                                 set_page_private(page, entry.val);
3141
3142                                 /* Tell memcg to use swap ownership records */
3143                                 SetPageSwapCache(page);
3144                                 err = mem_cgroup_charge(page, vma->vm_mm,
3145                                                         GFP_KERNEL);
3146                                 ClearPageSwapCache(page);
3147                                 if (err) {
3148                                         ret = VM_FAULT_OOM;
3149                                         goto out_page;
3150                                 }
3151
3152                                 /*
3153                                  * XXX: Move to lru_cache_add() when it
3154                                  * supports new vs putback
3155                                  */
3156                                 spin_lock_irq(&page_pgdat(page)->lru_lock);
3157                                 lru_note_cost_page(page);
3158                                 spin_unlock_irq(&page_pgdat(page)->lru_lock);
3159
3160                                 lru_cache_add(page);
3161                                 swap_readpage(page, true);
3162                         }
3163                 } else {
3164                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3165                                                 vmf);
3166                         swapcache = page;
3167                 }
3168
3169                 if (!page) {
3170                         /*
3171                          * Back out if somebody else faulted in this pte
3172                          * while we released the pte lock.
3173                          */
3174                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3175                                         vmf->address, &vmf->ptl);
3176                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3177                                 ret = VM_FAULT_OOM;
3178                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3179                         goto unlock;
3180                 }
3181
3182                 /* Had to read the page from swap area: Major fault */
3183                 ret = VM_FAULT_MAJOR;
3184                 count_vm_event(PGMAJFAULT);
3185                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3186         } else if (PageHWPoison(page)) {
3187                 /*
3188                  * hwpoisoned dirty swapcache pages are kept for killing
3189                  * owner processes (which may be unknown at hwpoison time)
3190                  */
3191                 ret = VM_FAULT_HWPOISON;
3192                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3193                 goto out_release;
3194         }
3195
3196         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3197
3198         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3199         if (!locked) {
3200                 ret |= VM_FAULT_RETRY;
3201                 goto out_release;
3202         }
3203
3204         /*
3205          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3206          * release the swapcache from under us.  The page pin, and pte_same
3207          * test below, are not enough to exclude that.  Even if it is still
3208          * swapcache, we need to check that the page's swap has not changed.
3209          */
3210         if (unlikely((!PageSwapCache(page) ||
3211                         page_private(page) != entry.val)) && swapcache)
3212                 goto out_page;
3213
3214         page = ksm_might_need_to_copy(page, vma, vmf->address);
3215         if (unlikely(!page)) {
3216                 ret = VM_FAULT_OOM;
3217                 page = swapcache;
3218                 goto out_page;
3219         }
3220
3221         cgroup_throttle_swaprate(page, GFP_KERNEL);
3222
3223         /*
3224          * Back out if somebody else already faulted in this pte.
3225          */
3226         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3227                         &vmf->ptl);
3228         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3229                 goto out_nomap;
3230
3231         if (unlikely(!PageUptodate(page))) {
3232                 ret = VM_FAULT_SIGBUS;
3233                 goto out_nomap;
3234         }
3235
3236         /*
3237          * The page isn't present yet, go ahead with the fault.
3238          *
3239          * Be careful about the sequence of operations here.
3240          * To get its accounting right, reuse_swap_page() must be called
3241          * while the page is counted on swap but not yet in mapcount i.e.
3242          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3243          * must be called after the swap_free(), or it will never succeed.
3244          */
3245
3246         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3247         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3248         pte = mk_pte(page, vma->vm_page_prot);
3249         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3250                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3251                 vmf->flags &= ~FAULT_FLAG_WRITE;
3252                 ret |= VM_FAULT_WRITE;
3253                 exclusive = RMAP_EXCLUSIVE;
3254         }
3255         flush_icache_page(vma, page);
3256         if (pte_swp_soft_dirty(vmf->orig_pte))
3257                 pte = pte_mksoft_dirty(pte);
3258         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3259                 pte = pte_mkuffd_wp(pte);
3260                 pte = pte_wrprotect(pte);
3261         }
3262         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3263         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3264         vmf->orig_pte = pte;
3265
3266         /* ksm created a completely new copy */
3267         if (unlikely(page != swapcache && swapcache)) {
3268                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3269                 lru_cache_add_active_or_unevictable(page, vma);
3270         } else {
3271                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3272                 activate_page(page);
3273         }
3274
3275         swap_free(entry);
3276         if (mem_cgroup_swap_full(page) ||
3277             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3278                 try_to_free_swap(page);
3279         unlock_page(page);
3280         if (page != swapcache && swapcache) {
3281                 /*
3282                  * Hold the lock to avoid the swap entry to be reused
3283                  * until we take the PT lock for the pte_same() check
3284                  * (to avoid false positives from pte_same). For
3285                  * further safety release the lock after the swap_free
3286                  * so that the swap count won't change under a
3287                  * parallel locked swapcache.
3288                  */
3289                 unlock_page(swapcache);
3290                 put_page(swapcache);
3291         }
3292
3293         if (vmf->flags & FAULT_FLAG_WRITE) {
3294                 ret |= do_wp_page(vmf);
3295                 if (ret & VM_FAULT_ERROR)
3296                         ret &= VM_FAULT_ERROR;
3297                 goto out;
3298         }
3299
3300         /* No need to invalidate - it was non-present before */
3301         update_mmu_cache(vma, vmf->address, vmf->pte);
3302 unlock:
3303         pte_unmap_unlock(vmf->pte, vmf->ptl);
3304 out:
3305         return ret;
3306 out_nomap:
3307         pte_unmap_unlock(vmf->pte, vmf->ptl);
3308 out_page:
3309         unlock_page(page);
3310 out_release:
3311         put_page(page);
3312         if (page != swapcache && swapcache) {
3313                 unlock_page(swapcache);
3314                 put_page(swapcache);
3315         }
3316         return ret;
3317 }
3318
3319 /*
3320  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3321  * but allow concurrent faults), and pte mapped but not yet locked.
3322  * We return with mmap_lock still held, but pte unmapped and unlocked.
3323  */
3324 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3325 {
3326         struct vm_area_struct *vma = vmf->vma;
3327         struct page *page;
3328         vm_fault_t ret = 0;
3329         pte_t entry;
3330
3331         /* File mapping without ->vm_ops ? */
3332         if (vma->vm_flags & VM_SHARED)
3333                 return VM_FAULT_SIGBUS;
3334
3335         /*
3336          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3337          * pte_offset_map() on pmds where a huge pmd might be created
3338          * from a different thread.
3339          *
3340          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3341          * parallel threads are excluded by other means.
3342          *
3343          * Here we only have mmap_read_lock(mm).
