Merge tag 'drm-next-2019-12-06' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118                                         1;
119 #else
120                                         2;
121 #endif
122
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126         /*
127          * Those arches which don't have hw access flag feature need to
128          * implement their own helper. By default, "true" means pagefault
129          * will be hit on old pte.
130          */
131         return true;
132 }
133 #endif
134
135 static int __init disable_randmaps(char *s)
136 {
137         randomize_va_space = 0;
138         return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144
145 unsigned long highest_memmap_pfn __read_mostly;
146
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152         zero_pfn = page_to_pfn(ZERO_PAGE(0));
153         return 0;
154 }
155 core_initcall(init_zero_pfn);
156
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159         trace_rss_stat(mm, member, count);
160 }
161
162 #if defined(SPLIT_RSS_COUNTING)
163
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166         int i;
167
168         for (i = 0; i < NR_MM_COUNTERS; i++) {
169                 if (current->rss_stat.count[i]) {
170                         add_mm_counter(mm, i, current->rss_stat.count[i]);
171                         current->rss_stat.count[i] = 0;
172                 }
173         }
174         current->rss_stat.events = 0;
175 }
176
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179         struct task_struct *task = current;
180
181         if (likely(task->mm == mm))
182                 task->rss_stat.count[member] += val;
183         else
184                 add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH  (64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193         if (unlikely(task != current))
194                 return;
195         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196                 sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206
207 #endif /* SPLIT_RSS_COUNTING */
208
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214                            unsigned long addr)
215 {
216         pgtable_t token = pmd_pgtable(*pmd);
217         pmd_clear(pmd);
218         pte_free_tlb(tlb, token, addr);
219         mm_dec_nr_ptes(tlb->mm);
220 }
221
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223                                 unsigned long addr, unsigned long end,
224                                 unsigned long floor, unsigned long ceiling)
225 {
226         pmd_t *pmd;
227         unsigned long next;
228         unsigned long start;
229
230         start = addr;
231         pmd = pmd_offset(pud, addr);
232         do {
233                 next = pmd_addr_end(addr, end);
234                 if (pmd_none_or_clear_bad(pmd))
235                         continue;
236                 free_pte_range(tlb, pmd, addr);
237         } while (pmd++, addr = next, addr != end);
238
239         start &= PUD_MASK;
240         if (start < floor)
241                 return;
242         if (ceiling) {
243                 ceiling &= PUD_MASK;
244                 if (!ceiling)
245                         return;
246         }
247         if (end - 1 > ceiling - 1)
248                 return;
249
250         pmd = pmd_offset(pud, start);
251         pud_clear(pud);
252         pmd_free_tlb(tlb, pmd, start);
253         mm_dec_nr_pmds(tlb->mm);
254 }
255
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257                                 unsigned long addr, unsigned long end,
258                                 unsigned long floor, unsigned long ceiling)
259 {
260         pud_t *pud;
261         unsigned long next;
262         unsigned long start;
263
264         start = addr;
265         pud = pud_offset(p4d, addr);
266         do {
267                 next = pud_addr_end(addr, end);
268                 if (pud_none_or_clear_bad(pud))
269                         continue;
270                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271         } while (pud++, addr = next, addr != end);
272
273         start &= P4D_MASK;
274         if (start < floor)
275                 return;
276         if (ceiling) {
277                 ceiling &= P4D_MASK;
278                 if (!ceiling)
279                         return;
280         }
281         if (end - 1 > ceiling - 1)
282                 return;
283
284         pud = pud_offset(p4d, start);
285         p4d_clear(p4d);
286         pud_free_tlb(tlb, pud, start);
287         mm_dec_nr_puds(tlb->mm);
288 }
289
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291                                 unsigned long addr, unsigned long end,
292                                 unsigned long floor, unsigned long ceiling)
293 {
294         p4d_t *p4d;
295         unsigned long next;
296         unsigned long start;
297
298         start = addr;
299         p4d = p4d_offset(pgd, addr);
300         do {
301                 next = p4d_addr_end(addr, end);
302                 if (p4d_none_or_clear_bad(p4d))
303                         continue;
304                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305         } while (p4d++, addr = next, addr != end);
306
307         start &= PGDIR_MASK;
308         if (start < floor)
309                 return;
310         if (ceiling) {
311                 ceiling &= PGDIR_MASK;
312                 if (!ceiling)
313                         return;
314         }
315         if (end - 1 > ceiling - 1)
316                 return;
317
318         p4d = p4d_offset(pgd, start);
319         pgd_clear(pgd);
320         p4d_free_tlb(tlb, p4d, start);
321 }
322
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327                         unsigned long addr, unsigned long end,
328                         unsigned long floor, unsigned long ceiling)
329 {
330         pgd_t *pgd;
331         unsigned long next;
332
333         /*
334          * The next few lines have given us lots of grief...
335          *
336          * Why are we testing PMD* at this top level?  Because often
337          * there will be no work to do at all, and we'd prefer not to
338          * go all the way down to the bottom just to discover that.
339          *
340          * Why all these "- 1"s?  Because 0 represents both the bottom
341          * of the address space and the top of it (using -1 for the
342          * top wouldn't help much: the masks would do the wrong thing).
343          * The rule is that addr 0 and floor 0 refer to the bottom of
344          * the address space, but end 0 and ceiling 0 refer to the top
345          * Comparisons need to use "end - 1" and "ceiling - 1" (though
346          * that end 0 case should be mythical).
347          *
348          * Wherever addr is brought up or ceiling brought down, we must
349          * be careful to reject "the opposite 0" before it confuses the
350          * subsequent tests.  But what about where end is brought down
351          * by PMD_SIZE below? no, end can't go down to 0 there.
352          *
353          * Whereas we round start (addr) and ceiling down, by different
354          * masks at different levels, in order to test whether a table
355          * now has no other vmas using it, so can be freed, we don't
356          * bother to round floor or end up - the tests don't need that.
357          */
358
359         addr &= PMD_MASK;
360         if (addr < floor) {
361                 addr += PMD_SIZE;
362                 if (!addr)
363                         return;
364         }
365         if (ceiling) {
366                 ceiling &= PMD_MASK;
367                 if (!ceiling)
368                         return;
369         }
370         if (end - 1 > ceiling - 1)
371                 end -= PMD_SIZE;
372         if (addr > end - 1)
373                 return;
374         /*
375          * We add page table cache pages with PAGE_SIZE,
376          * (see pte_free_tlb()), flush the tlb if we need
377          */
378         tlb_change_page_size(tlb, PAGE_SIZE);
379         pgd = pgd_offset(tlb->mm, addr);
380         do {
381                 next = pgd_addr_end(addr, end);
382                 if (pgd_none_or_clear_bad(pgd))
383                         continue;
384                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385         } while (pgd++, addr = next, addr != end);
386 }
387
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389                 unsigned long floor, unsigned long ceiling)
390 {
391         while (vma) {
392                 struct vm_area_struct *next = vma->vm_next;
393                 unsigned long addr = vma->vm_start;
394
395                 /*
396                  * Hide vma from rmap and truncate_pagecache before freeing
397                  * pgtables
398                  */
399                 unlink_anon_vmas(vma);
400                 unlink_file_vma(vma);
401
402                 if (is_vm_hugetlb_page(vma)) {
403                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404                                 floor, next ? next->vm_start : ceiling);
405                 } else {
406                         /*
407                          * Optimization: gather nearby vmas into one call down
408                          */
409                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410                                && !is_vm_hugetlb_page(next)) {
411                                 vma = next;
412                                 next = vma->vm_next;
413                                 unlink_anon_vmas(vma);
414                                 unlink_file_vma(vma);
415                         }
416                         free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 }
419                 vma = next;
420         }
421 }
422
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425         spinlock_t *ptl;
426         pgtable_t new = pte_alloc_one(mm);
427         if (!new)
428                 return -ENOMEM;
429
430         /*
431          * Ensure all pte setup (eg. pte page lock and page clearing) are
432          * visible before the pte is made visible to other CPUs by being
433          * put into page tables.
434          *
435          * The other side of the story is the pointer chasing in the page
436          * table walking code (when walking the page table without locking;
437          * ie. most of the time). Fortunately, these data accesses consist
438          * of a chain of data-dependent loads, meaning most CPUs (alpha
439          * being the notable exception) will already guarantee loads are
440          * seen in-order. See the alpha page table accessors for the
441          * smp_read_barrier_depends() barriers in page table walking code.
442          */
443         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
445         ptl = pmd_lock(mm, pmd);
446         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
447                 mm_inc_nr_ptes(mm);
448                 pmd_populate(mm, pmd, new);
449                 new = NULL;
450         }
451         spin_unlock(ptl);
452         if (new)
453                 pte_free(mm, new);
454         return 0;
455 }
456
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459         pte_t *new = pte_alloc_one_kernel(&init_mm);
460         if (!new)
461                 return -ENOMEM;
462
463         smp_wmb(); /* See comment in __pte_alloc */
464
465         spin_lock(&init_mm.page_table_lock);
466         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
467                 pmd_populate_kernel(&init_mm, pmd, new);
468                 new = NULL;
469         }
470         spin_unlock(&init_mm.page_table_lock);
471         if (new)
472                 pte_free_kernel(&init_mm, new);
473         return 0;
474 }
475
476 static inline void init_rss_vec(int *rss)
477 {
478         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483         int i;
484
485         if (current->mm == mm)
486                 sync_mm_rss(mm);
487         for (i = 0; i < NR_MM_COUNTERS; i++)
488                 if (rss[i])
489                         add_mm_counter(mm, i, rss[i]);
490 }
491
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500                           pte_t pte, struct page *page)
501 {
502         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503         p4d_t *p4d = p4d_offset(pgd, addr);
504         pud_t *pud = pud_offset(p4d, addr);
505         pmd_t *pmd = pmd_offset(pud, addr);
506         struct address_space *mapping;
507         pgoff_t index;
508         static unsigned long resume;
509         static unsigned long nr_shown;
510         static unsigned long nr_unshown;
511
512         /*
513          * Allow a burst of 60 reports, then keep quiet for that minute;
514          * or allow a steady drip of one report per second.
515          */
516         if (nr_shown == 60) {
517                 if (time_before(jiffies, resume)) {
518                         nr_unshown++;
519                         return;
520                 }
521                 if (nr_unshown) {
522                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523                                  nr_unshown);
524                         nr_unshown = 0;
525                 }
526                 nr_shown = 0;
527         }
528         if (nr_shown++ == 0)
529                 resume = jiffies + 60 * HZ;
530
531         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532         index = linear_page_index(vma, addr);
533
534         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535                  current->comm,
536                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
537         if (page)
538                 dump_page(page, "bad pte");
539         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542                  vma->vm_file,
543                  vma->vm_ops ? vma->vm_ops->fault : NULL,
544                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545                  mapping ? mapping->a_ops->readpage : NULL);
546         dump_stack();
547         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593                             pte_t pte)
594 {
595         unsigned long pfn = pte_pfn(pte);
596
597         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598                 if (likely(!pte_special(pte)))
599                         goto check_pfn;
600                 if (vma->vm_ops && vma->vm_ops->find_special_page)
601                         return vma->vm_ops->find_special_page(vma, addr);
602                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603                         return NULL;
604                 if (is_zero_pfn(pfn))
605                         return NULL;
606                 if (pte_devmap(pte))
607                         return NULL;
608
609                 print_bad_pte(vma, addr, pte, NULL);
610                 return NULL;
611         }
612
613         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616                 if (vma->vm_flags & VM_MIXEDMAP) {
617                         if (!pfn_valid(pfn))
618                                 return NULL;
619                         goto out;
620                 } else {
621                         unsigned long off;
622                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
623                         if (pfn == vma->vm_pgoff + off)
624                                 return NULL;
625                         if (!is_cow_mapping(vma->vm_flags))
626                                 return NULL;
627                 }
628         }
629
630         if (is_zero_pfn(pfn))
631                 return NULL;
632
633 check_pfn:
634         if (unlikely(pfn > highest_memmap_pfn)) {
635                 print_bad_pte(vma, addr, pte, NULL);
636                 return NULL;
637         }
638
639         /*
640          * NOTE! We still have PageReserved() pages in the page tables.
641          * eg. VDSO mappings can cause them to exist.
642          */
643 out:
644         return pfn_to_page(pfn);
645 }
646
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649                                 pmd_t pmd)
650 {
651         unsigned long pfn = pmd_pfn(pmd);
652
653         /*
654          * There is no pmd_special() but there may be special pmds, e.g.
655          * in a direct-access (dax) mapping, so let's just replicate the
656          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657          */
658         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659                 if (vma->vm_flags & VM_MIXEDMAP) {
660                         if (!pfn_valid(pfn))
661                                 return NULL;
662                         goto out;
663                 } else {
664                         unsigned long off;
665                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
666                         if (pfn == vma->vm_pgoff + off)
667                                 return NULL;
668                         if (!is_cow_mapping(vma->vm_flags))
669                                 return NULL;
670                 }
671         }
672
673         if (pmd_devmap(pmd))
674                 return NULL;
675         if (is_huge_zero_pmd(pmd))
676                 return NULL;
677         if (unlikely(pfn > highest_memmap_pfn))
678                 return NULL;
679
680         /*
681          * NOTE! We still have PageReserved() pages in the page tables.
682          * eg. VDSO mappings can cause them to exist.
683          */
684 out:
685         return pfn_to_page(pfn);
686 }
687 #endif
688
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698                 unsigned long addr, int *rss)
699 {
700         unsigned long vm_flags = vma->vm_flags;
701         pte_t pte = *src_pte;
702         struct page *page;
703
704         /* pte contains position in swap or file, so copy. */
705         if (unlikely(!pte_present(pte))) {
706                 swp_entry_t entry = pte_to_swp_entry(pte);
707
708                 if (likely(!non_swap_entry(entry))) {
709                         if (swap_duplicate(entry) < 0)
710                                 return entry.val;
711
712                         /* make sure dst_mm is on swapoff's mmlist. */
713                         if (unlikely(list_empty(&dst_mm->mmlist))) {
714                                 spin_lock(&mmlist_lock);
715                                 if (list_empty(&dst_mm->mmlist))
716                                         list_add(&dst_mm->mmlist,
717                                                         &src_mm->mmlist);
718                                 spin_unlock(&mmlist_lock);
719                         }
720                         rss[MM_SWAPENTS]++;
721                 } else if (is_migration_entry(entry)) {
722                         page = migration_entry_to_page(entry);
723
724                         rss[mm_counter(page)]++;
725
726                         if (is_write_migration_entry(entry) &&
727                                         is_cow_mapping(vm_flags)) {
728                                 /*
729                                  * COW mappings require pages in both
730                                  * parent and child to be set to read.
731                                  */
732                                 make_migration_entry_read(&entry);
733                                 pte = swp_entry_to_pte(entry);
734                                 if (pte_swp_soft_dirty(*src_pte))
735                                         pte = pte_swp_mksoft_dirty(pte);
736                                 set_pte_at(src_mm, addr, src_pte, pte);
737                         }
738                 } else if (is_device_private_entry(entry)) {
739                         page = device_private_entry_to_page(entry);
740
741                         /*
742                          * Update rss count even for unaddressable pages, as
743                          * they should treated just like normal pages in this
744                          * respect.
745                          *
746                          * We will likely want to have some new rss counters
747                          * for unaddressable pages, at some point. But for now
748                          * keep things as they are.
749                          */
750                         get_page(page);
751                         rss[mm_counter(page)]++;
752                         page_dup_rmap(page, false);
753
754                         /*
755                          * We do not preserve soft-dirty information, because so
756                          * far, checkpoint/restore is the only feature that
757                          * requires that. And checkpoint/restore does not work
758                          * when a device driver is involved (you cannot easily
759                          * save and restore device driver state).
760                          */
761                         if (is_write_device_private_entry(entry) &&
762                             is_cow_mapping(vm_flags)) {
763                                 make_device_private_entry_read(&entry);
764                                 pte = swp_entry_to_pte(entry);
765                                 set_pte_at(src_mm, addr, src_pte, pte);
766                         }
767                 }
768                 goto out_set_pte;
769         }
770
771         /*
772          * If it's a COW mapping, write protect it both
773          * in the parent and the child
774          */
775         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
776                 ptep_set_wrprotect(src_mm, addr, src_pte);
777                 pte = pte_wrprotect(pte);
778         }
779
780         /*
781          * If it's a shared mapping, mark it clean in
782          * the child
783          */
784         if (vm_flags & VM_SHARED)
785                 pte = pte_mkclean(pte);
786         pte = pte_mkold(pte);
787
788         page = vm_normal_page(vma, addr, pte);
789         if (page) {
790                 get_page(page);
791                 page_dup_rmap(page, false);
792                 rss[mm_counter(page)]++;
793         } else if (pte_devmap(pte)) {
794                 page = pte_page(pte);
795         }
796
797 out_set_pte:
798         set_pte_at(dst_mm, addr, dst_pte, pte);
799         return 0;
800 }
801
802 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
804                    unsigned long addr, unsigned long end)
805 {
806         pte_t *orig_src_pte, *orig_dst_pte;
807         pte_t *src_pte, *dst_pte;
808         spinlock_t *src_ptl, *dst_ptl;
809         int progress = 0;
810         int rss[NR_MM_COUNTERS];
811         swp_entry_t entry = (swp_entry_t){0};
812
813 again:
814         init_rss_vec(rss);
815
816         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
817         if (!dst_pte)
818                 return -ENOMEM;
819         src_pte = pte_offset_map(src_pmd, addr);
820         src_ptl = pte_lockptr(src_mm, src_pmd);
821         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
822         orig_src_pte = src_pte;
823         orig_dst_pte = dst_pte;
824         arch_enter_lazy_mmu_mode();
825
826         do {
827                 /*
828                  * We are holding two locks at this point - either of them
829                  * could generate latencies in another task on another CPU.
