Merge tag 'thermal-5.17-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafae...
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NUMA
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140         /*
141          * Transitioning a PTE from 'old' to 'young' can be expensive on
142          * some architectures, even if it's performed in hardware. By
143          * default, "false" means prefaulted entries will be 'young'.
144          */
145         return false;
146 }
147 #endif
148
149 static int __init disable_randmaps(char *s)
150 {
151         randomize_va_space = 0;
152         return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158
159 unsigned long highest_memmap_pfn __read_mostly;
160
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166         zero_pfn = page_to_pfn(ZERO_PAGE(0));
167         return 0;
168 }
169 early_initcall(init_zero_pfn);
170
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173         trace_rss_stat(mm, member, count);
174 }
175
176 #if defined(SPLIT_RSS_COUNTING)
177
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180         int i;
181
182         for (i = 0; i < NR_MM_COUNTERS; i++) {
183                 if (current->rss_stat.count[i]) {
184                         add_mm_counter(mm, i, current->rss_stat.count[i]);
185                         current->rss_stat.count[i] = 0;
186                 }
187         }
188         current->rss_stat.events = 0;
189 }
190
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193         struct task_struct *task = current;
194
195         if (likely(task->mm == mm))
196                 task->rss_stat.count[member] += val;
197         else
198                 add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH  (64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207         if (unlikely(task != current))
208                 return;
209         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210                 sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220
221 #endif /* SPLIT_RSS_COUNTING */
222
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228                            unsigned long addr)
229 {
230         pgtable_t token = pmd_pgtable(*pmd);
231         pmd_clear(pmd);
232         pte_free_tlb(tlb, token, addr);
233         mm_dec_nr_ptes(tlb->mm);
234 }
235
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237                                 unsigned long addr, unsigned long end,
238                                 unsigned long floor, unsigned long ceiling)
239 {
240         pmd_t *pmd;
241         unsigned long next;
242         unsigned long start;
243
244         start = addr;
245         pmd = pmd_offset(pud, addr);
246         do {
247                 next = pmd_addr_end(addr, end);
248                 if (pmd_none_or_clear_bad(pmd))
249                         continue;
250                 free_pte_range(tlb, pmd, addr);
251         } while (pmd++, addr = next, addr != end);
252
253         start &= PUD_MASK;
254         if (start < floor)
255                 return;
256         if (ceiling) {
257                 ceiling &= PUD_MASK;
258                 if (!ceiling)
259                         return;
260         }
261         if (end - 1 > ceiling - 1)
262                 return;
263
264         pmd = pmd_offset(pud, start);
265         pud_clear(pud);
266         pmd_free_tlb(tlb, pmd, start);
267         mm_dec_nr_pmds(tlb->mm);
268 }
269
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271                                 unsigned long addr, unsigned long end,
272                                 unsigned long floor, unsigned long ceiling)
273 {
274         pud_t *pud;
275         unsigned long next;
276         unsigned long start;
277
278         start = addr;
279         pud = pud_offset(p4d, addr);
280         do {
281                 next = pud_addr_end(addr, end);
282                 if (pud_none_or_clear_bad(pud))
283                         continue;
284                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285         } while (pud++, addr = next, addr != end);
286
287         start &= P4D_MASK;
288         if (start < floor)
289                 return;
290         if (ceiling) {
291                 ceiling &= P4D_MASK;
292                 if (!ceiling)
293                         return;
294         }
295         if (end - 1 > ceiling - 1)
296                 return;
297
298         pud = pud_offset(p4d, start);
299         p4d_clear(p4d);
300         pud_free_tlb(tlb, pud, start);
301         mm_dec_nr_puds(tlb->mm);
302 }
303
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305                                 unsigned long addr, unsigned long end,
306                                 unsigned long floor, unsigned long ceiling)
307 {
308         p4d_t *p4d;
309         unsigned long next;
310         unsigned long start;
311
312         start = addr;
313         p4d = p4d_offset(pgd, addr);
314         do {
315                 next = p4d_addr_end(addr, end);
316                 if (p4d_none_or_clear_bad(p4d))
317                         continue;
318                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319         } while (p4d++, addr = next, addr != end);
320
321         start &= PGDIR_MASK;
322         if (start < floor)
323                 return;
324         if (ceiling) {
325                 ceiling &= PGDIR_MASK;
326                 if (!ceiling)
327                         return;
328         }
329         if (end - 1 > ceiling - 1)
330                 return;
331
332         p4d = p4d_offset(pgd, start);
333         pgd_clear(pgd);
334         p4d_free_tlb(tlb, p4d, start);
335 }
336
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341                         unsigned long addr, unsigned long end,
342                         unsigned long floor, unsigned long ceiling)
343 {
344         pgd_t *pgd;
345         unsigned long next;
346
347         /*
348          * The next few lines have given us lots of grief...
349          *
350          * Why are we testing PMD* at this top level?  Because often
351          * there will be no work to do at all, and we'd prefer not to
352          * go all the way down to the bottom just to discover that.
353          *
354          * Why all these "- 1"s?  Because 0 represents both the bottom
355          * of the address space and the top of it (using -1 for the
356          * top wouldn't help much: the masks would do the wrong thing).
357          * The rule is that addr 0 and floor 0 refer to the bottom of
358          * the address space, but end 0 and ceiling 0 refer to the top
359          * Comparisons need to use "end - 1" and "ceiling - 1" (though
360          * that end 0 case should be mythical).
361          *
362          * Wherever addr is brought up or ceiling brought down, we must
363          * be careful to reject "the opposite 0" before it confuses the
364          * subsequent tests.  But what about where end is brought down
365          * by PMD_SIZE below? no, end can't go down to 0 there.
366          *
367          * Whereas we round start (addr) and ceiling down, by different
368          * masks at different levels, in order to test whether a table
369          * now has no other vmas using it, so can be freed, we don't
370          * bother to round floor or end up - the tests don't need that.
371          */
372
373         addr &= PMD_MASK;
374         if (addr < floor) {
375                 addr += PMD_SIZE;
376                 if (!addr)
377                         return;
378         }
379         if (ceiling) {
380                 ceiling &= PMD_MASK;
381                 if (!ceiling)
382                         return;
383         }
384         if (end - 1 > ceiling - 1)
385                 end -= PMD_SIZE;
386         if (addr > end - 1)
387                 return;
388         /*
389          * We add page table cache pages with PAGE_SIZE,
390          * (see pte_free_tlb()), flush the tlb if we need
391          */
392         tlb_change_page_size(tlb, PAGE_SIZE);
393         pgd = pgd_offset(tlb->mm, addr);
394         do {
395                 next = pgd_addr_end(addr, end);
396                 if (pgd_none_or_clear_bad(pgd))
397                         continue;
398                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399         } while (pgd++, addr = next, addr != end);
400 }
401
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403                 unsigned long floor, unsigned long ceiling)
404 {
405         while (vma) {
406                 struct vm_area_struct *next = vma->vm_next;
407                 unsigned long addr = vma->vm_start;
408
409                 /*
410                  * Hide vma from rmap and truncate_pagecache before freeing
411                  * pgtables
412                  */
413                 unlink_anon_vmas(vma);
414                 unlink_file_vma(vma);
415
416                 if (is_vm_hugetlb_page(vma)) {
417                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418                                 floor, next ? next->vm_start : ceiling);
419                 } else {
420                         /*
421                          * Optimization: gather nearby vmas into one call down
422                          */
423                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424                                && !is_vm_hugetlb_page(next)) {
425                                 vma = next;
426                                 next = vma->vm_next;
427                                 unlink_anon_vmas(vma);
428                                 unlink_file_vma(vma);
429                         }
430                         free_pgd_range(tlb, addr, vma->vm_end,
431                                 floor, next ? next->vm_start : ceiling);
432                 }
433                 vma = next;
434         }
435 }
436
437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
438 {
439         spinlock_t *ptl = pmd_lock(mm, pmd);
440
441         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
442                 mm_inc_nr_ptes(mm);
443                 /*
444                  * Ensure all pte setup (eg. pte page lock and page clearing) are
445                  * visible before the pte is made visible to other CPUs by being
446                  * put into page tables.
447                  *
448                  * The other side of the story is the pointer chasing in the page
449                  * table walking code (when walking the page table without locking;
450                  * ie. most of the time). Fortunately, these data accesses consist
451                  * of a chain of data-dependent loads, meaning most CPUs (alpha
452                  * being the notable exception) will already guarantee loads are
453                  * seen in-order. See the alpha page table accessors for the
454                  * smp_rmb() barriers in page table walking code.
455                  */
456                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457                 pmd_populate(mm, pmd, *pte);
458                 *pte = NULL;
459         }
460         spin_unlock(ptl);
461 }
462
463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
464 {
465         pgtable_t new = pte_alloc_one(mm);
466         if (!new)
467                 return -ENOMEM;
468
469         pmd_install(mm, pmd, &new);
470         if (new)
471                 pte_free(mm, new);
472         return 0;
473 }
474
475 int __pte_alloc_kernel(pmd_t *pmd)
476 {
477         pte_t *new = pte_alloc_one_kernel(&init_mm);
478         if (!new)
479                 return -ENOMEM;
480
481         spin_lock(&init_mm.page_table_lock);
482         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
483                 smp_wmb(); /* See comment in pmd_install() */
484                 pmd_populate_kernel(&init_mm, pmd, new);
485                 new = NULL;
486         }
487         spin_unlock(&init_mm.page_table_lock);
488         if (new)
489                 pte_free_kernel(&init_mm, new);
490         return 0;
491 }
492
493 static inline void init_rss_vec(int *rss)
494 {
495         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496 }
497
498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
499 {
500         int i;
501
502         if (current->mm == mm)
503                 sync_mm_rss(mm);
504         for (i = 0; i < NR_MM_COUNTERS; i++)
505                 if (rss[i])
506                         add_mm_counter(mm, i, rss[i]);
507 }
508
509 /*
510  * This function is called to print an error when a bad pte
511  * is found. For example, we might have a PFN-mapped pte in
512  * a region that doesn't allow it.
513  *
514  * The calling function must still handle the error.
515  */
516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517                           pte_t pte, struct page *page)
518 {
519         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520         p4d_t *p4d = p4d_offset(pgd, addr);
521         pud_t *pud = pud_offset(p4d, addr);
522         pmd_t *pmd = pmd_offset(pud, addr);
523         struct address_space *mapping;
524         pgoff_t index;
525         static unsigned long resume;
526         static unsigned long nr_shown;
527         static unsigned long nr_unshown;
528
529         /*
530          * Allow a burst of 60 reports, then keep quiet for that minute;
531          * or allow a steady drip of one report per second.
532          */
533         if (nr_shown == 60) {
534                 if (time_before(jiffies, resume)) {
535                         nr_unshown++;
536                         return;
537                 }
538                 if (nr_unshown) {
539                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540                                  nr_unshown);
541                         nr_unshown = 0;
542                 }
543                 nr_shown = 0;
544         }
545         if (nr_shown++ == 0)
546                 resume = jiffies + 60 * HZ;
547
548         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549         index = linear_page_index(vma, addr);
550
551         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
552                  current->comm,
553                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
554         if (page)
555                 dump_page(page, "bad pte");
556         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
559                  vma->vm_file,
560                  vma->vm_ops ? vma->vm_ops->fault : NULL,
561                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562                  mapping ? mapping->a_ops->readpage : NULL);
563         dump_stack();
564         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
565 }
566
567 /*
568  * vm_normal_page -- This function gets the "struct page" associated with a pte.
569  *
570  * "Special" mappings do not wish to be associated with a "struct page" (either
571  * it doesn't exist, or it exists but they don't want to touch it). In this
572  * case, NULL is returned here. "Normal" mappings do have a struct page.
573  *
574  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575  * pte bit, in which case this function is trivial. Secondly, an architecture
576  * may not have a spare pte bit, which requires a more complicated scheme,
577  * described below.
578  *
579  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580  * special mapping (even if there are underlying and valid "struct pages").
581  * COWed pages of a VM_PFNMAP are always normal.
582  *
583  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586  * mapping will always honor the rule
587  *
588  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589  *
590  * And for normal mappings this is false.
591  *
592  * This restricts such mappings to be a linear translation from virtual address
593  * to pfn. To get around this restriction, we allow arbitrary mappings so long
594  * as the vma is not a COW mapping; in that case, we know that all ptes are
595  * special (because none can have been COWed).
596  *
597  *
598  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
599  *
600  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601  * page" backing, however the difference is that _all_ pages with a struct
602  * page (that is, those where pfn_valid is true) are refcounted and considered
603  * normal pages by the VM. The disadvantage is that pages are refcounted
604  * (which can be slower and simply not an option for some PFNMAP users). The
605  * advantage is that we don't have to follow the strict linearity rule of
606  * PFNMAP mappings in order to support COWable mappings.
607  *
608  */
609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610                             pte_t pte)
611 {
612         unsigned long pfn = pte_pfn(pte);
613
614         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615                 if (likely(!pte_special(pte)))
616                         goto check_pfn;
617                 if (vma->vm_ops && vma->vm_ops->find_special_page)
618                         return vma->vm_ops->find_special_page(vma, addr);
619                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620                         return NULL;
621                 if (is_zero_pfn(pfn))
622                         return NULL;
623                 if (pte_devmap(pte))
624                         return NULL;
625
626                 print_bad_pte(vma, addr, pte, NULL);
627                 return NULL;
628         }
629
630         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
631
632         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633                 if (vma->vm_flags & VM_MIXEDMAP) {
634                         if (!pfn_valid(pfn))
635                                 return NULL;
636                         goto out;
637                 } else {
638                         unsigned long off;
639                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
640                         if (pfn == vma->vm_pgoff + off)
641                                 return NULL;
642                         if (!is_cow_mapping(vma->vm_flags))
643                                 return NULL;
644                 }
645         }
646
647         if (is_zero_pfn(pfn))
648                 return NULL;
649
650 check_pfn:
651         if (unlikely(pfn > highest_memmap_pfn)) {
652                 print_bad_pte(vma, addr, pte, NULL);
653                 return NULL;
654         }
655
656         /*
657          * NOTE! We still have PageReserved() pages in the page tables.
658          * eg. VDSO mappings can cause them to exist.
659          */
660 out:
661         return pfn_to_page(pfn);
662 }
663
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666                                 pmd_t pmd)
667 {
668         unsigned long pfn = pmd_pfn(pmd);
669
670         /*
671          * There is no pmd_special() but there may be special pmds, e.g.
672          * in a direct-access (dax) mapping, so let's just replicate the
673          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
674          */
675         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676                 if (vma->vm_flags & VM_MIXEDMAP) {
677                         if (!pfn_valid(pfn))
678                                 return NULL;
679                         goto out;
680                 } else {
681                         unsigned long off;
682                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
683                         if (pfn == vma->vm_pgoff + off)
684                                 return NULL;
685                         if (!is_cow_mapping(vma->vm_flags))
686                                 return NULL;
687                 }
688         }
689
690         if (pmd_devmap(pmd))
691                 return NULL;
692         if (is_huge_zero_pmd(pmd))
693                 return NULL;
694         if (unlikely(pfn > highest_memmap_pfn))
695                 return NULL;
696
697         /*
698          * NOTE! We still have PageReserved() pages in the page tables.
699          * eg. VDSO mappings can cause them to exist.
700          */
701 out:
702         return pfn_to_page(pfn);
703 }
704 #endif
705
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707                                   struct page *page, unsigned long address,
708                                   pte_t *ptep)
709 {
710         pte_t pte;
711         swp_entry_t entry;
712
713         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714         if (pte_swp_soft_dirty(*ptep))
715                 pte = pte_mksoft_dirty(pte);
716
717         entry = pte_to_swp_entry(*ptep);
718         if (pte_swp_uffd_wp(*ptep))
719                 pte = pte_mkuffd_wp(pte);
720         else if (is_writable_device_exclusive_entry(entry))
721                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722
723         /*
724          * No need to take a page reference as one was already
725          * created when the swap entry was made.
726          */
727         if (PageAnon(page))
728                 page_add_anon_rmap(page, vma, address, false);
729         else
730                 /*
731                  * Currently device exclusive access only supports anonymous
732                  * memory so the entry shouldn't point to a filebacked page.
733                  */
734                 WARN_ON_ONCE(!PageAnon(page));
735
736         set_pte_at(vma->vm_mm, address, ptep, pte);
737
738         if (vma->vm_flags & VM_LOCKED)
739                 mlock_vma_page(page);
740
741         /*
742          * No need to invalidate - it was non-present before. However
743          * secondary CPUs may have mappings that need invalidating.
744          */
745         update_mmu_cache(vma, address, ptep);
746 }
747
748 /*
749  * Tries to restore an exclusive pte if the page lock can be acquired without
750  * sleeping.
751  */
752 static int
753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754                         unsigned long addr)
755 {
756         swp_entry_t entry = pte_to_swp_entry(*src_pte);
757         struct page *page = pfn_swap_entry_to_page(entry);
758
759         if (trylock_page(page)) {
760                 restore_exclusive_pte(vma, page, addr, src_pte);
761                 unlock_page(page);
762                 return 0;
763         }
764
765         return -EBUSY;
766 }
767
768 /*
769  * copy one vm_area from one task to the other. Assumes the page tables
770  * already present in the new task to be cleared in the whole range
771  * covered by this vma.
772  */
773
774 static unsigned long
775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
778 {
779         unsigned long vm_flags = dst_vma->vm_flags;
780         pte_t pte = *src_pte;
781         struct page *page;
782         swp_entry_t entry = pte_to_swp_entry(pte);
783
784         if (likely(!non_swap_entry(entry))) {
785                 if (swap_duplicate(entry) < 0)
786                         return -EIO;
787
788                 /* make sure dst_mm is on swapoff's mmlist. */
789                 if (unlikely(list_empty(&dst_mm->mmlist))) {
790                         spin_lock(&mmlist_lock);
791                         if (list_empty(&dst_mm->mmlist))
792                                 list_add(&dst_mm->mmlist,
793                                                 &src_mm->mmlist);
794                         spin_unlock(&mmlist_lock);
795                 }
796                 rss[MM_SWAPENTS]++;
797         } else if (is_migration_entry(entry)) {
798                 page = pfn_swap_entry_to_page(entry);
799
800                 rss[mm_counter(page)]++;
801
802                 if (is_writable_migration_entry(entry) &&
803                                 is_cow_mapping(vm_flags)) {
804                         /*
805                          * COW mappings require pages in both
806                          * parent and child to be set to read.
807                          */
808                         entry = make_readable_migration_entry(
809                                                         swp_offset(entry));
810                         pte = swp_entry_to_pte(entry);
811                         if (pte_swp_soft_dirty(*src_pte))
812                                 pte = pte_swp_mksoft_dirty(pte);
813                         if (pte_swp_uffd_wp(*src_pte))
814                                 pte = pte_swp_mkuffd_wp(pte);
815                         set_pte_at(src_mm, addr, src_pte, pte);
816                 }
817         } else if (is_device_private_entry(entry)) {
818                 page = pfn_swap_entry_to_page(entry);
819
820                 /*
821                  * Update rss count even for unaddressable pages, as
822                  * they should treated just like normal pages in this
823                  * respect.
824                  *
825                  * We will likely want to have some new rss counters
826                  * for unaddressable pages, at some point. But for now
827                  * keep things as they are.
828                  */
829                 get_page(page);
830                 rss[mm_counter(page)]++;
831                 page_dup_rmap(page, false);
832
833                 /*
834                  * We do not preserve soft-dirty information, because so
835                  * far, checkpoint/restore is the only feature that
836                  * requires that. And checkpoint/restore does not work
837                  * when a device driver is involved (you cannot easily
838                  * save and restore device driver state).
839                  */
840                 if (is_writable_device_private_entry(entry) &&
841                     is_cow_mapping(vm_flags)) {
842                         entry = make_readable_device_private_entry(
843                                                         swp_offset(entry));
844                         pte = swp_entry_to_pte(entry);
845                         if (pte_swp_uffd_wp(*src_pte))
846                                 pte = pte_swp_mkuffd_wp(pte);
847                         set_pte_at(src_mm, addr, src_pte, pte);
848                 }
849         } else if (is_device_exclusive_entry(entry)) {
850                 /*
851                  * Make device exclusive entries present by restoring the
852                  * original entry then copying as for a present pte. Device
853                  * exclusive entries currently only support private writable
854                  * (ie. COW) mappings.