3344          */
3345         if (pte_alloc(vma->vm_mm, vmf->pmd))
3346                 return VM_FAULT_OOM;
3347
3348         /* See the comment in pte_alloc_one_map() */
3349         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3350                 return 0;
3351
3352         /* Use the zero-page for reads */
3353         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3354                         !mm_forbids_zeropage(vma->vm_mm)) {
3355                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3356                                                 vma->vm_page_prot));
3357                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3358                                 vmf->address, &vmf->ptl);
3359                 if (!pte_none(*vmf->pte)) {
3360                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3361                         goto unlock;
3362                 }
3363                 ret = check_stable_address_space(vma->vm_mm);
3364                 if (ret)
3365                         goto unlock;
3366                 /* Deliver the page fault to userland, check inside PT lock */
3367                 if (userfaultfd_missing(vma)) {
3368                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3369                         return handle_userfault(vmf, VM_UFFD_MISSING);
3370                 }
3371                 goto setpte;
3372         }
3373
3374         /* Allocate our own private page. */
3375         if (unlikely(anon_vma_prepare(vma)))
3376                 goto oom;
3377         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3378         if (!page)
3379                 goto oom;
3380
3381         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3382                 goto oom_free_page;
3383         cgroup_throttle_swaprate(page, GFP_KERNEL);
3384
3385         /*
3386          * The memory barrier inside __SetPageUptodate makes sure that
3387          * preceding stores to the page contents become visible before
3388          * the set_pte_at() write.
3389          */
3390         __SetPageUptodate(page);
3391
3392         entry = mk_pte(page, vma->vm_page_prot);
3393         entry = pte_sw_mkyoung(entry);
3394         if (vma->vm_flags & VM_WRITE)
3395                 entry = pte_mkwrite(pte_mkdirty(entry));
3396
3397         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3398                         &vmf->ptl);
3399         if (!pte_none(*vmf->pte)) {
3400                 update_mmu_cache(vma, vmf->address, vmf->pte);
3401                 goto release;
3402         }
3403
3404         ret = check_stable_address_space(vma->vm_mm);
3405         if (ret)
3406                 goto release;
3407
3408         /* Deliver the page fault to userland, check inside PT lock */
3409         if (userfaultfd_missing(vma)) {
3410                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3411                 put_page(page);
3412                 return handle_userfault(vmf, VM_UFFD_MISSING);
3413         }
3414
3415         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3416         page_add_new_anon_rmap(page, vma, vmf->address, false);
3417         lru_cache_add_active_or_unevictable(page, vma);
3418 setpte:
3419         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3420
3421         /* No need to invalidate - it was non-present before */
3422         update_mmu_cache(vma, vmf->address, vmf->pte);
3423 unlock:
3424         pte_unmap_unlock(vmf->pte, vmf->ptl);
3425         return ret;
3426 release:
3427         put_page(page);
3428         goto unlock;
3429 oom_free_page:
3430         put_page(page);
3431 oom:
3432         return VM_FAULT_OOM;
3433 }
3434
3435 /*
3436  * The mmap_lock must have been held on entry, and may have been
3437  * released depending on flags and vma->vm_ops->fault() return value.
3438  * See filemap_fault() and __lock_page_retry().
3439  */
3440 static vm_fault_t __do_fault(struct vm_fault *vmf)
3441 {
3442         struct vm_area_struct *vma = vmf->vma;
3443         vm_fault_t ret;
3444
3445         /*
3446          * Preallocate pte before we take page_lock because this might lead to
3447          * deadlocks for memcg reclaim which waits for pages under writeback:
3448          *                              lock_page(A)
3449          *                              SetPageWriteback(A)
3450          *                              unlock_page(A)
3451          * lock_page(B)
3452          *                              lock_page(B)
3453          * pte_alloc_pne
3454          *   shrink_page_list
3455          *     wait_on_page_writeback(A)
3456          *                              SetPageWriteback(B)
3457          *                              unlock_page(B)
3458          *                              # flush A, B to clear the writeback
3459          */
3460         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3461                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3462                 if (!vmf->prealloc_pte)
3463                         return VM_FAULT_OOM;
3464                 smp_wmb(); /* See comment in __pte_alloc() */
3465         }
3466
3467         ret = vma->vm_ops->fault(vmf);
3468         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3469                             VM_FAULT_DONE_COW)))
3470                 return ret;
3471
3472         if (unlikely(PageHWPoison(vmf->page))) {
3473                 if (ret & VM_FAULT_LOCKED)
3474                         unlock_page(vmf->page);
3475                 put_page(vmf->page);
3476                 vmf->page = NULL;
3477                 return VM_FAULT_HWPOISON;
3478         }
3479
3480         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3481                 lock_page(vmf->page);
3482         else
3483                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3484
3485         return ret;
3486 }
3487
3488 /*
3489  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3490  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3491  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3492  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3493  */
3494 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3495 {
3496         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3497 }
3498
3499 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3500 {
3501         struct vm_area_struct *vma = vmf->vma;
3502
3503         if (!pmd_none(*vmf->pmd))
3504                 goto map_pte;
3505         if (vmf->prealloc_pte) {
3506                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3507                 if (unlikely(!pmd_none(*vmf->pmd))) {
3508                         spin_unlock(vmf->ptl);
3509                         goto map_pte;
3510                 }
3511
3512                 mm_inc_nr_ptes(vma->vm_mm);
3513                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3514                 spin_unlock(vmf->ptl);
3515                 vmf->prealloc_pte = NULL;
3516         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3517                 return VM_FAULT_OOM;
3518         }
3519 map_pte:
3520         /*
3521          * If a huge pmd materialized under us just retry later.  Use
3522          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3523          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3524          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3525          * running immediately after a huge pmd fault in a different thread of
3526          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3527          * All we have to ensure is that it is a regular pmd that we can walk
3528          * with pte_offset_map() and we can do that through an atomic read in
3529          * C, which is what pmd_trans_unstable() provides.
3530          */
3531         if (pmd_devmap_trans_unstable(vmf->pmd))
3532                 return VM_FAULT_NOPAGE;
3533
3534         /*
3535          * At this point we know that our vmf->pmd points to a page of ptes
3536          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3537          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3538          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3539          * be valid and we will re-check to make sure the vmf->pte isn't
3540          * pte_none() under vmf->ptl protection when we return to
3541          * alloc_set_pte().
3542          */
3543         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3544                         &vmf->ptl);
3545         return 0;
3546 }
3547
3548 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3549 static void deposit_prealloc_pte(struct vm_fault *vmf)
3550 {
3551         struct vm_area_struct *vma = vmf->vma;
3552
3553         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3554         /*
3555          * We are going to consume the prealloc table,
3556          * count that as nr_ptes.
3557          */
3558         mm_inc_nr_ptes(vma->vm_mm);
3559         vmf->prealloc_pte = NULL;
3560 }
3561
3562 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3563 {
3564         struct vm_area_struct *vma = vmf->vma;
3565         bool write = vmf->flags & FAULT_FLAG_WRITE;
3566         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3567         pmd_t entry;
3568         int i;
3569         vm_fault_t ret;
3570
3571         if (!transhuge_vma_suitable(vma, haddr))
3572                 return VM_FAULT_FALLBACK;
3573
3574         ret = VM_FAULT_FALLBACK;
3575         page = compound_head(page);
3576
3577         /*
3578          * Archs like ppc64 need additonal space to store information
3579          * related to pte entry. Use the preallocated table for that.