830                  */
831                 if (progress >= 32) {
832                         progress = 0;
833                         if (need_resched() ||
834                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
835                                 break;
836                 }
837                 if (pte_none(*src_pte)) {
838                         progress++;
839                         continue;
840                 }
841                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
842                                                         vma, addr, rss);
843                 if (entry.val)
844                         break;
845                 progress += 8;
846         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
847
848         arch_leave_lazy_mmu_mode();
849         spin_unlock(src_ptl);
850         pte_unmap(orig_src_pte);
851         add_mm_rss_vec(dst_mm, rss);
852         pte_unmap_unlock(orig_dst_pte, dst_ptl);
853         cond_resched();
854
855         if (entry.val) {
856                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
857                         return -ENOMEM;
858                 progress = 0;
859         }
860         if (addr != end)
861                 goto again;
862         return 0;
863 }
864
865 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
866                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
867                 unsigned long addr, unsigned long end)
868 {
869         pmd_t *src_pmd, *dst_pmd;
870         unsigned long next;
871
872         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
873         if (!dst_pmd)
874                 return -ENOMEM;
875         src_pmd = pmd_offset(src_pud, addr);
876         do {
877                 next = pmd_addr_end(addr, end);
878                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
879                         || pmd_devmap(*src_pmd)) {
880                         int err;
881                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
882                         err = copy_huge_pmd(dst_mm, src_mm,
883                                             dst_pmd, src_pmd, addr, vma);
884                         if (err == -ENOMEM)
885                                 return -ENOMEM;
886                         if (!err)
887                                 continue;
888                         /* fall through */
889                 }
890                 if (pmd_none_or_clear_bad(src_pmd))
891                         continue;
892                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
893                                                 vma, addr, next))
894                         return -ENOMEM;
895         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
896         return 0;
897 }
898
899 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
900                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
901                 unsigned long addr, unsigned long end)
902 {
903         pud_t *src_pud, *dst_pud;
904         unsigned long next;
905
906         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
907         if (!dst_pud)
908                 return -ENOMEM;
909         src_pud = pud_offset(src_p4d, addr);
910         do {
911                 next = pud_addr_end(addr, end);
912                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
913                         int err;
914
915                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
916                         err = copy_huge_pud(dst_mm, src_mm,
917                                             dst_pud, src_pud, addr, vma);
918                         if (err == -ENOMEM)
919                                 return -ENOMEM;
920                         if (!err)
921                                 continue;
922                         /* fall through */
923                 }
924                 if (pud_none_or_clear_bad(src_pud))
925                         continue;
926                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
927                                                 vma, addr, next))
928                         return -ENOMEM;
929         } while (dst_pud++, src_pud++, addr = next, addr != end);
930         return 0;
931 }
932
933 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
934                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
935                 unsigned long addr, unsigned long end)
936 {
937         p4d_t *src_p4d, *dst_p4d;
938         unsigned long next;
939
940         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
941         if (!dst_p4d)
942                 return -ENOMEM;
943         src_p4d = p4d_offset(src_pgd, addr);
944         do {
945                 next = p4d_addr_end(addr, end);
946                 if (p4d_none_or_clear_bad(src_p4d))
947                         continue;
948                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
949                                                 vma, addr, next))
950                         return -ENOMEM;
951         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
952         return 0;
953 }
954
955 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
956                 struct vm_area_struct *vma)
957 {
958         pgd_t *src_pgd, *dst_pgd;
959         unsigned long next;
960         unsigned long addr = vma->vm_start;
961         unsigned long end = vma->vm_end;
962         struct mmu_notifier_range range;
963         bool is_cow;
964         int ret;
965
966         /*
967          * Don't copy ptes where a page fault will fill them correctly.
968          * Fork becomes much lighter when there are big shared or private
969          * readonly mappings. The tradeoff is that copy_page_range is more
970          * efficient than faulting.
971          */
972         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
973                         !vma->anon_vma)
974                 return 0;
975
976         if (is_vm_hugetlb_page(vma))
977                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
978
979         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
980                 /*
981                  * We do not free on error cases below as remove_vma
982                  * gets called on error from higher level routine
983                  */
984                 ret = track_pfn_copy(vma);
985                 if (ret)
986                         return ret;
987         }
988
989         /*
990          * We need to invalidate the secondary MMU mappings only when
991          * there could be a permission downgrade on the ptes of the
992          * parent mm. And a permission downgrade will only happen if
993          * is_cow_mapping() returns true.
994          */
995         is_cow = is_cow_mapping(vma->vm_flags);
996
997         if (is_cow) {
998                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
999                                         0, vma, src_mm, addr, end);
1000                 mmu_notifier_invalidate_range_start(&range);
1001         }
1002
1003         ret = 0;
1004         dst_pgd = pgd_offset(dst_mm, addr);
1005         src_pgd = pgd_offset(src_mm, addr);
1006         do {
1007                 next = pgd_addr_end(addr, end);
1008                 if (pgd_none_or_clear_bad(src_pgd))
1009                         continue;
1010                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1011                                             vma, addr, next))) {
1012                         ret = -ENOMEM;
1013                         break;
1014                 }
1015         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1016
1017         if (is_cow)
1018                 mmu_notifier_invalidate_range_end(&range);
1019         return ret;
1020 }
1021
1022 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1023                                 struct vm_area_struct *vma, pmd_t *pmd,
1024                                 unsigned long addr, unsigned long end,
1025                                 struct zap_details *details)
1026 {
1027         struct mm_struct *mm = tlb->mm;
1028         int force_flush = 0;
1029         int rss[NR_MM_COUNTERS];
1030         spinlock_t *ptl;
1031         pte_t *start_pte;
1032         pte_t *pte;
1033         swp_entry_t entry;
1034
1035         tlb_change_page_size(tlb, PAGE_SIZE);
1036 again:
1037         init_rss_vec(rss);
1038         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1039         pte = start_pte;
1040         flush_tlb_batched_pending(mm);
1041         arch_enter_lazy_mmu_mode();
1042         do {
1043                 pte_t ptent = *pte;
1044                 if (pte_none(ptent))
1045                         continue;
1046
1047                 if (need_resched())
1048                         break;
1049
1050                 if (pte_present(ptent)) {
1051                         struct page *page;
1052
1053                         page = vm_normal_page(vma, addr, ptent);
1054                         if (unlikely(details) && page) {
1055                                 /*
1056                                  * unmap_shared_mapping_pages() wants to
1057                                  * invalidate cache without truncating:
1058                                  * unmap shared but keep private pages.
1059                                  */
1060                                 if (details->check_mapping &&
1061                                     details->check_mapping != page_rmapping(page))
1062                                         continue;
1063                         }
1064                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1065                                                         tlb->fullmm);
1066                         tlb_remove_tlb_entry(tlb, pte, addr);
1067                         if (unlikely(!page))
1068                                 continue;
1069
1070                         if (!PageAnon(page)) {
1071                                 if (pte_dirty(ptent)) {
1072                                         force_flush = 1;
1073                                         set_page_dirty(page);
1074                                 }
1075                                 if (pte_young(ptent) &&
1076                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1077                                         mark_page_accessed(page);
1078                         }
1079                         rss[mm_counter(page)]--;
1080                         page_remove_rmap(page, false);
1081                         if (unlikely(page_mapcount(page) < 0))
1082                                 print_bad_pte(vma, addr, ptent, page);
1083                         if (unlikely(__tlb_remove_page(tlb, page))) {
1084                                 force_flush = 1;
1085                                 addr += PAGE_SIZE;
1086                                 break;
1087                         }
1088                         continue;
1089                 }
1090
1091                 entry = pte_to_swp_entry(ptent);
1092                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1093                         struct page *page = device_private_entry_to_page(entry);
1094
1095                         if (unlikely(details && details->check_mapping)) {
1096                                 /*
1097                                  * unmap_shared_mapping_pages() wants to
1098                                  * invalidate cache without truncating:
1099                                  * unmap shared but keep private pages.
1100                                  */
1101                                 if (details->check_mapping !=
1102                                     page_rmapping(page))
1103                                         continue;
1104                         }
1105
1106                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1107                         rss[mm_counter(page)]--;
1108                         page_remove_rmap(page, false);
1109                         put_page(page);
1110                         continue;
1111                 }
1112
1113                 /* If details->check_mapping, we leave swap entries. */
1114                 if (unlikely(details))
1115                         continue;
1116
1117                 if (!non_swap_entry(entry))
1118                         rss[MM_SWAPENTS]--;
1119                 else if (is_migration_entry(entry)) {
1120                         struct page *page;
1121
1122                         page = migration_entry_to_page(entry);
1123                         rss[mm_counter(page)]--;
1124                 }
1125                 if (unlikely(!free_swap_and_cache(entry)))
1126                         print_bad_pte(vma, addr, ptent, NULL);
1127                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1128         } while (pte++, addr += PAGE_SIZE, addr != end);
1129
1130         add_mm_rss_vec(mm, rss);
1131         arch_leave_lazy_mmu_mode();
1132
1133         /* Do the actual TLB flush before dropping ptl */
1134         if (force_flush)
1135                 tlb_flush_mmu_tlbonly(tlb);
1136         pte_unmap_unlock(start_pte, ptl);
1137
1138         /*
1139          * If we forced a TLB flush (either due to running out of
1140          * batch buffers or because we needed to flush dirty TLB
1141          * entries before releasing the ptl), free the batched
1142          * memory too. Restart if we didn't do everything.
1143          */
1144         if (force_flush) {
1145                 force_flush = 0;
1146                 tlb_flush_mmu(tlb);
1147         }
1148
1149         if (addr != end) {
1150                 cond_resched();
1151                 goto again;
1152         }
1153
1154         return addr;
1155 }
1156
1157 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1158                                 struct vm_area_struct *vma, pud_t *pud,
1159                                 unsigned long addr, unsigned long end,
1160                                 struct zap_details *details)
1161 {
1162         pmd_t *pmd;
1163         unsigned long next;
1164
1165         pmd = pmd_offset(pud, addr);
1166         do {
1167                 next = pmd_addr_end(addr, end);
1168                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1169                         if (next - addr != HPAGE_PMD_SIZE)
1170                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1171                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1172                                 goto next;
1173                         /* fall through */
1174                 }
1175                 /*
1176                  * Here there can be other concurrent MADV_DONTNEED or
1177                  * trans huge page faults running, and if the pmd is
1178                  * none or trans huge it can change under us. This is
1179                  * because MADV_DONTNEED holds the mmap_sem in read
1180                  * mode.
1181                  */
1182                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1183                         goto next;
1184                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1185 next:
1186                 cond_resched();
1187         } while (pmd++, addr = next, addr != end);
1188
1189         return addr;
1190 }
1191
1192 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1193                                 struct vm_area_struct *vma, p4d_t *p4d,
1194                                 unsigned long addr, unsigned long end,
1195                                 struct zap_details *details)
1196 {
1197         pud_t *pud;
1198         unsigned long next;
1199
1200         pud = pud_offset(p4d, addr);
1201         do {
1202                 next = pud_addr_end(addr, end);
1203                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1204                         if (next - addr != HPAGE_PUD_SIZE) {
1205                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1206                                 split_huge_pud(vma, pud, addr);
1207                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1208                                 goto next;
1209                         /* fall through */
1210                 }
1211                 if (pud_none_or_clear_bad(pud))
1212                         continue;
1213                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1214 next:
1215                 cond_resched();
1216         } while (pud++, addr = next, addr != end);
1217
1218         return addr;
1219 }
1220
1221 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1222                                 struct vm_area_struct *vma, pgd_t *pgd,
1223                                 unsigned long addr, unsigned long end,
1224                                 struct zap_details *details)
1225 {
1226         p4d_t *p4d;
1227         unsigned long next;
1228
1229         p4d = p4d_offset(pgd, addr);
1230         do {
1231                 next = p4d_addr_end(addr, end);
1232                 if (p4d_none_or_clear_bad(p4d))
1233                         continue;
1234                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1235         } while (p4d++, addr = next, addr != end);
1236
1237         return addr;
1238 }
1239
1240 void unmap_page_range(struct mmu_gather *tlb,
1241                              struct vm_area_struct *vma,
1242                              unsigned long addr, unsigned long end,
1243                              struct zap_details *details)
1244 {
1245         pgd_t *pgd;
1246         unsigned long next;
1247
1248         BUG_ON(addr >= end);
1249         tlb_start_vma(tlb, vma);
1250         pgd = pgd_offset(vma->vm_mm, addr);
1251         do {
1252                 next = pgd_addr_end(addr, end);
1253                 if (pgd_none_or_clear_bad(pgd))
1254                         continue;
1255                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1256         } while (pgd++, addr = next, addr != end);
1257         tlb_end_vma(tlb, vma);
1258 }
1259
1260
1261 static void unmap_single_vma(struct mmu_gather *tlb,
1262                 struct vm_area_struct *vma, unsigned long start_addr,
1263                 unsigned long end_addr,
1264                 struct zap_details *details)
1265 {
1266         unsigned long start = max(vma->vm_start, start_addr);
1267         unsigned long end;
1268
1269         if (start >= vma->vm_end)
1270                 return;
1271         end = min(vma->vm_end, end_addr);
1272         if (end <= vma->vm_start)
1273                 return;
1274
1275         if (vma->vm_file)
1276                 uprobe_munmap(vma, start, end);
1277
1278         if (unlikely(vma->vm_flags & VM_PFNMAP))
1279                 untrack_pfn(vma, 0, 0);
1280
1281         if (start != end) {
1282                 if (unlikely(is_vm_hugetlb_page(vma))) {
1283                         /*
1284                          * It is undesirable to test vma->vm_file as it
1285                          * should be non-null for valid hugetlb area.
1286                          * However, vm_file will be NULL in the error
1287                          * cleanup path of mmap_region. When
1288                          * hugetlbfs ->mmap method fails,
1289                          * mmap_region() nullifies vma->vm_file
1290                          * before calling this function to clean up.
1291                          * Since no pte has actually been setup, it is
1292                          * safe to do nothing in this case.
1293                          */
1294                         if (vma->vm_file) {
1295                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1296                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1297                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1298                         }
1299                 } else
1300                         unmap_page_range(tlb, vma, start, end, details);
1301         }
1302 }
1303
1304 /**
1305  * unmap_vmas - unmap a range of memory covered by a list of vma's
1306  * @tlb: address of the caller's struct mmu_gather
1307  * @vma: the starting vma
1308  * @start_addr: virtual address at which to start unmapping
1309  * @end_addr: virtual address at which to end unmapping
1310  *
1311  * Unmap all pages in the vma list.
1312  *
1313  * Only addresses between `start' and `end' will be unmapped.
1314  *
1315  * The VMA list must be sorted in ascending virtual address order.
1316  *
1317  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318  * range after unmap_vmas() returns.  So the only responsibility here is to
1319  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320  * drops the lock and schedules.
1321  */
1322 void unmap_vmas(struct mmu_gather *tlb,
1323                 struct vm_area_struct *vma, unsigned long start_addr,
1324                 unsigned long end_addr)
1325 {
1326         struct mmu_notifier_range range;
1327
1328         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1329                                 start_addr, end_addr);
1330         mmu_notifier_invalidate_range_start(&range);
1331         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1332                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1333         mmu_notifier_invalidate_range_end(&range);
1334 }
1335
1336 /**
1337  * zap_page_range - remove user pages in a given range
1338  * @vma: vm_area_struct holding the applicable pages
1339  * @start: starting address of pages to zap
1340  * @size: number of bytes to zap
1341  *
1342  * Caller must protect the VMA list
1343  */
1344 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1345                 unsigned long size)
1346 {
1347         struct mmu_notifier_range range;
1348         struct mmu_gather tlb;
1349
1350         lru_add_drain();
1351         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1352                                 start, start + size);
1353         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1354         update_hiwater_rss(vma->vm_mm);
1355         mmu_notifier_invalidate_range_start(&range);
1356         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1357                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1358         mmu_notifier_invalidate_range_end(&range);
1359         tlb_finish_mmu(&tlb, start, range.end);
1360 }
1361
1362 /**
1363  * zap_page_range_single - remove user pages in a given range
1364  * @vma: vm_area_struct holding the applicable pages
1365  * @address: starting address of pages to zap
1366  * @size: number of bytes to zap
1367  * @details: details of shared cache invalidation
1368  *
1369  * The range must fit into one VMA.
