mm/munlock: rmap call mlock_vma_page() munlock_vma_page()
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NUMA
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140         /*
141          * Transitioning a PTE from 'old' to 'young' can be expensive on
142          * some architectures, even if it's performed in hardware. By
143          * default, "false" means prefaulted entries will be 'young'.
144          */
145         return false;
146 }
147 #endif
148
149 static int __init disable_randmaps(char *s)
150 {
151         randomize_va_space = 0;
152         return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158
159 unsigned long highest_memmap_pfn __read_mostly;
160
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166         zero_pfn = page_to_pfn(ZERO_PAGE(0));
167         return 0;
168 }
169 early_initcall(init_zero_pfn);
170
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173         trace_rss_stat(mm, member, count);
174 }
175
176 #if defined(SPLIT_RSS_COUNTING)
177
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180         int i;
181
182         for (i = 0; i < NR_MM_COUNTERS; i++) {
183                 if (current->rss_stat.count[i]) {
184                         add_mm_counter(mm, i, current->rss_stat.count[i]);
185                         current->rss_stat.count[i] = 0;
186                 }
187         }
188         current->rss_stat.events = 0;
189 }
190
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193         struct task_struct *task = current;
194
195         if (likely(task->mm == mm))
196                 task->rss_stat.count[member] += val;
197         else
198                 add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH  (64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207         if (unlikely(task != current))
208                 return;
209         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210                 sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220
221 #endif /* SPLIT_RSS_COUNTING */
222
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228                            unsigned long addr)
229 {
230         pgtable_t token = pmd_pgtable(*pmd);
231         pmd_clear(pmd);
232         pte_free_tlb(tlb, token, addr);
233         mm_dec_nr_ptes(tlb->mm);
234 }
235
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237                                 unsigned long addr, unsigned long end,
238                                 unsigned long floor, unsigned long ceiling)
239 {
240         pmd_t *pmd;
241         unsigned long next;
242         unsigned long start;
243
244         start = addr;
245         pmd = pmd_offset(pud, addr);
246         do {
247                 next = pmd_addr_end(addr, end);
248                 if (pmd_none_or_clear_bad(pmd))
249                         continue;
250                 free_pte_range(tlb, pmd, addr);
251         } while (pmd++, addr = next, addr != end);
252
253         start &= PUD_MASK;
254         if (start < floor)
255                 return;
256         if (ceiling) {
257                 ceiling &= PUD_MASK;
258                 if (!ceiling)
259                         return;
260         }
261         if (end - 1 > ceiling - 1)
262                 return;
263
264         pmd = pmd_offset(pud, start);
265         pud_clear(pud);
266         pmd_free_tlb(tlb, pmd, start);
267         mm_dec_nr_pmds(tlb->mm);
268 }
269
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271                                 unsigned long addr, unsigned long end,
272                                 unsigned long floor, unsigned long ceiling)
273 {
274         pud_t *pud;
275         unsigned long next;
276         unsigned long start;
277
278         start = addr;
279         pud = pud_offset(p4d, addr);
280         do {
281                 next = pud_addr_end(addr, end);
282                 if (pud_none_or_clear_bad(pud))
283                         continue;
284                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285         } while (pud++, addr = next, addr != end);
286
287         start &= P4D_MASK;
288         if (start < floor)
289                 return;
290         if (ceiling) {
291                 ceiling &= P4D_MASK;
292                 if (!ceiling)
293                         return;
294         }
295         if (end - 1 > ceiling - 1)
296                 return;
297
298         pud = pud_offset(p4d, start);
299         p4d_clear(p4d);
300         pud_free_tlb(tlb, pud, start);
301         mm_dec_nr_puds(tlb->mm);
302 }
303
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305                                 unsigned long addr, unsigned long end,
306                                 unsigned long floor, unsigned long ceiling)
307 {
308         p4d_t *p4d;
309         unsigned long next;
310         unsigned long start;
311
312         start = addr;
313         p4d = p4d_offset(pgd, addr);
314         do {
315                 next = p4d_addr_end(addr, end);
316                 if (p4d_none_or_clear_bad(p4d))
317                         continue;
318                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319         } while (p4d++, addr = next, addr != end);
320
321         start &= PGDIR_MASK;
322         if (start < floor)
323                 return;
324         if (ceiling) {
325                 ceiling &= PGDIR_MASK;
326                 if (!ceiling)
327                         return;
328         }
329         if (end - 1 > ceiling - 1)
330                 return;
331
332         p4d = p4d_offset(pgd, start);
333         pgd_clear(pgd);
334         p4d_free_tlb(tlb, p4d, start);
335 }
336
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341                         unsigned long addr, unsigned long end,
342                         unsigned long floor, unsigned long ceiling)
343 {
344         pgd_t *pgd;
345         unsigned long next;
346
347         /*
348          * The next few lines have given us lots of grief...
349          *
350          * Why are we testing PMD* at this top level?  Because often
351          * there will be no work to do at all, and we'd prefer not to
352          * go all the way down to the bottom just to discover that.
353          *
354          * Why all these "- 1"s?  Because 0 represents both the bottom
355          * of the address space and the top of it (using -1 for the
356          * top wouldn't help much: the masks would do the wrong thing).
357          * The rule is that addr 0 and floor 0 refer to the bottom of
358          * the address space, but end 0 and ceiling 0 refer to the top
359          * Comparisons need to use "end - 1" and "ceiling - 1" (though
360          * that end 0 case should be mythical).
361          *
362          * Wherever addr is brought up or ceiling brought down, we must
363          * be careful to reject "the opposite 0" before it confuses the
364          * subsequent tests.  But what about where end is brought down
365          * by PMD_SIZE below? no, end can't go down to 0 there.
366          *
367          * Whereas we round start (addr) and ceiling down, by different
368          * masks at different levels, in order to test whether a table
369          * now has no other vmas using it, so can be freed, we don't
370          * bother to round floor or end up - the tests don't need that.
371          */
372
373         addr &= PMD_MASK;
374         if (addr < floor) {
375                 addr += PMD_SIZE;
376                 if (!addr)
377                         return;
378         }
379         if (ceiling) {
380                 ceiling &= PMD_MASK;
381                 if (!ceiling)
382                         return;
383         }
384         if (end - 1 > ceiling - 1)
385                 end -= PMD_SIZE;
386         if (addr > end - 1)
387                 return;
388         /*
389          * We add page table cache pages with PAGE_SIZE,
390          * (see pte_free_tlb()), flush the tlb if we need
391          */
392         tlb_change_page_size(tlb, PAGE_SIZE);
393         pgd = pgd_offset(tlb->mm, addr);
394         do {
395                 next = pgd_addr_end(addr, end);
396                 if (pgd_none_or_clear_bad(pgd))
397                         continue;
398                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399         } while (pgd++, addr = next, addr != end);
400 }
401
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403                 unsigned long floor, unsigned long ceiling)
404 {
405         while (vma) {
406                 struct vm_area_struct *next = vma->vm_next;
407                 unsigned long addr = vma->vm_start;
408
409                 /*
410                  * Hide vma from rmap and truncate_pagecache before freeing
411                  * pgtables
412                  */
413                 unlink_anon_vmas(vma);
414                 unlink_file_vma(vma);
415
416                 if (is_vm_hugetlb_page(vma)) {
417                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418                                 floor, next ? next->vm_start : ceiling);
419                 } else {
420                         /*
421                          * Optimization: gather nearby vmas into one call down
422                          */
423                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424                                && !is_vm_hugetlb_page(next)) {
425                                 vma = next;
426                                 next = vma->vm_next;
427                                 unlink_anon_vmas(vma);
428                                 unlink_file_vma(vma);
429                         }
430                         free_pgd_range(tlb, addr, vma->vm_end,
431                                 floor, next ? next->vm_start : ceiling);
432                 }
433                 vma = next;
434         }
435 }
436
437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
438 {
439         spinlock_t *ptl = pmd_lock(mm, pmd);
440
441         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
442                 mm_inc_nr_ptes(mm);
443                 /*
444                  * Ensure all pte setup (eg. pte page lock and page clearing) are
445                  * visible before the pte is made visible to other CPUs by being
446                  * put into page tables.
447                  *
448                  * The other side of the story is the pointer chasing in the page
449                  * table walking code (when walking the page table without locking;
450                  * ie. most of the time). Fortunately, these data accesses consist
451                  * of a chain of data-dependent loads, meaning most CPUs (alpha
452                  * being the notable exception) will already guarantee loads are
453                  * seen in-order. See the alpha page table accessors for the
454                  * smp_rmb() barriers in page table walking code.
455                  */
456                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457                 pmd_populate(mm, pmd, *pte);
458                 *pte = NULL;
459         }
460         spin_unlock(ptl);
461 }
462
463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
464 {
465         pgtable_t new = pte_alloc_one(mm);
466         if (!new)
467                 return -ENOMEM;
468
469         pmd_install(mm, pmd, &new);
470         if (new)
471                 pte_free(mm, new);
472         return 0;
473 }
474
475 int __pte_alloc_kernel(pmd_t *pmd)
476 {
477         pte_t *new = pte_alloc_one_kernel(&init_mm);
478         if (!new)
479                 return -ENOMEM;
480
481         spin_lock(&init_mm.page_table_lock);
482         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
483                 smp_wmb(); /* See comment in pmd_install() */
484                 pmd_populate_kernel(&init_mm, pmd, new);
485                 new = NULL;
486         }
487         spin_unlock(&init_mm.page_table_lock);
488         if (new)
489                 pte_free_kernel(&init_mm, new);
490         return 0;
491 }
492
493 static inline void init_rss_vec(int *rss)
494 {
495         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496 }
497
498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
499 {
500         int i;
501
502         if (current->mm == mm)
503                 sync_mm_rss(mm);
504         for (i = 0; i < NR_MM_COUNTERS; i++)
505                 if (rss[i])
506                         add_mm_counter(mm, i, rss[i]);
507 }
508
509 /*
510  * This function is called to print an error when a bad pte
511  * is found. For example, we might have a PFN-mapped pte in
512  * a region that doesn't allow it.
513  *
514  * The calling function must still handle the error.
515  */
516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517                           pte_t pte, struct page *page)
518 {
519         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520         p4d_t *p4d = p4d_offset(pgd, addr);
521         pud_t *pud = pud_offset(p4d, addr);
522         pmd_t *pmd = pmd_offset(pud, addr);
523         struct address_space *mapping;
524         pgoff_t index;
525         static unsigned long resume;
526         static unsigned long nr_shown;
527         static unsigned long nr_unshown;
528
529         /*
530          * Allow a burst of 60 reports, then keep quiet for that minute;
531          * or allow a steady drip of one report per second.
532          */
533         if (nr_shown == 60) {
534                 if (time_before(jiffies, resume)) {
535                         nr_unshown++;
536                         return;
537                 }
538                 if (nr_unshown) {
539                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540                                  nr_unshown);
541                         nr_unshown = 0;
542                 }
543                 nr_shown = 0;
544         }
545         if (nr_shown++ == 0)
546                 resume = jiffies + 60 * HZ;
547
548         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549         index = linear_page_index(vma, addr);
550
551         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
552                  current->comm,
553                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
554         if (page)
555                 dump_page(page, "bad pte");
556         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
559                  vma->vm_file,
560                  vma->vm_ops ? vma->vm_ops->fault : NULL,
561                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562                  mapping ? mapping->a_ops->readpage : NULL);
563         dump_stack();
564         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
565 }
566
567 /*
568  * vm_normal_page -- This function gets the "struct page" associated with a pte.
569  *
570  * "Special" mappings do not wish to be associated with a "struct page" (either
571  * it doesn't exist, or it exists but they don't want to touch it). In this
572  * case, NULL is returned here. "Normal" mappings do have a struct page.
573  *
574  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575  * pte bit, in which case this function is trivial. Secondly, an architecture
576  * may not have a spare pte bit, which requires a more complicated scheme,
577  * described below.
578  *
579  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580  * special mapping (even if there are underlying and valid "struct pages").
581  * COWed pages of a VM_PFNMAP are always normal.
582  *
583  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586  * mapping will always honor the rule
587  *
588  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589  *
590  * And for normal mappings this is false.
591  *
592  * This restricts such mappings to be a linear translation from virtual address
593  * to pfn. To get around this restriction, we allow arbitrary mappings so long
594  * as the vma is not a COW mapping; in that case, we know that all ptes are
595  * special (because none can have been COWed).
596  *
597  *
598  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
599  *
600  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601  * page" backing, however the difference is that _all_ pages with a struct
602  * page (that is, those where pfn_valid is true) are refcounted and considered
603  * normal pages by the VM. The disadvantage is that pages are refcounted
604  * (which can be slower and simply not an option for some PFNMAP users). The
605  * advantage is that we don't have to follow the strict linearity rule of
606  * PFNMAP mappings in order to support COWable mappings.
607  *
608  */
609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610                             pte_t pte)
611 {
612         unsigned long pfn = pte_pfn(pte);
613
614         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615                 if (likely(!pte_special(pte)))
616                         goto check_pfn;
617                 if (vma->vm_ops && vma->vm_ops->find_special_page)
618                         return vma->vm_ops->find_special_page(vma, addr);
619                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620                         return NULL;
621                 if (is_zero_pfn(pfn))
622                         return NULL;
623                 if (pte_devmap(pte))
624                         return NULL;
625
626                 print_bad_pte(vma, addr, pte, NULL);
627                 return NULL;
628         }
629
630         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
631
632         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633                 if (vma->vm_flags & VM_MIXEDMAP) {
634                         if (!pfn_valid(pfn))
635                                 return NULL;
636                         goto out;
637                 } else {
638                         unsigned long off;
639                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
640                         if (pfn == vma->vm_pgoff + off)
641                                 return NULL;
642                         if (!is_cow_mapping(vma->vm_flags))
643                                 return NULL;
644                 }
645         }
646
647         if (is_zero_pfn(pfn))
648                 return NULL;
649
650 check_pfn:
651         if (unlikely(pfn > highest_memmap_pfn)) {
652                 print_bad_pte(vma, addr, pte, NULL);
653                 return NULL;
654         }
655
656         /*
657          * NOTE! We still have PageReserved() pages in the page tables.
658          * eg. VDSO mappings can cause them to exist.
659          */
660 out:
661         return pfn_to_page(pfn);
662 }
663
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666                                 pmd_t pmd)
667 {
668         unsigned long pfn = pmd_pfn(pmd);
669
670         /*
671          * There is no pmd_special() but there may be special pmds, e.g.
672          * in a direct-access (dax) mapping, so let's just replicate the
673          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
674          */
675         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676                 if (vma->vm_flags & VM_MIXEDMAP) {
677                         if (!pfn_valid(pfn))
678                                 return NULL;
679                         goto out;
680                 } else {
681                         unsigned long off;
682                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
683                         if (pfn == vma->vm_pgoff + off)
684                                 return NULL;
685                         if (!is_cow_mapping(vma->vm_flags))
686                                 return NULL;
687                 }
688         }
689
690         if (pmd_devmap(pmd))
691                 return NULL;
692         if (is_huge_zero_pmd(pmd))
693                 return NULL;
694         if (unlikely(pfn > highest_memmap_pfn))
695                 return NULL;
696
697         /*
698          * NOTE! We still have PageReserved() pages in the page tables.
699          * eg. VDSO mappings can cause them to exist.
700          */
701 out:
702         return pfn_to_page(pfn);
703 }
704 #endif
705
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707                                   struct page *page, unsigned long address,
708                                   pte_t *ptep)
709 {
710         pte_t pte;
711         swp_entry_t entry;
712
713         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714         if (pte_swp_soft_dirty(*ptep))
715                 pte = pte_mksoft_dirty(pte);
716
717         entry = pte_to_swp_entry(*ptep);
718         if (pte_swp_uffd_wp(*ptep))
719                 pte = pte_mkuffd_wp(pte);
720         else if (is_writable_device_exclusive_entry(entry))
721                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722
723         /*
724          * No need to take a page reference as one was already
725          * created when the swap entry was made.
726          */
727         if (PageAnon(page))
728                 page_add_anon_rmap(page, vma, address, false);
729         else
730                 /*
731                  * Currently device exclusive access only supports anonymous
732                  * memory so the entry shouldn't point to a filebacked page.
733                  */
734                 WARN_ON_ONCE(!PageAnon(page));
735
736         set_pte_at(vma->vm_mm, address, ptep, pte);
737
738         /*
739          * No need to invalidate - it was non-present before. However
740          * secondary CPUs may have mappings that need invalidating.
741          */
742         update_mmu_cache(vma, address, ptep);
743 }
744
745 /*
746  * Tries to restore an exclusive pte if the page lock can be acquired without
747  * sleeping.
748  */
749 static int
750 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
751                         unsigned long addr)
752 {
753         swp_entry_t entry = pte_to_swp_entry(*src_pte);
754         struct page *page = pfn_swap_entry_to_page(entry);
755
756         if (trylock_page(page)) {
757                 restore_exclusive_pte(vma, page, addr, src_pte);
758                 unlock_page(page);
759                 return 0;
760         }
761
762         return -EBUSY;
763 }
764
765 /*
766  * copy one vm_area from one task to the other. Assumes the page tables
767  * already present in the new task to be cleared in the whole range
768  * covered by this vma.
769  */
770
771 static unsigned long
772 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
773                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
774                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
775 {
776         unsigned long vm_flags = dst_vma->vm_flags;
777         pte_t pte = *src_pte;
778         struct page *page;
779         swp_entry_t entry = pte_to_swp_entry(pte);
780
781         if (likely(!non_swap_entry(entry))) {
782                 if (swap_duplicate(entry) < 0)
783                         return -EIO;
784
785                 /* make sure dst_mm is on swapoff's mmlist. */
786                 if (unlikely(list_empty(&dst_mm->mmlist))) {
787                         spin_lock(&mmlist_lock);
788                         if (list_empty(&dst_mm->mmlist))
789                                 list_add(&dst_mm->mmlist,
790                                                 &src_mm->mmlist);
791                         spin_unlock(&mmlist_lock);
792                 }
793                 rss[MM_SWAPENTS]++;
794         } else if (is_migration_entry(entry)) {
795                 page = pfn_swap_entry_to_page(entry);
796
797                 rss[mm_counter(page)]++;
798
799                 if (is_writable_migration_entry(entry) &&
800                                 is_cow_mapping(vm_flags)) {
801                         /*
802                          * COW mappings require pages in both
803                          * parent and child to be set to read.
804                          */
805                         entry = make_readable_migration_entry(
806                                                         swp_offset(entry));
807                         pte = swp_entry_to_pte(entry);
808                         if (pte_swp_soft_dirty(*src_pte))
809                                 pte = pte_swp_mksoft_dirty(pte);
810                         if (pte_swp_uffd_wp(*src_pte))
811                                 pte = pte_swp_mkuffd_wp(pte);
812                         set_pte_at(src_mm, addr, src_pte, pte);
813                 }
814         } else if (is_device_private_entry(entry)) {
815                 page = pfn_swap_entry_to_page(entry);
816
817                 /*
818                  * Update rss count even for unaddressable pages, as
819                  * they should treated just like normal pages in this
820                  * respect.
821                  *
822                  * We will likely want to have some new rss counters
823                  * for unaddressable pages, at some point. But for now
824                  * keep things as they are.
825                  */
826                 get_page(page);
827                 rss[mm_counter(page)]++;
828                 page_dup_rmap(page, false);
829
830                 /*
831                  * We do not preserve soft-dirty information, because so
832                  * far, checkpoint/restore is the only feature that
833                  * requires that. And checkpoint/restore does not work
834                  * when a device driver is involved (you cannot easily
835                  * save and restore device driver state).
836                  */
837                 if (is_writable_device_private_entry(entry) &&
838                     is_cow_mapping(vm_flags)) {
839                         entry = make_readable_device_private_entry(
840                                                         swp_offset(entry));
841                         pte = swp_entry_to_pte(entry);
842                         if (pte_swp_uffd_wp(*src_pte))
843                                 pte = pte_swp_mkuffd_wp(pte);
844                         set_pte_at(src_mm, addr, src_pte, pte);
845                 }
846         } else if (is_device_exclusive_entry(entry)) {
847                 /*
848                  * Make device exclusive entries present by restoring the
849                  * original entry then copying as for a present pte. Device
850                  * exclusive entries currently only support private writable
851                  * (ie. COW) mappings.
