x86/hyperv: Remove aliases with X64 in their name
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 /* use the per-pgdat data instead for discontigmem - mbligh */
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102
103 /*
104  * A number of key systems in x86 including ioremap() rely on the assumption
105  * that high_memory defines the upper bound on direct map memory, then end
106  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
107  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108  * and ZONE_HIGHMEM.
109  */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112
113 /*
114  * Randomize the address space (stacks, mmaps, brk, etc.).
115  *
116  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117  *   as ancient (libc5 based) binaries can segfault. )
118  */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121                                         1;
122 #else
123                                         2;
124 #endif
125
126 #ifndef arch_faults_on_old_pte
127 static inline bool arch_faults_on_old_pte(void)
128 {
129         /*
130          * Those arches which don't have hw access flag feature need to
131          * implement their own helper. By default, "true" means pagefault
132          * will be hit on old pte.
133          */
134         return true;
135 }
136 #endif
137
138 static int __init disable_randmaps(char *s)
139 {
140         randomize_va_space = 0;
141         return 1;
142 }
143 __setup("norandmaps", disable_randmaps);
144
145 unsigned long zero_pfn __read_mostly;
146 EXPORT_SYMBOL(zero_pfn);
147
148 unsigned long highest_memmap_pfn __read_mostly;
149
150 /*
151  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152  */
153 static int __init init_zero_pfn(void)
154 {
155         zero_pfn = page_to_pfn(ZERO_PAGE(0));
156         return 0;
157 }
158 core_initcall(init_zero_pfn);
159
160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
161 {
162         trace_rss_stat(mm, member, count);
163 }
164
165 #if defined(SPLIT_RSS_COUNTING)
166
167 void sync_mm_rss(struct mm_struct *mm)
168 {
169         int i;
170
171         for (i = 0; i < NR_MM_COUNTERS; i++) {
172                 if (current->rss_stat.count[i]) {
173                         add_mm_counter(mm, i, current->rss_stat.count[i]);
174                         current->rss_stat.count[i] = 0;
175                 }
176         }
177         current->rss_stat.events = 0;
178 }
179
180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181 {
182         struct task_struct *task = current;
183
184         if (likely(task->mm == mm))
185                 task->rss_stat.count[member] += val;
186         else
187                 add_mm_counter(mm, member, val);
188 }
189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191
192 /* sync counter once per 64 page faults */
193 #define TASK_RSS_EVENTS_THRESH  (64)
194 static void check_sync_rss_stat(struct task_struct *task)
195 {
196         if (unlikely(task != current))
197                 return;
198         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
199                 sync_mm_rss(task->mm);
200 }
201 #else /* SPLIT_RSS_COUNTING */
202
203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205
206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 }
209
210 #endif /* SPLIT_RSS_COUNTING */
211
212 /*
213  * Note: this doesn't free the actual pages themselves. That
214  * has been handled earlier when unmapping all the memory regions.
215  */
216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217                            unsigned long addr)
218 {
219         pgtable_t token = pmd_pgtable(*pmd);
220         pmd_clear(pmd);
221         pte_free_tlb(tlb, token, addr);
222         mm_dec_nr_ptes(tlb->mm);
223 }
224
225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226                                 unsigned long addr, unsigned long end,
227                                 unsigned long floor, unsigned long ceiling)
228 {
229         pmd_t *pmd;
230         unsigned long next;
231         unsigned long start;
232
233         start = addr;
234         pmd = pmd_offset(pud, addr);
235         do {
236                 next = pmd_addr_end(addr, end);
237                 if (pmd_none_or_clear_bad(pmd))
238                         continue;
239                 free_pte_range(tlb, pmd, addr);
240         } while (pmd++, addr = next, addr != end);
241
242         start &= PUD_MASK;
243         if (start < floor)
244                 return;
245         if (ceiling) {
246                 ceiling &= PUD_MASK;
247                 if (!ceiling)
248                         return;
249         }
250         if (end - 1 > ceiling - 1)
251                 return;
252
253         pmd = pmd_offset(pud, start);
254         pud_clear(pud);
255         pmd_free_tlb(tlb, pmd, start);
256         mm_dec_nr_pmds(tlb->mm);
257 }
258
259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
260                                 unsigned long addr, unsigned long end,
261                                 unsigned long floor, unsigned long ceiling)
262 {
263         pud_t *pud;
264         unsigned long next;
265         unsigned long start;
266
267         start = addr;
268         pud = pud_offset(p4d, addr);
269         do {
270                 next = pud_addr_end(addr, end);
271                 if (pud_none_or_clear_bad(pud))
272                         continue;
273                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
274         } while (pud++, addr = next, addr != end);
275
276         start &= P4D_MASK;
277         if (start < floor)
278                 return;
279         if (ceiling) {
280                 ceiling &= P4D_MASK;
281                 if (!ceiling)
282                         return;
283         }
284         if (end - 1 > ceiling - 1)
285                 return;
286
287         pud = pud_offset(p4d, start);
288         p4d_clear(p4d);
289         pud_free_tlb(tlb, pud, start);
290         mm_dec_nr_puds(tlb->mm);
291 }
292
293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294                                 unsigned long addr, unsigned long end,
295                                 unsigned long floor, unsigned long ceiling)
296 {
297         p4d_t *p4d;
298         unsigned long next;
299         unsigned long start;
300
301         start = addr;
302         p4d = p4d_offset(pgd, addr);
303         do {
304                 next = p4d_addr_end(addr, end);
305                 if (p4d_none_or_clear_bad(p4d))
306                         continue;
307                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308         } while (p4d++, addr = next, addr != end);
309
310         start &= PGDIR_MASK;
311         if (start < floor)
312                 return;
313         if (ceiling) {
314                 ceiling &= PGDIR_MASK;
315                 if (!ceiling)
316                         return;
317         }
318         if (end - 1 > ceiling - 1)
319                 return;
320
321         p4d = p4d_offset(pgd, start);
322         pgd_clear(pgd);
323         p4d_free_tlb(tlb, p4d, start);
324 }
325
326 /*
327  * This function frees user-level page tables of a process.
328  */
329 void free_pgd_range(struct mmu_gather *tlb,
330                         unsigned long addr, unsigned long end,
331                         unsigned long floor, unsigned long ceiling)
332 {
333         pgd_t *pgd;
334         unsigned long next;
335
336         /*
337          * The next few lines have given us lots of grief...
338          *
339          * Why are we testing PMD* at this top level?  Because often
340          * there will be no work to do at all, and we'd prefer not to
341          * go all the way down to the bottom just to discover that.
342          *
343          * Why all these "- 1"s?  Because 0 represents both the bottom
344          * of the address space and the top of it (using -1 for the
345          * top wouldn't help much: the masks would do the wrong thing).
346          * The rule is that addr 0 and floor 0 refer to the bottom of
347          * the address space, but end 0 and ceiling 0 refer to the top
348          * Comparisons need to use "end - 1" and "ceiling - 1" (though
349          * that end 0 case should be mythical).
350          *
351          * Wherever addr is brought up or ceiling brought down, we must
352          * be careful to reject "the opposite 0" before it confuses the
353          * subsequent tests.  But what about where end is brought down
354          * by PMD_SIZE below? no, end can't go down to 0 there.
355          *
356          * Whereas we round start (addr) and ceiling down, by different
357          * masks at different levels, in order to test whether a table
358          * now has no other vmas using it, so can be freed, we don't
359          * bother to round floor or end up - the tests don't need that.