855                  */
856                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
857                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
858                         return -EBUSY;
859                 return -ENOENT;
860         }
861         if (!userfaultfd_wp(dst_vma))
862                 pte = pte_swp_clear_uffd_wp(pte);
863         set_pte_at(dst_mm, addr, dst_pte, pte);
864         return 0;
865 }
866
867 /*
868  * Copy a present and normal page if necessary.
869  *
870  * NOTE! The usual case is that this doesn't need to do
871  * anything, and can just return a positive value. That
872  * will let the caller know that it can just increase
873  * the page refcount and re-use the pte the traditional
874  * way.
875  *
876  * But _if_ we need to copy it because it needs to be
877  * pinned in the parent (and the child should get its own
878  * copy rather than just a reference to the same page),
879  * we'll do that here and return zero to let the caller
880  * know we're done.
881  *
882  * And if we need a pre-allocated page but don't yet have
883  * one, return a negative error to let the preallocation
884  * code know so that it can do so outside the page table
885  * lock.
886  */
887 static inline int
888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890                   struct page **prealloc, pte_t pte, struct page *page)
891 {
892         struct page *new_page;
893
894         /*
895          * What we want to do is to check whether this page may
896          * have been pinned by the parent process.  If so,
897          * instead of wrprotect the pte on both sides, we copy
898          * the page immediately so that we'll always guarantee
899          * the pinned page won't be randomly replaced in the
900          * future.
901          *
902          * The page pinning checks are just "has this mm ever
903          * seen pinning", along with the (inexact) check of
904          * the page count. That might give false positives for
905          * for pinning, but it will work correctly.
906          */
907         if (likely(!page_needs_cow_for_dma(src_vma, page)))
908                 return 1;
909
910         new_page = *prealloc;
911         if (!new_page)
912                 return -EAGAIN;
913
914         /*
915          * We have a prealloc page, all good!  Take it
916          * over and copy the page & arm it.
917          */
918         *prealloc = NULL;
919         copy_user_highpage(new_page, page, addr, src_vma);
920         __SetPageUptodate(new_page);
921         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
922         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
923         rss[mm_counter(new_page)]++;
924
925         /* All done, just insert the new page copy in the child */
926         pte = mk_pte(new_page, dst_vma->vm_page_prot);
927         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
928         if (userfaultfd_pte_wp(dst_vma, *src_pte))
929                 /* Uffd-wp needs to be delivered to dest pte as well */
930                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
931         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
932         return 0;
933 }
934
935 /*
936  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
937  * is required to copy this pte.
938  */
939 static inline int
940 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
941                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
942                  struct page **prealloc)
943 {
944         struct mm_struct *src_mm = src_vma->vm_mm;
945         unsigned long vm_flags = src_vma->vm_flags;
946         pte_t pte = *src_pte;
947         struct page *page;
948
949         page = vm_normal_page(src_vma, addr, pte);
950         if (page) {
951                 int retval;
952
953                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
954                                            addr, rss, prealloc, pte, page);
955                 if (retval <= 0)
956                         return retval;
957
958                 get_page(page);
959                 page_dup_rmap(page, false);
960                 rss[mm_counter(page)]++;
961         }
962
963         /*
964          * If it's a COW mapping, write protect it both
965          * in the parent and the child
966          */
967         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
968                 ptep_set_wrprotect(src_mm, addr, src_pte);
969                 pte = pte_wrprotect(pte);
970         }
971
972         /*
973          * If it's a shared mapping, mark it clean in
974          * the child
975          */
976         if (vm_flags & VM_SHARED)
977                 pte = pte_mkclean(pte);
978         pte = pte_mkold(pte);
979
980         if (!userfaultfd_wp(dst_vma))
981                 pte = pte_clear_uffd_wp(pte);
982
983         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
984         return 0;
985 }
986
987 static inline struct page *
988 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
989                    unsigned long addr)
990 {
991         struct page *new_page;
992
993         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
994         if (!new_page)
995                 return NULL;
996
997         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
998                 put_page(new_page);
999                 return NULL;
1000         }
1001         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1002
1003         return new_page;
1004 }
1005
1006 static int
1007 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1008                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1009                unsigned long end)
1010 {
1011         struct mm_struct *dst_mm = dst_vma->vm_mm;
1012         struct mm_struct *src_mm = src_vma->vm_mm;
1013         pte_t *orig_src_pte, *orig_dst_pte;
1014         pte_t *src_pte, *dst_pte;
1015         spinlock_t *src_ptl, *dst_ptl;
1016         int progress, ret = 0;
1017         int rss[NR_MM_COUNTERS];
1018         swp_entry_t entry = (swp_entry_t){0};
1019         struct page *prealloc = NULL;
1020
1021 again:
1022         progress = 0;
1023         init_rss_vec(rss);
1024
1025         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1026         if (!dst_pte) {
1027                 ret = -ENOMEM;
1028                 goto out;
1029         }
1030         src_pte = pte_offset_map(src_pmd, addr);
1031         src_ptl = pte_lockptr(src_mm, src_pmd);
1032         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1033         orig_src_pte = src_pte;
1034         orig_dst_pte = dst_pte;
1035         arch_enter_lazy_mmu_mode();
1036
1037         do {
1038                 /*
1039                  * We are holding two locks at this point - either of them
1040                  * could generate latencies in another task on another CPU.
1041                  */
1042                 if (progress >= 32) {
1043                         progress = 0;
1044                         if (need_resched() ||
1045                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1046                                 break;
1047                 }
1048                 if (pte_none(*src_pte)) {
1049                         progress++;
1050                         continue;
1051                 }
1052                 if (unlikely(!pte_present(*src_pte))) {
1053                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1054                                                   dst_pte, src_pte,
1055                                                   dst_vma, src_vma,
1056                                                   addr, rss);
1057                         if (ret == -EIO) {
1058                                 entry = pte_to_swp_entry(*src_pte);
1059                                 break;
1060                         } else if (ret == -EBUSY) {
1061                                 break;
1062                         } else if (!ret) {
1063                                 progress += 8;
1064                                 continue;
1065                         }
1066
1067                         /*
1068                          * Device exclusive entry restored, continue by copying
1069                          * the now present pte.
1070                          */
1071                         WARN_ON_ONCE(ret != -ENOENT);
1072                 }
1073                 /* copy_present_pte() will clear `*prealloc' if consumed */
1074                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1075                                        addr, rss, &prealloc);
1076                 /*
1077                  * If we need a pre-allocated page for this pte, drop the
1078                  * locks, allocate, and try again.
1079                  */
1080                 if (unlikely(ret == -EAGAIN))
1081                         break;
1082                 if (unlikely(prealloc)) {
1083                         /*
1084                          * pre-alloc page cannot be reused by next time so as
1085                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1086                          * will allocate page according to address).  This
1087                          * could only happen if one pinned pte changed.
1088                          */
1089                         put_page(prealloc);
1090                         prealloc = NULL;
1091                 }
1092                 progress += 8;
1093         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1094
1095         arch_leave_lazy_mmu_mode();
1096         spin_unlock(src_ptl);
1097         pte_unmap(orig_src_pte);
1098         add_mm_rss_vec(dst_mm, rss);
1099         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1100         cond_resched();
1101
1102         if (ret == -EIO) {
1103                 VM_WARN_ON_ONCE(!entry.val);
1104                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1105                         ret = -ENOMEM;
1106                         goto out;
1107                 }
1108                 entry.val = 0;
1109         } else if (ret == -EBUSY) {
1110                 goto out;
1111         } else if (ret ==  -EAGAIN) {
1112                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1113                 if (!prealloc)
1114                         return -ENOMEM;
1115         } else if (ret) {
1116                 VM_WARN_ON_ONCE(1);
1117         }
1118
1119         /* We've captured and resolved the error. Reset, try again. */
1120         ret = 0;
1121
1122         if (addr != end)
1123                 goto again;
1124 out:
1125         if (unlikely(prealloc))
1126                 put_page(prealloc);
1127         return ret;
1128 }
1129
1130 static inline int
1131 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1132                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1133                unsigned long end)
1134 {
1135         struct mm_struct *dst_mm = dst_vma->vm_mm;
1136         struct mm_struct *src_mm = src_vma->vm_mm;
1137         pmd_t *src_pmd, *dst_pmd;
1138         unsigned long next;
1139
1140         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141         if (!dst_pmd)
1142                 return -ENOMEM;
1143         src_pmd = pmd_offset(src_pud, addr);
1144         do {
1145                 next = pmd_addr_end(addr, end);
1146                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147                         || pmd_devmap(*src_pmd)) {
1148                         int err;
1149                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1150                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1151                                             addr, dst_vma, src_vma);
1152                         if (err == -ENOMEM)
1153                                 return -ENOMEM;
1154                         if (!err)
1155                                 continue;
1156                         /* fall through */
1157                 }
1158                 if (pmd_none_or_clear_bad(src_pmd))
1159                         continue;
1160                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1161                                    addr, next))
1162                         return -ENOMEM;
1163         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164         return 0;
1165 }
1166
1167 static inline int
1168 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1169                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1170                unsigned long end)
1171 {
1172         struct mm_struct *dst_mm = dst_vma->vm_mm;
1173         struct mm_struct *src_mm = src_vma->vm_mm;
1174         pud_t *src_pud, *dst_pud;
1175         unsigned long next;
1176
1177         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1178         if (!dst_pud)
1179                 return -ENOMEM;
1180         src_pud = pud_offset(src_p4d, addr);
1181         do {
1182                 next = pud_addr_end(addr, end);
1183                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1184                         int err;
1185
1186                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1187                         err = copy_huge_pud(dst_mm, src_mm,
1188                                             dst_pud, src_pud, addr, src_vma);
1189                         if (err == -ENOMEM)
1190                                 return -ENOMEM;
1191                         if (!err)
1192                                 continue;
1193                         /* fall through */
1194                 }
1195                 if (pud_none_or_clear_bad(src_pud))
1196                         continue;
1197                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1198                                    addr, next))
1199                         return -ENOMEM;
1200         } while (dst_pud++, src_pud++, addr = next, addr != end);
1201         return 0;
1202 }
1203
1204 static inline int
1205 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1206                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1207                unsigned long end)
1208 {
1209         struct mm_struct *dst_mm = dst_vma->vm_mm;
1210         p4d_t *src_p4d, *dst_p4d;
1211         unsigned long next;
1212
1213         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1214         if (!dst_p4d)
1215                 return -ENOMEM;
1216         src_p4d = p4d_offset(src_pgd, addr);
1217         do {
1218                 next = p4d_addr_end(addr, end);
1219                 if (p4d_none_or_clear_bad(src_p4d))
1220                         continue;
1221                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1222                                    addr, next))
1223                         return -ENOMEM;
1224         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1225         return 0;
1226 }
1227
1228 int
1229 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1230 {
1231         pgd_t *src_pgd, *dst_pgd;
1232         unsigned long next;
1233         unsigned long addr = src_vma->vm_start;
1234         unsigned long end = src_vma->vm_end;
1235         struct mm_struct *dst_mm = dst_vma->vm_mm;
1236         struct mm_struct *src_mm = src_vma->vm_mm;
1237         struct mmu_notifier_range range;
1238         bool is_cow;
1239         int ret;
1240
1241         /*
1242          * Don't copy ptes where a page fault will fill them correctly.
1243          * Fork becomes much lighter when there are big shared or private
1244          * readonly mappings. The tradeoff is that copy_page_range is more
1245          * efficient than faulting.
1246          */
1247         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1248             !src_vma->anon_vma)
1249                 return 0;
1250
1251         if (is_vm_hugetlb_page(src_vma))
1252                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1253
1254         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1255                 /*
1256                  * We do not free on error cases below as remove_vma
1257                  * gets called on error from higher level routine
1258                  */
1259                 ret = track_pfn_copy(src_vma);
1260                 if (ret)
1261                         return ret;
1262         }
1263
1264         /*
1265          * We need to invalidate the secondary MMU mappings only when
1266          * there could be a permission downgrade on the ptes of the
1267          * parent mm. And a permission downgrade will only happen if
1268          * is_cow_mapping() returns true.
1269          */
1270         is_cow = is_cow_mapping(src_vma->vm_flags);
1271
1272         if (is_cow) {
1273                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1274                                         0, src_vma, src_mm, addr, end);
1275                 mmu_notifier_invalidate_range_start(&range);
1276                 /*
1277                  * Disabling preemption is not needed for the write side, as
1278                  * the read side doesn't spin, but goes to the mmap_lock.
1279                  *
1280                  * Use the raw variant of the seqcount_t write API to avoid
1281                  * lockdep complaining about preemptibility.
1282                  */
1283                 mmap_assert_write_locked(src_mm);
1284                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1285         }
1286
1287         ret = 0;
1288         dst_pgd = pgd_offset(dst_mm, addr);
1289         src_pgd = pgd_offset(src_mm, addr);
1290         do {
1291                 next = pgd_addr_end(addr, end);
1292                 if (pgd_none_or_clear_bad(src_pgd))
1293                         continue;
1294                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1295                                             addr, next))) {
1296                         ret = -ENOMEM;
1297                         break;
1298                 }
1299         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1300
1301         if (is_cow) {
1302                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1303                 mmu_notifier_invalidate_range_end(&range);
1304         }
1305         return ret;
1306 }
1307
1308 /*
1309  * Parameter block passed down to zap_pte_range in exceptional cases.
1310  */
1311 struct zap_details {
1312         struct address_space *zap_mapping;      /* Check page->mapping if set */
1313         struct folio *single_folio;     /* Locked folio to be unmapped */
1314 };
1315
1316 /*
1317  * We set details->zap_mapping when we want to unmap shared but keep private
1318  * pages. Return true if skip zapping this page, false otherwise.
1319  */
1320 static inline bool
1321 zap_skip_check_mapping(struct zap_details *details, struct page *page)
1322 {
1323         if (!details || !page)
1324                 return false;
1325
1326         return details->zap_mapping &&
1327                 (details->zap_mapping != page_rmapping(page));
1328 }
1329
1330 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1331                                 struct vm_area_struct *vma, pmd_t *pmd,
1332                                 unsigned long addr, unsigned long end,
1333                                 struct zap_details *details)
1334 {
1335         struct mm_struct *mm = tlb->mm;
1336         int force_flush = 0;
1337         int rss[NR_MM_COUNTERS];
1338         spinlock_t *ptl;
1339         pte_t *start_pte;
1340         pte_t *pte;
1341         swp_entry_t entry;
1342
1343         tlb_change_page_size(tlb, PAGE_SIZE);
1344 again:
1345         init_rss_vec(rss);
1346         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1347         pte = start_pte;
1348         flush_tlb_batched_pending(mm);
1349         arch_enter_lazy_mmu_mode();
1350         do {
1351                 pte_t ptent = *pte;
1352                 if (pte_none(ptent))
1353                         continue;
1354
1355                 if (need_resched())
1356                         break;
1357
1358                 if (pte_present(ptent)) {
1359                         struct page *page;
1360
1361                         page = vm_normal_page(vma, addr, ptent);
1362                         if (unlikely(zap_skip_check_mapping(details, page)))
1363                                 continue;
1364                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1365                                                         tlb->fullmm);
1366                         tlb_remove_tlb_entry(tlb, pte, addr);
1367                         if (unlikely(!page))
1368                                 continue;
1369
1370                         if (!PageAnon(page)) {
1371                                 if (pte_dirty(ptent)) {
1372                                         force_flush = 1;
1373                                         set_page_dirty(page);
1374                                 }
1375                                 if (pte_young(ptent) &&
1376                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1377                                         mark_page_accessed(page);
1378                         }
1379                         rss[mm_counter(page)]--;
1380                         page_remove_rmap(page, false);
1381                         if (unlikely(page_mapcount(page) < 0))
1382                                 print_bad_pte(vma, addr, ptent, page);
1383                         if (unlikely(__tlb_remove_page(tlb, page))) {
1384                                 force_flush = 1;
1385                                 addr += PAGE_SIZE;
1386                                 break;
1387                         }
1388                         continue;
1389                 }
1390
1391                 entry = pte_to_swp_entry(ptent);
1392                 if (is_device_private_entry(entry) ||
1393                     is_device_exclusive_entry(entry)) {
1394                         struct page *page = pfn_swap_entry_to_page(entry);
1395
1396                         if (unlikely(zap_skip_check_mapping(details, page)))
1397                                 continue;
1398                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1399                         rss[mm_counter(page)]--;
1400
1401                         if (is_device_private_entry(entry))
1402                                 page_remove_rmap(page, false);
1403
1404                         put_page(page);
1405                         continue;
1406                 }
1407
1408                 /* If details->check_mapping, we leave swap entries. */
1409                 if (unlikely(details))
1410                         continue;
1411
1412                 if (!non_swap_entry(entry))
1413                         rss[MM_SWAPENTS]--;
1414                 else if (is_migration_entry(entry)) {
1415                         struct page *page;
1416
1417                         page = pfn_swap_entry_to_page(entry);
1418                         rss[mm_counter(page)]--;
1419                 }
1420                 if (unlikely(!free_swap_and_cache(entry)))
1421                         print_bad_pte(vma, addr, ptent, NULL);
1422                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1423         } while (pte++, addr += PAGE_SIZE, addr != end);
1424
1425         add_mm_rss_vec(mm, rss);
1426         arch_leave_lazy_mmu_mode();
1427
1428         /* Do the actual TLB flush before dropping ptl */
1429         if (force_flush)
1430                 tlb_flush_mmu_tlbonly(tlb);
1431         pte_unmap_unlock(start_pte, ptl);
1432
1433         /*
1434          * If we forced a TLB flush (either due to running out of
1435          * batch buffers or because we needed to flush dirty TLB
1436          * entries before releasing the ptl), free the batched
1437          * memory too. Restart if we didn't do everything.
1438          */
1439         if (force_flush) {
1440                 force_flush = 0;
1441                 tlb_flush_mmu(tlb);
1442         }
1443
1444         if (addr != end) {
1445                 cond_resched();
1446                 goto again;
1447         }
1448
1449         return addr;
1450 }
1451
1452 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1453                                 struct vm_area_struct *vma, pud_t *pud,
1454                                 unsigned long addr, unsigned long end,
1455                                 struct zap_details *details)
1456 {
1457         pmd_t *pmd;
1458         unsigned long next;
1459
1460         pmd = pmd_offset(pud, addr);
1461         do {
1462                 next = pmd_addr_end(addr, end);
1463                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1464                         if (next - addr != HPAGE_PMD_SIZE)
1465                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1466                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1467                                 goto next;
1468                         /* fall through */
1469                 } else if (details && details->single_folio &&
1470                            folio_test_pmd_mappable(details->single_folio) &&
1471                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1472                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1473                         /*
1474                          * Take and drop THP pmd lock so that we cannot return
1475                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1476                          * but not yet decremented compound_mapcount().
1477                          */
1478                         spin_unlock(ptl);
1479                 }
1480
1481                 /*
1482                  * Here there can be other concurrent MADV_DONTNEED or
1483                  * trans huge page faults running, and if the pmd is
1484                  * none or trans huge it can change under us. This is
1485                  * because MADV_DONTNEED holds the mmap_lock in read
1486                  * mode.
