mm/mmu_notifier: contextual information for event triggering invalidation
[linux-2.6-microblaze.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81
82 #include "internal.h"
83
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115                                         1;
116 #else
117                                         2;
118 #endif
119
120 static int __init disable_randmaps(char *s)
121 {
122         randomize_va_space = 0;
123         return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129
130 unsigned long highest_memmap_pfn __read_mostly;
131
132 /*
133  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134  */
135 static int __init init_zero_pfn(void)
136 {
137         zero_pfn = page_to_pfn(ZERO_PAGE(0));
138         return 0;
139 }
140 core_initcall(init_zero_pfn);
141
142
143 #if defined(SPLIT_RSS_COUNTING)
144
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147         int i;
148
149         for (i = 0; i < NR_MM_COUNTERS; i++) {
150                 if (current->rss_stat.count[i]) {
151                         add_mm_counter(mm, i, current->rss_stat.count[i]);
152                         current->rss_stat.count[i] = 0;
153                 }
154         }
155         current->rss_stat.events = 0;
156 }
157
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160         struct task_struct *task = current;
161
162         if (likely(task->mm == mm))
163                 task->rss_stat.count[member] += val;
164         else
165                 add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH  (64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174         if (unlikely(task != current))
175                 return;
176         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177                 sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187
188 #endif /* SPLIT_RSS_COUNTING */
189
190 /*
191  * Note: this doesn't free the actual pages themselves. That
192  * has been handled earlier when unmapping all the memory regions.
193  */
194 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
195                            unsigned long addr)
196 {
197         pgtable_t token = pmd_pgtable(*pmd);
198         pmd_clear(pmd);
199         pte_free_tlb(tlb, token, addr);
200         mm_dec_nr_ptes(tlb->mm);
201 }
202
203 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
204                                 unsigned long addr, unsigned long end,
205                                 unsigned long floor, unsigned long ceiling)
206 {
207         pmd_t *pmd;
208         unsigned long next;
209         unsigned long start;
210
211         start = addr;
212         pmd = pmd_offset(pud, addr);
213         do {
214                 next = pmd_addr_end(addr, end);
215                 if (pmd_none_or_clear_bad(pmd))
216                         continue;
217                 free_pte_range(tlb, pmd, addr);
218         } while (pmd++, addr = next, addr != end);
219
220         start &= PUD_MASK;
221         if (start < floor)
222                 return;
223         if (ceiling) {
224                 ceiling &= PUD_MASK;
225                 if (!ceiling)
226                         return;
227         }
228         if (end - 1 > ceiling - 1)
229                 return;
230
231         pmd = pmd_offset(pud, start);
232         pud_clear(pud);
233         pmd_free_tlb(tlb, pmd, start);
234         mm_dec_nr_pmds(tlb->mm);
235 }
236
237 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
238                                 unsigned long addr, unsigned long end,
239                                 unsigned long floor, unsigned long ceiling)
240 {
241         pud_t *pud;
242         unsigned long next;
243         unsigned long start;
244
245         start = addr;
246         pud = pud_offset(p4d, addr);
247         do {
248                 next = pud_addr_end(addr, end);
249                 if (pud_none_or_clear_bad(pud))
250                         continue;
251                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
252         } while (pud++, addr = next, addr != end);
253
254         start &= P4D_MASK;
255         if (start < floor)
256                 return;
257         if (ceiling) {
258                 ceiling &= P4D_MASK;
259                 if (!ceiling)
260                         return;
261         }
262         if (end - 1 > ceiling - 1)
263                 return;
264
265         pud = pud_offset(p4d, start);
266         p4d_clear(p4d);
267         pud_free_tlb(tlb, pud, start);
268         mm_dec_nr_puds(tlb->mm);
269 }
270
271 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
272                                 unsigned long addr, unsigned long end,
273                                 unsigned long floor, unsigned long ceiling)
274 {
275         p4d_t *p4d;
276         unsigned long next;
277         unsigned long start;
278
279         start = addr;
280         p4d = p4d_offset(pgd, addr);
281         do {
282                 next = p4d_addr_end(addr, end);
283                 if (p4d_none_or_clear_bad(p4d))
284                         continue;
285                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
286         } while (p4d++, addr = next, addr != end);
287
288         start &= PGDIR_MASK;
289         if (start < floor)
290                 return;
291         if (ceiling) {
292                 ceiling &= PGDIR_MASK;
293                 if (!ceiling)
294                         return;
295         }
296         if (end - 1 > ceiling - 1)
297                 return;
298
299         p4d = p4d_offset(pgd, start);
300         pgd_clear(pgd);
301         p4d_free_tlb(tlb, p4d, start);
302 }
303
304 /*
305  * This function frees user-level page tables of a process.
306  */
307 void free_pgd_range(struct mmu_gather *tlb,
308                         unsigned long addr, unsigned long end,
309                         unsigned long floor, unsigned long ceiling)
310 {
311         pgd_t *pgd;
312         unsigned long next;
313
314         /*
315          * The next few lines have given us lots of grief...
316          *
317          * Why are we testing PMD* at this top level?  Because often
318          * there will be no work to do at all, and we'd prefer not to
319          * go all the way down to the bottom just to discover that.
320          *
321          * Why all these "- 1"s?  Because 0 represents both the bottom
322          * of the address space and the top of it (using -1 for the
323          * top wouldn't help much: the masks would do the wrong thing).
324          * The rule is that addr 0 and floor 0 refer to the bottom of
325          * the address space, but end 0 and ceiling 0 refer to the top
326          * Comparisons need to use "end - 1" and "ceiling - 1" (though
327          * that end 0 case should be mythical).
328          *
329          * Wherever addr is brought up or ceiling brought down, we must
330          * be careful to reject "the opposite 0" before it confuses the
331          * subsequent tests.  But what about where end is brought down
332          * by PMD_SIZE below? no, end can't go down to 0 there.
333          *
334          * Whereas we round start (addr) and ceiling down, by different
335          * masks at different levels, in order to test whether a table
336          * now has no other vmas using it, so can be freed, we don't
337          * bother to round floor or end up - the tests don't need that.
338          */
339
340         addr &= PMD_MASK;
341         if (addr < floor) {
342                 addr += PMD_SIZE;
343                 if (!addr)
344                         return;
345         }
346         if (ceiling) {
347                 ceiling &= PMD_MASK;
348                 if (!ceiling)
349                         return;
350         }
351         if (end - 1 > ceiling - 1)
352                 end -= PMD_SIZE;
353         if (addr > end - 1)
354                 return;
355         /*
356          * We add page table cache pages with PAGE_SIZE,
357          * (see pte_free_tlb()), flush the tlb if we need
358          */
359         tlb_change_page_size(tlb, PAGE_SIZE);
360         pgd = pgd_offset(tlb->mm, addr);
361         do {
362                 next = pgd_addr_end(addr, end);
363                 if (pgd_none_or_clear_bad(pgd))
364                         continue;
365                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
366         } while (pgd++, addr = next, addr != end);
367 }
368
369 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
370                 unsigned long floor, unsigned long ceiling)
371 {
372         while (vma) {
373                 struct vm_area_struct *next = vma->vm_next;
374                 unsigned long addr = vma->vm_start;
375
376                 /*
377                  * Hide vma from rmap and truncate_pagecache before freeing
378                  * pgtables
379                  */
380                 unlink_anon_vmas(vma);
381                 unlink_file_vma(vma);
382
383                 if (is_vm_hugetlb_page(vma)) {
384                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
385                                 floor, next ? next->vm_start : ceiling);
386                 } else {
387                         /*
388                          * Optimization: gather nearby vmas into one call down
389                          */
390                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
391                                && !is_vm_hugetlb_page(next)) {
392                                 vma = next;
393                                 next = vma->vm_next;
394                                 unlink_anon_vmas(vma);
395                                 unlink_file_vma(vma);
396                         }
397                         free_pgd_range(tlb, addr, vma->vm_end,
398                                 floor, next ? next->vm_start : ceiling);
399                 }
400                 vma = next;
401         }
402 }
403
404 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
405 {
406         spinlock_t *ptl;
407         pgtable_t new = pte_alloc_one(mm);
408         if (!new)
409                 return -ENOMEM;
410
411         /*
412          * Ensure all pte setup (eg. pte page lock and page clearing) are
413          * visible before the pte is made visible to other CPUs by being
414          * put into page tables.
415          *
416          * The other side of the story is the pointer chasing in the page
417          * table walking code (when walking the page table without locking;
418          * ie. most of the time). Fortunately, these data accesses consist
419          * of a chain of data-dependent loads, meaning most CPUs (alpha
420          * being the notable exception) will already guarantee loads are
421          * seen in-order. See the alpha page table accessors for the
422          * smp_read_barrier_depends() barriers in page table walking code.
423          */
424         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425
426         ptl = pmd_lock(mm, pmd);
427         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
428                 mm_inc_nr_ptes(mm);
429                 pmd_populate(mm, pmd, new);
430                 new = NULL;
431         }
432         spin_unlock(ptl);
433         if (new)
434                 pte_free(mm, new);
435         return 0;
436 }
437
438 int __pte_alloc_kernel(pmd_t *pmd)
439 {
440         pte_t *new = pte_alloc_one_kernel(&init_mm);
441         if (!new)
442                 return -ENOMEM;
443
444         smp_wmb(); /* See comment in __pte_alloc */
445
446         spin_lock(&init_mm.page_table_lock);
447         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
448                 pmd_populate_kernel(&init_mm, pmd, new);
449                 new = NULL;
450         }
451         spin_unlock(&init_mm.page_table_lock);
452         if (new)
453                 pte_free_kernel(&init_mm, new);
454         return 0;
455 }
456
457 static inline void init_rss_vec(int *rss)
458 {
459         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
460 }
461
462 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463 {
464         int i;
465
466         if (current->mm == mm)
467                 sync_mm_rss(mm);
468         for (i = 0; i < NR_MM_COUNTERS; i++)
469                 if (rss[i])
470                         add_mm_counter(mm, i, rss[i]);
471 }
472
473 /*
474  * This function is called to print an error when a bad pte
475  * is found. For example, we might have a PFN-mapped pte in
476  * a region that doesn't allow it.
477  *
478  * The calling function must still handle the error.
479  */
480 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
481                           pte_t pte, struct page *page)
482 {
483         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
484         p4d_t *p4d = p4d_offset(pgd, addr);
485         pud_t *pud = pud_offset(p4d, addr);
486         pmd_t *pmd = pmd_offset(pud, addr);
487         struct address_space *mapping;
488         pgoff_t index;
489         static unsigned long resume;
490         static unsigned long nr_shown;
491         static unsigned long nr_unshown;
492
493         /*
494          * Allow a burst of 60 reports, then keep quiet for that minute;
495          * or allow a steady drip of one report per second.
496          */
497         if (nr_shown == 60) {
498                 if (time_before(jiffies, resume)) {
499                         nr_unshown++;
500                         return;
501                 }
502                 if (nr_unshown) {
503                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
504                                  nr_unshown);
505                         nr_unshown = 0;
506                 }
507                 nr_shown = 0;
508         }
509         if (nr_shown++ == 0)
510                 resume = jiffies + 60 * HZ;
511
512         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
513         index = linear_page_index(vma, addr);
514
515         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
516                  current->comm,
517                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
518         if (page)
519                 dump_page(page, "bad pte");
520         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
521                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
522         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
523                  vma->vm_file,
524                  vma->vm_ops ? vma->vm_ops->fault : NULL,
525                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
526                  mapping ? mapping->a_ops->readpage : NULL);
527         dump_stack();
528         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
529 }
530
531 /*
532  * vm_normal_page -- This function gets the "struct page" associated with a pte.
533  *
534  * "Special" mappings do not wish to be associated with a "struct page" (either
535  * it doesn't exist, or it exists but they don't want to touch it). In this
536  * case, NULL is returned here. "Normal" mappings do have a struct page.
537  *
538  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
539  * pte bit, in which case this function is trivial. Secondly, an architecture
540  * may not have a spare pte bit, which requires a more complicated scheme,
541  * described below.
542  *
543  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
544  * special mapping (even if there are underlying and valid "struct pages").
545  * COWed pages of a VM_PFNMAP are always normal.
546  *
547  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
548  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
549  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
550  * mapping will always honor the rule
551  *
552  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553  *
554  * And for normal mappings this is false.
555  *
556  * This restricts such mappings to be a linear translation from virtual address
557  * to pfn. To get around this restriction, we allow arbitrary mappings so long
558  * as the vma is not a COW mapping; in that case, we know that all ptes are
559  * special (because none can have been COWed).
560  *
561  *
562  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
563  *
564  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
565  * page" backing, however the difference is that _all_ pages with a struct
566  * page (that is, those where pfn_valid is true) are refcounted and considered
567  * normal pages by the VM. The disadvantage is that pages are refcounted
568  * (which can be slower and simply not an option for some PFNMAP users). The
569  * advantage is that we don't have to follow the strict linearity rule of
570  * PFNMAP mappings in order to support COWable mappings.
571  *
572  */
573 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
574                              pte_t pte, bool with_public_device)
575 {
576         unsigned long pfn = pte_pfn(pte);
577
578         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
579                 if (likely(!pte_special(pte)))
580                         goto check_pfn;
581                 if (vma->vm_ops && vma->vm_ops->find_special_page)
582                         return vma->vm_ops->find_special_page(vma, addr);
583                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
584                         return NULL;
585                 if (is_zero_pfn(pfn))
586                         return NULL;
587
588                 /*
589                  * Device public pages are special pages (they are ZONE_DEVICE
590                  * pages but different from persistent memory). They behave
591                  * allmost like normal pages. The difference is that they are
592                  * not on the lru and thus should never be involve with any-
593                  * thing that involve lru manipulation (mlock, numa balancing,
594                  * ...).
595                  *
596                  * This is why we still want to return NULL for such page from
597                  * vm_normal_page() so that we do not have to special case all
598                  * call site of vm_normal_page().
599                  */
600                 if (likely(pfn <= highest_memmap_pfn)) {
601                         struct page *page = pfn_to_page(pfn);
602
603                         if (is_device_public_page(page)) {
604                                 if (with_public_device)
605                                         return page;
606                                 return NULL;
607                         }
608                 }
609
610                 if (pte_devmap(pte))
611                         return NULL;
612
613                 print_bad_pte(vma, addr, pte, NULL);
614                 return NULL;
615         }
616
617         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618
619         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620                 if (vma->vm_flags & VM_MIXEDMAP) {
621                         if (!pfn_valid(pfn))
622                                 return NULL;
623                         goto out;
624                 } else {
625                         unsigned long off;
626                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
627                         if (pfn == vma->vm_pgoff + off)
628                                 return NULL;
629                         if (!is_cow_mapping(vma->vm_flags))
630                                 return NULL;
631                 }
632         }
633
634         if (is_zero_pfn(pfn))
635                 return NULL;
636
637 check_pfn:
638         if (unlikely(pfn > highest_memmap_pfn)) {
639                 print_bad_pte(vma, addr, pte, NULL);
640                 return NULL;
641         }
642
643         /*
644          * NOTE! We still have PageReserved() pages in the page tables.
645          * eg. VDSO mappings can cause them to exist.
646          */
647 out:
648         return pfn_to_page(pfn);
649 }
650
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
653                                 pmd_t pmd)
654 {
655         unsigned long pfn = pmd_pfn(pmd);
656
657         /*
658          * There is no pmd_special() but there may be special pmds, e.g.
659          * in a direct-access (dax) mapping, so let's just replicate the
660          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661          */
662         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
663                 if (vma->vm_flags & VM_MIXEDMAP) {
664                         if (!pfn_valid(pfn))
665                                 return NULL;
666                         goto out;
667                 } else {
668                         unsigned long off;
669                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
670                         if (pfn == vma->vm_pgoff + off)
671                                 return NULL;
672                         if (!is_cow_mapping(vma->vm_flags))
673                                 return NULL;
674                 }
675         }
676
677         if (pmd_devmap(pmd))
678                 return NULL;
679         if (is_zero_pfn(pfn))
680                 return NULL;
681         if (unlikely(pfn > highest_memmap_pfn))
682                 return NULL;
683
684         /*
685          * NOTE! We still have PageReserved() pages in the page tables.
686          * eg. VDSO mappings can cause them to exist.
687          */
688 out:
689         return pfn_to_page(pfn);
690 }
691 #endif
692
693 /*
694  * copy one vm_area from one task to the other. Assumes the page tables
695  * already present in the new task to be cleared in the whole range
696  * covered by this vma.