360          */
361
362         addr &= PMD_MASK;
363         if (addr < floor) {
364                 addr += PMD_SIZE;
365                 if (!addr)
366                         return;
367         }
368         if (ceiling) {
369                 ceiling &= PMD_MASK;
370                 if (!ceiling)
371                         return;
372         }
373         if (end - 1 > ceiling - 1)
374                 end -= PMD_SIZE;
375         if (addr > end - 1)
376                 return;
377         /*
378          * We add page table cache pages with PAGE_SIZE,
379          * (see pte_free_tlb()), flush the tlb if we need
380          */
381         tlb_change_page_size(tlb, PAGE_SIZE);
382         pgd = pgd_offset(tlb->mm, addr);
383         do {
384                 next = pgd_addr_end(addr, end);
385                 if (pgd_none_or_clear_bad(pgd))
386                         continue;
387                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
388         } while (pgd++, addr = next, addr != end);
389 }
390
391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
392                 unsigned long floor, unsigned long ceiling)
393 {
394         while (vma) {
395                 struct vm_area_struct *next = vma->vm_next;
396                 unsigned long addr = vma->vm_start;
397
398                 /*
399                  * Hide vma from rmap and truncate_pagecache before freeing
400                  * pgtables
401                  */
402                 unlink_anon_vmas(vma);
403                 unlink_file_vma(vma);
404
405                 if (is_vm_hugetlb_page(vma)) {
406                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
407                                 floor, next ? next->vm_start : ceiling);
408                 } else {
409                         /*
410                          * Optimization: gather nearby vmas into one call down
411                          */
412                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
413                                && !is_vm_hugetlb_page(next)) {
414                                 vma = next;
415                                 next = vma->vm_next;
416                                 unlink_anon_vmas(vma);
417                                 unlink_file_vma(vma);
418                         }
419                         free_pgd_range(tlb, addr, vma->vm_end,
420                                 floor, next ? next->vm_start : ceiling);
421                 }
422                 vma = next;
423         }
424 }
425
426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 {
428         spinlock_t *ptl;
429         pgtable_t new = pte_alloc_one(mm);
430         if (!new)
431                 return -ENOMEM;
432
433         /*
434          * Ensure all pte setup (eg. pte page lock and page clearing) are
435          * visible before the pte is made visible to other CPUs by being
436          * put into page tables.
437          *
438          * The other side of the story is the pointer chasing in the page
439          * table walking code (when walking the page table without locking;
440          * ie. most of the time). Fortunately, these data accesses consist
441          * of a chain of data-dependent loads, meaning most CPUs (alpha
442          * being the notable exception) will already guarantee loads are
443          * seen in-order. See the alpha page table accessors for the
444          * smp_rmb() barriers in page table walking code.
445          */
446         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447
448         ptl = pmd_lock(mm, pmd);
449         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
450                 mm_inc_nr_ptes(mm);
451                 pmd_populate(mm, pmd, new);
452                 new = NULL;
453         }
454         spin_unlock(ptl);
455         if (new)
456                 pte_free(mm, new);
457         return 0;
458 }
459
460 int __pte_alloc_kernel(pmd_t *pmd)
461 {
462         pte_t *new = pte_alloc_one_kernel(&init_mm);
463         if (!new)
464                 return -ENOMEM;
465
466         smp_wmb(); /* See comment in __pte_alloc */
467
468         spin_lock(&init_mm.page_table_lock);
469         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
470                 pmd_populate_kernel(&init_mm, pmd, new);
471                 new = NULL;
472         }
473         spin_unlock(&init_mm.page_table_lock);
474         if (new)
475                 pte_free_kernel(&init_mm, new);
476         return 0;
477 }
478
479 static inline void init_rss_vec(int *rss)
480 {
481         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483
484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486         int i;
487
488         if (current->mm == mm)
489                 sync_mm_rss(mm);
490         for (i = 0; i < NR_MM_COUNTERS; i++)
491                 if (rss[i])
492                         add_mm_counter(mm, i, rss[i]);
493 }
494
495 /*
496  * This function is called to print an error when a bad pte
497  * is found. For example, we might have a PFN-mapped pte in
498  * a region that doesn't allow it.
499  *
500  * The calling function must still handle the error.
501  */
502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503                           pte_t pte, struct page *page)
504 {
505         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
506         p4d_t *p4d = p4d_offset(pgd, addr);
507         pud_t *pud = pud_offset(p4d, addr);
508         pmd_t *pmd = pmd_offset(pud, addr);
509         struct address_space *mapping;
510         pgoff_t index;
511         static unsigned long resume;
512         static unsigned long nr_shown;
513         static unsigned long nr_unshown;
514
515         /*
516          * Allow a burst of 60 reports, then keep quiet for that minute;
517          * or allow a steady drip of one report per second.
518          */
519         if (nr_shown == 60) {
520                 if (time_before(jiffies, resume)) {
521                         nr_unshown++;
522                         return;
523                 }
524                 if (nr_unshown) {
525                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526                                  nr_unshown);
527                         nr_unshown = 0;
528                 }
529                 nr_shown = 0;
530         }
531         if (nr_shown++ == 0)
532                 resume = jiffies + 60 * HZ;
533
534         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535         index = linear_page_index(vma, addr);
536
537         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
538                  current->comm,
539                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
540         if (page)
541                 dump_page(page, "bad pte");
542         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
543                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
544         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
545                  vma->vm_file,
546                  vma->vm_ops ? vma->vm_ops->fault : NULL,
547                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548                  mapping ? mapping->a_ops->readpage : NULL);
549         dump_stack();
550         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552
553 /*
554  * vm_normal_page -- This function gets the "struct page" associated with a pte.
555  *
556  * "Special" mappings do not wish to be associated with a "struct page" (either
557  * it doesn't exist, or it exists but they don't want to touch it). In this
558  * case, NULL is returned here. "Normal" mappings do have a struct page.
559  *
560  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561  * pte bit, in which case this function is trivial. Secondly, an architecture
562  * may not have a spare pte bit, which requires a more complicated scheme,
563  * described below.
564  *
565  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566  * special mapping (even if there are underlying and valid "struct pages").
567  * COWed pages of a VM_PFNMAP are always normal.
568  *
569  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572  * mapping will always honor the rule
573  *
574  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575  *
576  * And for normal mappings this is false.
577  *
578  * This restricts such mappings to be a linear translation from virtual address
579  * to pfn. To get around this restriction, we allow arbitrary mappings so long
580  * as the vma is not a COW mapping; in that case, we know that all ptes are
581  * special (because none can have been COWed).
582  *
583  *
584  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585  *
586  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587  * page" backing, however the difference is that _all_ pages with a struct
588  * page (that is, those where pfn_valid is true) are refcounted and considered
589  * normal pages by the VM. The disadvantage is that pages are refcounted
590  * (which can be slower and simply not an option for some PFNMAP users). The
591  * advantage is that we don't have to follow the strict linearity rule of
592  * PFNMAP mappings in order to support COWable mappings.
593  *
594  */
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596                             pte_t pte)
597 {
598         unsigned long pfn = pte_pfn(pte);
599
600         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
601                 if (likely(!pte_special(pte)))
602                         goto check_pfn;
603                 if (vma->vm_ops && vma->vm_ops->find_special_page)
604                         return vma->vm_ops->find_special_page(vma, addr);
605                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606                         return NULL;
607                 if (is_zero_pfn(pfn))
608                         return NULL;
609                 if (pte_devmap(pte))
610                         return NULL;
611
612                 print_bad_pte(vma, addr, pte, NULL);
613                 return NULL;
614         }
615
616         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617
618         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619                 if (vma->vm_flags & VM_MIXEDMAP) {
620                         if (!pfn_valid(pfn))
621                                 return NULL;
622                         goto out;
623                 } else {
624                         unsigned long off;
625                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
626                         if (pfn == vma->vm_pgoff + off)
627                                 return NULL;
628                         if (!is_cow_mapping(vma->vm_flags))
629                                 return NULL;
630                 }
631         }
632
633         if (is_zero_pfn(pfn))
634                 return NULL;
635
636 check_pfn:
637         if (unlikely(pfn > highest_memmap_pfn)) {
638                 print_bad_pte(vma, addr, pte, NULL);
639                 return NULL;
640         }
641
642         /*
643          * NOTE! We still have PageReserved() pages in the page tables.