1370  */
1371 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1372                 unsigned long size, struct zap_details *details)
1373 {
1374         struct mmu_notifier_range range;
1375         struct mmu_gather tlb;
1376
1377         lru_add_drain();
1378         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1379                                 address, address + size);
1380         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1381         update_hiwater_rss(vma->vm_mm);
1382         mmu_notifier_invalidate_range_start(&range);
1383         unmap_single_vma(&tlb, vma, address, range.end, details);
1384         mmu_notifier_invalidate_range_end(&range);
1385         tlb_finish_mmu(&tlb, address, range.end);
1386 }
1387
1388 /**
1389  * zap_vma_ptes - remove ptes mapping the vma
1390  * @vma: vm_area_struct holding ptes to be zapped
1391  * @address: starting address of pages to zap
1392  * @size: number of bytes to zap
1393  *
1394  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1395  *
1396  * The entire address range must be fully contained within the vma.
1397  *
1398  */
1399 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1400                 unsigned long size)
1401 {
1402         if (address < vma->vm_start || address + size > vma->vm_end ||
1403                         !(vma->vm_flags & VM_PFNMAP))
1404                 return;
1405
1406         zap_page_range_single(vma, address, size, NULL);
1407 }
1408 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1409
1410 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1411                         spinlock_t **ptl)
1412 {
1413         pgd_t *pgd;
1414         p4d_t *p4d;
1415         pud_t *pud;
1416         pmd_t *pmd;
1417
1418         pgd = pgd_offset(mm, addr);
1419         p4d = p4d_alloc(mm, pgd, addr);
1420         if (!p4d)
1421                 return NULL;
1422         pud = pud_alloc(mm, p4d, addr);
1423         if (!pud)
1424                 return NULL;
1425         pmd = pmd_alloc(mm, pud, addr);
1426         if (!pmd)
1427                 return NULL;
1428
1429         VM_BUG_ON(pmd_trans_huge(*pmd));
1430         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1431 }
1432
1433 /*
1434  * This is the old fallback for page remapping.
1435  *
1436  * For historical reasons, it only allows reserved pages. Only
1437  * old drivers should use this, and they needed to mark their
1438  * pages reserved for the old functions anyway.
1439  */
1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441                         struct page *page, pgprot_t prot)
1442 {
1443         struct mm_struct *mm = vma->vm_mm;
1444         int retval;
1445         pte_t *pte;
1446         spinlock_t *ptl;
1447
1448         retval = -EINVAL;
1449         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1450                 goto out;
1451         retval = -ENOMEM;
1452         flush_dcache_page(page);
1453         pte = get_locked_pte(mm, addr, &ptl);
1454         if (!pte)
1455                 goto out;
1456         retval = -EBUSY;
1457         if (!pte_none(*pte))
1458                 goto out_unlock;
1459
1460         /* Ok, finally just insert the thing.. */
1461         get_page(page);
1462         inc_mm_counter_fast(mm, mm_counter_file(page));
1463         page_add_file_rmap(page, false);
1464         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465
1466         retval = 0;
1467 out_unlock:
1468         pte_unmap_unlock(pte, ptl);
1469 out:
1470         return retval;
1471 }
1472
1473 /**
1474  * vm_insert_page - insert single page into user vma
1475  * @vma: user vma to map to
1476  * @addr: target user address of this page
1477  * @page: source kernel page
1478  *
1479  * This allows drivers to insert individual pages they've allocated
1480  * into a user vma.
1481  *
1482  * The page has to be a nice clean _individual_ kernel allocation.
1483  * If you allocate a compound page, you need to have marked it as
1484  * such (__GFP_COMP), or manually just split the page up yourself
1485  * (see split_page()).
1486  *
1487  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488  * took an arbitrary page protection parameter. This doesn't allow
1489  * that. Your vma protection will have to be set up correctly, which
1490  * means that if you want a shared writable mapping, you'd better
1491  * ask for a shared writable mapping!
1492  *
1493  * The page does not need to be reserved.
1494  *
1495  * Usually this function is called from f_op->mmap() handler
1496  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498  * function from other places, for example from page-fault handler.
1499  *
1500  * Return: %0 on success, negative error code otherwise.
1501  */
1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503                         struct page *page)
1504 {
1505         if (addr < vma->vm_start || addr >= vma->vm_end)
1506                 return -EFAULT;
1507         if (!page_count(page))
1508                 return -EINVAL;
1509         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1512                 vma->vm_flags |= VM_MIXEDMAP;
1513         }
1514         return insert_page(vma, addr, page, vma->vm_page_prot);
1515 }
1516 EXPORT_SYMBOL(vm_insert_page);
1517
1518 /*
1519  * __vm_map_pages - maps range of kernel pages into user vma
1520  * @vma: user vma to map to
1521  * @pages: pointer to array of source kernel pages
1522  * @num: number of pages in page array
1523  * @offset: user's requested vm_pgoff
1524  *
1525  * This allows drivers to map range of kernel pages into a user vma.
1526  *
1527  * Return: 0 on success and error code otherwise.
1528  */
1529 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1530                                 unsigned long num, unsigned long offset)
1531 {
1532         unsigned long count = vma_pages(vma);
1533         unsigned long uaddr = vma->vm_start;
1534         int ret, i;
1535
1536         /* Fail if the user requested offset is beyond the end of the object */
1537         if (offset >= num)
1538                 return -ENXIO;
1539
1540         /* Fail if the user requested size exceeds available object size */
1541         if (count > num - offset)
1542                 return -ENXIO;
1543
1544         for (i = 0; i < count; i++) {
1545                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1546                 if (ret < 0)
1547                         return ret;
1548                 uaddr += PAGE_SIZE;
1549         }
1550
1551         return 0;
1552 }
1553
1554 /**
1555  * vm_map_pages - maps range of kernel pages starts with non zero offset
1556  * @vma: user vma to map to
1557  * @pages: pointer to array of source kernel pages
1558  * @num: number of pages in page array
1559  *
1560  * Maps an object consisting of @num pages, catering for the user's
1561  * requested vm_pgoff
1562  *
1563  * If we fail to insert any page into the vma, the function will return
1564  * immediately leaving any previously inserted pages present.  Callers
1565  * from the mmap handler may immediately return the error as their caller
1566  * will destroy the vma, removing any successfully inserted pages. Other
1567  * callers should make their own arrangements for calling unmap_region().
1568  *
1569  * Context: Process context. Called by mmap handlers.
1570  * Return: 0 on success and error code otherwise.
1571  */
1572 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1573                                 unsigned long num)
1574 {
1575         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1576 }
1577 EXPORT_SYMBOL(vm_map_pages);
1578
1579 /**
1580  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1581  * @vma: user vma to map to
1582  * @pages: pointer to array of source kernel pages
1583  * @num: number of pages in page array
1584  *
1585  * Similar to vm_map_pages(), except that it explicitly sets the offset
1586  * to 0. This function is intended for the drivers that did not consider
1587  * vm_pgoff.
1588  *
1589  * Context: Process context. Called by mmap handlers.
1590  * Return: 0 on success and error code otherwise.
1591  */
1592 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1593                                 unsigned long num)
1594 {
1595         return __vm_map_pages(vma, pages, num, 0);
1596 }
1597 EXPORT_SYMBOL(vm_map_pages_zero);
1598
1599 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1600                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1601 {
1602         struct mm_struct *mm = vma->vm_mm;
1603         pte_t *pte, entry;
1604         spinlock_t *ptl;
1605
1606         pte = get_locked_pte(mm, addr, &ptl);
1607         if (!pte)
1608                 return VM_FAULT_OOM;
1609         if (!pte_none(*pte)) {
1610                 if (mkwrite) {
1611                         /*
1612                          * For read faults on private mappings the PFN passed
1613                          * in may not match the PFN we have mapped if the
1614                          * mapped PFN is a writeable COW page.  In the mkwrite
1615                          * case we are creating a writable PTE for a shared
1616                          * mapping and we expect the PFNs to match. If they
1617                          * don't match, we are likely racing with block
1618                          * allocation and mapping invalidation so just skip the
1619                          * update.
1620                          */
1621                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1622                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1623                                 goto out_unlock;
1624                         }
1625                         entry = pte_mkyoung(*pte);
1626                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1627                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1628                                 update_mmu_cache(vma, addr, pte);
1629                 }
1630                 goto out_unlock;
1631         }
1632
1633         /* Ok, finally just insert the thing.. */
1634         if (pfn_t_devmap(pfn))
1635                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1636         else
1637                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1638
1639         if (mkwrite) {
1640                 entry = pte_mkyoung(entry);
1641                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1642         }
1643
1644         set_pte_at(mm, addr, pte, entry);
1645         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1646
1647 out_unlock:
1648         pte_unmap_unlock(pte, ptl);
1649         return VM_FAULT_NOPAGE;
1650 }
1651
1652 /**
1653  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1654  * @vma: user vma to map to
1655  * @addr: target user address of this page
1656  * @pfn: source kernel pfn
1657  * @pgprot: pgprot flags for the inserted page
1658  *
1659  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1660  * to override pgprot on a per-page basis.
1661  *
1662  * This only makes sense for IO mappings, and it makes no sense for
1663  * COW mappings.  In general, using multiple vmas is preferable;
1664  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1665  * impractical.
1666  *
1667  * Context: Process context.  May allocate using %GFP_KERNEL.
1668  * Return: vm_fault_t value.
1669  */
1670 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1671                         unsigned long pfn, pgprot_t pgprot)
1672 {
1673         /*
1674          * Technically, architectures with pte_special can avoid all these
1675          * restrictions (same for remap_pfn_range).  However we would like
1676          * consistency in testing and feature parity among all, so we should
1677          * try to keep these invariants in place for everybody.
1678          */
1679         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1680         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1681                                                 (VM_PFNMAP|VM_MIXEDMAP));
1682         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1683         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1684
1685         if (addr < vma->vm_start || addr >= vma->vm_end)
1686                 return VM_FAULT_SIGBUS;
1687
1688         if (!pfn_modify_allowed(pfn, pgprot))
1689                 return VM_FAULT_SIGBUS;
1690
1691         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1692
1693         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1694                         false);
1695 }
1696 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1697
1698 /**
1699  * vmf_insert_pfn - insert single pfn into user vma
1700  * @vma: user vma to map to
1701  * @addr: target user address of this page
1702  * @pfn: source kernel pfn
1703  *
1704  * Similar to vm_insert_page, this allows drivers to insert individual pages
1705  * they've allocated into a user vma. Same comments apply.
1706  *
1707  * This function should only be called from a vm_ops->fault handler, and
1708  * in that case the handler should return the result of this function.
1709  *
1710  * vma cannot be a COW mapping.
1711  *
1712  * As this is called only for pages that do not currently exist, we
1713  * do not need to flush old virtual caches or the TLB.
1714  *
1715  * Context: Process context.  May allocate using %GFP_KERNEL.
1716  * Return: vm_fault_t value.
1717  */
1718 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1719                         unsigned long pfn)
1720 {
1721         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1722 }
1723 EXPORT_SYMBOL(vmf_insert_pfn);
1724
1725 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1726 {
1727         /* these checks mirror the abort conditions in vm_normal_page */
1728         if (vma->vm_flags & VM_MIXEDMAP)
1729                 return true;
1730         if (pfn_t_devmap(pfn))
1731                 return true;
1732         if (pfn_t_special(pfn))
1733                 return true;
1734         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1735                 return true;
1736         return false;
1737 }
1738
1739 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1740                 unsigned long addr, pfn_t pfn, bool mkwrite)
1741 {
1742         pgprot_t pgprot = vma->vm_page_prot;
1743         int err;
1744
1745         BUG_ON(!vm_mixed_ok(vma, pfn));
1746
1747         if (addr < vma->vm_start || addr >= vma->vm_end)
1748                 return VM_FAULT_SIGBUS;
1749
1750         track_pfn_insert(vma, &pgprot, pfn);
1751
1752         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1753                 return VM_FAULT_SIGBUS;
1754
1755         /*
1756          * If we don't have pte special, then we have to use the pfn_valid()
1757          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1758          * refcount the page if pfn_valid is true (hence insert_page rather
1759          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1760          * without pte special, it would there be refcounted as a normal page.
1761          */
1762         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1763             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1764                 struct page *page;
1765
1766                 /*
1767                  * At this point we are committed to insert_page()
1768                  * regardless of whether the caller specified flags that
1769                  * result in pfn_t_has_page() == false.
1770                  */
1771                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1772                 err = insert_page(vma, addr, page, pgprot);
1773         } else {
1774                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1775         }
1776
1777         if (err == -ENOMEM)
1778                 return VM_FAULT_OOM;
1779         if (err < 0 && err != -EBUSY)
1780                 return VM_FAULT_SIGBUS;
1781
1782         return VM_FAULT_NOPAGE;
1783 }
1784
1785 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1786                 pfn_t pfn)
1787 {
1788         return __vm_insert_mixed(vma, addr, pfn, false);
1789 }
1790 EXPORT_SYMBOL(vmf_insert_mixed);
1791
1792 /*
1793  *  If the insertion of PTE failed because someone else already added a
1794  *  different entry in the mean time, we treat that as success as we assume
1795  *  the same entry was actually inserted.
1796  */
1797 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1798                 unsigned long addr, pfn_t pfn)
1799 {
1800         return __vm_insert_mixed(vma, addr, pfn, true);
1801 }
1802 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1803
1804 /*
1805  * maps a range of physical memory into the requested pages. the old
1806  * mappings are removed. any references to nonexistent pages results
1807  * in null mappings (currently treated as "copy-on-access")
1808  */
1809 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1810                         unsigned long addr, unsigned long end,
1811                         unsigned long pfn, pgprot_t prot)
1812 {
1813         pte_t *pte;
1814         spinlock_t *ptl;
1815         int err = 0;
1816
1817         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1818         if (!pte)
1819                 return -ENOMEM;
1820         arch_enter_lazy_mmu_mode();
1821         do {
1822                 BUG_ON(!pte_none(*pte));
1823                 if (!pfn_modify_allowed(pfn, prot)) {
1824                         err = -EACCES;
1825                         break;
1826                 }
1827                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1828                 pfn++;
1829         } while (pte++, addr += PAGE_SIZE, addr != end);
1830         arch_leave_lazy_mmu_mode();
1831         pte_unmap_unlock(pte - 1, ptl);
1832         return err;
1833 }
1834
1835 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1836                         unsigned long addr, unsigned long end,
1837                         unsigned long pfn, pgprot_t prot)
1838 {
1839         pmd_t *pmd;
1840         unsigned long next;
1841         int err;
1842
1843         pfn -= addr >> PAGE_SHIFT;
1844         pmd = pmd_alloc(mm, pud, addr);
1845         if (!pmd)
1846                 return -ENOMEM;
1847         VM_BUG_ON(pmd_trans_huge(*pmd));
1848         do {
1849                 next = pmd_addr_end(addr, end);
1850                 err = remap_pte_range(mm, pmd, addr, next,
1851                                 pfn + (addr >> PAGE_SHIFT), prot);
1852                 if (err)
1853                         return err;
1854         } while (pmd++, addr = next, addr != end);
1855         return 0;
1856 }
1857
1858 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1859                         unsigned long addr, unsigned long end,
1860                         unsigned long pfn, pgprot_t prot)
1861 {
1862         pud_t *pud;
1863         unsigned long next;
1864         int err;
1865
1866         pfn -= addr >> PAGE_SHIFT;
1867         pud = pud_alloc(mm, p4d, addr);
1868         if (!pud)
1869                 return -ENOMEM;
1870         do {
1871                 next = pud_addr_end(addr, end);
1872                 err = remap_pmd_range(mm, pud, addr, next,
1873                                 pfn + (addr >> PAGE_SHIFT), prot);
1874                 if (err)
1875                         return err;
1876         } while (pud++, addr = next, addr != end);
1877         return 0;
1878 }
1879
1880 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1881                         unsigned long addr, unsigned long end,
1882                         unsigned long pfn, pgprot_t prot)
1883 {
1884         p4d_t *p4d;
1885         unsigned long next;
1886         int err;
1887
1888         pfn -= addr >> PAGE_SHIFT;
1889         p4d = p4d_alloc(mm, pgd, addr);
1890         if (!p4d)
1891                 return -ENOMEM;
1892         do {
1893                 next = p4d_addr_end(addr, end);
1894                 err = remap_pud_range(mm, p4d, addr, next,
1895                                 pfn + (addr >> PAGE_SHIFT), prot);
1896                 if (err)
1897                         return err;
1898         } while (p4d++, addr = next, addr != end);
1899         return 0;
1900 }
1901
1902 /**
1903  * remap_pfn_range - remap kernel memory to userspace
1904  * @vma: user vma to map to
1905  * @addr: target user address to start at
1906  * @pfn: physical address of kernel memory
1907  * @size: size of map area
1908  * @prot: page protection flags for this mapping
1909  *
1910  * Note: this is only safe if the mm semaphore is held when called.
1911  *
1912  * Return: %0 on success, negative error code otherwise.
1913  */
1914 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1915                     unsigned long pfn, unsigned long size, pgprot_t prot)
1916 {
1917         pgd_t *pgd;
1918         unsigned long next;
1919         unsigned long end = addr + PAGE_ALIGN(size);
1920         struct mm_struct *mm = vma->vm_mm;
1921         unsigned long remap_pfn = pfn;
1922         int err;
1923
1924         /*
1925          * Physically remapped pages are special. Tell the
1926          * rest of the world about it:
1927          *   VM_IO tells people not to look at these pages
1928          *      (accesses can have side effects).