697  */
698
699 static inline unsigned long
700 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
701                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
702                 unsigned long addr, int *rss)
703 {
704         unsigned long vm_flags = vma->vm_flags;
705         pte_t pte = *src_pte;
706         struct page *page;
707
708         /* pte contains position in swap or file, so copy. */
709         if (unlikely(!pte_present(pte))) {
710                 swp_entry_t entry = pte_to_swp_entry(pte);
711
712                 if (likely(!non_swap_entry(entry))) {
713                         if (swap_duplicate(entry) < 0)
714                                 return entry.val;
715
716                         /* make sure dst_mm is on swapoff's mmlist. */
717                         if (unlikely(list_empty(&dst_mm->mmlist))) {
718                                 spin_lock(&mmlist_lock);
719                                 if (list_empty(&dst_mm->mmlist))
720                                         list_add(&dst_mm->mmlist,
721                                                         &src_mm->mmlist);
722                                 spin_unlock(&mmlist_lock);
723                         }
724                         rss[MM_SWAPENTS]++;
725                 } else if (is_migration_entry(entry)) {
726                         page = migration_entry_to_page(entry);
727
728                         rss[mm_counter(page)]++;
729
730                         if (is_write_migration_entry(entry) &&
731                                         is_cow_mapping(vm_flags)) {
732                                 /*
733                                  * COW mappings require pages in both
734                                  * parent and child to be set to read.
735                                  */
736                                 make_migration_entry_read(&entry);
737                                 pte = swp_entry_to_pte(entry);
738                                 if (pte_swp_soft_dirty(*src_pte))
739                                         pte = pte_swp_mksoft_dirty(pte);
740                                 set_pte_at(src_mm, addr, src_pte, pte);
741                         }
742                 } else if (is_device_private_entry(entry)) {
743                         page = device_private_entry_to_page(entry);
744
745                         /*
746                          * Update rss count even for unaddressable pages, as
747                          * they should treated just like normal pages in this
748                          * respect.
749                          *
750                          * We will likely want to have some new rss counters
751                          * for unaddressable pages, at some point. But for now
752                          * keep things as they are.
753                          */
754                         get_page(page);
755                         rss[mm_counter(page)]++;
756                         page_dup_rmap(page, false);
757
758                         /*
759                          * We do not preserve soft-dirty information, because so
760                          * far, checkpoint/restore is the only feature that
761                          * requires that. And checkpoint/restore does not work
762                          * when a device driver is involved (you cannot easily
763                          * save and restore device driver state).
764                          */
765                         if (is_write_device_private_entry(entry) &&
766                             is_cow_mapping(vm_flags)) {
767                                 make_device_private_entry_read(&entry);
768                                 pte = swp_entry_to_pte(entry);
769                                 set_pte_at(src_mm, addr, src_pte, pte);
770                         }
771                 }
772                 goto out_set_pte;
773         }
774
775         /*
776          * If it's a COW mapping, write protect it both
777          * in the parent and the child
778          */
779         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780                 ptep_set_wrprotect(src_mm, addr, src_pte);
781                 pte = pte_wrprotect(pte);
782         }
783
784         /*
785          * If it's a shared mapping, mark it clean in
786          * the child
787          */
788         if (vm_flags & VM_SHARED)
789                 pte = pte_mkclean(pte);
790         pte = pte_mkold(pte);
791
792         page = vm_normal_page(vma, addr, pte);
793         if (page) {
794                 get_page(page);
795                 page_dup_rmap(page, false);
796                 rss[mm_counter(page)]++;
797         } else if (pte_devmap(pte)) {
798                 page = pte_page(pte);
799
800                 /*
801                  * Cache coherent device memory behave like regular page and
802                  * not like persistent memory page. For more informations see
803                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804                  */
805                 if (is_device_public_page(page)) {
806                         get_page(page);
807                         page_dup_rmap(page, false);
808                         rss[mm_counter(page)]++;
809                 }
810         }
811
812 out_set_pte:
813         set_pte_at(dst_mm, addr, dst_pte, pte);
814         return 0;
815 }
816
817 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
818                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
819                    unsigned long addr, unsigned long end)
820 {
821         pte_t *orig_src_pte, *orig_dst_pte;
822         pte_t *src_pte, *dst_pte;
823         spinlock_t *src_ptl, *dst_ptl;
824         int progress = 0;
825         int rss[NR_MM_COUNTERS];
826         swp_entry_t entry = (swp_entry_t){0};
827
828 again:
829         init_rss_vec(rss);
830
831         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
832         if (!dst_pte)
833                 return -ENOMEM;
834         src_pte = pte_offset_map(src_pmd, addr);
835         src_ptl = pte_lockptr(src_mm, src_pmd);
836         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
837         orig_src_pte = src_pte;
838         orig_dst_pte = dst_pte;
839         arch_enter_lazy_mmu_mode();
840
841         do {
842                 /*
843                  * We are holding two locks at this point - either of them
844                  * could generate latencies in another task on another CPU.
845                  */
846                 if (progress >= 32) {
847                         progress = 0;
848                         if (need_resched() ||
849                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
850                                 break;
851                 }
852                 if (pte_none(*src_pte)) {
853                         progress++;
854                         continue;
855                 }
856                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
857                                                         vma, addr, rss);
858                 if (entry.val)
859                         break;
860                 progress += 8;
861         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
862
863         arch_leave_lazy_mmu_mode();
864         spin_unlock(src_ptl);
865         pte_unmap(orig_src_pte);
866         add_mm_rss_vec(dst_mm, rss);
867         pte_unmap_unlock(orig_dst_pte, dst_ptl);
868         cond_resched();
869
870         if (entry.val) {
871                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
872                         return -ENOMEM;
873                 progress = 0;
874         }
875         if (addr != end)
876                 goto again;
877         return 0;
878 }
879
880 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
882                 unsigned long addr, unsigned long end)
883 {
884         pmd_t *src_pmd, *dst_pmd;
885         unsigned long next;
886
887         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
888         if (!dst_pmd)
889                 return -ENOMEM;
890         src_pmd = pmd_offset(src_pud, addr);
891         do {
892                 next = pmd_addr_end(addr, end);
893                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
894                         || pmd_devmap(*src_pmd)) {
895                         int err;
896                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
897                         err = copy_huge_pmd(dst_mm, src_mm,
898                                             dst_pmd, src_pmd, addr, vma);
899                         if (err == -ENOMEM)
900                                 return -ENOMEM;
901                         if (!err)
902                                 continue;
903                         /* fall through */
904                 }
905                 if (pmd_none_or_clear_bad(src_pmd))
906                         continue;
907                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
908                                                 vma, addr, next))
909                         return -ENOMEM;
910         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
911         return 0;
912 }
913
914 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
916                 unsigned long addr, unsigned long end)
917 {
918         pud_t *src_pud, *dst_pud;
919         unsigned long next;
920
921         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
922         if (!dst_pud)
923                 return -ENOMEM;
924         src_pud = pud_offset(src_p4d, addr);
925         do {
926                 next = pud_addr_end(addr, end);
927                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
928                         int err;
929
930                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
931                         err = copy_huge_pud(dst_mm, src_mm,
932                                             dst_pud, src_pud, addr, vma);
933                         if (err == -ENOMEM)
934                                 return -ENOMEM;
935                         if (!err)
936                                 continue;
937                         /* fall through */
938                 }
939                 if (pud_none_or_clear_bad(src_pud))
940                         continue;
941                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
942                                                 vma, addr, next))
943                         return -ENOMEM;
944         } while (dst_pud++, src_pud++, addr = next, addr != end);
945         return 0;
946 }
947
948 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
949                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
950                 unsigned long addr, unsigned long end)
951 {
952         p4d_t *src_p4d, *dst_p4d;
953         unsigned long next;
954
955         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
956         if (!dst_p4d)
957                 return -ENOMEM;
958         src_p4d = p4d_offset(src_pgd, addr);
959         do {
960                 next = p4d_addr_end(addr, end);
961                 if (p4d_none_or_clear_bad(src_p4d))
962                         continue;
963                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
964                                                 vma, addr, next))
965                         return -ENOMEM;
966         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
967         return 0;
968 }
969
970 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971                 struct vm_area_struct *vma)
972 {
973         pgd_t *src_pgd, *dst_pgd;
974         unsigned long next;
975         unsigned long addr = vma->vm_start;
976         unsigned long end = vma->vm_end;
977         struct mmu_notifier_range range;
978         bool is_cow;
979         int ret;
980
981         /*
982          * Don't copy ptes where a page fault will fill them correctly.
983          * Fork becomes much lighter when there are big shared or private
984          * readonly mappings. The tradeoff is that copy_page_range is more
985          * efficient than faulting.
986          */
987         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988                         !vma->anon_vma)
989                 return 0;
990
991         if (is_vm_hugetlb_page(vma))
992                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
994         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
995                 /*
996                  * We do not free on error cases below as remove_vma
997                  * gets called on error from higher level routine
998                  */
999                 ret = track_pfn_copy(vma);
1000                 if (ret)
1001                         return ret;
1002         }
1003
1004         /*
1005          * We need to invalidate the secondary MMU mappings only when
1006          * there could be a permission downgrade on the ptes of the
1007          * parent mm. And a permission downgrade will only happen if
1008          * is_cow_mapping() returns true.
1009          */
1010         is_cow = is_cow_mapping(vma->vm_flags);
1011
1012         if (is_cow) {
1013                 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma,
1014                                         src_mm, addr, end);
1015                 mmu_notifier_invalidate_range_start(&range);
1016         }
1017
1018         ret = 0;
1019         dst_pgd = pgd_offset(dst_mm, addr);
1020         src_pgd = pgd_offset(src_mm, addr);
1021         do {
1022                 next = pgd_addr_end(addr, end);
1023                 if (pgd_none_or_clear_bad(src_pgd))
1024                         continue;
1025                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1026                                             vma, addr, next))) {
1027                         ret = -ENOMEM;
1028                         break;
1029                 }
1030         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1031
1032         if (is_cow)
1033                 mmu_notifier_invalidate_range_end(&range);
1034         return ret;
1035 }
1036
1037 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1038                                 struct vm_area_struct *vma, pmd_t *pmd,
1039                                 unsigned long addr, unsigned long end,
1040                                 struct zap_details *details)
1041 {
1042         struct mm_struct *mm = tlb->mm;
1043         int force_flush = 0;
1044         int rss[NR_MM_COUNTERS];
1045         spinlock_t *ptl;
1046         pte_t *start_pte;
1047         pte_t *pte;
1048         swp_entry_t entry;
1049
1050         tlb_change_page_size(tlb, PAGE_SIZE);
1051 again:
1052         init_rss_vec(rss);
1053         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1054         pte = start_pte;
1055         flush_tlb_batched_pending(mm);
1056         arch_enter_lazy_mmu_mode();
1057         do {
1058                 pte_t ptent = *pte;
1059                 if (pte_none(ptent))
1060                         continue;
1061
1062                 if (pte_present(ptent)) {
1063                         struct page *page;
1064
1065                         page = _vm_normal_page(vma, addr, ptent, true);
1066                         if (unlikely(details) && page) {
1067                                 /*
1068                                  * unmap_shared_mapping_pages() wants to
1069                                  * invalidate cache without truncating:
1070                                  * unmap shared but keep private pages.
1071                                  */
1072                                 if (details->check_mapping &&
1073                                     details->check_mapping != page_rmapping(page))
1074                                         continue;
1075                         }
1076                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1077                                                         tlb->fullmm);
1078                         tlb_remove_tlb_entry(tlb, pte, addr);
1079                         if (unlikely(!page))
1080                                 continue;
1081
1082                         if (!PageAnon(page)) {
1083                                 if (pte_dirty(ptent)) {
1084                                         force_flush = 1;
1085                                         set_page_dirty(page);
1086                                 }
1087                                 if (pte_young(ptent) &&
1088                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1089                                         mark_page_accessed(page);
1090                         }
1091                         rss[mm_counter(page)]--;
1092                         page_remove_rmap(page, false);
1093                         if (unlikely(page_mapcount(page) < 0))
1094                                 print_bad_pte(vma, addr, ptent, page);
1095                         if (unlikely(__tlb_remove_page(tlb, page))) {
1096                                 force_flush = 1;
1097                                 addr += PAGE_SIZE;
1098                                 break;
1099                         }
1100                         continue;
1101                 }
1102
1103                 entry = pte_to_swp_entry(ptent);
1104                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105                         struct page *page = device_private_entry_to_page(entry);
1106
1107                         if (unlikely(details && details->check_mapping)) {
1108                                 /*
1109                                  * unmap_shared_mapping_pages() wants to
1110                                  * invalidate cache without truncating:
1111                                  * unmap shared but keep private pages.
1112                                  */
1113                                 if (details->check_mapping !=
1114                                     page_rmapping(page))
1115                                         continue;
1116                         }
1117
1118                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119                         rss[mm_counter(page)]--;
1120                         page_remove_rmap(page, false);
1121                         put_page(page);
1122                         continue;
1123                 }
1124
1125                 /* If details->check_mapping, we leave swap entries. */
1126                 if (unlikely(details))
1127                         continue;
1128
1129                 entry = pte_to_swp_entry(ptent);
1130                 if (!non_swap_entry(entry))
1131                         rss[MM_SWAPENTS]--;
1132                 else if (is_migration_entry(entry)) {
1133                         struct page *page;
1134
1135                         page = migration_entry_to_page(entry);
1136                         rss[mm_counter(page)]--;
1137                 }
1138                 if (unlikely(!free_swap_and_cache(entry)))
1139                         print_bad_pte(vma, addr, ptent, NULL);
1140                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1141         } while (pte++, addr += PAGE_SIZE, addr != end);
1142
1143         add_mm_rss_vec(mm, rss);
1144         arch_leave_lazy_mmu_mode();
1145
1146         /* Do the actual TLB flush before dropping ptl */
1147         if (force_flush)
1148                 tlb_flush_mmu_tlbonly(tlb);
1149         pte_unmap_unlock(start_pte, ptl);
1150
1151         /*
1152          * If we forced a TLB flush (either due to running out of
1153          * batch buffers or because we needed to flush dirty TLB
1154          * entries before releasing the ptl), free the batched
1155          * memory too. Restart if we didn't do everything.
1156          */
1157         if (force_flush) {
1158                 force_flush = 0;
1159                 tlb_flush_mmu(tlb);
1160                 if (addr != end)
1161                         goto again;
1162         }
1163
1164         return addr;
1165 }
1166
1167 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1168                                 struct vm_area_struct *vma, pud_t *pud,
1169                                 unsigned long addr, unsigned long end,
1170                                 struct zap_details *details)
1171 {
1172         pmd_t *pmd;
1173         unsigned long next;
1174
1175         pmd = pmd_offset(pud, addr);
1176         do {
1177                 next = pmd_addr_end(addr, end);
1178                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1179                         if (next - addr != HPAGE_PMD_SIZE)
1180                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1181                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1182                                 goto next;
1183                         /* fall through */
1184                 }
1185                 /*
1186                  * Here there can be other concurrent MADV_DONTNEED or
1187                  * trans huge page faults running, and if the pmd is
1188                  * none or trans huge it can change under us. This is
1189                  * because MADV_DONTNEED holds the mmap_sem in read
1190                  * mode.
1191                  */
1192                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1193                         goto next;
1194                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1195 next:
1196                 cond_resched();
1197         } while (pmd++, addr = next, addr != end);
1198
1199         return addr;
1200 }
1201
1202 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1203                                 struct vm_area_struct *vma, p4d_t *p4d,
1204                                 unsigned long addr, unsigned long end,
1205                                 struct zap_details *details)
1206 {
1207         pud_t *pud;
1208         unsigned long next;
1209
1210         pud = pud_offset(p4d, addr);
1211         do {
1212                 next = pud_addr_end(addr, end);
1213                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1214                         if (next - addr != HPAGE_PUD_SIZE) {
1215                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1216                                 split_huge_pud(vma, pud, addr);
1217                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1218                                 goto next;
1219                         /* fall through */
1220                 }
1221                 if (pud_none_or_clear_bad(pud))
1222                         continue;
1223                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1224 next:
1225                 cond_resched();
1226         } while (pud++, addr = next, addr != end);
1227
1228         return addr;
1229 }
1230
1231 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1232                                 struct vm_area_struct *vma, pgd_t *pgd,
1233                                 unsigned long addr, unsigned long end,
1234                                 struct zap_details *details)
1235 {
1236         p4d_t *p4d;
1237         unsigned long next;
1238
1239         p4d = p4d_offset(pgd, addr);
1240         do {
1241                 next = p4d_addr_end(addr, end);
1242                 if (p4d_none_or_clear_bad(p4d))
1243                         continue;
1244                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1245         } while (p4d++, addr = next, addr != end);
1246
1247         return addr;
1248 }
1249
1250 void unmap_page_range(struct mmu_gather *tlb,
1251                              struct vm_area_struct *vma,
1252                              unsigned long addr, unsigned long end,
1253                              struct zap_details *details)
1254 {
1255         pgd_t *pgd;
1256         unsigned long next;
1257
1258         BUG_ON(addr >= end);
1259         tlb_start_vma(tlb, vma);
1260         pgd = pgd_offset(vma->vm_mm, addr);
1261         do {
1262                 next = pgd_addr_end(addr, end);
1263                 if (pgd_none_or_clear_bad(pgd))
1264                         continue;
1265                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1266         } while (pgd++, addr = next, addr != end);
1267         tlb_end_vma(tlb, vma);
1268 }
1269
1270
1271 static void unmap_single_vma(struct mmu_gather *tlb,
1272                 struct vm_area_struct *vma, unsigned long start_addr,
1273                 unsigned long end_addr,
1274                 struct zap_details *details)
1275 {
1276         unsigned long start = max(vma->vm_start, start_addr);
1277         unsigned long end;
1278
1279         if (start >= vma->vm_end)
1280                 return;
1281         end = min(vma->vm_end, end_addr);
1282         if (end <= vma->vm_start)
1283                 return;
1284
1285         if (vma->vm_file)
1286                 uprobe_munmap(vma, start, end);
1287
1288         if (unlikely(vma->vm_flags & VM_PFNMAP))
1289                 untrack_pfn(vma, 0, 0);
1290
1291         if (start != end) {
1292                 if (unlikely(is_vm_hugetlb_page(vma))) {
1293                         /*
1294                          * It is undesirable to test vma->vm_file as it
1295                          * should be non-null for valid hugetlb area.