644          * eg. VDSO mappings can cause them to exist.
645          */
646 out:
647         return pfn_to_page(pfn);
648 }
649
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652                                 pmd_t pmd)
653 {
654         unsigned long pfn = pmd_pfn(pmd);
655
656         /*
657          * There is no pmd_special() but there may be special pmds, e.g.
658          * in a direct-access (dax) mapping, so let's just replicate the
659          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660          */
661         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662                 if (vma->vm_flags & VM_MIXEDMAP) {
663                         if (!pfn_valid(pfn))
664                                 return NULL;
665                         goto out;
666                 } else {
667                         unsigned long off;
668                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
669                         if (pfn == vma->vm_pgoff + off)
670                                 return NULL;
671                         if (!is_cow_mapping(vma->vm_flags))
672                                 return NULL;
673                 }
674         }
675
676         if (pmd_devmap(pmd))
677                 return NULL;
678         if (is_huge_zero_pmd(pmd))
679                 return NULL;
680         if (unlikely(pfn > highest_memmap_pfn))
681                 return NULL;
682
683         /*
684          * NOTE! We still have PageReserved() pages in the page tables.
685          * eg. VDSO mappings can cause them to exist.
686          */
687 out:
688         return pfn_to_page(pfn);
689 }
690 #endif
691
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697
698 static inline unsigned long
699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701                 unsigned long addr, int *rss)
702 {
703         unsigned long vm_flags = vma->vm_flags;
704         pte_t pte = *src_pte;
705         struct page *page;
706
707         /* pte contains position in swap or file, so copy. */
708         if (unlikely(!pte_present(pte))) {
709                 swp_entry_t entry = pte_to_swp_entry(pte);
710
711                 if (likely(!non_swap_entry(entry))) {
712                         if (swap_duplicate(entry) < 0)
713                                 return entry.val;
714
715                         /* make sure dst_mm is on swapoff's mmlist. */
716                         if (unlikely(list_empty(&dst_mm->mmlist))) {
717                                 spin_lock(&mmlist_lock);
718                                 if (list_empty(&dst_mm->mmlist))
719                                         list_add(&dst_mm->mmlist,
720                                                         &src_mm->mmlist);
721                                 spin_unlock(&mmlist_lock);
722                         }
723                         rss[MM_SWAPENTS]++;
724                 } else if (is_migration_entry(entry)) {
725                         page = migration_entry_to_page(entry);
726
727                         rss[mm_counter(page)]++;
728
729                         if (is_write_migration_entry(entry) &&
730                                         is_cow_mapping(vm_flags)) {
731                                 /*
732                                  * COW mappings require pages in both
733                                  * parent and child to be set to read.
734                                  */
735                                 make_migration_entry_read(&entry);
736                                 pte = swp_entry_to_pte(entry);
737                                 if (pte_swp_soft_dirty(*src_pte))
738                                         pte = pte_swp_mksoft_dirty(pte);
739                                 if (pte_swp_uffd_wp(*src_pte))
740                                         pte = pte_swp_mkuffd_wp(pte);
741                                 set_pte_at(src_mm, addr, src_pte, pte);
742                         }
743                 } else if (is_device_private_entry(entry)) {
744                         page = device_private_entry_to_page(entry);
745
746                         /*
747                          * Update rss count even for unaddressable pages, as
748                          * they should treated just like normal pages in this
749                          * respect.
750                          *
751                          * We will likely want to have some new rss counters
752                          * for unaddressable pages, at some point. But for now
753                          * keep things as they are.
754                          */
755                         get_page(page);
756                         rss[mm_counter(page)]++;
757                         page_dup_rmap(page, false);
758
759                         /*
760                          * We do not preserve soft-dirty information, because so
761                          * far, checkpoint/restore is the only feature that
762                          * requires that. And checkpoint/restore does not work
763                          * when a device driver is involved (you cannot easily
764                          * save and restore device driver state).
765                          */
766                         if (is_write_device_private_entry(entry) &&
767                             is_cow_mapping(vm_flags)) {
768                                 make_device_private_entry_read(&entry);
769                                 pte = swp_entry_to_pte(entry);
770                                 if (pte_swp_uffd_wp(*src_pte))
771                                         pte = pte_swp_mkuffd_wp(pte);
772                                 set_pte_at(src_mm, addr, src_pte, pte);
773                         }
774                 }
775                 goto out_set_pte;
776         }
777
778         /*
779          * If it's a COW mapping, write protect it both
780          * in the parent and the child
781          */
782         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
783                 ptep_set_wrprotect(src_mm, addr, src_pte);
784                 pte = pte_wrprotect(pte);
785         }
786
787         /*
788          * If it's a shared mapping, mark it clean in
789          * the child
790          */
791         if (vm_flags & VM_SHARED)
792                 pte = pte_mkclean(pte);
793         pte = pte_mkold(pte);
794
795         /*
796          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
797          * does not have the VM_UFFD_WP, which means that the uffd
798          * fork event is not enabled.
799          */
800         if (!(vm_flags & VM_UFFD_WP))
801                 pte = pte_clear_uffd_wp(pte);
802
803         page = vm_normal_page(vma, addr, pte);
804         if (page) {
805                 get_page(page);
806                 page_dup_rmap(page, false);
807                 rss[mm_counter(page)]++;
808         }
809
810 out_set_pte:
811         set_pte_at(dst_mm, addr, dst_pte, pte);
812         return 0;
813 }
814
815 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
816                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
817                    unsigned long addr, unsigned long end)
818 {
819         pte_t *orig_src_pte, *orig_dst_pte;
820         pte_t *src_pte, *dst_pte;
821         spinlock_t *src_ptl, *dst_ptl;
822         int progress = 0;
823         int rss[NR_MM_COUNTERS];
824         swp_entry_t entry = (swp_entry_t){0};
825
826 again:
827         init_rss_vec(rss);
828
829         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
830         if (!dst_pte)
831                 return -ENOMEM;
832         src_pte = pte_offset_map(src_pmd, addr);
833         src_ptl = pte_lockptr(src_mm, src_pmd);
834         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
835         orig_src_pte = src_pte;
836         orig_dst_pte = dst_pte;
837         arch_enter_lazy_mmu_mode();
838
839         do {
840                 /*
841                  * We are holding two locks at this point - either of them
842                  * could generate latencies in another task on another CPU.