3580          */
3581         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3582                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3583                 if (!vmf->prealloc_pte)
3584                         return VM_FAULT_OOM;
3585                 smp_wmb(); /* See comment in __pte_alloc() */
3586         }
3587
3588         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3589         if (unlikely(!pmd_none(*vmf->pmd)))
3590                 goto out;
3591
3592         for (i = 0; i < HPAGE_PMD_NR; i++)
3593                 flush_icache_page(vma, page + i);
3594
3595         entry = mk_huge_pmd(page, vma->vm_page_prot);
3596         if (write)
3597                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3598
3599         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3600         page_add_file_rmap(page, true);
3601         /*
3602          * deposit and withdraw with pmd lock held
3603          */
3604         if (arch_needs_pgtable_deposit())
3605                 deposit_prealloc_pte(vmf);
3606
3607         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3608
3609         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3610
3611         /* fault is handled */
3612         ret = 0;
3613         count_vm_event(THP_FILE_MAPPED);
3614 out:
3615         spin_unlock(vmf->ptl);
3616         return ret;
3617 }
3618 #else
3619 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3620 {
3621         BUILD_BUG();
3622         return 0;
3623 }
3624 #endif
3625
3626 /**
3627  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3628  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3629  *
3630  * @vmf: fault environment
3631  * @page: page to map
3632  *
3633  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3634  * return.
3635  *
3636  * Target users are page handler itself and implementations of
3637  * vm_ops->map_pages.
3638  *
3639  * Return: %0 on success, %VM_FAULT_ code in case of error.
3640  */
3641 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3642 {
3643         struct vm_area_struct *vma = vmf->vma;
3644         bool write = vmf->flags & FAULT_FLAG_WRITE;
3645         pte_t entry;
3646         vm_fault_t ret;
3647
3648         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3649                 ret = do_set_pmd(vmf, page);
3650                 if (ret != VM_FAULT_FALLBACK)
3651                         return ret;
3652         }
3653
3654         if (!vmf->pte) {
3655                 ret = pte_alloc_one_map(vmf);
3656                 if (ret)
3657                         return ret;
3658         }
3659
3660         /* Re-check under ptl */
3661         if (unlikely(!pte_none(*vmf->pte))) {
3662                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3663                 return VM_FAULT_NOPAGE;
3664         }
3665
3666         flush_icache_page(vma, page);
3667         entry = mk_pte(page, vma->vm_page_prot);
3668         entry = pte_sw_mkyoung(entry);
3669         if (write)
3670                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3671         /* copy-on-write page */
3672         if (write && !(vma->vm_flags & VM_SHARED)) {
3673                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3674                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3675                 lru_cache_add_active_or_unevictable(page, vma);
3676         } else {
3677                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3678                 page_add_file_rmap(page, false);
3679         }
3680         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3681
3682         /* no need to invalidate: a not-present page won't be cached */
3683         update_mmu_cache(vma, vmf->address, vmf->pte);
3684
3685         return 0;
3686 }
3687
3688
3689 /**
3690  * finish_fault - finish page fault once we have prepared the page to fault
3691  *
3692  * @vmf: structure describing the fault
3693  *
3694  * This function handles all that is needed to finish a page fault once the
3695  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3696  * given page, adds reverse page mapping, handles memcg charges and LRU
3697  * addition.
3698  *
3699  * The function expects the page to be locked and on success it consumes a
3700  * reference of a page being mapped (for the PTE which maps it).
3701  *
3702  * Return: %0 on success, %VM_FAULT_ code in case of error.
3703  */
3704 vm_fault_t finish_fault(struct vm_fault *vmf)
3705 {
3706         struct page *page;
3707         vm_fault_t ret = 0;
3708
3709         /* Did we COW the page? */
3710         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3711             !(vmf->vma->vm_flags & VM_SHARED))
3712                 page = vmf->cow_page;
3713         else
3714                 page = vmf->page;
3715
3716         /*
3717          * check even for read faults because we might have lost our CoWed
3718          * page
3719          */
3720         if (!(vmf->vma->vm_flags & VM_SHARED))
3721                 ret = check_stable_address_space(vmf->vma->vm_mm);
3722         if (!ret)
3723                 ret = alloc_set_pte(vmf, page);
3724         if (vmf->pte)
3725                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3726         return ret;
3727 }
3728
3729 static unsigned long fault_around_bytes __read_mostly =
3730         rounddown_pow_of_two(65536);
3731
3732 #ifdef CONFIG_DEBUG_FS
3733 static int fault_around_bytes_get(void *data, u64 *val)
3734 {
3735         *val = fault_around_bytes;
3736         return 0;
3737 }
3738
3739 /*
3740  * fault_around_bytes must be rounded down to the nearest page order as it's
3741  * what do_fault_around() expects to see.
3742  */
3743 static int fault_around_bytes_set(void *data, u64 val)
3744 {
3745         if (val / PAGE_SIZE > PTRS_PER_PTE)
3746                 return -EINVAL;
3747         if (val > PAGE_SIZE)
3748                 fault_around_bytes = rounddown_pow_of_two(val);
3749         else
3750                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3751         return 0;
3752 }
3753 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3754                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3755
3756 static int __init fault_around_debugfs(void)
3757 {
3758         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3759                                    &fault_around_bytes_fops);
3760         return 0;
3761 }
3762 late_initcall(fault_around_debugfs);
3763 #endif
3764
3765 /*
3766  * do_fault_around() tries to map few pages around the fault address. The hope
3767  * is that the pages will be needed soon and this will lower the number of
3768  * faults to handle.
3769  *
3770  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3771  * not ready to be mapped: not up-to-date, locked, etc.
3772  *
3773  * This function is called with the page table lock taken. In the split ptlock
3774  * case the page table lock only protects only those entries which belong to
3775  * the page table corresponding to the fault address.
3776  *
3777  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3778  * only once.
3779  *
3780  * fault_around_bytes defines how many bytes we'll try to map.
3781  * do_fault_around() expects it to be set to a power of two less than or equal
3782  * to PTRS_PER_PTE.
3783  *
3784  * The virtual address of the area that we map is naturally aligned to
3785  * fault_around_bytes rounded down to the machine page size
3786  * (and therefore to page order).  This way it's easier to guarantee
3787  * that we don't cross page table boundaries.
3788  */
3789 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3790 {
3791         unsigned long address = vmf->address, nr_pages, mask;
3792         pgoff_t start_pgoff = vmf->pgoff;
3793         pgoff_t end_pgoff;
3794         int off;
3795         vm_fault_t ret = 0;
3796
3797         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3798         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3799
3800         vmf->address = max(address & mask, vmf->vma->vm_start);
3801         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3802         start_pgoff -= off;
3803
3804         /*
3805          *  end_pgoff is either the end of the page table, the end of
3806          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3807          */
3808         end_pgoff = start_pgoff -
3809                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3810                 PTRS_PER_PTE - 1;
3811         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3812                         start_pgoff + nr_pages - 1);
3813
3814         if (pmd_none(*vmf->pmd)) {
3815                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3816                 if (!vmf->prealloc_pte)
3817                         goto out;
3818                 smp_wmb(); /* See comment in __pte_alloc() */
3819         }
3820
3821         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3822
3823         /* Huge page is mapped? Page fault is solved */
3824         if (pmd_trans_huge(*vmf->pmd)) {
3825                 ret = VM_FAULT_NOPAGE;
3826                 goto out;
3827         }
3828
3829         /* ->map_pages() haven't done anything useful. Cold page cache? */
3830         if (!vmf->pte)
3831                 goto out;
3832
3833         /* check if the page fault is solved */
3834         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3835         if (!pte_none(*vmf->pte))
3836                 ret = VM_FAULT_NOPAGE;
3837         pte_unmap_unlock(vmf->pte, vmf->ptl);
3838 out:
3839         vmf->address = address;
3840         vmf->pte = NULL;
3841         return ret;
3842 }
3843
3844 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3845 {
3846         struct vm_area_struct *vma = vmf->vma;
3847         vm_fault_t ret = 0;
3848
3849         /*
3850          * Let's call ->map_pages() first and use ->fault() as fallback
3851          * if page by the offset is not ready to be mapped (cold cache or
3852          * something).