852                  */
853                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
854                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
855                         return -EBUSY;
856                 return -ENOENT;
857         }
858         if (!userfaultfd_wp(dst_vma))
859                 pte = pte_swp_clear_uffd_wp(pte);
860         set_pte_at(dst_mm, addr, dst_pte, pte);
861         return 0;
862 }
863
864 /*
865  * Copy a present and normal page if necessary.
866  *
867  * NOTE! The usual case is that this doesn't need to do
868  * anything, and can just return a positive value. That
869  * will let the caller know that it can just increase
870  * the page refcount and re-use the pte the traditional
871  * way.
872  *
873  * But _if_ we need to copy it because it needs to be
874  * pinned in the parent (and the child should get its own
875  * copy rather than just a reference to the same page),
876  * we'll do that here and return zero to let the caller
877  * know we're done.
878  *
879  * And if we need a pre-allocated page but don't yet have
880  * one, return a negative error to let the preallocation
881  * code know so that it can do so outside the page table
882  * lock.
883  */
884 static inline int
885 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
886                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
887                   struct page **prealloc, pte_t pte, struct page *page)
888 {
889         struct page *new_page;
890
891         /*
892          * What we want to do is to check whether this page may
893          * have been pinned by the parent process.  If so,
894          * instead of wrprotect the pte on both sides, we copy
895          * the page immediately so that we'll always guarantee
896          * the pinned page won't be randomly replaced in the
897          * future.
898          *
899          * The page pinning checks are just "has this mm ever
900          * seen pinning", along with the (inexact) check of
901          * the page count. That might give false positives for
902          * for pinning, but it will work correctly.
903          */
904         if (likely(!page_needs_cow_for_dma(src_vma, page)))
905                 return 1;
906
907         new_page = *prealloc;
908         if (!new_page)
909                 return -EAGAIN;
910
911         /*
912          * We have a prealloc page, all good!  Take it
913          * over and copy the page & arm it.
914          */
915         *prealloc = NULL;
916         copy_user_highpage(new_page, page, addr, src_vma);
917         __SetPageUptodate(new_page);
918         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
919         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
920         rss[mm_counter(new_page)]++;
921
922         /* All done, just insert the new page copy in the child */
923         pte = mk_pte(new_page, dst_vma->vm_page_prot);
924         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
925         if (userfaultfd_pte_wp(dst_vma, *src_pte))
926                 /* Uffd-wp needs to be delivered to dest pte as well */
927                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
928         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
929         return 0;
930 }
931
932 /*
933  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
934  * is required to copy this pte.
935  */
936 static inline int
937 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
938                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
939                  struct page **prealloc)
940 {
941         struct mm_struct *src_mm = src_vma->vm_mm;
942         unsigned long vm_flags = src_vma->vm_flags;
943         pte_t pte = *src_pte;
944         struct page *page;
945
946         page = vm_normal_page(src_vma, addr, pte);
947         if (page) {
948                 int retval;
949
950                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
951                                            addr, rss, prealloc, pte, page);
952                 if (retval <= 0)
953                         return retval;
954
955                 get_page(page);
956                 page_dup_rmap(page, false);
957                 rss[mm_counter(page)]++;
958         }
959
960         /*
961          * If it's a COW mapping, write protect it both
962          * in the parent and the child
963          */
964         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
965                 ptep_set_wrprotect(src_mm, addr, src_pte);
966                 pte = pte_wrprotect(pte);
967         }
968
969         /*
970          * If it's a shared mapping, mark it clean in
971          * the child
972          */
973         if (vm_flags & VM_SHARED)
974                 pte = pte_mkclean(pte);
975         pte = pte_mkold(pte);
976
977         if (!userfaultfd_wp(dst_vma))
978                 pte = pte_clear_uffd_wp(pte);
979
980         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
981         return 0;
982 }
983
984 static inline struct page *
985 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
986                    unsigned long addr)
987 {
988         struct page *new_page;
989
990         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
991         if (!new_page)
992                 return NULL;
993
994         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
995                 put_page(new_page);
996                 return NULL;
997         }
998         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
999
1000         return new_page;
1001 }
1002
1003 static int
1004 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1005                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1006                unsigned long end)
1007 {
1008         struct mm_struct *dst_mm = dst_vma->vm_mm;
1009         struct mm_struct *src_mm = src_vma->vm_mm;
1010         pte_t *orig_src_pte, *orig_dst_pte;
1011         pte_t *src_pte, *dst_pte;
1012         spinlock_t *src_ptl, *dst_ptl;
1013         int progress, ret = 0;
1014         int rss[NR_MM_COUNTERS];
1015         swp_entry_t entry = (swp_entry_t){0};
1016         struct page *prealloc = NULL;
1017
1018 again:
1019         progress = 0;
1020         init_rss_vec(rss);
1021
1022         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1023         if (!dst_pte) {
1024                 ret = -ENOMEM;
1025                 goto out;
1026         }
1027         src_pte = pte_offset_map(src_pmd, addr);
1028         src_ptl = pte_lockptr(src_mm, src_pmd);
1029         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1030         orig_src_pte = src_pte;
1031         orig_dst_pte = dst_pte;
1032         arch_enter_lazy_mmu_mode();
1033
1034         do {
1035                 /*
1036                  * We are holding two locks at this point - either of them
1037                  * could generate latencies in another task on another CPU.
1038                  */
1039                 if (progress >= 32) {
1040                         progress = 0;
1041                         if (need_resched() ||
1042                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1043                                 break;
1044                 }
1045                 if (pte_none(*src_pte)) {
1046                         progress++;
1047                         continue;
1048                 }
1049                 if (unlikely(!pte_present(*src_pte))) {
1050                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1051                                                   dst_pte, src_pte,
1052                                                   dst_vma, src_vma,
1053                                                   addr, rss);
1054                         if (ret == -EIO) {
1055                                 entry = pte_to_swp_entry(*src_pte);
1056                                 break;
1057                         } else if (ret == -EBUSY) {
1058                                 break;
1059                         } else if (!ret) {
1060                                 progress += 8;
1061                                 continue;
1062                         }
1063
1064                         /*
1065                          * Device exclusive entry restored, continue by copying
1066                          * the now present pte.
1067                          */
1068                         WARN_ON_ONCE(ret != -ENOENT);
1069                 }
1070                 /* copy_present_pte() will clear `*prealloc' if consumed */
1071                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1072                                        addr, rss, &prealloc);
1073                 /*
1074                  * If we need a pre-allocated page for this pte, drop the
1075                  * locks, allocate, and try again.
1076                  */
1077                 if (unlikely(ret == -EAGAIN))
1078                         break;
1079                 if (unlikely(prealloc)) {
1080                         /*
1081                          * pre-alloc page cannot be reused by next time so as
1082                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1083                          * will allocate page according to address).  This
1084                          * could only happen if one pinned pte changed.
1085                          */
1086                         put_page(prealloc);
1087                         prealloc = NULL;
1088                 }
1089                 progress += 8;
1090         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1091
1092         arch_leave_lazy_mmu_mode();
1093         spin_unlock(src_ptl);
1094         pte_unmap(orig_src_pte);
1095         add_mm_rss_vec(dst_mm, rss);
1096         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1097         cond_resched();
1098
1099         if (ret == -EIO) {
1100                 VM_WARN_ON_ONCE(!entry.val);
1101                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1102                         ret = -ENOMEM;
1103                         goto out;
1104                 }
1105                 entry.val = 0;
1106         } else if (ret == -EBUSY) {
1107                 goto out;
1108         } else if (ret ==  -EAGAIN) {
1109                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1110                 if (!prealloc)
1111                         return -ENOMEM;
1112         } else if (ret) {
1113                 VM_WARN_ON_ONCE(1);
1114         }
1115
1116         /* We've captured and resolved the error. Reset, try again. */
1117         ret = 0;
1118
1119         if (addr != end)
1120                 goto again;
1121 out:
1122         if (unlikely(prealloc))
1123                 put_page(prealloc);
1124         return ret;
1125 }
1126
1127 static inline int
1128 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1129                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1130                unsigned long end)
1131 {
1132         struct mm_struct *dst_mm = dst_vma->vm_mm;
1133         struct mm_struct *src_mm = src_vma->vm_mm;
1134         pmd_t *src_pmd, *dst_pmd;
1135         unsigned long next;
1136
1137         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1138         if (!dst_pmd)
1139                 return -ENOMEM;
1140         src_pmd = pmd_offset(src_pud, addr);
1141         do {
1142                 next = pmd_addr_end(addr, end);
1143                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1144                         || pmd_devmap(*src_pmd)) {
1145                         int err;
1146                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1147                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1148                                             addr, dst_vma, src_vma);
1149                         if (err == -ENOMEM)
1150                                 return -ENOMEM;
1151                         if (!err)
1152                                 continue;
1153                         /* fall through */
1154                 }
1155                 if (pmd_none_or_clear_bad(src_pmd))
1156                         continue;
1157                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1158                                    addr, next))
1159                         return -ENOMEM;
1160         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1161         return 0;
1162 }
1163
1164 static inline int
1165 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1166                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1167                unsigned long end)
1168 {
1169         struct mm_struct *dst_mm = dst_vma->vm_mm;
1170         struct mm_struct *src_mm = src_vma->vm_mm;
1171         pud_t *src_pud, *dst_pud;
1172         unsigned long next;
1173
1174         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1175         if (!dst_pud)
1176                 return -ENOMEM;
1177         src_pud = pud_offset(src_p4d, addr);
1178         do {
1179                 next = pud_addr_end(addr, end);
1180                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1181                         int err;
1182
1183                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1184                         err = copy_huge_pud(dst_mm, src_mm,
1185                                             dst_pud, src_pud, addr, src_vma);
1186                         if (err == -ENOMEM)
1187                                 return -ENOMEM;
1188                         if (!err)
1189                                 continue;
1190                         /* fall through */
1191                 }
1192                 if (pud_none_or_clear_bad(src_pud))
1193                         continue;
1194                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1195                                    addr, next))
1196                         return -ENOMEM;
1197         } while (dst_pud++, src_pud++, addr = next, addr != end);
1198         return 0;
1199 }
1200
1201 static inline int
1202 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1203                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1204                unsigned long end)
1205 {
1206         struct mm_struct *dst_mm = dst_vma->vm_mm;
1207         p4d_t *src_p4d, *dst_p4d;
1208         unsigned long next;
1209
1210         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1211         if (!dst_p4d)
1212                 return -ENOMEM;
1213         src_p4d = p4d_offset(src_pgd, addr);
1214         do {
1215                 next = p4d_addr_end(addr, end);
1216                 if (p4d_none_or_clear_bad(src_p4d))
1217                         continue;
1218                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1219                                    addr, next))
1220                         return -ENOMEM;
1221         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1222         return 0;
1223 }
1224
1225 int
1226 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1227 {
1228         pgd_t *src_pgd, *dst_pgd;
1229         unsigned long next;
1230         unsigned long addr = src_vma->vm_start;
1231         unsigned long end = src_vma->vm_end;
1232         struct mm_struct *dst_mm = dst_vma->vm_mm;
1233         struct mm_struct *src_mm = src_vma->vm_mm;
1234         struct mmu_notifier_range range;
1235         bool is_cow;
1236         int ret;
1237
1238         /*
1239          * Don't copy ptes where a page fault will fill them correctly.
1240          * Fork becomes much lighter when there are big shared or private
1241          * readonly mappings. The tradeoff is that copy_page_range is more
1242          * efficient than faulting.
1243          */
1244         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1245             !src_vma->anon_vma)
1246                 return 0;
1247
1248         if (is_vm_hugetlb_page(src_vma))
1249                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1250
1251         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1252                 /*
1253                  * We do not free on error cases below as remove_vma
1254                  * gets called on error from higher level routine
1255                  */
1256                 ret = track_pfn_copy(src_vma);
1257                 if (ret)
1258                         return ret;
1259         }
1260
1261         /*
1262          * We need to invalidate the secondary MMU mappings only when
1263          * there could be a permission downgrade on the ptes of the
1264          * parent mm. And a permission downgrade will only happen if
1265          * is_cow_mapping() returns true.
1266          */
1267         is_cow = is_cow_mapping(src_vma->vm_flags);
1268
1269         if (is_cow) {
1270                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1271                                         0, src_vma, src_mm, addr, end);
1272                 mmu_notifier_invalidate_range_start(&range);
1273                 /*
1274                  * Disabling preemption is not needed for the write side, as
1275                  * the read side doesn't spin, but goes to the mmap_lock.
1276                  *
1277                  * Use the raw variant of the seqcount_t write API to avoid
1278                  * lockdep complaining about preemptibility.
1279                  */
1280                 mmap_assert_write_locked(src_mm);
1281                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1282         }
1283
1284         ret = 0;
1285         dst_pgd = pgd_offset(dst_mm, addr);
1286         src_pgd = pgd_offset(src_mm, addr);
1287         do {
1288                 next = pgd_addr_end(addr, end);
1289                 if (pgd_none_or_clear_bad(src_pgd))
1290                         continue;
1291                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1292                                             addr, next))) {
1293                         ret = -ENOMEM;
1294                         break;
1295                 }
1296         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1297
1298         if (is_cow) {
1299                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1300                 mmu_notifier_invalidate_range_end(&range);
1301         }
1302         return ret;
1303 }
1304
1305 /*
1306  * Parameter block passed down to zap_pte_range in exceptional cases.
1307  */
1308 struct zap_details {
1309         struct address_space *zap_mapping;      /* Check page->mapping if set */
1310         struct folio *single_folio;     /* Locked folio to be unmapped */
1311 };
1312
1313 /*
1314  * We set details->zap_mapping when we want to unmap shared but keep private
1315  * pages. Return true if skip zapping this page, false otherwise.
1316  */
1317 static inline bool
1318 zap_skip_check_mapping(struct zap_details *details, struct page *page)
1319 {
1320         if (!details || !page)
1321                 return false;
1322
1323         return details->zap_mapping &&
1324                 (details->zap_mapping != page_rmapping(page));
1325 }
1326
1327 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1328                                 struct vm_area_struct *vma, pmd_t *pmd,
1329                                 unsigned long addr, unsigned long end,
1330                                 struct zap_details *details)
1331 {
1332         struct mm_struct *mm = tlb->mm;
1333         int force_flush = 0;
1334         int rss[NR_MM_COUNTERS];
1335         spinlock_t *ptl;
1336         pte_t *start_pte;
1337         pte_t *pte;
1338         swp_entry_t entry;
1339
1340         tlb_change_page_size(tlb, PAGE_SIZE);
1341 again:
1342         init_rss_vec(rss);
1343         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1344         pte = start_pte;
1345         flush_tlb_batched_pending(mm);
1346         arch_enter_lazy_mmu_mode();
1347         do {
1348                 pte_t ptent = *pte;
1349                 if (pte_none(ptent))
1350                         continue;
1351
1352                 if (need_resched())
1353                         break;
1354
1355                 if (pte_present(ptent)) {
1356                         struct page *page;
1357
1358                         page = vm_normal_page(vma, addr, ptent);
1359                         if (unlikely(zap_skip_check_mapping(details, page)))
1360                                 continue;
1361                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1362                                                         tlb->fullmm);
1363                         tlb_remove_tlb_entry(tlb, pte, addr);
1364                         if (unlikely(!page))
1365                                 continue;
1366
1367                         if (!PageAnon(page)) {
1368                                 if (pte_dirty(ptent)) {
1369                                         force_flush = 1;
1370                                         set_page_dirty(page);
1371                                 }
1372                                 if (pte_young(ptent) &&
1373                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1374                                         mark_page_accessed(page);
1375                         }
1376                         rss[mm_counter(page)]--;
1377                         page_remove_rmap(page, vma, false);
1378                         if (unlikely(page_mapcount(page) < 0))
1379                                 print_bad_pte(vma, addr, ptent, page);
1380                         if (unlikely(__tlb_remove_page(tlb, page))) {
1381                                 force_flush = 1;
1382                                 addr += PAGE_SIZE;
1383                                 break;
1384                         }
1385                         continue;
1386                 }
1387
1388                 entry = pte_to_swp_entry(ptent);
1389                 if (is_device_private_entry(entry) ||
1390                     is_device_exclusive_entry(entry)) {
1391                         struct page *page = pfn_swap_entry_to_page(entry);
1392
1393                         if (unlikely(zap_skip_check_mapping(details, page)))
1394                                 continue;
1395                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1396                         rss[mm_counter(page)]--;
1397                         if (is_device_private_entry(entry))
1398                                 page_remove_rmap(page, vma, false);
1399                         put_page(page);
1400                         continue;
1401                 }
1402
1403                 /* If details->check_mapping, we leave swap entries. */
1404                 if (unlikely(details))
1405                         continue;
1406
1407                 if (!non_swap_entry(entry))
1408                         rss[MM_SWAPENTS]--;
1409                 else if (is_migration_entry(entry)) {
1410                         struct page *page;
1411
1412                         page = pfn_swap_entry_to_page(entry);
1413                         rss[mm_counter(page)]--;
1414                 }
1415                 if (unlikely(!free_swap_and_cache(entry)))
1416                         print_bad_pte(vma, addr, ptent, NULL);
1417                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1418         } while (pte++, addr += PAGE_SIZE, addr != end);
1419
1420         add_mm_rss_vec(mm, rss);
1421         arch_leave_lazy_mmu_mode();
1422
1423         /* Do the actual TLB flush before dropping ptl */
1424         if (force_flush)
1425                 tlb_flush_mmu_tlbonly(tlb);
1426         pte_unmap_unlock(start_pte, ptl);
1427
1428         /*
1429          * If we forced a TLB flush (either due to running out of
1430          * batch buffers or because we needed to flush dirty TLB
1431          * entries before releasing the ptl), free the batched
1432          * memory too. Restart if we didn't do everything.
1433          */
1434         if (force_flush) {
1435                 force_flush = 0;
1436                 tlb_flush_mmu(tlb);
1437         }
1438
1439         if (addr != end) {
1440                 cond_resched();
1441                 goto again;
1442         }
1443
1444         return addr;
1445 }
1446
1447 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1448                                 struct vm_area_struct *vma, pud_t *pud,
1449                                 unsigned long addr, unsigned long end,
1450                                 struct zap_details *details)
1451 {
1452         pmd_t *pmd;
1453         unsigned long next;
1454
1455         pmd = pmd_offset(pud, addr);
1456         do {
1457                 next = pmd_addr_end(addr, end);
1458                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1459                         if (next - addr != HPAGE_PMD_SIZE)
1460                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1461                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1462                                 goto next;
1463                         /* fall through */
1464                 } else if (details && details->single_folio &&
1465                            folio_test_pmd_mappable(details->single_folio) &&
1466                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1467                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1468                         /*
1469                          * Take and drop THP pmd lock so that we cannot return
1470                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1471                          * but not yet decremented compound_mapcount().
1472                          */
1473                         spin_unlock(ptl);
1474                 }
1475
1476                 /*
1477                  * Here there can be other concurrent MADV_DONTNEED or
1478                  * trans huge page faults running, and if the pmd is
1479                  * none or trans huge it can change under us. This is
1480                  * because MADV_DONTNEED holds the mmap_lock in read
1481                  * mode.