1487                  */
1488                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1489                         goto next;
1490                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1491 next:
1492                 cond_resched();
1493         } while (pmd++, addr = next, addr != end);
1494
1495         return addr;
1496 }
1497
1498 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1499                                 struct vm_area_struct *vma, p4d_t *p4d,
1500                                 unsigned long addr, unsigned long end,
1501                                 struct zap_details *details)
1502 {
1503         pud_t *pud;
1504         unsigned long next;
1505
1506         pud = pud_offset(p4d, addr);
1507         do {
1508                 next = pud_addr_end(addr, end);
1509                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1510                         if (next - addr != HPAGE_PUD_SIZE) {
1511                                 mmap_assert_locked(tlb->mm);
1512                                 split_huge_pud(vma, pud, addr);
1513                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1514                                 goto next;
1515                         /* fall through */
1516                 }
1517                 if (pud_none_or_clear_bad(pud))
1518                         continue;
1519                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1520 next:
1521                 cond_resched();
1522         } while (pud++, addr = next, addr != end);
1523
1524         return addr;
1525 }
1526
1527 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1528                                 struct vm_area_struct *vma, pgd_t *pgd,
1529                                 unsigned long addr, unsigned long end,
1530                                 struct zap_details *details)
1531 {
1532         p4d_t *p4d;
1533         unsigned long next;
1534
1535         p4d = p4d_offset(pgd, addr);
1536         do {
1537                 next = p4d_addr_end(addr, end);
1538                 if (p4d_none_or_clear_bad(p4d))
1539                         continue;
1540                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1541         } while (p4d++, addr = next, addr != end);
1542
1543         return addr;
1544 }
1545
1546 void unmap_page_range(struct mmu_gather *tlb,
1547                              struct vm_area_struct *vma,
1548                              unsigned long addr, unsigned long end,
1549                              struct zap_details *details)
1550 {
1551         pgd_t *pgd;
1552         unsigned long next;
1553
1554         BUG_ON(addr >= end);
1555         tlb_start_vma(tlb, vma);
1556         pgd = pgd_offset(vma->vm_mm, addr);
1557         do {
1558                 next = pgd_addr_end(addr, end);
1559                 if (pgd_none_or_clear_bad(pgd))
1560                         continue;
1561                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1562         } while (pgd++, addr = next, addr != end);
1563         tlb_end_vma(tlb, vma);
1564 }
1565
1566
1567 static void unmap_single_vma(struct mmu_gather *tlb,
1568                 struct vm_area_struct *vma, unsigned long start_addr,
1569                 unsigned long end_addr,
1570                 struct zap_details *details)
1571 {
1572         unsigned long start = max(vma->vm_start, start_addr);
1573         unsigned long end;
1574
1575         if (start >= vma->vm_end)
1576                 return;
1577         end = min(vma->vm_end, end_addr);
1578         if (end <= vma->vm_start)
1579                 return;
1580
1581         if (vma->vm_file)
1582                 uprobe_munmap(vma, start, end);
1583
1584         if (unlikely(vma->vm_flags & VM_PFNMAP))
1585                 untrack_pfn(vma, 0, 0);
1586
1587         if (start != end) {
1588                 if (unlikely(is_vm_hugetlb_page(vma))) {
1589                         /*
1590                          * It is undesirable to test vma->vm_file as it
1591                          * should be non-null for valid hugetlb area.
1592                          * However, vm_file will be NULL in the error
1593                          * cleanup path of mmap_region. When
1594                          * hugetlbfs ->mmap method fails,
1595                          * mmap_region() nullifies vma->vm_file
1596                          * before calling this function to clean up.
1597                          * Since no pte has actually been setup, it is
1598                          * safe to do nothing in this case.
1599                          */
1600                         if (vma->vm_file) {
1601                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1602                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1603                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1604                         }
1605                 } else
1606                         unmap_page_range(tlb, vma, start, end, details);
1607         }
1608 }
1609
1610 /**
1611  * unmap_vmas - unmap a range of memory covered by a list of vma's
1612  * @tlb: address of the caller's struct mmu_gather
1613  * @vma: the starting vma
1614  * @start_addr: virtual address at which to start unmapping
1615  * @end_addr: virtual address at which to end unmapping
1616  *
1617  * Unmap all pages in the vma list.
1618  *
1619  * Only addresses between `start' and `end' will be unmapped.
1620  *
1621  * The VMA list must be sorted in ascending virtual address order.
1622  *
1623  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1624  * range after unmap_vmas() returns.  So the only responsibility here is to
1625  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1626  * drops the lock and schedules.
1627  */
1628 void unmap_vmas(struct mmu_gather *tlb,
1629                 struct vm_area_struct *vma, unsigned long start_addr,
1630                 unsigned long end_addr)
1631 {
1632         struct mmu_notifier_range range;
1633
1634         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1635                                 start_addr, end_addr);
1636         mmu_notifier_invalidate_range_start(&range);
1637         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1638                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1639         mmu_notifier_invalidate_range_end(&range);
1640 }
1641
1642 /**
1643  * zap_page_range - remove user pages in a given range
1644  * @vma: vm_area_struct holding the applicable pages
1645  * @start: starting address of pages to zap
1646  * @size: number of bytes to zap
1647  *
1648  * Caller must protect the VMA list
1649  */
1650 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1651                 unsigned long size)
1652 {
1653         struct mmu_notifier_range range;
1654         struct mmu_gather tlb;
1655
1656         lru_add_drain();
1657         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1658                                 start, start + size);
1659         tlb_gather_mmu(&tlb, vma->vm_mm);
1660         update_hiwater_rss(vma->vm_mm);
1661         mmu_notifier_invalidate_range_start(&range);
1662         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1663                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1664         mmu_notifier_invalidate_range_end(&range);
1665         tlb_finish_mmu(&tlb);
1666 }
1667
1668 /**
1669  * zap_page_range_single - remove user pages in a given range
1670  * @vma: vm_area_struct holding the applicable pages
1671  * @address: starting address of pages to zap
1672  * @size: number of bytes to zap
1673  * @details: details of shared cache invalidation
1674  *
1675  * The range must fit into one VMA.
1676  */
1677 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1678                 unsigned long size, struct zap_details *details)
1679 {
1680         struct mmu_notifier_range range;
1681         struct mmu_gather tlb;
1682
1683         lru_add_drain();
1684         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1685                                 address, address + size);
1686         tlb_gather_mmu(&tlb, vma->vm_mm);
1687         update_hiwater_rss(vma->vm_mm);
1688         mmu_notifier_invalidate_range_start(&range);
1689         unmap_single_vma(&tlb, vma, address, range.end, details);
1690         mmu_notifier_invalidate_range_end(&range);
1691         tlb_finish_mmu(&tlb);
1692 }
1693
1694 /**
1695  * zap_vma_ptes - remove ptes mapping the vma
1696  * @vma: vm_area_struct holding ptes to be zapped
1697  * @address: starting address of pages to zap
1698  * @size: number of bytes to zap
1699  *
1700  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1701  *
1702  * The entire address range must be fully contained within the vma.
1703  *
1704  */
1705 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1706                 unsigned long size)
1707 {
1708         if (address < vma->vm_start || address + size > vma->vm_end ||
1709                         !(vma->vm_flags & VM_PFNMAP))
1710                 return;
1711
1712         zap_page_range_single(vma, address, size, NULL);
1713 }
1714 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1715
1716 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1717 {
1718         pgd_t *pgd;
1719         p4d_t *p4d;
1720         pud_t *pud;
1721         pmd_t *pmd;
1722
1723         pgd = pgd_offset(mm, addr);
1724         p4d = p4d_alloc(mm, pgd, addr);
1725         if (!p4d)
1726                 return NULL;
1727         pud = pud_alloc(mm, p4d, addr);
1728         if (!pud)
1729                 return NULL;
1730         pmd = pmd_alloc(mm, pud, addr);
1731         if (!pmd)
1732                 return NULL;
1733
1734         VM_BUG_ON(pmd_trans_huge(*pmd));
1735         return pmd;
1736 }
1737
1738 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1739                         spinlock_t **ptl)
1740 {
1741         pmd_t *pmd = walk_to_pmd(mm, addr);
1742
1743         if (!pmd)
1744                 return NULL;
1745         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1746 }
1747
1748 static int validate_page_before_insert(struct page *page)
1749 {
1750         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1751                 return -EINVAL;
1752         flush_dcache_page(page);
1753         return 0;
1754 }
1755
1756 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1757                         unsigned long addr, struct page *page, pgprot_t prot)
1758 {
1759         if (!pte_none(*pte))
1760                 return -EBUSY;
1761         /* Ok, finally just insert the thing.. */
1762         get_page(page);
1763         inc_mm_counter_fast(mm, mm_counter_file(page));
1764         page_add_file_rmap(page, false);
1765         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1766         return 0;
1767 }
1768
1769 /*
1770  * This is the old fallback for page remapping.
1771  *
1772  * For historical reasons, it only allows reserved pages. Only
1773  * old drivers should use this, and they needed to mark their
1774  * pages reserved for the old functions anyway.
1775  */
1776 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1777                         struct page *page, pgprot_t prot)
1778 {
1779         struct mm_struct *mm = vma->vm_mm;
1780         int retval;
1781         pte_t *pte;
1782         spinlock_t *ptl;
1783
1784         retval = validate_page_before_insert(page);
1785         if (retval)
1786                 goto out;
1787         retval = -ENOMEM;
1788         pte = get_locked_pte(mm, addr, &ptl);
1789         if (!pte)
1790                 goto out;
1791         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1792         pte_unmap_unlock(pte, ptl);
1793 out:
1794         return retval;
1795 }
1796
1797 #ifdef pte_index
1798 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1799                         unsigned long addr, struct page *page, pgprot_t prot)
1800 {
1801         int err;
1802
1803         if (!page_count(page))
1804                 return -EINVAL;
1805         err = validate_page_before_insert(page);
1806         if (err)
1807                 return err;
1808         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1809 }
1810
1811 /* insert_pages() amortizes the cost of spinlock operations
1812  * when inserting pages in a loop. Arch *must* define pte_index.
1813  */
1814 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1815                         struct page **pages, unsigned long *num, pgprot_t prot)
1816 {
1817         pmd_t *pmd = NULL;
1818         pte_t *start_pte, *pte;
1819         spinlock_t *pte_lock;
1820         struct mm_struct *const mm = vma->vm_mm;
1821         unsigned long curr_page_idx = 0;
1822         unsigned long remaining_pages_total = *num;
1823         unsigned long pages_to_write_in_pmd;
1824         int ret;
1825 more:
1826         ret = -EFAULT;
1827         pmd = walk_to_pmd(mm, addr);
1828         if (!pmd)
1829                 goto out;
1830
1831         pages_to_write_in_pmd = min_t(unsigned long,
1832                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1833
1834         /* Allocate the PTE if necessary; takes PMD lock once only. */
1835         ret = -ENOMEM;
1836         if (pte_alloc(mm, pmd))
1837                 goto out;
1838
1839         while (pages_to_write_in_pmd) {
1840                 int pte_idx = 0;
1841                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1842
1843                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1844                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1845                         int err = insert_page_in_batch_locked(mm, pte,
1846                                 addr, pages[curr_page_idx], prot);
1847                         if (unlikely(err)) {
1848                                 pte_unmap_unlock(start_pte, pte_lock);
1849                                 ret = err;
1850                                 remaining_pages_total -= pte_idx;
1851                                 goto out;
1852                         }
1853                         addr += PAGE_SIZE;
1854                         ++curr_page_idx;
1855                 }
1856                 pte_unmap_unlock(start_pte, pte_lock);
1857                 pages_to_write_in_pmd -= batch_size;
1858                 remaining_pages_total -= batch_size;
1859         }
1860         if (remaining_pages_total)
1861                 goto more;
1862         ret = 0;
1863 out:
1864         *num = remaining_pages_total;
1865         return ret;
1866 }
1867 #endif  /* ifdef pte_index */
1868
1869 /**
1870  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1871  * @vma: user vma to map to
1872  * @addr: target start user address of these pages
1873  * @pages: source kernel pages
1874  * @num: in: number of pages to map. out: number of pages that were *not*
1875  * mapped. (0 means all pages were successfully mapped).
1876  *
1877  * Preferred over vm_insert_page() when inserting multiple pages.
1878  *
1879  * In case of error, we may have mapped a subset of the provided
1880  * pages. It is the caller's responsibility to account for this case.
1881  *
1882  * The same restrictions apply as in vm_insert_page().
1883  */
1884 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1885                         struct page **pages, unsigned long *num)
1886 {
1887 #ifdef pte_index
1888         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1889
1890         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1891                 return -EFAULT;
1892         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1893                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1894                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1895                 vma->vm_flags |= VM_MIXEDMAP;
1896         }
1897         /* Defer page refcount checking till we're about to map that page. */
1898         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1899 #else
1900         unsigned long idx = 0, pgcount = *num;
1901         int err = -EINVAL;
1902
1903         for (; idx < pgcount; ++idx) {
1904                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1905                 if (err)
1906                         break;
1907         }
1908         *num = pgcount - idx;
1909         return err;
1910 #endif  /* ifdef pte_index */
1911 }
1912 EXPORT_SYMBOL(vm_insert_pages);
1913
1914 /**
1915  * vm_insert_page - insert single page into user vma
1916  * @vma: user vma to map to
1917  * @addr: target user address of this page
1918  * @page: source kernel page
1919  *
1920  * This allows drivers to insert individual pages they've allocated
1921  * into a user vma.
1922  *
1923  * The page has to be a nice clean _individual_ kernel allocation.
1924  * If you allocate a compound page, you need to have marked it as
1925  * such (__GFP_COMP), or manually just split the page up yourself
1926  * (see split_page()).
1927  *
1928  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1929  * took an arbitrary page protection parameter. This doesn't allow
1930  * that. Your vma protection will have to be set up correctly, which
1931  * means that if you want a shared writable mapping, you'd better
1932  * ask for a shared writable mapping!
1933  *
1934  * The page does not need to be reserved.
1935  *
1936  * Usually this function is called from f_op->mmap() handler
1937  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1938  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1939  * function from other places, for example from page-fault handler.
1940  *
1941  * Return: %0 on success, negative error code otherwise.
1942  */
1943 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1944                         struct page *page)
1945 {
1946         if (addr < vma->vm_start || addr >= vma->vm_end)
1947                 return -EFAULT;
1948         if (!page_count(page))
1949                 return -EINVAL;
1950         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1951                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1952                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1953                 vma->vm_flags |= VM_MIXEDMAP;
1954         }
1955         return insert_page(vma, addr, page, vma->vm_page_prot);
1956 }
1957 EXPORT_SYMBOL(vm_insert_page);
1958
1959 /*
1960  * __vm_map_pages - maps range of kernel pages into user vma
1961  * @vma: user vma to map to
1962  * @pages: pointer to array of source kernel pages
1963  * @num: number of pages in page array
1964  * @offset: user's requested vm_pgoff
1965  *
1966  * This allows drivers to map range of kernel pages into a user vma.
1967  *
1968  * Return: 0 on success and error code otherwise.
1969  */
1970 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1971                                 unsigned long num, unsigned long offset)
1972 {
1973         unsigned long count = vma_pages(vma);
1974         unsigned long uaddr = vma->vm_start;
1975         int ret, i;
1976
1977         /* Fail if the user requested offset is beyond the end of the object */
1978         if (offset >= num)
1979                 return -ENXIO;
1980
1981         /* Fail if the user requested size exceeds available object size */
1982         if (count > num - offset)
1983                 return -ENXIO;
1984
1985         for (i = 0; i < count; i++) {
1986                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1987                 if (ret < 0)
1988                         return ret;
1989                 uaddr += PAGE_SIZE;
1990         }
1991
1992         return 0;
1993 }
1994
1995 /**
1996  * vm_map_pages - maps range of kernel pages starts with non zero offset
1997  * @vma: user vma to map to
1998  * @pages: pointer to array of source kernel pages
1999  * @num: number of pages in page array
2000  *
2001  * Maps an object consisting of @num pages, catering for the user's
2002  * requested vm_pgoff
2003  *
2004  * If we fail to insert any page into the vma, the function will return
2005  * immediately leaving any previously inserted pages present.  Callers
2006  * from the mmap handler may immediately return the error as their caller
2007  * will destroy the vma, removing any successfully inserted pages. Other
2008  * callers should make their own arrangements for calling unmap_region().
2009  *
2010  * Context: Process context. Called by mmap handlers.
2011  * Return: 0 on success and error code otherwise.
2012  */
2013 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2014                                 unsigned long num)
2015 {
2016         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2017 }
2018 EXPORT_SYMBOL(vm_map_pages);
2019
2020 /**
2021  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2022  * @vma: user vma to map to
2023  * @pages: pointer to array of source kernel pages
2024  * @num: number of pages in page array
2025  *
2026  * Similar to vm_map_pages(), except that it explicitly sets the offset
2027  * to 0. This function is intended for the drivers that did not consider
2028  * vm_pgoff.
2029  *
2030  * Context: Process context. Called by mmap handlers.
2031  * Return: 0 on success and error code otherwise.
2032  */
2033 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2034                                 unsigned long num)
2035 {
2036         return __vm_map_pages(vma, pages, num, 0);
2037 }
2038 EXPORT_SYMBOL(vm_map_pages_zero);
2039
2040 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2041                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2042 {
2043         struct mm_struct *mm = vma->vm_mm;
2044         pte_t *pte, entry;
2045         spinlock_t *ptl;
2046
2047         pte = get_locked_pte(mm, addr, &ptl);
2048         if (!pte)
2049                 return VM_FAULT_OOM;
2050         if (!pte_none(*pte)) {
2051                 if (mkwrite) {
2052                         /*
2053                          * For read faults on private mappings the PFN passed
2054                          * in may not match the PFN we have mapped if the
2055                          * mapped PFN is a writeable COW page.  In the mkwrite
2056                          * case we are creating a writable PTE for a shared
2057                          * mapping and we expect the PFNs to match. If they
2058                          * don't match, we are likely racing with block
2059                          * allocation and mapping invalidation so just skip the
2060                          * update.
2061                          */
2062                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2063                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2064                                 goto out_unlock;
2065                         }
2066                         entry = pte_mkyoung(*pte);
2067                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2068                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2069                                 update_mmu_cache(vma, addr, pte);
2070                 }
2071                 goto out_unlock;
2072         }
2073
2074         /* Ok, finally just insert the thing.. */
2075         if (pfn_t_devmap(pfn))
2076                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2077         else
2078                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2079
2080         if (mkwrite) {
2081                 entry = pte_mkyoung(entry);
2082                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2083         }
2084
2085         set_pte_at(mm, addr, pte, entry);
2086         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2087
2088 out_unlock:
2089         pte_unmap_unlock(pte, ptl);
2090         return VM_FAULT_NOPAGE;
2091 }
2092
2093 /**
2094  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2095  * @vma: user vma to map to
2096  * @addr: target user address of this page
2097  * @pfn: source kernel pfn
2098  * @pgprot: pgprot flags for the inserted page
2099  *
2100  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2101  * to override pgprot on a per-page basis.
2102  *
2103  * This only makes sense for IO mappings, and it makes no sense for
2104  * COW mappings.  In general, using multiple vmas is preferable;
2105  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2106  * impractical.
2107  *
2108  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2109  * a value of @pgprot different from that of @vma->vm_page_prot.
2110  *
2111  * Context: Process context.  May allocate using %GFP_KERNEL.
2112  * Return: vm_fault_t value.
2113  */
2114 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2115                         unsigned long pfn, pgprot_t pgprot)
2116 {
2117         /*
2118          * Technically, architectures with pte_special can avoid all these
2119          * restrictions (same for remap_pfn_range).  However we would like
2120          * consistency in testing and feature parity among all, so we should
2121          * try to keep these invariants in place for everybody.
2122          */
2123         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2124         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2125                                                 (VM_PFNMAP|VM_MIXEDMAP));
2126         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2127         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2128
2129         if (addr < vma->vm_start || addr >= vma->vm_end)
2130                 return VM_FAULT_SIGBUS;
2131
2132         if (!pfn_modify_allowed(pfn, pgprot))
2133                 return VM_FAULT_SIGBUS;
2134
2135         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2136
2137         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2138                         false);
2139 }
2140 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2141
2142 /**
2143  * vmf_insert_pfn - insert single pfn into user vma
2144  * @vma: user vma to map to
2145  * @addr: target user address of this page
2146  * @pfn: source kernel pfn
2147  *
2148  * Similar to vm_insert_page, this allows drivers to insert individual pages
2149  * they've allocated into a user vma. Same comments apply.
2150  *
2151  * This function should only be called from a vm_ops->fault handler, and
2152  * in that case the handler should return the result of this function.
2153  *
2154  * vma cannot be a COW mapping.
2155  *
2156  * As this is called only for pages that do not currently exist, we
2157  * do not need to flush old virtual caches or the TLB.
2158  *
2159  * Context: Process context.  May allocate using %GFP_KERNEL.
2160  * Return: vm_fault_t value.