843                  */
844                 if (progress >= 32) {
845                         progress = 0;
846                         if (need_resched() ||
847                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
848                                 break;
849                 }
850                 if (pte_none(*src_pte)) {
851                         progress++;
852                         continue;
853                 }
854                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
855                                                         vma, addr, rss);
856                 if (entry.val)
857                         break;
858                 progress += 8;
859         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
860
861         arch_leave_lazy_mmu_mode();
862         spin_unlock(src_ptl);
863         pte_unmap(orig_src_pte);
864         add_mm_rss_vec(dst_mm, rss);
865         pte_unmap_unlock(orig_dst_pte, dst_ptl);
866         cond_resched();
867
868         if (entry.val) {
869                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
870                         return -ENOMEM;
871                 progress = 0;
872         }
873         if (addr != end)
874                 goto again;
875         return 0;
876 }
877
878 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
879                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
880                 unsigned long addr, unsigned long end)
881 {
882         pmd_t *src_pmd, *dst_pmd;
883         unsigned long next;
884
885         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
886         if (!dst_pmd)
887                 return -ENOMEM;
888         src_pmd = pmd_offset(src_pud, addr);
889         do {
890                 next = pmd_addr_end(addr, end);
891                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
892                         || pmd_devmap(*src_pmd)) {
893                         int err;
894                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
895                         err = copy_huge_pmd(dst_mm, src_mm,
896                                             dst_pmd, src_pmd, addr, vma);
897                         if (err == -ENOMEM)
898                                 return -ENOMEM;
899                         if (!err)
900                                 continue;
901                         /* fall through */
902                 }
903                 if (pmd_none_or_clear_bad(src_pmd))
904                         continue;
905                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
906                                                 vma, addr, next))
907                         return -ENOMEM;
908         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
909         return 0;
910 }
911
912 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
913                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
914                 unsigned long addr, unsigned long end)
915 {
916         pud_t *src_pud, *dst_pud;
917         unsigned long next;
918
919         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
920         if (!dst_pud)
921                 return -ENOMEM;
922         src_pud = pud_offset(src_p4d, addr);
923         do {
924                 next = pud_addr_end(addr, end);
925                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
926                         int err;
927
928                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
929                         err = copy_huge_pud(dst_mm, src_mm,
930                                             dst_pud, src_pud, addr, vma);
931                         if (err == -ENOMEM)
932                                 return -ENOMEM;
933                         if (!err)
934                                 continue;
935                         /* fall through */
936                 }
937                 if (pud_none_or_clear_bad(src_pud))
938                         continue;
939                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
940                                                 vma, addr, next))
941                         return -ENOMEM;
942         } while (dst_pud++, src_pud++, addr = next, addr != end);
943         return 0;
944 }
945
946 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
947                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
948                 unsigned long addr, unsigned long end)
949 {
950         p4d_t *src_p4d, *dst_p4d;
951         unsigned long next;
952
953         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
954         if (!dst_p4d)
955                 return -ENOMEM;
956         src_p4d = p4d_offset(src_pgd, addr);
957         do {
958                 next = p4d_addr_end(addr, end);
959                 if (p4d_none_or_clear_bad(src_p4d))
960                         continue;
961                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
962                                                 vma, addr, next))
963                         return -ENOMEM;
964         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
965         return 0;
966 }
967
968 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969                 struct vm_area_struct *vma)
970 {
971         pgd_t *src_pgd, *dst_pgd;
972         unsigned long next;
973         unsigned long addr = vma->vm_start;
974         unsigned long end = vma->vm_end;
975         struct mmu_notifier_range range;
976         bool is_cow;
977         int ret;
978
979         /*
980          * Don't copy ptes where a page fault will fill them correctly.
981          * Fork becomes much lighter when there are big shared or private
982          * readonly mappings. The tradeoff is that copy_page_range is more
983          * efficient than faulting.
984          */
985         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
986                         !vma->anon_vma)
987                 return 0;
988
989         if (is_vm_hugetlb_page(vma))
990                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
991
992         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
993                 /*
994                  * We do not free on error cases below as remove_vma
995                  * gets called on error from higher level routine
996                  */
997                 ret = track_pfn_copy(vma);
998                 if (ret)
999                         return ret;
1000         }
1001
1002         /*
1003          * We need to invalidate the secondary MMU mappings only when
1004          * there could be a permission downgrade on the ptes of the
1005          * parent mm. And a permission downgrade will only happen if
1006          * is_cow_mapping() returns true.
1007          */
1008         is_cow = is_cow_mapping(vma->vm_flags);
1009
1010         if (is_cow) {
1011                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1012                                         0, vma, src_mm, addr, end);
1013                 mmu_notifier_invalidate_range_start(&range);
1014         }
1015
1016         ret = 0;
1017         dst_pgd = pgd_offset(dst_mm, addr);
1018         src_pgd = pgd_offset(src_mm, addr);
1019         do {
1020                 next = pgd_addr_end(addr, end);
1021                 if (pgd_none_or_clear_bad(src_pgd))
1022                         continue;
1023                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1024                                             vma, addr, next))) {
1025                         ret = -ENOMEM;
1026                         break;
1027                 }
1028         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1029
1030         if (is_cow)
1031                 mmu_notifier_invalidate_range_end(&range);
1032         return ret;
1033 }
1034
1035 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1036                                 struct vm_area_struct *vma, pmd_t *pmd,
1037                                 unsigned long addr, unsigned long end,
1038                                 struct zap_details *details)
1039 {
1040         struct mm_struct *mm = tlb->mm;
1041         int force_flush = 0;
1042         int rss[NR_MM_COUNTERS];
1043         spinlock_t *ptl;
1044         pte_t *start_pte;
1045         pte_t *pte;
1046         swp_entry_t entry;
1047
1048         tlb_change_page_size(tlb, PAGE_SIZE);
1049 again:
1050         init_rss_vec(rss);
1051         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1052         pte = start_pte;
1053         flush_tlb_batched_pending(mm);
1054         arch_enter_lazy_mmu_mode();
1055         do {
1056                 pte_t ptent = *pte;
1057                 if (pte_none(ptent))
1058                         continue;
1059
1060                 if (need_resched())
1061                         break;
1062
1063                 if (pte_present(ptent)) {
1064                         struct page *page;
1065
1066                         page = vm_normal_page(vma, addr, ptent);
1067                         if (unlikely(details) && page) {
1068                                 /*
1069                                  * unmap_shared_mapping_pages() wants to
1070                                  * invalidate cache without truncating:
1071                                  * unmap shared but keep private pages.
1072                                  */
1073                                 if (details->check_mapping &&
1074                                     details->check_mapping != page_rmapping(page))
1075                                         continue;
1076                         }
1077                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1078                                                         tlb->fullmm);
1079                         tlb_remove_tlb_entry(tlb, pte, addr);
1080                         if (unlikely(!page))
1081                                 continue;
1082
1083                         if (!PageAnon(page)) {
1084                                 if (pte_dirty(ptent)) {
1085                                         force_flush = 1;
1086                                         set_page_dirty(page);
1087                                 }
1088                                 if (pte_young(ptent) &&
1089                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1090                                         mark_page_accessed(page);
1091                         }
1092                         rss[mm_counter(page)]--;
1093                         page_remove_rmap(page, false);
1094                         if (unlikely(page_mapcount(page) < 0))
1095                                 print_bad_pte(vma, addr, ptent, page);
1096                         if (unlikely(__tlb_remove_page(tlb, page))) {
1097                                 force_flush = 1;
1098                                 addr += PAGE_SIZE;
1099                                 break;
1100                         }
1101                         continue;
1102                 }
1103
1104                 entry = pte_to_swp_entry(ptent);
1105                 if (is_device_private_entry(entry)) {
1106                         struct page *page = device_private_entry_to_page(entry);
1107
1108                         if (unlikely(details && details->check_mapping)) {
1109                                 /*
1110                                  * unmap_shared_mapping_pages() wants to
1111                                  * invalidate cache without truncating:
1112                                  * unmap shared but keep private pages.