3853          */
3854         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3855                 ret = do_fault_around(vmf);
3856                 if (ret)
3857                         return ret;
3858         }
3859
3860         ret = __do_fault(vmf);
3861         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3862                 return ret;
3863
3864         ret |= finish_fault(vmf);
3865         unlock_page(vmf->page);
3866         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3867                 put_page(vmf->page);
3868         return ret;
3869 }
3870
3871 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3872 {
3873         struct vm_area_struct *vma = vmf->vma;
3874         vm_fault_t ret;
3875
3876         if (unlikely(anon_vma_prepare(vma)))
3877                 return VM_FAULT_OOM;
3878
3879         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3880         if (!vmf->cow_page)
3881                 return VM_FAULT_OOM;
3882
3883         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3884                 put_page(vmf->cow_page);
3885                 return VM_FAULT_OOM;
3886         }
3887         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3888
3889         ret = __do_fault(vmf);
3890         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3891                 goto uncharge_out;
3892         if (ret & VM_FAULT_DONE_COW)
3893                 return ret;
3894
3895         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3896         __SetPageUptodate(vmf->cow_page);
3897
3898         ret |= finish_fault(vmf);
3899         unlock_page(vmf->page);
3900         put_page(vmf->page);
3901         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3902                 goto uncharge_out;
3903         return ret;
3904 uncharge_out:
3905         put_page(vmf->cow_page);
3906         return ret;
3907 }
3908
3909 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3910 {
3911         struct vm_area_struct *vma = vmf->vma;
3912         vm_fault_t ret, tmp;
3913
3914         ret = __do_fault(vmf);
3915         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3916                 return ret;
3917
3918         /*
3919          * Check if the backing address space wants to know that the page is
3920          * about to become writable
3921          */
3922         if (vma->vm_ops->page_mkwrite) {
3923                 unlock_page(vmf->page);
3924                 tmp = do_page_mkwrite(vmf);
3925                 if (unlikely(!tmp ||
3926                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3927                         put_page(vmf->page);
3928                         return tmp;
3929                 }
3930         }
3931
3932         ret |= finish_fault(vmf);
3933         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3934                                         VM_FAULT_RETRY))) {
3935                 unlock_page(vmf->page);
3936                 put_page(vmf->page);
3937                 return ret;
3938         }
3939
3940         ret |= fault_dirty_shared_page(vmf);
3941         return ret;
3942 }
3943
3944 /*
3945  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3946  * but allow concurrent faults).
3947  * The mmap_lock may have been released depending on flags and our
3948  * return value.  See filemap_fault() and __lock_page_or_retry().
3949  * If mmap_lock is released, vma may become invalid (for example
3950  * by other thread calling munmap()).
3951  */
3952 static vm_fault_t do_fault(struct vm_fault *vmf)
3953 {
3954         struct vm_area_struct *vma = vmf->vma;
3955         struct mm_struct *vm_mm = vma->vm_mm;
3956         vm_fault_t ret;
3957
3958         /*
3959          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3960          */
3961         if (!vma->vm_ops->fault) {
3962                 /*
3963                  * If we find a migration pmd entry or a none pmd entry, which
3964                  * should never happen, return SIGBUS
3965                  */
3966                 if (unlikely(!pmd_present(*vmf->pmd)))
3967                         ret = VM_FAULT_SIGBUS;
3968                 else {
3969                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3970                                                        vmf->pmd,
3971                                                        vmf->address,
3972                                                        &vmf->ptl);
3973                         /*
3974                          * Make sure this is not a temporary clearing of pte
3975                          * by holding ptl and checking again. A R/M/W update
3976                          * of pte involves: take ptl, clearing the pte so that
3977                          * we don't have concurrent modification by hardware
3978                          * followed by an update.
3979                          */
3980                         if (unlikely(pte_none(*vmf->pte)))
3981                                 ret = VM_FAULT_SIGBUS;
3982                         else
3983                                 ret = VM_FAULT_NOPAGE;
3984
3985                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3986                 }
3987         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3988                 ret = do_read_fault(vmf);
3989         else if (!(vma->vm_flags & VM_SHARED))
3990                 ret = do_cow_fault(vmf);
3991         else
3992                 ret = do_shared_fault(vmf);
3993
3994         /* preallocated pagetable is unused: free it */
3995         if (vmf->prealloc_pte) {
3996                 pte_free(vm_mm, vmf->prealloc_pte);
3997                 vmf->prealloc_pte = NULL;
3998         }
3999         return ret;
4000 }
4001
4002 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4003                                 unsigned long addr, int page_nid,
4004                                 int *flags)
4005 {
4006         get_page(page);
4007
4008         count_vm_numa_event(NUMA_HINT_FAULTS);
4009         if (page_nid == numa_node_id()) {
4010                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4011                 *flags |= TNF_FAULT_LOCAL;
4012         }
4013
4014         return mpol_misplaced(page, vma, addr);
4015 }
4016
4017 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4018 {
4019         struct vm_area_struct *vma = vmf->vma;
4020         struct page *page = NULL;
4021         int page_nid = NUMA_NO_NODE;
4022         int last_cpupid;
4023         int target_nid;
4024         bool migrated = false;
4025         pte_t pte, old_pte;
4026         bool was_writable = pte_savedwrite(vmf->orig_pte);
4027         int flags = 0;
4028
4029         /*
4030          * The "pte" at this point cannot be used safely without
4031          * validation through pte_unmap_same(). It's of NUMA type but
4032          * the pfn may be screwed if the read is non atomic.
4033          */
4034         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4035         spin_lock(vmf->ptl);
4036         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4037                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4038                 goto out;
4039         }
4040
4041         /*
4042          * Make it present again, Depending on how arch implementes non
4043          * accessible ptes, some can allow access by kernel mode.
4044          */
4045         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4046         pte = pte_modify(old_pte, vma->vm_page_prot);
4047         pte = pte_mkyoung(pte);
4048         if (was_writable)
4049                 pte = pte_mkwrite(pte);
4050         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4051         update_mmu_cache(vma, vmf->address, vmf->pte);
4052
4053         page = vm_normal_page(vma, vmf->address, pte);
4054         if (!page) {
4055                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4056                 return 0;
4057         }
4058
4059         /* TODO: handle PTE-mapped THP */
4060         if (PageCompound(page)) {
4061                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4062                 return 0;
4063         }
4064
4065         /*
4066          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4067          * much anyway since they can be in shared cache state. This misses
4068          * the case where a mapping is writable but the process never writes
4069          * to it but pte_write gets cleared during protection updates and
4070          * pte_dirty has unpredictable behaviour between PTE scan updates,
4071          * background writeback, dirty balancing and application behaviour.