1482                  */
1483                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1484                         goto next;
1485                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1486 next:
1487                 cond_resched();
1488         } while (pmd++, addr = next, addr != end);
1489
1490         return addr;
1491 }
1492
1493 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1494                                 struct vm_area_struct *vma, p4d_t *p4d,
1495                                 unsigned long addr, unsigned long end,
1496                                 struct zap_details *details)
1497 {
1498         pud_t *pud;
1499         unsigned long next;
1500
1501         pud = pud_offset(p4d, addr);
1502         do {
1503                 next = pud_addr_end(addr, end);
1504                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1505                         if (next - addr != HPAGE_PUD_SIZE) {
1506                                 mmap_assert_locked(tlb->mm);
1507                                 split_huge_pud(vma, pud, addr);
1508                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1509                                 goto next;
1510                         /* fall through */
1511                 }
1512                 if (pud_none_or_clear_bad(pud))
1513                         continue;
1514                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1515 next:
1516                 cond_resched();
1517         } while (pud++, addr = next, addr != end);
1518
1519         return addr;
1520 }
1521
1522 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1523                                 struct vm_area_struct *vma, pgd_t *pgd,
1524                                 unsigned long addr, unsigned long end,
1525                                 struct zap_details *details)
1526 {
1527         p4d_t *p4d;
1528         unsigned long next;
1529
1530         p4d = p4d_offset(pgd, addr);
1531         do {
1532                 next = p4d_addr_end(addr, end);
1533                 if (p4d_none_or_clear_bad(p4d))
1534                         continue;
1535                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1536         } while (p4d++, addr = next, addr != end);
1537
1538         return addr;
1539 }
1540
1541 void unmap_page_range(struct mmu_gather *tlb,
1542                              struct vm_area_struct *vma,
1543                              unsigned long addr, unsigned long end,
1544                              struct zap_details *details)
1545 {
1546         pgd_t *pgd;
1547         unsigned long next;
1548
1549         BUG_ON(addr >= end);
1550         tlb_start_vma(tlb, vma);
1551         pgd = pgd_offset(vma->vm_mm, addr);
1552         do {
1553                 next = pgd_addr_end(addr, end);
1554                 if (pgd_none_or_clear_bad(pgd))
1555                         continue;
1556                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1557         } while (pgd++, addr = next, addr != end);
1558         tlb_end_vma(tlb, vma);
1559 }
1560
1561
1562 static void unmap_single_vma(struct mmu_gather *tlb,
1563                 struct vm_area_struct *vma, unsigned long start_addr,
1564                 unsigned long end_addr,
1565                 struct zap_details *details)
1566 {
1567         unsigned long start = max(vma->vm_start, start_addr);
1568         unsigned long end;
1569
1570         if (start >= vma->vm_end)
1571                 return;
1572         end = min(vma->vm_end, end_addr);
1573         if (end <= vma->vm_start)
1574                 return;
1575
1576         if (vma->vm_file)
1577                 uprobe_munmap(vma, start, end);
1578
1579         if (unlikely(vma->vm_flags & VM_PFNMAP))
1580                 untrack_pfn(vma, 0, 0);
1581
1582         if (start != end) {
1583                 if (unlikely(is_vm_hugetlb_page(vma))) {
1584                         /*
1585                          * It is undesirable to test vma->vm_file as it
1586                          * should be non-null for valid hugetlb area.
1587                          * However, vm_file will be NULL in the error
1588                          * cleanup path of mmap_region. When
1589                          * hugetlbfs ->mmap method fails,
1590                          * mmap_region() nullifies vma->vm_file
1591                          * before calling this function to clean up.
1592                          * Since no pte has actually been setup, it is
1593                          * safe to do nothing in this case.
1594                          */
1595                         if (vma->vm_file) {
1596                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1597                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1598                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1599                         }
1600                 } else
1601                         unmap_page_range(tlb, vma, start, end, details);
1602         }
1603 }
1604
1605 /**
1606  * unmap_vmas - unmap a range of memory covered by a list of vma's
1607  * @tlb: address of the caller's struct mmu_gather
1608  * @vma: the starting vma
1609  * @start_addr: virtual address at which to start unmapping
1610  * @end_addr: virtual address at which to end unmapping
1611  *
1612  * Unmap all pages in the vma list.
1613  *
1614  * Only addresses between `start' and `end' will be unmapped.
1615  *
1616  * The VMA list must be sorted in ascending virtual address order.
1617  *
1618  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1619  * range after unmap_vmas() returns.  So the only responsibility here is to
1620  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1621  * drops the lock and schedules.
1622  */
1623 void unmap_vmas(struct mmu_gather *tlb,
1624                 struct vm_area_struct *vma, unsigned long start_addr,
1625                 unsigned long end_addr)
1626 {
1627         struct mmu_notifier_range range;
1628
1629         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1630                                 start_addr, end_addr);
1631         mmu_notifier_invalidate_range_start(&range);
1632         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1633                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1634         mmu_notifier_invalidate_range_end(&range);
1635 }
1636
1637 /**
1638  * zap_page_range - remove user pages in a given range
1639  * @vma: vm_area_struct holding the applicable pages
1640  * @start: starting address of pages to zap
1641  * @size: number of bytes to zap
1642  *
1643  * Caller must protect the VMA list
1644  */
1645 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1646                 unsigned long size)
1647 {
1648         struct mmu_notifier_range range;
1649         struct mmu_gather tlb;
1650
1651         lru_add_drain();
1652         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1653                                 start, start + size);
1654         tlb_gather_mmu(&tlb, vma->vm_mm);
1655         update_hiwater_rss(vma->vm_mm);
1656         mmu_notifier_invalidate_range_start(&range);
1657         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1658                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1659         mmu_notifier_invalidate_range_end(&range);
1660         tlb_finish_mmu(&tlb);
1661 }
1662
1663 /**
1664  * zap_page_range_single - remove user pages in a given range
1665  * @vma: vm_area_struct holding the applicable pages
1666  * @address: starting address of pages to zap
1667  * @size: number of bytes to zap
1668  * @details: details of shared cache invalidation
1669  *
1670  * The range must fit into one VMA.
1671  */
1672 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1673                 unsigned long size, struct zap_details *details)
1674 {
1675         struct mmu_notifier_range range;
1676         struct mmu_gather tlb;
1677
1678         lru_add_drain();
1679         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1680                                 address, address + size);
1681         tlb_gather_mmu(&tlb, vma->vm_mm);
1682         update_hiwater_rss(vma->vm_mm);
1683         mmu_notifier_invalidate_range_start(&range);
1684         unmap_single_vma(&tlb, vma, address, range.end, details);
1685         mmu_notifier_invalidate_range_end(&range);
1686         tlb_finish_mmu(&tlb);
1687 }
1688
1689 /**
1690  * zap_vma_ptes - remove ptes mapping the vma
1691  * @vma: vm_area_struct holding ptes to be zapped
1692  * @address: starting address of pages to zap
1693  * @size: number of bytes to zap
1694  *
1695  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1696  *
1697  * The entire address range must be fully contained within the vma.
1698  *
1699  */
1700 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1701                 unsigned long size)
1702 {
1703         if (address < vma->vm_start || address + size > vma->vm_end ||
1704                         !(vma->vm_flags & VM_PFNMAP))
1705                 return;
1706
1707         zap_page_range_single(vma, address, size, NULL);
1708 }
1709 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1710
1711 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1712 {
1713         pgd_t *pgd;
1714         p4d_t *p4d;
1715         pud_t *pud;
1716         pmd_t *pmd;
1717
1718         pgd = pgd_offset(mm, addr);
1719         p4d = p4d_alloc(mm, pgd, addr);
1720         if (!p4d)
1721                 return NULL;
1722         pud = pud_alloc(mm, p4d, addr);
1723         if (!pud)
1724                 return NULL;
1725         pmd = pmd_alloc(mm, pud, addr);
1726         if (!pmd)
1727                 return NULL;
1728
1729         VM_BUG_ON(pmd_trans_huge(*pmd));
1730         return pmd;
1731 }
1732
1733 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1734                         spinlock_t **ptl)
1735 {
1736         pmd_t *pmd = walk_to_pmd(mm, addr);
1737
1738         if (!pmd)
1739                 return NULL;
1740         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1741 }
1742
1743 static int validate_page_before_insert(struct page *page)
1744 {
1745         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1746                 return -EINVAL;
1747         flush_dcache_page(page);
1748         return 0;
1749 }
1750
1751 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1752                         unsigned long addr, struct page *page, pgprot_t prot)
1753 {
1754         if (!pte_none(*pte))
1755                 return -EBUSY;
1756         /* Ok, finally just insert the thing.. */
1757         get_page(page);
1758         inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1759         page_add_file_rmap(page, vma, false);
1760         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1761         return 0;
1762 }
1763
1764 /*
1765  * This is the old fallback for page remapping.
1766  *
1767  * For historical reasons, it only allows reserved pages. Only
1768  * old drivers should use this, and they needed to mark their
1769  * pages reserved for the old functions anyway.
1770  */
1771 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1772                         struct page *page, pgprot_t prot)
1773 {
1774         int retval;
1775         pte_t *pte;
1776         spinlock_t *ptl;
1777
1778         retval = validate_page_before_insert(page);
1779         if (retval)
1780                 goto out;
1781         retval = -ENOMEM;
1782         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1783         if (!pte)
1784                 goto out;
1785         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1786         pte_unmap_unlock(pte, ptl);
1787 out:
1788         return retval;
1789 }
1790
1791 #ifdef pte_index
1792 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1793                         unsigned long addr, struct page *page, pgprot_t prot)
1794 {
1795         int err;
1796
1797         if (!page_count(page))
1798                 return -EINVAL;
1799         err = validate_page_before_insert(page);
1800         if (err)
1801                 return err;
1802         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1803 }
1804
1805 /* insert_pages() amortizes the cost of spinlock operations
1806  * when inserting pages in a loop. Arch *must* define pte_index.
1807  */
1808 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1809                         struct page **pages, unsigned long *num, pgprot_t prot)
1810 {
1811         pmd_t *pmd = NULL;
1812         pte_t *start_pte, *pte;
1813         spinlock_t *pte_lock;
1814         struct mm_struct *const mm = vma->vm_mm;
1815         unsigned long curr_page_idx = 0;
1816         unsigned long remaining_pages_total = *num;
1817         unsigned long pages_to_write_in_pmd;
1818         int ret;
1819 more:
1820         ret = -EFAULT;
1821         pmd = walk_to_pmd(mm, addr);
1822         if (!pmd)
1823                 goto out;
1824
1825         pages_to_write_in_pmd = min_t(unsigned long,
1826                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1827
1828         /* Allocate the PTE if necessary; takes PMD lock once only. */
1829         ret = -ENOMEM;
1830         if (pte_alloc(mm, pmd))
1831                 goto out;
1832
1833         while (pages_to_write_in_pmd) {
1834                 int pte_idx = 0;
1835                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1836
1837                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1838                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1839                         int err = insert_page_in_batch_locked(vma, pte,
1840                                 addr, pages[curr_page_idx], prot);
1841                         if (unlikely(err)) {
1842                                 pte_unmap_unlock(start_pte, pte_lock);
1843                                 ret = err;
1844                                 remaining_pages_total -= pte_idx;
1845                                 goto out;
1846                         }
1847                         addr += PAGE_SIZE;
1848                         ++curr_page_idx;
1849                 }
1850                 pte_unmap_unlock(start_pte, pte_lock);
1851                 pages_to_write_in_pmd -= batch_size;
1852                 remaining_pages_total -= batch_size;
1853         }
1854         if (remaining_pages_total)
1855                 goto more;
1856         ret = 0;
1857 out:
1858         *num = remaining_pages_total;
1859         return ret;
1860 }
1861 #endif  /* ifdef pte_index */
1862
1863 /**
1864  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1865  * @vma: user vma to map to
1866  * @addr: target start user address of these pages
1867  * @pages: source kernel pages
1868  * @num: in: number of pages to map. out: number of pages that were *not*
1869  * mapped. (0 means all pages were successfully mapped).
1870  *
1871  * Preferred over vm_insert_page() when inserting multiple pages.
1872  *
1873  * In case of error, we may have mapped a subset of the provided
1874  * pages. It is the caller's responsibility to account for this case.
1875  *
1876  * The same restrictions apply as in vm_insert_page().
1877  */
1878 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1879                         struct page **pages, unsigned long *num)
1880 {
1881 #ifdef pte_index
1882         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1883
1884         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1885                 return -EFAULT;
1886         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1887                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1888                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1889                 vma->vm_flags |= VM_MIXEDMAP;
1890         }
1891         /* Defer page refcount checking till we're about to map that page. */
1892         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1893 #else
1894         unsigned long idx = 0, pgcount = *num;
1895         int err = -EINVAL;
1896
1897         for (; idx < pgcount; ++idx) {
1898                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1899                 if (err)
1900                         break;
1901         }
1902         *num = pgcount - idx;
1903         return err;
1904 #endif  /* ifdef pte_index */
1905 }
1906 EXPORT_SYMBOL(vm_insert_pages);
1907
1908 /**
1909  * vm_insert_page - insert single page into user vma
1910  * @vma: user vma to map to
1911  * @addr: target user address of this page
1912  * @page: source kernel page
1913  *
1914  * This allows drivers to insert individual pages they've allocated
1915  * into a user vma.
1916  *
1917  * The page has to be a nice clean _individual_ kernel allocation.
1918  * If you allocate a compound page, you need to have marked it as
1919  * such (__GFP_COMP), or manually just split the page up yourself
1920  * (see split_page()).
1921  *
1922  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1923  * took an arbitrary page protection parameter. This doesn't allow
1924  * that. Your vma protection will have to be set up correctly, which
1925  * means that if you want a shared writable mapping, you'd better
1926  * ask for a shared writable mapping!
1927  *
1928  * The page does not need to be reserved.
1929  *
1930  * Usually this function is called from f_op->mmap() handler
1931  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1932  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1933  * function from other places, for example from page-fault handler.
1934  *
1935  * Return: %0 on success, negative error code otherwise.
1936  */
1937 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1938                         struct page *page)
1939 {
1940         if (addr < vma->vm_start || addr >= vma->vm_end)
1941                 return -EFAULT;
1942         if (!page_count(page))
1943                 return -EINVAL;
1944         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1945                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1946                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1947                 vma->vm_flags |= VM_MIXEDMAP;
1948         }
1949         return insert_page(vma, addr, page, vma->vm_page_prot);
1950 }
1951 EXPORT_SYMBOL(vm_insert_page);
1952
1953 /*
1954  * __vm_map_pages - maps range of kernel pages into user vma
1955  * @vma: user vma to map to
1956  * @pages: pointer to array of source kernel pages
1957  * @num: number of pages in page array
1958  * @offset: user's requested vm_pgoff
1959  *
1960  * This allows drivers to map range of kernel pages into a user vma.
1961  *
1962  * Return: 0 on success and error code otherwise.
1963  */
1964 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1965                                 unsigned long num, unsigned long offset)
1966 {
1967         unsigned long count = vma_pages(vma);
1968         unsigned long uaddr = vma->vm_start;
1969         int ret, i;
1970
1971         /* Fail if the user requested offset is beyond the end of the object */
1972         if (offset >= num)
1973                 return -ENXIO;
1974
1975         /* Fail if the user requested size exceeds available object size */
1976         if (count > num - offset)
1977                 return -ENXIO;
1978
1979         for (i = 0; i < count; i++) {
1980                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1981                 if (ret < 0)
1982                         return ret;
1983                 uaddr += PAGE_SIZE;
1984         }
1985
1986         return 0;
1987 }
1988
1989 /**
1990  * vm_map_pages - maps range of kernel pages starts with non zero offset
1991  * @vma: user vma to map to
1992  * @pages: pointer to array of source kernel pages
1993  * @num: number of pages in page array
1994  *
1995  * Maps an object consisting of @num pages, catering for the user's
1996  * requested vm_pgoff
1997  *
1998  * If we fail to insert any page into the vma, the function will return
1999  * immediately leaving any previously inserted pages present.  Callers
2000  * from the mmap handler may immediately return the error as their caller
2001  * will destroy the vma, removing any successfully inserted pages. Other
2002  * callers should make their own arrangements for calling unmap_region().
2003  *
2004  * Context: Process context. Called by mmap handlers.
2005  * Return: 0 on success and error code otherwise.
2006  */
2007 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2008                                 unsigned long num)
2009 {
2010         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2011 }
2012 EXPORT_SYMBOL(vm_map_pages);
2013
2014 /**
2015  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2016  * @vma: user vma to map to
2017  * @pages: pointer to array of source kernel pages
2018  * @num: number of pages in page array
2019  *
2020  * Similar to vm_map_pages(), except that it explicitly sets the offset
2021  * to 0. This function is intended for the drivers that did not consider
2022  * vm_pgoff.
2023  *
2024  * Context: Process context. Called by mmap handlers.
2025  * Return: 0 on success and error code otherwise.
2026  */
2027 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2028                                 unsigned long num)
2029 {
2030         return __vm_map_pages(vma, pages, num, 0);
2031 }
2032 EXPORT_SYMBOL(vm_map_pages_zero);
2033
2034 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2035                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2036 {
2037         struct mm_struct *mm = vma->vm_mm;
2038         pte_t *pte, entry;
2039         spinlock_t *ptl;
2040
2041         pte = get_locked_pte(mm, addr, &ptl);
2042         if (!pte)
2043                 return VM_FAULT_OOM;
2044         if (!pte_none(*pte)) {
2045                 if (mkwrite) {
2046                         /*
2047                          * For read faults on private mappings the PFN passed
2048                          * in may not match the PFN we have mapped if the
2049                          * mapped PFN is a writeable COW page.  In the mkwrite
2050                          * case we are creating a writable PTE for a shared
2051                          * mapping and we expect the PFNs to match. If they
2052                          * don't match, we are likely racing with block
2053                          * allocation and mapping invalidation so just skip the
2054                          * update.
2055                          */
2056                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2057                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2058                                 goto out_unlock;
2059                         }
2060                         entry = pte_mkyoung(*pte);
2061                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2062                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2063                                 update_mmu_cache(vma, addr, pte);
2064                 }
2065                 goto out_unlock;
2066         }
2067
2068         /* Ok, finally just insert the thing.. */
2069         if (pfn_t_devmap(pfn))
2070                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2071         else
2072                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2073
2074         if (mkwrite) {
2075                 entry = pte_mkyoung(entry);
2076                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2077         }
2078
2079         set_pte_at(mm, addr, pte, entry);
2080         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2081
2082 out_unlock:
2083         pte_unmap_unlock(pte, ptl);
2084         return VM_FAULT_NOPAGE;
2085 }
2086
2087 /**
2088  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2089  * @vma: user vma to map to
2090  * @addr: target user address of this page
2091  * @pfn: source kernel pfn
2092  * @pgprot: pgprot flags for the inserted page
2093  *
2094  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2095  * to override pgprot on a per-page basis.
2096  *
2097  * This only makes sense for IO mappings, and it makes no sense for
2098  * COW mappings.  In general, using multiple vmas is preferable;
2099  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2100  * impractical.
2101  *
2102  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2103  * a value of @pgprot different from that of @vma->vm_page_prot.
2104  *
2105  * Context: Process context.  May allocate using %GFP_KERNEL.
2106  * Return: vm_fault_t value.
2107  */
2108 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2109                         unsigned long pfn, pgprot_t pgprot)
2110 {
2111         /*
2112          * Technically, architectures with pte_special can avoid all these
2113          * restrictions (same for remap_pfn_range).  However we would like
2114          * consistency in testing and feature parity among all, so we should
2115          * try to keep these invariants in place for everybody.
2116          */
2117         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2118         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2119                                                 (VM_PFNMAP|VM_MIXEDMAP));
2120         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2121         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2122
2123         if (addr < vma->vm_start || addr >= vma->vm_end)
2124                 return VM_FAULT_SIGBUS;
2125
2126         if (!pfn_modify_allowed(pfn, pgprot))
2127                 return VM_FAULT_SIGBUS;
2128
2129         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2130
2131         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2132                         false);
2133 }
2134 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2135
2136 /**
2137  * vmf_insert_pfn - insert single pfn into user vma
2138  * @vma: user vma to map to
2139  * @addr: target user address of this page
2140  * @pfn: source kernel pfn
2141  *
2142  * Similar to vm_insert_page, this allows drivers to insert individual pages
2143  * they've allocated into a user vma. Same comments apply.
2144  *
2145  * This function should only be called from a vm_ops->fault handler, and
2146  * in that case the handler should return the result of this function.
2147  *
2148  * vma cannot be a COW mapping.
2149  *
2150  * As this is called only for pages that do not currently exist, we
2151  * do not need to flush old virtual caches or the TLB.
2152  *
2153  * Context: Process context.  May allocate using %GFP_KERNEL.
2154  * Return: vm_fault_t value.