1113                                  */
1114                                 if (details->check_mapping !=
1115                                     page_rmapping(page))
1116                                         continue;
1117                         }
1118
1119                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1120                         rss[mm_counter(page)]--;
1121                         page_remove_rmap(page, false);
1122                         put_page(page);
1123                         continue;
1124                 }
1125
1126                 /* If details->check_mapping, we leave swap entries. */
1127                 if (unlikely(details))
1128                         continue;
1129
1130                 if (!non_swap_entry(entry))
1131                         rss[MM_SWAPENTS]--;
1132                 else if (is_migration_entry(entry)) {
1133                         struct page *page;
1134
1135                         page = migration_entry_to_page(entry);
1136                         rss[mm_counter(page)]--;
1137                 }
1138                 if (unlikely(!free_swap_and_cache(entry)))
1139                         print_bad_pte(vma, addr, ptent, NULL);
1140                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1141         } while (pte++, addr += PAGE_SIZE, addr != end);
1142
1143         add_mm_rss_vec(mm, rss);
1144         arch_leave_lazy_mmu_mode();
1145
1146         /* Do the actual TLB flush before dropping ptl */
1147         if (force_flush)
1148                 tlb_flush_mmu_tlbonly(tlb);
1149         pte_unmap_unlock(start_pte, ptl);
1150
1151         /*
1152          * If we forced a TLB flush (either due to running out of
1153          * batch buffers or because we needed to flush dirty TLB
1154          * entries before releasing the ptl), free the batched
1155          * memory too. Restart if we didn't do everything.
1156          */
1157         if (force_flush) {
1158                 force_flush = 0;
1159                 tlb_flush_mmu(tlb);
1160         }
1161
1162         if (addr != end) {
1163                 cond_resched();
1164                 goto again;
1165         }
1166
1167         return addr;
1168 }
1169
1170 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1171                                 struct vm_area_struct *vma, pud_t *pud,
1172                                 unsigned long addr, unsigned long end,
1173                                 struct zap_details *details)
1174 {
1175         pmd_t *pmd;
1176         unsigned long next;
1177
1178         pmd = pmd_offset(pud, addr);
1179         do {
1180                 next = pmd_addr_end(addr, end);
1181                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1182                         if (next - addr != HPAGE_PMD_SIZE)
1183                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1184                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1185                                 goto next;
1186                         /* fall through */
1187                 }
1188                 /*
1189                  * Here there can be other concurrent MADV_DONTNEED or
1190                  * trans huge page faults running, and if the pmd is
1191                  * none or trans huge it can change under us. This is
1192                  * because MADV_DONTNEED holds the mmap_lock in read
1193                  * mode.
1194                  */
1195                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1196                         goto next;
1197                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1198 next:
1199                 cond_resched();
1200         } while (pmd++, addr = next, addr != end);
1201
1202         return addr;
1203 }
1204
1205 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1206                                 struct vm_area_struct *vma, p4d_t *p4d,
1207                                 unsigned long addr, unsigned long end,
1208                                 struct zap_details *details)
1209 {
1210         pud_t *pud;
1211         unsigned long next;
1212
1213         pud = pud_offset(p4d, addr);
1214         do {
1215                 next = pud_addr_end(addr, end);
1216                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1217                         if (next - addr != HPAGE_PUD_SIZE) {
1218                                 mmap_assert_locked(tlb->mm);
1219                                 split_huge_pud(vma, pud, addr);
1220                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1221                                 goto next;
1222                         /* fall through */
1223                 }
1224                 if (pud_none_or_clear_bad(pud))
1225                         continue;
1226                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1227 next:
1228                 cond_resched();
1229         } while (pud++, addr = next, addr != end);
1230
1231         return addr;
1232 }
1233
1234 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1235                                 struct vm_area_struct *vma, pgd_t *pgd,
1236                                 unsigned long addr, unsigned long end,
1237                                 struct zap_details *details)
1238 {
1239         p4d_t *p4d;
1240         unsigned long next;
1241
1242         p4d = p4d_offset(pgd, addr);
1243         do {
1244                 next = p4d_addr_end(addr, end);
1245                 if (p4d_none_or_clear_bad(p4d))
1246                         continue;
1247                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1248         } while (p4d++, addr = next, addr != end);
1249
1250         return addr;
1251 }
1252
1253 void unmap_page_range(struct mmu_gather *tlb,
1254                              struct vm_area_struct *vma,
1255                              unsigned long addr, unsigned long end,
1256                              struct zap_details *details)
1257 {
1258         pgd_t *pgd;
1259         unsigned long next;
1260
1261         BUG_ON(addr >= end);
1262         tlb_start_vma(tlb, vma);
1263         pgd = pgd_offset(vma->vm_mm, addr);
1264         do {
1265                 next = pgd_addr_end(addr, end);
1266                 if (pgd_none_or_clear_bad(pgd))
1267                         continue;
1268                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1269         } while (pgd++, addr = next, addr != end);
1270         tlb_end_vma(tlb, vma);
1271 }
1272
1273
1274 static void unmap_single_vma(struct mmu_gather *tlb,
1275                 struct vm_area_struct *vma, unsigned long start_addr,
1276                 unsigned long end_addr,
1277                 struct zap_details *details)
1278 {
1279         unsigned long start = max(vma->vm_start, start_addr);
1280         unsigned long end;
1281
1282         if (start >= vma->vm_end)
1283                 return;
1284         end = min(vma->vm_end, end_addr);
1285         if (end <= vma->vm_start)
1286                 return;
1287
1288         if (vma->vm_file)
1289                 uprobe_munmap(vma, start, end);
1290
1291         if (unlikely(vma->vm_flags & VM_PFNMAP))
1292                 untrack_pfn(vma, 0, 0);
1293
1294         if (start != end) {
1295                 if (unlikely(is_vm_hugetlb_page(vma))) {
1296                         /*
1297                          * It is undesirable to test vma->vm_file as it
1298                          * should be non-null for valid hugetlb area.
1299                          * However, vm_file will be NULL in the error
1300                          * cleanup path of mmap_region. When
1301                          * hugetlbfs ->mmap method fails,
1302                          * mmap_region() nullifies vma->vm_file
1303                          * before calling this function to clean up.
1304                          * Since no pte has actually been setup, it is
1305                          * safe to do nothing in this case.
1306                          */
1307                         if (vma->vm_file) {
1308                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1309                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1310                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1311                         }
1312                 } else
1313                         unmap_page_range(tlb, vma, start, end, details);
1314         }
1315 }
1316
1317 /**
1318  * unmap_vmas - unmap a range of memory covered by a list of vma's
1319  * @tlb: address of the caller's struct mmu_gather
1320  * @vma: the starting vma
1321  * @start_addr: virtual address at which to start unmapping
1322  * @end_addr: virtual address at which to end unmapping
1323  *
1324  * Unmap all pages in the vma list.
1325  *
1326  * Only addresses between `start' and `end' will be unmapped.
1327  *
1328  * The VMA list must be sorted in ascending virtual address order.
1329  *
1330  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1331  * range after unmap_vmas() returns.  So the only responsibility here is to
1332  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1333  * drops the lock and schedules.
1334  */
1335 void unmap_vmas(struct mmu_gather *tlb,
1336                 struct vm_area_struct *vma, unsigned long start_addr,
1337                 unsigned long end_addr)
1338 {
1339         struct mmu_notifier_range range;
1340
1341         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1342                                 start_addr, end_addr);
1343         mmu_notifier_invalidate_range_start(&range);
1344         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1345                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1346         mmu_notifier_invalidate_range_end(&range);
1347 }
1348
1349 /**
1350  * zap_page_range - remove user pages in a given range
1351  * @vma: vm_area_struct holding the applicable pages
1352  * @start: starting address of pages to zap
1353  * @size: number of bytes to zap
1354  *
1355  * Caller must protect the VMA list
1356  */
1357 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1358                 unsigned long size)
1359 {
1360         struct mmu_notifier_range range;
1361         struct mmu_gather tlb;
1362
1363         lru_add_drain();
1364         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1365                                 start, start + size);
1366         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1367         update_hiwater_rss(vma->vm_mm);
1368         mmu_notifier_invalidate_range_start(&range);
1369         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1370                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1371         mmu_notifier_invalidate_range_end(&range);
1372         tlb_finish_mmu(&tlb, start, range.end);
1373 }
1374
1375 /**
1376  * zap_page_range_single - remove user pages in a given range
1377  * @vma: vm_area_struct holding the applicable pages
1378  * @address: starting address of pages to zap
1379  * @size: number of bytes to zap
1380  * @details: details of shared cache invalidation
1381  *
1382  * The range must fit into one VMA.