4072          */
4073         if (!pte_write(pte))
4074                 flags |= TNF_NO_GROUP;
4075
4076         /*
4077          * Flag if the page is shared between multiple address spaces. This
4078          * is later used when determining whether to group tasks together
4079          */
4080         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4081                 flags |= TNF_SHARED;
4082
4083         last_cpupid = page_cpupid_last(page);
4084         page_nid = page_to_nid(page);
4085         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4086                         &flags);
4087         pte_unmap_unlock(vmf->pte, vmf->ptl);
4088         if (target_nid == NUMA_NO_NODE) {
4089                 put_page(page);
4090                 goto out;
4091         }
4092
4093         /* Migrate to the requested node */
4094         migrated = migrate_misplaced_page(page, vma, target_nid);
4095         if (migrated) {
4096                 page_nid = target_nid;
4097                 flags |= TNF_MIGRATED;
4098         } else
4099                 flags |= TNF_MIGRATE_FAIL;
4100
4101 out:
4102         if (page_nid != NUMA_NO_NODE)
4103                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4104         return 0;
4105 }
4106
4107 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4108 {
4109         if (vma_is_anonymous(vmf->vma))
4110                 return do_huge_pmd_anonymous_page(vmf);
4111         if (vmf->vma->vm_ops->huge_fault)
4112                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4113         return VM_FAULT_FALLBACK;
4114 }
4115
4116 /* `inline' is required to avoid gcc 4.1.2 build error */
4117 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4118 {
4119         if (vma_is_anonymous(vmf->vma)) {
4120                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4121                         return handle_userfault(vmf, VM_UFFD_WP);
4122                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4123         }
4124         if (vmf->vma->vm_ops->huge_fault) {
4125                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4126
4127                 if (!(ret & VM_FAULT_FALLBACK))
4128                         return ret;
4129         }
4130
4131         /* COW or write-notify handled on pte level: split pmd. */
4132         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4133
4134         return VM_FAULT_FALLBACK;
4135 }
4136
4137 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4138 {
4139 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4140         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4141         /* No support for anonymous transparent PUD pages yet */
4142         if (vma_is_anonymous(vmf->vma))
4143                 goto split;
4144         if (vmf->vma->vm_ops->huge_fault) {
4145                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4146
4147                 if (!(ret & VM_FAULT_FALLBACK))
4148                         return ret;
4149         }
4150 split:
4151         /* COW or write-notify not handled on PUD level: split pud.*/
4152         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4153 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4154         return VM_FAULT_FALLBACK;
4155 }
4156
4157 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4158 {
4159 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4160         /* No support for anonymous transparent PUD pages yet */
4161         if (vma_is_anonymous(vmf->vma))
4162                 return VM_FAULT_FALLBACK;
4163         if (vmf->vma->vm_ops->huge_fault)
4164                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4165 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4166         return VM_FAULT_FALLBACK;
4167 }
4168
4169 /*
4170  * These routines also need to handle stuff like marking pages dirty
4171  * and/or accessed for architectures that don't do it in hardware (most
4172  * RISC architectures).  The early dirtying is also good on the i386.
4173  *
4174  * There is also a hook called "update_mmu_cache()" that architectures
4175  * with external mmu caches can use to update those (ie the Sparc or
4176  * PowerPC hashed page tables that act as extended TLBs).
4177  *
4178  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4179  * concurrent faults).
4180  *
4181  * The mmap_lock may have been released depending on flags and our return value.
4182  * See filemap_fault() and __lock_page_or_retry().
4183  */
4184 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4185 {
4186         pte_t entry;
4187
4188         if (unlikely(pmd_none(*vmf->pmd))) {
4189                 /*
4190                  * Leave __pte_alloc() until later: because vm_ops->fault may
4191                  * want to allocate huge page, and if we expose page table
4192                  * for an instant, it will be difficult to retract from
4193                  * concurrent faults and from rmap lookups.
4194                  */
4195                 vmf->pte = NULL;
4196         } else {
4197                 /* See comment in pte_alloc_one_map() */
4198                 if (pmd_devmap_trans_unstable(vmf->pmd))
4199                         return 0;
4200                 /*
4201                  * A regular pmd is established and it can't morph into a huge
4202                  * pmd from under us anymore at this point because we hold the
4203                  * mmap_lock read mode and khugepaged takes it in write mode.
4204                  * So now it's safe to run pte_offset_map().
4205                  */
4206                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4207                 vmf->orig_pte = *vmf->pte;
4208
4209                 /*
4210                  * some architectures can have larger ptes than wordsize,
4211                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4212                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4213                  * accesses.  The code below just needs a consistent view
4214                  * for the ifs and we later double check anyway with the
4215                  * ptl lock held. So here a barrier will do.
4216                  */
4217                 barrier();
4218                 if (pte_none(vmf->orig_pte)) {
4219                         pte_unmap(vmf->pte);
4220                         vmf->pte = NULL;
4221                 }
4222         }
4223
4224         if (!vmf->pte) {
4225                 if (vma_is_anonymous(vmf->vma))
4226                         return do_anonymous_page(vmf);
4227                 else
4228                         return do_fault(vmf);
4229         }
4230
4231         if (!pte_present(vmf->orig_pte))
4232                 return do_swap_page(vmf);
4233
4234         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4235                 return do_numa_page(vmf);
4236
4237         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4238         spin_lock(vmf->ptl);
4239         entry = vmf->orig_pte;
4240         if (unlikely(!pte_same(*vmf->pte, entry))) {
4241                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4242                 goto unlock;
4243         }
4244         if (vmf->flags & FAULT_FLAG_WRITE) {
4245                 if (!pte_write(entry))
4246                         return do_wp_page(vmf);
4247                 entry = pte_mkdirty(entry);
4248         }
4249         entry = pte_mkyoung(entry);
4250         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4251                                 vmf->flags & FAULT_FLAG_WRITE)) {
4252                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4253         } else {
4254                 /*
4255                  * This is needed only for protection faults but the arch code
4256                  * is not yet telling us if this is a protection fault or not.
4257                  * This still avoids useless tlb flushes for .text page faults
4258                  * with threads.
4259                  */
4260                 if (vmf->flags & FAULT_FLAG_WRITE)
4261                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4262         }
4263 unlock:
4264         pte_unmap_unlock(vmf->pte, vmf->ptl);
4265         return 0;
4266 }
4267
4268 /*
4269  * By the time we get here, we already hold the mm semaphore
4270  *
4271  * The mmap_lock may have been released depending on flags and our
4272  * return value.  See filemap_fault() and __lock_page_or_retry().