1296                          * However, vm_file will be NULL in the error
1297                          * cleanup path of mmap_region. When
1298                          * hugetlbfs ->mmap method fails,
1299                          * mmap_region() nullifies vma->vm_file
1300                          * before calling this function to clean up.
1301                          * Since no pte has actually been setup, it is
1302                          * safe to do nothing in this case.
1303                          */
1304                         if (vma->vm_file) {
1305                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1306                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1308                         }
1309                 } else
1310                         unmap_page_range(tlb, vma, start, end, details);
1311         }
1312 }
1313
1314 /**
1315  * unmap_vmas - unmap a range of memory covered by a list of vma's
1316  * @tlb: address of the caller's struct mmu_gather
1317  * @vma: the starting vma
1318  * @start_addr: virtual address at which to start unmapping
1319  * @end_addr: virtual address at which to end unmapping
1320  *
1321  * Unmap all pages in the vma list.
1322  *
1323  * Only addresses between `start' and `end' will be unmapped.
1324  *
1325  * The VMA list must be sorted in ascending virtual address order.
1326  *
1327  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328  * range after unmap_vmas() returns.  So the only responsibility here is to
1329  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330  * drops the lock and schedules.
1331  */
1332 void unmap_vmas(struct mmu_gather *tlb,
1333                 struct vm_area_struct *vma, unsigned long start_addr,
1334                 unsigned long end_addr)
1335 {
1336         struct mmu_notifier_range range;
1337
1338         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1339                                 start_addr, end_addr);
1340         mmu_notifier_invalidate_range_start(&range);
1341         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1342                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1343         mmu_notifier_invalidate_range_end(&range);
1344 }
1345
1346 /**
1347  * zap_page_range - remove user pages in a given range
1348  * @vma: vm_area_struct holding the applicable pages
1349  * @start: starting address of pages to zap
1350  * @size: number of bytes to zap
1351  *
1352  * Caller must protect the VMA list
1353  */
1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355                 unsigned long size)
1356 {
1357         struct mmu_notifier_range range;
1358         struct mmu_gather tlb;
1359
1360         lru_add_drain();
1361         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1362                                 start, start + size);
1363         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1364         update_hiwater_rss(vma->vm_mm);
1365         mmu_notifier_invalidate_range_start(&range);
1366         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1367                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1368         mmu_notifier_invalidate_range_end(&range);
1369         tlb_finish_mmu(&tlb, start, range.end);
1370 }
1371
1372 /**
1373  * zap_page_range_single - remove user pages in a given range
1374  * @vma: vm_area_struct holding the applicable pages
1375  * @address: starting address of pages to zap
1376  * @size: number of bytes to zap
1377  * @details: details of shared cache invalidation
1378  *
1379  * The range must fit into one VMA.
1380  */
1381 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1382                 unsigned long size, struct zap_details *details)
1383 {
1384         struct mmu_notifier_range range;
1385         struct mmu_gather tlb;
1386
1387         lru_add_drain();
1388         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1389                                 address, address + size);
1390         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1391         update_hiwater_rss(vma->vm_mm);
1392         mmu_notifier_invalidate_range_start(&range);
1393         unmap_single_vma(&tlb, vma, address, range.end, details);
1394         mmu_notifier_invalidate_range_end(&range);
1395         tlb_finish_mmu(&tlb, address, range.end);
1396 }
1397
1398 /**
1399  * zap_vma_ptes - remove ptes mapping the vma
1400  * @vma: vm_area_struct holding ptes to be zapped
1401  * @address: starting address of pages to zap
1402  * @size: number of bytes to zap
1403  *
1404  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405  *
1406  * The entire address range must be fully contained within the vma.
1407  *
1408  */
1409 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410                 unsigned long size)
1411 {
1412         if (address < vma->vm_start || address + size > vma->vm_end ||
1413                         !(vma->vm_flags & VM_PFNMAP))
1414                 return;
1415
1416         zap_page_range_single(vma, address, size, NULL);
1417 }
1418 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419
1420 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1421                         spinlock_t **ptl)
1422 {
1423         pgd_t *pgd;
1424         p4d_t *p4d;
1425         pud_t *pud;
1426         pmd_t *pmd;
1427
1428         pgd = pgd_offset(mm, addr);
1429         p4d = p4d_alloc(mm, pgd, addr);
1430         if (!p4d)
1431                 return NULL;
1432         pud = pud_alloc(mm, p4d, addr);
1433         if (!pud)
1434                 return NULL;
1435         pmd = pmd_alloc(mm, pud, addr);
1436         if (!pmd)
1437                 return NULL;
1438
1439         VM_BUG_ON(pmd_trans_huge(*pmd));
1440         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1441 }
1442
1443 /*
1444  * This is the old fallback for page remapping.
1445  *
1446  * For historical reasons, it only allows reserved pages. Only
1447  * old drivers should use this, and they needed to mark their
1448  * pages reserved for the old functions anyway.
1449  */
1450 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1451                         struct page *page, pgprot_t prot)
1452 {
1453         struct mm_struct *mm = vma->vm_mm;
1454         int retval;
1455         pte_t *pte;
1456         spinlock_t *ptl;
1457
1458         retval = -EINVAL;
1459         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1460                 goto out;
1461         retval = -ENOMEM;
1462         flush_dcache_page(page);
1463         pte = get_locked_pte(mm, addr, &ptl);
1464         if (!pte)
1465                 goto out;
1466         retval = -EBUSY;
1467         if (!pte_none(*pte))
1468                 goto out_unlock;
1469
1470         /* Ok, finally just insert the thing.. */
1471         get_page(page);
1472         inc_mm_counter_fast(mm, mm_counter_file(page));
1473         page_add_file_rmap(page, false);
1474         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1475
1476         retval = 0;
1477         pte_unmap_unlock(pte, ptl);
1478         return retval;
1479 out_unlock:
1480         pte_unmap_unlock(pte, ptl);
1481 out:
1482         return retval;
1483 }
1484
1485 /**
1486  * vm_insert_page - insert single page into user vma
1487  * @vma: user vma to map to
1488  * @addr: target user address of this page
1489  * @page: source kernel page
1490  *
1491  * This allows drivers to insert individual pages they've allocated
1492  * into a user vma.
1493  *
1494  * The page has to be a nice clean _individual_ kernel allocation.
1495  * If you allocate a compound page, you need to have marked it as
1496  * such (__GFP_COMP), or manually just split the page up yourself
1497  * (see split_page()).
1498  *
1499  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1500  * took an arbitrary page protection parameter. This doesn't allow
1501  * that. Your vma protection will have to be set up correctly, which
1502  * means that if you want a shared writable mapping, you'd better
1503  * ask for a shared writable mapping!
1504  *
1505  * The page does not need to be reserved.
1506  *
1507  * Usually this function is called from f_op->mmap() handler
1508  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1509  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1510  * function from other places, for example from page-fault handler.
1511  *
1512  * Return: %0 on success, negative error code otherwise.
1513  */
1514 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1515                         struct page *page)
1516 {
1517         if (addr < vma->vm_start || addr >= vma->vm_end)
1518                 return -EFAULT;
1519         if (!page_count(page))
1520                 return -EINVAL;
1521         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1522                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1523                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1524                 vma->vm_flags |= VM_MIXEDMAP;
1525         }
1526         return insert_page(vma, addr, page, vma->vm_page_prot);
1527 }
1528 EXPORT_SYMBOL(vm_insert_page);
1529
1530 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1531                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1532 {
1533         struct mm_struct *mm = vma->vm_mm;
1534         pte_t *pte, entry;
1535         spinlock_t *ptl;
1536
1537         pte = get_locked_pte(mm, addr, &ptl);
1538         if (!pte)
1539                 return VM_FAULT_OOM;
1540         if (!pte_none(*pte)) {
1541                 if (mkwrite) {
1542                         /*
1543                          * For read faults on private mappings the PFN passed
1544                          * in may not match the PFN we have mapped if the
1545                          * mapped PFN is a writeable COW page.  In the mkwrite
1546                          * case we are creating a writable PTE for a shared
1547                          * mapping and we expect the PFNs to match. If they
1548                          * don't match, we are likely racing with block
1549                          * allocation and mapping invalidation so just skip the
1550                          * update.
1551                          */
1552                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1553                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1554                                 goto out_unlock;
1555                         }
1556                         entry = pte_mkyoung(*pte);
1557                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1558                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1559                                 update_mmu_cache(vma, addr, pte);
1560                 }
1561                 goto out_unlock;
1562         }
1563
1564         /* Ok, finally just insert the thing.. */
1565         if (pfn_t_devmap(pfn))
1566                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1567         else
1568                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1569
1570         if (mkwrite) {
1571                 entry = pte_mkyoung(entry);
1572                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1573         }
1574
1575         set_pte_at(mm, addr, pte, entry);
1576         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1577
1578 out_unlock:
1579         pte_unmap_unlock(pte, ptl);
1580         return VM_FAULT_NOPAGE;
1581 }
1582
1583 /**
1584  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1585  * @vma: user vma to map to
1586  * @addr: target user address of this page
1587  * @pfn: source kernel pfn
1588  * @pgprot: pgprot flags for the inserted page
1589  *
1590  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1591  * to override pgprot on a per-page basis.
1592  *
1593  * This only makes sense for IO mappings, and it makes no sense for
1594  * COW mappings.  In general, using multiple vmas is preferable;
1595  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1596  * impractical.
1597  *
1598  * Context: Process context.  May allocate using %GFP_KERNEL.
1599  * Return: vm_fault_t value.
1600  */
1601 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1602                         unsigned long pfn, pgprot_t pgprot)
1603 {
1604         /*
1605          * Technically, architectures with pte_special can avoid all these
1606          * restrictions (same for remap_pfn_range).  However we would like
1607          * consistency in testing and feature parity among all, so we should
1608          * try to keep these invariants in place for everybody.
1609          */
1610         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1611         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1612                                                 (VM_PFNMAP|VM_MIXEDMAP));
1613         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1614         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1615
1616         if (addr < vma->vm_start || addr >= vma->vm_end)
1617                 return VM_FAULT_SIGBUS;
1618
1619         if (!pfn_modify_allowed(pfn, pgprot))
1620                 return VM_FAULT_SIGBUS;
1621
1622         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1623
1624         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1625                         false);
1626 }
1627 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1628
1629 /**
1630  * vmf_insert_pfn - insert single pfn into user vma
1631  * @vma: user vma to map to
1632  * @addr: target user address of this page
1633  * @pfn: source kernel pfn
1634  *
1635  * Similar to vm_insert_page, this allows drivers to insert individual pages
1636  * they've allocated into a user vma. Same comments apply.
1637  *
1638  * This function should only be called from a vm_ops->fault handler, and
1639  * in that case the handler should return the result of this function.
1640  *
1641  * vma cannot be a COW mapping.
1642  *
1643  * As this is called only for pages that do not currently exist, we
1644  * do not need to flush old virtual caches or the TLB.
1645  *
1646  * Context: Process context.  May allocate using %GFP_KERNEL.
1647  * Return: vm_fault_t value.
1648  */
1649 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1650                         unsigned long pfn)
1651 {
1652         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1653 }
1654 EXPORT_SYMBOL(vmf_insert_pfn);
1655
1656 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1657 {
1658         /* these checks mirror the abort conditions in vm_normal_page */
1659         if (vma->vm_flags & VM_MIXEDMAP)
1660                 return true;
1661         if (pfn_t_devmap(pfn))
1662                 return true;
1663         if (pfn_t_special(pfn))
1664                 return true;
1665         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1666                 return true;
1667         return false;
1668 }
1669
1670 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1671                 unsigned long addr, pfn_t pfn, bool mkwrite)
1672 {
1673         pgprot_t pgprot = vma->vm_page_prot;
1674         int err;
1675
1676         BUG_ON(!vm_mixed_ok(vma, pfn));
1677
1678         if (addr < vma->vm_start || addr >= vma->vm_end)
1679                 return VM_FAULT_SIGBUS;
1680
1681         track_pfn_insert(vma, &pgprot, pfn);
1682
1683         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1684                 return VM_FAULT_SIGBUS;
1685
1686         /*
1687          * If we don't have pte special, then we have to use the pfn_valid()
1688          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1689          * refcount the page if pfn_valid is true (hence insert_page rather
1690          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1691          * without pte special, it would there be refcounted as a normal page.
1692          */
1693         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1694             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1695                 struct page *page;
1696
1697                 /*
1698                  * At this point we are committed to insert_page()
1699                  * regardless of whether the caller specified flags that
1700                  * result in pfn_t_has_page() == false.
1701                  */
1702                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1703                 err = insert_page(vma, addr, page, pgprot);
1704         } else {
1705                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1706         }
1707
1708         if (err == -ENOMEM)
1709                 return VM_FAULT_OOM;
1710         if (err < 0 && err != -EBUSY)
1711                 return VM_FAULT_SIGBUS;
1712
1713         return VM_FAULT_NOPAGE;
1714 }
1715
1716 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1717                 pfn_t pfn)
1718 {
1719         return __vm_insert_mixed(vma, addr, pfn, false);
1720 }
1721 EXPORT_SYMBOL(vmf_insert_mixed);
1722
1723 /*
1724  *  If the insertion of PTE failed because someone else already added a
1725  *  different entry in the mean time, we treat that as success as we assume
1726  *  the same entry was actually inserted.
1727  */
1728 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1729                 unsigned long addr, pfn_t pfn)
1730 {
1731         return __vm_insert_mixed(vma, addr, pfn, true);
1732 }
1733 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1734
1735 /*
1736  * maps a range of physical memory into the requested pages. the old
1737  * mappings are removed. any references to nonexistent pages results
1738  * in null mappings (currently treated as "copy-on-access")
1739  */
1740 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1741                         unsigned long addr, unsigned long end,
1742                         unsigned long pfn, pgprot_t prot)
1743 {
1744         pte_t *pte;
1745         spinlock_t *ptl;
1746         int err = 0;
1747
1748         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1749         if (!pte)
1750                 return -ENOMEM;
1751         arch_enter_lazy_mmu_mode();
1752         do {
1753                 BUG_ON(!pte_none(*pte));
1754                 if (!pfn_modify_allowed(pfn, prot)) {
1755                         err = -EACCES;
1756                         break;
1757                 }
1758                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1759                 pfn++;
1760         } while (pte++, addr += PAGE_SIZE, addr != end);
1761         arch_leave_lazy_mmu_mode();
1762         pte_unmap_unlock(pte - 1, ptl);
1763         return err;
1764 }
1765
1766 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1767                         unsigned long addr, unsigned long end,
1768                         unsigned long pfn, pgprot_t prot)
1769 {
1770         pmd_t *pmd;
1771         unsigned long next;
1772         int err;
1773
1774         pfn -= addr >> PAGE_SHIFT;
1775         pmd = pmd_alloc(mm, pud, addr);
1776         if (!pmd)
1777                 return -ENOMEM;
1778         VM_BUG_ON(pmd_trans_huge(*pmd));
1779         do {
1780                 next = pmd_addr_end(addr, end);
1781                 err = remap_pte_range(mm, pmd, addr, next,
1782                                 pfn + (addr >> PAGE_SHIFT), prot);
1783                 if (err)
1784                         return err;
1785         } while (pmd++, addr = next, addr != end);
1786         return 0;
1787 }
1788
1789 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1790                         unsigned long addr, unsigned long end,
1791                         unsigned long pfn, pgprot_t prot)
1792 {
1793         pud_t *pud;
1794         unsigned long next;
1795         int err;
1796
1797         pfn -= addr >> PAGE_SHIFT;
1798         pud = pud_alloc(mm, p4d, addr);
1799         if (!pud)
1800                 return -ENOMEM;
1801         do {
1802                 next = pud_addr_end(addr, end);
1803                 err = remap_pmd_range(mm, pud, addr, next,
1804                                 pfn + (addr >> PAGE_SHIFT), prot);
1805                 if (err)
1806                         return err;
1807         } while (pud++, addr = next, addr != end);
1808         return 0;
1809 }
1810
1811 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1812                         unsigned long addr, unsigned long end,
1813                         unsigned long pfn, pgprot_t prot)
1814 {
1815         p4d_t *p4d;
1816         unsigned long next;
1817         int err;
1818
1819         pfn -= addr >> PAGE_SHIFT;
1820         p4d = p4d_alloc(mm, pgd, addr);
1821         if (!p4d)
1822                 return -ENOMEM;
1823         do {
1824                 next = p4d_addr_end(addr, end);
1825                 err = remap_pud_range(mm, p4d, addr, next,
1826                                 pfn + (addr >> PAGE_SHIFT), prot);
1827                 if (err)
1828                         return err;
1829         } while (p4d++, addr = next, addr != end);
1830         return 0;
1831 }
1832
1833 /**
1834  * remap_pfn_range - remap kernel memory to userspace
1835  * @vma: user vma to map to
1836  * @addr: target user address to start at
1837  * @pfn: physical address of kernel memory
1838  * @size: size of map area
1839  * @prot: page protection flags for this mapping
1840  *
1841  * Note: this is only safe if the mm semaphore is held when called.