2161  */
2162 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2163                         unsigned long pfn)
2164 {
2165         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2166 }
2167 EXPORT_SYMBOL(vmf_insert_pfn);
2168
2169 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2170 {
2171         /* these checks mirror the abort conditions in vm_normal_page */
2172         if (vma->vm_flags & VM_MIXEDMAP)
2173                 return true;
2174         if (pfn_t_devmap(pfn))
2175                 return true;
2176         if (pfn_t_special(pfn))
2177                 return true;
2178         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2179                 return true;
2180         return false;
2181 }
2182
2183 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2184                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2185                 bool mkwrite)
2186 {
2187         int err;
2188
2189         BUG_ON(!vm_mixed_ok(vma, pfn));
2190
2191         if (addr < vma->vm_start || addr >= vma->vm_end)
2192                 return VM_FAULT_SIGBUS;
2193
2194         track_pfn_insert(vma, &pgprot, pfn);
2195
2196         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2197                 return VM_FAULT_SIGBUS;
2198
2199         /*
2200          * If we don't have pte special, then we have to use the pfn_valid()
2201          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2202          * refcount the page if pfn_valid is true (hence insert_page rather
2203          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2204          * without pte special, it would there be refcounted as a normal page.
2205          */
2206         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2207             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2208                 struct page *page;
2209
2210                 /*
2211                  * At this point we are committed to insert_page()
2212                  * regardless of whether the caller specified flags that
2213                  * result in pfn_t_has_page() == false.
2214                  */
2215                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2216                 err = insert_page(vma, addr, page, pgprot);
2217         } else {
2218                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2219         }
2220
2221         if (err == -ENOMEM)
2222                 return VM_FAULT_OOM;
2223         if (err < 0 && err != -EBUSY)
2224                 return VM_FAULT_SIGBUS;
2225
2226         return VM_FAULT_NOPAGE;
2227 }
2228
2229 /**
2230  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2231  * @vma: user vma to map to
2232  * @addr: target user address of this page
2233  * @pfn: source kernel pfn
2234  * @pgprot: pgprot flags for the inserted page
2235  *
2236  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2237  * to override pgprot on a per-page basis.
2238  *
2239  * Typically this function should be used by drivers to set caching- and
2240  * encryption bits different than those of @vma->vm_page_prot, because
2241  * the caching- or encryption mode may not be known at mmap() time.
2242  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2243  * to set caching and encryption bits for those vmas (except for COW pages).
2244  * This is ensured by core vm only modifying these page table entries using
2245  * functions that don't touch caching- or encryption bits, using pte_modify()
2246  * if needed. (See for example mprotect()).
2247  * Also when new page-table entries are created, this is only done using the
2248  * fault() callback, and never using the value of vma->vm_page_prot,
2249  * except for page-table entries that point to anonymous pages as the result
2250  * of COW.
2251  *
2252  * Context: Process context.  May allocate using %GFP_KERNEL.
2253  * Return: vm_fault_t value.
2254  */
2255 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2256                                  pfn_t pfn, pgprot_t pgprot)
2257 {
2258         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2259 }
2260 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2261
2262 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2263                 pfn_t pfn)
2264 {
2265         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2266 }
2267 EXPORT_SYMBOL(vmf_insert_mixed);
2268
2269 /*
2270  *  If the insertion of PTE failed because someone else already added a
2271  *  different entry in the mean time, we treat that as success as we assume
2272  *  the same entry was actually inserted.
2273  */
2274 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2275                 unsigned long addr, pfn_t pfn)
2276 {
2277         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2278 }
2279 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2280
2281 /*
2282  * maps a range of physical memory into the requested pages. the old
2283  * mappings are removed. any references to nonexistent pages results
2284  * in null mappings (currently treated as "copy-on-access")
2285  */
2286 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2287                         unsigned long addr, unsigned long end,
2288                         unsigned long pfn, pgprot_t prot)
2289 {
2290         pte_t *pte, *mapped_pte;
2291         spinlock_t *ptl;
2292         int err = 0;
2293
2294         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2295         if (!pte)
2296                 return -ENOMEM;
2297         arch_enter_lazy_mmu_mode();
2298         do {
2299                 BUG_ON(!pte_none(*pte));
2300                 if (!pfn_modify_allowed(pfn, prot)) {
2301                         err = -EACCES;
2302                         break;
2303                 }
2304                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2305                 pfn++;
2306         } while (pte++, addr += PAGE_SIZE, addr != end);
2307         arch_leave_lazy_mmu_mode();
2308         pte_unmap_unlock(mapped_pte, ptl);
2309         return err;
2310 }
2311
2312 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2313                         unsigned long addr, unsigned long end,
2314                         unsigned long pfn, pgprot_t prot)
2315 {
2316         pmd_t *pmd;
2317         unsigned long next;
2318         int err;
2319
2320         pfn -= addr >> PAGE_SHIFT;
2321         pmd = pmd_alloc(mm, pud, addr);
2322         if (!pmd)
2323                 return -ENOMEM;
2324         VM_BUG_ON(pmd_trans_huge(*pmd));
2325         do {
2326                 next = pmd_addr_end(addr, end);
2327                 err = remap_pte_range(mm, pmd, addr, next,
2328                                 pfn + (addr >> PAGE_SHIFT), prot);
2329                 if (err)
2330                         return err;
2331         } while (pmd++, addr = next, addr != end);
2332         return 0;
2333 }
2334
2335 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2336                         unsigned long addr, unsigned long end,
2337                         unsigned long pfn, pgprot_t prot)
2338 {
2339         pud_t *pud;
2340         unsigned long next;
2341         int err;
2342
2343         pfn -= addr >> PAGE_SHIFT;
2344         pud = pud_alloc(mm, p4d, addr);
2345         if (!pud)
2346                 return -ENOMEM;
2347         do {
2348                 next = pud_addr_end(addr, end);
2349                 err = remap_pmd_range(mm, pud, addr, next,
2350                                 pfn + (addr >> PAGE_SHIFT), prot);
2351                 if (err)
2352                         return err;
2353         } while (pud++, addr = next, addr != end);
2354         return 0;
2355 }
2356
2357 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2358                         unsigned long addr, unsigned long end,
2359                         unsigned long pfn, pgprot_t prot)
2360 {
2361         p4d_t *p4d;
2362         unsigned long next;
2363         int err;
2364
2365         pfn -= addr >> PAGE_SHIFT;
2366         p4d = p4d_alloc(mm, pgd, addr);
2367         if (!p4d)
2368                 return -ENOMEM;
2369         do {
2370                 next = p4d_addr_end(addr, end);
2371                 err = remap_pud_range(mm, p4d, addr, next,
2372                                 pfn + (addr >> PAGE_SHIFT), prot);
2373                 if (err)
2374                         return err;
2375         } while (p4d++, addr = next, addr != end);
2376         return 0;
2377 }
2378
2379 /*
2380  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2381  * must have pre-validated the caching bits of the pgprot_t.
2382  */
2383 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2384                 unsigned long pfn, unsigned long size, pgprot_t prot)
2385 {
2386         pgd_t *pgd;
2387         unsigned long next;
2388         unsigned long end = addr + PAGE_ALIGN(size);
2389         struct mm_struct *mm = vma->vm_mm;
2390         int err;
2391
2392         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2393                 return -EINVAL;
2394
2395         /*
2396          * Physically remapped pages are special. Tell the
2397          * rest of the world about it:
2398          *   VM_IO tells people not to look at these pages
2399          *      (accesses can have side effects).
2400          *   VM_PFNMAP tells the core MM that the base pages are just
2401          *      raw PFN mappings, and do not have a "struct page" associated
2402          *      with them.
2403          *   VM_DONTEXPAND
2404          *      Disable vma merging and expanding with mremap().
2405          *   VM_DONTDUMP
2406          *      Omit vma from core dump, even when VM_IO turned off.
2407          *
2408          * There's a horrible special case to handle copy-on-write
2409          * behaviour that some programs depend on. We mark the "original"
2410          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2411          * See vm_normal_page() for details.
2412          */
2413         if (is_cow_mapping(vma->vm_flags)) {
2414                 if (addr != vma->vm_start || end != vma->vm_end)
2415                         return -EINVAL;
2416                 vma->vm_pgoff = pfn;
2417         }
2418
2419         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2420
2421         BUG_ON(addr >= end);
2422         pfn -= addr >> PAGE_SHIFT;
2423         pgd = pgd_offset(mm, addr);
2424         flush_cache_range(vma, addr, end);
2425         do {
2426                 next = pgd_addr_end(addr, end);
2427                 err = remap_p4d_range(mm, pgd, addr, next,
2428                                 pfn + (addr >> PAGE_SHIFT), prot);
2429                 if (err)
2430                         return err;
2431         } while (pgd++, addr = next, addr != end);
2432
2433         return 0;
2434 }
2435
2436 /**
2437  * remap_pfn_range - remap kernel memory to userspace
2438  * @vma: user vma to map to
2439  * @addr: target page aligned user address to start at
2440  * @pfn: page frame number of kernel physical memory address
2441  * @size: size of mapping area
2442  * @prot: page protection flags for this mapping
2443  *
2444  * Note: this is only safe if the mm semaphore is held when called.
2445  *
2446  * Return: %0 on success, negative error code otherwise.
2447  */
2448 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2449                     unsigned long pfn, unsigned long size, pgprot_t prot)
2450 {
2451         int err;
2452
2453         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2454         if (err)
2455                 return -EINVAL;
2456
2457         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2458         if (err)
2459                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2460         return err;
2461 }
2462 EXPORT_SYMBOL(remap_pfn_range);
2463
2464 /**
2465  * vm_iomap_memory - remap memory to userspace
2466  * @vma: user vma to map to
2467  * @start: start of the physical memory to be mapped
2468  * @len: size of area
2469  *
2470  * This is a simplified io_remap_pfn_range() for common driver use. The
2471  * driver just needs to give us the physical memory range to be mapped,
2472  * we'll figure out the rest from the vma information.
2473  *
2474  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2475  * whatever write-combining details or similar.
2476  *
2477  * Return: %0 on success, negative error code otherwise.
2478  */
2479 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2480 {
2481         unsigned long vm_len, pfn, pages;
2482
2483         /* Check that the physical memory area passed in looks valid */
2484         if (start + len < start)
2485                 return -EINVAL;
2486         /*
2487          * You *really* shouldn't map things that aren't page-aligned,
2488          * but we've historically allowed it because IO memory might
2489          * just have smaller alignment.
2490          */
2491         len += start & ~PAGE_MASK;
2492         pfn = start >> PAGE_SHIFT;
2493         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2494         if (pfn + pages < pfn)
2495                 return -EINVAL;
2496
2497         /* We start the mapping 'vm_pgoff' pages into the area */
2498         if (vma->vm_pgoff > pages)
2499                 return -EINVAL;
2500         pfn += vma->vm_pgoff;
2501         pages -= vma->vm_pgoff;
2502
2503         /* Can we fit all of the mapping? */
2504         vm_len = vma->vm_end - vma->vm_start;
2505         if (vm_len >> PAGE_SHIFT > pages)
2506                 return -EINVAL;
2507
2508         /* Ok, let it rip */
2509         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2510 }
2511 EXPORT_SYMBOL(vm_iomap_memory);
2512
2513 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2514                                      unsigned long addr, unsigned long end,
2515                                      pte_fn_t fn, void *data, bool create,
2516                                      pgtbl_mod_mask *mask)
2517 {
2518         pte_t *pte, *mapped_pte;
2519         int err = 0;
2520         spinlock_t *ptl;
2521
2522         if (create) {
2523                 mapped_pte = pte = (mm == &init_mm) ?
2524                         pte_alloc_kernel_track(pmd, addr, mask) :
2525                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2526                 if (!pte)
2527                         return -ENOMEM;
2528         } else {
2529                 mapped_pte = pte = (mm == &init_mm) ?
2530                         pte_offset_kernel(pmd, addr) :
2531                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2532         }
2533
2534         BUG_ON(pmd_huge(*pmd));
2535
2536         arch_enter_lazy_mmu_mode();
2537
2538         if (fn) {
2539                 do {
2540                         if (create || !pte_none(*pte)) {
2541                                 err = fn(pte++, addr, data);
2542                                 if (err)
2543                                         break;
2544                         }
2545                 } while (addr += PAGE_SIZE, addr != end);
2546         }
2547         *mask |= PGTBL_PTE_MODIFIED;
2548
2549         arch_leave_lazy_mmu_mode();
2550
2551         if (mm != &init_mm)
2552                 pte_unmap_unlock(mapped_pte, ptl);
2553         return err;
2554 }
2555
2556 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2557                                      unsigned long addr, unsigned long end,
2558                                      pte_fn_t fn, void *data, bool create,
2559                                      pgtbl_mod_mask *mask)
2560 {
2561         pmd_t *pmd;
2562         unsigned long next;
2563         int err = 0;
2564
2565         BUG_ON(pud_huge(*pud));
2566
2567         if (create) {
2568                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2569                 if (!pmd)
2570                         return -ENOMEM;
2571         } else {
2572                 pmd = pmd_offset(pud, addr);
2573         }
2574         do {
2575                 next = pmd_addr_end(addr, end);
2576                 if (pmd_none(*pmd) && !create)
2577                         continue;
2578                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2579                         return -EINVAL;
2580                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2581                         if (!create)
2582                                 continue;
2583                         pmd_clear_bad(pmd);
2584                 }
2585                 err = apply_to_pte_range(mm, pmd, addr, next,
2586                                          fn, data, create, mask);
2587                 if (err)
2588                         break;
2589         } while (pmd++, addr = next, addr != end);
2590
2591         return err;
2592 }
2593
2594 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2595                                      unsigned long addr, unsigned long end,
2596                                      pte_fn_t fn, void *data, bool create,
2597                                      pgtbl_mod_mask *mask)
2598 {
2599         pud_t *pud;
2600         unsigned long next;
2601         int err = 0;
2602
2603         if (create) {
2604                 pud = pud_alloc_track(mm, p4d, addr, mask);
2605                 if (!pud)
2606                         return -ENOMEM;
2607         } else {
2608                 pud = pud_offset(p4d, addr);
2609         }
2610         do {
2611                 next = pud_addr_end(addr, end);
2612                 if (pud_none(*pud) && !create)
2613                         continue;
2614                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2615                         return -EINVAL;
2616                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2617                         if (!create)
2618                                 continue;
2619                         pud_clear_bad(pud);
2620                 }
2621                 err = apply_to_pmd_range(mm, pud, addr, next,
2622                                          fn, data, create, mask);
2623                 if (err)
2624                         break;
2625         } while (pud++, addr = next, addr != end);
2626
2627         return err;
2628 }
2629
2630 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2631                                      unsigned long addr, unsigned long end,
2632                                      pte_fn_t fn, void *data, bool create,
2633                                      pgtbl_mod_mask *mask)
2634 {
2635         p4d_t *p4d;
2636         unsigned long next;
2637         int err = 0;
2638
2639         if (create) {
2640                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2641                 if (!p4d)
2642                         return -ENOMEM;
2643         } else {
2644                 p4d = p4d_offset(pgd, addr);
2645         }
2646         do {
2647                 next = p4d_addr_end(addr, end);
2648                 if (p4d_none(*p4d) && !create)
2649                         continue;
2650                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2651                         return -EINVAL;
2652                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2653                         if (!create)
2654                                 continue;
2655                         p4d_clear_bad(p4d);
2656                 }
2657                 err = apply_to_pud_range(mm, p4d, addr, next,
2658                                          fn, data, create, mask);
2659                 if (err)
2660                         break;
2661         } while (p4d++, addr = next, addr != end);
2662
2663         return err;
2664 }
2665
2666 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2667                                  unsigned long size, pte_fn_t fn,
2668                                  void *data, bool create)
2669 {
2670         pgd_t *pgd;
2671         unsigned long start = addr, next;
2672         unsigned long end = addr + size;
2673         pgtbl_mod_mask mask = 0;
2674         int err = 0;
2675
2676         if (WARN_ON(addr >= end))
2677                 return -EINVAL;
2678
2679         pgd = pgd_offset(mm, addr);
2680         do {
2681                 next = pgd_addr_end(addr, end);
2682                 if (pgd_none(*pgd) && !create)
2683                         continue;
2684                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2685                         return -EINVAL;
2686                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2687                         if (!create)
2688                                 continue;
2689                         pgd_clear_bad(pgd);
2690                 }
2691                 err = apply_to_p4d_range(mm, pgd, addr, next,
2692                                          fn, data, create, &mask);
2693                 if (err)
2694                         break;
2695         } while (pgd++, addr = next, addr != end);
2696
2697         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2698                 arch_sync_kernel_mappings(start, start + size);
2699
2700         return err;
2701 }
2702
2703 /*
2704  * Scan a region of virtual memory, filling in page tables as necessary
2705  * and calling a provided function on each leaf page table.
2706  */
2707 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2708                         unsigned long size, pte_fn_t fn, void *data)
2709 {
2710         return __apply_to_page_range(mm, addr, size, fn, data, true);
2711 }
2712 EXPORT_SYMBOL_GPL(apply_to_page_range);
2713
2714 /*
2715  * Scan a region of virtual memory, calling a provided function on
2716  * each leaf page table where it exists.
2717  *
2718  * Unlike apply_to_page_range, this does _not_ fill in page tables
2719  * where they are absent.
2720  */
2721 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2722                                  unsigned long size, pte_fn_t fn, void *data)
2723 {
2724         return __apply_to_page_range(mm, addr, size, fn, data, false);
2725 }
2726 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2727
2728 /*
2729  * handle_pte_fault chooses page fault handler according to an entry which was
2730  * read non-atomically.  Before making any commitment, on those architectures
2731  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2732  * parts, do_swap_page must check under lock before unmapping the pte and
2733  * proceeding (but do_wp_page is only called after already making such a check;
2734  * and do_anonymous_page can safely check later on).
2735  */
2736 static inline int pte_unmap_same(struct vm_fault *vmf)
2737 {
2738         int same = 1;
2739 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2740         if (sizeof(pte_t) > sizeof(unsigned long)) {
2741                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2742                 spin_lock(ptl);
2743                 same = pte_same(*vmf->pte, vmf->orig_pte);
2744                 spin_unlock(ptl);
2745         }
2746 #endif
2747         pte_unmap(vmf->pte);
2748         vmf->pte = NULL;
2749         return same;
2750 }
2751
2752 static inline bool cow_user_page(struct page *dst, struct page *src,
2753                                  struct vm_fault *vmf)
2754 {
2755         bool ret;
2756         void *kaddr;
2757         void __user *uaddr;
2758         bool locked = false;
2759         struct vm_area_struct *vma = vmf->vma;
2760         struct mm_struct *mm = vma->vm_mm;
2761         unsigned long addr = vmf->address;
2762
2763         if (likely(src)) {
2764                 copy_user_highpage(dst, src, addr, vma);
2765                 return true;
2766         }
2767
2768         /*
2769          * If the source page was a PFN mapping, we don't have
2770          * a "struct page" for it. We do a best-effort copy by
2771          * just copying from the original user address. If that
2772          * fails, we just zero-fill it. Live with it.
2773          */
2774         kaddr = kmap_atomic(dst);
2775         uaddr = (void __user *)(addr & PAGE_MASK);
2776
2777         /*
2778          * On architectures with software "accessed" bits, we would
2779          * take a double page fault, so mark it accessed here.
2780          */
2781         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2782                 pte_t entry;
2783
2784                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2785                 locked = true;
2786                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2787                         /*
2788                          * Other thread has already handled the fault
2789                          * and update local tlb only
2790                          */
2791                         update_mmu_tlb(vma, addr, vmf->pte);
2792                         ret = false;
2793                         goto pte_unlock;
2794                 }
2795
2796                 entry = pte_mkyoung(vmf->orig_pte);
2797                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2798                         update_mmu_cache(vma, addr, vmf->pte);
2799         }
2800
2801         /*
2802          * This really shouldn't fail, because the page is there
2803          * in the page tables. But it might just be unreadable,
2804          * in which case we just give up and fill the result with
2805          * zeroes.
2806          */
2807         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2808                 if (locked)
2809                         goto warn;
2810
2811                 /* Re-validate under PTL if the page is still mapped */
2812                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2813                 locked = true;
2814                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2815                         /* The PTE changed under us, update local tlb */
2816                         update_mmu_tlb(vma, addr, vmf->pte);
2817                         ret = false;
2818                         goto pte_unlock;
2819                 }
2820
2821                 /*
2822                  * The same page can be mapped back since last copy attempt.
2823                  * Try to copy again under PTL.