2155  */
2156 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2157                         unsigned long pfn)
2158 {
2159         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2160 }
2161 EXPORT_SYMBOL(vmf_insert_pfn);
2162
2163 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2164 {
2165         /* these checks mirror the abort conditions in vm_normal_page */
2166         if (vma->vm_flags & VM_MIXEDMAP)
2167                 return true;
2168         if (pfn_t_devmap(pfn))
2169                 return true;
2170         if (pfn_t_special(pfn))
2171                 return true;
2172         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2173                 return true;
2174         return false;
2175 }
2176
2177 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2178                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2179                 bool mkwrite)
2180 {
2181         int err;
2182
2183         BUG_ON(!vm_mixed_ok(vma, pfn));
2184
2185         if (addr < vma->vm_start || addr >= vma->vm_end)
2186                 return VM_FAULT_SIGBUS;
2187
2188         track_pfn_insert(vma, &pgprot, pfn);
2189
2190         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2191                 return VM_FAULT_SIGBUS;
2192
2193         /*
2194          * If we don't have pte special, then we have to use the pfn_valid()
2195          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2196          * refcount the page if pfn_valid is true (hence insert_page rather
2197          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2198          * without pte special, it would there be refcounted as a normal page.
2199          */
2200         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2201             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2202                 struct page *page;
2203
2204                 /*
2205                  * At this point we are committed to insert_page()
2206                  * regardless of whether the caller specified flags that
2207                  * result in pfn_t_has_page() == false.
2208                  */
2209                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2210                 err = insert_page(vma, addr, page, pgprot);
2211         } else {
2212                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2213         }
2214
2215         if (err == -ENOMEM)
2216                 return VM_FAULT_OOM;
2217         if (err < 0 && err != -EBUSY)
2218                 return VM_FAULT_SIGBUS;
2219
2220         return VM_FAULT_NOPAGE;
2221 }
2222
2223 /**
2224  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2225  * @vma: user vma to map to
2226  * @addr: target user address of this page
2227  * @pfn: source kernel pfn
2228  * @pgprot: pgprot flags for the inserted page
2229  *
2230  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2231  * to override pgprot on a per-page basis.
2232  *
2233  * Typically this function should be used by drivers to set caching- and
2234  * encryption bits different than those of @vma->vm_page_prot, because
2235  * the caching- or encryption mode may not be known at mmap() time.
2236  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2237  * to set caching and encryption bits for those vmas (except for COW pages).
2238  * This is ensured by core vm only modifying these page table entries using
2239  * functions that don't touch caching- or encryption bits, using pte_modify()
2240  * if needed. (See for example mprotect()).
2241  * Also when new page-table entries are created, this is only done using the
2242  * fault() callback, and never using the value of vma->vm_page_prot,
2243  * except for page-table entries that point to anonymous pages as the result
2244  * of COW.
2245  *
2246  * Context: Process context.  May allocate using %GFP_KERNEL.
2247  * Return: vm_fault_t value.
2248  */
2249 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2250                                  pfn_t pfn, pgprot_t pgprot)
2251 {
2252         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2253 }
2254 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2255
2256 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2257                 pfn_t pfn)
2258 {
2259         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2260 }
2261 EXPORT_SYMBOL(vmf_insert_mixed);
2262
2263 /*
2264  *  If the insertion of PTE failed because someone else already added a
2265  *  different entry in the mean time, we treat that as success as we assume
2266  *  the same entry was actually inserted.
2267  */
2268 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2269                 unsigned long addr, pfn_t pfn)
2270 {
2271         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2272 }
2273 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2274
2275 /*
2276  * maps a range of physical memory into the requested pages. the old
2277  * mappings are removed. any references to nonexistent pages results
2278  * in null mappings (currently treated as "copy-on-access")
2279  */
2280 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2281                         unsigned long addr, unsigned long end,
2282                         unsigned long pfn, pgprot_t prot)
2283 {
2284         pte_t *pte, *mapped_pte;
2285         spinlock_t *ptl;
2286         int err = 0;
2287
2288         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2289         if (!pte)
2290                 return -ENOMEM;
2291         arch_enter_lazy_mmu_mode();
2292         do {
2293                 BUG_ON(!pte_none(*pte));
2294                 if (!pfn_modify_allowed(pfn, prot)) {
2295                         err = -EACCES;
2296                         break;
2297                 }
2298                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2299                 pfn++;
2300         } while (pte++, addr += PAGE_SIZE, addr != end);
2301         arch_leave_lazy_mmu_mode();
2302         pte_unmap_unlock(mapped_pte, ptl);
2303         return err;
2304 }
2305
2306 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2307                         unsigned long addr, unsigned long end,
2308                         unsigned long pfn, pgprot_t prot)
2309 {
2310         pmd_t *pmd;
2311         unsigned long next;
2312         int err;
2313
2314         pfn -= addr >> PAGE_SHIFT;
2315         pmd = pmd_alloc(mm, pud, addr);
2316         if (!pmd)
2317                 return -ENOMEM;
2318         VM_BUG_ON(pmd_trans_huge(*pmd));
2319         do {
2320                 next = pmd_addr_end(addr, end);
2321                 err = remap_pte_range(mm, pmd, addr, next,
2322                                 pfn + (addr >> PAGE_SHIFT), prot);
2323                 if (err)
2324                         return err;
2325         } while (pmd++, addr = next, addr != end);
2326         return 0;
2327 }
2328
2329 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2330                         unsigned long addr, unsigned long end,
2331                         unsigned long pfn, pgprot_t prot)
2332 {
2333         pud_t *pud;
2334         unsigned long next;
2335         int err;
2336
2337         pfn -= addr >> PAGE_SHIFT;
2338         pud = pud_alloc(mm, p4d, addr);
2339         if (!pud)
2340                 return -ENOMEM;
2341         do {
2342                 next = pud_addr_end(addr, end);
2343                 err = remap_pmd_range(mm, pud, addr, next,
2344                                 pfn + (addr >> PAGE_SHIFT), prot);
2345                 if (err)
2346                         return err;
2347         } while (pud++, addr = next, addr != end);
2348         return 0;
2349 }
2350
2351 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2352                         unsigned long addr, unsigned long end,
2353                         unsigned long pfn, pgprot_t prot)
2354 {
2355         p4d_t *p4d;
2356         unsigned long next;
2357         int err;
2358
2359         pfn -= addr >> PAGE_SHIFT;
2360         p4d = p4d_alloc(mm, pgd, addr);
2361         if (!p4d)
2362                 return -ENOMEM;
2363         do {
2364                 next = p4d_addr_end(addr, end);
2365                 err = remap_pud_range(mm, p4d, addr, next,
2366                                 pfn + (addr >> PAGE_SHIFT), prot);
2367                 if (err)
2368                         return err;
2369         } while (p4d++, addr = next, addr != end);
2370         return 0;
2371 }
2372
2373 /*
2374  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2375  * must have pre-validated the caching bits of the pgprot_t.
2376  */
2377 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2378                 unsigned long pfn, unsigned long size, pgprot_t prot)
2379 {
2380         pgd_t *pgd;
2381         unsigned long next;
2382         unsigned long end = addr + PAGE_ALIGN(size);
2383         struct mm_struct *mm = vma->vm_mm;
2384         int err;
2385
2386         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2387                 return -EINVAL;
2388
2389         /*
2390          * Physically remapped pages are special. Tell the
2391          * rest of the world about it:
2392          *   VM_IO tells people not to look at these pages
2393          *      (accesses can have side effects).
2394          *   VM_PFNMAP tells the core MM that the base pages are just
2395          *      raw PFN mappings, and do not have a "struct page" associated
2396          *      with them.
2397          *   VM_DONTEXPAND
2398          *      Disable vma merging and expanding with mremap().
2399          *   VM_DONTDUMP
2400          *      Omit vma from core dump, even when VM_IO turned off.
2401          *
2402          * There's a horrible special case to handle copy-on-write
2403          * behaviour that some programs depend on. We mark the "original"
2404          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2405          * See vm_normal_page() for details.
2406          */
2407         if (is_cow_mapping(vma->vm_flags)) {
2408                 if (addr != vma->vm_start || end != vma->vm_end)
2409                         return -EINVAL;
2410                 vma->vm_pgoff = pfn;
2411         }
2412
2413         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2414
2415         BUG_ON(addr >= end);
2416         pfn -= addr >> PAGE_SHIFT;
2417         pgd = pgd_offset(mm, addr);
2418         flush_cache_range(vma, addr, end);
2419         do {
2420                 next = pgd_addr_end(addr, end);
2421                 err = remap_p4d_range(mm, pgd, addr, next,
2422                                 pfn + (addr >> PAGE_SHIFT), prot);
2423                 if (err)
2424                         return err;
2425         } while (pgd++, addr = next, addr != end);
2426
2427         return 0;
2428 }
2429
2430 /**
2431  * remap_pfn_range - remap kernel memory to userspace
2432  * @vma: user vma to map to
2433  * @addr: target page aligned user address to start at
2434  * @pfn: page frame number of kernel physical memory address
2435  * @size: size of mapping area
2436  * @prot: page protection flags for this mapping
2437  *
2438  * Note: this is only safe if the mm semaphore is held when called.
2439  *
2440  * Return: %0 on success, negative error code otherwise.
2441  */
2442 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2443                     unsigned long pfn, unsigned long size, pgprot_t prot)
2444 {
2445         int err;
2446
2447         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2448         if (err)
2449                 return -EINVAL;
2450
2451         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2452         if (err)
2453                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2454         return err;
2455 }
2456 EXPORT_SYMBOL(remap_pfn_range);
2457
2458 /**
2459  * vm_iomap_memory - remap memory to userspace
2460  * @vma: user vma to map to
2461  * @start: start of the physical memory to be mapped
2462  * @len: size of area
2463  *
2464  * This is a simplified io_remap_pfn_range() for common driver use. The
2465  * driver just needs to give us the physical memory range to be mapped,
2466  * we'll figure out the rest from the vma information.
2467  *
2468  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2469  * whatever write-combining details or similar.
2470  *
2471  * Return: %0 on success, negative error code otherwise.
2472  */
2473 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2474 {
2475         unsigned long vm_len, pfn, pages;
2476
2477         /* Check that the physical memory area passed in looks valid */
2478         if (start + len < start)
2479                 return -EINVAL;
2480         /*
2481          * You *really* shouldn't map things that aren't page-aligned,
2482          * but we've historically allowed it because IO memory might
2483          * just have smaller alignment.
2484          */
2485         len += start & ~PAGE_MASK;
2486         pfn = start >> PAGE_SHIFT;
2487         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2488         if (pfn + pages < pfn)
2489                 return -EINVAL;
2490
2491         /* We start the mapping 'vm_pgoff' pages into the area */
2492         if (vma->vm_pgoff > pages)
2493                 return -EINVAL;
2494         pfn += vma->vm_pgoff;
2495         pages -= vma->vm_pgoff;
2496
2497         /* Can we fit all of the mapping? */
2498         vm_len = vma->vm_end - vma->vm_start;
2499         if (vm_len >> PAGE_SHIFT > pages)
2500                 return -EINVAL;
2501
2502         /* Ok, let it rip */
2503         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2504 }
2505 EXPORT_SYMBOL(vm_iomap_memory);
2506
2507 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2508                                      unsigned long addr, unsigned long end,
2509                                      pte_fn_t fn, void *data, bool create,
2510                                      pgtbl_mod_mask *mask)
2511 {
2512         pte_t *pte, *mapped_pte;
2513         int err = 0;
2514         spinlock_t *ptl;
2515
2516         if (create) {
2517                 mapped_pte = pte = (mm == &init_mm) ?
2518                         pte_alloc_kernel_track(pmd, addr, mask) :
2519                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2520                 if (!pte)
2521                         return -ENOMEM;
2522         } else {
2523                 mapped_pte = pte = (mm == &init_mm) ?
2524                         pte_offset_kernel(pmd, addr) :
2525                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2526         }
2527
2528         BUG_ON(pmd_huge(*pmd));
2529
2530         arch_enter_lazy_mmu_mode();
2531
2532         if (fn) {
2533                 do {
2534                         if (create || !pte_none(*pte)) {
2535                                 err = fn(pte++, addr, data);
2536                                 if (err)
2537                                         break;
2538                         }
2539                 } while (addr += PAGE_SIZE, addr != end);
2540         }
2541         *mask |= PGTBL_PTE_MODIFIED;
2542
2543         arch_leave_lazy_mmu_mode();
2544
2545         if (mm != &init_mm)
2546                 pte_unmap_unlock(mapped_pte, ptl);
2547         return err;
2548 }
2549
2550 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2551                                      unsigned long addr, unsigned long end,
2552                                      pte_fn_t fn, void *data, bool create,
2553                                      pgtbl_mod_mask *mask)
2554 {
2555         pmd_t *pmd;
2556         unsigned long next;
2557         int err = 0;
2558
2559         BUG_ON(pud_huge(*pud));
2560
2561         if (create) {
2562                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2563                 if (!pmd)
2564                         return -ENOMEM;
2565         } else {
2566                 pmd = pmd_offset(pud, addr);
2567         }
2568         do {
2569                 next = pmd_addr_end(addr, end);
2570                 if (pmd_none(*pmd) && !create)
2571                         continue;
2572                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2573                         return -EINVAL;
2574                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2575                         if (!create)
2576                                 continue;
2577                         pmd_clear_bad(pmd);
2578                 }
2579                 err = apply_to_pte_range(mm, pmd, addr, next,
2580                                          fn, data, create, mask);
2581                 if (err)
2582                         break;
2583         } while (pmd++, addr = next, addr != end);
2584
2585         return err;
2586 }
2587
2588 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2589                                      unsigned long addr, unsigned long end,
2590                                      pte_fn_t fn, void *data, bool create,
2591                                      pgtbl_mod_mask *mask)
2592 {
2593         pud_t *pud;
2594         unsigned long next;
2595         int err = 0;
2596
2597         if (create) {
2598                 pud = pud_alloc_track(mm, p4d, addr, mask);
2599                 if (!pud)
2600                         return -ENOMEM;
2601         } else {
2602                 pud = pud_offset(p4d, addr);
2603         }
2604         do {
2605                 next = pud_addr_end(addr, end);
2606                 if (pud_none(*pud) && !create)
2607                         continue;
2608                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2609                         return -EINVAL;
2610                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2611                         if (!create)
2612                                 continue;
2613                         pud_clear_bad(pud);
2614                 }
2615                 err = apply_to_pmd_range(mm, pud, addr, next,
2616                                          fn, data, create, mask);
2617                 if (err)
2618                         break;
2619         } while (pud++, addr = next, addr != end);
2620
2621         return err;
2622 }
2623
2624 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2625                                      unsigned long addr, unsigned long end,
2626                                      pte_fn_t fn, void *data, bool create,
2627                                      pgtbl_mod_mask *mask)
2628 {
2629         p4d_t *p4d;
2630         unsigned long next;
2631         int err = 0;
2632
2633         if (create) {
2634                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2635                 if (!p4d)
2636                         return -ENOMEM;
2637         } else {
2638                 p4d = p4d_offset(pgd, addr);
2639         }
2640         do {
2641                 next = p4d_addr_end(addr, end);
2642                 if (p4d_none(*p4d) && !create)
2643                         continue;
2644                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2645                         return -EINVAL;
2646                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2647                         if (!create)
2648                                 continue;
2649                         p4d_clear_bad(p4d);
2650                 }
2651                 err = apply_to_pud_range(mm, p4d, addr, next,
2652                                          fn, data, create, mask);
2653                 if (err)
2654                         break;
2655         } while (p4d++, addr = next, addr != end);
2656
2657         return err;
2658 }
2659
2660 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2661                                  unsigned long size, pte_fn_t fn,
2662                                  void *data, bool create)
2663 {
2664         pgd_t *pgd;
2665         unsigned long start = addr, next;
2666         unsigned long end = addr + size;
2667         pgtbl_mod_mask mask = 0;
2668         int err = 0;
2669
2670         if (WARN_ON(addr >= end))
2671                 return -EINVAL;
2672
2673         pgd = pgd_offset(mm, addr);
2674         do {
2675                 next = pgd_addr_end(addr, end);
2676                 if (pgd_none(*pgd) && !create)
2677                         continue;
2678                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2679                         return -EINVAL;
2680                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2681                         if (!create)
2682                                 continue;
2683                         pgd_clear_bad(pgd);
2684                 }
2685                 err = apply_to_p4d_range(mm, pgd, addr, next,
2686                                          fn, data, create, &mask);
2687                 if (err)
2688                         break;
2689         } while (pgd++, addr = next, addr != end);
2690
2691         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2692                 arch_sync_kernel_mappings(start, start + size);
2693
2694         return err;
2695 }
2696
2697 /*
2698  * Scan a region of virtual memory, filling in page tables as necessary
2699  * and calling a provided function on each leaf page table.
2700  */
2701 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2702                         unsigned long size, pte_fn_t fn, void *data)
2703 {
2704         return __apply_to_page_range(mm, addr, size, fn, data, true);
2705 }
2706 EXPORT_SYMBOL_GPL(apply_to_page_range);
2707
2708 /*
2709  * Scan a region of virtual memory, calling a provided function on
2710  * each leaf page table where it exists.
2711  *
2712  * Unlike apply_to_page_range, this does _not_ fill in page tables
2713  * where they are absent.
2714  */
2715 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2716                                  unsigned long size, pte_fn_t fn, void *data)
2717 {
2718         return __apply_to_page_range(mm, addr, size, fn, data, false);
2719 }
2720 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2721
2722 /*
2723  * handle_pte_fault chooses page fault handler according to an entry which was
2724  * read non-atomically.  Before making any commitment, on those architectures
2725  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2726  * parts, do_swap_page must check under lock before unmapping the pte and
2727  * proceeding (but do_wp_page is only called after already making such a check;
2728  * and do_anonymous_page can safely check later on).
2729  */
2730 static inline int pte_unmap_same(struct vm_fault *vmf)
2731 {
2732         int same = 1;
2733 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2734         if (sizeof(pte_t) > sizeof(unsigned long)) {
2735                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2736                 spin_lock(ptl);
2737                 same = pte_same(*vmf->pte, vmf->orig_pte);
2738                 spin_unlock(ptl);
2739         }
2740 #endif
2741         pte_unmap(vmf->pte);
2742         vmf->pte = NULL;
2743         return same;
2744 }
2745
2746 static inline bool cow_user_page(struct page *dst, struct page *src,
2747                                  struct vm_fault *vmf)
2748 {
2749         bool ret;
2750         void *kaddr;
2751         void __user *uaddr;
2752         bool locked = false;
2753         struct vm_area_struct *vma = vmf->vma;
2754         struct mm_struct *mm = vma->vm_mm;
2755         unsigned long addr = vmf->address;
2756
2757         if (likely(src)) {
2758                 copy_user_highpage(dst, src, addr, vma);
2759                 return true;
2760         }
2761
2762         /*
2763          * If the source page was a PFN mapping, we don't have
2764          * a "struct page" for it. We do a best-effort copy by
2765          * just copying from the original user address. If that
2766          * fails, we just zero-fill it. Live with it.
2767          */
2768         kaddr = kmap_atomic(dst);
2769         uaddr = (void __user *)(addr & PAGE_MASK);
2770
2771         /*
2772          * On architectures with software "accessed" bits, we would
2773          * take a double page fault, so mark it accessed here.
2774          */
2775         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2776                 pte_t entry;
2777
2778                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2779                 locked = true;
2780                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2781                         /*
2782                          * Other thread has already handled the fault
2783                          * and update local tlb only
2784                          */
2785                         update_mmu_tlb(vma, addr, vmf->pte);
2786                         ret = false;
2787                         goto pte_unlock;
2788                 }
2789
2790                 entry = pte_mkyoung(vmf->orig_pte);
2791                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2792                         update_mmu_cache(vma, addr, vmf->pte);
2793         }
2794
2795         /*
2796          * This really shouldn't fail, because the page is there
2797          * in the page tables. But it might just be unreadable,
2798          * in which case we just give up and fill the result with
2799          * zeroes.
2800          */
2801         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2802                 if (locked)
2803                         goto warn;
2804
2805                 /* Re-validate under PTL if the page is still mapped */
2806                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2807                 locked = true;
2808                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2809                         /* The PTE changed under us, update local tlb */
2810                         update_mmu_tlb(vma, addr, vmf->pte);
2811                         ret = false;
2812                         goto pte_unlock;
2813                 }
2814
2815                 /*
2816                  * The same page can be mapped back since last copy attempt.
2817                  * Try to copy again under PTL.