1842  *
1843  * Return: %0 on success, negative error code otherwise.
1844  */
1845 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1846                     unsigned long pfn, unsigned long size, pgprot_t prot)
1847 {
1848         pgd_t *pgd;
1849         unsigned long next;
1850         unsigned long end = addr + PAGE_ALIGN(size);
1851         struct mm_struct *mm = vma->vm_mm;
1852         unsigned long remap_pfn = pfn;
1853         int err;
1854
1855         /*
1856          * Physically remapped pages are special. Tell the
1857          * rest of the world about it:
1858          *   VM_IO tells people not to look at these pages
1859          *      (accesses can have side effects).
1860          *   VM_PFNMAP tells the core MM that the base pages are just
1861          *      raw PFN mappings, and do not have a "struct page" associated
1862          *      with them.
1863          *   VM_DONTEXPAND
1864          *      Disable vma merging and expanding with mremap().
1865          *   VM_DONTDUMP
1866          *      Omit vma from core dump, even when VM_IO turned off.
1867          *
1868          * There's a horrible special case to handle copy-on-write
1869          * behaviour that some programs depend on. We mark the "original"
1870          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1871          * See vm_normal_page() for details.
1872          */
1873         if (is_cow_mapping(vma->vm_flags)) {
1874                 if (addr != vma->vm_start || end != vma->vm_end)
1875                         return -EINVAL;
1876                 vma->vm_pgoff = pfn;
1877         }
1878
1879         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1880         if (err)
1881                 return -EINVAL;
1882
1883         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1884
1885         BUG_ON(addr >= end);
1886         pfn -= addr >> PAGE_SHIFT;
1887         pgd = pgd_offset(mm, addr);
1888         flush_cache_range(vma, addr, end);
1889         do {
1890                 next = pgd_addr_end(addr, end);
1891                 err = remap_p4d_range(mm, pgd, addr, next,
1892                                 pfn + (addr >> PAGE_SHIFT), prot);
1893                 if (err)
1894                         break;
1895         } while (pgd++, addr = next, addr != end);
1896
1897         if (err)
1898                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1899
1900         return err;
1901 }
1902 EXPORT_SYMBOL(remap_pfn_range);
1903
1904 /**
1905  * vm_iomap_memory - remap memory to userspace
1906  * @vma: user vma to map to
1907  * @start: start of area
1908  * @len: size of area
1909  *
1910  * This is a simplified io_remap_pfn_range() for common driver use. The
1911  * driver just needs to give us the physical memory range to be mapped,
1912  * we'll figure out the rest from the vma information.
1913  *
1914  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1915  * whatever write-combining details or similar.
1916  *
1917  * Return: %0 on success, negative error code otherwise.
1918  */
1919 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1920 {
1921         unsigned long vm_len, pfn, pages;
1922
1923         /* Check that the physical memory area passed in looks valid */
1924         if (start + len < start)
1925                 return -EINVAL;
1926         /*
1927          * You *really* shouldn't map things that aren't page-aligned,
1928          * but we've historically allowed it because IO memory might
1929          * just have smaller alignment.
1930          */
1931         len += start & ~PAGE_MASK;
1932         pfn = start >> PAGE_SHIFT;
1933         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1934         if (pfn + pages < pfn)
1935                 return -EINVAL;
1936
1937         /* We start the mapping 'vm_pgoff' pages into the area */
1938         if (vma->vm_pgoff > pages)
1939                 return -EINVAL;
1940         pfn += vma->vm_pgoff;
1941         pages -= vma->vm_pgoff;
1942
1943         /* Can we fit all of the mapping? */
1944         vm_len = vma->vm_end - vma->vm_start;
1945         if (vm_len >> PAGE_SHIFT > pages)
1946                 return -EINVAL;
1947
1948         /* Ok, let it rip */
1949         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1950 }
1951 EXPORT_SYMBOL(vm_iomap_memory);
1952
1953 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1954                                      unsigned long addr, unsigned long end,
1955                                      pte_fn_t fn, void *data)
1956 {
1957         pte_t *pte;
1958         int err;
1959         pgtable_t token;
1960         spinlock_t *uninitialized_var(ptl);
1961
1962         pte = (mm == &init_mm) ?
1963                 pte_alloc_kernel(pmd, addr) :
1964                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1965         if (!pte)
1966                 return -ENOMEM;
1967
1968         BUG_ON(pmd_huge(*pmd));
1969
1970         arch_enter_lazy_mmu_mode();
1971
1972         token = pmd_pgtable(*pmd);
1973
1974         do {
1975                 err = fn(pte++, token, addr, data);
1976                 if (err)
1977                         break;
1978         } while (addr += PAGE_SIZE, addr != end);
1979
1980         arch_leave_lazy_mmu_mode();
1981
1982         if (mm != &init_mm)
1983                 pte_unmap_unlock(pte-1, ptl);
1984         return err;
1985 }
1986
1987 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1988                                      unsigned long addr, unsigned long end,
1989                                      pte_fn_t fn, void *data)
1990 {
1991         pmd_t *pmd;
1992         unsigned long next;
1993         int err;
1994
1995         BUG_ON(pud_huge(*pud));
1996
1997         pmd = pmd_alloc(mm, pud, addr);
1998         if (!pmd)
1999                 return -ENOMEM;
2000         do {
2001                 next = pmd_addr_end(addr, end);
2002                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2003                 if (err)
2004                         break;
2005         } while (pmd++, addr = next, addr != end);
2006         return err;
2007 }
2008
2009 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2010                                      unsigned long addr, unsigned long end,
2011                                      pte_fn_t fn, void *data)
2012 {
2013         pud_t *pud;
2014         unsigned long next;
2015         int err;
2016
2017         pud = pud_alloc(mm, p4d, addr);
2018         if (!pud)
2019                 return -ENOMEM;
2020         do {
2021                 next = pud_addr_end(addr, end);
2022                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2023                 if (err)
2024                         break;
2025         } while (pud++, addr = next, addr != end);
2026         return err;
2027 }
2028
2029 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2030                                      unsigned long addr, unsigned long end,
2031                                      pte_fn_t fn, void *data)
2032 {
2033         p4d_t *p4d;
2034         unsigned long next;
2035         int err;
2036
2037         p4d = p4d_alloc(mm, pgd, addr);
2038         if (!p4d)
2039                 return -ENOMEM;
2040         do {
2041                 next = p4d_addr_end(addr, end);
2042                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2043                 if (err)
2044                         break;
2045         } while (p4d++, addr = next, addr != end);
2046         return err;
2047 }
2048
2049 /*
2050  * Scan a region of virtual memory, filling in page tables as necessary
2051  * and calling a provided function on each leaf page table.
2052  */
2053 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2054                         unsigned long size, pte_fn_t fn, void *data)
2055 {
2056         pgd_t *pgd;
2057         unsigned long next;
2058         unsigned long end = addr + size;
2059         int err;
2060
2061         if (WARN_ON(addr >= end))
2062                 return -EINVAL;
2063
2064         pgd = pgd_offset(mm, addr);
2065         do {
2066                 next = pgd_addr_end(addr, end);
2067                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2068                 if (err)
2069                         break;
2070         } while (pgd++, addr = next, addr != end);
2071
2072         return err;
2073 }
2074 EXPORT_SYMBOL_GPL(apply_to_page_range);
2075
2076 /*
2077  * handle_pte_fault chooses page fault handler according to an entry which was
2078  * read non-atomically.  Before making any commitment, on those architectures
2079  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2080  * parts, do_swap_page must check under lock before unmapping the pte and
2081  * proceeding (but do_wp_page is only called after already making such a check;
2082  * and do_anonymous_page can safely check later on).
2083  */
2084 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2085                                 pte_t *page_table, pte_t orig_pte)
2086 {
2087         int same = 1;
2088 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2089         if (sizeof(pte_t) > sizeof(unsigned long)) {
2090                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2091                 spin_lock(ptl);
2092                 same = pte_same(*page_table, orig_pte);
2093                 spin_unlock(ptl);
2094         }
2095 #endif
2096         pte_unmap(page_table);
2097         return same;
2098 }
2099
2100 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2101 {
2102         debug_dma_assert_idle(src);
2103
2104         /*
2105          * If the source page was a PFN mapping, we don't have
2106          * a "struct page" for it. We do a best-effort copy by
2107          * just copying from the original user address. If that
2108          * fails, we just zero-fill it. Live with it.
2109          */
2110         if (unlikely(!src)) {
2111                 void *kaddr = kmap_atomic(dst);
2112                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2113
2114                 /*
2115                  * This really shouldn't fail, because the page is there
2116                  * in the page tables. But it might just be unreadable,
2117                  * in which case we just give up and fill the result with
2118                  * zeroes.
2119                  */
2120                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2121                         clear_page(kaddr);
2122                 kunmap_atomic(kaddr);
2123                 flush_dcache_page(dst);
2124         } else
2125                 copy_user_highpage(dst, src, va, vma);
2126 }
2127
2128 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2129 {
2130         struct file *vm_file = vma->vm_file;
2131
2132         if (vm_file)
2133                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2134
2135         /*
2136          * Special mappings (e.g. VDSO) do not have any file so fake
2137          * a default GFP_KERNEL for them.
2138          */
2139         return GFP_KERNEL;
2140 }
2141
2142 /*
2143  * Notify the address space that the page is about to become writable so that
2144  * it can prohibit this or wait for the page to get into an appropriate state.
2145  *
2146  * We do this without the lock held, so that it can sleep if it needs to.
2147  */
2148 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2149 {
2150         vm_fault_t ret;
2151         struct page *page = vmf->page;
2152         unsigned int old_flags = vmf->flags;
2153
2154         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2155
2156         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2157         /* Restore original flags so that caller is not surprised */
2158         vmf->flags = old_flags;
2159         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2160                 return ret;
2161         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2162                 lock_page(page);
2163                 if (!page->mapping) {
2164                         unlock_page(page);
2165                         return 0; /* retry */
2166                 }
2167                 ret |= VM_FAULT_LOCKED;
2168         } else
2169                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2170         return ret;
2171 }
2172
2173 /*
2174  * Handle dirtying of a page in shared file mapping on a write fault.
2175  *
2176  * The function expects the page to be locked and unlocks it.
2177  */
2178 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2179                                     struct page *page)
2180 {
2181         struct address_space *mapping;
2182         bool dirtied;
2183         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2184
2185         dirtied = set_page_dirty(page);
2186         VM_BUG_ON_PAGE(PageAnon(page), page);
2187         /*
2188          * Take a local copy of the address_space - page.mapping may be zeroed
2189          * by truncate after unlock_page().   The address_space itself remains
2190          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2191          * release semantics to prevent the compiler from undoing this copying.
2192          */
2193         mapping = page_rmapping(page);
2194         unlock_page(page);
2195
2196         if ((dirtied || page_mkwrite) && mapping) {
2197                 /*
2198                  * Some device drivers do not set page.mapping
2199                  * but still dirty their pages
2200                  */
2201                 balance_dirty_pages_ratelimited(mapping);
2202         }
2203
2204         if (!page_mkwrite)
2205                 file_update_time(vma->vm_file);
2206 }
2207
2208 /*
2209  * Handle write page faults for pages that can be reused in the current vma
2210  *
2211  * This can happen either due to the mapping being with the VM_SHARED flag,
2212  * or due to us being the last reference standing to the page. In either
2213  * case, all we need to do here is to mark the page as writable and update
2214  * any related book-keeping.
2215  */
2216 static inline void wp_page_reuse(struct vm_fault *vmf)
2217         __releases(vmf->ptl)
2218 {
2219         struct vm_area_struct *vma = vmf->vma;
2220         struct page *page = vmf->page;
2221         pte_t entry;
2222         /*
2223          * Clear the pages cpupid information as the existing
2224          * information potentially belongs to a now completely
2225          * unrelated process.
2226          */
2227         if (page)
2228                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2229
2230         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2231         entry = pte_mkyoung(vmf->orig_pte);
2232         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2233         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2234                 update_mmu_cache(vma, vmf->address, vmf->pte);
2235         pte_unmap_unlock(vmf->pte, vmf->ptl);
2236 }
2237
2238 /*
2239  * Handle the case of a page which we actually need to copy to a new page.
2240  *
2241  * Called with mmap_sem locked and the old page referenced, but
2242  * without the ptl held.
2243  *
2244  * High level logic flow:
2245  *
2246  * - Allocate a page, copy the content of the old page to the new one.
2247  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2248  * - Take the PTL. If the pte changed, bail out and release the allocated page
2249  * - If the pte is still the way we remember it, update the page table and all
2250  *   relevant references. This includes dropping the reference the page-table
2251  *   held to the old page, as well as updating the rmap.
2252  * - In any case, unlock the PTL and drop the reference we took to the old page.
2253  */
2254 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2255 {
2256         struct vm_area_struct *vma = vmf->vma;
2257         struct mm_struct *mm = vma->vm_mm;
2258         struct page *old_page = vmf->page;
2259         struct page *new_page = NULL;
2260         pte_t entry;
2261         int page_copied = 0;
2262         struct mem_cgroup *memcg;
2263         struct mmu_notifier_range range;
2264
2265         if (unlikely(anon_vma_prepare(vma)))
2266                 goto oom;
2267
2268         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2269                 new_page = alloc_zeroed_user_highpage_movable(vma,
2270                                                               vmf->address);
2271                 if (!new_page)
2272                         goto oom;
2273         } else {
2274                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2275                                 vmf->address);
2276                 if (!new_page)
2277                         goto oom;
2278                 cow_user_page(new_page, old_page, vmf->address, vma);
2279         }
2280
2281         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2282                 goto oom_free_new;
2283
2284         __SetPageUptodate(new_page);
2285
2286         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm,
2287                                 vmf->address & PAGE_MASK,
2288                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2289         mmu_notifier_invalidate_range_start(&range);
2290
2291         /*
2292          * Re-check the pte - we dropped the lock
2293          */
2294         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2295         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2296                 if (old_page) {
2297                         if (!PageAnon(old_page)) {
2298                                 dec_mm_counter_fast(mm,
2299                                                 mm_counter_file(old_page));
2300                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2301                         }
2302                 } else {
2303                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2304                 }
2305                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2306                 entry = mk_pte(new_page, vma->vm_page_prot);
2307                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2308                 /*
2309                  * Clear the pte entry and flush it first, before updating the
2310                  * pte with the new entry. This will avoid a race condition
2311                  * seen in the presence of one thread doing SMC and another
2312                  * thread doing COW.
2313                  */
2314                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2315                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2316                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2317                 lru_cache_add_active_or_unevictable(new_page, vma);
2318                 /*
2319                  * We call the notify macro here because, when using secondary
2320                  * mmu page tables (such as kvm shadow page tables), we want the
2321                  * new page to be mapped directly into the secondary page table.
2322                  */
2323                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2324                 update_mmu_cache(vma, vmf->address, vmf->pte);
2325                 if (old_page) {
2326                         /*
2327                          * Only after switching the pte to the new page may
2328                          * we remove the mapcount here. Otherwise another
2329                          * process may come and find the rmap count decremented
2330                          * before the pte is switched to the new page, and
2331                          * "reuse" the old page writing into it while our pte
2332                          * here still points into it and can be read by other
2333                          * threads.
2334                          *
2335                          * The critical issue is to order this
2336                          * page_remove_rmap with the ptp_clear_flush above.
2337                          * Those stores are ordered by (if nothing else,)
2338                          * the barrier present in the atomic_add_negative
2339                          * in page_remove_rmap.
2340                          *
2341                          * Then the TLB flush in ptep_clear_flush ensures that
2342                          * no process can access the old page before the
2343                          * decremented mapcount is visible. And the old page
2344                          * cannot be reused until after the decremented
2345                          * mapcount is visible. So transitively, TLBs to
2346                          * old page will be flushed before it can be reused.
2347                          */
2348                         page_remove_rmap(old_page, false);
2349                 }
2350
2351                 /* Free the old page.. */
2352                 new_page = old_page;
2353                 page_copied = 1;
2354         } else {
2355                 mem_cgroup_cancel_charge(new_page, memcg, false);
2356         }
2357
2358         if (new_page)
2359                 put_page(new_page);
2360
2361         pte_unmap_unlock(vmf->pte, vmf->ptl);
2362         /*
2363          * No need to double call mmu_notifier->invalidate_range() callback as
2364          * the above ptep_clear_flush_notify() did already call it.
2365          */
2366         mmu_notifier_invalidate_range_only_end(&range);
2367         if (old_page) {
2368                 /*
2369                  * Don't let another task, with possibly unlocked vma,
2370                  * keep the mlocked page.