1383  */
1384 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1385                 unsigned long size, struct zap_details *details)
1386 {
1387         struct mmu_notifier_range range;
1388         struct mmu_gather tlb;
1389
1390         lru_add_drain();
1391         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1392                                 address, address + size);
1393         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1394         update_hiwater_rss(vma->vm_mm);
1395         mmu_notifier_invalidate_range_start(&range);
1396         unmap_single_vma(&tlb, vma, address, range.end, details);
1397         mmu_notifier_invalidate_range_end(&range);
1398         tlb_finish_mmu(&tlb, address, range.end);
1399 }
1400
1401 /**
1402  * zap_vma_ptes - remove ptes mapping the vma
1403  * @vma: vm_area_struct holding ptes to be zapped
1404  * @address: starting address of pages to zap
1405  * @size: number of bytes to zap
1406  *
1407  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1408  *
1409  * The entire address range must be fully contained within the vma.
1410  *
1411  */
1412 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1413                 unsigned long size)
1414 {
1415         if (address < vma->vm_start || address + size > vma->vm_end ||
1416                         !(vma->vm_flags & VM_PFNMAP))
1417                 return;
1418
1419         zap_page_range_single(vma, address, size, NULL);
1420 }
1421 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1422
1423 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1424 {
1425         pgd_t *pgd;
1426         p4d_t *p4d;
1427         pud_t *pud;
1428         pmd_t *pmd;
1429
1430         pgd = pgd_offset(mm, addr);
1431         p4d = p4d_alloc(mm, pgd, addr);
1432         if (!p4d)
1433                 return NULL;
1434         pud = pud_alloc(mm, p4d, addr);
1435         if (!pud)
1436                 return NULL;
1437         pmd = pmd_alloc(mm, pud, addr);
1438         if (!pmd)
1439                 return NULL;
1440
1441         VM_BUG_ON(pmd_trans_huge(*pmd));
1442         return pmd;
1443 }
1444
1445 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1446                         spinlock_t **ptl)
1447 {
1448         pmd_t *pmd = walk_to_pmd(mm, addr);
1449
1450         if (!pmd)
1451                 return NULL;
1452         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1453 }
1454
1455 static int validate_page_before_insert(struct page *page)
1456 {
1457         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1458                 return -EINVAL;
1459         flush_dcache_page(page);
1460         return 0;
1461 }
1462
1463 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1464                         unsigned long addr, struct page *page, pgprot_t prot)
1465 {
1466         if (!pte_none(*pte))
1467                 return -EBUSY;
1468         /* Ok, finally just insert the thing.. */
1469         get_page(page);
1470         inc_mm_counter_fast(mm, mm_counter_file(page));
1471         page_add_file_rmap(page, false);
1472         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1473         return 0;
1474 }
1475
1476 /*
1477  * This is the old fallback for page remapping.
1478  *
1479  * For historical reasons, it only allows reserved pages. Only
1480  * old drivers should use this, and they needed to mark their
1481  * pages reserved for the old functions anyway.
1482  */
1483 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1484                         struct page *page, pgprot_t prot)
1485 {
1486         struct mm_struct *mm = vma->vm_mm;
1487         int retval;
1488         pte_t *pte;
1489         spinlock_t *ptl;
1490
1491         retval = validate_page_before_insert(page);
1492         if (retval)
1493                 goto out;
1494         retval = -ENOMEM;
1495         pte = get_locked_pte(mm, addr, &ptl);
1496         if (!pte)
1497                 goto out;
1498         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1499         pte_unmap_unlock(pte, ptl);
1500 out:
1501         return retval;
1502 }
1503
1504 #ifdef pte_index
1505 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1506                         unsigned long addr, struct page *page, pgprot_t prot)
1507 {
1508         int err;
1509
1510         if (!page_count(page))
1511                 return -EINVAL;
1512         err = validate_page_before_insert(page);
1513         if (err)
1514                 return err;
1515         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1516 }
1517
1518 /* insert_pages() amortizes the cost of spinlock operations
1519  * when inserting pages in a loop. Arch *must* define pte_index.
1520  */
1521 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1522                         struct page **pages, unsigned long *num, pgprot_t prot)
1523 {
1524         pmd_t *pmd = NULL;
1525         pte_t *start_pte, *pte;
1526         spinlock_t *pte_lock;
1527         struct mm_struct *const mm = vma->vm_mm;
1528         unsigned long curr_page_idx = 0;
1529         unsigned long remaining_pages_total = *num;
1530         unsigned long pages_to_write_in_pmd;
1531         int ret;
1532 more:
1533         ret = -EFAULT;
1534         pmd = walk_to_pmd(mm, addr);
1535         if (!pmd)
1536                 goto out;
1537
1538         pages_to_write_in_pmd = min_t(unsigned long,
1539                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1540
1541         /* Allocate the PTE if necessary; takes PMD lock once only. */
1542         ret = -ENOMEM;
1543         if (pte_alloc(mm, pmd))
1544                 goto out;
1545
1546         while (pages_to_write_in_pmd) {
1547                 int pte_idx = 0;
1548                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1549
1550                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1551                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1552                         int err = insert_page_in_batch_locked(mm, pte,
1553                                 addr, pages[curr_page_idx], prot);
1554                         if (unlikely(err)) {
1555                                 pte_unmap_unlock(start_pte, pte_lock);
1556                                 ret = err;
1557                                 remaining_pages_total -= pte_idx;
1558                                 goto out;
1559                         }
1560                         addr += PAGE_SIZE;
1561                         ++curr_page_idx;
1562                 }
1563                 pte_unmap_unlock(start_pte, pte_lock);
1564                 pages_to_write_in_pmd -= batch_size;
1565                 remaining_pages_total -= batch_size;
1566         }
1567         if (remaining_pages_total)
1568                 goto more;
1569         ret = 0;
1570 out:
1571         *num = remaining_pages_total;
1572         return ret;
1573 }
1574 #endif  /* ifdef pte_index */
1575
1576 /**
1577  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1578  * @vma: user vma to map to
1579  * @addr: target start user address of these pages
1580  * @pages: source kernel pages
1581  * @num: in: number of pages to map. out: number of pages that were *not*
1582  * mapped. (0 means all pages were successfully mapped).
1583  *
1584  * Preferred over vm_insert_page() when inserting multiple pages.
1585  *
1586  * In case of error, we may have mapped a subset of the provided
1587  * pages. It is the caller's responsibility to account for this case.
1588  *
1589  * The same restrictions apply as in vm_insert_page().