2824                  */
2825                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2826                         /*
2827                          * Give a warn in case there can be some obscure
2828                          * use-case
2829                          */
2830 warn:
2831                         WARN_ON_ONCE(1);
2832                         clear_page(kaddr);
2833                 }
2834         }
2835
2836         ret = true;
2837
2838 pte_unlock:
2839         if (locked)
2840                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2841         kunmap_atomic(kaddr);
2842         flush_dcache_page(dst);
2843
2844         return ret;
2845 }
2846
2847 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2848 {
2849         struct file *vm_file = vma->vm_file;
2850
2851         if (vm_file)
2852                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2853
2854         /*
2855          * Special mappings (e.g. VDSO) do not have any file so fake
2856          * a default GFP_KERNEL for them.
2857          */
2858         return GFP_KERNEL;
2859 }
2860
2861 /*
2862  * Notify the address space that the page is about to become writable so that
2863  * it can prohibit this or wait for the page to get into an appropriate state.
2864  *
2865  * We do this without the lock held, so that it can sleep if it needs to.
2866  */
2867 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2868 {
2869         vm_fault_t ret;
2870         struct page *page = vmf->page;
2871         unsigned int old_flags = vmf->flags;
2872
2873         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2874
2875         if (vmf->vma->vm_file &&
2876             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2877                 return VM_FAULT_SIGBUS;
2878
2879         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2880         /* Restore original flags so that caller is not surprised */
2881         vmf->flags = old_flags;
2882         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2883                 return ret;
2884         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2885                 lock_page(page);
2886                 if (!page->mapping) {
2887                         unlock_page(page);
2888                         return 0; /* retry */
2889                 }
2890                 ret |= VM_FAULT_LOCKED;
2891         } else
2892                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2893         return ret;
2894 }
2895
2896 /*
2897  * Handle dirtying of a page in shared file mapping on a write fault.
2898  *
2899  * The function expects the page to be locked and unlocks it.
2900  */
2901 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2902 {
2903         struct vm_area_struct *vma = vmf->vma;
2904         struct address_space *mapping;
2905         struct page *page = vmf->page;
2906         bool dirtied;
2907         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2908
2909         dirtied = set_page_dirty(page);
2910         VM_BUG_ON_PAGE(PageAnon(page), page);
2911         /*
2912          * Take a local copy of the address_space - page.mapping may be zeroed
2913          * by truncate after unlock_page().   The address_space itself remains
2914          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2915          * release semantics to prevent the compiler from undoing this copying.
2916          */
2917         mapping = page_rmapping(page);
2918         unlock_page(page);
2919
2920         if (!page_mkwrite)
2921                 file_update_time(vma->vm_file);
2922
2923         /*
2924          * Throttle page dirtying rate down to writeback speed.
2925          *
2926          * mapping may be NULL here because some device drivers do not
2927          * set page.mapping but still dirty their pages
2928          *
2929          * Drop the mmap_lock before waiting on IO, if we can. The file
2930          * is pinning the mapping, as per above.
2931          */
2932         if ((dirtied || page_mkwrite) && mapping) {
2933                 struct file *fpin;
2934
2935                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2936                 balance_dirty_pages_ratelimited(mapping);
2937                 if (fpin) {
2938                         fput(fpin);
2939                         return VM_FAULT_RETRY;
2940                 }
2941         }
2942
2943         return 0;
2944 }
2945
2946 /*
2947  * Handle write page faults for pages that can be reused in the current vma
2948  *
2949  * This can happen either due to the mapping being with the VM_SHARED flag,
2950  * or due to us being the last reference standing to the page. In either
2951  * case, all we need to do here is to mark the page as writable and update
2952  * any related book-keeping.
2953  */
2954 static inline void wp_page_reuse(struct vm_fault *vmf)
2955         __releases(vmf->ptl)
2956 {
2957         struct vm_area_struct *vma = vmf->vma;
2958         struct page *page = vmf->page;
2959         pte_t entry;
2960         /*
2961          * Clear the pages cpupid information as the existing
2962          * information potentially belongs to a now completely
2963          * unrelated process.
2964          */
2965         if (page)
2966                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2967
2968         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2969         entry = pte_mkyoung(vmf->orig_pte);
2970         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2971         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2972                 update_mmu_cache(vma, vmf->address, vmf->pte);
2973         pte_unmap_unlock(vmf->pte, vmf->ptl);
2974         count_vm_event(PGREUSE);
2975 }
2976
2977 /*
2978  * Handle the case of a page which we actually need to copy to a new page.
2979  *
2980  * Called with mmap_lock locked and the old page referenced, but
2981  * without the ptl held.
2982  *
2983  * High level logic flow:
2984  *
2985  * - Allocate a page, copy the content of the old page to the new one.
2986  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2987  * - Take the PTL. If the pte changed, bail out and release the allocated page
2988  * - If the pte is still the way we remember it, update the page table and all
2989  *   relevant references. This includes dropping the reference the page-table
2990  *   held to the old page, as well as updating the rmap.
2991  * - In any case, unlock the PTL and drop the reference we took to the old page.
2992  */
2993 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2994 {
2995         struct vm_area_struct *vma = vmf->vma;
2996         struct mm_struct *mm = vma->vm_mm;
2997         struct page *old_page = vmf->page;
2998         struct page *new_page = NULL;
2999         pte_t entry;
3000         int page_copied = 0;
3001         struct mmu_notifier_range range;
3002
3003         if (unlikely(anon_vma_prepare(vma)))
3004                 goto oom;
3005
3006         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3007                 new_page = alloc_zeroed_user_highpage_movable(vma,
3008                                                               vmf->address);
3009                 if (!new_page)
3010                         goto oom;
3011         } else {
3012                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3013                                 vmf->address);
3014                 if (!new_page)
3015                         goto oom;
3016
3017                 if (!cow_user_page(new_page, old_page, vmf)) {
3018                         /*
3019                          * COW failed, if the fault was solved by other,
3020                          * it's fine. If not, userspace would re-fault on
3021                          * the same address and we will handle the fault
3022                          * from the second attempt.
3023                          */
3024                         put_page(new_page);
3025                         if (old_page)
3026                                 put_page(old_page);
3027                         return 0;
3028                 }
3029         }
3030
3031         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3032                 goto oom_free_new;
3033         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3034
3035         __SetPageUptodate(new_page);
3036
3037         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3038                                 vmf->address & PAGE_MASK,
3039                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3040         mmu_notifier_invalidate_range_start(&range);
3041
3042         /*
3043          * Re-check the pte - we dropped the lock
3044          */
3045         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3046         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3047                 if (old_page) {
3048                         if (!PageAnon(old_page)) {
3049                                 dec_mm_counter_fast(mm,
3050                                                 mm_counter_file(old_page));
3051                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3052                         }
3053                 } else {
3054                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3055                 }
3056                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3057                 entry = mk_pte(new_page, vma->vm_page_prot);
3058                 entry = pte_sw_mkyoung(entry);
3059                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3060
3061                 /*
3062                  * Clear the pte entry and flush it first, before updating the
3063                  * pte with the new entry, to keep TLBs on different CPUs in
3064                  * sync. This code used to set the new PTE then flush TLBs, but
3065                  * that left a window where the new PTE could be loaded into
3066                  * some TLBs while the old PTE remains in others.
3067                  */
3068                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3069                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3070                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3071                 /*
3072                  * We call the notify macro here because, when using secondary
3073                  * mmu page tables (such as kvm shadow page tables), we want the
3074                  * new page to be mapped directly into the secondary page table.
3075                  */
3076                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3077                 update_mmu_cache(vma, vmf->address, vmf->pte);
3078                 if (old_page) {
3079                         /*
3080                          * Only after switching the pte to the new page may
3081                          * we remove the mapcount here. Otherwise another
3082                          * process may come and find the rmap count decremented
3083                          * before the pte is switched to the new page, and
3084                          * "reuse" the old page writing into it while our pte
3085                          * here still points into it and can be read by other
3086                          * threads.
3087                          *
3088                          * The critical issue is to order this
3089                          * page_remove_rmap with the ptp_clear_flush above.
3090                          * Those stores are ordered by (if nothing else,)
3091                          * the barrier present in the atomic_add_negative
3092                          * in page_remove_rmap.
3093                          *
3094                          * Then the TLB flush in ptep_clear_flush ensures that
3095                          * no process can access the old page before the
3096                          * decremented mapcount is visible. And the old page
3097                          * cannot be reused until after the decremented
3098                          * mapcount is visible. So transitively, TLBs to
3099                          * old page will be flushed before it can be reused.
3100                          */
3101                         page_remove_rmap(old_page, false);
3102                 }
3103
3104                 /* Free the old page.. */
3105                 new_page = old_page;
3106                 page_copied = 1;
3107         } else {
3108                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3109         }
3110
3111         if (new_page)
3112                 put_page(new_page);
3113
3114         pte_unmap_unlock(vmf->pte, vmf->ptl);
3115         /*
3116          * No need to double call mmu_notifier->invalidate_range() callback as
3117          * the above ptep_clear_flush_notify() did already call it.
3118          */
3119         mmu_notifier_invalidate_range_only_end(&range);
3120         if (old_page) {
3121                 /*
3122                  * Don't let another task, with possibly unlocked vma,
3123                  * keep the mlocked page.
3124                  */
3125                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3126                         lock_page(old_page);    /* LRU manipulation */
3127                         if (PageMlocked(old_page))
3128                                 munlock_vma_page(old_page);
3129                         unlock_page(old_page);
3130                 }
3131                 if (page_copied)
3132                         free_swap_cache(old_page);
3133                 put_page(old_page);
3134         }
3135         return page_copied ? VM_FAULT_WRITE : 0;
3136 oom_free_new:
3137         put_page(new_page);
3138 oom:
3139         if (old_page)
3140                 put_page(old_page);
3141         return VM_FAULT_OOM;
3142 }
3143
3144 /**
3145  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3146  *                        writeable once the page is prepared
3147  *
3148  * @vmf: structure describing the fault
3149  *
3150  * This function handles all that is needed to finish a write page fault in a
3151  * shared mapping due to PTE being read-only once the mapped page is prepared.
3152  * It handles locking of PTE and modifying it.
3153  *
3154  * The function expects the page to be locked or other protection against
3155  * concurrent faults / writeback (such as DAX radix tree locks).
3156  *
3157  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3158  * we acquired PTE lock.
3159  */
3160 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3161 {
3162         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3163         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3164                                        &vmf->ptl);
3165         /*
3166          * We might have raced with another page fault while we released the
3167          * pte_offset_map_lock.
3168          */
3169         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3170                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3171                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3172                 return VM_FAULT_NOPAGE;
3173         }
3174         wp_page_reuse(vmf);
3175         return 0;
3176 }
3177
3178 /*
3179  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3180  * mapping
3181  */
3182 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3183 {
3184         struct vm_area_struct *vma = vmf->vma;
3185
3186         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3187                 vm_fault_t ret;
3188
3189                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3190                 vmf->flags |= FAULT_FLAG_MKWRITE;
3191                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3192                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3193                         return ret;
3194                 return finish_mkwrite_fault(vmf);
3195         }
3196         wp_page_reuse(vmf);
3197         return VM_FAULT_WRITE;
3198 }
3199
3200 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3201         __releases(vmf->ptl)
3202 {
3203         struct vm_area_struct *vma = vmf->vma;
3204         vm_fault_t ret = VM_FAULT_WRITE;
3205
3206         get_page(vmf->page);
3207
3208         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3209                 vm_fault_t tmp;
3210
3211                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3212                 tmp = do_page_mkwrite(vmf);
3213                 if (unlikely(!tmp || (tmp &
3214                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3215                         put_page(vmf->page);
3216                         return tmp;
3217                 }
3218                 tmp = finish_mkwrite_fault(vmf);
3219                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3220                         unlock_page(vmf->page);
3221                         put_page(vmf->page);
3222                         return tmp;
3223                 }
3224         } else {
3225                 wp_page_reuse(vmf);
3226                 lock_page(vmf->page);
3227         }
3228         ret |= fault_dirty_shared_page(vmf);
3229         put_page(vmf->page);
3230
3231         return ret;
3232 }
3233
3234 /*
3235  * This routine handles present pages, when users try to write
3236  * to a shared page. It is done by copying the page to a new address
3237  * and decrementing the shared-page counter for the old page.
3238  *
3239  * Note that this routine assumes that the protection checks have been
3240  * done by the caller (the low-level page fault routine in most cases).
3241  * Thus we can safely just mark it writable once we've done any necessary
3242  * COW.
3243  *
3244  * We also mark the page dirty at this point even though the page will
3245  * change only once the write actually happens. This avoids a few races,
3246  * and potentially makes it more efficient.
3247  *
3248  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3249  * but allow concurrent faults), with pte both mapped and locked.
3250  * We return with mmap_lock still held, but pte unmapped and unlocked.
3251  */
3252 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3253         __releases(vmf->ptl)
3254 {
3255         struct vm_area_struct *vma = vmf->vma;
3256
3257         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3258                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3259                 return handle_userfault(vmf, VM_UFFD_WP);
3260         }
3261
3262         /*
3263          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3264          * is flushed in this case before copying.
3265          */
3266         if (unlikely(userfaultfd_wp(vmf->vma) &&
3267                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3268                 flush_tlb_page(vmf->vma, vmf->address);
3269
3270         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3271         if (!vmf->page) {
3272                 /*
3273                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3274                  * VM_PFNMAP VMA.
3275                  *
3276                  * We should not cow pages in a shared writeable mapping.
3277                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3278                  */
3279                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3280                                      (VM_WRITE|VM_SHARED))
3281                         return wp_pfn_shared(vmf);
3282
3283                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3284                 return wp_page_copy(vmf);
3285         }
3286
3287         /*
3288          * Take out anonymous pages first, anonymous shared vmas are
3289          * not dirty accountable.
3290          */
3291         if (PageAnon(vmf->page)) {
3292                 struct page *page = vmf->page;
3293
3294                 /* PageKsm() doesn't necessarily raise the page refcount */
3295                 if (PageKsm(page) || page_count(page) != 1)
3296                         goto copy;
3297                 if (!trylock_page(page))
3298                         goto copy;
3299                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3300                         unlock_page(page);
3301                         goto copy;
3302                 }
3303                 /*
3304                  * Ok, we've got the only map reference, and the only
3305                  * page count reference, and the page is locked,
3306                  * it's dark out, and we're wearing sunglasses. Hit it.
3307                  */
3308                 unlock_page(page);
3309                 wp_page_reuse(vmf);
3310                 return VM_FAULT_WRITE;
3311         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3312                                         (VM_WRITE|VM_SHARED))) {
3313                 return wp_page_shared(vmf);
3314         }
3315 copy:
3316         /*
3317          * Ok, we need to copy. Oh, well..
3318          */
3319         get_page(vmf->page);
3320
3321         pte_unmap_unlock(vmf->pte, vmf->ptl);
3322         return wp_page_copy(vmf);
3323 }
3324
3325 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3326                 unsigned long start_addr, unsigned long end_addr,
3327                 struct zap_details *details)
3328 {
3329         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3330 }
3331
3332 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3333                                             pgoff_t first_index,
3334                                             pgoff_t last_index,
3335                                             struct zap_details *details)
3336 {
3337         struct vm_area_struct *vma;
3338         pgoff_t vba, vea, zba, zea;
3339
3340         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3341                 vba = vma->vm_pgoff;
3342                 vea = vba + vma_pages(vma) - 1;
3343                 zba = first_index;
3344                 if (zba < vba)
3345                         zba = vba;
3346                 zea = last_index;
3347                 if (zea > vea)
3348                         zea = vea;
3349
3350                 unmap_mapping_range_vma(vma,
3351                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3352                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3353                                 details);
3354         }
3355 }
3356
3357 /**
3358  * unmap_mapping_folio() - Unmap single folio from processes.
3359  * @folio: The locked folio to be unmapped.
3360  *
3361  * Unmap this folio from any userspace process which still has it mmaped.
3362  * Typically, for efficiency, the range of nearby pages has already been
3363  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3364  * truncation or invalidation holds the lock on a folio, it may find that
3365  * the page has been remapped again: and then uses unmap_mapping_folio()
3366  * to unmap it finally.
3367  */
3368 void unmap_mapping_folio(struct folio *folio)
3369 {
3370         struct address_space *mapping = folio->mapping;
3371         struct zap_details details = { };
3372         pgoff_t first_index;
3373         pgoff_t last_index;
3374
3375         VM_BUG_ON(!folio_test_locked(folio));
3376
3377         first_index = folio->index;
3378         last_index = folio->index + folio_nr_pages(folio) - 1;
3379
3380         details.zap_mapping = mapping;
3381         details.single_folio = folio;
3382
3383         i_mmap_lock_write(mapping);
3384         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3385                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3386                                          last_index, &details);
3387         i_mmap_unlock_write(mapping);
3388 }
3389
3390 /**
3391  * unmap_mapping_pages() - Unmap pages from processes.
3392  * @mapping: The address space containing pages to be unmapped.
3393  * @start: Index of first page to be unmapped.
3394  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3395  * @even_cows: Whether to unmap even private COWed pages.
3396  *
3397  * Unmap the pages in this address space from any userspace process which
3398  * has them mmaped.  Generally, you want to remove COWed pages as well when
3399  * a file is being truncated, but not when invalidating pages from the page
3400  * cache.
3401  */
3402 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3403                 pgoff_t nr, bool even_cows)
3404 {
3405         struct zap_details details = { };
3406         pgoff_t first_index = start;
3407         pgoff_t last_index = start + nr - 1;
3408
3409         details.zap_mapping = even_cows ? NULL : mapping;
3410         if (last_index < first_index)
3411                 last_index = ULONG_MAX;
3412
3413         i_mmap_lock_write(mapping);
3414         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3415                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3416                                          last_index, &details);
3417         i_mmap_unlock_write(mapping);
3418 }
3419 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3420
3421 /**
3422  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3423  * address_space corresponding to the specified byte range in the underlying
3424  * file.
3425  *
3426  * @mapping: the address space containing mmaps to be unmapped.
3427  * @holebegin: byte in first page to unmap, relative to the start of
3428  * the underlying file.  This will be rounded down to a PAGE_SIZE
3429  * boundary.  Note that this is different from truncate_pagecache(), which
3430  * must keep the partial page.  In contrast, we must get rid of
3431  * partial pages.
3432  * @holelen: size of prospective hole in bytes.  This will be rounded
3433  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3434  * end of the file.
3435  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3436  * but 0 when invalidating pagecache, don't throw away private data.
3437  */
3438 void unmap_mapping_range(struct address_space *mapping,
3439                 loff_t const holebegin, loff_t const holelen, int even_cows)
3440 {
3441         pgoff_t hba = holebegin >> PAGE_SHIFT;
3442         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3443
3444         /* Check for overflow. */
3445         if (sizeof(holelen) > sizeof(hlen)) {
3446                 long long holeend =
3447                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3448                 if (holeend & ~(long long)ULONG_MAX)
3449                         hlen = ULONG_MAX - hba + 1;
3450         }
3451
3452         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3453 }
3454 EXPORT_SYMBOL(unmap_mapping_range);
3455
3456 /*
3457  * Restore a potential device exclusive pte to a working pte entry
3458  */
3459 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3460 {
3461         struct page *page = vmf->page;
3462         struct vm_area_struct *vma = vmf->vma;
3463         struct mmu_notifier_range range;
3464
3465         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3466                 return VM_FAULT_RETRY;
3467         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3468                                 vma->vm_mm, vmf->address & PAGE_MASK,
3469                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3470         mmu_notifier_invalidate_range_start(&range);
3471
3472         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3473                                 &vmf->ptl);
3474         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3475                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3476
3477         pte_unmap_unlock(vmf->pte, vmf->ptl);
3478         unlock_page(page);
3479
3480         mmu_notifier_invalidate_range_end(&range);
3481         return 0;
3482 }
3483
3484 /*
3485  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3486  * but allow concurrent faults), and pte mapped but not yet locked.
3487  * We return with pte unmapped and unlocked.
3488  *
3489  * We return with the mmap_lock locked or unlocked in the same cases
3490  * as does filemap_fault().