2371                  */
2372                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2373                         lock_page(old_page);    /* LRU manipulation */
2374                         if (PageMlocked(old_page))
2375                                 munlock_vma_page(old_page);
2376                         unlock_page(old_page);
2377                 }
2378                 put_page(old_page);
2379         }
2380         return page_copied ? VM_FAULT_WRITE : 0;
2381 oom_free_new:
2382         put_page(new_page);
2383 oom:
2384         if (old_page)
2385                 put_page(old_page);
2386         return VM_FAULT_OOM;
2387 }
2388
2389 /**
2390  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2391  *                        writeable once the page is prepared
2392  *
2393  * @vmf: structure describing the fault
2394  *
2395  * This function handles all that is needed to finish a write page fault in a
2396  * shared mapping due to PTE being read-only once the mapped page is prepared.
2397  * It handles locking of PTE and modifying it.
2398  *
2399  * The function expects the page to be locked or other protection against
2400  * concurrent faults / writeback (such as DAX radix tree locks).
2401  *
2402  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2403  * we acquired PTE lock.
2404  */
2405 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2406 {
2407         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2408         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2409                                        &vmf->ptl);
2410         /*
2411          * We might have raced with another page fault while we released the
2412          * pte_offset_map_lock.
2413          */
2414         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2415                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2416                 return VM_FAULT_NOPAGE;
2417         }
2418         wp_page_reuse(vmf);
2419         return 0;
2420 }
2421
2422 /*
2423  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2424  * mapping
2425  */
2426 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2427 {
2428         struct vm_area_struct *vma = vmf->vma;
2429
2430         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2431                 vm_fault_t ret;
2432
2433                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2434                 vmf->flags |= FAULT_FLAG_MKWRITE;
2435                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2436                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2437                         return ret;
2438                 return finish_mkwrite_fault(vmf);
2439         }
2440         wp_page_reuse(vmf);
2441         return VM_FAULT_WRITE;
2442 }
2443
2444 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2445         __releases(vmf->ptl)
2446 {
2447         struct vm_area_struct *vma = vmf->vma;
2448
2449         get_page(vmf->page);
2450
2451         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2452                 vm_fault_t tmp;
2453
2454                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2455                 tmp = do_page_mkwrite(vmf);
2456                 if (unlikely(!tmp || (tmp &
2457                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2458                         put_page(vmf->page);
2459                         return tmp;
2460                 }
2461                 tmp = finish_mkwrite_fault(vmf);
2462                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2463                         unlock_page(vmf->page);
2464                         put_page(vmf->page);
2465                         return tmp;
2466                 }
2467         } else {
2468                 wp_page_reuse(vmf);
2469                 lock_page(vmf->page);
2470         }
2471         fault_dirty_shared_page(vma, vmf->page);
2472         put_page(vmf->page);
2473
2474         return VM_FAULT_WRITE;
2475 }
2476
2477 /*
2478  * This routine handles present pages, when users try to write
2479  * to a shared page. It is done by copying the page to a new address
2480  * and decrementing the shared-page counter for the old page.
2481  *
2482  * Note that this routine assumes that the protection checks have been
2483  * done by the caller (the low-level page fault routine in most cases).
2484  * Thus we can safely just mark it writable once we've done any necessary
2485  * COW.
2486  *
2487  * We also mark the page dirty at this point even though the page will
2488  * change only once the write actually happens. This avoids a few races,
2489  * and potentially makes it more efficient.
2490  *
2491  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2492  * but allow concurrent faults), with pte both mapped and locked.
2493  * We return with mmap_sem still held, but pte unmapped and unlocked.
2494  */
2495 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2496         __releases(vmf->ptl)
2497 {
2498         struct vm_area_struct *vma = vmf->vma;
2499
2500         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2501         if (!vmf->page) {
2502                 /*
2503                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2504                  * VM_PFNMAP VMA.
2505                  *
2506                  * We should not cow pages in a shared writeable mapping.
2507                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2508                  */
2509                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2510                                      (VM_WRITE|VM_SHARED))
2511                         return wp_pfn_shared(vmf);
2512
2513                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2514                 return wp_page_copy(vmf);
2515         }
2516
2517         /*
2518          * Take out anonymous pages first, anonymous shared vmas are
2519          * not dirty accountable.
2520          */
2521         if (PageAnon(vmf->page)) {
2522                 int total_map_swapcount;
2523                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2524                                            page_count(vmf->page) != 1))
2525                         goto copy;
2526                 if (!trylock_page(vmf->page)) {
2527                         get_page(vmf->page);
2528                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2529                         lock_page(vmf->page);
2530                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2531                                         vmf->address, &vmf->ptl);
2532                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2533                                 unlock_page(vmf->page);
2534                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2535                                 put_page(vmf->page);
2536                                 return 0;
2537                         }
2538                         put_page(vmf->page);
2539                 }
2540                 if (PageKsm(vmf->page)) {
2541                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2542                                                      vmf->address);
2543                         unlock_page(vmf->page);
2544                         if (!reused)
2545                                 goto copy;
2546                         wp_page_reuse(vmf);
2547                         return VM_FAULT_WRITE;
2548                 }
2549                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2550                         if (total_map_swapcount == 1) {
2551                                 /*
2552                                  * The page is all ours. Move it to
2553                                  * our anon_vma so the rmap code will
2554                                  * not search our parent or siblings.
2555                                  * Protected against the rmap code by
2556                                  * the page lock.
2557                                  */
2558                                 page_move_anon_rmap(vmf->page, vma);
2559                         }
2560                         unlock_page(vmf->page);
2561                         wp_page_reuse(vmf);
2562                         return VM_FAULT_WRITE;
2563                 }
2564                 unlock_page(vmf->page);
2565         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2566                                         (VM_WRITE|VM_SHARED))) {
2567                 return wp_page_shared(vmf);
2568         }
2569 copy:
2570         /*
2571          * Ok, we need to copy. Oh, well..
2572          */
2573         get_page(vmf->page);
2574
2575         pte_unmap_unlock(vmf->pte, vmf->ptl);
2576         return wp_page_copy(vmf);
2577 }
2578
2579 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2580                 unsigned long start_addr, unsigned long end_addr,
2581                 struct zap_details *details)
2582 {
2583         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2584 }
2585
2586 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2587                                             struct zap_details *details)
2588 {
2589         struct vm_area_struct *vma;
2590         pgoff_t vba, vea, zba, zea;
2591
2592         vma_interval_tree_foreach(vma, root,
2593                         details->first_index, details->last_index) {
2594
2595                 vba = vma->vm_pgoff;
2596                 vea = vba + vma_pages(vma) - 1;
2597                 zba = details->first_index;
2598                 if (zba < vba)
2599                         zba = vba;
2600                 zea = details->last_index;
2601                 if (zea > vea)
2602                         zea = vea;
2603
2604                 unmap_mapping_range_vma(vma,
2605                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2606                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2607                                 details);
2608         }
2609 }
2610
2611 /**
2612  * unmap_mapping_pages() - Unmap pages from processes.
2613  * @mapping: The address space containing pages to be unmapped.
2614  * @start: Index of first page to be unmapped.
2615  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2616  * @even_cows: Whether to unmap even private COWed pages.
2617  *
2618  * Unmap the pages in this address space from any userspace process which
2619  * has them mmaped.  Generally, you want to remove COWed pages as well when
2620  * a file is being truncated, but not when invalidating pages from the page
2621  * cache.
2622  */
2623 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2624                 pgoff_t nr, bool even_cows)
2625 {
2626         struct zap_details details = { };
2627
2628         details.check_mapping = even_cows ? NULL : mapping;
2629         details.first_index = start;
2630         details.last_index = start + nr - 1;
2631         if (details.last_index < details.first_index)
2632                 details.last_index = ULONG_MAX;
2633
2634         i_mmap_lock_write(mapping);
2635         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2636                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2637         i_mmap_unlock_write(mapping);
2638 }
2639
2640 /**
2641  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2642  * address_space corresponding to the specified byte range in the underlying
2643  * file.
2644  *
2645  * @mapping: the address space containing mmaps to be unmapped.
2646  * @holebegin: byte in first page to unmap, relative to the start of
2647  * the underlying file.  This will be rounded down to a PAGE_SIZE
2648  * boundary.  Note that this is different from truncate_pagecache(), which
2649  * must keep the partial page.  In contrast, we must get rid of
2650  * partial pages.
2651  * @holelen: size of prospective hole in bytes.  This will be rounded
2652  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2653  * end of the file.
2654  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2655  * but 0 when invalidating pagecache, don't throw away private data.
2656  */
2657 void unmap_mapping_range(struct address_space *mapping,
2658                 loff_t const holebegin, loff_t const holelen, int even_cows)
2659 {
2660         pgoff_t hba = holebegin >> PAGE_SHIFT;
2661         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2662
2663         /* Check for overflow. */
2664         if (sizeof(holelen) > sizeof(hlen)) {
2665                 long long holeend =
2666                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2667                 if (holeend & ~(long long)ULONG_MAX)
2668                         hlen = ULONG_MAX - hba + 1;
2669         }
2670
2671         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2672 }
2673 EXPORT_SYMBOL(unmap_mapping_range);
2674
2675 /*
2676  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2677  * but allow concurrent faults), and pte mapped but not yet locked.
2678  * We return with pte unmapped and unlocked.
2679  *
2680  * We return with the mmap_sem locked or unlocked in the same cases
2681  * as does filemap_fault().
2682  */
2683 vm_fault_t do_swap_page(struct vm_fault *vmf)
2684 {
2685         struct vm_area_struct *vma = vmf->vma;
2686         struct page *page = NULL, *swapcache;
2687         struct mem_cgroup *memcg;
2688         swp_entry_t entry;
2689         pte_t pte;
2690         int locked;
2691         int exclusive = 0;
2692         vm_fault_t ret = 0;
2693
2694         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2695                 goto out;
2696
2697         entry = pte_to_swp_entry(vmf->orig_pte);
2698         if (unlikely(non_swap_entry(entry))) {
2699                 if (is_migration_entry(entry)) {
2700                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2701                                              vmf->address);
2702                 } else if (is_device_private_entry(entry)) {
2703                         /*
2704                          * For un-addressable device memory we call the pgmap
2705                          * fault handler callback. The callback must migrate
2706                          * the page back to some CPU accessible page.
2707                          */
2708                         ret = device_private_entry_fault(vma, vmf->address, entry,
2709                                                  vmf->flags, vmf->pmd);
2710                 } else if (is_hwpoison_entry(entry)) {
2711                         ret = VM_FAULT_HWPOISON;
2712                 } else {
2713                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2714                         ret = VM_FAULT_SIGBUS;
2715                 }
2716                 goto out;
2717         }
2718
2719
2720         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2721         page = lookup_swap_cache(entry, vma, vmf->address);
2722         swapcache = page;
2723
2724         if (!page) {
2725                 struct swap_info_struct *si = swp_swap_info(entry);
2726
2727                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2728                                 __swap_count(si, entry) == 1) {
2729                         /* skip swapcache */
2730                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2731                                                         vmf->address);
2732                         if (page) {
2733                                 __SetPageLocked(page);
2734                                 __SetPageSwapBacked(page);
2735                                 set_page_private(page, entry.val);
2736                                 lru_cache_add_anon(page);
2737                                 swap_readpage(page, true);
2738                         }
2739                 } else {
2740                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2741                                                 vmf);
2742                         swapcache = page;
2743                 }
2744
2745                 if (!page) {
2746                         /*
2747                          * Back out if somebody else faulted in this pte
2748                          * while we released the pte lock.
2749                          */
2750                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2751                                         vmf->address, &vmf->ptl);
2752                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2753                                 ret = VM_FAULT_OOM;
2754                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2755                         goto unlock;
2756                 }
2757
2758                 /* Had to read the page from swap area: Major fault */
2759                 ret = VM_FAULT_MAJOR;
2760                 count_vm_event(PGMAJFAULT);
2761                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2762         } else if (PageHWPoison(page)) {
2763                 /*
2764                  * hwpoisoned dirty swapcache pages are kept for killing
2765                  * owner processes (which may be unknown at hwpoison time)
2766                  */
2767                 ret = VM_FAULT_HWPOISON;
2768                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2769                 goto out_release;
2770         }
2771
2772         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2773
2774         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2775         if (!locked) {
2776                 ret |= VM_FAULT_RETRY;
2777                 goto out_release;
2778         }
2779
2780         /*
2781          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2782          * release the swapcache from under us.  The page pin, and pte_same
2783          * test below, are not enough to exclude that.  Even if it is still
2784          * swapcache, we need to check that the page's swap has not changed.
2785          */
2786         if (unlikely((!PageSwapCache(page) ||
2787                         page_private(page) != entry.val)) && swapcache)
2788                 goto out_page;
2789
2790         page = ksm_might_need_to_copy(page, vma, vmf->address);
2791         if (unlikely(!page)) {
2792                 ret = VM_FAULT_OOM;
2793                 page = swapcache;
2794                 goto out_page;
2795         }
2796
2797         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2798                                         &memcg, false)) {
2799                 ret = VM_FAULT_OOM;
2800                 goto out_page;
2801         }
2802
2803         /*
2804          * Back out if somebody else already faulted in this pte.
2805          */
2806         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2807                         &vmf->ptl);
2808         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2809                 goto out_nomap;
2810
2811         if (unlikely(!PageUptodate(page))) {
2812                 ret = VM_FAULT_SIGBUS;
2813                 goto out_nomap;
2814         }
2815
2816         /*
2817          * The page isn't present yet, go ahead with the fault.
2818          *
2819          * Be careful about the sequence of operations here.
2820          * To get its accounting right, reuse_swap_page() must be called
2821          * while the page is counted on swap but not yet in mapcount i.e.
2822          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2823          * must be called after the swap_free(), or it will never succeed.
2824          */
2825
2826         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2827         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2828         pte = mk_pte(page, vma->vm_page_prot);
2829         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2830                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2831                 vmf->flags &= ~FAULT_FLAG_WRITE;
2832                 ret |= VM_FAULT_WRITE;
2833                 exclusive = RMAP_EXCLUSIVE;
2834         }
2835         flush_icache_page(vma, page);
2836         if (pte_swp_soft_dirty(vmf->orig_pte))
2837                 pte = pte_mksoft_dirty(pte);
2838         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2839         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2840         vmf->orig_pte = pte;
2841
2842         /* ksm created a completely new copy */
2843         if (unlikely(page != swapcache && swapcache)) {
2844                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2845                 mem_cgroup_commit_charge(page, memcg, false, false);
2846                 lru_cache_add_active_or_unevictable(page, vma);
2847         } else {
2848                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2849                 mem_cgroup_commit_charge(page, memcg, true, false);
2850                 activate_page(page);
2851         }
2852
2853         swap_free(entry);
2854         if (mem_cgroup_swap_full(page) ||
2855             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2856                 try_to_free_swap(page);
2857         unlock_page(page);
2858         if (page != swapcache && swapcache) {
2859                 /*
2860                  * Hold the lock to avoid the swap entry to be reused
2861                  * until we take the PT lock for the pte_same() check
2862                  * (to avoid false positives from pte_same). For
2863                  * further safety release the lock after the swap_free
2864                  * so that the swap count won't change under a
2865                  * parallel locked swapcache.
2866                  */
2867                 unlock_page(swapcache);
2868                 put_page(swapcache);
2869         }
2870
2871         if (vmf->flags & FAULT_FLAG_WRITE) {
2872                 ret |= do_wp_page(vmf);
2873                 if (ret & VM_FAULT_ERROR)
2874                         ret &= VM_FAULT_ERROR;
2875                 goto out;
2876         }
2877
2878         /* No need to invalidate - it was non-present before */
2879         update_mmu_cache(vma, vmf->address, vmf->pte);
2880 unlock:
2881         pte_unmap_unlock(vmf->pte, vmf->ptl);
2882 out:
2883         return ret;
2884 out_nomap:
2885         mem_cgroup_cancel_charge(page, memcg, false);
2886         pte_unmap_unlock(vmf->pte, vmf->ptl);
2887 out_page:
2888         unlock_page(page);
2889 out_release:
2890         put_page(page);
2891         if (page != swapcache && swapcache) {
2892                 unlock_page(swapcache);
2893                 put_page(swapcache);
2894         }
2895         return ret;
2896 }
2897
2898 /*
2899  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2900  * but allow concurrent faults), and pte mapped but not yet locked.
2901  * We return with mmap_sem still held, but pte unmapped and unlocked.
2902  */
2903 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2904 {
2905         struct vm_area_struct *vma = vmf->vma;
2906         struct mem_cgroup *memcg;
2907         struct page *page;
2908         vm_fault_t ret = 0;
2909         pte_t entry;
2910
2911         /* File mapping without ->vm_ops ? */
2912         if (vma->vm_flags & VM_SHARED)
2913                 return VM_FAULT_SIGBUS;
2914
2915         /*
2916          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2917          * pte_offset_map() on pmds where a huge pmd might be created
2918          * from a different thread.
2919          *
2920          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2921          * parallel threads are excluded by other means.
2922          *
2923          * Here we only have down_read(mmap_sem).