2818                  */
2819                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2820                         /*
2821                          * Give a warn in case there can be some obscure
2822                          * use-case
2823                          */
2824 warn:
2825                         WARN_ON_ONCE(1);
2826                         clear_page(kaddr);
2827                 }
2828         }
2829
2830         ret = true;
2831
2832 pte_unlock:
2833         if (locked)
2834                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2835         kunmap_atomic(kaddr);
2836         flush_dcache_page(dst);
2837
2838         return ret;
2839 }
2840
2841 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2842 {
2843         struct file *vm_file = vma->vm_file;
2844
2845         if (vm_file)
2846                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2847
2848         /*
2849          * Special mappings (e.g. VDSO) do not have any file so fake
2850          * a default GFP_KERNEL for them.
2851          */
2852         return GFP_KERNEL;
2853 }
2854
2855 /*
2856  * Notify the address space that the page is about to become writable so that
2857  * it can prohibit this or wait for the page to get into an appropriate state.
2858  *
2859  * We do this without the lock held, so that it can sleep if it needs to.
2860  */
2861 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2862 {
2863         vm_fault_t ret;
2864         struct page *page = vmf->page;
2865         unsigned int old_flags = vmf->flags;
2866
2867         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2868
2869         if (vmf->vma->vm_file &&
2870             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2871                 return VM_FAULT_SIGBUS;
2872
2873         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2874         /* Restore original flags so that caller is not surprised */
2875         vmf->flags = old_flags;
2876         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2877                 return ret;
2878         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2879                 lock_page(page);
2880                 if (!page->mapping) {
2881                         unlock_page(page);
2882                         return 0; /* retry */
2883                 }
2884                 ret |= VM_FAULT_LOCKED;
2885         } else
2886                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2887         return ret;
2888 }
2889
2890 /*
2891  * Handle dirtying of a page in shared file mapping on a write fault.
2892  *
2893  * The function expects the page to be locked and unlocks it.
2894  */
2895 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2896 {
2897         struct vm_area_struct *vma = vmf->vma;
2898         struct address_space *mapping;
2899         struct page *page = vmf->page;
2900         bool dirtied;
2901         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2902
2903         dirtied = set_page_dirty(page);
2904         VM_BUG_ON_PAGE(PageAnon(page), page);
2905         /*
2906          * Take a local copy of the address_space - page.mapping may be zeroed
2907          * by truncate after unlock_page().   The address_space itself remains
2908          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2909          * release semantics to prevent the compiler from undoing this copying.
2910          */
2911         mapping = page_rmapping(page);
2912         unlock_page(page);
2913
2914         if (!page_mkwrite)
2915                 file_update_time(vma->vm_file);
2916
2917         /*
2918          * Throttle page dirtying rate down to writeback speed.
2919          *
2920          * mapping may be NULL here because some device drivers do not
2921          * set page.mapping but still dirty their pages
2922          *
2923          * Drop the mmap_lock before waiting on IO, if we can. The file
2924          * is pinning the mapping, as per above.
2925          */
2926         if ((dirtied || page_mkwrite) && mapping) {
2927                 struct file *fpin;
2928
2929                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2930                 balance_dirty_pages_ratelimited(mapping);
2931                 if (fpin) {
2932                         fput(fpin);
2933                         return VM_FAULT_RETRY;
2934                 }
2935         }
2936
2937         return 0;
2938 }
2939
2940 /*
2941  * Handle write page faults for pages that can be reused in the current vma
2942  *
2943  * This can happen either due to the mapping being with the VM_SHARED flag,
2944  * or due to us being the last reference standing to the page. In either
2945  * case, all we need to do here is to mark the page as writable and update
2946  * any related book-keeping.
2947  */
2948 static inline void wp_page_reuse(struct vm_fault *vmf)
2949         __releases(vmf->ptl)
2950 {
2951         struct vm_area_struct *vma = vmf->vma;
2952         struct page *page = vmf->page;
2953         pte_t entry;
2954         /*
2955          * Clear the pages cpupid information as the existing
2956          * information potentially belongs to a now completely
2957          * unrelated process.
2958          */
2959         if (page)
2960                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2961
2962         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2963         entry = pte_mkyoung(vmf->orig_pte);
2964         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2965         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2966                 update_mmu_cache(vma, vmf->address, vmf->pte);
2967         pte_unmap_unlock(vmf->pte, vmf->ptl);
2968         count_vm_event(PGREUSE);
2969 }
2970
2971 /*
2972  * Handle the case of a page which we actually need to copy to a new page.
2973  *
2974  * Called with mmap_lock locked and the old page referenced, but
2975  * without the ptl held.
2976  *
2977  * High level logic flow:
2978  *
2979  * - Allocate a page, copy the content of the old page to the new one.
2980  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2981  * - Take the PTL. If the pte changed, bail out and release the allocated page
2982  * - If the pte is still the way we remember it, update the page table and all
2983  *   relevant references. This includes dropping the reference the page-table
2984  *   held to the old page, as well as updating the rmap.
2985  * - In any case, unlock the PTL and drop the reference we took to the old page.
2986  */
2987 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2988 {
2989         struct vm_area_struct *vma = vmf->vma;
2990         struct mm_struct *mm = vma->vm_mm;
2991         struct page *old_page = vmf->page;
2992         struct page *new_page = NULL;
2993         pte_t entry;
2994         int page_copied = 0;
2995         struct mmu_notifier_range range;
2996
2997         if (unlikely(anon_vma_prepare(vma)))
2998                 goto oom;
2999
3000         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3001                 new_page = alloc_zeroed_user_highpage_movable(vma,
3002                                                               vmf->address);
3003                 if (!new_page)
3004                         goto oom;
3005         } else {
3006                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3007                                 vmf->address);
3008                 if (!new_page)
3009                         goto oom;
3010
3011                 if (!cow_user_page(new_page, old_page, vmf)) {
3012                         /*
3013                          * COW failed, if the fault was solved by other,
3014                          * it's fine. If not, userspace would re-fault on
3015                          * the same address and we will handle the fault
3016                          * from the second attempt.
3017                          */
3018                         put_page(new_page);
3019                         if (old_page)
3020                                 put_page(old_page);
3021                         return 0;
3022                 }
3023         }
3024
3025         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3026                 goto oom_free_new;
3027         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3028
3029         __SetPageUptodate(new_page);
3030
3031         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3032                                 vmf->address & PAGE_MASK,
3033                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3034         mmu_notifier_invalidate_range_start(&range);
3035
3036         /*
3037          * Re-check the pte - we dropped the lock
3038          */
3039         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3040         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3041                 if (old_page) {
3042                         if (!PageAnon(old_page)) {
3043                                 dec_mm_counter_fast(mm,
3044                                                 mm_counter_file(old_page));
3045                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3046                         }
3047                 } else {
3048                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3049                 }
3050                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3051                 entry = mk_pte(new_page, vma->vm_page_prot);
3052                 entry = pte_sw_mkyoung(entry);
3053                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3054
3055                 /*
3056                  * Clear the pte entry and flush it first, before updating the
3057                  * pte with the new entry, to keep TLBs on different CPUs in
3058                  * sync. This code used to set the new PTE then flush TLBs, but
3059                  * that left a window where the new PTE could be loaded into
3060                  * some TLBs while the old PTE remains in others.
3061                  */
3062                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3063                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3064                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3065                 /*
3066                  * We call the notify macro here because, when using secondary
3067                  * mmu page tables (such as kvm shadow page tables), we want the
3068                  * new page to be mapped directly into the secondary page table.
3069                  */
3070                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3071                 update_mmu_cache(vma, vmf->address, vmf->pte);
3072                 if (old_page) {
3073                         /*
3074                          * Only after switching the pte to the new page may
3075                          * we remove the mapcount here. Otherwise another
3076                          * process may come and find the rmap count decremented
3077                          * before the pte is switched to the new page, and
3078                          * "reuse" the old page writing into it while our pte
3079                          * here still points into it and can be read by other
3080                          * threads.
3081                          *
3082                          * The critical issue is to order this
3083                          * page_remove_rmap with the ptp_clear_flush above.
3084                          * Those stores are ordered by (if nothing else,)
3085                          * the barrier present in the atomic_add_negative
3086                          * in page_remove_rmap.
3087                          *
3088                          * Then the TLB flush in ptep_clear_flush ensures that
3089                          * no process can access the old page before the
3090                          * decremented mapcount is visible. And the old page
3091                          * cannot be reused until after the decremented
3092                          * mapcount is visible. So transitively, TLBs to
3093                          * old page will be flushed before it can be reused.
3094                          */
3095                         page_remove_rmap(old_page, vma, false);
3096                 }
3097
3098                 /* Free the old page.. */
3099                 new_page = old_page;
3100                 page_copied = 1;
3101         } else {
3102                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3103         }
3104
3105         if (new_page)
3106                 put_page(new_page);
3107
3108         pte_unmap_unlock(vmf->pte, vmf->ptl);
3109         /*
3110          * No need to double call mmu_notifier->invalidate_range() callback as
3111          * the above ptep_clear_flush_notify() did already call it.
3112          */
3113         mmu_notifier_invalidate_range_only_end(&range);
3114         if (old_page) {
3115                 if (page_copied)
3116                         free_swap_cache(old_page);
3117                 put_page(old_page);
3118         }
3119         return page_copied ? VM_FAULT_WRITE : 0;
3120 oom_free_new:
3121         put_page(new_page);
3122 oom:
3123         if (old_page)
3124                 put_page(old_page);
3125         return VM_FAULT_OOM;
3126 }
3127
3128 /**
3129  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3130  *                        writeable once the page is prepared
3131  *
3132  * @vmf: structure describing the fault
3133  *
3134  * This function handles all that is needed to finish a write page fault in a
3135  * shared mapping due to PTE being read-only once the mapped page is prepared.
3136  * It handles locking of PTE and modifying it.
3137  *
3138  * The function expects the page to be locked or other protection against
3139  * concurrent faults / writeback (such as DAX radix tree locks).
3140  *
3141  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3142  * we acquired PTE lock.
3143  */
3144 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3145 {
3146         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3147         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3148                                        &vmf->ptl);
3149         /*
3150          * We might have raced with another page fault while we released the
3151          * pte_offset_map_lock.
3152          */
3153         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3154                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3155                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3156                 return VM_FAULT_NOPAGE;
3157         }
3158         wp_page_reuse(vmf);
3159         return 0;
3160 }
3161
3162 /*
3163  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3164  * mapping
3165  */
3166 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3167 {
3168         struct vm_area_struct *vma = vmf->vma;
3169
3170         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3171                 vm_fault_t ret;
3172
3173                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3174                 vmf->flags |= FAULT_FLAG_MKWRITE;
3175                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3176                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3177                         return ret;
3178                 return finish_mkwrite_fault(vmf);
3179         }
3180         wp_page_reuse(vmf);
3181         return VM_FAULT_WRITE;
3182 }
3183
3184 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3185         __releases(vmf->ptl)
3186 {
3187         struct vm_area_struct *vma = vmf->vma;
3188         vm_fault_t ret = VM_FAULT_WRITE;
3189
3190         get_page(vmf->page);
3191
3192         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3193                 vm_fault_t tmp;
3194
3195                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3196                 tmp = do_page_mkwrite(vmf);
3197                 if (unlikely(!tmp || (tmp &
3198                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3199                         put_page(vmf->page);
3200                         return tmp;
3201                 }
3202                 tmp = finish_mkwrite_fault(vmf);
3203                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3204                         unlock_page(vmf->page);
3205                         put_page(vmf->page);
3206                         return tmp;
3207                 }
3208         } else {
3209                 wp_page_reuse(vmf);
3210                 lock_page(vmf->page);
3211         }
3212         ret |= fault_dirty_shared_page(vmf);
3213         put_page(vmf->page);
3214
3215         return ret;
3216 }
3217
3218 /*
3219  * This routine handles present pages, when users try to write
3220  * to a shared page. It is done by copying the page to a new address
3221  * and decrementing the shared-page counter for the old page.
3222  *
3223  * Note that this routine assumes that the protection checks have been
3224  * done by the caller (the low-level page fault routine in most cases).
3225  * Thus we can safely just mark it writable once we've done any necessary
3226  * COW.
3227  *
3228  * We also mark the page dirty at this point even though the page will
3229  * change only once the write actually happens. This avoids a few races,
3230  * and potentially makes it more efficient.
3231  *
3232  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3233  * but allow concurrent faults), with pte both mapped and locked.
3234  * We return with mmap_lock still held, but pte unmapped and unlocked.
3235  */
3236 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3237         __releases(vmf->ptl)
3238 {
3239         struct vm_area_struct *vma = vmf->vma;
3240
3241         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3242                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3243                 return handle_userfault(vmf, VM_UFFD_WP);
3244         }
3245
3246         /*
3247          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3248          * is flushed in this case before copying.
3249          */
3250         if (unlikely(userfaultfd_wp(vmf->vma) &&
3251                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3252                 flush_tlb_page(vmf->vma, vmf->address);
3253
3254         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3255         if (!vmf->page) {
3256                 /*
3257                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3258                  * VM_PFNMAP VMA.
3259                  *
3260                  * We should not cow pages in a shared writeable mapping.
3261                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3262                  */
3263                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3264                                      (VM_WRITE|VM_SHARED))
3265                         return wp_pfn_shared(vmf);
3266
3267                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3268                 return wp_page_copy(vmf);
3269         }
3270
3271         /*
3272          * Take out anonymous pages first, anonymous shared vmas are
3273          * not dirty accountable.
3274          */
3275         if (PageAnon(vmf->page)) {
3276                 struct page *page = vmf->page;
3277
3278                 /* PageKsm() doesn't necessarily raise the page refcount */
3279                 if (PageKsm(page) || page_count(page) != 1)
3280                         goto copy;
3281                 if (!trylock_page(page))
3282                         goto copy;
3283                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3284                         unlock_page(page);
3285                         goto copy;
3286                 }
3287                 /*
3288                  * Ok, we've got the only map reference, and the only
3289                  * page count reference, and the page is locked,
3290                  * it's dark out, and we're wearing sunglasses. Hit it.
3291                  */
3292                 unlock_page(page);
3293                 wp_page_reuse(vmf);
3294                 return VM_FAULT_WRITE;
3295         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3296                                         (VM_WRITE|VM_SHARED))) {
3297                 return wp_page_shared(vmf);
3298         }
3299 copy:
3300         /*
3301          * Ok, we need to copy. Oh, well..
3302          */
3303         get_page(vmf->page);
3304
3305         pte_unmap_unlock(vmf->pte, vmf->ptl);
3306         return wp_page_copy(vmf);
3307 }
3308
3309 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3310                 unsigned long start_addr, unsigned long end_addr,
3311                 struct zap_details *details)
3312 {
3313         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3314 }
3315
3316 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3317                                             pgoff_t first_index,
3318                                             pgoff_t last_index,
3319                                             struct zap_details *details)
3320 {
3321         struct vm_area_struct *vma;
3322         pgoff_t vba, vea, zba, zea;
3323
3324         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3325                 vba = vma->vm_pgoff;
3326                 vea = vba + vma_pages(vma) - 1;
3327                 zba = first_index;
3328                 if (zba < vba)
3329                         zba = vba;
3330                 zea = last_index;
3331                 if (zea > vea)
3332                         zea = vea;
3333
3334                 unmap_mapping_range_vma(vma,
3335                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3336                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3337                                 details);
3338         }
3339 }
3340
3341 /**
3342  * unmap_mapping_folio() - Unmap single folio from processes.
3343  * @folio: The locked folio to be unmapped.
3344  *
3345  * Unmap this folio from any userspace process which still has it mmaped.
3346  * Typically, for efficiency, the range of nearby pages has already been
3347  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3348  * truncation or invalidation holds the lock on a folio, it may find that
3349  * the page has been remapped again: and then uses unmap_mapping_folio()
3350  * to unmap it finally.
3351  */
3352 void unmap_mapping_folio(struct folio *folio)
3353 {
3354         struct address_space *mapping = folio->mapping;
3355         struct zap_details details = { };
3356         pgoff_t first_index;
3357         pgoff_t last_index;
3358
3359         VM_BUG_ON(!folio_test_locked(folio));
3360
3361         first_index = folio->index;
3362         last_index = folio->index + folio_nr_pages(folio) - 1;
3363
3364         details.zap_mapping = mapping;
3365         details.single_folio = folio;
3366
3367         i_mmap_lock_write(mapping);
3368         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3369                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3370                                          last_index, &details);
3371         i_mmap_unlock_write(mapping);
3372 }
3373
3374 /**
3375  * unmap_mapping_pages() - Unmap pages from processes.
3376  * @mapping: The address space containing pages to be unmapped.
3377  * @start: Index of first page to be unmapped.
3378  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3379  * @even_cows: Whether to unmap even private COWed pages.
3380  *
3381  * Unmap the pages in this address space from any userspace process which
3382  * has them mmaped.  Generally, you want to remove COWed pages as well when
3383  * a file is being truncated, but not when invalidating pages from the page
3384  * cache.
3385  */
3386 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3387                 pgoff_t nr, bool even_cows)
3388 {
3389         struct zap_details details = { };
3390         pgoff_t first_index = start;
3391         pgoff_t last_index = start + nr - 1;
3392
3393         details.zap_mapping = even_cows ? NULL : mapping;
3394         if (last_index < first_index)
3395                 last_index = ULONG_MAX;
3396
3397         i_mmap_lock_write(mapping);
3398         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3399                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3400                                          last_index, &details);
3401         i_mmap_unlock_write(mapping);
3402 }
3403 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3404
3405 /**
3406  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3407  * address_space corresponding to the specified byte range in the underlying
3408  * file.
3409  *
3410  * @mapping: the address space containing mmaps to be unmapped.
3411  * @holebegin: byte in first page to unmap, relative to the start of
3412  * the underlying file.  This will be rounded down to a PAGE_SIZE
3413  * boundary.  Note that this is different from truncate_pagecache(), which
3414  * must keep the partial page.  In contrast, we must get rid of
3415  * partial pages.
3416  * @holelen: size of prospective hole in bytes.  This will be rounded
3417  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3418  * end of the file.
3419  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3420  * but 0 when invalidating pagecache, don't throw away private data.
3421  */
3422 void unmap_mapping_range(struct address_space *mapping,
3423                 loff_t const holebegin, loff_t const holelen, int even_cows)
3424 {
3425         pgoff_t hba = holebegin >> PAGE_SHIFT;
3426         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3427
3428         /* Check for overflow. */
3429         if (sizeof(holelen) > sizeof(hlen)) {
3430                 long long holeend =
3431                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3432                 if (holeend & ~(long long)ULONG_MAX)
3433                         hlen = ULONG_MAX - hba + 1;
3434         }
3435
3436         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3437 }
3438 EXPORT_SYMBOL(unmap_mapping_range);
3439
3440 /*
3441  * Restore a potential device exclusive pte to a working pte entry
3442  */
3443 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3444 {
3445         struct page *page = vmf->page;
3446         struct vm_area_struct *vma = vmf->vma;
3447         struct mmu_notifier_range range;
3448
3449         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3450                 return VM_FAULT_RETRY;
3451         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3452                                 vma->vm_mm, vmf->address & PAGE_MASK,
3453                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3454         mmu_notifier_invalidate_range_start(&range);
3455
3456         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3457                                 &vmf->ptl);
3458         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3459                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3460
3461         pte_unmap_unlock(vmf->pte, vmf->ptl);
3462         unlock_page(page);
3463
3464         mmu_notifier_invalidate_range_end(&range);
3465         return 0;
3466 }
3467
3468 /*
3469  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3470  * but allow concurrent faults), and pte mapped but not yet locked.
3471  * We return with pte unmapped and unlocked.
3472  *
3473  * We return with the mmap_lock locked or unlocked in the same cases
3474  * as does filemap_fault().