3491  */
3492 vm_fault_t do_swap_page(struct vm_fault *vmf)
3493 {
3494         struct vm_area_struct *vma = vmf->vma;
3495         struct page *page = NULL, *swapcache;
3496         struct swap_info_struct *si = NULL;
3497         swp_entry_t entry;
3498         pte_t pte;
3499         int locked;
3500         int exclusive = 0;
3501         vm_fault_t ret = 0;
3502         void *shadow = NULL;
3503
3504         if (!pte_unmap_same(vmf))
3505                 goto out;
3506
3507         entry = pte_to_swp_entry(vmf->orig_pte);
3508         if (unlikely(non_swap_entry(entry))) {
3509                 if (is_migration_entry(entry)) {
3510                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3511                                              vmf->address);
3512                 } else if (is_device_exclusive_entry(entry)) {
3513                         vmf->page = pfn_swap_entry_to_page(entry);
3514                         ret = remove_device_exclusive_entry(vmf);
3515                 } else if (is_device_private_entry(entry)) {
3516                         vmf->page = pfn_swap_entry_to_page(entry);
3517                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3518                 } else if (is_hwpoison_entry(entry)) {
3519                         ret = VM_FAULT_HWPOISON;
3520                 } else {
3521                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3522                         ret = VM_FAULT_SIGBUS;
3523                 }
3524                 goto out;
3525         }
3526
3527         /* Prevent swapoff from happening to us. */
3528         si = get_swap_device(entry);
3529         if (unlikely(!si))
3530                 goto out;
3531
3532         page = lookup_swap_cache(entry, vma, vmf->address);
3533         swapcache = page;
3534
3535         if (!page) {
3536                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3537                     __swap_count(entry) == 1) {
3538                         /* skip swapcache */
3539                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3540                                                         vmf->address);
3541                         if (page) {
3542                                 __SetPageLocked(page);
3543                                 __SetPageSwapBacked(page);
3544
3545                                 if (mem_cgroup_swapin_charge_page(page,
3546                                         vma->vm_mm, GFP_KERNEL, entry)) {
3547                                         ret = VM_FAULT_OOM;
3548                                         goto out_page;
3549                                 }
3550                                 mem_cgroup_swapin_uncharge_swap(entry);
3551
3552                                 shadow = get_shadow_from_swap_cache(entry);
3553                                 if (shadow)
3554                                         workingset_refault(page_folio(page),
3555                                                                 shadow);
3556
3557                                 lru_cache_add(page);
3558
3559                                 /* To provide entry to swap_readpage() */
3560                                 set_page_private(page, entry.val);
3561                                 swap_readpage(page, true);
3562                                 set_page_private(page, 0);
3563                         }
3564                 } else {
3565                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3566                                                 vmf);
3567                         swapcache = page;
3568                 }
3569
3570                 if (!page) {
3571                         /*
3572                          * Back out if somebody else faulted in this pte
3573                          * while we released the pte lock.
3574                          */
3575                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3576                                         vmf->address, &vmf->ptl);
3577                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3578                                 ret = VM_FAULT_OOM;
3579                         goto unlock;
3580                 }
3581
3582                 /* Had to read the page from swap area: Major fault */
3583                 ret = VM_FAULT_MAJOR;
3584                 count_vm_event(PGMAJFAULT);
3585                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3586         } else if (PageHWPoison(page)) {
3587                 /*
3588                  * hwpoisoned dirty swapcache pages are kept for killing
3589                  * owner processes (which may be unknown at hwpoison time)
3590                  */
3591                 ret = VM_FAULT_HWPOISON;
3592                 goto out_release;
3593         }
3594
3595         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3596
3597         if (!locked) {
3598                 ret |= VM_FAULT_RETRY;
3599                 goto out_release;
3600         }
3601
3602         /*
3603          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3604          * release the swapcache from under us.  The page pin, and pte_same
3605          * test below, are not enough to exclude that.  Even if it is still
3606          * swapcache, we need to check that the page's swap has not changed.
3607          */
3608         if (unlikely((!PageSwapCache(page) ||
3609                         page_private(page) != entry.val)) && swapcache)
3610                 goto out_page;
3611
3612         page = ksm_might_need_to_copy(page, vma, vmf->address);
3613         if (unlikely(!page)) {
3614                 ret = VM_FAULT_OOM;
3615                 page = swapcache;
3616                 goto out_page;
3617         }
3618
3619         cgroup_throttle_swaprate(page, GFP_KERNEL);
3620
3621         /*
3622          * Back out if somebody else already faulted in this pte.
3623          */
3624         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3625                         &vmf->ptl);
3626         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3627                 goto out_nomap;
3628
3629         if (unlikely(!PageUptodate(page))) {
3630                 ret = VM_FAULT_SIGBUS;
3631                 goto out_nomap;
3632         }
3633
3634         /*
3635          * The page isn't present yet, go ahead with the fault.
3636          *
3637          * Be careful about the sequence of operations here.
3638          * To get its accounting right, reuse_swap_page() must be called
3639          * while the page is counted on swap but not yet in mapcount i.e.
3640          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3641          * must be called after the swap_free(), or it will never succeed.
3642          */
3643
3644         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3645         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3646         pte = mk_pte(page, vma->vm_page_prot);
3647         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3648                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3649                 vmf->flags &= ~FAULT_FLAG_WRITE;
3650                 ret |= VM_FAULT_WRITE;
3651                 exclusive = RMAP_EXCLUSIVE;
3652         }
3653         flush_icache_page(vma, page);
3654         if (pte_swp_soft_dirty(vmf->orig_pte))
3655                 pte = pte_mksoft_dirty(pte);
3656         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3657                 pte = pte_mkuffd_wp(pte);
3658                 pte = pte_wrprotect(pte);
3659         }
3660         vmf->orig_pte = pte;
3661
3662         /* ksm created a completely new copy */
3663         if (unlikely(page != swapcache && swapcache)) {
3664                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3665                 lru_cache_add_inactive_or_unevictable(page, vma);
3666         } else {
3667                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3668         }
3669
3670         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3671         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3672
3673         swap_free(entry);
3674         if (mem_cgroup_swap_full(page) ||
3675             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3676                 try_to_free_swap(page);
3677         unlock_page(page);
3678         if (page != swapcache && swapcache) {
3679                 /*
3680                  * Hold the lock to avoid the swap entry to be reused
3681                  * until we take the PT lock for the pte_same() check
3682                  * (to avoid false positives from pte_same). For
3683                  * further safety release the lock after the swap_free
3684                  * so that the swap count won't change under a
3685                  * parallel locked swapcache.
3686                  */
3687                 unlock_page(swapcache);
3688                 put_page(swapcache);
3689         }
3690
3691         if (vmf->flags & FAULT_FLAG_WRITE) {
3692                 ret |= do_wp_page(vmf);
3693                 if (ret & VM_FAULT_ERROR)
3694                         ret &= VM_FAULT_ERROR;
3695                 goto out;
3696         }
3697
3698         /* No need to invalidate - it was non-present before */
3699         update_mmu_cache(vma, vmf->address, vmf->pte);
3700 unlock:
3701         pte_unmap_unlock(vmf->pte, vmf->ptl);
3702 out:
3703         if (si)
3704                 put_swap_device(si);
3705         return ret;
3706 out_nomap:
3707         pte_unmap_unlock(vmf->pte, vmf->ptl);
3708 out_page:
3709         unlock_page(page);
3710 out_release:
3711         put_page(page);
3712         if (page != swapcache && swapcache) {
3713                 unlock_page(swapcache);
3714                 put_page(swapcache);
3715         }
3716         if (si)
3717                 put_swap_device(si);
3718         return ret;
3719 }
3720
3721 /*
3722  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3723  * but allow concurrent faults), and pte mapped but not yet locked.
3724  * We return with mmap_lock still held, but pte unmapped and unlocked.
3725  */
3726 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3727 {
3728         struct vm_area_struct *vma = vmf->vma;
3729         struct page *page;
3730         vm_fault_t ret = 0;
3731         pte_t entry;
3732
3733         /* File mapping without ->vm_ops ? */
3734         if (vma->vm_flags & VM_SHARED)
3735                 return VM_FAULT_SIGBUS;
3736
3737         /*
3738          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3739          * pte_offset_map() on pmds where a huge pmd might be created
3740          * from a different thread.
3741          *
3742          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3743          * parallel threads are excluded by other means.
3744          *
3745          * Here we only have mmap_read_lock(mm).
3746          */
3747         if (pte_alloc(vma->vm_mm, vmf->pmd))
3748                 return VM_FAULT_OOM;
3749
3750         /* See comment in handle_pte_fault() */
3751         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3752                 return 0;
3753
3754         /* Use the zero-page for reads */
3755         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3756                         !mm_forbids_zeropage(vma->vm_mm)) {
3757                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3758                                                 vma->vm_page_prot));
3759                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3760                                 vmf->address, &vmf->ptl);
3761                 if (!pte_none(*vmf->pte)) {
3762                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3763                         goto unlock;
3764                 }
3765                 ret = check_stable_address_space(vma->vm_mm);
3766                 if (ret)
3767                         goto unlock;
3768                 /* Deliver the page fault to userland, check inside PT lock */
3769                 if (userfaultfd_missing(vma)) {
3770                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3771                         return handle_userfault(vmf, VM_UFFD_MISSING);
3772                 }
3773                 goto setpte;
3774         }
3775
3776         /* Allocate our own private page. */
3777         if (unlikely(anon_vma_prepare(vma)))
3778                 goto oom;
3779         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3780         if (!page)
3781                 goto oom;
3782
3783         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3784                 goto oom_free_page;
3785         cgroup_throttle_swaprate(page, GFP_KERNEL);
3786
3787         /*
3788          * The memory barrier inside __SetPageUptodate makes sure that
3789          * preceding stores to the page contents become visible before
3790          * the set_pte_at() write.
3791          */
3792         __SetPageUptodate(page);
3793
3794         entry = mk_pte(page, vma->vm_page_prot);
3795         entry = pte_sw_mkyoung(entry);
3796         if (vma->vm_flags & VM_WRITE)
3797                 entry = pte_mkwrite(pte_mkdirty(entry));
3798
3799         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3800                         &vmf->ptl);
3801         if (!pte_none(*vmf->pte)) {
3802                 update_mmu_cache(vma, vmf->address, vmf->pte);
3803                 goto release;
3804         }
3805
3806         ret = check_stable_address_space(vma->vm_mm);
3807         if (ret)
3808                 goto release;
3809
3810         /* Deliver the page fault to userland, check inside PT lock */
3811         if (userfaultfd_missing(vma)) {
3812                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3813                 put_page(page);
3814                 return handle_userfault(vmf, VM_UFFD_MISSING);
3815         }
3816
3817         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3818         page_add_new_anon_rmap(page, vma, vmf->address, false);
3819         lru_cache_add_inactive_or_unevictable(page, vma);
3820 setpte:
3821         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3822
3823         /* No need to invalidate - it was non-present before */
3824         update_mmu_cache(vma, vmf->address, vmf->pte);
3825 unlock:
3826         pte_unmap_unlock(vmf->pte, vmf->ptl);
3827         return ret;
3828 release:
3829         put_page(page);
3830         goto unlock;
3831 oom_free_page:
3832         put_page(page);
3833 oom:
3834         return VM_FAULT_OOM;
3835 }
3836
3837 /*
3838  * The mmap_lock must have been held on entry, and may have been
3839  * released depending on flags and vma->vm_ops->fault() return value.
3840  * See filemap_fault() and __lock_page_retry().
3841  */
3842 static vm_fault_t __do_fault(struct vm_fault *vmf)
3843 {
3844         struct vm_area_struct *vma = vmf->vma;
3845         vm_fault_t ret;
3846
3847         /*
3848          * Preallocate pte before we take page_lock because this might lead to
3849          * deadlocks for memcg reclaim which waits for pages under writeback:
3850          *                              lock_page(A)
3851          *                              SetPageWriteback(A)
3852          *                              unlock_page(A)
3853          * lock_page(B)
3854          *                              lock_page(B)
3855          * pte_alloc_one
3856          *   shrink_page_list
3857          *     wait_on_page_writeback(A)
3858          *                              SetPageWriteback(B)
3859          *                              unlock_page(B)
3860          *                              # flush A, B to clear the writeback
3861          */
3862         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3863                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3864                 if (!vmf->prealloc_pte)
3865                         return VM_FAULT_OOM;
3866         }
3867
3868         ret = vma->vm_ops->fault(vmf);
3869         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3870                             VM_FAULT_DONE_COW)))
3871                 return ret;
3872
3873         if (unlikely(PageHWPoison(vmf->page))) {
3874                 if (ret & VM_FAULT_LOCKED)
3875                         unlock_page(vmf->page);
3876                 put_page(vmf->page);
3877                 vmf->page = NULL;
3878                 return VM_FAULT_HWPOISON;
3879         }
3880
3881         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3882                 lock_page(vmf->page);
3883         else
3884                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3885
3886         return ret;
3887 }
3888
3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3890 static void deposit_prealloc_pte(struct vm_fault *vmf)
3891 {
3892         struct vm_area_struct *vma = vmf->vma;
3893
3894         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3895         /*
3896          * We are going to consume the prealloc table,
3897          * count that as nr_ptes.
3898          */
3899         mm_inc_nr_ptes(vma->vm_mm);
3900         vmf->prealloc_pte = NULL;
3901 }
3902
3903 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3904 {
3905         struct vm_area_struct *vma = vmf->vma;
3906         bool write = vmf->flags & FAULT_FLAG_WRITE;
3907         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3908         pmd_t entry;
3909         int i;
3910         vm_fault_t ret = VM_FAULT_FALLBACK;
3911
3912         if (!transhuge_vma_suitable(vma, haddr))
3913                 return ret;
3914
3915         page = compound_head(page);
3916         if (compound_order(page) != HPAGE_PMD_ORDER)
3917                 return ret;
3918
3919         /*
3920          * Just backoff if any subpage of a THP is corrupted otherwise
3921          * the corrupted page may mapped by PMD silently to escape the
3922          * check.  This kind of THP just can be PTE mapped.  Access to
3923          * the corrupted subpage should trigger SIGBUS as expected.
3924          */
3925         if (unlikely(PageHasHWPoisoned(page)))
3926                 return ret;
3927
3928         /*
3929          * Archs like ppc64 need additional space to store information
3930          * related to pte entry. Use the preallocated table for that.
3931          */
3932         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3933                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3934                 if (!vmf->prealloc_pte)
3935                         return VM_FAULT_OOM;
3936         }
3937
3938         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3939         if (unlikely(!pmd_none(*vmf->pmd)))
3940                 goto out;
3941
3942         for (i = 0; i < HPAGE_PMD_NR; i++)
3943                 flush_icache_page(vma, page + i);
3944
3945         entry = mk_huge_pmd(page, vma->vm_page_prot);
3946         if (write)
3947                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3948
3949         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3950         page_add_file_rmap(page, true);
3951         /*
3952          * deposit and withdraw with pmd lock held
3953          */
3954         if (arch_needs_pgtable_deposit())
3955                 deposit_prealloc_pte(vmf);
3956
3957         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3958
3959         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3960
3961         /* fault is handled */
3962         ret = 0;
3963         count_vm_event(THP_FILE_MAPPED);
3964 out:
3965         spin_unlock(vmf->ptl);
3966         return ret;
3967 }
3968 #else
3969 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3970 {
3971         return VM_FAULT_FALLBACK;
3972 }
3973 #endif
3974
3975 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3976 {
3977         struct vm_area_struct *vma = vmf->vma;
3978         bool write = vmf->flags & FAULT_FLAG_WRITE;
3979         bool prefault = vmf->address != addr;
3980         pte_t entry;
3981
3982         flush_icache_page(vma, page);
3983         entry = mk_pte(page, vma->vm_page_prot);
3984
3985         if (prefault && arch_wants_old_prefaulted_pte())
3986                 entry = pte_mkold(entry);
3987         else
3988                 entry = pte_sw_mkyoung(entry);
3989
3990         if (write)
3991                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3992         /* copy-on-write page */
3993         if (write && !(vma->vm_flags & VM_SHARED)) {
3994                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3995                 page_add_new_anon_rmap(page, vma, addr, false);
3996                 lru_cache_add_inactive_or_unevictable(page, vma);
3997         } else {
3998                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3999                 page_add_file_rmap(page, false);
4000         }
4001         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4002 }
4003
4004 /**
4005  * finish_fault - finish page fault once we have prepared the page to fault
4006  *
4007  * @vmf: structure describing the fault
4008  *
4009  * This function handles all that is needed to finish a page fault once the
4010  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4011  * given page, adds reverse page mapping, handles memcg charges and LRU
4012  * addition.
4013  *
4014  * The function expects the page to be locked and on success it consumes a
4015  * reference of a page being mapped (for the PTE which maps it).
4016  *
4017  * Return: %0 on success, %VM_FAULT_ code in case of error.
4018  */
4019 vm_fault_t finish_fault(struct vm_fault *vmf)
4020 {
4021         struct vm_area_struct *vma = vmf->vma;
4022         struct page *page;
4023         vm_fault_t ret;
4024
4025         /* Did we COW the page? */
4026         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4027                 page = vmf->cow_page;
4028         else
4029                 page = vmf->page;
4030
4031         /*
4032          * check even for read faults because we might have lost our CoWed
4033          * page
4034          */
4035         if (!(vma->vm_flags & VM_SHARED)) {
4036                 ret = check_stable_address_space(vma->vm_mm);
4037                 if (ret)
4038                         return ret;
4039         }
4040
4041         if (pmd_none(*vmf->pmd)) {
4042                 if (PageTransCompound(page)) {
4043                         ret = do_set_pmd(vmf, page);
4044                         if (ret != VM_FAULT_FALLBACK)
4045                                 return ret;
4046                 }
4047
4048                 if (vmf->prealloc_pte)
4049                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4050                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4051                         return VM_FAULT_OOM;
4052         }
4053
4054         /* See comment in handle_pte_fault() */
4055         if (pmd_devmap_trans_unstable(vmf->pmd))
4056                 return 0;
4057
4058         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4059                                       vmf->address, &vmf->ptl);
4060         ret = 0;
4061         /* Re-check under ptl */
4062         if (likely(pte_none(*vmf->pte)))
4063                 do_set_pte(vmf, page, vmf->address);
4064         else
4065                 ret = VM_FAULT_NOPAGE;
4066
4067         update_mmu_tlb(vma, vmf->address, vmf->pte);
4068         pte_unmap_unlock(vmf->pte, vmf->ptl);
4069         return ret;
4070 }
4071
4072 static unsigned long fault_around_bytes __read_mostly =
4073         rounddown_pow_of_two(65536);
4074
4075 #ifdef CONFIG_DEBUG_FS
4076 static int fault_around_bytes_get(void *data, u64 *val)
4077 {
4078         *val = fault_around_bytes;
4079         return 0;
4080 }
4081
4082 /*
4083  * fault_around_bytes must be rounded down to the nearest page order as it's
4084  * what do_fault_around() expects to see.
4085  */
4086 static int fault_around_bytes_set(void *data, u64 val)
4087 {
4088         if (val / PAGE_SIZE > PTRS_PER_PTE)
4089                 return -EINVAL;
4090         if (val > PAGE_SIZE)
4091                 fault_around_bytes = rounddown_pow_of_two(val);
4092         else
4093                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4094         return 0;
4095 }
4096 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4097                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4098
4099 static int __init fault_around_debugfs(void)
4100 {
4101         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4102                                    &fault_around_bytes_fops);
4103         return 0;
4104 }
4105 late_initcall(fault_around_debugfs);
4106 #endif
4107
4108 /*
4109  * do_fault_around() tries to map few pages around the fault address. The hope
4110  * is that the pages will be needed soon and this will lower the number of
4111  * faults to handle.
4112  *
4113  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4114  * not ready to be mapped: not up-to-date, locked, etc.
4115  *
4116  * This function is called with the page table lock taken. In the split ptlock
4117  * case the page table lock only protects only those entries which belong to
4118  * the page table corresponding to the fault address.
4119  *
4120  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4121  * only once.
4122  *
4123  * fault_around_bytes defines how many bytes we'll try to map.
4124  * do_fault_around() expects it to be set to a power of two less than or equal
4125  * to PTRS_PER_PTE.
4126  *
4127  * The virtual address of the area that we map is naturally aligned to
4128  * fault_around_bytes rounded down to the machine page size
4129  * (and therefore to page order).  This way it's easier to guarantee
4130  * that we don't cross page table boundaries.