4273  */
4274 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4275                 unsigned long address, unsigned int flags)
4276 {
4277         struct vm_fault vmf = {
4278                 .vma = vma,
4279                 .address = address & PAGE_MASK,
4280                 .flags = flags,
4281                 .pgoff = linear_page_index(vma, address),
4282                 .gfp_mask = __get_fault_gfp_mask(vma),
4283         };
4284         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4285         struct mm_struct *mm = vma->vm_mm;
4286         pgd_t *pgd;
4287         p4d_t *p4d;
4288         vm_fault_t ret;
4289
4290         pgd = pgd_offset(mm, address);
4291         p4d = p4d_alloc(mm, pgd, address);
4292         if (!p4d)
4293                 return VM_FAULT_OOM;
4294
4295         vmf.pud = pud_alloc(mm, p4d, address);
4296         if (!vmf.pud)
4297                 return VM_FAULT_OOM;
4298 retry_pud:
4299         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4300                 ret = create_huge_pud(&vmf);
4301                 if (!(ret & VM_FAULT_FALLBACK))
4302                         return ret;
4303         } else {
4304                 pud_t orig_pud = *vmf.pud;
4305
4306                 barrier();
4307                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4308
4309                         /* NUMA case for anonymous PUDs would go here */
4310
4311                         if (dirty && !pud_write(orig_pud)) {
4312                                 ret = wp_huge_pud(&vmf, orig_pud);
4313                                 if (!(ret & VM_FAULT_FALLBACK))
4314                                         return ret;
4315                         } else {
4316                                 huge_pud_set_accessed(&vmf, orig_pud);
4317                                 return 0;
4318                         }
4319                 }
4320         }
4321
4322         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4323         if (!vmf.pmd)
4324                 return VM_FAULT_OOM;
4325
4326         /* Huge pud page fault raced with pmd_alloc? */
4327         if (pud_trans_unstable(vmf.pud))
4328                 goto retry_pud;
4329
4330         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4331                 ret = create_huge_pmd(&vmf);
4332                 if (!(ret & VM_FAULT_FALLBACK))
4333                         return ret;
4334         } else {
4335                 pmd_t orig_pmd = *vmf.pmd;
4336
4337                 barrier();
4338                 if (unlikely(is_swap_pmd(orig_pmd))) {
4339                         VM_BUG_ON(thp_migration_supported() &&
4340                                           !is_pmd_migration_entry(orig_pmd));
4341                         if (is_pmd_migration_entry(orig_pmd))
4342                                 pmd_migration_entry_wait(mm, vmf.pmd);
4343                         return 0;
4344                 }
4345                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4346                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4347                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4348
4349                         if (dirty && !pmd_write(orig_pmd)) {
4350                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4351                                 if (!(ret & VM_FAULT_FALLBACK))
4352                                         return ret;
4353                         } else {
4354                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4355                                 return 0;
4356                         }
4357                 }
4358         }
4359
4360         return handle_pte_fault(&vmf);
4361 }
4362
4363 /*
4364  * By the time we get here, we already hold the mm semaphore
4365  *
4366  * The mmap_lock may have been released depending on flags and our
4367  * return value.  See filemap_fault() and __lock_page_or_retry().
4368  */
4369 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4370                 unsigned int flags)
4371 {
4372         vm_fault_t ret;
4373
4374         __set_current_state(TASK_RUNNING);
4375
4376         count_vm_event(PGFAULT);
4377         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4378
4379         /* do counter updates before entering really critical section. */
4380         check_sync_rss_stat(current);
4381
4382         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4383                                             flags & FAULT_FLAG_INSTRUCTION,
4384                                             flags & FAULT_FLAG_REMOTE))
4385                 return VM_FAULT_SIGSEGV;
4386
4387         /*
4388          * Enable the memcg OOM handling for faults triggered in user
4389          * space.  Kernel faults are handled more gracefully.
4390          */
4391         if (flags & FAULT_FLAG_USER)
4392                 mem_cgroup_enter_user_fault();
4393
4394         if (unlikely(is_vm_hugetlb_page(vma)))
4395                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4396         else
4397                 ret = __handle_mm_fault(vma, address, flags);
4398
4399         if (flags & FAULT_FLAG_USER) {
4400                 mem_cgroup_exit_user_fault();
4401                 /*
4402                  * The task may have entered a memcg OOM situation but
4403                  * if the allocation error was handled gracefully (no
4404                  * VM_FAULT_OOM), there is no need to kill anything.
4405                  * Just clean up the OOM state peacefully.
4406                  */
4407                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4408                         mem_cgroup_oom_synchronize(false);
4409         }
4410
4411         return ret;
4412 }
4413 EXPORT_SYMBOL_GPL(handle_mm_fault);
4414
4415 #ifndef __PAGETABLE_P4D_FOLDED
4416 /*
4417  * Allocate p4d page table.
4418  * We've already handled the fast-path in-line.
4419  */
4420 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4421 {
4422         p4d_t *new = p4d_alloc_one(mm, address);
4423         if (!new)
4424                 return -ENOMEM;
4425
4426         smp_wmb(); /* See comment in __pte_alloc */
4427
4428         spin_lock(&mm->page_table_lock);
4429         if (pgd_present(*pgd))          /* Another has populated it */
4430                 p4d_free(mm, new);
4431         else
4432                 pgd_populate(mm, pgd, new);
4433         spin_unlock(&mm->page_table_lock);
4434         return 0;
4435 }
4436 #endif /* __PAGETABLE_P4D_FOLDED */
4437
4438 #ifndef __PAGETABLE_PUD_FOLDED
4439 /*
4440  * Allocate page upper directory.
4441  * We've already handled the fast-path in-line.
4442  */
4443 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4444 {
4445         pud_t *new = pud_alloc_one(mm, address);
4446         if (!new)
4447                 return -ENOMEM;
4448
4449         smp_wmb(); /* See comment in __pte_alloc */
4450
4451         spin_lock(&mm->page_table_lock);
4452         if (!p4d_present(*p4d)) {
4453                 mm_inc_nr_puds(mm);
4454                 p4d_populate(mm, p4d, new);
4455         } else  /* Another has populated it */
4456                 pud_free(mm, new);
4457         spin_unlock(&mm->page_table_lock);
4458         return 0;
4459 }
4460 #endif /* __PAGETABLE_PUD_FOLDED */
4461
4462 #ifndef __PAGETABLE_PMD_FOLDED
4463 /*
4464  * Allocate page middle directory.
4465  * We've already handled the fast-path in-line.