1929          *   VM_PFNMAP tells the core MM that the base pages are just
1930          *      raw PFN mappings, and do not have a "struct page" associated
1931          *      with them.
1932          *   VM_DONTEXPAND
1933          *      Disable vma merging and expanding with mremap().
1934          *   VM_DONTDUMP
1935          *      Omit vma from core dump, even when VM_IO turned off.
1936          *
1937          * There's a horrible special case to handle copy-on-write
1938          * behaviour that some programs depend on. We mark the "original"
1939          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1940          * See vm_normal_page() for details.
1941          */
1942         if (is_cow_mapping(vma->vm_flags)) {
1943                 if (addr != vma->vm_start || end != vma->vm_end)
1944                         return -EINVAL;
1945                 vma->vm_pgoff = pfn;
1946         }
1947
1948         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1949         if (err)
1950                 return -EINVAL;
1951
1952         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1953
1954         BUG_ON(addr >= end);
1955         pfn -= addr >> PAGE_SHIFT;
1956         pgd = pgd_offset(mm, addr);
1957         flush_cache_range(vma, addr, end);
1958         do {
1959                 next = pgd_addr_end(addr, end);
1960                 err = remap_p4d_range(mm, pgd, addr, next,
1961                                 pfn + (addr >> PAGE_SHIFT), prot);
1962                 if (err)
1963                         break;
1964         } while (pgd++, addr = next, addr != end);
1965
1966         if (err)
1967                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1968
1969         return err;
1970 }
1971 EXPORT_SYMBOL(remap_pfn_range);
1972
1973 /**
1974  * vm_iomap_memory - remap memory to userspace
1975  * @vma: user vma to map to
1976  * @start: start of area
1977  * @len: size of area
1978  *
1979  * This is a simplified io_remap_pfn_range() for common driver use. The
1980  * driver just needs to give us the physical memory range to be mapped,
1981  * we'll figure out the rest from the vma information.
1982  *
1983  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1984  * whatever write-combining details or similar.
1985  *
1986  * Return: %0 on success, negative error code otherwise.
1987  */
1988 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1989 {
1990         unsigned long vm_len, pfn, pages;
1991
1992         /* Check that the physical memory area passed in looks valid */
1993         if (start + len < start)
1994                 return -EINVAL;
1995         /*
1996          * You *really* shouldn't map things that aren't page-aligned,
1997          * but we've historically allowed it because IO memory might
1998          * just have smaller alignment.
1999          */
2000         len += start & ~PAGE_MASK;
2001         pfn = start >> PAGE_SHIFT;
2002         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2003         if (pfn + pages < pfn)
2004                 return -EINVAL;
2005
2006         /* We start the mapping 'vm_pgoff' pages into the area */
2007         if (vma->vm_pgoff > pages)
2008                 return -EINVAL;
2009         pfn += vma->vm_pgoff;
2010         pages -= vma->vm_pgoff;
2011
2012         /* Can we fit all of the mapping? */
2013         vm_len = vma->vm_end - vma->vm_start;
2014         if (vm_len >> PAGE_SHIFT > pages)
2015                 return -EINVAL;
2016
2017         /* Ok, let it rip */
2018         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2019 }
2020 EXPORT_SYMBOL(vm_iomap_memory);
2021
2022 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2023                                      unsigned long addr, unsigned long end,
2024                                      pte_fn_t fn, void *data)
2025 {
2026         pte_t *pte;
2027         int err;
2028         spinlock_t *uninitialized_var(ptl);
2029
2030         pte = (mm == &init_mm) ?
2031                 pte_alloc_kernel(pmd, addr) :
2032                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2033         if (!pte)
2034                 return -ENOMEM;
2035
2036         BUG_ON(pmd_huge(*pmd));
2037
2038         arch_enter_lazy_mmu_mode();
2039
2040         do {
2041                 err = fn(pte++, addr, data);
2042                 if (err)
2043                         break;
2044         } while (addr += PAGE_SIZE, addr != end);
2045
2046         arch_leave_lazy_mmu_mode();
2047
2048         if (mm != &init_mm)
2049                 pte_unmap_unlock(pte-1, ptl);
2050         return err;
2051 }
2052
2053 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2054                                      unsigned long addr, unsigned long end,
2055                                      pte_fn_t fn, void *data)
2056 {
2057         pmd_t *pmd;
2058         unsigned long next;
2059         int err;
2060
2061         BUG_ON(pud_huge(*pud));
2062
2063         pmd = pmd_alloc(mm, pud, addr);
2064         if (!pmd)
2065                 return -ENOMEM;
2066         do {
2067                 next = pmd_addr_end(addr, end);
2068                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2069                 if (err)
2070                         break;
2071         } while (pmd++, addr = next, addr != end);
2072         return err;
2073 }
2074
2075 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2076                                      unsigned long addr, unsigned long end,
2077                                      pte_fn_t fn, void *data)
2078 {
2079         pud_t *pud;
2080         unsigned long next;
2081         int err;
2082
2083         pud = pud_alloc(mm, p4d, addr);
2084         if (!pud)
2085                 return -ENOMEM;
2086         do {
2087                 next = pud_addr_end(addr, end);
2088                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2089                 if (err)
2090                         break;
2091         } while (pud++, addr = next, addr != end);
2092         return err;
2093 }
2094
2095 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2096                                      unsigned long addr, unsigned long end,
2097                                      pte_fn_t fn, void *data)
2098 {
2099         p4d_t *p4d;
2100         unsigned long next;
2101         int err;
2102
2103         p4d = p4d_alloc(mm, pgd, addr);
2104         if (!p4d)
2105                 return -ENOMEM;
2106         do {
2107                 next = p4d_addr_end(addr, end);
2108                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2109                 if (err)
2110                         break;
2111         } while (p4d++, addr = next, addr != end);
2112         return err;
2113 }
2114
2115 /*
2116  * Scan a region of virtual memory, filling in page tables as necessary
2117  * and calling a provided function on each leaf page table.
2118  */
2119 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2120                         unsigned long size, pte_fn_t fn, void *data)
2121 {
2122         pgd_t *pgd;
2123         unsigned long next;
2124         unsigned long end = addr + size;
2125         int err;
2126
2127         if (WARN_ON(addr >= end))
2128                 return -EINVAL;
2129
2130         pgd = pgd_offset(mm, addr);
2131         do {
2132                 next = pgd_addr_end(addr, end);
2133                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2134                 if (err)
2135                         break;
2136         } while (pgd++, addr = next, addr != end);
2137
2138         return err;
2139 }
2140 EXPORT_SYMBOL_GPL(apply_to_page_range);
2141
2142 /*
2143  * handle_pte_fault chooses page fault handler according to an entry which was
2144  * read non-atomically.  Before making any commitment, on those architectures
2145  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2146  * parts, do_swap_page must check under lock before unmapping the pte and
2147  * proceeding (but do_wp_page is only called after already making such a check;
2148  * and do_anonymous_page can safely check later on).
2149  */
2150 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2151                                 pte_t *page_table, pte_t orig_pte)
2152 {
2153         int same = 1;
2154 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2155         if (sizeof(pte_t) > sizeof(unsigned long)) {
2156                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2157                 spin_lock(ptl);
2158                 same = pte_same(*page_table, orig_pte);
2159                 spin_unlock(ptl);
2160         }
2161 #endif
2162         pte_unmap(page_table);
2163         return same;
2164 }
2165
2166 static inline bool cow_user_page(struct page *dst, struct page *src,
2167                                  struct vm_fault *vmf)
2168 {
2169         bool ret;
2170         void *kaddr;
2171         void __user *uaddr;
2172         bool force_mkyoung;
2173         struct vm_area_struct *vma = vmf->vma;
2174         struct mm_struct *mm = vma->vm_mm;
2175         unsigned long addr = vmf->address;
2176
2177         debug_dma_assert_idle(src);
2178
2179         if (likely(src)) {
2180                 copy_user_highpage(dst, src, addr, vma);
2181                 return true;
2182         }
2183
2184         /*
2185          * If the source page was a PFN mapping, we don't have
2186          * a "struct page" for it. We do a best-effort copy by
2187          * just copying from the original user address. If that
2188          * fails, we just zero-fill it. Live with it.
2189          */
2190         kaddr = kmap_atomic(dst);
2191         uaddr = (void __user *)(addr & PAGE_MASK);
2192
2193         /*
2194          * On architectures with software "accessed" bits, we would
2195          * take a double page fault, so mark it accessed here.
2196          */
2197         force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte);
2198         if (force_mkyoung) {
2199                 pte_t entry;
2200
2201                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2202                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2203                         /*
2204                          * Other thread has already handled the fault
2205                          * and we don't need to do anything. If it's
2206                          * not the case, the fault will be triggered
2207                          * again on the same address.
2208                          */
2209                         ret = false;
2210                         goto pte_unlock;
2211                 }
2212
2213                 entry = pte_mkyoung(vmf->orig_pte);
2214                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2215                         update_mmu_cache(vma, addr, vmf->pte);
2216         }
2217
2218         /*
2219          * This really shouldn't fail, because the page is there
2220          * in the page tables. But it might just be unreadable,
2221          * in which case we just give up and fill the result with
2222          * zeroes.
2223          */
2224         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2225                 /*
2226                  * Give a warn in case there can be some obscure
2227                  * use-case
2228                  */
2229                 WARN_ON_ONCE(1);
2230                 clear_page(kaddr);
2231         }
2232
2233         ret = true;
2234
2235 pte_unlock:
2236         if (force_mkyoung)
2237                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2238         kunmap_atomic(kaddr);
2239         flush_dcache_page(dst);
2240
2241         return ret;
2242 }
2243
2244 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2245 {
2246         struct file *vm_file = vma->vm_file;
2247
2248         if (vm_file)
2249                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2250
2251         /*
2252          * Special mappings (e.g. VDSO) do not have any file so fake
2253          * a default GFP_KERNEL for them.
2254          */
2255         return GFP_KERNEL;
2256 }
2257
2258 /*
2259  * Notify the address space that the page is about to become writable so that
2260  * it can prohibit this or wait for the page to get into an appropriate state.
2261  *
2262  * We do this without the lock held, so that it can sleep if it needs to.
2263  */
2264 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2265 {
2266         vm_fault_t ret;
2267         struct page *page = vmf->page;
2268         unsigned int old_flags = vmf->flags;
2269
2270         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2271
2272         if (vmf->vma->vm_file &&
2273             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2274                 return VM_FAULT_SIGBUS;
2275
2276         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2277         /* Restore original flags so that caller is not surprised */
2278         vmf->flags = old_flags;
2279         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2280                 return ret;
2281         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2282                 lock_page(page);
2283                 if (!page->mapping) {
2284                         unlock_page(page);
2285                         return 0; /* retry */
2286                 }
2287                 ret |= VM_FAULT_LOCKED;
2288         } else
2289                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2290         return ret;
2291 }
2292
2293 /*
2294  * Handle dirtying of a page in shared file mapping on a write fault.
2295  *
2296  * The function expects the page to be locked and unlocks it.
2297  */
2298 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2299 {
2300         struct vm_area_struct *vma = vmf->vma;
2301         struct address_space *mapping;
2302         struct page *page = vmf->page;
2303         bool dirtied;
2304         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2305
2306         dirtied = set_page_dirty(page);
2307         VM_BUG_ON_PAGE(PageAnon(page), page);
2308         /*
2309          * Take a local copy of the address_space - page.mapping may be zeroed
2310          * by truncate after unlock_page().   The address_space itself remains
2311          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2312          * release semantics to prevent the compiler from undoing this copying.
2313          */
2314         mapping = page_rmapping(page);
2315         unlock_page(page);
2316
2317         if (!page_mkwrite)
2318                 file_update_time(vma->vm_file);
2319
2320         /*
2321          * Throttle page dirtying rate down to writeback speed.
2322          *
2323          * mapping may be NULL here because some device drivers do not
2324          * set page.mapping but still dirty their pages
2325          *
2326          * Drop the mmap_sem before waiting on IO, if we can. The file
2327          * is pinning the mapping, as per above.
2328          */
2329         if ((dirtied || page_mkwrite) && mapping) {
2330                 struct file *fpin;
2331
2332                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2333                 balance_dirty_pages_ratelimited(mapping);
2334                 if (fpin) {
2335                         fput(fpin);
2336                         return VM_FAULT_RETRY;
2337                 }
2338         }
2339
2340         return 0;
2341 }
2342
2343 /*
2344  * Handle write page faults for pages that can be reused in the current vma
2345  *
2346  * This can happen either due to the mapping being with the VM_SHARED flag,
2347  * or due to us being the last reference standing to the page. In either
2348  * case, all we need to do here is to mark the page as writable and update
2349  * any related book-keeping.
2350  */
2351 static inline void wp_page_reuse(struct vm_fault *vmf)
2352         __releases(vmf->ptl)
2353 {
2354         struct vm_area_struct *vma = vmf->vma;
2355         struct page *page = vmf->page;
2356         pte_t entry;
2357         /*
2358          * Clear the pages cpupid information as the existing
2359          * information potentially belongs to a now completely
2360          * unrelated process.
2361          */
2362         if (page)
2363                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2364
2365         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2366         entry = pte_mkyoung(vmf->orig_pte);
2367         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2368         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2369                 update_mmu_cache(vma, vmf->address, vmf->pte);
2370         pte_unmap_unlock(vmf->pte, vmf->ptl);
2371 }
2372
2373 /*
2374  * Handle the case of a page which we actually need to copy to a new page.
2375  *
2376  * Called with mmap_sem locked and the old page referenced, but
2377  * without the ptl held.
2378  *
2379  * High level logic flow:
2380  *
2381  * - Allocate a page, copy the content of the old page to the new one.
2382  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2383  * - Take the PTL. If the pte changed, bail out and release the allocated page
2384  * - If the pte is still the way we remember it, update the page table and all
2385  *   relevant references. This includes dropping the reference the page-table
2386  *   held to the old page, as well as updating the rmap.
2387  * - In any case, unlock the PTL and drop the reference we took to the old page.
2388  */
2389 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2390 {
2391         struct vm_area_struct *vma = vmf->vma;
2392         struct mm_struct *mm = vma->vm_mm;
2393         struct page *old_page = vmf->page;
2394         struct page *new_page = NULL;
2395         pte_t entry;
2396         int page_copied = 0;
2397         struct mem_cgroup *memcg;
2398         struct mmu_notifier_range range;
2399
2400         if (unlikely(anon_vma_prepare(vma)))
2401                 goto oom;
2402
2403         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2404                 new_page = alloc_zeroed_user_highpage_movable(vma,
2405                                                               vmf->address);
2406                 if (!new_page)
2407                         goto oom;
2408         } else {
2409                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2410                                 vmf->address);
2411                 if (!new_page)
2412                         goto oom;
2413
2414                 if (!cow_user_page(new_page, old_page, vmf)) {
2415                         /*
2416                          * COW failed, if the fault was solved by other,
2417                          * it's fine. If not, userspace would re-fault on
2418                          * the same address and we will handle the fault
2419                          * from the second attempt.
2420                          */
2421                         put_page(new_page);
2422                         if (old_page)
2423                                 put_page(old_page);
2424                         return 0;
2425                 }
2426         }
2427
2428         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2429                 goto oom_free_new;
2430
2431         __SetPageUptodate(new_page);
2432
2433         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2434                                 vmf->address & PAGE_MASK,
2435                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2436         mmu_notifier_invalidate_range_start(&range);
2437
2438         /*
2439          * Re-check the pte - we dropped the lock
2440          */
2441         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2442         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2443                 if (old_page) {
2444                         if (!PageAnon(old_page)) {
2445                                 dec_mm_counter_fast(mm,
2446                                                 mm_counter_file(old_page));
2447                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2448                         }
2449                 } else {
2450                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2451                 }
2452                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2453                 entry = mk_pte(new_page, vma->vm_page_prot);
2454                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2455                 /*
2456                  * Clear the pte entry and flush it first, before updating the
2457                  * pte with the new entry. This will avoid a race condition
2458                  * seen in the presence of one thread doing SMC and another
2459                  * thread doing COW.
2460                  */
2461                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2462                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2463                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2464                 lru_cache_add_active_or_unevictable(new_page, vma);
2465                 /*
2466                  * We call the notify macro here because, when using secondary
2467                  * mmu page tables (such as kvm shadow page tables), we want the
2468                  * new page to be mapped directly into the secondary page table.
2469                  */
2470                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2471                 update_mmu_cache(vma, vmf->address, vmf->pte);
2472                 if (old_page) {
2473                         /*
2474                          * Only after switching the pte to the new page may
2475                          * we remove the mapcount here. Otherwise another
2476                          * process may come and find the rmap count decremented
2477                          * before the pte is switched to the new page, and
2478                          * "reuse" the old page writing into it while our pte
2479                          * here still points into it and can be read by other
2480                          * threads.
2481                          *
2482                          * The critical issue is to order this
2483                          * page_remove_rmap with the ptp_clear_flush above.
2484                          * Those stores are ordered by (if nothing else,)
2485                          * the barrier present in the atomic_add_negative
2486                          * in page_remove_rmap.