3475  */
3476 vm_fault_t do_swap_page(struct vm_fault *vmf)
3477 {
3478         struct vm_area_struct *vma = vmf->vma;
3479         struct page *page = NULL, *swapcache;
3480         struct swap_info_struct *si = NULL;
3481         swp_entry_t entry;
3482         pte_t pte;
3483         int locked;
3484         int exclusive = 0;
3485         vm_fault_t ret = 0;
3486         void *shadow = NULL;
3487
3488         if (!pte_unmap_same(vmf))
3489                 goto out;
3490
3491         entry = pte_to_swp_entry(vmf->orig_pte);
3492         if (unlikely(non_swap_entry(entry))) {
3493                 if (is_migration_entry(entry)) {
3494                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3495                                              vmf->address);
3496                 } else if (is_device_exclusive_entry(entry)) {
3497                         vmf->page = pfn_swap_entry_to_page(entry);
3498                         ret = remove_device_exclusive_entry(vmf);
3499                 } else if (is_device_private_entry(entry)) {
3500                         vmf->page = pfn_swap_entry_to_page(entry);
3501                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3502                 } else if (is_hwpoison_entry(entry)) {
3503                         ret = VM_FAULT_HWPOISON;
3504                 } else {
3505                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3506                         ret = VM_FAULT_SIGBUS;
3507                 }
3508                 goto out;
3509         }
3510
3511         /* Prevent swapoff from happening to us. */
3512         si = get_swap_device(entry);
3513         if (unlikely(!si))
3514                 goto out;
3515
3516         page = lookup_swap_cache(entry, vma, vmf->address);
3517         swapcache = page;
3518
3519         if (!page) {
3520                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3521                     __swap_count(entry) == 1) {
3522                         /* skip swapcache */
3523                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3524                                                         vmf->address);
3525                         if (page) {
3526                                 __SetPageLocked(page);
3527                                 __SetPageSwapBacked(page);
3528
3529                                 if (mem_cgroup_swapin_charge_page(page,
3530                                         vma->vm_mm, GFP_KERNEL, entry)) {
3531                                         ret = VM_FAULT_OOM;
3532                                         goto out_page;
3533                                 }
3534                                 mem_cgroup_swapin_uncharge_swap(entry);
3535
3536                                 shadow = get_shadow_from_swap_cache(entry);
3537                                 if (shadow)
3538                                         workingset_refault(page_folio(page),
3539                                                                 shadow);
3540
3541                                 lru_cache_add(page);
3542
3543                                 /* To provide entry to swap_readpage() */
3544                                 set_page_private(page, entry.val);
3545                                 swap_readpage(page, true);
3546                                 set_page_private(page, 0);
3547                         }
3548                 } else {
3549                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3550                                                 vmf);
3551                         swapcache = page;
3552                 }
3553
3554                 if (!page) {
3555                         /*
3556                          * Back out if somebody else faulted in this pte
3557                          * while we released the pte lock.
3558                          */
3559                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3560                                         vmf->address, &vmf->ptl);
3561                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3562                                 ret = VM_FAULT_OOM;
3563                         goto unlock;
3564                 }
3565
3566                 /* Had to read the page from swap area: Major fault */
3567                 ret = VM_FAULT_MAJOR;
3568                 count_vm_event(PGMAJFAULT);
3569                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3570         } else if (PageHWPoison(page)) {
3571                 /*
3572                  * hwpoisoned dirty swapcache pages are kept for killing
3573                  * owner processes (which may be unknown at hwpoison time)
3574                  */
3575                 ret = VM_FAULT_HWPOISON;
3576                 goto out_release;
3577         }
3578
3579         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3580
3581         if (!locked) {
3582                 ret |= VM_FAULT_RETRY;
3583                 goto out_release;
3584         }
3585
3586         /*
3587          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3588          * release the swapcache from under us.  The page pin, and pte_same
3589          * test below, are not enough to exclude that.  Even if it is still
3590          * swapcache, we need to check that the page's swap has not changed.
3591          */
3592         if (unlikely((!PageSwapCache(page) ||
3593                         page_private(page) != entry.val)) && swapcache)
3594                 goto out_page;
3595
3596         page = ksm_might_need_to_copy(page, vma, vmf->address);
3597         if (unlikely(!page)) {
3598                 ret = VM_FAULT_OOM;
3599                 page = swapcache;
3600                 goto out_page;
3601         }
3602
3603         cgroup_throttle_swaprate(page, GFP_KERNEL);
3604
3605         /*
3606          * Back out if somebody else already faulted in this pte.
3607          */
3608         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3609                         &vmf->ptl);
3610         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3611                 goto out_nomap;
3612
3613         if (unlikely(!PageUptodate(page))) {
3614                 ret = VM_FAULT_SIGBUS;
3615                 goto out_nomap;
3616         }
3617
3618         /*
3619          * The page isn't present yet, go ahead with the fault.
3620          *
3621          * Be careful about the sequence of operations here.
3622          * To get its accounting right, reuse_swap_page() must be called
3623          * while the page is counted on swap but not yet in mapcount i.e.
3624          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3625          * must be called after the swap_free(), or it will never succeed.
3626          */
3627
3628         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3629         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3630         pte = mk_pte(page, vma->vm_page_prot);
3631         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3632                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3633                 vmf->flags &= ~FAULT_FLAG_WRITE;
3634                 ret |= VM_FAULT_WRITE;
3635                 exclusive = RMAP_EXCLUSIVE;
3636         }
3637         flush_icache_page(vma, page);
3638         if (pte_swp_soft_dirty(vmf->orig_pte))
3639                 pte = pte_mksoft_dirty(pte);
3640         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3641                 pte = pte_mkuffd_wp(pte);
3642                 pte = pte_wrprotect(pte);
3643         }
3644         vmf->orig_pte = pte;
3645
3646         /* ksm created a completely new copy */
3647         if (unlikely(page != swapcache && swapcache)) {
3648                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3649                 lru_cache_add_inactive_or_unevictable(page, vma);
3650         } else {
3651                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3652         }
3653
3654         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3655         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3656
3657         swap_free(entry);
3658         if (mem_cgroup_swap_full(page) ||
3659             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3660                 try_to_free_swap(page);
3661         unlock_page(page);
3662         if (page != swapcache && swapcache) {
3663                 /*
3664                  * Hold the lock to avoid the swap entry to be reused
3665                  * until we take the PT lock for the pte_same() check
3666                  * (to avoid false positives from pte_same). For
3667                  * further safety release the lock after the swap_free
3668                  * so that the swap count won't change under a
3669                  * parallel locked swapcache.
3670                  */
3671                 unlock_page(swapcache);
3672                 put_page(swapcache);
3673         }
3674
3675         if (vmf->flags & FAULT_FLAG_WRITE) {
3676                 ret |= do_wp_page(vmf);
3677                 if (ret & VM_FAULT_ERROR)
3678                         ret &= VM_FAULT_ERROR;
3679                 goto out;
3680         }
3681
3682         /* No need to invalidate - it was non-present before */
3683         update_mmu_cache(vma, vmf->address, vmf->pte);
3684 unlock:
3685         pte_unmap_unlock(vmf->pte, vmf->ptl);
3686 out:
3687         if (si)
3688                 put_swap_device(si);
3689         return ret;
3690 out_nomap:
3691         pte_unmap_unlock(vmf->pte, vmf->ptl);
3692 out_page:
3693         unlock_page(page);
3694 out_release:
3695         put_page(page);
3696         if (page != swapcache && swapcache) {
3697                 unlock_page(swapcache);
3698                 put_page(swapcache);
3699         }
3700         if (si)
3701                 put_swap_device(si);
3702         return ret;
3703 }
3704
3705 /*
3706  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3707  * but allow concurrent faults), and pte mapped but not yet locked.
3708  * We return with mmap_lock still held, but pte unmapped and unlocked.
3709  */
3710 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3711 {
3712         struct vm_area_struct *vma = vmf->vma;
3713         struct page *page;
3714         vm_fault_t ret = 0;
3715         pte_t entry;
3716
3717         /* File mapping without ->vm_ops ? */
3718         if (vma->vm_flags & VM_SHARED)
3719                 return VM_FAULT_SIGBUS;
3720
3721         /*
3722          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3723          * pte_offset_map() on pmds where a huge pmd might be created
3724          * from a different thread.
3725          *
3726          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3727          * parallel threads are excluded by other means.
3728          *
3729          * Here we only have mmap_read_lock(mm).
3730          */
3731         if (pte_alloc(vma->vm_mm, vmf->pmd))
3732                 return VM_FAULT_OOM;
3733
3734         /* See comment in handle_pte_fault() */
3735         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3736                 return 0;
3737
3738         /* Use the zero-page for reads */
3739         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3740                         !mm_forbids_zeropage(vma->vm_mm)) {
3741                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3742                                                 vma->vm_page_prot));
3743                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3744                                 vmf->address, &vmf->ptl);
3745                 if (!pte_none(*vmf->pte)) {
3746                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3747                         goto unlock;
3748                 }
3749                 ret = check_stable_address_space(vma->vm_mm);
3750                 if (ret)
3751                         goto unlock;
3752                 /* Deliver the page fault to userland, check inside PT lock */
3753                 if (userfaultfd_missing(vma)) {
3754                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3755                         return handle_userfault(vmf, VM_UFFD_MISSING);
3756                 }
3757                 goto setpte;
3758         }
3759
3760         /* Allocate our own private page. */
3761         if (unlikely(anon_vma_prepare(vma)))
3762                 goto oom;
3763         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3764         if (!page)
3765                 goto oom;
3766
3767         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3768                 goto oom_free_page;
3769         cgroup_throttle_swaprate(page, GFP_KERNEL);
3770
3771         /*
3772          * The memory barrier inside __SetPageUptodate makes sure that
3773          * preceding stores to the page contents become visible before
3774          * the set_pte_at() write.
3775          */
3776         __SetPageUptodate(page);
3777
3778         entry = mk_pte(page, vma->vm_page_prot);
3779         entry = pte_sw_mkyoung(entry);
3780         if (vma->vm_flags & VM_WRITE)
3781                 entry = pte_mkwrite(pte_mkdirty(entry));
3782
3783         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3784                         &vmf->ptl);
3785         if (!pte_none(*vmf->pte)) {
3786                 update_mmu_cache(vma, vmf->address, vmf->pte);
3787                 goto release;
3788         }
3789
3790         ret = check_stable_address_space(vma->vm_mm);
3791         if (ret)
3792                 goto release;
3793
3794         /* Deliver the page fault to userland, check inside PT lock */
3795         if (userfaultfd_missing(vma)) {
3796                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3797                 put_page(page);
3798                 return handle_userfault(vmf, VM_UFFD_MISSING);
3799         }
3800
3801         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3802         page_add_new_anon_rmap(page, vma, vmf->address, false);
3803         lru_cache_add_inactive_or_unevictable(page, vma);
3804 setpte:
3805         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3806
3807         /* No need to invalidate - it was non-present before */
3808         update_mmu_cache(vma, vmf->address, vmf->pte);
3809 unlock:
3810         pte_unmap_unlock(vmf->pte, vmf->ptl);
3811         return ret;
3812 release:
3813         put_page(page);
3814         goto unlock;
3815 oom_free_page:
3816         put_page(page);
3817 oom:
3818         return VM_FAULT_OOM;
3819 }
3820
3821 /*
3822  * The mmap_lock must have been held on entry, and may have been
3823  * released depending on flags and vma->vm_ops->fault() return value.
3824  * See filemap_fault() and __lock_page_retry().
3825  */
3826 static vm_fault_t __do_fault(struct vm_fault *vmf)
3827 {
3828         struct vm_area_struct *vma = vmf->vma;
3829         vm_fault_t ret;
3830
3831         /*
3832          * Preallocate pte before we take page_lock because this might lead to
3833          * deadlocks for memcg reclaim which waits for pages under writeback:
3834          *                              lock_page(A)
3835          *                              SetPageWriteback(A)
3836          *                              unlock_page(A)
3837          * lock_page(B)
3838          *                              lock_page(B)
3839          * pte_alloc_one
3840          *   shrink_page_list
3841          *     wait_on_page_writeback(A)
3842          *                              SetPageWriteback(B)
3843          *                              unlock_page(B)
3844          *                              # flush A, B to clear the writeback
3845          */
3846         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3847                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3848                 if (!vmf->prealloc_pte)
3849                         return VM_FAULT_OOM;
3850         }
3851
3852         ret = vma->vm_ops->fault(vmf);
3853         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3854                             VM_FAULT_DONE_COW)))
3855                 return ret;
3856
3857         if (unlikely(PageHWPoison(vmf->page))) {
3858                 if (ret & VM_FAULT_LOCKED)
3859                         unlock_page(vmf->page);
3860                 put_page(vmf->page);
3861                 vmf->page = NULL;
3862                 return VM_FAULT_HWPOISON;
3863         }
3864
3865         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3866                 lock_page(vmf->page);
3867         else
3868                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3869
3870         return ret;
3871 }
3872
3873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3874 static void deposit_prealloc_pte(struct vm_fault *vmf)
3875 {
3876         struct vm_area_struct *vma = vmf->vma;
3877
3878         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3879         /*
3880          * We are going to consume the prealloc table,
3881          * count that as nr_ptes.
3882          */
3883         mm_inc_nr_ptes(vma->vm_mm);
3884         vmf->prealloc_pte = NULL;
3885 }
3886
3887 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3888 {
3889         struct vm_area_struct *vma = vmf->vma;
3890         bool write = vmf->flags & FAULT_FLAG_WRITE;
3891         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3892         pmd_t entry;
3893         int i;
3894         vm_fault_t ret = VM_FAULT_FALLBACK;
3895
3896         if (!transhuge_vma_suitable(vma, haddr))
3897                 return ret;
3898
3899         page = compound_head(page);
3900         if (compound_order(page) != HPAGE_PMD_ORDER)
3901                 return ret;
3902
3903         /*
3904          * Just backoff if any subpage of a THP is corrupted otherwise
3905          * the corrupted page may mapped by PMD silently to escape the
3906          * check.  This kind of THP just can be PTE mapped.  Access to
3907          * the corrupted subpage should trigger SIGBUS as expected.
3908          */
3909         if (unlikely(PageHasHWPoisoned(page)))
3910                 return ret;
3911
3912         /*
3913          * Archs like ppc64 need additional space to store information
3914          * related to pte entry. Use the preallocated table for that.
3915          */
3916         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3917                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3918                 if (!vmf->prealloc_pte)
3919                         return VM_FAULT_OOM;
3920         }
3921
3922         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3923         if (unlikely(!pmd_none(*vmf->pmd)))
3924                 goto out;
3925
3926         for (i = 0; i < HPAGE_PMD_NR; i++)
3927                 flush_icache_page(vma, page + i);
3928
3929         entry = mk_huge_pmd(page, vma->vm_page_prot);
3930         if (write)
3931                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3932
3933         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3934         page_add_file_rmap(page, vma, true);
3935
3936         /*
3937          * deposit and withdraw with pmd lock held
3938          */
3939         if (arch_needs_pgtable_deposit())
3940                 deposit_prealloc_pte(vmf);
3941
3942         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3943
3944         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3945
3946         /* fault is handled */
3947         ret = 0;
3948         count_vm_event(THP_FILE_MAPPED);
3949 out:
3950         spin_unlock(vmf->ptl);
3951         return ret;
3952 }
3953 #else
3954 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3955 {
3956         return VM_FAULT_FALLBACK;
3957 }
3958 #endif
3959
3960 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3961 {
3962         struct vm_area_struct *vma = vmf->vma;
3963         bool write = vmf->flags & FAULT_FLAG_WRITE;
3964         bool prefault = vmf->address != addr;
3965         pte_t entry;
3966
3967         flush_icache_page(vma, page);
3968         entry = mk_pte(page, vma->vm_page_prot);
3969
3970         if (prefault && arch_wants_old_prefaulted_pte())
3971                 entry = pte_mkold(entry);
3972         else
3973                 entry = pte_sw_mkyoung(entry);
3974
3975         if (write)
3976                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3977         /* copy-on-write page */
3978         if (write && !(vma->vm_flags & VM_SHARED)) {
3979                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3980                 page_add_new_anon_rmap(page, vma, addr, false);
3981                 lru_cache_add_inactive_or_unevictable(page, vma);
3982         } else {
3983                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3984                 page_add_file_rmap(page, vma, false);
3985         }
3986         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3987 }
3988
3989 /**
3990  * finish_fault - finish page fault once we have prepared the page to fault
3991  *
3992  * @vmf: structure describing the fault
3993  *
3994  * This function handles all that is needed to finish a page fault once the
3995  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3996  * given page, adds reverse page mapping, handles memcg charges and LRU
3997  * addition.
3998  *
3999  * The function expects the page to be locked and on success it consumes a
4000  * reference of a page being mapped (for the PTE which maps it).
4001  *
4002  * Return: %0 on success, %VM_FAULT_ code in case of error.
4003  */
4004 vm_fault_t finish_fault(struct vm_fault *vmf)
4005 {
4006         struct vm_area_struct *vma = vmf->vma;
4007         struct page *page;
4008         vm_fault_t ret;
4009
4010         /* Did we COW the page? */
4011         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4012                 page = vmf->cow_page;
4013         else
4014                 page = vmf->page;
4015
4016         /*
4017          * check even for read faults because we might have lost our CoWed
4018          * page
4019          */
4020         if (!(vma->vm_flags & VM_SHARED)) {
4021                 ret = check_stable_address_space(vma->vm_mm);
4022                 if (ret)
4023                         return ret;
4024         }
4025
4026         if (pmd_none(*vmf->pmd)) {
4027                 if (PageTransCompound(page)) {
4028                         ret = do_set_pmd(vmf, page);
4029                         if (ret != VM_FAULT_FALLBACK)
4030                                 return ret;
4031                 }
4032
4033                 if (vmf->prealloc_pte)
4034                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4035                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4036                         return VM_FAULT_OOM;
4037         }
4038
4039         /* See comment in handle_pte_fault() */
4040         if (pmd_devmap_trans_unstable(vmf->pmd))
4041                 return 0;
4042
4043         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4044                                       vmf->address, &vmf->ptl);
4045         ret = 0;
4046         /* Re-check under ptl */
4047         if (likely(pte_none(*vmf->pte)))
4048                 do_set_pte(vmf, page, vmf->address);
4049         else
4050                 ret = VM_FAULT_NOPAGE;
4051
4052         update_mmu_tlb(vma, vmf->address, vmf->pte);
4053         pte_unmap_unlock(vmf->pte, vmf->ptl);
4054         return ret;
4055 }
4056
4057 static unsigned long fault_around_bytes __read_mostly =
4058         rounddown_pow_of_two(65536);
4059
4060 #ifdef CONFIG_DEBUG_FS
4061 static int fault_around_bytes_get(void *data, u64 *val)
4062 {
4063         *val = fault_around_bytes;
4064         return 0;
4065 }
4066
4067 /*
4068  * fault_around_bytes must be rounded down to the nearest page order as it's
4069  * what do_fault_around() expects to see.
4070  */
4071 static int fault_around_bytes_set(void *data, u64 val)
4072 {
4073         if (val / PAGE_SIZE > PTRS_PER_PTE)
4074                 return -EINVAL;
4075         if (val > PAGE_SIZE)
4076                 fault_around_bytes = rounddown_pow_of_two(val);
4077         else
4078                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4079         return 0;
4080 }
4081 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4082                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4083
4084 static int __init fault_around_debugfs(void)
4085 {
4086         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4087                                    &fault_around_bytes_fops);
4088         return 0;
4089 }
4090 late_initcall(fault_around_debugfs);
4091 #endif
4092
4093 /*
4094  * do_fault_around() tries to map few pages around the fault address. The hope
4095  * is that the pages will be needed soon and this will lower the number of
4096  * faults to handle.
4097  *
4098  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4099  * not ready to be mapped: not up-to-date, locked, etc.
4100  *
4101  * This function is called with the page table lock taken. In the split ptlock
4102  * case the page table lock only protects only those entries which belong to
4103  * the page table corresponding to the fault address.
4104  *
4105  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4106  * only once.
4107  *
4108  * fault_around_bytes defines how many bytes we'll try to map.
4109  * do_fault_around() expects it to be set to a power of two less than or equal
4110  * to PTRS_PER_PTE.
4111  *
4112  * The virtual address of the area that we map is naturally aligned to
4113  * fault_around_bytes rounded down to the machine page size
4114  * (and therefore to page order).  This way it's easier to guarantee
4115  * that we don't cross page table boundaries.