4131  */
4132 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4133 {
4134         unsigned long address = vmf->address, nr_pages, mask;
4135         pgoff_t start_pgoff = vmf->pgoff;
4136         pgoff_t end_pgoff;
4137         int off;
4138
4139         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4140         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4141
4142         address = max(address & mask, vmf->vma->vm_start);
4143         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4144         start_pgoff -= off;
4145
4146         /*
4147          *  end_pgoff is either the end of the page table, the end of
4148          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4149          */
4150         end_pgoff = start_pgoff -
4151                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4152                 PTRS_PER_PTE - 1;
4153         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4154                         start_pgoff + nr_pages - 1);
4155
4156         if (pmd_none(*vmf->pmd)) {
4157                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4158                 if (!vmf->prealloc_pte)
4159                         return VM_FAULT_OOM;
4160         }
4161
4162         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4163 }
4164
4165 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4166 {
4167         struct vm_area_struct *vma = vmf->vma;
4168         vm_fault_t ret = 0;
4169
4170         /*
4171          * Let's call ->map_pages() first and use ->fault() as fallback
4172          * if page by the offset is not ready to be mapped (cold cache or
4173          * something).
4174          */
4175         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4176                 if (likely(!userfaultfd_minor(vmf->vma))) {
4177                         ret = do_fault_around(vmf);
4178                         if (ret)
4179                                 return ret;
4180                 }
4181         }
4182
4183         ret = __do_fault(vmf);
4184         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4185                 return ret;
4186
4187         ret |= finish_fault(vmf);
4188         unlock_page(vmf->page);
4189         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4190                 put_page(vmf->page);
4191         return ret;
4192 }
4193
4194 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4195 {
4196         struct vm_area_struct *vma = vmf->vma;
4197         vm_fault_t ret;
4198
4199         if (unlikely(anon_vma_prepare(vma)))
4200                 return VM_FAULT_OOM;
4201
4202         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4203         if (!vmf->cow_page)
4204                 return VM_FAULT_OOM;
4205
4206         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4207                                 GFP_KERNEL)) {
4208                 put_page(vmf->cow_page);
4209                 return VM_FAULT_OOM;
4210         }
4211         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4212
4213         ret = __do_fault(vmf);
4214         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4215                 goto uncharge_out;
4216         if (ret & VM_FAULT_DONE_COW)
4217                 return ret;
4218
4219         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4220         __SetPageUptodate(vmf->cow_page);
4221
4222         ret |= finish_fault(vmf);
4223         unlock_page(vmf->page);
4224         put_page(vmf->page);
4225         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4226                 goto uncharge_out;
4227         return ret;
4228 uncharge_out:
4229         put_page(vmf->cow_page);
4230         return ret;
4231 }
4232
4233 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4234 {
4235         struct vm_area_struct *vma = vmf->vma;
4236         vm_fault_t ret, tmp;
4237
4238         ret = __do_fault(vmf);
4239         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4240                 return ret;
4241
4242         /*
4243          * Check if the backing address space wants to know that the page is
4244          * about to become writable
4245          */
4246         if (vma->vm_ops->page_mkwrite) {
4247                 unlock_page(vmf->page);
4248                 tmp = do_page_mkwrite(vmf);
4249                 if (unlikely(!tmp ||
4250                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4251                         put_page(vmf->page);
4252                         return tmp;
4253                 }
4254         }
4255
4256         ret |= finish_fault(vmf);
4257         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4258                                         VM_FAULT_RETRY))) {
4259                 unlock_page(vmf->page);
4260                 put_page(vmf->page);
4261                 return ret;
4262         }
4263
4264         ret |= fault_dirty_shared_page(vmf);
4265         return ret;
4266 }
4267
4268 /*
4269  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4270  * but allow concurrent faults).
4271  * The mmap_lock may have been released depending on flags and our
4272  * return value.  See filemap_fault() and __folio_lock_or_retry().
4273  * If mmap_lock is released, vma may become invalid (for example
4274  * by other thread calling munmap()).
4275  */
4276 static vm_fault_t do_fault(struct vm_fault *vmf)
4277 {
4278         struct vm_area_struct *vma = vmf->vma;
4279         struct mm_struct *vm_mm = vma->vm_mm;
4280         vm_fault_t ret;
4281
4282         /*
4283          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4284          */
4285         if (!vma->vm_ops->fault) {
4286                 /*
4287                  * If we find a migration pmd entry or a none pmd entry, which
4288                  * should never happen, return SIGBUS
4289                  */
4290                 if (unlikely(!pmd_present(*vmf->pmd)))
4291                         ret = VM_FAULT_SIGBUS;
4292                 else {
4293                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4294                                                        vmf->pmd,
4295                                                        vmf->address,
4296                                                        &vmf->ptl);
4297                         /*
4298                          * Make sure this is not a temporary clearing of pte
4299                          * by holding ptl and checking again. A R/M/W update
4300                          * of pte involves: take ptl, clearing the pte so that
4301                          * we don't have concurrent modification by hardware
4302                          * followed by an update.
4303                          */
4304                         if (unlikely(pte_none(*vmf->pte)))
4305                                 ret = VM_FAULT_SIGBUS;
4306                         else
4307                                 ret = VM_FAULT_NOPAGE;
4308
4309                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4310                 }
4311         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4312                 ret = do_read_fault(vmf);
4313         else if (!(vma->vm_flags & VM_SHARED))
4314                 ret = do_cow_fault(vmf);
4315         else
4316                 ret = do_shared_fault(vmf);
4317
4318         /* preallocated pagetable is unused: free it */
4319         if (vmf->prealloc_pte) {
4320                 pte_free(vm_mm, vmf->prealloc_pte);
4321                 vmf->prealloc_pte = NULL;
4322         }
4323         return ret;
4324 }
4325
4326 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4327                       unsigned long addr, int page_nid, int *flags)
4328 {
4329         get_page(page);
4330
4331         count_vm_numa_event(NUMA_HINT_FAULTS);
4332         if (page_nid == numa_node_id()) {
4333                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4334                 *flags |= TNF_FAULT_LOCAL;
4335         }
4336
4337         return mpol_misplaced(page, vma, addr);
4338 }
4339
4340 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4341 {
4342         struct vm_area_struct *vma = vmf->vma;
4343         struct page *page = NULL;
4344         int page_nid = NUMA_NO_NODE;
4345         int last_cpupid;
4346         int target_nid;
4347         pte_t pte, old_pte;
4348         bool was_writable = pte_savedwrite(vmf->orig_pte);
4349         int flags = 0;
4350
4351         /*
4352          * The "pte" at this point cannot be used safely without
4353          * validation through pte_unmap_same(). It's of NUMA type but
4354          * the pfn may be screwed if the read is non atomic.
4355          */
4356         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4357         spin_lock(vmf->ptl);
4358         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4359                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4360                 goto out;
4361         }
4362
4363         /* Get the normal PTE  */
4364         old_pte = ptep_get(vmf->pte);
4365         pte = pte_modify(old_pte, vma->vm_page_prot);
4366
4367         page = vm_normal_page(vma, vmf->address, pte);
4368         if (!page)
4369                 goto out_map;
4370
4371         /* TODO: handle PTE-mapped THP */
4372         if (PageCompound(page))
4373                 goto out_map;
4374
4375         /*
4376          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4377          * much anyway since they can be in shared cache state. This misses
4378          * the case where a mapping is writable but the process never writes
4379          * to it but pte_write gets cleared during protection updates and
4380          * pte_dirty has unpredictable behaviour between PTE scan updates,
4381          * background writeback, dirty balancing and application behaviour.
4382          */
4383         if (!was_writable)
4384                 flags |= TNF_NO_GROUP;
4385
4386         /*
4387          * Flag if the page is shared between multiple address spaces. This
4388          * is later used when determining whether to group tasks together
4389          */
4390         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4391                 flags |= TNF_SHARED;
4392
4393         last_cpupid = page_cpupid_last(page);
4394         page_nid = page_to_nid(page);
4395         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4396                         &flags);
4397         if (target_nid == NUMA_NO_NODE) {
4398                 put_page(page);
4399                 goto out_map;
4400         }
4401         pte_unmap_unlock(vmf->pte, vmf->ptl);
4402
4403         /* Migrate to the requested node */
4404         if (migrate_misplaced_page(page, vma, target_nid)) {
4405                 page_nid = target_nid;
4406                 flags |= TNF_MIGRATED;
4407         } else {
4408                 flags |= TNF_MIGRATE_FAIL;
4409                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4410                 spin_lock(vmf->ptl);
4411                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4412                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4413                         goto out;
4414                 }
4415                 goto out_map;
4416         }
4417
4418 out:
4419         if (page_nid != NUMA_NO_NODE)
4420                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4421         return 0;
4422 out_map:
4423         /*
4424          * Make it present again, depending on how arch implements
4425          * non-accessible ptes, some can allow access by kernel mode.
4426          */
4427         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4428         pte = pte_modify(old_pte, vma->vm_page_prot);
4429         pte = pte_mkyoung(pte);
4430         if (was_writable)
4431                 pte = pte_mkwrite(pte);
4432         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4433         update_mmu_cache(vma, vmf->address, vmf->pte);
4434         pte_unmap_unlock(vmf->pte, vmf->ptl);
4435         goto out;
4436 }
4437
4438 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4439 {
4440         if (vma_is_anonymous(vmf->vma))
4441                 return do_huge_pmd_anonymous_page(vmf);
4442         if (vmf->vma->vm_ops->huge_fault)
4443                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4444         return VM_FAULT_FALLBACK;
4445 }
4446
4447 /* `inline' is required to avoid gcc 4.1.2 build error */
4448 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4449 {
4450         if (vma_is_anonymous(vmf->vma)) {
4451                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4452                         return handle_userfault(vmf, VM_UFFD_WP);
4453                 return do_huge_pmd_wp_page(vmf);
4454         }
4455         if (vmf->vma->vm_ops->huge_fault) {
4456                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4457
4458                 if (!(ret & VM_FAULT_FALLBACK))
4459                         return ret;
4460         }
4461
4462         /* COW or write-notify handled on pte level: split pmd. */
4463         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4464
4465         return VM_FAULT_FALLBACK;
4466 }
4467
4468 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4469 {
4470 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4471         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4472         /* No support for anonymous transparent PUD pages yet */
4473         if (vma_is_anonymous(vmf->vma))
4474                 goto split;
4475         if (vmf->vma->vm_ops->huge_fault) {
4476                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4477
4478                 if (!(ret & VM_FAULT_FALLBACK))
4479                         return ret;
4480         }
4481 split:
4482         /* COW or write-notify not handled on PUD level: split pud.*/
4483         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4484 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4485         return VM_FAULT_FALLBACK;
4486 }
4487
4488 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4489 {
4490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4491         /* No support for anonymous transparent PUD pages yet */
4492         if (vma_is_anonymous(vmf->vma))
4493                 return VM_FAULT_FALLBACK;
4494         if (vmf->vma->vm_ops->huge_fault)
4495                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4496 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4497         return VM_FAULT_FALLBACK;
4498 }
4499
4500 /*
4501  * These routines also need to handle stuff like marking pages dirty
4502  * and/or accessed for architectures that don't do it in hardware (most
4503  * RISC architectures).  The early dirtying is also good on the i386.
4504  *
4505  * There is also a hook called "update_mmu_cache()" that architectures
4506  * with external mmu caches can use to update those (ie the Sparc or
4507  * PowerPC hashed page tables that act as extended TLBs).
4508  *
4509  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4510  * concurrent faults).
4511  *
4512  * The mmap_lock may have been released depending on flags and our return value.
4513  * See filemap_fault() and __folio_lock_or_retry().
4514  */
4515 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4516 {
4517         pte_t entry;
4518
4519         if (unlikely(pmd_none(*vmf->pmd))) {
4520                 /*
4521                  * Leave __pte_alloc() until later: because vm_ops->fault may
4522                  * want to allocate huge page, and if we expose page table
4523                  * for an instant, it will be difficult to retract from
4524                  * concurrent faults and from rmap lookups.
4525                  */
4526                 vmf->pte = NULL;
4527         } else {
4528                 /*
4529                  * If a huge pmd materialized under us just retry later.  Use
4530                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4531                  * of pmd_trans_huge() to ensure the pmd didn't become
4532                  * pmd_trans_huge under us and then back to pmd_none, as a
4533                  * result of MADV_DONTNEED running immediately after a huge pmd
4534                  * fault in a different thread of this mm, in turn leading to a
4535                  * misleading pmd_trans_huge() retval. All we have to ensure is
4536                  * that it is a regular pmd that we can walk with
4537                  * pte_offset_map() and we can do that through an atomic read
4538                  * in C, which is what pmd_trans_unstable() provides.
4539                  */
4540                 if (pmd_devmap_trans_unstable(vmf->pmd))
4541                         return 0;
4542                 /*
4543                  * A regular pmd is established and it can't morph into a huge
4544                  * pmd from under us anymore at this point because we hold the
4545                  * mmap_lock read mode and khugepaged takes it in write mode.
4546                  * So now it's safe to run pte_offset_map().
4547                  */
4548                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4549                 vmf->orig_pte = *vmf->pte;
4550
4551                 /*
4552                  * some architectures can have larger ptes than wordsize,
4553                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4554                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4555                  * accesses.  The code below just needs a consistent view
4556                  * for the ifs and we later double check anyway with the
4557                  * ptl lock held. So here a barrier will do.
4558                  */
4559                 barrier();
4560                 if (pte_none(vmf->orig_pte)) {
4561                         pte_unmap(vmf->pte);
4562                         vmf->pte = NULL;
4563                 }
4564         }
4565
4566         if (!vmf->pte) {
4567                 if (vma_is_anonymous(vmf->vma))
4568                         return do_anonymous_page(vmf);
4569                 else
4570                         return do_fault(vmf);
4571         }
4572
4573         if (!pte_present(vmf->orig_pte))
4574                 return do_swap_page(vmf);
4575
4576         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4577                 return do_numa_page(vmf);
4578
4579         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4580         spin_lock(vmf->ptl);
4581         entry = vmf->orig_pte;
4582         if (unlikely(!pte_same(*vmf->pte, entry))) {
4583                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4584                 goto unlock;
4585         }
4586         if (vmf->flags & FAULT_FLAG_WRITE) {
4587                 if (!pte_write(entry))
4588                         return do_wp_page(vmf);
4589                 entry = pte_mkdirty(entry);
4590         }
4591         entry = pte_mkyoung(entry);
4592         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4593                                 vmf->flags & FAULT_FLAG_WRITE)) {
4594                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4595         } else {
4596                 /* Skip spurious TLB flush for retried page fault */
4597                 if (vmf->flags & FAULT_FLAG_TRIED)
4598                         goto unlock;
4599                 /*
4600                  * This is needed only for protection faults but the arch code
4601                  * is not yet telling us if this is a protection fault or not.
4602                  * This still avoids useless tlb flushes for .text page faults
4603                  * with threads.
4604                  */
4605                 if (vmf->flags & FAULT_FLAG_WRITE)
4606                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4607         }
4608 unlock:
4609         pte_unmap_unlock(vmf->pte, vmf->ptl);
4610         return 0;
4611 }
4612
4613 /*
4614  * By the time we get here, we already hold the mm semaphore
4615  *
4616  * The mmap_lock may have been released depending on flags and our
4617  * return value.  See filemap_fault() and __folio_lock_or_retry().
4618  */
4619 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4620                 unsigned long address, unsigned int flags)
4621 {
4622         struct vm_fault vmf = {
4623                 .vma = vma,
4624                 .address = address & PAGE_MASK,
4625                 .flags = flags,
4626                 .pgoff = linear_page_index(vma, address),
4627                 .gfp_mask = __get_fault_gfp_mask(vma),
4628         };
4629         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4630         struct mm_struct *mm = vma->vm_mm;
4631         pgd_t *pgd;
4632         p4d_t *p4d;
4633         vm_fault_t ret;
4634
4635         pgd = pgd_offset(mm, address);
4636         p4d = p4d_alloc(mm, pgd, address);
4637         if (!p4d)
4638                 return VM_FAULT_OOM;
4639
4640         vmf.pud = pud_alloc(mm, p4d, address);
4641         if (!vmf.pud)
4642                 return VM_FAULT_OOM;
4643 retry_pud:
4644         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4645                 ret = create_huge_pud(&vmf);
4646                 if (!(ret & VM_FAULT_FALLBACK))
4647                         return ret;
4648         } else {
4649                 pud_t orig_pud = *vmf.pud;
4650
4651                 barrier();
4652                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4653
4654                         /* NUMA case for anonymous PUDs would go here */
4655
4656                         if (dirty && !pud_write(orig_pud)) {
4657                                 ret = wp_huge_pud(&vmf, orig_pud);
4658                                 if (!(ret & VM_FAULT_FALLBACK))
4659                                         return ret;
4660                         } else {
4661                                 huge_pud_set_accessed(&vmf, orig_pud);
4662                                 return 0;
4663                         }
4664                 }
4665         }
4666
4667         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4668         if (!vmf.pmd)
4669                 return VM_FAULT_OOM;
4670
4671         /* Huge pud page fault raced with pmd_alloc? */
4672         if (pud_trans_unstable(vmf.pud))
4673                 goto retry_pud;
4674
4675         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4676                 ret = create_huge_pmd(&vmf);
4677                 if (!(ret & VM_FAULT_FALLBACK))
4678                         return ret;
4679         } else {
4680                 vmf.orig_pmd = *vmf.pmd;
4681
4682                 barrier();
4683                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4684                         VM_BUG_ON(thp_migration_supported() &&
4685                                           !is_pmd_migration_entry(vmf.orig_pmd));
4686                         if (is_pmd_migration_entry(vmf.orig_pmd))
4687                                 pmd_migration_entry_wait(mm, vmf.pmd);
4688                         return 0;
4689                 }
4690                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4691                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4692                                 return do_huge_pmd_numa_page(&vmf);
4693
4694                         if (dirty && !pmd_write(vmf.orig_pmd)) {
4695                                 ret = wp_huge_pmd(&vmf);
4696                                 if (!(ret & VM_FAULT_FALLBACK))
4697                                         return ret;
4698                         } else {
4699                                 huge_pmd_set_accessed(&vmf);
4700                                 return 0;
4701                         }
4702                 }
4703         }
4704
4705         return handle_pte_fault(&vmf);
4706 }
4707
4708 /**
4709  * mm_account_fault - Do page fault accounting
4710  *
4711  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4712  *        of perf event counters, but we'll still do the per-task accounting to
4713  *        the task who triggered this page fault.
4714  * @address: the faulted address.
4715  * @flags: the fault flags.
4716  * @ret: the fault retcode.
4717  *
4718  * This will take care of most of the page fault accounting.  Meanwhile, it
4719  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4720  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4721  * still be in per-arch page fault handlers at the entry of page fault.
4722  */
4723 static inline void mm_account_fault(struct pt_regs *regs,
4724                                     unsigned long address, unsigned int flags,
4725                                     vm_fault_t ret)
4726 {
4727         bool major;
4728
4729         /*
4730          * We don't do accounting for some specific faults:
4731          *
4732          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4733          *   includes arch_vma_access_permitted() failing before reaching here.
4734          *   So this is not a "this many hardware page faults" counter.  We
4735          *   should use the hw profiling for that.
4736          *
4737          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4738          *   once they're completed.
4739          */
4740         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4741                 return;
4742
4743         /*
4744          * We define the fault as a major fault when the final successful fault
4745          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4746          * handle it immediately previously).
4747          */
4748         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4749
4750         if (major)
4751                 current->maj_flt++;
4752         else
4753                 current->min_flt++;
4754
4755         /*
4756          * If the fault is done for GUP, regs will be NULL.  We only do the
4757          * accounting for the per thread fault counters who triggered the
4758          * fault, and we skip the perf event updates.
4759          */
4760         if (!regs)
4761                 return;
4762
4763         if (major)
4764                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4765         else
4766                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4767 }
4768
4769 /*
4770  * By the time we get here, we already hold the mm semaphore
4771  *
4772  * The mmap_lock may have been released depending on flags and our
4773  * return value.  See filemap_fault() and __folio_lock_or_retry().
4774  */
4775 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4776                            unsigned int flags, struct pt_regs *regs)
4777 {
4778         vm_fault_t ret;
4779
4780         __set_current_state(TASK_RUNNING);
4781
4782         count_vm_event(PGFAULT);
4783         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4784
4785         /* do counter updates before entering really critical section. */
4786         check_sync_rss_stat(current);
4787
4788         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4789                                             flags & FAULT_FLAG_INSTRUCTION,
4790                                             flags & FAULT_FLAG_REMOTE))
4791                 return VM_FAULT_SIGSEGV;
4792
4793         /*
4794          * Enable the memcg OOM handling for faults triggered in user
4795          * space.  Kernel faults are handled more gracefully.