2487                          *
2488                          * Then the TLB flush in ptep_clear_flush ensures that
2489                          * no process can access the old page before the
2490                          * decremented mapcount is visible. And the old page
2491                          * cannot be reused until after the decremented
2492                          * mapcount is visible. So transitively, TLBs to
2493                          * old page will be flushed before it can be reused.
2494                          */
2495                         page_remove_rmap(old_page, false);
2496                 }
2497
2498                 /* Free the old page.. */
2499                 new_page = old_page;
2500                 page_copied = 1;
2501         } else {
2502                 mem_cgroup_cancel_charge(new_page, memcg, false);
2503         }
2504
2505         if (new_page)
2506                 put_page(new_page);
2507
2508         pte_unmap_unlock(vmf->pte, vmf->ptl);
2509         /*
2510          * No need to double call mmu_notifier->invalidate_range() callback as
2511          * the above ptep_clear_flush_notify() did already call it.
2512          */
2513         mmu_notifier_invalidate_range_only_end(&range);
2514         if (old_page) {
2515                 /*
2516                  * Don't let another task, with possibly unlocked vma,
2517                  * keep the mlocked page.
2518                  */
2519                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2520                         lock_page(old_page);    /* LRU manipulation */
2521                         if (PageMlocked(old_page))
2522                                 munlock_vma_page(old_page);
2523                         unlock_page(old_page);
2524                 }
2525                 put_page(old_page);
2526         }
2527         return page_copied ? VM_FAULT_WRITE : 0;
2528 oom_free_new:
2529         put_page(new_page);
2530 oom:
2531         if (old_page)
2532                 put_page(old_page);
2533         return VM_FAULT_OOM;
2534 }
2535
2536 /**
2537  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2538  *                        writeable once the page is prepared
2539  *
2540  * @vmf: structure describing the fault
2541  *
2542  * This function handles all that is needed to finish a write page fault in a
2543  * shared mapping due to PTE being read-only once the mapped page is prepared.
2544  * It handles locking of PTE and modifying it.
2545  *
2546  * The function expects the page to be locked or other protection against
2547  * concurrent faults / writeback (such as DAX radix tree locks).
2548  *
2549  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2550  * we acquired PTE lock.
2551  */
2552 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2553 {
2554         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2555         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2556                                        &vmf->ptl);
2557         /*
2558          * We might have raced with another page fault while we released the
2559          * pte_offset_map_lock.
2560          */
2561         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2562                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2563                 return VM_FAULT_NOPAGE;
2564         }
2565         wp_page_reuse(vmf);
2566         return 0;
2567 }
2568
2569 /*
2570  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2571  * mapping
2572  */
2573 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2574 {
2575         struct vm_area_struct *vma = vmf->vma;
2576
2577         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2578                 vm_fault_t ret;
2579
2580                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2581                 vmf->flags |= FAULT_FLAG_MKWRITE;
2582                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2583                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2584                         return ret;
2585                 return finish_mkwrite_fault(vmf);
2586         }
2587         wp_page_reuse(vmf);
2588         return VM_FAULT_WRITE;
2589 }
2590
2591 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2592         __releases(vmf->ptl)
2593 {
2594         struct vm_area_struct *vma = vmf->vma;
2595         vm_fault_t ret = VM_FAULT_WRITE;
2596
2597         get_page(vmf->page);
2598
2599         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2600                 vm_fault_t tmp;
2601
2602                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2603                 tmp = do_page_mkwrite(vmf);
2604                 if (unlikely(!tmp || (tmp &
2605                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2606                         put_page(vmf->page);
2607                         return tmp;
2608                 }
2609                 tmp = finish_mkwrite_fault(vmf);
2610                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2611                         unlock_page(vmf->page);
2612                         put_page(vmf->page);
2613                         return tmp;
2614                 }
2615         } else {
2616                 wp_page_reuse(vmf);
2617                 lock_page(vmf->page);
2618         }
2619         ret |= fault_dirty_shared_page(vmf);
2620         put_page(vmf->page);
2621
2622         return ret;
2623 }
2624
2625 /*
2626  * This routine handles present pages, when users try to write
2627  * to a shared page. It is done by copying the page to a new address
2628  * and decrementing the shared-page counter for the old page.
2629  *
2630  * Note that this routine assumes that the protection checks have been
2631  * done by the caller (the low-level page fault routine in most cases).
2632  * Thus we can safely just mark it writable once we've done any necessary
2633  * COW.
2634  *
2635  * We also mark the page dirty at this point even though the page will
2636  * change only once the write actually happens. This avoids a few races,
2637  * and potentially makes it more efficient.
2638  *
2639  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2640  * but allow concurrent faults), with pte both mapped and locked.
2641  * We return with mmap_sem still held, but pte unmapped and unlocked.
2642  */
2643 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2644         __releases(vmf->ptl)
2645 {
2646         struct vm_area_struct *vma = vmf->vma;
2647
2648         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2649         if (!vmf->page) {
2650                 /*
2651                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2652                  * VM_PFNMAP VMA.
2653                  *
2654                  * We should not cow pages in a shared writeable mapping.
2655                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2656                  */
2657                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2658                                      (VM_WRITE|VM_SHARED))
2659                         return wp_pfn_shared(vmf);
2660
2661                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2662                 return wp_page_copy(vmf);
2663         }
2664
2665         /*
2666          * Take out anonymous pages first, anonymous shared vmas are
2667          * not dirty accountable.
2668          */
2669         if (PageAnon(vmf->page)) {
2670                 int total_map_swapcount;
2671                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2672                                            page_count(vmf->page) != 1))
2673                         goto copy;
2674                 if (!trylock_page(vmf->page)) {
2675                         get_page(vmf->page);
2676                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2677                         lock_page(vmf->page);
2678                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2679                                         vmf->address, &vmf->ptl);
2680                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2681                                 unlock_page(vmf->page);
2682                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2683                                 put_page(vmf->page);
2684                                 return 0;
2685                         }
2686                         put_page(vmf->page);
2687                 }
2688                 if (PageKsm(vmf->page)) {
2689                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2690                                                      vmf->address);
2691                         unlock_page(vmf->page);
2692                         if (!reused)
2693                                 goto copy;
2694                         wp_page_reuse(vmf);
2695                         return VM_FAULT_WRITE;
2696                 }
2697                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2698                         if (total_map_swapcount == 1) {
2699                                 /*
2700                                  * The page is all ours. Move it to
2701                                  * our anon_vma so the rmap code will
2702                                  * not search our parent or siblings.
2703                                  * Protected against the rmap code by
2704                                  * the page lock.
2705                                  */
2706                                 page_move_anon_rmap(vmf->page, vma);
2707                         }
2708                         unlock_page(vmf->page);
2709                         wp_page_reuse(vmf);
2710                         return VM_FAULT_WRITE;
2711                 }
2712                 unlock_page(vmf->page);
2713         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2714                                         (VM_WRITE|VM_SHARED))) {
2715                 return wp_page_shared(vmf);
2716         }
2717 copy:
2718         /*
2719          * Ok, we need to copy. Oh, well..
2720          */
2721         get_page(vmf->page);
2722
2723         pte_unmap_unlock(vmf->pte, vmf->ptl);
2724         return wp_page_copy(vmf);
2725 }
2726
2727 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2728                 unsigned long start_addr, unsigned long end_addr,
2729                 struct zap_details *details)
2730 {
2731         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2732 }
2733
2734 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2735                                             struct zap_details *details)
2736 {
2737         struct vm_area_struct *vma;
2738         pgoff_t vba, vea, zba, zea;
2739
2740         vma_interval_tree_foreach(vma, root,
2741                         details->first_index, details->last_index) {
2742
2743                 vba = vma->vm_pgoff;
2744                 vea = vba + vma_pages(vma) - 1;
2745                 zba = details->first_index;
2746                 if (zba < vba)
2747                         zba = vba;
2748                 zea = details->last_index;
2749                 if (zea > vea)
2750                         zea = vea;
2751
2752                 unmap_mapping_range_vma(vma,
2753                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2754                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2755                                 details);
2756         }
2757 }
2758
2759 /**
2760  * unmap_mapping_pages() - Unmap pages from processes.
2761  * @mapping: The address space containing pages to be unmapped.
2762  * @start: Index of first page to be unmapped.
2763  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2764  * @even_cows: Whether to unmap even private COWed pages.
2765  *
2766  * Unmap the pages in this address space from any userspace process which
2767  * has them mmaped.  Generally, you want to remove COWed pages as well when
2768  * a file is being truncated, but not when invalidating pages from the page
2769  * cache.
2770  */
2771 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2772                 pgoff_t nr, bool even_cows)
2773 {
2774         struct zap_details details = { };
2775
2776         details.check_mapping = even_cows ? NULL : mapping;
2777         details.first_index = start;
2778         details.last_index = start + nr - 1;
2779         if (details.last_index < details.first_index)
2780                 details.last_index = ULONG_MAX;
2781
2782         i_mmap_lock_write(mapping);
2783         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2784                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2785         i_mmap_unlock_write(mapping);
2786 }
2787
2788 /**
2789  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2790  * address_space corresponding to the specified byte range in the underlying
2791  * file.
2792  *
2793  * @mapping: the address space containing mmaps to be unmapped.
2794  * @holebegin: byte in first page to unmap, relative to the start of
2795  * the underlying file.  This will be rounded down to a PAGE_SIZE
2796  * boundary.  Note that this is different from truncate_pagecache(), which
2797  * must keep the partial page.  In contrast, we must get rid of
2798  * partial pages.
2799  * @holelen: size of prospective hole in bytes.  This will be rounded
2800  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2801  * end of the file.
2802  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2803  * but 0 when invalidating pagecache, don't throw away private data.
2804  */
2805 void unmap_mapping_range(struct address_space *mapping,
2806                 loff_t const holebegin, loff_t const holelen, int even_cows)
2807 {
2808         pgoff_t hba = holebegin >> PAGE_SHIFT;
2809         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2810
2811         /* Check for overflow. */
2812         if (sizeof(holelen) > sizeof(hlen)) {
2813                 long long holeend =
2814                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2815                 if (holeend & ~(long long)ULONG_MAX)
2816                         hlen = ULONG_MAX - hba + 1;
2817         }
2818
2819         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2820 }
2821 EXPORT_SYMBOL(unmap_mapping_range);
2822
2823 /*
2824  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2825  * but allow concurrent faults), and pte mapped but not yet locked.
2826  * We return with pte unmapped and unlocked.
2827  *
2828  * We return with the mmap_sem locked or unlocked in the same cases
2829  * as does filemap_fault().
2830  */
2831 vm_fault_t do_swap_page(struct vm_fault *vmf)
2832 {
2833         struct vm_area_struct *vma = vmf->vma;
2834         struct page *page = NULL, *swapcache;
2835         struct mem_cgroup *memcg;
2836         swp_entry_t entry;
2837         pte_t pte;
2838         int locked;
2839         int exclusive = 0;
2840         vm_fault_t ret = 0;
2841
2842         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2843                 goto out;
2844
2845         entry = pte_to_swp_entry(vmf->orig_pte);
2846         if (unlikely(non_swap_entry(entry))) {
2847                 if (is_migration_entry(entry)) {
2848                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2849                                              vmf->address);
2850                 } else if (is_device_private_entry(entry)) {
2851                         vmf->page = device_private_entry_to_page(entry);
2852                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2853                 } else if (is_hwpoison_entry(entry)) {
2854                         ret = VM_FAULT_HWPOISON;
2855                 } else {
2856                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2857                         ret = VM_FAULT_SIGBUS;
2858                 }
2859                 goto out;
2860         }
2861
2862
2863         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2864         page = lookup_swap_cache(entry, vma, vmf->address);
2865         swapcache = page;
2866
2867         if (!page) {
2868                 struct swap_info_struct *si = swp_swap_info(entry);
2869
2870                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2871                                 __swap_count(entry) == 1) {
2872                         /* skip swapcache */
2873                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2874                                                         vmf->address);
2875                         if (page) {
2876                                 __SetPageLocked(page);
2877                                 __SetPageSwapBacked(page);
2878                                 set_page_private(page, entry.val);
2879                                 lru_cache_add_anon(page);
2880                                 swap_readpage(page, true);
2881                         }
2882                 } else {
2883                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2884                                                 vmf);
2885                         swapcache = page;
2886                 }
2887
2888                 if (!page) {
2889                         /*
2890                          * Back out if somebody else faulted in this pte
2891                          * while we released the pte lock.
2892                          */
2893                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2894                                         vmf->address, &vmf->ptl);
2895                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2896                                 ret = VM_FAULT_OOM;
2897                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2898                         goto unlock;
2899                 }
2900
2901                 /* Had to read the page from swap area: Major fault */
2902                 ret = VM_FAULT_MAJOR;
2903                 count_vm_event(PGMAJFAULT);
2904                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2905         } else if (PageHWPoison(page)) {
2906                 /*
2907                  * hwpoisoned dirty swapcache pages are kept for killing
2908                  * owner processes (which may be unknown at hwpoison time)
2909                  */
2910                 ret = VM_FAULT_HWPOISON;
2911                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2912                 goto out_release;
2913         }
2914
2915         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2916
2917         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2918         if (!locked) {
2919                 ret |= VM_FAULT_RETRY;
2920                 goto out_release;
2921         }
2922
2923         /*
2924          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2925          * release the swapcache from under us.  The page pin, and pte_same
2926          * test below, are not enough to exclude that.  Even if it is still
2927          * swapcache, we need to check that the page's swap has not changed.
2928          */
2929         if (unlikely((!PageSwapCache(page) ||
2930                         page_private(page) != entry.val)) && swapcache)
2931                 goto out_page;
2932
2933         page = ksm_might_need_to_copy(page, vma, vmf->address);
2934         if (unlikely(!page)) {
2935                 ret = VM_FAULT_OOM;
2936                 page = swapcache;
2937                 goto out_page;
2938         }
2939
2940         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2941                                         &memcg, false)) {
2942                 ret = VM_FAULT_OOM;
2943                 goto out_page;
2944         }
2945
2946         /*
2947          * Back out if somebody else already faulted in this pte.
2948          */
2949         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2950                         &vmf->ptl);
2951         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2952                 goto out_nomap;
2953
2954         if (unlikely(!PageUptodate(page))) {
2955                 ret = VM_FAULT_SIGBUS;
2956                 goto out_nomap;
2957         }
2958
2959         /*
2960          * The page isn't present yet, go ahead with the fault.
2961          *
2962          * Be careful about the sequence of operations here.
2963          * To get its accounting right, reuse_swap_page() must be called
2964          * while the page is counted on swap but not yet in mapcount i.e.
2965          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2966          * must be called after the swap_free(), or it will never succeed.
2967          */
2968
2969         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2970         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2971         pte = mk_pte(page, vma->vm_page_prot);
2972         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2973                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2974                 vmf->flags &= ~FAULT_FLAG_WRITE;
2975                 ret |= VM_FAULT_WRITE;
2976                 exclusive = RMAP_EXCLUSIVE;
2977         }
2978         flush_icache_page(vma, page);
2979         if (pte_swp_soft_dirty(vmf->orig_pte))
2980                 pte = pte_mksoft_dirty(pte);
2981         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2982         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2983         vmf->orig_pte = pte;
2984
2985         /* ksm created a completely new copy */
2986         if (unlikely(page != swapcache && swapcache)) {
2987                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2988                 mem_cgroup_commit_charge(page, memcg, false, false);
2989                 lru_cache_add_active_or_unevictable(page, vma);
2990         } else {
2991                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2992                 mem_cgroup_commit_charge(page, memcg, true, false);
2993                 activate_page(page);
2994         }
2995
2996         swap_free(entry);
2997         if (mem_cgroup_swap_full(page) ||
2998             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2999                 try_to_free_swap(page);
3000         unlock_page(page);
3001         if (page != swapcache && swapcache) {
3002                 /*
3003                  * Hold the lock to avoid the swap entry to be reused
3004                  * until we take the PT lock for the pte_same() check
3005                  * (to avoid false positives from pte_same). For
3006                  * further safety release the lock after the swap_free
3007                  * so that the swap count won't change under a
3008                  * parallel locked swapcache.
3009                  */
3010                 unlock_page(swapcache);
3011                 put_page(swapcache);
3012         }
3013
3014         if (vmf->flags & FAULT_FLAG_WRITE) {
3015                 ret |= do_wp_page(vmf);
3016                 if (ret & VM_FAULT_ERROR)
3017                         ret &= VM_FAULT_ERROR;
3018                 goto out;
3019         }
3020
3021         /* No need to invalidate - it was non-present before */
3022         update_mmu_cache(vma, vmf->address, vmf->pte);
3023 unlock:
3024         pte_unmap_unlock(vmf->pte, vmf->ptl);
3025 out:
3026         return ret;
3027 out_nomap:
3028         mem_cgroup_cancel_charge(page, memcg, false);
3029         pte_unmap_unlock(vmf->pte, vmf->ptl);
3030 out_page:
3031         unlock_page(page);
3032 out_release:
3033         put_page(page);
3034         if (page != swapcache && swapcache) {
3035                 unlock_page(swapcache);
3036                 put_page(swapcache);
3037         }
3038         return ret;
3039 }
3040
3041 /*
3042  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3043  * but allow concurrent faults), and pte mapped but not yet locked.
3044  * We return with mmap_sem still held, but pte unmapped and unlocked.