2924          */
2925         if (pte_alloc(vma->vm_mm, vmf->pmd))
2926                 return VM_FAULT_OOM;
2927
2928         /* See the comment in pte_alloc_one_map() */
2929         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2930                 return 0;
2931
2932         /* Use the zero-page for reads */
2933         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2934                         !mm_forbids_zeropage(vma->vm_mm)) {
2935                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2936                                                 vma->vm_page_prot));
2937                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2938                                 vmf->address, &vmf->ptl);
2939                 if (!pte_none(*vmf->pte))
2940                         goto unlock;
2941                 ret = check_stable_address_space(vma->vm_mm);
2942                 if (ret)
2943                         goto unlock;
2944                 /* Deliver the page fault to userland, check inside PT lock */
2945                 if (userfaultfd_missing(vma)) {
2946                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2947                         return handle_userfault(vmf, VM_UFFD_MISSING);
2948                 }
2949                 goto setpte;
2950         }
2951
2952         /* Allocate our own private page. */
2953         if (unlikely(anon_vma_prepare(vma)))
2954                 goto oom;
2955         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2956         if (!page)
2957                 goto oom;
2958
2959         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2960                                         false))
2961                 goto oom_free_page;
2962
2963         /*
2964          * The memory barrier inside __SetPageUptodate makes sure that
2965          * preceeding stores to the page contents become visible before
2966          * the set_pte_at() write.
2967          */
2968         __SetPageUptodate(page);
2969
2970         entry = mk_pte(page, vma->vm_page_prot);
2971         if (vma->vm_flags & VM_WRITE)
2972                 entry = pte_mkwrite(pte_mkdirty(entry));
2973
2974         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2975                         &vmf->ptl);
2976         if (!pte_none(*vmf->pte))
2977                 goto release;
2978
2979         ret = check_stable_address_space(vma->vm_mm);
2980         if (ret)
2981                 goto release;
2982
2983         /* Deliver the page fault to userland, check inside PT lock */
2984         if (userfaultfd_missing(vma)) {
2985                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2986                 mem_cgroup_cancel_charge(page, memcg, false);
2987                 put_page(page);
2988                 return handle_userfault(vmf, VM_UFFD_MISSING);
2989         }
2990
2991         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2992         page_add_new_anon_rmap(page, vma, vmf->address, false);
2993         mem_cgroup_commit_charge(page, memcg, false, false);
2994         lru_cache_add_active_or_unevictable(page, vma);
2995 setpte:
2996         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2997
2998         /* No need to invalidate - it was non-present before */
2999         update_mmu_cache(vma, vmf->address, vmf->pte);
3000 unlock:
3001         pte_unmap_unlock(vmf->pte, vmf->ptl);
3002         return ret;
3003 release:
3004         mem_cgroup_cancel_charge(page, memcg, false);
3005         put_page(page);
3006         goto unlock;
3007 oom_free_page:
3008         put_page(page);
3009 oom:
3010         return VM_FAULT_OOM;
3011 }
3012
3013 /*
3014  * The mmap_sem must have been held on entry, and may have been
3015  * released depending on flags and vma->vm_ops->fault() return value.
3016  * See filemap_fault() and __lock_page_retry().
3017  */
3018 static vm_fault_t __do_fault(struct vm_fault *vmf)
3019 {
3020         struct vm_area_struct *vma = vmf->vma;
3021         vm_fault_t ret;
3022
3023         /*
3024          * Preallocate pte before we take page_lock because this might lead to
3025          * deadlocks for memcg reclaim which waits for pages under writeback:
3026          *                              lock_page(A)
3027          *                              SetPageWriteback(A)
3028          *                              unlock_page(A)
3029          * lock_page(B)
3030          *                              lock_page(B)
3031          * pte_alloc_pne
3032          *   shrink_page_list
3033          *     wait_on_page_writeback(A)
3034          *                              SetPageWriteback(B)
3035          *                              unlock_page(B)
3036          *                              # flush A, B to clear the writeback
3037          */
3038         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3039                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3040                 if (!vmf->prealloc_pte)
3041                         return VM_FAULT_OOM;
3042                 smp_wmb(); /* See comment in __pte_alloc() */
3043         }
3044
3045         ret = vma->vm_ops->fault(vmf);
3046         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3047                             VM_FAULT_DONE_COW)))
3048                 return ret;
3049
3050         if (unlikely(PageHWPoison(vmf->page))) {
3051                 if (ret & VM_FAULT_LOCKED)
3052                         unlock_page(vmf->page);
3053                 put_page(vmf->page);
3054                 vmf->page = NULL;
3055                 return VM_FAULT_HWPOISON;
3056         }
3057
3058         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3059                 lock_page(vmf->page);
3060         else
3061                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3062
3063         return ret;
3064 }
3065
3066 /*
3067  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3068  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3069  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3070  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3071  */
3072 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3073 {
3074         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3075 }
3076
3077 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3078 {
3079         struct vm_area_struct *vma = vmf->vma;
3080
3081         if (!pmd_none(*vmf->pmd))
3082                 goto map_pte;
3083         if (vmf->prealloc_pte) {
3084                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3085                 if (unlikely(!pmd_none(*vmf->pmd))) {
3086                         spin_unlock(vmf->ptl);
3087                         goto map_pte;
3088                 }
3089
3090                 mm_inc_nr_ptes(vma->vm_mm);
3091                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3092                 spin_unlock(vmf->ptl);
3093                 vmf->prealloc_pte = NULL;
3094         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3095                 return VM_FAULT_OOM;
3096         }
3097 map_pte:
3098         /*
3099          * If a huge pmd materialized under us just retry later.  Use
3100          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3101          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3102          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3103          * running immediately after a huge pmd fault in a different thread of
3104          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3105          * All we have to ensure is that it is a regular pmd that we can walk
3106          * with pte_offset_map() and we can do that through an atomic read in
3107          * C, which is what pmd_trans_unstable() provides.
3108          */
3109         if (pmd_devmap_trans_unstable(vmf->pmd))
3110                 return VM_FAULT_NOPAGE;
3111
3112         /*
3113          * At this point we know that our vmf->pmd points to a page of ptes
3114          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3115          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3116          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3117          * be valid and we will re-check to make sure the vmf->pte isn't
3118          * pte_none() under vmf->ptl protection when we return to
3119          * alloc_set_pte().
3120          */
3121         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3122                         &vmf->ptl);
3123         return 0;
3124 }
3125
3126 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3127
3128 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3129 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3130                 unsigned long haddr)
3131 {
3132         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3133                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3134                 return false;
3135         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3136                 return false;
3137         return true;
3138 }
3139
3140 static void deposit_prealloc_pte(struct vm_fault *vmf)
3141 {
3142         struct vm_area_struct *vma = vmf->vma;
3143
3144         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3145         /*
3146          * We are going to consume the prealloc table,
3147          * count that as nr_ptes.
3148          */
3149         mm_inc_nr_ptes(vma->vm_mm);
3150         vmf->prealloc_pte = NULL;
3151 }
3152
3153 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3154 {
3155         struct vm_area_struct *vma = vmf->vma;
3156         bool write = vmf->flags & FAULT_FLAG_WRITE;
3157         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3158         pmd_t entry;
3159         int i;
3160         vm_fault_t ret;
3161
3162         if (!transhuge_vma_suitable(vma, haddr))
3163                 return VM_FAULT_FALLBACK;
3164
3165         ret = VM_FAULT_FALLBACK;
3166         page = compound_head(page);
3167
3168         /*
3169          * Archs like ppc64 need additonal space to store information
3170          * related to pte entry. Use the preallocated table for that.
3171          */
3172         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3173                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3174                 if (!vmf->prealloc_pte)
3175                         return VM_FAULT_OOM;
3176                 smp_wmb(); /* See comment in __pte_alloc() */
3177         }
3178
3179         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3180         if (unlikely(!pmd_none(*vmf->pmd)))
3181                 goto out;
3182
3183         for (i = 0; i < HPAGE_PMD_NR; i++)
3184                 flush_icache_page(vma, page + i);
3185
3186         entry = mk_huge_pmd(page, vma->vm_page_prot);
3187         if (write)
3188                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3189
3190         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3191         page_add_file_rmap(page, true);
3192         /*
3193          * deposit and withdraw with pmd lock held
3194          */
3195         if (arch_needs_pgtable_deposit())
3196                 deposit_prealloc_pte(vmf);
3197
3198         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3199
3200         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3201
3202         /* fault is handled */
3203         ret = 0;
3204         count_vm_event(THP_FILE_MAPPED);
3205 out:
3206         spin_unlock(vmf->ptl);
3207         return ret;
3208 }
3209 #else
3210 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3211 {
3212         BUILD_BUG();
3213         return 0;
3214 }
3215 #endif
3216
3217 /**
3218  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3219  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3220  *
3221  * @vmf: fault environment
3222  * @memcg: memcg to charge page (only for private mappings)
3223  * @page: page to map
3224  *
3225  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3226  * return.
3227  *
3228  * Target users are page handler itself and implementations of
3229  * vm_ops->map_pages.
3230  *
3231  * Return: %0 on success, %VM_FAULT_ code in case of error.
3232  */
3233 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3234                 struct page *page)
3235 {
3236         struct vm_area_struct *vma = vmf->vma;
3237         bool write = vmf->flags & FAULT_FLAG_WRITE;
3238         pte_t entry;
3239         vm_fault_t ret;
3240
3241         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3242                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3243                 /* THP on COW? */
3244                 VM_BUG_ON_PAGE(memcg, page);
3245
3246                 ret = do_set_pmd(vmf, page);
3247                 if (ret != VM_FAULT_FALLBACK)
3248                         return ret;
3249         }
3250
3251         if (!vmf->pte) {
3252                 ret = pte_alloc_one_map(vmf);
3253                 if (ret)
3254                         return ret;
3255         }
3256
3257         /* Re-check under ptl */
3258         if (unlikely(!pte_none(*vmf->pte)))
3259                 return VM_FAULT_NOPAGE;
3260
3261         flush_icache_page(vma, page);
3262         entry = mk_pte(page, vma->vm_page_prot);
3263         if (write)
3264                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3265         /* copy-on-write page */
3266         if (write && !(vma->vm_flags & VM_SHARED)) {
3267                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3268                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3269                 mem_cgroup_commit_charge(page, memcg, false, false);
3270                 lru_cache_add_active_or_unevictable(page, vma);
3271         } else {
3272                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3273                 page_add_file_rmap(page, false);
3274         }
3275         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3276
3277         /* no need to invalidate: a not-present page won't be cached */
3278         update_mmu_cache(vma, vmf->address, vmf->pte);
3279
3280         return 0;
3281 }
3282
3283
3284 /**
3285  * finish_fault - finish page fault once we have prepared the page to fault
3286  *
3287  * @vmf: structure describing the fault
3288  *
3289  * This function handles all that is needed to finish a page fault once the
3290  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3291  * given page, adds reverse page mapping, handles memcg charges and LRU
3292  * addition.
3293  *
3294  * The function expects the page to be locked and on success it consumes a
3295  * reference of a page being mapped (for the PTE which maps it).
3296  *
3297  * Return: %0 on success, %VM_FAULT_ code in case of error.
3298  */
3299 vm_fault_t finish_fault(struct vm_fault *vmf)
3300 {
3301         struct page *page;
3302         vm_fault_t ret = 0;
3303
3304         /* Did we COW the page? */
3305         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3306             !(vmf->vma->vm_flags & VM_SHARED))
3307                 page = vmf->cow_page;
3308         else
3309                 page = vmf->page;
3310
3311         /*
3312          * check even for read faults because we might have lost our CoWed
3313          * page
3314          */
3315         if (!(vmf->vma->vm_flags & VM_SHARED))
3316                 ret = check_stable_address_space(vmf->vma->vm_mm);
3317         if (!ret)
3318                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3319         if (vmf->pte)
3320                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3321         return ret;
3322 }
3323
3324 static unsigned long fault_around_bytes __read_mostly =
3325         rounddown_pow_of_two(65536);
3326
3327 #ifdef CONFIG_DEBUG_FS
3328 static int fault_around_bytes_get(void *data, u64 *val)
3329 {
3330         *val = fault_around_bytes;
3331         return 0;
3332 }
3333
3334 /*
3335  * fault_around_bytes must be rounded down to the nearest page order as it's
3336  * what do_fault_around() expects to see.
3337  */
3338 static int fault_around_bytes_set(void *data, u64 val)
3339 {
3340         if (val / PAGE_SIZE > PTRS_PER_PTE)
3341                 return -EINVAL;
3342         if (val > PAGE_SIZE)
3343                 fault_around_bytes = rounddown_pow_of_two(val);
3344         else
3345                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3346         return 0;
3347 }
3348 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3349                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3350
3351 static int __init fault_around_debugfs(void)
3352 {
3353         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3354                                    &fault_around_bytes_fops);
3355         return 0;
3356 }
3357 late_initcall(fault_around_debugfs);
3358 #endif
3359
3360 /*
3361  * do_fault_around() tries to map few pages around the fault address. The hope
3362  * is that the pages will be needed soon and this will lower the number of
3363  * faults to handle.
3364  *
3365  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3366  * not ready to be mapped: not up-to-date, locked, etc.
3367  *
3368  * This function is called with the page table lock taken. In the split ptlock
3369  * case the page table lock only protects only those entries which belong to
3370  * the page table corresponding to the fault address.
3371  *
3372  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3373  * only once.
3374  *
3375  * fault_around_bytes defines how many bytes we'll try to map.
3376  * do_fault_around() expects it to be set to a power of two less than or equal
3377  * to PTRS_PER_PTE.
3378  *
3379  * The virtual address of the area that we map is naturally aligned to
3380  * fault_around_bytes rounded down to the machine page size
3381  * (and therefore to page order).  This way it's easier to guarantee
3382  * that we don't cross page table boundaries.
3383  */
3384 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3385 {
3386         unsigned long address = vmf->address, nr_pages, mask;
3387         pgoff_t start_pgoff = vmf->pgoff;
3388         pgoff_t end_pgoff;
3389         int off;
3390         vm_fault_t ret = 0;
3391
3392         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3393         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3394
3395         vmf->address = max(address & mask, vmf->vma->vm_start);
3396         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3397         start_pgoff -= off;
3398
3399         /*
3400          *  end_pgoff is either the end of the page table, the end of
3401          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3402          */
3403         end_pgoff = start_pgoff -
3404                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3405                 PTRS_PER_PTE - 1;
3406         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3407                         start_pgoff + nr_pages - 1);
3408
3409         if (pmd_none(*vmf->pmd)) {
3410                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3411                 if (!vmf->prealloc_pte)
3412                         goto out;
3413                 smp_wmb(); /* See comment in __pte_alloc() */
3414         }
3415
3416         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3417
3418         /* Huge page is mapped? Page fault is solved */
3419         if (pmd_trans_huge(*vmf->pmd)) {
3420                 ret = VM_FAULT_NOPAGE;
3421                 goto out;
3422         }
3423
3424         /* ->map_pages() haven't done anything useful. Cold page cache? */
3425         if (!vmf->pte)
3426                 goto out;
3427
3428         /* check if the page fault is solved */
3429         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3430         if (!pte_none(*vmf->pte))
3431                 ret = VM_FAULT_NOPAGE;
3432         pte_unmap_unlock(vmf->pte, vmf->ptl);
3433 out:
3434         vmf->address = address;
3435         vmf->pte = NULL;
3436         return ret;
3437 }
3438
3439 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3440 {
3441         struct vm_area_struct *vma = vmf->vma;
3442         vm_fault_t ret = 0;
3443
3444         /*
3445          * Let's call ->map_pages() first and use ->fault() as fallback
3446          * if page by the offset is not ready to be mapped (cold cache or
3447          * something).
3448          */
3449         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3450                 ret = do_fault_around(vmf);
3451                 if (ret)
3452                         return ret;
3453         }
3454
3455         ret = __do_fault(vmf);
3456         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3457                 return ret;
3458
3459         ret |= finish_fault(vmf);
3460         unlock_page(vmf->page);
3461         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3462                 put_page(vmf->page);
3463         return ret;
3464 }
3465
3466 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3467 {
3468         struct vm_area_struct *vma = vmf->vma;
3469         vm_fault_t ret;
3470
3471         if (unlikely(anon_vma_prepare(vma)))
3472                 return VM_FAULT_OOM;
3473
3474         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3475         if (!vmf->cow_page)
3476                 return VM_FAULT_OOM;
3477
3478         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3479                                 &vmf->memcg, false)) {
3480                 put_page(vmf->cow_page);
3481                 return VM_FAULT_OOM;
3482         }
3483
3484         ret = __do_fault(vmf);
3485         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3486                 goto uncharge_out;
3487         if (ret & VM_FAULT_DONE_COW)
3488                 return ret;
3489
3490         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3491         __SetPageUptodate(vmf->cow_page);
3492
3493         ret |= finish_fault(vmf);
3494         unlock_page(vmf->page);
3495         put_page(vmf->page);
3496         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3497                 goto uncharge_out;
3498         return ret;
3499 uncharge_out:
3500         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3501         put_page(vmf->cow_page);
3502         return ret;
3503 }
3504
3505 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3506 {
3507         struct vm_area_struct *vma = vmf->vma;
3508         vm_fault_t ret, tmp;
3509
3510         ret = __do_fault(vmf);
3511         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3512                 return ret;
3513
3514         /*
3515          * Check if the backing address space wants to know that the page is
3516          * about to become writable
3517          */
3518         if (vma->vm_ops->page_mkwrite) {
3519                 unlock_page(vmf->page);
3520                 tmp = do_page_mkwrite(vmf);
3521                 if (unlikely(!tmp ||
3522                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3523                         put_page(vmf->page);
3524                         return tmp;
3525                 }
3526         }
3527
3528         ret |= finish_fault(vmf);
3529         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3530                                         VM_FAULT_RETRY))) {
3531                 unlock_page(vmf->page);
3532                 put_page(vmf->page);
3533                 return ret;
3534         }
3535
3536         fault_dirty_shared_page(vma, vmf->page);
3537         return ret;
3538 }
3539
3540 /*
3541  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3542  * but allow concurrent faults).