4116  */
4117 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4118 {
4119         unsigned long address = vmf->address, nr_pages, mask;
4120         pgoff_t start_pgoff = vmf->pgoff;
4121         pgoff_t end_pgoff;
4122         int off;
4123
4124         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4125         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4126
4127         address = max(address & mask, vmf->vma->vm_start);
4128         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4129         start_pgoff -= off;
4130
4131         /*
4132          *  end_pgoff is either the end of the page table, the end of
4133          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4134          */
4135         end_pgoff = start_pgoff -
4136                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4137                 PTRS_PER_PTE - 1;
4138         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4139                         start_pgoff + nr_pages - 1);
4140
4141         if (pmd_none(*vmf->pmd)) {
4142                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4143                 if (!vmf->prealloc_pte)
4144                         return VM_FAULT_OOM;
4145         }
4146
4147         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4148 }
4149
4150 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4151 {
4152         struct vm_area_struct *vma = vmf->vma;
4153         vm_fault_t ret = 0;
4154
4155         /*
4156          * Let's call ->map_pages() first and use ->fault() as fallback
4157          * if page by the offset is not ready to be mapped (cold cache or
4158          * something).
4159          */
4160         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4161                 if (likely(!userfaultfd_minor(vmf->vma))) {
4162                         ret = do_fault_around(vmf);
4163                         if (ret)
4164                                 return ret;
4165                 }
4166         }
4167
4168         ret = __do_fault(vmf);
4169         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4170                 return ret;
4171
4172         ret |= finish_fault(vmf);
4173         unlock_page(vmf->page);
4174         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4175                 put_page(vmf->page);
4176         return ret;
4177 }
4178
4179 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4180 {
4181         struct vm_area_struct *vma = vmf->vma;
4182         vm_fault_t ret;
4183
4184         if (unlikely(anon_vma_prepare(vma)))
4185                 return VM_FAULT_OOM;
4186
4187         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4188         if (!vmf->cow_page)
4189                 return VM_FAULT_OOM;
4190
4191         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4192                                 GFP_KERNEL)) {
4193                 put_page(vmf->cow_page);
4194                 return VM_FAULT_OOM;
4195         }
4196         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4197
4198         ret = __do_fault(vmf);
4199         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4200                 goto uncharge_out;
4201         if (ret & VM_FAULT_DONE_COW)
4202                 return ret;
4203
4204         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4205         __SetPageUptodate(vmf->cow_page);
4206
4207         ret |= finish_fault(vmf);
4208         unlock_page(vmf->page);
4209         put_page(vmf->page);
4210         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4211                 goto uncharge_out;
4212         return ret;
4213 uncharge_out:
4214         put_page(vmf->cow_page);
4215         return ret;
4216 }
4217
4218 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4219 {
4220         struct vm_area_struct *vma = vmf->vma;
4221         vm_fault_t ret, tmp;
4222
4223         ret = __do_fault(vmf);
4224         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4225                 return ret;
4226
4227         /*
4228          * Check if the backing address space wants to know that the page is
4229          * about to become writable
4230          */
4231         if (vma->vm_ops->page_mkwrite) {
4232                 unlock_page(vmf->page);
4233                 tmp = do_page_mkwrite(vmf);
4234                 if (unlikely(!tmp ||
4235                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4236                         put_page(vmf->page);
4237                         return tmp;
4238                 }
4239         }
4240
4241         ret |= finish_fault(vmf);
4242         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4243                                         VM_FAULT_RETRY))) {
4244                 unlock_page(vmf->page);
4245                 put_page(vmf->page);
4246                 return ret;
4247         }
4248
4249         ret |= fault_dirty_shared_page(vmf);
4250         return ret;
4251 }
4252
4253 /*
4254  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4255  * but allow concurrent faults).
4256  * The mmap_lock may have been released depending on flags and our
4257  * return value.  See filemap_fault() and __folio_lock_or_retry().
4258  * If mmap_lock is released, vma may become invalid (for example
4259  * by other thread calling munmap()).
4260  */
4261 static vm_fault_t do_fault(struct vm_fault *vmf)
4262 {
4263         struct vm_area_struct *vma = vmf->vma;
4264         struct mm_struct *vm_mm = vma->vm_mm;
4265         vm_fault_t ret;
4266
4267         /*
4268          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4269          */
4270         if (!vma->vm_ops->fault) {
4271                 /*
4272                  * If we find a migration pmd entry or a none pmd entry, which
4273                  * should never happen, return SIGBUS
4274                  */
4275                 if (unlikely(!pmd_present(*vmf->pmd)))
4276                         ret = VM_FAULT_SIGBUS;
4277                 else {
4278                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4279                                                        vmf->pmd,
4280                                                        vmf->address,
4281                                                        &vmf->ptl);
4282                         /*
4283                          * Make sure this is not a temporary clearing of pte
4284                          * by holding ptl and checking again. A R/M/W update
4285                          * of pte involves: take ptl, clearing the pte so that
4286                          * we don't have concurrent modification by hardware
4287                          * followed by an update.
4288                          */
4289                         if (unlikely(pte_none(*vmf->pte)))
4290                                 ret = VM_FAULT_SIGBUS;
4291                         else
4292                                 ret = VM_FAULT_NOPAGE;
4293
4294                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4295                 }
4296         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4297                 ret = do_read_fault(vmf);
4298         else if (!(vma->vm_flags & VM_SHARED))
4299                 ret = do_cow_fault(vmf);
4300         else
4301                 ret = do_shared_fault(vmf);
4302
4303         /* preallocated pagetable is unused: free it */
4304         if (vmf->prealloc_pte) {
4305                 pte_free(vm_mm, vmf->prealloc_pte);
4306                 vmf->prealloc_pte = NULL;
4307         }
4308         return ret;
4309 }
4310
4311 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4312                       unsigned long addr, int page_nid, int *flags)
4313 {
4314         get_page(page);
4315
4316         count_vm_numa_event(NUMA_HINT_FAULTS);
4317         if (page_nid == numa_node_id()) {
4318                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4319                 *flags |= TNF_FAULT_LOCAL;
4320         }
4321
4322         return mpol_misplaced(page, vma, addr);
4323 }
4324
4325 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4326 {
4327         struct vm_area_struct *vma = vmf->vma;
4328         struct page *page = NULL;
4329         int page_nid = NUMA_NO_NODE;
4330         int last_cpupid;
4331         int target_nid;
4332         pte_t pte, old_pte;
4333         bool was_writable = pte_savedwrite(vmf->orig_pte);
4334         int flags = 0;
4335
4336         /*
4337          * The "pte" at this point cannot be used safely without
4338          * validation through pte_unmap_same(). It's of NUMA type but
4339          * the pfn may be screwed if the read is non atomic.
4340          */
4341         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4342         spin_lock(vmf->ptl);
4343         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4344                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4345                 goto out;
4346         }
4347
4348         /* Get the normal PTE  */
4349         old_pte = ptep_get(vmf->pte);
4350         pte = pte_modify(old_pte, vma->vm_page_prot);
4351
4352         page = vm_normal_page(vma, vmf->address, pte);
4353         if (!page)
4354                 goto out_map;
4355
4356         /* TODO: handle PTE-mapped THP */
4357         if (PageCompound(page))
4358                 goto out_map;
4359
4360         /*
4361          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4362          * much anyway since they can be in shared cache state. This misses
4363          * the case where a mapping is writable but the process never writes
4364          * to it but pte_write gets cleared during protection updates and
4365          * pte_dirty has unpredictable behaviour between PTE scan updates,
4366          * background writeback, dirty balancing and application behaviour.
4367          */
4368         if (!was_writable)
4369                 flags |= TNF_NO_GROUP;
4370
4371         /*
4372          * Flag if the page is shared between multiple address spaces. This
4373          * is later used when determining whether to group tasks together
4374          */
4375         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4376                 flags |= TNF_SHARED;
4377
4378         last_cpupid = page_cpupid_last(page);
4379         page_nid = page_to_nid(page);
4380         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4381                         &flags);
4382         if (target_nid == NUMA_NO_NODE) {
4383                 put_page(page);
4384                 goto out_map;
4385         }
4386         pte_unmap_unlock(vmf->pte, vmf->ptl);
4387
4388         /* Migrate to the requested node */
4389         if (migrate_misplaced_page(page, vma, target_nid)) {
4390                 page_nid = target_nid;
4391                 flags |= TNF_MIGRATED;
4392         } else {
4393                 flags |= TNF_MIGRATE_FAIL;
4394                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4395                 spin_lock(vmf->ptl);
4396                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4397                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4398                         goto out;
4399                 }
4400                 goto out_map;
4401         }
4402
4403 out:
4404         if (page_nid != NUMA_NO_NODE)
4405                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4406         return 0;
4407 out_map:
4408         /*
4409          * Make it present again, depending on how arch implements
4410          * non-accessible ptes, some can allow access by kernel mode.
4411          */
4412         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4413         pte = pte_modify(old_pte, vma->vm_page_prot);
4414         pte = pte_mkyoung(pte);
4415         if (was_writable)
4416                 pte = pte_mkwrite(pte);
4417         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4418         update_mmu_cache(vma, vmf->address, vmf->pte);
4419         pte_unmap_unlock(vmf->pte, vmf->ptl);
4420         goto out;
4421 }
4422
4423 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4424 {
4425         if (vma_is_anonymous(vmf->vma))
4426                 return do_huge_pmd_anonymous_page(vmf);
4427         if (vmf->vma->vm_ops->huge_fault)
4428                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4429         return VM_FAULT_FALLBACK;
4430 }
4431
4432 /* `inline' is required to avoid gcc 4.1.2 build error */
4433 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4434 {
4435         if (vma_is_anonymous(vmf->vma)) {
4436                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4437                         return handle_userfault(vmf, VM_UFFD_WP);
4438                 return do_huge_pmd_wp_page(vmf);
4439         }
4440         if (vmf->vma->vm_ops->huge_fault) {
4441                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4442
4443                 if (!(ret & VM_FAULT_FALLBACK))
4444                         return ret;
4445         }
4446
4447         /* COW or write-notify handled on pte level: split pmd. */
4448         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4449
4450         return VM_FAULT_FALLBACK;
4451 }
4452
4453 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4454 {
4455 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4456         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4457         /* No support for anonymous transparent PUD pages yet */
4458         if (vma_is_anonymous(vmf->vma))
4459                 goto split;
4460         if (vmf->vma->vm_ops->huge_fault) {
4461                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4462
4463                 if (!(ret & VM_FAULT_FALLBACK))
4464                         return ret;
4465         }
4466 split:
4467         /* COW or write-notify not handled on PUD level: split pud.*/
4468         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4469 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4470         return VM_FAULT_FALLBACK;
4471 }
4472
4473 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4474 {
4475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4476         /* No support for anonymous transparent PUD pages yet */
4477         if (vma_is_anonymous(vmf->vma))
4478                 return VM_FAULT_FALLBACK;
4479         if (vmf->vma->vm_ops->huge_fault)
4480                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4482         return VM_FAULT_FALLBACK;
4483 }
4484
4485 /*
4486  * These routines also need to handle stuff like marking pages dirty
4487  * and/or accessed for architectures that don't do it in hardware (most
4488  * RISC architectures).  The early dirtying is also good on the i386.
4489  *
4490  * There is also a hook called "update_mmu_cache()" that architectures
4491  * with external mmu caches can use to update those (ie the Sparc or
4492  * PowerPC hashed page tables that act as extended TLBs).
4493  *
4494  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4495  * concurrent faults).
4496  *
4497  * The mmap_lock may have been released depending on flags and our return value.
4498  * See filemap_fault() and __folio_lock_or_retry().
4499  */
4500 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4501 {
4502         pte_t entry;
4503
4504         if (unlikely(pmd_none(*vmf->pmd))) {
4505                 /*
4506                  * Leave __pte_alloc() until later: because vm_ops->fault may
4507                  * want to allocate huge page, and if we expose page table
4508                  * for an instant, it will be difficult to retract from
4509                  * concurrent faults and from rmap lookups.
4510                  */
4511                 vmf->pte = NULL;
4512         } else {
4513                 /*
4514                  * If a huge pmd materialized under us just retry later.  Use
4515                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4516                  * of pmd_trans_huge() to ensure the pmd didn't become
4517                  * pmd_trans_huge under us and then back to pmd_none, as a
4518                  * result of MADV_DONTNEED running immediately after a huge pmd
4519                  * fault in a different thread of this mm, in turn leading to a
4520                  * misleading pmd_trans_huge() retval. All we have to ensure is
4521                  * that it is a regular pmd that we can walk with
4522                  * pte_offset_map() and we can do that through an atomic read
4523                  * in C, which is what pmd_trans_unstable() provides.
4524                  */
4525                 if (pmd_devmap_trans_unstable(vmf->pmd))
4526                         return 0;
4527                 /*
4528                  * A regular pmd is established and it can't morph into a huge
4529                  * pmd from under us anymore at this point because we hold the
4530                  * mmap_lock read mode and khugepaged takes it in write mode.
4531                  * So now it's safe to run pte_offset_map().
4532                  */
4533                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4534                 vmf->orig_pte = *vmf->pte;
4535
4536                 /*
4537                  * some architectures can have larger ptes than wordsize,
4538                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4539                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4540                  * accesses.  The code below just needs a consistent view
4541                  * for the ifs and we later double check anyway with the
4542                  * ptl lock held. So here a barrier will do.
4543                  */
4544                 barrier();
4545                 if (pte_none(vmf->orig_pte)) {
4546                         pte_unmap(vmf->pte);
4547                         vmf->pte = NULL;
4548                 }
4549         }
4550
4551         if (!vmf->pte) {
4552                 if (vma_is_anonymous(vmf->vma))
4553                         return do_anonymous_page(vmf);
4554                 else
4555                         return do_fault(vmf);
4556         }
4557
4558         if (!pte_present(vmf->orig_pte))
4559                 return do_swap_page(vmf);
4560
4561         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4562                 return do_numa_page(vmf);
4563
4564         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4565         spin_lock(vmf->ptl);
4566         entry = vmf->orig_pte;
4567         if (unlikely(!pte_same(*vmf->pte, entry))) {
4568                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4569                 goto unlock;
4570         }
4571         if (vmf->flags & FAULT_FLAG_WRITE) {
4572                 if (!pte_write(entry))
4573                         return do_wp_page(vmf);
4574                 entry = pte_mkdirty(entry);
4575         }
4576         entry = pte_mkyoung(entry);
4577         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4578                                 vmf->flags & FAULT_FLAG_WRITE)) {
4579                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4580         } else {
4581                 /* Skip spurious TLB flush for retried page fault */
4582                 if (vmf->flags & FAULT_FLAG_TRIED)
4583                         goto unlock;
4584                 /*
4585                  * This is needed only for protection faults but the arch code
4586                  * is not yet telling us if this is a protection fault or not.
4587                  * This still avoids useless tlb flushes for .text page faults
4588                  * with threads.
4589                  */
4590                 if (vmf->flags & FAULT_FLAG_WRITE)
4591                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4592         }
4593 unlock:
4594         pte_unmap_unlock(vmf->pte, vmf->ptl);
4595         return 0;
4596 }
4597
4598 /*
4599  * By the time we get here, we already hold the mm semaphore
4600  *
4601  * The mmap_lock may have been released depending on flags and our
4602  * return value.  See filemap_fault() and __folio_lock_or_retry().
4603  */
4604 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4605                 unsigned long address, unsigned int flags)
4606 {
4607         struct vm_fault vmf = {
4608                 .vma = vma,
4609                 .address = address & PAGE_MASK,
4610                 .flags = flags,
4611                 .pgoff = linear_page_index(vma, address),
4612                 .gfp_mask = __get_fault_gfp_mask(vma),
4613         };
4614         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4615         struct mm_struct *mm = vma->vm_mm;
4616         pgd_t *pgd;
4617         p4d_t *p4d;
4618         vm_fault_t ret;
4619
4620         pgd = pgd_offset(mm, address);
4621         p4d = p4d_alloc(mm, pgd, address);
4622         if (!p4d)
4623                 return VM_FAULT_OOM;
4624
4625         vmf.pud = pud_alloc(mm, p4d, address);
4626         if (!vmf.pud)
4627                 return VM_FAULT_OOM;
4628 retry_pud:
4629         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4630                 ret = create_huge_pud(&vmf);
4631                 if (!(ret & VM_FAULT_FALLBACK))
4632                         return ret;
4633         } else {
4634                 pud_t orig_pud = *vmf.pud;
4635
4636                 barrier();
4637                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4638
4639                         /* NUMA case for anonymous PUDs would go here */
4640
4641                         if (dirty && !pud_write(orig_pud)) {
4642                                 ret = wp_huge_pud(&vmf, orig_pud);
4643                                 if (!(ret & VM_FAULT_FALLBACK))
4644                                         return ret;
4645                         } else {
4646                                 huge_pud_set_accessed(&vmf, orig_pud);
4647                                 return 0;
4648                         }
4649                 }
4650         }
4651
4652         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4653         if (!vmf.pmd)
4654                 return VM_FAULT_OOM;
4655
4656         /* Huge pud page fault raced with pmd_alloc? */
4657         if (pud_trans_unstable(vmf.pud))
4658                 goto retry_pud;
4659
4660         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4661                 ret = create_huge_pmd(&vmf);
4662                 if (!(ret & VM_FAULT_FALLBACK))
4663                         return ret;
4664         } else {
4665                 vmf.orig_pmd = *vmf.pmd;
4666
4667                 barrier();
4668                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4669                         VM_BUG_ON(thp_migration_supported() &&
4670                                           !is_pmd_migration_entry(vmf.orig_pmd));
4671                         if (is_pmd_migration_entry(vmf.orig_pmd))
4672                                 pmd_migration_entry_wait(mm, vmf.pmd);
4673                         return 0;
4674                 }
4675                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4676                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4677                                 return do_huge_pmd_numa_page(&vmf);
4678
4679                         if (dirty && !pmd_write(vmf.orig_pmd)) {
4680                                 ret = wp_huge_pmd(&vmf);
4681                                 if (!(ret & VM_FAULT_FALLBACK))
4682                                         return ret;
4683                         } else {
4684                                 huge_pmd_set_accessed(&vmf);
4685                                 return 0;
4686                         }
4687                 }
4688         }
4689
4690         return handle_pte_fault(&vmf);
4691 }
4692
4693 /**
4694  * mm_account_fault - Do page fault accounting
4695  *
4696  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4697  *        of perf event counters, but we'll still do the per-task accounting to
4698  *        the task who triggered this page fault.
4699  * @address: the faulted address.
4700  * @flags: the fault flags.
4701  * @ret: the fault retcode.
4702  *
4703  * This will take care of most of the page fault accounting.  Meanwhile, it
4704  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4705  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4706  * still be in per-arch page fault handlers at the entry of page fault.
4707  */
4708 static inline void mm_account_fault(struct pt_regs *regs,
4709                                     unsigned long address, unsigned int flags,
4710                                     vm_fault_t ret)
4711 {
4712         bool major;
4713
4714         /*
4715          * We don't do accounting for some specific faults:
4716          *
4717          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4718          *   includes arch_vma_access_permitted() failing before reaching here.
4719          *   So this is not a "this many hardware page faults" counter.  We
4720          *   should use the hw profiling for that.
4721          *
4722          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4723          *   once they're completed.
4724          */
4725         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4726                 return;
4727
4728         /*
4729          * We define the fault as a major fault when the final successful fault
4730          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4731          * handle it immediately previously).
4732          */
4733         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4734
4735         if (major)
4736                 current->maj_flt++;
4737         else
4738                 current->min_flt++;
4739
4740         /*
4741          * If the fault is done for GUP, regs will be NULL.  We only do the
4742          * accounting for the per thread fault counters who triggered the
4743          * fault, and we skip the perf event updates.
4744          */
4745         if (!regs)
4746                 return;
4747
4748         if (major)
4749                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4750         else
4751                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4752 }
4753
4754 /*
4755  * By the time we get here, we already hold the mm semaphore
4756  *
4757  * The mmap_lock may have been released depending on flags and our
4758  * return value.  See filemap_fault() and __folio_lock_or_retry().
4759  */
4760 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4761                            unsigned int flags, struct pt_regs *regs)
4762 {
4763         vm_fault_t ret;
4764
4765         __set_current_state(TASK_RUNNING);
4766
4767         count_vm_event(PGFAULT);
4768         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4769
4770         /* do counter updates before entering really critical section. */
4771         check_sync_rss_stat(current);
4772
4773         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4774                                             flags & FAULT_FLAG_INSTRUCTION,
4775                                             flags & FAULT_FLAG_REMOTE))
4776                 return VM_FAULT_SIGSEGV;
4777
4778         /*
4779          * Enable the memcg OOM handling for faults triggered in user
4780          * space.  Kernel faults are handled more gracefully.