3045  */
3046 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3047 {
3048         struct vm_area_struct *vma = vmf->vma;
3049         struct mem_cgroup *memcg;
3050         struct page *page;
3051         vm_fault_t ret = 0;
3052         pte_t entry;
3053
3054         /* File mapping without ->vm_ops ? */
3055         if (vma->vm_flags & VM_SHARED)
3056                 return VM_FAULT_SIGBUS;
3057
3058         /*
3059          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3060          * pte_offset_map() on pmds where a huge pmd might be created
3061          * from a different thread.
3062          *
3063          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3064          * parallel threads are excluded by other means.
3065          *
3066          * Here we only have down_read(mmap_sem).
3067          */
3068         if (pte_alloc(vma->vm_mm, vmf->pmd))
3069                 return VM_FAULT_OOM;
3070
3071         /* See the comment in pte_alloc_one_map() */
3072         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3073                 return 0;
3074
3075         /* Use the zero-page for reads */
3076         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3077                         !mm_forbids_zeropage(vma->vm_mm)) {
3078                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3079                                                 vma->vm_page_prot));
3080                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3081                                 vmf->address, &vmf->ptl);
3082                 if (!pte_none(*vmf->pte))
3083                         goto unlock;
3084                 ret = check_stable_address_space(vma->vm_mm);
3085                 if (ret)
3086                         goto unlock;
3087                 /* Deliver the page fault to userland, check inside PT lock */
3088                 if (userfaultfd_missing(vma)) {
3089                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3090                         return handle_userfault(vmf, VM_UFFD_MISSING);
3091                 }
3092                 goto setpte;
3093         }
3094
3095         /* Allocate our own private page. */
3096         if (unlikely(anon_vma_prepare(vma)))
3097                 goto oom;
3098         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3099         if (!page)
3100                 goto oom;
3101
3102         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3103                                         false))
3104                 goto oom_free_page;
3105
3106         /*
3107          * The memory barrier inside __SetPageUptodate makes sure that
3108          * preceding stores to the page contents become visible before
3109          * the set_pte_at() write.
3110          */
3111         __SetPageUptodate(page);
3112
3113         entry = mk_pte(page, vma->vm_page_prot);
3114         if (vma->vm_flags & VM_WRITE)
3115                 entry = pte_mkwrite(pte_mkdirty(entry));
3116
3117         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3118                         &vmf->ptl);
3119         if (!pte_none(*vmf->pte))
3120                 goto release;
3121
3122         ret = check_stable_address_space(vma->vm_mm);
3123         if (ret)
3124                 goto release;
3125
3126         /* Deliver the page fault to userland, check inside PT lock */
3127         if (userfaultfd_missing(vma)) {
3128                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3129                 mem_cgroup_cancel_charge(page, memcg, false);
3130                 put_page(page);
3131                 return handle_userfault(vmf, VM_UFFD_MISSING);
3132         }
3133
3134         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3135         page_add_new_anon_rmap(page, vma, vmf->address, false);
3136         mem_cgroup_commit_charge(page, memcg, false, false);
3137         lru_cache_add_active_or_unevictable(page, vma);
3138 setpte:
3139         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3140
3141         /* No need to invalidate - it was non-present before */
3142         update_mmu_cache(vma, vmf->address, vmf->pte);
3143 unlock:
3144         pte_unmap_unlock(vmf->pte, vmf->ptl);
3145         return ret;
3146 release:
3147         mem_cgroup_cancel_charge(page, memcg, false);
3148         put_page(page);
3149         goto unlock;
3150 oom_free_page:
3151         put_page(page);
3152 oom:
3153         return VM_FAULT_OOM;
3154 }
3155
3156 /*
3157  * The mmap_sem must have been held on entry, and may have been
3158  * released depending on flags and vma->vm_ops->fault() return value.
3159  * See filemap_fault() and __lock_page_retry().
3160  */
3161 static vm_fault_t __do_fault(struct vm_fault *vmf)
3162 {
3163         struct vm_area_struct *vma = vmf->vma;
3164         vm_fault_t ret;
3165
3166         /*
3167          * Preallocate pte before we take page_lock because this might lead to
3168          * deadlocks for memcg reclaim which waits for pages under writeback:
3169          *                              lock_page(A)
3170          *                              SetPageWriteback(A)
3171          *                              unlock_page(A)
3172          * lock_page(B)
3173          *                              lock_page(B)
3174          * pte_alloc_pne
3175          *   shrink_page_list
3176          *     wait_on_page_writeback(A)
3177          *                              SetPageWriteback(B)
3178          *                              unlock_page(B)
3179          *                              # flush A, B to clear the writeback
3180          */
3181         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3182                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3183                 if (!vmf->prealloc_pte)
3184                         return VM_FAULT_OOM;
3185                 smp_wmb(); /* See comment in __pte_alloc() */
3186         }
3187
3188         ret = vma->vm_ops->fault(vmf);
3189         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3190                             VM_FAULT_DONE_COW)))
3191                 return ret;
3192
3193         if (unlikely(PageHWPoison(vmf->page))) {
3194                 if (ret & VM_FAULT_LOCKED)
3195                         unlock_page(vmf->page);
3196                 put_page(vmf->page);
3197                 vmf->page = NULL;
3198                 return VM_FAULT_HWPOISON;
3199         }
3200
3201         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3202                 lock_page(vmf->page);
3203         else
3204                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3205
3206         return ret;
3207 }
3208
3209 /*
3210  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3211  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3212  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3213  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3214  */
3215 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3216 {
3217         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3218 }
3219
3220 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3221 {
3222         struct vm_area_struct *vma = vmf->vma;
3223
3224         if (!pmd_none(*vmf->pmd))
3225                 goto map_pte;
3226         if (vmf->prealloc_pte) {
3227                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3228                 if (unlikely(!pmd_none(*vmf->pmd))) {
3229                         spin_unlock(vmf->ptl);
3230                         goto map_pte;
3231                 }
3232
3233                 mm_inc_nr_ptes(vma->vm_mm);
3234                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3235                 spin_unlock(vmf->ptl);
3236                 vmf->prealloc_pte = NULL;
3237         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3238                 return VM_FAULT_OOM;
3239         }
3240 map_pte:
3241         /*
3242          * If a huge pmd materialized under us just retry later.  Use
3243          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3244          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3245          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3246          * running immediately after a huge pmd fault in a different thread of
3247          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3248          * All we have to ensure is that it is a regular pmd that we can walk
3249          * with pte_offset_map() and we can do that through an atomic read in
3250          * C, which is what pmd_trans_unstable() provides.
3251          */
3252         if (pmd_devmap_trans_unstable(vmf->pmd))
3253                 return VM_FAULT_NOPAGE;
3254
3255         /*
3256          * At this point we know that our vmf->pmd points to a page of ptes
3257          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3258          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3259          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3260          * be valid and we will re-check to make sure the vmf->pte isn't
3261          * pte_none() under vmf->ptl protection when we return to
3262          * alloc_set_pte().
3263          */
3264         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3265                         &vmf->ptl);
3266         return 0;
3267 }
3268
3269 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3270 static void deposit_prealloc_pte(struct vm_fault *vmf)
3271 {
3272         struct vm_area_struct *vma = vmf->vma;
3273
3274         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3275         /*
3276          * We are going to consume the prealloc table,
3277          * count that as nr_ptes.
3278          */
3279         mm_inc_nr_ptes(vma->vm_mm);
3280         vmf->prealloc_pte = NULL;
3281 }
3282
3283 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3284 {
3285         struct vm_area_struct *vma = vmf->vma;
3286         bool write = vmf->flags & FAULT_FLAG_WRITE;
3287         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3288         pmd_t entry;
3289         int i;
3290         vm_fault_t ret;
3291
3292         if (!transhuge_vma_suitable(vma, haddr))
3293                 return VM_FAULT_FALLBACK;
3294
3295         ret = VM_FAULT_FALLBACK;
3296         page = compound_head(page);
3297
3298         /*
3299          * Archs like ppc64 need additonal space to store information
3300          * related to pte entry. Use the preallocated table for that.
3301          */
3302         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3303                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3304                 if (!vmf->prealloc_pte)
3305                         return VM_FAULT_OOM;
3306                 smp_wmb(); /* See comment in __pte_alloc() */
3307         }
3308
3309         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3310         if (unlikely(!pmd_none(*vmf->pmd)))
3311                 goto out;
3312
3313         for (i = 0; i < HPAGE_PMD_NR; i++)
3314                 flush_icache_page(vma, page + i);
3315
3316         entry = mk_huge_pmd(page, vma->vm_page_prot);
3317         if (write)
3318                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3319
3320         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3321         page_add_file_rmap(page, true);
3322         /*
3323          * deposit and withdraw with pmd lock held
3324          */
3325         if (arch_needs_pgtable_deposit())
3326                 deposit_prealloc_pte(vmf);
3327
3328         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3329
3330         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3331
3332         /* fault is handled */
3333         ret = 0;
3334         count_vm_event(THP_FILE_MAPPED);
3335 out:
3336         spin_unlock(vmf->ptl);
3337         return ret;
3338 }
3339 #else
3340 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3341 {
3342         BUILD_BUG();
3343         return 0;
3344 }
3345 #endif
3346
3347 /**
3348  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3349  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3350  *
3351  * @vmf: fault environment
3352  * @memcg: memcg to charge page (only for private mappings)
3353  * @page: page to map
3354  *
3355  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3356  * return.
3357  *
3358  * Target users are page handler itself and implementations of
3359  * vm_ops->map_pages.
3360  *
3361  * Return: %0 on success, %VM_FAULT_ code in case of error.
3362  */
3363 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3364                 struct page *page)
3365 {
3366         struct vm_area_struct *vma = vmf->vma;
3367         bool write = vmf->flags & FAULT_FLAG_WRITE;
3368         pte_t entry;
3369         vm_fault_t ret;
3370
3371         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3372                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3373                 /* THP on COW? */
3374                 VM_BUG_ON_PAGE(memcg, page);
3375
3376                 ret = do_set_pmd(vmf, page);
3377                 if (ret != VM_FAULT_FALLBACK)
3378                         return ret;
3379         }
3380
3381         if (!vmf->pte) {
3382                 ret = pte_alloc_one_map(vmf);
3383                 if (ret)
3384                         return ret;
3385         }
3386
3387         /* Re-check under ptl */
3388         if (unlikely(!pte_none(*vmf->pte)))
3389                 return VM_FAULT_NOPAGE;
3390
3391         flush_icache_page(vma, page);
3392         entry = mk_pte(page, vma->vm_page_prot);
3393         if (write)
3394                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3395         /* copy-on-write page */
3396         if (write && !(vma->vm_flags & VM_SHARED)) {
3397                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3398                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3399                 mem_cgroup_commit_charge(page, memcg, false, false);
3400                 lru_cache_add_active_or_unevictable(page, vma);
3401         } else {
3402                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3403                 page_add_file_rmap(page, false);
3404         }
3405         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3406
3407         /* no need to invalidate: a not-present page won't be cached */
3408         update_mmu_cache(vma, vmf->address, vmf->pte);
3409
3410         return 0;
3411 }
3412
3413
3414 /**
3415  * finish_fault - finish page fault once we have prepared the page to fault
3416  *
3417  * @vmf: structure describing the fault
3418  *
3419  * This function handles all that is needed to finish a page fault once the
3420  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3421  * given page, adds reverse page mapping, handles memcg charges and LRU
3422  * addition.
3423  *
3424  * The function expects the page to be locked and on success it consumes a
3425  * reference of a page being mapped (for the PTE which maps it).
3426  *
3427  * Return: %0 on success, %VM_FAULT_ code in case of error.
3428  */
3429 vm_fault_t finish_fault(struct vm_fault *vmf)
3430 {
3431         struct page *page;
3432         vm_fault_t ret = 0;
3433
3434         /* Did we COW the page? */
3435         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3436             !(vmf->vma->vm_flags & VM_SHARED))
3437                 page = vmf->cow_page;
3438         else
3439                 page = vmf->page;
3440
3441         /*
3442          * check even for read faults because we might have lost our CoWed
3443          * page
3444          */
3445         if (!(vmf->vma->vm_flags & VM_SHARED))
3446                 ret = check_stable_address_space(vmf->vma->vm_mm);
3447         if (!ret)
3448                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3449         if (vmf->pte)
3450                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3451         return ret;
3452 }
3453
3454 static unsigned long fault_around_bytes __read_mostly =
3455         rounddown_pow_of_two(65536);
3456
3457 #ifdef CONFIG_DEBUG_FS
3458 static int fault_around_bytes_get(void *data, u64 *val)
3459 {
3460         *val = fault_around_bytes;
3461         return 0;
3462 }
3463
3464 /*
3465  * fault_around_bytes must be rounded down to the nearest page order as it's
3466  * what do_fault_around() expects to see.
3467  */
3468 static int fault_around_bytes_set(void *data, u64 val)
3469 {
3470         if (val / PAGE_SIZE > PTRS_PER_PTE)
3471                 return -EINVAL;
3472         if (val > PAGE_SIZE)
3473                 fault_around_bytes = rounddown_pow_of_two(val);
3474         else
3475                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3476         return 0;
3477 }
3478 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3479                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3480
3481 static int __init fault_around_debugfs(void)
3482 {
3483         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3484                                    &fault_around_bytes_fops);
3485         return 0;
3486 }
3487 late_initcall(fault_around_debugfs);
3488 #endif
3489
3490 /*
3491  * do_fault_around() tries to map few pages around the fault address. The hope
3492  * is that the pages will be needed soon and this will lower the number of
3493  * faults to handle.
3494  *
3495  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3496  * not ready to be mapped: not up-to-date, locked, etc.
3497  *
3498  * This function is called with the page table lock taken. In the split ptlock
3499  * case the page table lock only protects only those entries which belong to
3500  * the page table corresponding to the fault address.
3501  *
3502  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3503  * only once.
3504  *
3505  * fault_around_bytes defines how many bytes we'll try to map.
3506  * do_fault_around() expects it to be set to a power of two less than or equal
3507  * to PTRS_PER_PTE.
3508  *
3509  * The virtual address of the area that we map is naturally aligned to
3510  * fault_around_bytes rounded down to the machine page size
3511  * (and therefore to page order).  This way it's easier to guarantee
3512  * that we don't cross page table boundaries.
3513  */
3514 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3515 {
3516         unsigned long address = vmf->address, nr_pages, mask;
3517         pgoff_t start_pgoff = vmf->pgoff;
3518         pgoff_t end_pgoff;
3519         int off;
3520         vm_fault_t ret = 0;
3521
3522         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3523         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3524
3525         vmf->address = max(address & mask, vmf->vma->vm_start);
3526         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3527         start_pgoff -= off;
3528
3529         /*
3530          *  end_pgoff is either the end of the page table, the end of
3531          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3532          */
3533         end_pgoff = start_pgoff -
3534                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3535                 PTRS_PER_PTE - 1;
3536         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3537                         start_pgoff + nr_pages - 1);
3538
3539         if (pmd_none(*vmf->pmd)) {
3540                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3541                 if (!vmf->prealloc_pte)
3542                         goto out;
3543                 smp_wmb(); /* See comment in __pte_alloc() */
3544         }
3545
3546         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3547
3548         /* Huge page is mapped? Page fault is solved */
3549         if (pmd_trans_huge(*vmf->pmd)) {
3550                 ret = VM_FAULT_NOPAGE;
3551                 goto out;
3552         }
3553
3554         /* ->map_pages() haven't done anything useful. Cold page cache? */
3555         if (!vmf->pte)
3556                 goto out;
3557
3558         /* check if the page fault is solved */
3559         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3560         if (!pte_none(*vmf->pte))
3561                 ret = VM_FAULT_NOPAGE;
3562         pte_unmap_unlock(vmf->pte, vmf->ptl);
3563 out:
3564         vmf->address = address;
3565         vmf->pte = NULL;
3566         return ret;
3567 }
3568
3569 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3570 {
3571         struct vm_area_struct *vma = vmf->vma;
3572         vm_fault_t ret = 0;
3573
3574         /*
3575          * Let's call ->map_pages() first and use ->fault() as fallback
3576          * if page by the offset is not ready to be mapped (cold cache or
3577          * something).