3543  * The mmap_sem may have been released depending on flags and our
3544  * return value.  See filemap_fault() and __lock_page_or_retry().
3545  * If mmap_sem is released, vma may become invalid (for example
3546  * by other thread calling munmap()).
3547  */
3548 static vm_fault_t do_fault(struct vm_fault *vmf)
3549 {
3550         struct vm_area_struct *vma = vmf->vma;
3551         struct mm_struct *vm_mm = vma->vm_mm;
3552         vm_fault_t ret;
3553
3554         /*
3555          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3556          */
3557         if (!vma->vm_ops->fault) {
3558                 /*
3559                  * If we find a migration pmd entry or a none pmd entry, which
3560                  * should never happen, return SIGBUS
3561                  */
3562                 if (unlikely(!pmd_present(*vmf->pmd)))
3563                         ret = VM_FAULT_SIGBUS;
3564                 else {
3565                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3566                                                        vmf->pmd,
3567                                                        vmf->address,
3568                                                        &vmf->ptl);
3569                         /*
3570                          * Make sure this is not a temporary clearing of pte
3571                          * by holding ptl and checking again. A R/M/W update
3572                          * of pte involves: take ptl, clearing the pte so that
3573                          * we don't have concurrent modification by hardware
3574                          * followed by an update.
3575                          */
3576                         if (unlikely(pte_none(*vmf->pte)))
3577                                 ret = VM_FAULT_SIGBUS;
3578                         else
3579                                 ret = VM_FAULT_NOPAGE;
3580
3581                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3582                 }
3583         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3584                 ret = do_read_fault(vmf);
3585         else if (!(vma->vm_flags & VM_SHARED))
3586                 ret = do_cow_fault(vmf);
3587         else
3588                 ret = do_shared_fault(vmf);
3589
3590         /* preallocated pagetable is unused: free it */
3591         if (vmf->prealloc_pte) {
3592                 pte_free(vm_mm, vmf->prealloc_pte);
3593                 vmf->prealloc_pte = NULL;
3594         }
3595         return ret;
3596 }
3597
3598 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3599                                 unsigned long addr, int page_nid,
3600                                 int *flags)
3601 {
3602         get_page(page);
3603
3604         count_vm_numa_event(NUMA_HINT_FAULTS);
3605         if (page_nid == numa_node_id()) {
3606                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3607                 *flags |= TNF_FAULT_LOCAL;
3608         }
3609
3610         return mpol_misplaced(page, vma, addr);
3611 }
3612
3613 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3614 {
3615         struct vm_area_struct *vma = vmf->vma;
3616         struct page *page = NULL;
3617         int page_nid = NUMA_NO_NODE;
3618         int last_cpupid;
3619         int target_nid;
3620         bool migrated = false;
3621         pte_t pte, old_pte;
3622         bool was_writable = pte_savedwrite(vmf->orig_pte);
3623         int flags = 0;
3624
3625         /*
3626          * The "pte" at this point cannot be used safely without
3627          * validation through pte_unmap_same(). It's of NUMA type but
3628          * the pfn may be screwed if the read is non atomic.
3629          */
3630         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3631         spin_lock(vmf->ptl);
3632         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3633                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3634                 goto out;
3635         }
3636
3637         /*
3638          * Make it present again, Depending on how arch implementes non
3639          * accessible ptes, some can allow access by kernel mode.
3640          */
3641         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3642         pte = pte_modify(old_pte, vma->vm_page_prot);
3643         pte = pte_mkyoung(pte);
3644         if (was_writable)
3645                 pte = pte_mkwrite(pte);
3646         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3647         update_mmu_cache(vma, vmf->address, vmf->pte);
3648
3649         page = vm_normal_page(vma, vmf->address, pte);
3650         if (!page) {
3651                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3652                 return 0;
3653         }
3654
3655         /* TODO: handle PTE-mapped THP */
3656         if (PageCompound(page)) {
3657                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3658                 return 0;
3659         }
3660
3661         /*
3662          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3663          * much anyway since they can be in shared cache state. This misses
3664          * the case where a mapping is writable but the process never writes
3665          * to it but pte_write gets cleared during protection updates and
3666          * pte_dirty has unpredictable behaviour between PTE scan updates,
3667          * background writeback, dirty balancing and application behaviour.
3668          */
3669         if (!pte_write(pte))
3670                 flags |= TNF_NO_GROUP;
3671
3672         /*
3673          * Flag if the page is shared between multiple address spaces. This
3674          * is later used when determining whether to group tasks together
3675          */
3676         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3677                 flags |= TNF_SHARED;
3678
3679         last_cpupid = page_cpupid_last(page);
3680         page_nid = page_to_nid(page);
3681         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3682                         &flags);
3683         pte_unmap_unlock(vmf->pte, vmf->ptl);
3684         if (target_nid == NUMA_NO_NODE) {
3685                 put_page(page);
3686                 goto out;
3687         }
3688
3689         /* Migrate to the requested node */
3690         migrated = migrate_misplaced_page(page, vma, target_nid);
3691         if (migrated) {
3692                 page_nid = target_nid;
3693                 flags |= TNF_MIGRATED;
3694         } else
3695                 flags |= TNF_MIGRATE_FAIL;
3696
3697 out:
3698         if (page_nid != NUMA_NO_NODE)
3699                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3700         return 0;
3701 }
3702
3703 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3704 {
3705         if (vma_is_anonymous(vmf->vma))
3706                 return do_huge_pmd_anonymous_page(vmf);
3707         if (vmf->vma->vm_ops->huge_fault)
3708                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3709         return VM_FAULT_FALLBACK;
3710 }
3711
3712 /* `inline' is required to avoid gcc 4.1.2 build error */
3713 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3714 {
3715         if (vma_is_anonymous(vmf->vma))
3716                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3717         if (vmf->vma->vm_ops->huge_fault)
3718                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3719
3720         /* COW handled on pte level: split pmd */
3721         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3722         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3723
3724         return VM_FAULT_FALLBACK;
3725 }
3726
3727 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3728 {
3729         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3730 }
3731
3732 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3733 {
3734 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3735         /* No support for anonymous transparent PUD pages yet */
3736         if (vma_is_anonymous(vmf->vma))
3737                 return VM_FAULT_FALLBACK;
3738         if (vmf->vma->vm_ops->huge_fault)
3739                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3740 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3741         return VM_FAULT_FALLBACK;
3742 }
3743
3744 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3745 {
3746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3747         /* No support for anonymous transparent PUD pages yet */
3748         if (vma_is_anonymous(vmf->vma))
3749                 return VM_FAULT_FALLBACK;
3750         if (vmf->vma->vm_ops->huge_fault)
3751                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3752 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3753         return VM_FAULT_FALLBACK;
3754 }
3755
3756 /*
3757  * These routines also need to handle stuff like marking pages dirty
3758  * and/or accessed for architectures that don't do it in hardware (most
3759  * RISC architectures).  The early dirtying is also good on the i386.
3760  *
3761  * There is also a hook called "update_mmu_cache()" that architectures
3762  * with external mmu caches can use to update those (ie the Sparc or
3763  * PowerPC hashed page tables that act as extended TLBs).
3764  *
3765  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3766  * concurrent faults).
3767  *
3768  * The mmap_sem may have been released depending on flags and our return value.
3769  * See filemap_fault() and __lock_page_or_retry().
3770  */
3771 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3772 {
3773         pte_t entry;
3774
3775         if (unlikely(pmd_none(*vmf->pmd))) {
3776                 /*
3777                  * Leave __pte_alloc() until later: because vm_ops->fault may
3778                  * want to allocate huge page, and if we expose page table
3779                  * for an instant, it will be difficult to retract from
3780                  * concurrent faults and from rmap lookups.
3781                  */
3782                 vmf->pte = NULL;
3783         } else {
3784                 /* See comment in pte_alloc_one_map() */
3785                 if (pmd_devmap_trans_unstable(vmf->pmd))
3786                         return 0;
3787                 /*
3788                  * A regular pmd is established and it can't morph into a huge
3789                  * pmd from under us anymore at this point because we hold the
3790                  * mmap_sem read mode and khugepaged takes it in write mode.
3791                  * So now it's safe to run pte_offset_map().
3792                  */
3793                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3794                 vmf->orig_pte = *vmf->pte;
3795
3796                 /*
3797                  * some architectures can have larger ptes than wordsize,
3798                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3799                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3800                  * accesses.  The code below just needs a consistent view
3801                  * for the ifs and we later double check anyway with the
3802                  * ptl lock held. So here a barrier will do.
3803                  */
3804                 barrier();
3805                 if (pte_none(vmf->orig_pte)) {
3806                         pte_unmap(vmf->pte);
3807                         vmf->pte = NULL;
3808                 }
3809         }
3810
3811         if (!vmf->pte) {
3812                 if (vma_is_anonymous(vmf->vma))
3813                         return do_anonymous_page(vmf);
3814                 else
3815                         return do_fault(vmf);
3816         }
3817
3818         if (!pte_present(vmf->orig_pte))
3819                 return do_swap_page(vmf);
3820
3821         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3822                 return do_numa_page(vmf);
3823
3824         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3825         spin_lock(vmf->ptl);
3826         entry = vmf->orig_pte;
3827         if (unlikely(!pte_same(*vmf->pte, entry)))
3828                 goto unlock;
3829         if (vmf->flags & FAULT_FLAG_WRITE) {
3830                 if (!pte_write(entry))
3831                         return do_wp_page(vmf);
3832                 entry = pte_mkdirty(entry);
3833         }
3834         entry = pte_mkyoung(entry);
3835         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3836                                 vmf->flags & FAULT_FLAG_WRITE)) {
3837                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3838         } else {
3839                 /*
3840                  * This is needed only for protection faults but the arch code
3841                  * is not yet telling us if this is a protection fault or not.
3842                  * This still avoids useless tlb flushes for .text page faults
3843                  * with threads.
3844                  */
3845                 if (vmf->flags & FAULT_FLAG_WRITE)
3846                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3847         }
3848 unlock:
3849         pte_unmap_unlock(vmf->pte, vmf->ptl);
3850         return 0;
3851 }
3852
3853 /*
3854  * By the time we get here, we already hold the mm semaphore
3855  *
3856  * The mmap_sem may have been released depending on flags and our
3857  * return value.  See filemap_fault() and __lock_page_or_retry().
3858  */
3859 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3860                 unsigned long address, unsigned int flags)
3861 {
3862         struct vm_fault vmf = {
3863                 .vma = vma,
3864                 .address = address & PAGE_MASK,
3865                 .flags = flags,
3866                 .pgoff = linear_page_index(vma, address),
3867                 .gfp_mask = __get_fault_gfp_mask(vma),
3868         };
3869         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3870         struct mm_struct *mm = vma->vm_mm;
3871         pgd_t *pgd;
3872         p4d_t *p4d;
3873         vm_fault_t ret;
3874
3875         pgd = pgd_offset(mm, address);
3876         p4d = p4d_alloc(mm, pgd, address);
3877         if (!p4d)
3878                 return VM_FAULT_OOM;
3879
3880         vmf.pud = pud_alloc(mm, p4d, address);
3881         if (!vmf.pud)
3882                 return VM_FAULT_OOM;
3883         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3884                 ret = create_huge_pud(&vmf);
3885                 if (!(ret & VM_FAULT_FALLBACK))
3886                         return ret;
3887         } else {
3888                 pud_t orig_pud = *vmf.pud;
3889
3890                 barrier();
3891                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3892
3893                         /* NUMA case for anonymous PUDs would go here */
3894
3895                         if (dirty && !pud_write(orig_pud)) {
3896                                 ret = wp_huge_pud(&vmf, orig_pud);
3897                                 if (!(ret & VM_FAULT_FALLBACK))
3898                                         return ret;
3899                         } else {
3900                                 huge_pud_set_accessed(&vmf, orig_pud);
3901                                 return 0;
3902                         }
3903                 }
3904         }
3905
3906         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3907         if (!vmf.pmd)
3908                 return VM_FAULT_OOM;
3909         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3910                 ret = create_huge_pmd(&vmf);
3911                 if (!(ret & VM_FAULT_FALLBACK))
3912                         return ret;
3913         } else {
3914                 pmd_t orig_pmd = *vmf.pmd;
3915
3916                 barrier();
3917                 if (unlikely(is_swap_pmd(orig_pmd))) {
3918                         VM_BUG_ON(thp_migration_supported() &&
3919                                           !is_pmd_migration_entry(orig_pmd));
3920                         if (is_pmd_migration_entry(orig_pmd))
3921                                 pmd_migration_entry_wait(mm, vmf.pmd);
3922                         return 0;
3923                 }
3924                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3925                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3926                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3927
3928                         if (dirty && !pmd_write(orig_pmd)) {
3929                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3930                                 if (!(ret & VM_FAULT_FALLBACK))
3931                                         return ret;
3932                         } else {
3933                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3934                                 return 0;
3935                         }
3936                 }
3937         }
3938
3939         return handle_pte_fault(&vmf);
3940 }
3941
3942 /*
3943  * By the time we get here, we already hold the mm semaphore
3944  *
3945  * The mmap_sem may have been released depending on flags and our
3946  * return value.  See filemap_fault() and __lock_page_or_retry().
3947  */
3948 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3949                 unsigned int flags)
3950 {
3951         vm_fault_t ret;
3952
3953         __set_current_state(TASK_RUNNING);
3954
3955         count_vm_event(PGFAULT);
3956         count_memcg_event_mm(vma->vm_mm, PGFAULT);
3957
3958         /* do counter updates before entering really critical section. */
3959         check_sync_rss_stat(current);
3960
3961         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3962                                             flags & FAULT_FLAG_INSTRUCTION,
3963                                             flags & FAULT_FLAG_REMOTE))
3964                 return VM_FAULT_SIGSEGV;
3965
3966         /*
3967          * Enable the memcg OOM handling for faults triggered in user
3968          * space.  Kernel faults are handled more gracefully.
3969          */
3970         if (flags & FAULT_FLAG_USER)
3971                 mem_cgroup_enter_user_fault();
3972
3973         if (unlikely(is_vm_hugetlb_page(vma)))
3974                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3975         else
3976                 ret = __handle_mm_fault(vma, address, flags);
3977
3978         if (flags & FAULT_FLAG_USER) {
3979                 mem_cgroup_exit_user_fault();
3980                 /*
3981                  * The task may have entered a memcg OOM situation but
3982                  * if the allocation error was handled gracefully (no
3983                  * VM_FAULT_OOM), there is no need to kill anything.
3984                  * Just clean up the OOM state peacefully.
3985                  */
3986                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3987                         mem_cgroup_oom_synchronize(false);
3988         }
3989
3990         return ret;
3991 }
3992 EXPORT_SYMBOL_GPL(handle_mm_fault);
3993
3994 #ifndef __PAGETABLE_P4D_FOLDED
3995 /*
3996  * Allocate p4d page table.
3997  * We've already handled the fast-path in-line.
3998  */
3999 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4000 {
4001         p4d_t *new = p4d_alloc_one(mm, address);
4002         if (!new)
4003                 return -ENOMEM;
4004
4005         smp_wmb(); /* See comment in __pte_alloc */
4006
4007         spin_lock(&mm->page_table_lock);
4008         if (pgd_present(*pgd))          /* Another has populated it */
4009                 p4d_free(mm, new);
4010         else
4011                 pgd_populate(mm, pgd, new);
4012         spin_unlock(&mm->page_table_lock);
4013         return 0;
4014 }
4015 #endif /* __PAGETABLE_P4D_FOLDED */
4016
4017 #ifndef __PAGETABLE_PUD_FOLDED
4018 /*
4019  * Allocate page upper directory.
4020  * We've already handled the fast-path in-line.
4021  */
4022 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4023 {
4024         pud_t *new = pud_alloc_one(mm, address);
4025         if (!new)
4026                 return -ENOMEM;
4027
4028         smp_wmb(); /* See comment in __pte_alloc */
4029
4030         spin_lock(&mm->page_table_lock);
4031 #ifndef __ARCH_HAS_5LEVEL_HACK
4032         if (!p4d_present(*p4d)) {
4033                 mm_inc_nr_puds(mm);
4034                 p4d_populate(mm, p4d, new);
4035         } else  /* Another has populated it */
4036                 pud_free(mm, new);
4037 #else
4038         if (!pgd_present(*p4d)) {
4039                 mm_inc_nr_puds(mm);
4040                 pgd_populate(mm, p4d, new);
4041         } else  /* Another has populated it */
4042                 pud_free(mm, new);
4043 #endif /* __ARCH_HAS_5LEVEL_HACK */
4044         spin_unlock(&mm->page_table_lock);
4045         return 0;
4046 }
4047 #endif /* __PAGETABLE_PUD_FOLDED */
4048
4049 #ifndef __PAGETABLE_PMD_FOLDED
4050 /*
4051  * Allocate page middle directory.