1590  */
1591 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1592                         struct page **pages, unsigned long *num)
1593 {
1594 #ifdef pte_index
1595         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1596
1597         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1598                 return -EFAULT;
1599         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1600                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1601                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1602                 vma->vm_flags |= VM_MIXEDMAP;
1603         }
1604         /* Defer page refcount checking till we're about to map that page. */
1605         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1606 #else
1607         unsigned long idx = 0, pgcount = *num;
1608         int err = -EINVAL;
1609
1610         for (; idx < pgcount; ++idx) {
1611                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1612                 if (err)
1613                         break;
1614         }
1615         *num = pgcount - idx;
1616         return err;
1617 #endif  /* ifdef pte_index */
1618 }
1619 EXPORT_SYMBOL(vm_insert_pages);
1620
1621 /**
1622  * vm_insert_page - insert single page into user vma
1623  * @vma: user vma to map to
1624  * @addr: target user address of this page
1625  * @page: source kernel page
1626  *
1627  * This allows drivers to insert individual pages they've allocated
1628  * into a user vma.
1629  *
1630  * The page has to be a nice clean _individual_ kernel allocation.
1631  * If you allocate a compound page, you need to have marked it as
1632  * such (__GFP_COMP), or manually just split the page up yourself
1633  * (see split_page()).
1634  *
1635  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1636  * took an arbitrary page protection parameter. This doesn't allow
1637  * that. Your vma protection will have to be set up correctly, which
1638  * means that if you want a shared writable mapping, you'd better
1639  * ask for a shared writable mapping!
1640  *
1641  * The page does not need to be reserved.
1642  *
1643  * Usually this function is called from f_op->mmap() handler
1644  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1645  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1646  * function from other places, for example from page-fault handler.
1647  *
1648  * Return: %0 on success, negative error code otherwise.
1649  */
1650 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1651                         struct page *page)
1652 {
1653         if (addr < vma->vm_start || addr >= vma->vm_end)
1654                 return -EFAULT;
1655         if (!page_count(page))
1656                 return -EINVAL;
1657         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1658                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1659                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1660                 vma->vm_flags |= VM_MIXEDMAP;
1661         }
1662         return insert_page(vma, addr, page, vma->vm_page_prot);
1663 }
1664 EXPORT_SYMBOL(vm_insert_page);
1665
1666 /*
1667  * __vm_map_pages - maps range of kernel pages into user vma
1668  * @vma: user vma to map to
1669  * @pages: pointer to array of source kernel pages
1670  * @num: number of pages in page array
1671  * @offset: user's requested vm_pgoff
1672  *
1673  * This allows drivers to map range of kernel pages into a user vma.
1674  *
1675  * Return: 0 on success and error code otherwise.
1676  */
1677 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1678                                 unsigned long num, unsigned long offset)
1679 {
1680         unsigned long count = vma_pages(vma);
1681         unsigned long uaddr = vma->vm_start;
1682         int ret, i;
1683
1684         /* Fail if the user requested offset is beyond the end of the object */
1685         if (offset >= num)
1686                 return -ENXIO;
1687
1688         /* Fail if the user requested size exceeds available object size */
1689         if (count > num - offset)
1690                 return -ENXIO;
1691
1692         for (i = 0; i < count; i++) {
1693                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1694                 if (ret < 0)
1695                         return ret;
1696                 uaddr += PAGE_SIZE;
1697         }
1698
1699         return 0;
1700 }
1701
1702 /**
1703  * vm_map_pages - maps range of kernel pages starts with non zero offset
1704  * @vma: user vma to map to
1705  * @pages: pointer to array of source kernel pages
1706  * @num: number of pages in page array
1707  *
1708  * Maps an object consisting of @num pages, catering for the user's
1709  * requested vm_pgoff
1710  *
1711  * If we fail to insert any page into the vma, the function will return
1712  * immediately leaving any previously inserted pages present.  Callers
1713  * from the mmap handler may immediately return the error as their caller
1714  * will destroy the vma, removing any successfully inserted pages. Other
1715  * callers should make their own arrangements for calling unmap_region().
1716  *
1717  * Context: Process context. Called by mmap handlers.
1718  * Return: 0 on success and error code otherwise.
1719  */
1720 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1721                                 unsigned long num)
1722 {
1723         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1724 }
1725 EXPORT_SYMBOL(vm_map_pages);
1726
1727 /**
1728  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1729  * @vma: user vma to map to
1730  * @pages: pointer to array of source kernel pages
1731  * @num: number of pages in page array
1732  *
1733  * Similar to vm_map_pages(), except that it explicitly sets the offset
1734  * to 0. This function is intended for the drivers that did not consider
1735  * vm_pgoff.
1736  *
1737  * Context: Process context. Called by mmap handlers.
1738  * Return: 0 on success and error code otherwise.
1739  */
1740 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1741                                 unsigned long num)
1742 {
1743         return __vm_map_pages(vma, pages, num, 0);
1744 }
1745 EXPORT_SYMBOL(vm_map_pages_zero);
1746
1747 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1748                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1749 {
1750         struct mm_struct *mm = vma->vm_mm;
1751         pte_t *pte, entry;
1752         spinlock_t *ptl;
1753
1754         pte = get_locked_pte(mm, addr, &ptl);
1755         if (!pte)
1756                 return VM_FAULT_OOM;
1757         if (!pte_none(*pte)) {
1758                 if (mkwrite) {
1759                         /*
1760                          * For read faults on private mappings the PFN passed
1761                          * in may not match the PFN we have mapped if the
1762                          * mapped PFN is a writeable COW page.  In the mkwrite
1763                          * case we are creating a writable PTE for a shared
1764                          * mapping and we expect the PFNs to match. If they
1765                          * don't match, we are likely racing with block
1766                          * allocation and mapping invalidation so just skip the
1767                          * update.
1768                          */
1769                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1770                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1771                                 goto out_unlock;
1772                         }
1773                         entry = pte_mkyoung(*pte);
1774                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1775                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1776                                 update_mmu_cache(vma, addr, pte);
1777                 }
1778                 goto out_unlock;
1779         }
1780
1781         /* Ok, finally just insert the thing.. */
1782         if (pfn_t_devmap(pfn))
1783                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1784         else
1785                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1786
1787         if (mkwrite) {
1788                 entry = pte_mkyoung(entry);
1789                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1790         }
1791
1792         set_pte_at(mm, addr, pte, entry);
1793         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1794
1795 out_unlock:
1796         pte_unmap_unlock(pte, ptl);
1797         return VM_FAULT_NOPAGE;
1798 }
1799
1800 /**
1801  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1802  * @vma: user vma to map to
1803  * @addr: target user address of this page
1804  * @pfn: source kernel pfn
1805  * @pgprot: pgprot flags for the inserted page
1806  *
1807  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1808  * to override pgprot on a per-page basis.
1809  *
1810  * This only makes sense for IO mappings, and it makes no sense for
1811  * COW mappings.  In general, using multiple vmas is preferable;
1812  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1813  * impractical.
1814  *
1815  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1816  * a value of @pgprot different from that of @vma->vm_page_prot.
1817  *
1818  * Context: Process context.  May allocate using %GFP_KERNEL.
1819  * Return: vm_fault_t value.
1820  */
1821 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1822                         unsigned long pfn, pgprot_t pgprot)
1823 {
1824         /*
1825          * Technically, architectures with pte_special can avoid all these
1826          * restrictions (same for remap_pfn_range).  However we would like
1827          * consistency in testing and feature parity among all, so we should
1828          * try to keep these invariants in place for everybody.
1829          */
1830         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1831         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1832                                                 (VM_PFNMAP|VM_MIXEDMAP));
1833         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1834         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1835
1836         if (addr < vma->vm_start || addr >= vma->vm_end)
1837                 return VM_FAULT_SIGBUS;
1838
1839         if (!pfn_modify_allowed(pfn, pgprot))
1840                 return VM_FAULT_SIGBUS;
1841
1842         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1843
1844         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1845                         false);
1846 }
1847 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1848
1849 /**
1850  * vmf_insert_pfn - insert single pfn into user vma
1851  * @vma: user vma to map to
1852  * @addr: target user address of this page
1853  * @pfn: source kernel pfn
1854  *
1855  * Similar to vm_insert_page, this allows drivers to insert individual pages
1856  * they've allocated into a user vma. Same comments apply.