3578          */
3579         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3580                 ret = do_fault_around(vmf);
3581                 if (ret)
3582                         return ret;
3583         }
3584
3585         ret = __do_fault(vmf);
3586         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3587                 return ret;
3588
3589         ret |= finish_fault(vmf);
3590         unlock_page(vmf->page);
3591         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3592                 put_page(vmf->page);
3593         return ret;
3594 }
3595
3596 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3597 {
3598         struct vm_area_struct *vma = vmf->vma;
3599         vm_fault_t ret;
3600
3601         if (unlikely(anon_vma_prepare(vma)))
3602                 return VM_FAULT_OOM;
3603
3604         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3605         if (!vmf->cow_page)
3606                 return VM_FAULT_OOM;
3607
3608         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3609                                 &vmf->memcg, false)) {
3610                 put_page(vmf->cow_page);
3611                 return VM_FAULT_OOM;
3612         }
3613
3614         ret = __do_fault(vmf);
3615         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3616                 goto uncharge_out;
3617         if (ret & VM_FAULT_DONE_COW)
3618                 return ret;
3619
3620         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3621         __SetPageUptodate(vmf->cow_page);
3622
3623         ret |= finish_fault(vmf);
3624         unlock_page(vmf->page);
3625         put_page(vmf->page);
3626         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3627                 goto uncharge_out;
3628         return ret;
3629 uncharge_out:
3630         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3631         put_page(vmf->cow_page);
3632         return ret;
3633 }
3634
3635 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3636 {
3637         struct vm_area_struct *vma = vmf->vma;
3638         vm_fault_t ret, tmp;
3639
3640         ret = __do_fault(vmf);
3641         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3642                 return ret;
3643
3644         /*
3645          * Check if the backing address space wants to know that the page is
3646          * about to become writable
3647          */
3648         if (vma->vm_ops->page_mkwrite) {
3649                 unlock_page(vmf->page);
3650                 tmp = do_page_mkwrite(vmf);
3651                 if (unlikely(!tmp ||
3652                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3653                         put_page(vmf->page);
3654                         return tmp;
3655                 }
3656         }
3657
3658         ret |= finish_fault(vmf);
3659         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3660                                         VM_FAULT_RETRY))) {
3661                 unlock_page(vmf->page);
3662                 put_page(vmf->page);
3663                 return ret;
3664         }
3665
3666         ret |= fault_dirty_shared_page(vmf);
3667         return ret;
3668 }
3669
3670 /*
3671  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3672  * but allow concurrent faults).
3673  * The mmap_sem may have been released depending on flags and our
3674  * return value.  See filemap_fault() and __lock_page_or_retry().
3675  * If mmap_sem is released, vma may become invalid (for example
3676  * by other thread calling munmap()).
3677  */
3678 static vm_fault_t do_fault(struct vm_fault *vmf)
3679 {
3680         struct vm_area_struct *vma = vmf->vma;
3681         struct mm_struct *vm_mm = vma->vm_mm;
3682         vm_fault_t ret;
3683
3684         /*
3685          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3686          */
3687         if (!vma->vm_ops->fault) {
3688                 /*
3689                  * If we find a migration pmd entry or a none pmd entry, which
3690                  * should never happen, return SIGBUS
3691                  */
3692                 if (unlikely(!pmd_present(*vmf->pmd)))
3693                         ret = VM_FAULT_SIGBUS;
3694                 else {
3695                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3696                                                        vmf->pmd,
3697                                                        vmf->address,
3698                                                        &vmf->ptl);
3699                         /*
3700                          * Make sure this is not a temporary clearing of pte
3701                          * by holding ptl and checking again. A R/M/W update
3702                          * of pte involves: take ptl, clearing the pte so that
3703                          * we don't have concurrent modification by hardware
3704                          * followed by an update.
3705                          */
3706                         if (unlikely(pte_none(*vmf->pte)))
3707                                 ret = VM_FAULT_SIGBUS;
3708                         else
3709                                 ret = VM_FAULT_NOPAGE;
3710
3711                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3712                 }
3713         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3714                 ret = do_read_fault(vmf);
3715         else if (!(vma->vm_flags & VM_SHARED))
3716                 ret = do_cow_fault(vmf);
3717         else
3718                 ret = do_shared_fault(vmf);
3719
3720         /* preallocated pagetable is unused: free it */
3721         if (vmf->prealloc_pte) {
3722                 pte_free(vm_mm, vmf->prealloc_pte);
3723                 vmf->prealloc_pte = NULL;
3724         }
3725         return ret;
3726 }
3727
3728 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3729                                 unsigned long addr, int page_nid,
3730                                 int *flags)
3731 {
3732         get_page(page);
3733
3734         count_vm_numa_event(NUMA_HINT_FAULTS);
3735         if (page_nid == numa_node_id()) {
3736                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3737                 *flags |= TNF_FAULT_LOCAL;
3738         }
3739
3740         return mpol_misplaced(page, vma, addr);
3741 }
3742
3743 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3744 {
3745         struct vm_area_struct *vma = vmf->vma;
3746         struct page *page = NULL;
3747         int page_nid = NUMA_NO_NODE;
3748         int last_cpupid;
3749         int target_nid;
3750         bool migrated = false;
3751         pte_t pte, old_pte;
3752         bool was_writable = pte_savedwrite(vmf->orig_pte);
3753         int flags = 0;
3754
3755         /*
3756          * The "pte" at this point cannot be used safely without
3757          * validation through pte_unmap_same(). It's of NUMA type but
3758          * the pfn may be screwed if the read is non atomic.
3759          */
3760         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3761         spin_lock(vmf->ptl);
3762         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3763                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3764                 goto out;
3765         }
3766
3767         /*
3768          * Make it present again, Depending on how arch implementes non
3769          * accessible ptes, some can allow access by kernel mode.
3770          */
3771         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3772         pte = pte_modify(old_pte, vma->vm_page_prot);
3773         pte = pte_mkyoung(pte);
3774         if (was_writable)
3775                 pte = pte_mkwrite(pte);
3776         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3777         update_mmu_cache(vma, vmf->address, vmf->pte);
3778
3779         page = vm_normal_page(vma, vmf->address, pte);
3780         if (!page) {
3781                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3782                 return 0;
3783         }
3784
3785         /* TODO: handle PTE-mapped THP */
3786         if (PageCompound(page)) {
3787                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3788                 return 0;
3789         }
3790
3791         /*
3792          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3793          * much anyway since they can be in shared cache state. This misses
3794          * the case where a mapping is writable but the process never writes
3795          * to it but pte_write gets cleared during protection updates and
3796          * pte_dirty has unpredictable behaviour between PTE scan updates,
3797          * background writeback, dirty balancing and application behaviour.
3798          */
3799         if (!pte_write(pte))
3800                 flags |= TNF_NO_GROUP;
3801
3802         /*
3803          * Flag if the page is shared between multiple address spaces. This
3804          * is later used when determining whether to group tasks together
3805          */
3806         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3807                 flags |= TNF_SHARED;
3808
3809         last_cpupid = page_cpupid_last(page);
3810         page_nid = page_to_nid(page);
3811         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3812                         &flags);
3813         pte_unmap_unlock(vmf->pte, vmf->ptl);
3814         if (target_nid == NUMA_NO_NODE) {
3815                 put_page(page);
3816                 goto out;
3817         }
3818
3819         /* Migrate to the requested node */
3820         migrated = migrate_misplaced_page(page, vma, target_nid);
3821         if (migrated) {
3822                 page_nid = target_nid;
3823                 flags |= TNF_MIGRATED;
3824         } else
3825                 flags |= TNF_MIGRATE_FAIL;
3826
3827 out:
3828         if (page_nid != NUMA_NO_NODE)
3829                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3830         return 0;
3831 }
3832
3833 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3834 {
3835         if (vma_is_anonymous(vmf->vma))
3836                 return do_huge_pmd_anonymous_page(vmf);
3837         if (vmf->vma->vm_ops->huge_fault)
3838                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3839         return VM_FAULT_FALLBACK;
3840 }
3841
3842 /* `inline' is required to avoid gcc 4.1.2 build error */
3843 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3844 {
3845         if (vma_is_anonymous(vmf->vma))
3846                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3847         if (vmf->vma->vm_ops->huge_fault)
3848                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3849
3850         /* COW handled on pte level: split pmd */
3851         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3852         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3853
3854         return VM_FAULT_FALLBACK;
3855 }
3856
3857 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3858 {
3859         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3860 }
3861
3862 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3863 {
3864 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3865         /* No support for anonymous transparent PUD pages yet */
3866         if (vma_is_anonymous(vmf->vma))
3867                 return VM_FAULT_FALLBACK;
3868         if (vmf->vma->vm_ops->huge_fault)
3869                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3870 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3871         return VM_FAULT_FALLBACK;
3872 }
3873
3874 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3875 {
3876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3877         /* No support for anonymous transparent PUD pages yet */
3878         if (vma_is_anonymous(vmf->vma))
3879                 return VM_FAULT_FALLBACK;
3880         if (vmf->vma->vm_ops->huge_fault)
3881                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3882 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3883         return VM_FAULT_FALLBACK;
3884 }
3885
3886 /*
3887  * These routines also need to handle stuff like marking pages dirty
3888  * and/or accessed for architectures that don't do it in hardware (most
3889  * RISC architectures).  The early dirtying is also good on the i386.
3890  *
3891  * There is also a hook called "update_mmu_cache()" that architectures
3892  * with external mmu caches can use to update those (ie the Sparc or
3893  * PowerPC hashed page tables that act as extended TLBs).
3894  *
3895  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3896  * concurrent faults).
3897  *
3898  * The mmap_sem may have been released depending on flags and our return value.
3899  * See filemap_fault() and __lock_page_or_retry().
3900  */
3901 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3902 {
3903         pte_t entry;
3904
3905         if (unlikely(pmd_none(*vmf->pmd))) {
3906                 /*
3907                  * Leave __pte_alloc() until later: because vm_ops->fault may
3908                  * want to allocate huge page, and if we expose page table
3909                  * for an instant, it will be difficult to retract from
3910                  * concurrent faults and from rmap lookups.
3911                  */
3912                 vmf->pte = NULL;
3913         } else {
3914                 /* See comment in pte_alloc_one_map() */
3915                 if (pmd_devmap_trans_unstable(vmf->pmd))
3916                         return 0;
3917                 /*
3918                  * A regular pmd is established and it can't morph into a huge
3919                  * pmd from under us anymore at this point because we hold the
3920                  * mmap_sem read mode and khugepaged takes it in write mode.
3921                  * So now it's safe to run pte_offset_map().
3922                  */
3923                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3924                 vmf->orig_pte = *vmf->pte;
3925
3926                 /*
3927                  * some architectures can have larger ptes than wordsize,
3928                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3929                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3930                  * accesses.  The code below just needs a consistent view
3931                  * for the ifs and we later double check anyway with the
3932                  * ptl lock held. So here a barrier will do.
3933                  */
3934                 barrier();
3935                 if (pte_none(vmf->orig_pte)) {
3936                         pte_unmap(vmf->pte);
3937                         vmf->pte = NULL;
3938                 }
3939         }
3940
3941         if (!vmf->pte) {
3942                 if (vma_is_anonymous(vmf->vma))
3943                         return do_anonymous_page(vmf);
3944                 else
3945                         return do_fault(vmf);
3946         }
3947
3948         if (!pte_present(vmf->orig_pte))
3949                 return do_swap_page(vmf);
3950
3951         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3952                 return do_numa_page(vmf);
3953
3954         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3955         spin_lock(vmf->ptl);
3956         entry = vmf->orig_pte;
3957         if (unlikely(!pte_same(*vmf->pte, entry)))
3958                 goto unlock;
3959         if (vmf->flags & FAULT_FLAG_WRITE) {
3960                 if (!pte_write(entry))
3961                         return do_wp_page(vmf);
3962                 entry = pte_mkdirty(entry);
3963         }
3964         entry = pte_mkyoung(entry);
3965         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3966                                 vmf->flags & FAULT_FLAG_WRITE)) {
3967                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3968         } else {
3969                 /*
3970                  * This is needed only for protection faults but the arch code
3971                  * is not yet telling us if this is a protection fault or not.
3972                  * This still avoids useless tlb flushes for .text page faults
3973                  * with threads.
3974                  */
3975                 if (vmf->flags & FAULT_FLAG_WRITE)
3976                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3977         }
3978 unlock:
3979         pte_unmap_unlock(vmf->pte, vmf->ptl);
3980         return 0;
3981 }
3982
3983 /*
3984  * By the time we get here, we already hold the mm semaphore
3985  *
3986  * The mmap_sem may have been released depending on flags and our
3987  * return value.  See filemap_fault() and __lock_page_or_retry().
3988  */
3989 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3990                 unsigned long address, unsigned int flags)
3991 {
3992         struct vm_fault vmf = {
3993                 .vma = vma,
3994                 .address = address & PAGE_MASK,
3995                 .flags = flags,
3996                 .pgoff = linear_page_index(vma, address),
3997                 .gfp_mask = __get_fault_gfp_mask(vma),
3998         };
3999         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4000         struct mm_struct *mm = vma->vm_mm;
4001         pgd_t *pgd;
4002         p4d_t *p4d;
4003         vm_fault_t ret;
4004
4005         pgd = pgd_offset(mm, address);
4006         p4d = p4d_alloc(mm, pgd, address);
4007         if (!p4d)
4008                 return VM_FAULT_OOM;
4009
4010         vmf.pud = pud_alloc(mm, p4d, address);
4011         if (!vmf.pud)
4012                 return VM_FAULT_OOM;
4013 retry_pud:
4014         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4015                 ret = create_huge_pud(&vmf);
4016                 if (!(ret & VM_FAULT_FALLBACK))
4017                         return ret;
4018         } else {
4019                 pud_t orig_pud = *vmf.pud;
4020
4021                 barrier();
4022                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4023
4024                         /* NUMA case for anonymous PUDs would go here */
4025
4026                         if (dirty && !pud_write(orig_pud)) {
4027                                 ret = wp_huge_pud(&vmf, orig_pud);
4028                                 if (!(ret & VM_FAULT_FALLBACK))
4029                                         return ret;
4030                         } else {
4031                                 huge_pud_set_accessed(&vmf, orig_pud);
4032                                 return 0;
4033                         }
4034                 }
4035         }
4036
4037         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4038         if (!vmf.pmd)
4039                 return VM_FAULT_OOM;
4040
4041         /* Huge pud page fault raced with pmd_alloc? */
4042         if (pud_trans_unstable(vmf.pud))
4043                 goto retry_pud;
4044
4045         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4046                 ret = create_huge_pmd(&vmf);
4047                 if (!(ret & VM_FAULT_FALLBACK))
4048                         return ret;
4049         } else {
4050                 pmd_t orig_pmd = *vmf.pmd;
4051
4052                 barrier();
4053                 if (unlikely(is_swap_pmd(orig_pmd))) {
4054                         VM_BUG_ON(thp_migration_supported() &&
4055                                           !is_pmd_migration_entry(orig_pmd));
4056                         if (is_pmd_migration_entry(orig_pmd))
4057                                 pmd_migration_entry_wait(mm, vmf.pmd);
4058                         return 0;
4059                 }
4060                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4061                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4062                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4063
4064                         if (dirty && !pmd_write(orig_pmd)) {
4065                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4066                                 if (!(ret & VM_FAULT_FALLBACK))
4067                                         return ret;
4068                         } else {
4069                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4070                                 return 0;
4071                         }
4072                 }
4073         }
4074
4075         return handle_pte_fault(&vmf);
4076 }
4077
4078 /*
4079  * By the time we get here, we already hold the mm semaphore
4080  *
4081  * The mmap_sem may have been released depending on flags and our
4082  * return value.  See filemap_fault() and __lock_page_or_retry().
4083  */
4084 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4085                 unsigned int flags)
4086 {
4087         vm_fault_t ret;
4088
4089         __set_current_state(TASK_RUNNING);
4090
4091         count_vm_event(PGFAULT);
4092         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4093
4094         /* do counter updates before entering really critical section. */
4095         check_sync_rss_stat(current);
4096
4097         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4098                                             flags & FAULT_FLAG_INSTRUCTION,
4099                                             flags & FAULT_FLAG_REMOTE))
4100                 return VM_FAULT_SIGSEGV;
4101
4102         /*
4103          * Enable the memcg OOM handling for faults triggered in user
4104          * space.  Kernel faults are handled more gracefully.
4105          */
4106         if (flags & FAULT_FLAG_USER)
4107                 mem_cgroup_enter_user_fault();
4108
4109         if (unlikely(is_vm_hugetlb_page(vma)))
4110                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4111         else
4112                 ret = __handle_mm_fault(vma, address, flags);
4113
4114         if (flags & FAULT_FLAG_USER) {
4115                 mem_cgroup_exit_user_fault();
4116                 /*
4117                  * The task may have entered a memcg OOM situation but
4118                  * if the allocation error was handled gracefully (no
4119                  * VM_FAULT_OOM), there is no need to kill anything.
4120                  * Just clean up the OOM state peacefully.
4121                  */
4122                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4123                         mem_cgroup_oom_synchronize(false);
4124         }
4125
4126         return ret;
4127 }
4128 EXPORT_SYMBOL_GPL(handle_mm_fault);
4129
4130 #ifndef __PAGETABLE_P4D_FOLDED
4131 /*
4132  * Allocate p4d page table.
4133  * We've already handled the fast-path in-line.
4134  */
4135 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4136 {
4137         p4d_t *new = p4d_alloc_one(mm, address);
4138         if (!new)
4139                 return -ENOMEM;
4140
4141         smp_wmb(); /* See comment in __pte_alloc */
4142
4143         spin_lock(&mm->page_table_lock);
4144         if (pgd_present(*pgd))          /* Another has populated it */
4145                 p4d_free(mm, new);
4146         else
4147                 pgd_populate(mm, pgd, new);
4148         spin_unlock(&mm->page_table_lock);
4149         return 0;
4150 }
4151 #endif /* __PAGETABLE_P4D_FOLDED */
4152
4153 #ifndef __PAGETABLE_PUD_FOLDED
4154 /*
4155  * Allocate page upper directory.
4156  * We've already handled the fast-path in-line.