4052  * We've already handled the fast-path in-line.
4053  */
4054 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4055 {
4056         spinlock_t *ptl;
4057         pmd_t *new = pmd_alloc_one(mm, address);
4058         if (!new)
4059                 return -ENOMEM;
4060
4061         smp_wmb(); /* See comment in __pte_alloc */
4062
4063         ptl = pud_lock(mm, pud);
4064 #ifndef __ARCH_HAS_4LEVEL_HACK
4065         if (!pud_present(*pud)) {
4066                 mm_inc_nr_pmds(mm);
4067                 pud_populate(mm, pud, new);
4068         } else  /* Another has populated it */
4069                 pmd_free(mm, new);
4070 #else
4071         if (!pgd_present(*pud)) {
4072                 mm_inc_nr_pmds(mm);
4073                 pgd_populate(mm, pud, new);
4074         } else /* Another has populated it */
4075                 pmd_free(mm, new);
4076 #endif /* __ARCH_HAS_4LEVEL_HACK */
4077         spin_unlock(ptl);
4078         return 0;
4079 }
4080 #endif /* __PAGETABLE_PMD_FOLDED */
4081
4082 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4083                             struct mmu_notifier_range *range,
4084                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4085 {
4086         pgd_t *pgd;
4087         p4d_t *p4d;
4088         pud_t *pud;
4089         pmd_t *pmd;
4090         pte_t *ptep;
4091
4092         pgd = pgd_offset(mm, address);
4093         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4094                 goto out;
4095
4096         p4d = p4d_offset(pgd, address);
4097         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4098                 goto out;
4099
4100         pud = pud_offset(p4d, address);
4101         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4102                 goto out;
4103
4104         pmd = pmd_offset(pud, address);
4105         VM_BUG_ON(pmd_trans_huge(*pmd));
4106
4107         if (pmd_huge(*pmd)) {
4108                 if (!pmdpp)
4109                         goto out;
4110
4111                 if (range) {
4112                         mmu_notifier_range_init(range, MMU_NOTIFY_UNMAP, 0,
4113                                                 NULL, mm, address & PMD_MASK,
4114                                                 (address & PMD_MASK) + PMD_SIZE);
4115                         mmu_notifier_invalidate_range_start(range);
4116                 }
4117                 *ptlp = pmd_lock(mm, pmd);
4118                 if (pmd_huge(*pmd)) {
4119                         *pmdpp = pmd;
4120                         return 0;
4121                 }
4122                 spin_unlock(*ptlp);
4123                 if (range)
4124                         mmu_notifier_invalidate_range_end(range);
4125         }
4126
4127         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4128                 goto out;
4129
4130         if (range) {
4131                 mmu_notifier_range_init(range, MMU_NOTIFY_UNMAP, 0, NULL, mm,
4132                                         address & PAGE_MASK,
4133                                         (address & PAGE_MASK) + PAGE_SIZE);
4134                 mmu_notifier_invalidate_range_start(range);
4135         }
4136         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4137         if (!pte_present(*ptep))
4138                 goto unlock;
4139         *ptepp = ptep;
4140         return 0;
4141 unlock:
4142         pte_unmap_unlock(ptep, *ptlp);
4143         if (range)
4144                 mmu_notifier_invalidate_range_end(range);
4145 out:
4146         return -EINVAL;
4147 }
4148
4149 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4150                              pte_t **ptepp, spinlock_t **ptlp)
4151 {
4152         int res;
4153
4154         /* (void) is needed to make gcc happy */
4155         (void) __cond_lock(*ptlp,
4156                            !(res = __follow_pte_pmd(mm, address, NULL,
4157                                                     ptepp, NULL, ptlp)));
4158         return res;
4159 }
4160
4161 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4162                    struct mmu_notifier_range *range,
4163                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4164 {
4165         int res;
4166
4167         /* (void) is needed to make gcc happy */
4168         (void) __cond_lock(*ptlp,
4169                            !(res = __follow_pte_pmd(mm, address, range,
4170                                                     ptepp, pmdpp, ptlp)));
4171         return res;
4172 }
4173 EXPORT_SYMBOL(follow_pte_pmd);
4174
4175 /**
4176  * follow_pfn - look up PFN at a user virtual address
4177  * @vma: memory mapping
4178  * @address: user virtual address
4179  * @pfn: location to store found PFN
4180  *
4181  * Only IO mappings and raw PFN mappings are allowed.
4182  *
4183  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4184  */
4185 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4186         unsigned long *pfn)
4187 {
4188         int ret = -EINVAL;
4189         spinlock_t *ptl;
4190         pte_t *ptep;
4191
4192         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4193                 return ret;
4194
4195         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4196         if (ret)
4197                 return ret;
4198         *pfn = pte_pfn(*ptep);
4199         pte_unmap_unlock(ptep, ptl);
4200         return 0;
4201 }
4202 EXPORT_SYMBOL(follow_pfn);
4203
4204 #ifdef CONFIG_HAVE_IOREMAP_PROT
4205 int follow_phys(struct vm_area_struct *vma,
4206                 unsigned long address, unsigned int flags,
4207                 unsigned long *prot, resource_size_t *phys)
4208 {
4209         int ret = -EINVAL;
4210         pte_t *ptep, pte;
4211         spinlock_t *ptl;
4212
4213         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4214                 goto out;
4215
4216         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4217                 goto out;
4218         pte = *ptep;
4219
4220         if ((flags & FOLL_WRITE) && !pte_write(pte))
4221                 goto unlock;
4222
4223         *prot = pgprot_val(pte_pgprot(pte));
4224         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4225
4226         ret = 0;
4227 unlock:
4228         pte_unmap_unlock(ptep, ptl);
4229 out:
4230         return ret;
4231 }
4232
4233 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4234                         void *buf, int len, int write)
4235 {
4236         resource_size_t phys_addr;
4237         unsigned long prot = 0;
4238         void __iomem *maddr;
4239         int offset = addr & (PAGE_SIZE-1);
4240
4241         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4242                 return -EINVAL;
4243
4244         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4245         if (!maddr)
4246                 return -ENOMEM;
4247
4248         if (write)
4249                 memcpy_toio(maddr + offset, buf, len);
4250         else
4251                 memcpy_fromio(buf, maddr + offset, len);
4252         iounmap(maddr);
4253
4254         return len;
4255 }
4256 EXPORT_SYMBOL_GPL(generic_access_phys);
4257 #endif
4258
4259 /*
4260  * Access another process' address space as given in mm.  If non-NULL, use the
4261  * given task for page fault accounting.
4262  */
4263 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4264                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4265 {
4266         struct vm_area_struct *vma;
4267         void *old_buf = buf;
4268         int write = gup_flags & FOLL_WRITE;
4269
4270         down_read(&mm->mmap_sem);
4271         /* ignore errors, just check how much was successfully transferred */
4272         while (len) {
4273                 int bytes, ret, offset;
4274                 void *maddr;
4275                 struct page *page = NULL;
4276
4277                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4278                                 gup_flags, &page, &vma, NULL);
4279                 if (ret <= 0) {
4280 #ifndef CONFIG_HAVE_IOREMAP_PROT
4281                         break;
4282 #else
4283                         /*
4284                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4285                          * we can access using slightly different code.
4286                          */
4287                         vma = find_vma(mm, addr);
4288                         if (!vma || vma->vm_start > addr)
4289                                 break;
4290                         if (vma->vm_ops && vma->vm_ops->access)
4291                                 ret = vma->vm_ops->access(vma, addr, buf,
4292                                                           len, write);
4293                         if (ret <= 0)
4294                                 break;
4295                         bytes = ret;
4296 #endif
4297                 } else {
4298                         bytes = len;
4299                         offset = addr & (PAGE_SIZE-1);
4300                         if (bytes > PAGE_SIZE-offset)
4301                                 bytes = PAGE_SIZE-offset;
4302
4303                         maddr = kmap(page);
4304                         if (write) {
4305                                 copy_to_user_page(vma, page, addr,
4306                                                   maddr + offset, buf, bytes);
4307                                 set_page_dirty_lock(page);
4308                         } else {
4309                                 copy_from_user_page(vma, page, addr,
4310                                                     buf, maddr + offset, bytes);
4311                         }
4312                         kunmap(page);
4313                         put_page(page);
4314                 }
4315                 len -= bytes;
4316                 buf += bytes;
4317                 addr += bytes;
4318         }
4319         up_read(&mm->mmap_sem);
4320
4321         return buf - old_buf;
4322 }
4323
4324 /**
4325  * access_remote_vm - access another process' address space
4326  * @mm:         the mm_struct of the target address space
4327  * @addr:       start address to access
4328  * @buf:        source or destination buffer
4329  * @len:        number of bytes to transfer
4330  * @gup_flags:  flags modifying lookup behaviour
4331  *
4332  * The caller must hold a reference on @mm.
4333  *
4334  * Return: number of bytes copied from source to destination.
4335  */
4336 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4337                 void *buf, int len, unsigned int gup_flags)
4338 {
4339         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4340 }
4341
4342 /*
4343  * Access another process' address space.
4344  * Source/target buffer must be kernel space,
4345  * Do not walk the page table directly, use get_user_pages
4346  */
4347 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4348                 void *buf, int len, unsigned int gup_flags)
4349 {
4350         struct mm_struct *mm;
4351         int ret;
4352
4353         mm = get_task_mm(tsk);
4354         if (!mm)
4355                 return 0;
4356
4357         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4358
4359         mmput(mm);
4360
4361         return ret;
4362 }
4363 EXPORT_SYMBOL_GPL(access_process_vm);
4364
4365 /*
4366  * Print the name of a VMA.
4367  */
4368 void print_vma_addr(char *prefix, unsigned long ip)
4369 {
4370         struct mm_struct *mm = current->mm;
4371         struct vm_area_struct *vma;
4372
4373         /*
4374          * we might be running from an atomic context so we cannot sleep
4375          */
4376         if (!down_read_trylock(&mm->mmap_sem))
4377                 return;
4378
4379         vma = find_vma(mm, ip);
4380         if (vma && vma->vm_file) {
4381                 struct file *f = vma->vm_file;
4382                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4383                 if (buf) {
4384                         char *p;
4385
4386                         p = file_path(f, buf, PAGE_SIZE);
4387                         if (IS_ERR(p))
4388                                 p = "?";
4389                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4390                                         vma->vm_start,
4391                                         vma->vm_end - vma->vm_start);
4392                         free_page((unsigned long)buf);
4393                 }
4394         }
4395         up_read(&mm->mmap_sem);
4396 }
4397
4398 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4399 void __might_fault(const char *file, int line)
4400 {
4401         /*
4402          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4403          * holding the mmap_sem, this is safe because kernel memory doesn't
4404          * get paged out, therefore we'll never actually fault, and the
4405          * below annotations will generate false positives.
4406          */
4407         if (uaccess_kernel())
4408                 return;
4409         if (pagefault_disabled())
4410                 return;
4411         __might_sleep(file, line, 0);
4412 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4413         if (current->mm)
4414                 might_lock_read(&current->mm->mmap_sem);
4415 #endif
4416 }
4417 EXPORT_SYMBOL(__might_fault);
4418 #endif
4419
4420 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4421 /*
4422  * Process all subpages of the specified huge page with the specified
4423  * operation.  The target subpage will be processed last to keep its
4424  * cache lines hot.
4425  */
4426 static inline void process_huge_page(
4427         unsigned long addr_hint, unsigned int pages_per_huge_page,
4428         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4429         void *arg)
4430 {
4431         int i, n, base, l;
4432         unsigned long addr = addr_hint &
4433                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4434
4435         /* Process target subpage last to keep its cache lines hot */
4436         might_sleep();
4437         n = (addr_hint - addr) / PAGE_SIZE;
4438         if (2 * n <= pages_per_huge_page) {
4439                 /* If target subpage in first half of huge page */
4440                 base = 0;
4441                 l = n;
4442                 /* Process subpages at the end of huge page */
4443                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4444                         cond_resched();
4445                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4446                 }
4447         } else {
4448                 /* If target subpage in second half of huge page */
4449                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4450                 l = pages_per_huge_page - n;
4451                 /* Process subpages at the begin of huge page */
4452                 for (i = 0; i < base; i++) {
4453                         cond_resched();
4454                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4455                 }
4456         }
4457         /*
4458          * Process remaining subpages in left-right-left-right pattern
4459          * towards the target subpage
4460          */
4461         for (i = 0; i < l; i++) {
4462                 int left_idx = base + i;
4463                 int right_idx = base + 2 * l - 1 - i;
4464
4465                 cond_resched();
4466                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4467                 cond_resched();
4468                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4469         }
4470 }
4471
4472 static void clear_gigantic_page(struct page *page,
4473                                 unsigned long addr,
4474                                 unsigned int pages_per_huge_page)
4475 {
4476         int i;
4477         struct page *p = page;
4478
4479         might_sleep();
4480         for (i = 0; i < pages_per_huge_page;
4481              i++, p = mem_map_next(p, page, i)) {
4482                 cond_resched();
4483                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4484         }
4485 }
4486
4487 static void clear_subpage(unsigned long addr, int idx, void *arg)
4488 {
4489         struct page *page = arg;
4490
4491         clear_user_highpage(page + idx, addr);
4492 }
4493
4494 void clear_huge_page(struct page *page,
4495                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4496 {
4497         unsigned long addr = addr_hint &
4498                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4499
4500         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4501                 clear_gigantic_page(page, addr, pages_per_huge_page);
4502                 return;
4503         }
4504
4505         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4506 }
4507
4508 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4509                                     unsigned long addr,
4510                                     struct vm_area_struct *vma,
4511                                     unsigned int pages_per_huge_page)
4512 {
4513         int i;
4514         struct page *dst_base = dst;
4515         struct page *src_base = src;
4516
4517         for (i = 0; i < pages_per_huge_page; ) {
4518                 cond_resched();
4519                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4520
4521                 i++;
4522                 dst = mem_map_next(dst, dst_base, i);
4523                 src = mem_map_next(src, src_base, i);
4524         }
4525 }
4526
4527 struct copy_subpage_arg {
4528         struct page *dst;
4529         struct page *src;
4530         struct vm_area_struct *vma;
4531 };
4532
4533 static void copy_subpage(unsigned long addr, int idx, void *arg)
4534 {
4535         struct copy_subpage_arg *copy_arg = arg;
4536
4537         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4538                            addr, copy_arg->vma);
4539 }
4540
4541 void copy_user_huge_page(struct page *dst, struct page *src,
4542                          unsigned long addr_hint, struct vm_area_struct *vma,
4543                          unsigned int pages_per_huge_page)
4544 {
4545         unsigned long addr = addr_hint &
4546                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4547         struct copy_subpage_arg arg = {
4548                 .dst = dst,
4549                 .src = src,
4550                 .vma = vma,
4551         };
4552
4553         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4554                 copy_user_gigantic_page(dst, src, addr, vma,
4555                                         pages_per_huge_page);
4556                 return;
4557         }
4558
4559         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4560 }
4561
4562 long copy_huge_page_from_user(struct page *dst_page,
4563                                 const void __user *usr_src,
4564                                 unsigned int pages_per_huge_page,
4565                                 bool allow_pagefault)
4566 {
4567         void *src = (void *)usr_src;
4568         void *page_kaddr;
4569         unsigned long i, rc = 0;
4570         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4571
4572         for (i = 0; i < pages_per_huge_page; i++) {
4573                 if (allow_pagefault)
4574                         page_kaddr = kmap(dst_page + i);
4575                 else
4576                         page_kaddr = kmap_atomic(dst_page + i);
4577                 rc = copy_from_user(page_kaddr,
4578                                 (const void __user *)(src + i * PAGE_SIZE),
4579                                 PAGE_SIZE);
4580                 if (allow_pagefault)
4581                         kunmap(dst_page + i);
4582                 else
4583                         kunmap_atomic(page_kaddr);
4584
4585                 ret_val -= (PAGE_SIZE - rc);
4586                 if (rc)
4587                         break;
4588
4589                 cond_resched();
4590         }
4591         return ret_val;
4592 }
4593 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4594
4595 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4596
4597 static struct kmem_cache *page_ptl_cachep;
4598
4599 void __init ptlock_cache_init(void)
4600 {
4601         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4602                         SLAB_PANIC, NULL);
4603 }
4604
4605 bool ptlock_alloc(struct page *page)
4606 {
4607         spinlock_t *ptl;
4608
4609         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4610         if (!ptl)
4611                 return false;
4612         page->ptl = ptl;
4613         return true;
4614 }
4615
4616 void ptlock_free(struct page *page)
4617 {
4618         kmem_cache_free(page_ptl_cachep, page->ptl);
4619 }
4620 #endif