4466  */
4467 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4468 {
4469         spinlock_t *ptl;
4470         pmd_t *new = pmd_alloc_one(mm, address);
4471         if (!new)
4472                 return -ENOMEM;
4473
4474         smp_wmb(); /* See comment in __pte_alloc */
4475
4476         ptl = pud_lock(mm, pud);
4477         if (!pud_present(*pud)) {
4478                 mm_inc_nr_pmds(mm);
4479                 pud_populate(mm, pud, new);
4480         } else  /* Another has populated it */
4481                 pmd_free(mm, new);
4482         spin_unlock(ptl);
4483         return 0;
4484 }
4485 #endif /* __PAGETABLE_PMD_FOLDED */
4486
4487 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4488                             struct mmu_notifier_range *range,
4489                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4490 {
4491         pgd_t *pgd;
4492         p4d_t *p4d;
4493         pud_t *pud;
4494         pmd_t *pmd;
4495         pte_t *ptep;
4496
4497         pgd = pgd_offset(mm, address);
4498         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4499                 goto out;
4500
4501         p4d = p4d_offset(pgd, address);
4502         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4503                 goto out;
4504
4505         pud = pud_offset(p4d, address);
4506         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4507                 goto out;
4508
4509         pmd = pmd_offset(pud, address);
4510         VM_BUG_ON(pmd_trans_huge(*pmd));
4511
4512         if (pmd_huge(*pmd)) {
4513                 if (!pmdpp)
4514                         goto out;
4515
4516                 if (range) {
4517                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4518                                                 NULL, mm, address & PMD_MASK,
4519                                                 (address & PMD_MASK) + PMD_SIZE);
4520                         mmu_notifier_invalidate_range_start(range);
4521                 }
4522                 *ptlp = pmd_lock(mm, pmd);
4523                 if (pmd_huge(*pmd)) {
4524                         *pmdpp = pmd;
4525                         return 0;
4526                 }
4527                 spin_unlock(*ptlp);
4528                 if (range)
4529                         mmu_notifier_invalidate_range_end(range);
4530         }
4531
4532         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4533                 goto out;
4534
4535         if (range) {
4536                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4537                                         address & PAGE_MASK,
4538                                         (address & PAGE_MASK) + PAGE_SIZE);
4539                 mmu_notifier_invalidate_range_start(range);
4540         }
4541         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4542         if (!pte_present(*ptep))
4543                 goto unlock;
4544         *ptepp = ptep;
4545         return 0;
4546 unlock:
4547         pte_unmap_unlock(ptep, *ptlp);
4548         if (range)
4549                 mmu_notifier_invalidate_range_end(range);
4550 out:
4551         return -EINVAL;
4552 }
4553
4554 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4555                              pte_t **ptepp, spinlock_t **ptlp)
4556 {
4557         int res;
4558
4559         /* (void) is needed to make gcc happy */
4560         (void) __cond_lock(*ptlp,
4561                            !(res = __follow_pte_pmd(mm, address, NULL,
4562                                                     ptepp, NULL, ptlp)));
4563         return res;
4564 }
4565
4566 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4567                    struct mmu_notifier_range *range,
4568                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4569 {
4570         int res;
4571
4572         /* (void) is needed to make gcc happy */
4573         (void) __cond_lock(*ptlp,
4574                            !(res = __follow_pte_pmd(mm, address, range,
4575                                                     ptepp, pmdpp, ptlp)));
4576         return res;
4577 }
4578 EXPORT_SYMBOL(follow_pte_pmd);
4579
4580 /**
4581  * follow_pfn - look up PFN at a user virtual address
4582  * @vma: memory mapping
4583  * @address: user virtual address
4584  * @pfn: location to store found PFN
4585  *
4586  * Only IO mappings and raw PFN mappings are allowed.
4587  *
4588  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4589  */
4590 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4591         unsigned long *pfn)
4592 {
4593         int ret = -EINVAL;
4594         spinlock_t *ptl;
4595         pte_t *ptep;
4596
4597         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4598                 return ret;
4599
4600         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4601         if (ret)
4602                 return ret;
4603         *pfn = pte_pfn(*ptep);
4604         pte_unmap_unlock(ptep, ptl);
4605         return 0;
4606 }
4607 EXPORT_SYMBOL(follow_pfn);
4608
4609 #ifdef CONFIG_HAVE_IOREMAP_PROT
4610 int follow_phys(struct vm_area_struct *vma,
4611                 unsigned long address, unsigned int flags,
4612                 unsigned long *prot, resource_size_t *phys)
4613 {
4614         int ret = -EINVAL;
4615         pte_t *ptep, pte;
4616         spinlock_t *ptl;
4617
4618         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4619                 goto out;
4620
4621         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4622                 goto out;
4623         pte = *ptep;
4624
4625         if ((flags & FOLL_WRITE) && !pte_write(pte))
4626                 goto unlock;
4627
4628         *prot = pgprot_val(pte_pgprot(pte));
4629         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4630
4631         ret = 0;
4632 unlock:
4633         pte_unmap_unlock(ptep, ptl);
4634 out:
4635         return ret;
4636 }
4637
4638 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4639                         void *buf, int len, int write)
4640 {
4641         resource_size_t phys_addr;
4642         unsigned long prot = 0;
4643         void __iomem *maddr;
4644         int offset = addr & (PAGE_SIZE-1);
4645
4646         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4647                 return -EINVAL;
4648
4649         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4650         if (!maddr)
4651                 return -ENOMEM;
4652
4653         if (write)
4654                 memcpy_toio(maddr + offset, buf, len);
4655         else
4656                 memcpy_fromio(buf, maddr + offset, len);
4657         iounmap(maddr);
4658
4659         return len;
4660 }
4661 EXPORT_SYMBOL_GPL(generic_access_phys);
4662 #endif
4663
4664 /*
4665  * Access another process' address space as given in mm.  If non-NULL, use the
4666  * given task for page fault accounting.
4667  */
4668 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4669                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4670 {
4671         struct vm_area_struct *vma;
4672         void *old_buf = buf;
4673         int write = gup_flags & FOLL_WRITE;
4674
4675         if (mmap_read_lock_killable(mm))
4676                 return 0;
4677
4678         /* ignore errors, just check how much was successfully transferred */
4679         while (len) {
4680                 int bytes, ret, offset;
4681                 void *maddr;
4682                 struct page *page = NULL;
4683
4684                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4685                                 gup_flags, &page, &vma, NULL);
4686                 if (ret <= 0) {
4687 #ifndef CONFIG_HAVE_IOREMAP_PROT
4688                         break;
4689 #else
4690                         /*
4691                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4692                          * we can access using slightly different code.
4693                          */
4694                         vma = find_vma(mm, addr);
4695                         if (!vma || vma->vm_start > addr)
4696                                 break;
4697                         if (vma->vm_ops && vma->vm_ops->access)
4698                                 ret = vma->vm_ops->access(vma, addr, buf,
4699                                                           len, write);
4700                         if (ret <= 0)
4701                                 break;
4702                         bytes = ret;
4703 #endif
4704                 } else {
4705                         bytes = len;
4706                         offset = addr & (PAGE_SIZE-1);
4707                         if (bytes > PAGE_SIZE-offset)
4708                                 bytes = PAGE_SIZE-offset;
4709
4710                         maddr = kmap(page);
4711                         if (write) {
4712                                 copy_to_user_page(vma, page, addr,
4713                                                   maddr + offset, buf, bytes);
4714                                 set_page_dirty_lock(page);
4715                         } else {
4716                                 copy_from_user_page(vma, page, addr,
4717                                                     buf, maddr + offset, bytes);
4718                         }
4719                         kunmap(page);
4720                         put_page(page);
4721                 }
4722                 len -= bytes;
4723                 buf += bytes;
4724                 addr += bytes;
4725         }
4726         mmap_read_unlock(mm);
4727
4728         return buf - old_buf;
4729 }
4730
4731 /**
4732  * access_remote_vm - access another process' address space
4733  * @mm:         the mm_struct of the target address space
4734  * @addr:       start address to access
4735  * @buf:        source or destination buffer
4736  * @len:        number of bytes to transfer
4737  * @gup_flags:  flags modifying lookup behaviour
4738  *
4739  * The caller must hold a reference on @mm.
4740  *
4741  * Return: number of bytes copied from source to destination.
4742  */
4743 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4744                 void *buf, int len, unsigned int gup_flags)
4745 {
4746         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4747 }
4748
4749 /*
4750  * Access another process' address space.
4751  * Source/target buffer must be kernel space,
4752  * Do not walk the page table directly, use get_user_pages
4753  */
4754 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4755                 void *buf, int len, unsigned int gup_flags)
4756 {
4757         struct mm_struct *mm;
4758         int ret;
4759
4760         mm = get_task_mm(tsk);
4761         if (!mm)
4762                 return 0;
4763
4764         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4765
4766         mmput(mm);
4767
4768         return ret;
4769 }
4770 EXPORT_SYMBOL_GPL(access_process_vm);
4771
4772 /*
4773  * Print the name of a VMA.