4781          */
4782         if (flags & FAULT_FLAG_USER)
4783                 mem_cgroup_enter_user_fault();
4784
4785         if (unlikely(is_vm_hugetlb_page(vma)))
4786                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4787         else
4788                 ret = __handle_mm_fault(vma, address, flags);
4789
4790         if (flags & FAULT_FLAG_USER) {
4791                 mem_cgroup_exit_user_fault();
4792                 /*
4793                  * The task may have entered a memcg OOM situation but
4794                  * if the allocation error was handled gracefully (no
4795                  * VM_FAULT_OOM), there is no need to kill anything.
4796                  * Just clean up the OOM state peacefully.
4797                  */
4798                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4799                         mem_cgroup_oom_synchronize(false);
4800         }
4801
4802         mm_account_fault(regs, address, flags, ret);
4803
4804         return ret;
4805 }
4806 EXPORT_SYMBOL_GPL(handle_mm_fault);
4807
4808 #ifndef __PAGETABLE_P4D_FOLDED
4809 /*
4810  * Allocate p4d page table.
4811  * We've already handled the fast-path in-line.
4812  */
4813 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4814 {
4815         p4d_t *new = p4d_alloc_one(mm, address);
4816         if (!new)
4817                 return -ENOMEM;
4818
4819         spin_lock(&mm->page_table_lock);
4820         if (pgd_present(*pgd)) {        /* Another has populated it */
4821                 p4d_free(mm, new);
4822         } else {
4823                 smp_wmb(); /* See comment in pmd_install() */
4824                 pgd_populate(mm, pgd, new);
4825         }
4826         spin_unlock(&mm->page_table_lock);
4827         return 0;
4828 }
4829 #endif /* __PAGETABLE_P4D_FOLDED */
4830
4831 #ifndef __PAGETABLE_PUD_FOLDED
4832 /*
4833  * Allocate page upper directory.
4834  * We've already handled the fast-path in-line.
4835  */
4836 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4837 {
4838         pud_t *new = pud_alloc_one(mm, address);
4839         if (!new)
4840                 return -ENOMEM;
4841
4842         spin_lock(&mm->page_table_lock);
4843         if (!p4d_present(*p4d)) {
4844                 mm_inc_nr_puds(mm);
4845                 smp_wmb(); /* See comment in pmd_install() */
4846                 p4d_populate(mm, p4d, new);
4847         } else  /* Another has populated it */
4848                 pud_free(mm, new);
4849         spin_unlock(&mm->page_table_lock);
4850         return 0;
4851 }
4852 #endif /* __PAGETABLE_PUD_FOLDED */
4853
4854 #ifndef __PAGETABLE_PMD_FOLDED
4855 /*
4856  * Allocate page middle directory.
4857  * We've already handled the fast-path in-line.
4858  */
4859 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4860 {
4861         spinlock_t *ptl;
4862         pmd_t *new = pmd_alloc_one(mm, address);
4863         if (!new)
4864                 return -ENOMEM;
4865
4866         ptl = pud_lock(mm, pud);
4867         if (!pud_present(*pud)) {
4868                 mm_inc_nr_pmds(mm);
4869                 smp_wmb(); /* See comment in pmd_install() */
4870                 pud_populate(mm, pud, new);
4871         } else {        /* Another has populated it */
4872                 pmd_free(mm, new);
4873         }
4874         spin_unlock(ptl);
4875         return 0;
4876 }
4877 #endif /* __PAGETABLE_PMD_FOLDED */
4878
4879 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4880                           struct mmu_notifier_range *range, pte_t **ptepp,
4881                           pmd_t **pmdpp, spinlock_t **ptlp)
4882 {
4883         pgd_t *pgd;
4884         p4d_t *p4d;
4885         pud_t *pud;
4886         pmd_t *pmd;
4887         pte_t *ptep;
4888
4889         pgd = pgd_offset(mm, address);
4890         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4891                 goto out;
4892
4893         p4d = p4d_offset(pgd, address);
4894         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4895                 goto out;
4896
4897         pud = pud_offset(p4d, address);
4898         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4899                 goto out;
4900
4901         pmd = pmd_offset(pud, address);
4902         VM_BUG_ON(pmd_trans_huge(*pmd));
4903
4904         if (pmd_huge(*pmd)) {
4905                 if (!pmdpp)
4906                         goto out;
4907
4908                 if (range) {
4909                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4910                                                 NULL, mm, address & PMD_MASK,
4911                                                 (address & PMD_MASK) + PMD_SIZE);
4912                         mmu_notifier_invalidate_range_start(range);
4913                 }
4914                 *ptlp = pmd_lock(mm, pmd);
4915                 if (pmd_huge(*pmd)) {
4916                         *pmdpp = pmd;
4917                         return 0;
4918                 }
4919                 spin_unlock(*ptlp);
4920                 if (range)
4921                         mmu_notifier_invalidate_range_end(range);
4922         }
4923
4924         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4925                 goto out;
4926
4927         if (range) {
4928                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4929                                         address & PAGE_MASK,
4930                                         (address & PAGE_MASK) + PAGE_SIZE);
4931                 mmu_notifier_invalidate_range_start(range);
4932         }
4933         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4934         if (!pte_present(*ptep))
4935                 goto unlock;
4936         *ptepp = ptep;
4937         return 0;
4938 unlock:
4939         pte_unmap_unlock(ptep, *ptlp);
4940         if (range)
4941                 mmu_notifier_invalidate_range_end(range);
4942 out:
4943         return -EINVAL;
4944 }
4945
4946 /**
4947  * follow_pte - look up PTE at a user virtual address
4948  * @mm: the mm_struct of the target address space
4949  * @address: user virtual address
4950  * @ptepp: location to store found PTE
4951  * @ptlp: location to store the lock for the PTE
4952  *
4953  * On a successful return, the pointer to the PTE is stored in @ptepp;
4954  * the corresponding lock is taken and its location is stored in @ptlp.
4955  * The contents of the PTE are only stable until @ptlp is released;
4956  * any further use, if any, must be protected against invalidation
4957  * with MMU notifiers.
4958  *
4959  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4960  * should be taken for read.
4961  *
4962  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4963  * it is not a good general-purpose API.
4964  *
4965  * Return: zero on success, -ve otherwise.
4966  */
4967 int follow_pte(struct mm_struct *mm, unsigned long address,
4968                pte_t **ptepp, spinlock_t **ptlp)
4969 {
4970         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4971 }
4972 EXPORT_SYMBOL_GPL(follow_pte);
4973
4974 /**
4975  * follow_pfn - look up PFN at a user virtual address
4976  * @vma: memory mapping
4977  * @address: user virtual address
4978  * @pfn: location to store found PFN
4979  *
4980  * Only IO mappings and raw PFN mappings are allowed.
4981  *
4982  * This function does not allow the caller to read the permissions
4983  * of the PTE.  Do not use it.
4984  *
4985  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4986  */
4987 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4988         unsigned long *pfn)
4989 {
4990         int ret = -EINVAL;
4991         spinlock_t *ptl;
4992         pte_t *ptep;
4993
4994         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4995                 return ret;
4996
4997         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4998         if (ret)
4999                 return ret;
5000         *pfn = pte_pfn(*ptep);
5001         pte_unmap_unlock(ptep, ptl);
5002         return 0;
5003 }
5004 EXPORT_SYMBOL(follow_pfn);
5005
5006 #ifdef CONFIG_HAVE_IOREMAP_PROT
5007 int follow_phys(struct vm_area_struct *vma,
5008                 unsigned long address, unsigned int flags,
5009                 unsigned long *prot, resource_size_t *phys)
5010 {
5011         int ret = -EINVAL;
5012         pte_t *ptep, pte;
5013         spinlock_t *ptl;
5014
5015         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5016                 goto out;
5017
5018         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5019                 goto out;
5020         pte = *ptep;
5021
5022         if ((flags & FOLL_WRITE) && !pte_write(pte))
5023                 goto unlock;
5024
5025         *prot = pgprot_val(pte_pgprot(pte));
5026         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5027
5028         ret = 0;
5029 unlock:
5030         pte_unmap_unlock(ptep, ptl);
5031 out:
5032         return ret;
5033 }
5034
5035 /**
5036  * generic_access_phys - generic implementation for iomem mmap access
5037  * @vma: the vma to access
5038  * @addr: userspace address, not relative offset within @vma
5039  * @buf: buffer to read/write
5040  * @len: length of transfer
5041  * @write: set to FOLL_WRITE when writing, otherwise reading
5042  *
5043  * This is a generic implementation for &vm_operations_struct.access for an
5044  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5045  * not page based.
5046  */
5047 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5048                         void *buf, int len, int write)
5049 {
5050         resource_size_t phys_addr;
5051         unsigned long prot = 0;
5052         void __iomem *maddr;
5053         pte_t *ptep, pte;
5054         spinlock_t *ptl;
5055         int offset = offset_in_page(addr);
5056         int ret = -EINVAL;
5057
5058         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5059                 return -EINVAL;
5060
5061 retry:
5062         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5063                 return -EINVAL;
5064         pte = *ptep;
5065         pte_unmap_unlock(ptep, ptl);
5066
5067         prot = pgprot_val(pte_pgprot(pte));
5068         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5069
5070         if ((write & FOLL_WRITE) && !pte_write(pte))
5071                 return -EINVAL;
5072
5073         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5074         if (!maddr)
5075                 return -ENOMEM;
5076
5077         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5078                 goto out_unmap;
5079
5080         if (!pte_same(pte, *ptep)) {
5081                 pte_unmap_unlock(ptep, ptl);
5082                 iounmap(maddr);
5083
5084                 goto retry;
5085         }
5086
5087         if (write)
5088                 memcpy_toio(maddr + offset, buf, len);
5089         else
5090                 memcpy_fromio(buf, maddr + offset, len);
5091         ret = len;
5092         pte_unmap_unlock(ptep, ptl);
5093 out_unmap:
5094         iounmap(maddr);
5095
5096         return ret;
5097 }
5098 EXPORT_SYMBOL_GPL(generic_access_phys);
5099 #endif
5100
5101 /*
5102  * Access another process' address space as given in mm.
5103  */
5104 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5105                        int len, unsigned int gup_flags)
5106 {
5107         struct vm_area_struct *vma;
5108         void *old_buf = buf;
5109         int write = gup_flags & FOLL_WRITE;
5110
5111         if (mmap_read_lock_killable(mm))
5112                 return 0;
5113
5114         /* ignore errors, just check how much was successfully transferred */
5115         while (len) {
5116                 int bytes, ret, offset;
5117                 void *maddr;
5118                 struct page *page = NULL;
5119
5120                 ret = get_user_pages_remote(mm, addr, 1,
5121                                 gup_flags, &page, &vma, NULL);
5122                 if (ret <= 0) {
5123 #ifndef CONFIG_HAVE_IOREMAP_PROT
5124                         break;
5125 #else
5126                         /*
5127                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5128                          * we can access using slightly different code.
5129                          */
5130                         vma = vma_lookup(mm, addr);
5131                         if (!vma)
5132                                 break;
5133                         if (vma->vm_ops && vma->vm_ops->access)
5134                                 ret = vma->vm_ops->access(vma, addr, buf,
5135                                                           len, write);
5136                         if (ret <= 0)
5137                                 break;
5138                         bytes = ret;
5139 #endif
5140                 } else {
5141                         bytes = len;
5142                         offset = addr & (PAGE_SIZE-1);
5143                         if (bytes > PAGE_SIZE-offset)
5144                                 bytes = PAGE_SIZE-offset;
5145
5146                         maddr = kmap(page);
5147                         if (write) {
5148                                 copy_to_user_page(vma, page, addr,
5149                                                   maddr + offset, buf, bytes);
5150                                 set_page_dirty_lock(page);
5151                         } else {
5152                                 copy_from_user_page(vma, page, addr,
5153                                                     buf, maddr + offset, bytes);
5154                         }
5155                         kunmap(page);
5156                         put_page(page);
5157                 }
5158                 len -= bytes;
5159                 buf += bytes;
5160                 addr += bytes;
5161         }
5162         mmap_read_unlock(mm);
5163
5164         return buf - old_buf;
5165 }
5166
5167 /**
5168  * access_remote_vm - access another process' address space
5169  * @mm:         the mm_struct of the target address space
5170  * @addr:       start address to access
5171  * @buf:        source or destination buffer
5172  * @len:        number of bytes to transfer
5173  * @gup_flags:  flags modifying lookup behaviour
5174  *
5175  * The caller must hold a reference on @mm.
5176  *
5177  * Return: number of bytes copied from source to destination.
5178  */
5179 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5180                 void *buf, int len, unsigned int gup_flags)
5181 {
5182         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5183 }
5184
5185 /*
5186  * Access another process' address space.
5187  * Source/target buffer must be kernel space,
5188  * Do not walk the page table directly, use get_user_pages
5189  */
5190 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5191                 void *buf, int len, unsigned int gup_flags)
5192 {
5193         struct mm_struct *mm;
5194         int ret;
5195
5196         mm = get_task_mm(tsk);
5197         if (!mm)
5198                 return 0;
5199
5200         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5201
5202         mmput(mm);
5203
5204         return ret;
5205 }
5206 EXPORT_SYMBOL_GPL(access_process_vm);
5207
5208 /*
5209  * Print the name of a VMA.
5210  */
5211 void print_vma_addr(char *prefix, unsigned long ip)
5212 {
5213         struct mm_struct *mm = current->mm;
5214         struct vm_area_struct *vma;
5215
5216         /*
5217          * we might be running from an atomic context so we cannot sleep
5218          */
5219         if (!mmap_read_trylock(mm))
5220                 return;
5221
5222         vma = find_vma(mm, ip);
5223         if (vma && vma->vm_file) {
5224                 struct file *f = vma->vm_file;
5225                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5226                 if (buf) {
5227                         char *p;
5228
5229                         p = file_path(f, buf, PAGE_SIZE);
5230                         if (IS_ERR(p))
5231                                 p = "?";
5232                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5233                                         vma->vm_start,
5234                                         vma->vm_end - vma->vm_start);
5235                         free_page((unsigned long)buf);
5236                 }
5237         }
5238         mmap_read_unlock(mm);
5239 }
5240
5241 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5242 void __might_fault(const char *file, int line)
5243 {
5244         /*
5245          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5246          * holding the mmap_lock, this is safe because kernel memory doesn't
5247          * get paged out, therefore we'll never actually fault, and the
5248          * below annotations will generate false positives.
5249          */
5250         if (uaccess_kernel())
5251                 return;
5252         if (pagefault_disabled())
5253                 return;
5254         __might_sleep(file, line);
5255 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5256         if (current->mm)
5257                 might_lock_read(&current->mm->mmap_lock);
5258 #endif
5259 }
5260 EXPORT_SYMBOL(__might_fault);
5261 #endif
5262
5263 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5264 /*
5265  * Process all subpages of the specified huge page with the specified
5266  * operation.  The target subpage will be processed last to keep its
5267  * cache lines hot.
5268  */
5269 static inline void process_huge_page(
5270         unsigned long addr_hint, unsigned int pages_per_huge_page,
5271         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5272         void *arg)
5273 {
5274         int i, n, base, l;
5275         unsigned long addr = addr_hint &
5276                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5277
5278         /* Process target subpage last to keep its cache lines hot */
5279         might_sleep();
5280         n = (addr_hint - addr) / PAGE_SIZE;
5281         if (2 * n <= pages_per_huge_page) {
5282                 /* If target subpage in first half of huge page */
5283                 base = 0;
5284                 l = n;
5285                 /* Process subpages at the end of huge page */
5286                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5287                         cond_resched();
5288                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5289                 }
5290         } else {
5291                 /* If target subpage in second half of huge page */
5292                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5293                 l = pages_per_huge_page - n;
5294                 /* Process subpages at the begin of huge page */
5295                 for (i = 0; i < base; i++) {
5296                         cond_resched();
5297                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5298                 }
5299         }
5300         /*
5301          * Process remaining subpages in left-right-left-right pattern
5302          * towards the target subpage
5303          */
5304         for (i = 0; i < l; i++) {
5305                 int left_idx = base + i;
5306                 int right_idx = base + 2 * l - 1 - i;
5307
5308                 cond_resched();
5309                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5310                 cond_resched();
5311                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5312         }
5313 }
5314
5315 static void clear_gigantic_page(struct page *page,
5316                                 unsigned long addr,
5317                                 unsigned int pages_per_huge_page)
5318 {
5319         int i;
5320         struct page *p = page;
5321
5322         might_sleep();
5323         for (i = 0; i < pages_per_huge_page;
5324              i++, p = mem_map_next(p, page, i)) {
5325                 cond_resched();
5326                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5327         }
5328 }
5329
5330 static void clear_subpage(unsigned long addr, int idx, void *arg)
5331 {
5332         struct page *page = arg;
5333
5334         clear_user_highpage(page + idx, addr);
5335 }
5336
5337 void clear_huge_page(struct page *page,
5338                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5339 {
5340         unsigned long addr = addr_hint &
5341                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5342
5343         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5344                 clear_gigantic_page(page, addr, pages_per_huge_page);
5345                 return;
5346         }
5347
5348         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5349 }
5350
5351 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5352                                     unsigned long addr,
5353                                     struct vm_area_struct *vma,
5354                                     unsigned int pages_per_huge_page)
5355 {
5356         int i;
5357         struct page *dst_base = dst;
5358         struct page *src_base = src;
5359
5360         for (i = 0; i < pages_per_huge_page; ) {
5361                 cond_resched();
5362                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5363
5364                 i++;
5365                 dst = mem_map_next(dst, dst_base, i);
5366                 src = mem_map_next(src, src_base, i);
5367         }
5368 }
5369
5370 struct copy_subpage_arg {
5371         struct page *dst;
5372         struct page *src;
5373         struct vm_area_struct *vma;
5374 };
5375
5376 static void copy_subpage(unsigned long addr, int idx, void *arg)
5377 {
5378         struct copy_subpage_arg *copy_arg = arg;
5379
5380         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5381                            addr, copy_arg->vma);
5382 }
5383
5384 void copy_user_huge_page(struct page *dst, struct page *src,
5385                          unsigned long addr_hint, struct vm_area_struct *vma,
5386                          unsigned int pages_per_huge_page)
5387 {
5388         unsigned long addr = addr_hint &
5389                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5390         struct copy_subpage_arg arg = {
5391                 .dst = dst,
5392                 .src = src,
5393                 .vma = vma,
5394         };
5395
5396         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5397                 copy_user_gigantic_page(dst, src, addr, vma,
5398                                         pages_per_huge_page);
5399                 return;
5400         }
5401
5402         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5403 }
5404
5405 long copy_huge_page_from_user(struct page *dst_page,
5406                                 const void __user *usr_src,
5407                                 unsigned int pages_per_huge_page,
5408                                 bool allow_pagefault)
5409 {
5410         void *page_kaddr;
5411         unsigned long i, rc = 0;
5412         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5413         struct page *subpage = dst_page;
5414
5415         for (i = 0; i < pages_per_huge_page;
5416              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5417                 if (allow_pagefault)
5418                         page_kaddr = kmap(subpage);
5419                 else
5420                         page_kaddr = kmap_atomic(subpage);
5421                 rc = copy_from_user(page_kaddr,
5422                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5423                 if (allow_pagefault)
5424                         kunmap(subpage);
5425                 else
5426                         kunmap_atomic(page_kaddr);
5427
5428                 ret_val -= (PAGE_SIZE - rc);
5429                 if (rc)
5430                         break;
5431
5432                 cond_resched();
5433         }
5434         return ret_val;
5435 }
5436 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5437
5438 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5439
5440 static struct kmem_cache *page_ptl_cachep;
5441
5442 void __init ptlock_cache_init(void)
5443 {
5444         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5445                         SLAB_PANIC, NULL);
5446 }
5447
5448 bool ptlock_alloc(struct page *page)
5449 {
5450         spinlock_t *ptl;
5451
5452         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5453         if (!ptl)
5454                 return false;
5455         page->ptl = ptl;
5456         return true;
5457 }
5458
5459 void ptlock_free(struct page *page)
5460 {
5461         kmem_cache_free(page_ptl_cachep, page->ptl);
5462 }
5463 #endif