4796          */
4797         if (flags & FAULT_FLAG_USER)
4798                 mem_cgroup_enter_user_fault();
4799
4800         if (unlikely(is_vm_hugetlb_page(vma)))
4801                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4802         else
4803                 ret = __handle_mm_fault(vma, address, flags);
4804
4805         if (flags & FAULT_FLAG_USER) {
4806                 mem_cgroup_exit_user_fault();
4807                 /*
4808                  * The task may have entered a memcg OOM situation but
4809                  * if the allocation error was handled gracefully (no
4810                  * VM_FAULT_OOM), there is no need to kill anything.
4811                  * Just clean up the OOM state peacefully.
4812                  */
4813                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4814                         mem_cgroup_oom_synchronize(false);
4815         }
4816
4817         mm_account_fault(regs, address, flags, ret);
4818
4819         return ret;
4820 }
4821 EXPORT_SYMBOL_GPL(handle_mm_fault);
4822
4823 #ifndef __PAGETABLE_P4D_FOLDED
4824 /*
4825  * Allocate p4d page table.
4826  * We've already handled the fast-path in-line.
4827  */
4828 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4829 {
4830         p4d_t *new = p4d_alloc_one(mm, address);
4831         if (!new)
4832                 return -ENOMEM;
4833
4834         spin_lock(&mm->page_table_lock);
4835         if (pgd_present(*pgd)) {        /* Another has populated it */
4836                 p4d_free(mm, new);
4837         } else {
4838                 smp_wmb(); /* See comment in pmd_install() */
4839                 pgd_populate(mm, pgd, new);
4840         }
4841         spin_unlock(&mm->page_table_lock);
4842         return 0;
4843 }
4844 #endif /* __PAGETABLE_P4D_FOLDED */
4845
4846 #ifndef __PAGETABLE_PUD_FOLDED
4847 /*
4848  * Allocate page upper directory.
4849  * We've already handled the fast-path in-line.
4850  */
4851 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4852 {
4853         pud_t *new = pud_alloc_one(mm, address);
4854         if (!new)
4855                 return -ENOMEM;
4856
4857         spin_lock(&mm->page_table_lock);
4858         if (!p4d_present(*p4d)) {
4859                 mm_inc_nr_puds(mm);
4860                 smp_wmb(); /* See comment in pmd_install() */
4861                 p4d_populate(mm, p4d, new);
4862         } else  /* Another has populated it */
4863                 pud_free(mm, new);
4864         spin_unlock(&mm->page_table_lock);
4865         return 0;
4866 }
4867 #endif /* __PAGETABLE_PUD_FOLDED */
4868
4869 #ifndef __PAGETABLE_PMD_FOLDED
4870 /*
4871  * Allocate page middle directory.
4872  * We've already handled the fast-path in-line.
4873  */
4874 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4875 {
4876         spinlock_t *ptl;
4877         pmd_t *new = pmd_alloc_one(mm, address);
4878         if (!new)
4879                 return -ENOMEM;
4880
4881         ptl = pud_lock(mm, pud);
4882         if (!pud_present(*pud)) {
4883                 mm_inc_nr_pmds(mm);
4884                 smp_wmb(); /* See comment in pmd_install() */
4885                 pud_populate(mm, pud, new);
4886         } else {        /* Another has populated it */
4887                 pmd_free(mm, new);
4888         }
4889         spin_unlock(ptl);
4890         return 0;
4891 }
4892 #endif /* __PAGETABLE_PMD_FOLDED */
4893
4894 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4895                           struct mmu_notifier_range *range, pte_t **ptepp,
4896                           pmd_t **pmdpp, spinlock_t **ptlp)
4897 {
4898         pgd_t *pgd;
4899         p4d_t *p4d;
4900         pud_t *pud;
4901         pmd_t *pmd;
4902         pte_t *ptep;
4903
4904         pgd = pgd_offset(mm, address);
4905         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4906                 goto out;
4907
4908         p4d = p4d_offset(pgd, address);
4909         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4910                 goto out;
4911
4912         pud = pud_offset(p4d, address);
4913         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4914                 goto out;
4915
4916         pmd = pmd_offset(pud, address);
4917         VM_BUG_ON(pmd_trans_huge(*pmd));
4918
4919         if (pmd_huge(*pmd)) {
4920                 if (!pmdpp)
4921                         goto out;
4922
4923                 if (range) {
4924                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4925                                                 NULL, mm, address & PMD_MASK,
4926                                                 (address & PMD_MASK) + PMD_SIZE);
4927                         mmu_notifier_invalidate_range_start(range);
4928                 }
4929                 *ptlp = pmd_lock(mm, pmd);
4930                 if (pmd_huge(*pmd)) {
4931                         *pmdpp = pmd;
4932                         return 0;
4933                 }
4934                 spin_unlock(*ptlp);
4935                 if (range)
4936                         mmu_notifier_invalidate_range_end(range);
4937         }
4938
4939         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4940                 goto out;
4941
4942         if (range) {
4943                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4944                                         address & PAGE_MASK,
4945                                         (address & PAGE_MASK) + PAGE_SIZE);
4946                 mmu_notifier_invalidate_range_start(range);
4947         }
4948         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4949         if (!pte_present(*ptep))
4950                 goto unlock;
4951         *ptepp = ptep;
4952         return 0;
4953 unlock:
4954         pte_unmap_unlock(ptep, *ptlp);
4955         if (range)
4956                 mmu_notifier_invalidate_range_end(range);
4957 out:
4958         return -EINVAL;
4959 }
4960
4961 /**
4962  * follow_pte - look up PTE at a user virtual address
4963  * @mm: the mm_struct of the target address space
4964  * @address: user virtual address
4965  * @ptepp: location to store found PTE
4966  * @ptlp: location to store the lock for the PTE
4967  *
4968  * On a successful return, the pointer to the PTE is stored in @ptepp;
4969  * the corresponding lock is taken and its location is stored in @ptlp.
4970  * The contents of the PTE are only stable until @ptlp is released;
4971  * any further use, if any, must be protected against invalidation
4972  * with MMU notifiers.
4973  *
4974  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4975  * should be taken for read.
4976  *
4977  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4978  * it is not a good general-purpose API.
4979  *
4980  * Return: zero on success, -ve otherwise.
4981  */
4982 int follow_pte(struct mm_struct *mm, unsigned long address,
4983                pte_t **ptepp, spinlock_t **ptlp)
4984 {
4985         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4986 }
4987 EXPORT_SYMBOL_GPL(follow_pte);
4988
4989 /**
4990  * follow_pfn - look up PFN at a user virtual address
4991  * @vma: memory mapping
4992  * @address: user virtual address
4993  * @pfn: location to store found PFN
4994  *
4995  * Only IO mappings and raw PFN mappings are allowed.
4996  *
4997  * This function does not allow the caller to read the permissions
4998  * of the PTE.  Do not use it.
4999  *
5000  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5001  */
5002 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5003         unsigned long *pfn)
5004 {
5005         int ret = -EINVAL;
5006         spinlock_t *ptl;
5007         pte_t *ptep;
5008
5009         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5010                 return ret;
5011
5012         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5013         if (ret)
5014                 return ret;
5015         *pfn = pte_pfn(*ptep);
5016         pte_unmap_unlock(ptep, ptl);
5017         return 0;
5018 }
5019 EXPORT_SYMBOL(follow_pfn);
5020
5021 #ifdef CONFIG_HAVE_IOREMAP_PROT
5022 int follow_phys(struct vm_area_struct *vma,
5023                 unsigned long address, unsigned int flags,
5024                 unsigned long *prot, resource_size_t *phys)
5025 {
5026         int ret = -EINVAL;
5027         pte_t *ptep, pte;
5028         spinlock_t *ptl;
5029
5030         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5031                 goto out;
5032
5033         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5034                 goto out;
5035         pte = *ptep;
5036
5037         if ((flags & FOLL_WRITE) && !pte_write(pte))
5038                 goto unlock;
5039
5040         *prot = pgprot_val(pte_pgprot(pte));
5041         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5042
5043         ret = 0;
5044 unlock:
5045         pte_unmap_unlock(ptep, ptl);
5046 out:
5047         return ret;
5048 }
5049
5050 /**
5051  * generic_access_phys - generic implementation for iomem mmap access
5052  * @vma: the vma to access
5053  * @addr: userspace address, not relative offset within @vma
5054  * @buf: buffer to read/write
5055  * @len: length of transfer
5056  * @write: set to FOLL_WRITE when writing, otherwise reading
5057  *
5058  * This is a generic implementation for &vm_operations_struct.access for an
5059  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5060  * not page based.
5061  */
5062 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5063                         void *buf, int len, int write)
5064 {
5065         resource_size_t phys_addr;
5066         unsigned long prot = 0;
5067         void __iomem *maddr;
5068         pte_t *ptep, pte;
5069         spinlock_t *ptl;
5070         int offset = offset_in_page(addr);
5071         int ret = -EINVAL;
5072
5073         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5074                 return -EINVAL;
5075
5076 retry:
5077         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5078                 return -EINVAL;
5079         pte = *ptep;
5080         pte_unmap_unlock(ptep, ptl);
5081
5082         prot = pgprot_val(pte_pgprot(pte));
5083         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5084
5085         if ((write & FOLL_WRITE) && !pte_write(pte))
5086                 return -EINVAL;
5087
5088         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5089         if (!maddr)
5090                 return -ENOMEM;
5091
5092         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5093                 goto out_unmap;
5094
5095         if (!pte_same(pte, *ptep)) {
5096                 pte_unmap_unlock(ptep, ptl);
5097                 iounmap(maddr);
5098
5099                 goto retry;
5100         }
5101
5102         if (write)
5103                 memcpy_toio(maddr + offset, buf, len);
5104         else
5105                 memcpy_fromio(buf, maddr + offset, len);
5106         ret = len;
5107         pte_unmap_unlock(ptep, ptl);
5108 out_unmap:
5109         iounmap(maddr);
5110
5111         return ret;
5112 }
5113 EXPORT_SYMBOL_GPL(generic_access_phys);
5114 #endif
5115
5116 /*
5117  * Access another process' address space as given in mm.
5118  */
5119 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5120                        int len, unsigned int gup_flags)
5121 {
5122         struct vm_area_struct *vma;
5123         void *old_buf = buf;
5124         int write = gup_flags & FOLL_WRITE;
5125
5126         if (mmap_read_lock_killable(mm))
5127                 return 0;
5128
5129         /* ignore errors, just check how much was successfully transferred */
5130         while (len) {
5131                 int bytes, ret, offset;
5132                 void *maddr;
5133                 struct page *page = NULL;
5134
5135                 ret = get_user_pages_remote(mm, addr, 1,
5136                                 gup_flags, &page, &vma, NULL);
5137                 if (ret <= 0) {
5138 #ifndef CONFIG_HAVE_IOREMAP_PROT
5139                         break;
5140 #else
5141                         /*
5142                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5143                          * we can access using slightly different code.
5144                          */
5145                         vma = vma_lookup(mm, addr);
5146                         if (!vma)
5147                                 break;
5148                         if (vma->vm_ops && vma->vm_ops->access)
5149                                 ret = vma->vm_ops->access(vma, addr, buf,
5150                                                           len, write);
5151                         if (ret <= 0)
5152                                 break;
5153                         bytes = ret;
5154 #endif
5155                 } else {
5156                         bytes = len;
5157                         offset = addr & (PAGE_SIZE-1);
5158                         if (bytes > PAGE_SIZE-offset)
5159                                 bytes = PAGE_SIZE-offset;
5160
5161                         maddr = kmap(page);
5162                         if (write) {
5163                                 copy_to_user_page(vma, page, addr,
5164                                                   maddr + offset, buf, bytes);
5165                                 set_page_dirty_lock(page);
5166                         } else {
5167                                 copy_from_user_page(vma, page, addr,
5168                                                     buf, maddr + offset, bytes);
5169                         }
5170                         kunmap(page);
5171                         put_page(page);
5172                 }
5173                 len -= bytes;
5174                 buf += bytes;
5175                 addr += bytes;
5176         }
5177         mmap_read_unlock(mm);
5178
5179         return buf - old_buf;
5180 }
5181
5182 /**
5183  * access_remote_vm - access another process' address space
5184  * @mm:         the mm_struct of the target address space
5185  * @addr:       start address to access
5186  * @buf:        source or destination buffer
5187  * @len:        number of bytes to transfer
5188  * @gup_flags:  flags modifying lookup behaviour
5189  *
5190  * The caller must hold a reference on @mm.
5191  *
5192  * Return: number of bytes copied from source to destination.
5193  */
5194 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5195                 void *buf, int len, unsigned int gup_flags)
5196 {
5197         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5198 }
5199
5200 /*
5201  * Access another process' address space.
5202  * Source/target buffer must be kernel space,
5203  * Do not walk the page table directly, use get_user_pages
5204  */
5205 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5206                 void *buf, int len, unsigned int gup_flags)
5207 {
5208         struct mm_struct *mm;
5209         int ret;
5210
5211         mm = get_task_mm(tsk);
5212         if (!mm)
5213                 return 0;
5214
5215         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5216
5217         mmput(mm);
5218
5219         return ret;
5220 }
5221 EXPORT_SYMBOL_GPL(access_process_vm);
5222
5223 /*
5224  * Print the name of a VMA.
5225  */
5226 void print_vma_addr(char *prefix, unsigned long ip)
5227 {
5228         struct mm_struct *mm = current->mm;
5229         struct vm_area_struct *vma;
5230
5231         /*
5232          * we might be running from an atomic context so we cannot sleep
5233          */
5234         if (!mmap_read_trylock(mm))
5235                 return;
5236
5237         vma = find_vma(mm, ip);
5238         if (vma && vma->vm_file) {
5239                 struct file *f = vma->vm_file;
5240                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5241                 if (buf) {
5242                         char *p;
5243
5244                         p = file_path(f, buf, PAGE_SIZE);
5245                         if (IS_ERR(p))
5246                                 p = "?";
5247                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5248                                         vma->vm_start,
5249                                         vma->vm_end - vma->vm_start);
5250                         free_page((unsigned long)buf);
5251                 }
5252         }
5253         mmap_read_unlock(mm);
5254 }
5255
5256 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5257 void __might_fault(const char *file, int line)
5258 {
5259         /*
5260          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5261          * holding the mmap_lock, this is safe because kernel memory doesn't
5262          * get paged out, therefore we'll never actually fault, and the
5263          * below annotations will generate false positives.
5264          */
5265         if (uaccess_kernel())
5266                 return;
5267         if (pagefault_disabled())
5268                 return;
5269         __might_sleep(file, line);
5270 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5271         if (current->mm)
5272                 might_lock_read(&current->mm->mmap_lock);
5273 #endif
5274 }
5275 EXPORT_SYMBOL(__might_fault);
5276 #endif
5277
5278 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5279 /*
5280  * Process all subpages of the specified huge page with the specified
5281  * operation.  The target subpage will be processed last to keep its
5282  * cache lines hot.
5283  */
5284 static inline void process_huge_page(
5285         unsigned long addr_hint, unsigned int pages_per_huge_page,
5286         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5287         void *arg)
5288 {
5289         int i, n, base, l;
5290         unsigned long addr = addr_hint &
5291                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5292
5293         /* Process target subpage last to keep its cache lines hot */
5294         might_sleep();
5295         n = (addr_hint - addr) / PAGE_SIZE;
5296         if (2 * n <= pages_per_huge_page) {
5297                 /* If target subpage in first half of huge page */
5298                 base = 0;
5299                 l = n;
5300                 /* Process subpages at the end of huge page */
5301                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5302                         cond_resched();
5303                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5304                 }
5305         } else {
5306                 /* If target subpage in second half of huge page */
5307                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5308                 l = pages_per_huge_page - n;
5309                 /* Process subpages at the begin of huge page */
5310                 for (i = 0; i < base; i++) {
5311                         cond_resched();
5312                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5313                 }
5314         }
5315         /*
5316          * Process remaining subpages in left-right-left-right pattern
5317          * towards the target subpage
5318          */
5319         for (i = 0; i < l; i++) {
5320                 int left_idx = base + i;
5321                 int right_idx = base + 2 * l - 1 - i;
5322
5323                 cond_resched();
5324                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5325                 cond_resched();
5326                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5327         }
5328 }
5329
5330 static void clear_gigantic_page(struct page *page,
5331                                 unsigned long addr,
5332                                 unsigned int pages_per_huge_page)
5333 {
5334         int i;
5335         struct page *p = page;
5336
5337         might_sleep();
5338         for (i = 0; i < pages_per_huge_page;
5339              i++, p = mem_map_next(p, page, i)) {
5340                 cond_resched();
5341                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5342         }
5343 }
5344
5345 static void clear_subpage(unsigned long addr, int idx, void *arg)
5346 {
5347         struct page *page = arg;
5348
5349         clear_user_highpage(page + idx, addr);
5350 }
5351
5352 void clear_huge_page(struct page *page,
5353                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5354 {
5355         unsigned long addr = addr_hint &
5356                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5357
5358         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5359                 clear_gigantic_page(page, addr, pages_per_huge_page);
5360                 return;
5361         }
5362
5363         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5364 }
5365
5366 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5367                                     unsigned long addr,
5368                                     struct vm_area_struct *vma,
5369                                     unsigned int pages_per_huge_page)
5370 {
5371         int i;
5372         struct page *dst_base = dst;
5373         struct page *src_base = src;
5374
5375         for (i = 0; i < pages_per_huge_page; ) {
5376                 cond_resched();
5377                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5378
5379                 i++;
5380                 dst = mem_map_next(dst, dst_base, i);
5381                 src = mem_map_next(src, src_base, i);
5382         }
5383 }
5384
5385 struct copy_subpage_arg {
5386         struct page *dst;
5387         struct page *src;
5388         struct vm_area_struct *vma;
5389 };
5390
5391 static void copy_subpage(unsigned long addr, int idx, void *arg)
5392 {
5393         struct copy_subpage_arg *copy_arg = arg;
5394
5395         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5396                            addr, copy_arg->vma);
5397 }
5398
5399 void copy_user_huge_page(struct page *dst, struct page *src,
5400                          unsigned long addr_hint, struct vm_area_struct *vma,
5401                          unsigned int pages_per_huge_page)
5402 {
5403         unsigned long addr = addr_hint &
5404                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5405         struct copy_subpage_arg arg = {
5406                 .dst = dst,
5407                 .src = src,
5408                 .vma = vma,
5409         };
5410
5411         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5412                 copy_user_gigantic_page(dst, src, addr, vma,
5413                                         pages_per_huge_page);
5414                 return;
5415         }
5416
5417         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5418 }
5419
5420 long copy_huge_page_from_user(struct page *dst_page,
5421                                 const void __user *usr_src,
5422                                 unsigned int pages_per_huge_page,
5423                                 bool allow_pagefault)
5424 {
5425         void *page_kaddr;
5426         unsigned long i, rc = 0;
5427         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5428         struct page *subpage = dst_page;
5429
5430         for (i = 0; i < pages_per_huge_page;
5431              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5432                 if (allow_pagefault)
5433                         page_kaddr = kmap(subpage);
5434                 else
5435                         page_kaddr = kmap_atomic(subpage);
5436                 rc = copy_from_user(page_kaddr,
5437                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5438                 if (allow_pagefault)
5439                         kunmap(subpage);
5440                 else
5441                         kunmap_atomic(page_kaddr);
5442
5443                 ret_val -= (PAGE_SIZE - rc);
5444                 if (rc)
5445                         break;
5446
5447                 cond_resched();
5448         }
5449         return ret_val;
5450 }
5451 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5452
5453 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5454
5455 static struct kmem_cache *page_ptl_cachep;
5456
5457 void __init ptlock_cache_init(void)
5458 {
5459         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5460                         SLAB_PANIC, NULL);
5461 }
5462
5463 bool ptlock_alloc(struct page *page)
5464 {
5465         spinlock_t *ptl;
5466
5467         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5468         if (!ptl)
5469                 return false;
5470         page->ptl = ptl;
5471         return true;
5472 }
5473
5474 void ptlock_free(struct page *page)
5475 {
5476         kmem_cache_free(page_ptl_cachep, page->ptl);
5477 }
5478 #endif