4157  */
4158 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4159 {
4160         pud_t *new = pud_alloc_one(mm, address);
4161         if (!new)
4162                 return -ENOMEM;
4163
4164         smp_wmb(); /* See comment in __pte_alloc */
4165
4166         spin_lock(&mm->page_table_lock);
4167 #ifndef __ARCH_HAS_5LEVEL_HACK
4168         if (!p4d_present(*p4d)) {
4169                 mm_inc_nr_puds(mm);
4170                 p4d_populate(mm, p4d, new);
4171         } else  /* Another has populated it */
4172                 pud_free(mm, new);
4173 #else
4174         if (!pgd_present(*p4d)) {
4175                 mm_inc_nr_puds(mm);
4176                 pgd_populate(mm, p4d, new);
4177         } else  /* Another has populated it */
4178                 pud_free(mm, new);
4179 #endif /* __ARCH_HAS_5LEVEL_HACK */
4180         spin_unlock(&mm->page_table_lock);
4181         return 0;
4182 }
4183 #endif /* __PAGETABLE_PUD_FOLDED */
4184
4185 #ifndef __PAGETABLE_PMD_FOLDED
4186 /*
4187  * Allocate page middle directory.
4188  * We've already handled the fast-path in-line.
4189  */
4190 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4191 {
4192         spinlock_t *ptl;
4193         pmd_t *new = pmd_alloc_one(mm, address);
4194         if (!new)
4195                 return -ENOMEM;
4196
4197         smp_wmb(); /* See comment in __pte_alloc */
4198
4199         ptl = pud_lock(mm, pud);
4200         if (!pud_present(*pud)) {
4201                 mm_inc_nr_pmds(mm);
4202                 pud_populate(mm, pud, new);
4203         } else  /* Another has populated it */
4204                 pmd_free(mm, new);
4205         spin_unlock(ptl);
4206         return 0;
4207 }
4208 #endif /* __PAGETABLE_PMD_FOLDED */
4209
4210 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4211                             struct mmu_notifier_range *range,
4212                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4213 {
4214         pgd_t *pgd;
4215         p4d_t *p4d;
4216         pud_t *pud;
4217         pmd_t *pmd;
4218         pte_t *ptep;
4219
4220         pgd = pgd_offset(mm, address);
4221         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4222                 goto out;
4223
4224         p4d = p4d_offset(pgd, address);
4225         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4226                 goto out;
4227
4228         pud = pud_offset(p4d, address);
4229         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4230                 goto out;
4231
4232         pmd = pmd_offset(pud, address);
4233         VM_BUG_ON(pmd_trans_huge(*pmd));
4234
4235         if (pmd_huge(*pmd)) {
4236                 if (!pmdpp)
4237                         goto out;
4238
4239                 if (range) {
4240                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4241                                                 NULL, mm, address & PMD_MASK,
4242                                                 (address & PMD_MASK) + PMD_SIZE);
4243                         mmu_notifier_invalidate_range_start(range);
4244                 }
4245                 *ptlp = pmd_lock(mm, pmd);
4246                 if (pmd_huge(*pmd)) {
4247                         *pmdpp = pmd;
4248                         return 0;
4249                 }
4250                 spin_unlock(*ptlp);
4251                 if (range)
4252                         mmu_notifier_invalidate_range_end(range);
4253         }
4254
4255         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4256                 goto out;
4257
4258         if (range) {
4259                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4260                                         address & PAGE_MASK,
4261                                         (address & PAGE_MASK) + PAGE_SIZE);
4262                 mmu_notifier_invalidate_range_start(range);
4263         }
4264         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4265         if (!pte_present(*ptep))
4266                 goto unlock;
4267         *ptepp = ptep;
4268         return 0;
4269 unlock:
4270         pte_unmap_unlock(ptep, *ptlp);
4271         if (range)
4272                 mmu_notifier_invalidate_range_end(range);
4273 out:
4274         return -EINVAL;
4275 }
4276
4277 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4278                              pte_t **ptepp, spinlock_t **ptlp)
4279 {
4280         int res;
4281
4282         /* (void) is needed to make gcc happy */
4283         (void) __cond_lock(*ptlp,
4284                            !(res = __follow_pte_pmd(mm, address, NULL,
4285                                                     ptepp, NULL, ptlp)));
4286         return res;
4287 }
4288
4289 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4290                    struct mmu_notifier_range *range,
4291                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4292 {
4293         int res;
4294
4295         /* (void) is needed to make gcc happy */
4296         (void) __cond_lock(*ptlp,
4297                            !(res = __follow_pte_pmd(mm, address, range,
4298                                                     ptepp, pmdpp, ptlp)));
4299         return res;
4300 }
4301 EXPORT_SYMBOL(follow_pte_pmd);
4302
4303 /**
4304  * follow_pfn - look up PFN at a user virtual address
4305  * @vma: memory mapping
4306  * @address: user virtual address
4307  * @pfn: location to store found PFN
4308  *
4309  * Only IO mappings and raw PFN mappings are allowed.
4310  *
4311  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4312  */
4313 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4314         unsigned long *pfn)
4315 {
4316         int ret = -EINVAL;
4317         spinlock_t *ptl;
4318         pte_t *ptep;
4319
4320         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4321                 return ret;
4322
4323         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4324         if (ret)
4325                 return ret;
4326         *pfn = pte_pfn(*ptep);
4327         pte_unmap_unlock(ptep, ptl);
4328         return 0;
4329 }
4330 EXPORT_SYMBOL(follow_pfn);
4331
4332 #ifdef CONFIG_HAVE_IOREMAP_PROT
4333 int follow_phys(struct vm_area_struct *vma,
4334                 unsigned long address, unsigned int flags,
4335                 unsigned long *prot, resource_size_t *phys)
4336 {
4337         int ret = -EINVAL;
4338         pte_t *ptep, pte;
4339         spinlock_t *ptl;
4340
4341         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4342                 goto out;
4343
4344         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4345                 goto out;
4346         pte = *ptep;
4347
4348         if ((flags & FOLL_WRITE) && !pte_write(pte))
4349                 goto unlock;
4350
4351         *prot = pgprot_val(pte_pgprot(pte));
4352         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4353
4354         ret = 0;
4355 unlock:
4356         pte_unmap_unlock(ptep, ptl);
4357 out:
4358         return ret;
4359 }
4360
4361 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4362                         void *buf, int len, int write)
4363 {
4364         resource_size_t phys_addr;
4365         unsigned long prot = 0;
4366         void __iomem *maddr;
4367         int offset = addr & (PAGE_SIZE-1);
4368
4369         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4370                 return -EINVAL;
4371
4372         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4373         if (!maddr)
4374                 return -ENOMEM;
4375
4376         if (write)
4377                 memcpy_toio(maddr + offset, buf, len);
4378         else
4379                 memcpy_fromio(buf, maddr + offset, len);
4380         iounmap(maddr);
4381
4382         return len;
4383 }
4384 EXPORT_SYMBOL_GPL(generic_access_phys);
4385 #endif
4386
4387 /*
4388  * Access another process' address space as given in mm.  If non-NULL, use the
4389  * given task for page fault accounting.
4390  */
4391 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4392                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4393 {
4394         struct vm_area_struct *vma;
4395         void *old_buf = buf;
4396         int write = gup_flags & FOLL_WRITE;
4397
4398         if (down_read_killable(&mm->mmap_sem))
4399                 return 0;
4400
4401         /* ignore errors, just check how much was successfully transferred */
4402         while (len) {
4403                 int bytes, ret, offset;
4404                 void *maddr;
4405                 struct page *page = NULL;
4406
4407                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4408                                 gup_flags, &page, &vma, NULL);
4409                 if (ret <= 0) {
4410 #ifndef CONFIG_HAVE_IOREMAP_PROT
4411                         break;
4412 #else
4413                         /*
4414                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4415                          * we can access using slightly different code.
4416                          */
4417                         vma = find_vma(mm, addr);
4418                         if (!vma || vma->vm_start > addr)
4419                                 break;
4420                         if (vma->vm_ops && vma->vm_ops->access)
4421                                 ret = vma->vm_ops->access(vma, addr, buf,
4422                                                           len, write);
4423                         if (ret <= 0)
4424                                 break;
4425                         bytes = ret;
4426 #endif
4427                 } else {
4428                         bytes = len;
4429                         offset = addr & (PAGE_SIZE-1);
4430                         if (bytes > PAGE_SIZE-offset)
4431                                 bytes = PAGE_SIZE-offset;
4432
4433                         maddr = kmap(page);
4434                         if (write) {
4435                                 copy_to_user_page(vma, page, addr,
4436                                                   maddr + offset, buf, bytes);
4437                                 set_page_dirty_lock(page);
4438                         } else {
4439                                 copy_from_user_page(vma, page, addr,
4440                                                     buf, maddr + offset, bytes);
4441                         }
4442                         kunmap(page);
4443                         put_page(page);
4444                 }
4445                 len -= bytes;
4446                 buf += bytes;
4447                 addr += bytes;
4448         }
4449         up_read(&mm->mmap_sem);
4450
4451         return buf - old_buf;
4452 }
4453
4454 /**
4455  * access_remote_vm - access another process' address space
4456  * @mm:         the mm_struct of the target address space
4457  * @addr:       start address to access
4458  * @buf:        source or destination buffer
4459  * @len:        number of bytes to transfer
4460  * @gup_flags:  flags modifying lookup behaviour
4461  *
4462  * The caller must hold a reference on @mm.
4463  *
4464  * Return: number of bytes copied from source to destination.
4465  */
4466 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4467                 void *buf, int len, unsigned int gup_flags)
4468 {
4469         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4470 }
4471
4472 /*
4473  * Access another process' address space.
4474  * Source/target buffer must be kernel space,
4475  * Do not walk the page table directly, use get_user_pages
4476  */
4477 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4478                 void *buf, int len, unsigned int gup_flags)
4479 {
4480         struct mm_struct *mm;
4481         int ret;
4482
4483         mm = get_task_mm(tsk);
4484         if (!mm)
4485                 return 0;
4486
4487         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4488
4489         mmput(mm);
4490
4491         return ret;
4492 }
4493 EXPORT_SYMBOL_GPL(access_process_vm);
4494
4495 /*
4496  * Print the name of a VMA.
4497  */
4498 void print_vma_addr(char *prefix, unsigned long ip)
4499 {
4500         struct mm_struct *mm = current->mm;
4501         struct vm_area_struct *vma;
4502
4503         /*
4504          * we might be running from an atomic context so we cannot sleep
4505          */
4506         if (!down_read_trylock(&mm->mmap_sem))
4507                 return;
4508
4509         vma = find_vma(mm, ip);
4510         if (vma && vma->vm_file) {
4511                 struct file *f = vma->vm_file;
4512                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4513                 if (buf) {
4514                         char *p;
4515
4516                         p = file_path(f, buf, PAGE_SIZE);
4517                         if (IS_ERR(p))
4518                                 p = "?";
4519                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4520                                         vma->vm_start,
4521                                         vma->vm_end - vma->vm_start);
4522                         free_page((unsigned long)buf);
4523                 }
4524         }
4525         up_read(&mm->mmap_sem);
4526 }
4527
4528 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4529 void __might_fault(const char *file, int line)
4530 {
4531         /*
4532          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4533          * holding the mmap_sem, this is safe because kernel memory doesn't
4534          * get paged out, therefore we'll never actually fault, and the
4535          * below annotations will generate false positives.
4536          */
4537         if (uaccess_kernel())
4538                 return;
4539         if (pagefault_disabled())
4540                 return;
4541         __might_sleep(file, line, 0);
4542 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4543         if (current->mm)
4544                 might_lock_read(&current->mm->mmap_sem);
4545 #endif
4546 }
4547 EXPORT_SYMBOL(__might_fault);
4548 #endif
4549
4550 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4551 /*
4552  * Process all subpages of the specified huge page with the specified
4553  * operation.  The target subpage will be processed last to keep its
4554  * cache lines hot.
4555  */
4556 static inline void process_huge_page(
4557         unsigned long addr_hint, unsigned int pages_per_huge_page,
4558         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4559         void *arg)
4560 {
4561         int i, n, base, l;
4562         unsigned long addr = addr_hint &
4563                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4564
4565         /* Process target subpage last to keep its cache lines hot */
4566         might_sleep();
4567         n = (addr_hint - addr) / PAGE_SIZE;
4568         if (2 * n <= pages_per_huge_page) {
4569                 /* If target subpage in first half of huge page */
4570                 base = 0;
4571                 l = n;
4572                 /* Process subpages at the end of huge page */
4573                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4574                         cond_resched();
4575                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4576                 }
4577         } else {
4578                 /* If target subpage in second half of huge page */
4579                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4580                 l = pages_per_huge_page - n;
4581                 /* Process subpages at the begin of huge page */
4582                 for (i = 0; i < base; i++) {
4583                         cond_resched();
4584                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4585                 }
4586         }
4587         /*
4588          * Process remaining subpages in left-right-left-right pattern
4589          * towards the target subpage
4590          */
4591         for (i = 0; i < l; i++) {
4592                 int left_idx = base + i;
4593                 int right_idx = base + 2 * l - 1 - i;
4594
4595                 cond_resched();
4596                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4597                 cond_resched();
4598                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4599         }
4600 }
4601
4602 static void clear_gigantic_page(struct page *page,
4603                                 unsigned long addr,
4604                                 unsigned int pages_per_huge_page)
4605 {
4606         int i;
4607         struct page *p = page;
4608
4609         might_sleep();
4610         for (i = 0; i < pages_per_huge_page;
4611              i++, p = mem_map_next(p, page, i)) {
4612                 cond_resched();
4613                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4614         }
4615 }
4616
4617 static void clear_subpage(unsigned long addr, int idx, void *arg)
4618 {
4619         struct page *page = arg;
4620
4621         clear_user_highpage(page + idx, addr);
4622 }
4623
4624 void clear_huge_page(struct page *page,
4625                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4626 {
4627         unsigned long addr = addr_hint &
4628                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4629
4630         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4631                 clear_gigantic_page(page, addr, pages_per_huge_page);
4632                 return;
4633         }
4634
4635         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4636 }
4637
4638 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4639                                     unsigned long addr,
4640                                     struct vm_area_struct *vma,
4641                                     unsigned int pages_per_huge_page)
4642 {
4643         int i;
4644         struct page *dst_base = dst;
4645         struct page *src_base = src;
4646
4647         for (i = 0; i < pages_per_huge_page; ) {
4648                 cond_resched();
4649                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4650
4651                 i++;
4652                 dst = mem_map_next(dst, dst_base, i);
4653                 src = mem_map_next(src, src_base, i);
4654         }
4655 }
4656
4657 struct copy_subpage_arg {
4658         struct page *dst;
4659         struct page *src;
4660         struct vm_area_struct *vma;
4661 };
4662
4663 static void copy_subpage(unsigned long addr, int idx, void *arg)
4664 {
4665         struct copy_subpage_arg *copy_arg = arg;
4666
4667         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4668                            addr, copy_arg->vma);
4669 }
4670
4671 void copy_user_huge_page(struct page *dst, struct page *src,
4672                          unsigned long addr_hint, struct vm_area_struct *vma,
4673                          unsigned int pages_per_huge_page)
4674 {
4675         unsigned long addr = addr_hint &
4676                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4677         struct copy_subpage_arg arg = {
4678                 .dst = dst,
4679                 .src = src,
4680                 .vma = vma,
4681         };
4682
4683         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4684                 copy_user_gigantic_page(dst, src, addr, vma,
4685                                         pages_per_huge_page);
4686                 return;
4687         }
4688
4689         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4690 }
4691
4692 long copy_huge_page_from_user(struct page *dst_page,
4693                                 const void __user *usr_src,
4694                                 unsigned int pages_per_huge_page,
4695                                 bool allow_pagefault)
4696 {
4697         void *src = (void *)usr_src;
4698         void *page_kaddr;
4699         unsigned long i, rc = 0;
4700         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4701
4702         for (i = 0; i < pages_per_huge_page; i++) {
4703                 if (allow_pagefault)
4704                         page_kaddr = kmap(dst_page + i);
4705                 else
4706                         page_kaddr = kmap_atomic(dst_page + i);
4707                 rc = copy_from_user(page_kaddr,
4708                                 (const void __user *)(src + i * PAGE_SIZE),
4709                                 PAGE_SIZE);
4710                 if (allow_pagefault)
4711                         kunmap(dst_page + i);
4712                 else
4713                         kunmap_atomic(page_kaddr);
4714
4715                 ret_val -= (PAGE_SIZE - rc);
4716                 if (rc)
4717                         break;
4718
4719                 cond_resched();
4720         }
4721         return ret_val;
4722 }
4723 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4724
4725 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4726
4727 static struct kmem_cache *page_ptl_cachep;
4728
4729 void __init ptlock_cache_init(void)
4730 {
4731         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4732                         SLAB_PANIC, NULL);
4733 }
4734
4735 bool ptlock_alloc(struct page *page)
4736 {
4737         spinlock_t *ptl;
4738
4739         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4740         if (!ptl)
4741                 return false;
4742         page->ptl = ptl;
4743         return true;
4744 }
4745
4746 void ptlock_free(struct page *page)
4747 {
4748         kmem_cache_free(page_ptl_cachep, page->ptl);
4749 }
4750 #endif