4774  */
4775 void print_vma_addr(char *prefix, unsigned long ip)
4776 {
4777         struct mm_struct *mm = current->mm;
4778         struct vm_area_struct *vma;
4779
4780         /*
4781          * we might be running from an atomic context so we cannot sleep
4782          */
4783         if (!mmap_read_trylock(mm))
4784                 return;
4785
4786         vma = find_vma(mm, ip);
4787         if (vma && vma->vm_file) {
4788                 struct file *f = vma->vm_file;
4789                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4790                 if (buf) {
4791                         char *p;
4792
4793                         p = file_path(f, buf, PAGE_SIZE);
4794                         if (IS_ERR(p))
4795                                 p = "?";
4796                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4797                                         vma->vm_start,
4798                                         vma->vm_end - vma->vm_start);
4799                         free_page((unsigned long)buf);
4800                 }
4801         }
4802         mmap_read_unlock(mm);
4803 }
4804
4805 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4806 void __might_fault(const char *file, int line)
4807 {
4808         /*
4809          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4810          * holding the mmap_lock, this is safe because kernel memory doesn't
4811          * get paged out, therefore we'll never actually fault, and the
4812          * below annotations will generate false positives.
4813          */
4814         if (uaccess_kernel())
4815                 return;
4816         if (pagefault_disabled())
4817                 return;
4818         __might_sleep(file, line, 0);
4819 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4820         if (current->mm)
4821                 might_lock_read(&current->mm->mmap_lock);
4822 #endif
4823 }
4824 EXPORT_SYMBOL(__might_fault);
4825 #endif
4826
4827 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4828 /*
4829  * Process all subpages of the specified huge page with the specified
4830  * operation.  The target subpage will be processed last to keep its
4831  * cache lines hot.
4832  */
4833 static inline void process_huge_page(
4834         unsigned long addr_hint, unsigned int pages_per_huge_page,
4835         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4836         void *arg)
4837 {
4838         int i, n, base, l;
4839         unsigned long addr = addr_hint &
4840                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4841
4842         /* Process target subpage last to keep its cache lines hot */
4843         might_sleep();
4844         n = (addr_hint - addr) / PAGE_SIZE;
4845         if (2 * n <= pages_per_huge_page) {
4846                 /* If target subpage in first half of huge page */
4847                 base = 0;
4848                 l = n;
4849                 /* Process subpages at the end of huge page */
4850                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4851                         cond_resched();
4852                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4853                 }
4854         } else {
4855                 /* If target subpage in second half of huge page */
4856                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4857                 l = pages_per_huge_page - n;
4858                 /* Process subpages at the begin of huge page */
4859                 for (i = 0; i < base; i++) {
4860                         cond_resched();
4861                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4862                 }
4863         }
4864         /*
4865          * Process remaining subpages in left-right-left-right pattern
4866          * towards the target subpage
4867          */
4868         for (i = 0; i < l; i++) {
4869                 int left_idx = base + i;
4870                 int right_idx = base + 2 * l - 1 - i;
4871
4872                 cond_resched();
4873                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4874                 cond_resched();
4875                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4876         }
4877 }
4878
4879 static void clear_gigantic_page(struct page *page,
4880                                 unsigned long addr,
4881                                 unsigned int pages_per_huge_page)
4882 {
4883         int i;
4884         struct page *p = page;
4885
4886         might_sleep();
4887         for (i = 0; i < pages_per_huge_page;
4888              i++, p = mem_map_next(p, page, i)) {
4889                 cond_resched();
4890                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4891         }
4892 }
4893
4894 static void clear_subpage(unsigned long addr, int idx, void *arg)
4895 {
4896         struct page *page = arg;
4897
4898         clear_user_highpage(page + idx, addr);
4899 }
4900
4901 void clear_huge_page(struct page *page,
4902                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4903 {
4904         unsigned long addr = addr_hint &
4905                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4906
4907         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4908                 clear_gigantic_page(page, addr, pages_per_huge_page);
4909                 return;
4910         }
4911
4912         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4913 }
4914
4915 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4916                                     unsigned long addr,
4917                                     struct vm_area_struct *vma,
4918                                     unsigned int pages_per_huge_page)
4919 {
4920         int i;
4921         struct page *dst_base = dst;
4922         struct page *src_base = src;
4923
4924         for (i = 0; i < pages_per_huge_page; ) {
4925                 cond_resched();
4926                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4927
4928                 i++;
4929                 dst = mem_map_next(dst, dst_base, i);
4930                 src = mem_map_next(src, src_base, i);
4931         }
4932 }
4933
4934 struct copy_subpage_arg {
4935         struct page *dst;
4936         struct page *src;
4937         struct vm_area_struct *vma;
4938 };
4939
4940 static void copy_subpage(unsigned long addr, int idx, void *arg)
4941 {
4942         struct copy_subpage_arg *copy_arg = arg;
4943
4944         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4945                            addr, copy_arg->vma);
4946 }
4947
4948 void copy_user_huge_page(struct page *dst, struct page *src,
4949                          unsigned long addr_hint, struct vm_area_struct *vma,
4950                          unsigned int pages_per_huge_page)
4951 {
4952         unsigned long addr = addr_hint &
4953                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4954         struct copy_subpage_arg arg = {
4955                 .dst = dst,
4956                 .src = src,
4957                 .vma = vma,
4958         };
4959
4960         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4961                 copy_user_gigantic_page(dst, src, addr, vma,
4962                                         pages_per_huge_page);
4963                 return;
4964         }
4965
4966         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4967 }
4968
4969 long copy_huge_page_from_user(struct page *dst_page,
4970                                 const void __user *usr_src,
4971                                 unsigned int pages_per_huge_page,
4972                                 bool allow_pagefault)
4973 {
4974         void *src = (void *)usr_src;
4975         void *page_kaddr;
4976         unsigned long i, rc = 0;
4977         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4978
4979         for (i = 0; i < pages_per_huge_page; i++) {
4980                 if (allow_pagefault)
4981                         page_kaddr = kmap(dst_page + i);
4982                 else
4983                         page_kaddr = kmap_atomic(dst_page + i);
4984                 rc = copy_from_user(page_kaddr,
4985                                 (const void __user *)(src + i * PAGE_SIZE),
4986                                 PAGE_SIZE);
4987                 if (allow_pagefault)
4988                         kunmap(dst_page + i);
4989                 else
4990                         kunmap_atomic(page_kaddr);
4991
4992                 ret_val -= (PAGE_SIZE - rc);
4993                 if (rc)
4994                         break;
4995
4996                 cond_resched();
4997         }
4998         return ret_val;
4999 }
5000 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5001
5002 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5003
5004 static struct kmem_cache *page_ptl_cachep;
5005
5006 void __init ptlock_cache_init(void)
5007 {
5008         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5009                         SLAB_PANIC, NULL);
5010 }
5011
5012 bool ptlock_alloc(struct page *page)
5013 {
5014         spinlock_t *ptl;
5015
5016         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5017         if (!ptl)
5018                 return false;
5019         page->ptl = ptl;
5020         return true;
5021 }
5022
5023 void ptlock_free(struct page *page)
5024 {
5025         kmem_cache_free(page_ptl_cachep, page->ptl);
5026 }
5027 #endif