1857  *
1858  * This function should only be called from a vm_ops->fault handler, and
1859  * in that case the handler should return the result of this function.
1860  *
1861  * vma cannot be a COW mapping.
1862  *
1863  * As this is called only for pages that do not currently exist, we
1864  * do not need to flush old virtual caches or the TLB.
1865  *
1866  * Context: Process context.  May allocate using %GFP_KERNEL.
1867  * Return: vm_fault_t value.
1868  */
1869 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1870                         unsigned long pfn)
1871 {
1872         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1873 }
1874 EXPORT_SYMBOL(vmf_insert_pfn);
1875
1876 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1877 {
1878         /* these checks mirror the abort conditions in vm_normal_page */
1879         if (vma->vm_flags & VM_MIXEDMAP)
1880                 return true;
1881         if (pfn_t_devmap(pfn))
1882                 return true;
1883         if (pfn_t_special(pfn))
1884                 return true;
1885         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1886                 return true;
1887         return false;
1888 }
1889
1890 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1891                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1892                 bool mkwrite)
1893 {
1894         int err;
1895
1896         BUG_ON(!vm_mixed_ok(vma, pfn));
1897
1898         if (addr < vma->vm_start || addr >= vma->vm_end)
1899                 return VM_FAULT_SIGBUS;
1900
1901         track_pfn_insert(vma, &pgprot, pfn);
1902
1903         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1904                 return VM_FAULT_SIGBUS;
1905
1906         /*
1907          * If we don't have pte special, then we have to use the pfn_valid()
1908          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1909          * refcount the page if pfn_valid is true (hence insert_page rather
1910          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1911          * without pte special, it would there be refcounted as a normal page.
1912          */
1913         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1914             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1915                 struct page *page;
1916
1917                 /*
1918                  * At this point we are committed to insert_page()
1919                  * regardless of whether the caller specified flags that
1920                  * result in pfn_t_has_page() == false.
1921                  */
1922                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1923                 err = insert_page(vma, addr, page, pgprot);
1924         } else {
1925                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1926         }
1927
1928         if (err == -ENOMEM)
1929                 return VM_FAULT_OOM;
1930         if (err < 0 && err != -EBUSY)
1931                 return VM_FAULT_SIGBUS;
1932
1933         return VM_FAULT_NOPAGE;
1934 }
1935
1936 /**
1937  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1938  * @vma: user vma to map to
1939  * @addr: target user address of this page
1940  * @pfn: source kernel pfn
1941  * @pgprot: pgprot flags for the inserted page
1942  *
1943  * This is exactly like vmf_insert_mixed(), except that it allows drivers
1944  * to override pgprot on a per-page basis.
1945  *
1946  * Typically this function should be used by drivers to set caching- and
1947  * encryption bits different than those of @vma->vm_page_prot, because
1948  * the caching- or encryption mode may not be known at mmap() time.
1949  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1950  * to set caching and encryption bits for those vmas (except for COW pages).
1951  * This is ensured by core vm only modifying these page table entries using
1952  * functions that don't touch caching- or encryption bits, using pte_modify()
1953  * if needed. (See for example mprotect()).
1954  * Also when new page-table entries are created, this is only done using the
1955  * fault() callback, and never using the value of vma->vm_page_prot,
1956  * except for page-table entries that point to anonymous pages as the result
1957  * of COW.
1958  *
1959  * Context: Process context.  May allocate using %GFP_KERNEL.
1960  * Return: vm_fault_t value.
1961  */
1962 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1963                                  pfn_t pfn, pgprot_t pgprot)
1964 {
1965         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1966 }
1967 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1968
1969 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1970                 pfn_t pfn)
1971 {
1972         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1973 }
1974 EXPORT_SYMBOL(vmf_insert_mixed);
1975
1976 /*
1977  *  If the insertion of PTE failed because someone else already added a
1978  *  different entry in the mean time, we treat that as success as we assume
1979  *  the same entry was actually inserted.
1980  */
1981 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1982                 unsigned long addr, pfn_t pfn)
1983 {
1984         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1985 }
1986 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1987
1988 /*
1989  * maps a range of physical memory into the requested pages. the old
1990  * mappings are removed. any references to nonexistent pages results
1991  * in null mappings (currently treated as "copy-on-access")
1992  */
1993 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1994                         unsigned long addr, unsigned long end,
1995                         unsigned long pfn, pgprot_t prot)
1996 {
1997         pte_t *pte;
1998         spinlock_t *ptl;
1999         int err = 0;
2000
2001         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2002         if (!pte)
2003                 return -ENOMEM;
2004         arch_enter_lazy_mmu_mode();
2005         do {
2006                 BUG_ON(!pte_none(*pte));
2007                 if (!pfn_modify_allowed(pfn, prot)) {
2008                         err = -EACCES;
2009                         break;
2010                 }
2011                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2012                 pfn++;
2013         } while (pte++, addr += PAGE_SIZE, addr != end);
2014         arch_leave_lazy_mmu_mode();
2015         pte_unmap_unlock(pte - 1, ptl);
2016         return err;
2017 }
2018
2019 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2020                         unsigned long addr, unsigned long end,
2021                         unsigned long pfn, pgprot_t prot)
2022 {
2023         pmd_t *pmd;
2024         unsigned long next;
2025         int err;
2026
2027         pfn -= addr >> PAGE_SHIFT;
2028         pmd = pmd_alloc(mm, pud, addr);
2029         if (!pmd)
2030                 return -ENOMEM;
2031         VM_BUG_ON(pmd_trans_huge(*pmd));
2032         do {
2033                 next = pmd_addr_end(addr, end);
2034                 err = remap_pte_range(mm, pmd, addr, next,
2035                                 pfn + (addr >> PAGE_SHIFT), prot);
2036                 if (err)
2037                         return err;
2038         } while (pmd++, addr = next, addr != end);
2039         return 0;
2040 }
2041
2042 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2043                         unsigned long addr, unsigned long end,
2044                         unsigned long pfn, pgprot_t prot)
2045 {
2046         pud_t *pud;
2047         unsigned long next;
2048         int err;
2049
2050         pfn -= addr >> PAGE_SHIFT;
2051         pud = pud_alloc(mm, p4d, addr);
2052         if (!pud)
2053                 return -ENOMEM;
2054         do {
2055                 next = pud_addr_end(addr, end);
2056                 err = remap_pmd_range(mm, pud, addr, next,
2057                                 pfn + (addr >> PAGE_SHIFT), prot);
2058                 if (err)
2059                         return err;
2060         } while (pud++, addr = next, addr != end);
2061         return 0;
2062 }
2063
2064 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2065                         unsigned long addr, unsigned long end,
2066                         unsigned long pfn, pgprot_t prot)
2067 {
2068         p4d_t *p4d;
2069         unsigned long next;
2070         int err;
2071
2072         pfn -= addr >> PAGE_SHIFT;
2073         p4d = p4d_alloc(mm, pgd, addr);
2074         if (!p4d)
2075                 return -ENOMEM;
2076         do {
2077                 next = p4d_addr_end(addr, end);
2078                 err = remap_pud_range(mm, p4d, addr, next,
2079                                 pfn + (addr >> PAGE_SHIFT), prot);
2080                 if (err)
2081                         return err;
2082         } while (p4d++, addr = next, addr != end);
2083         return 0;
2084 }
2085
2086 /**
2087  * remap_pfn_range - remap kernel memory to userspace
2088  * @vma: user vma to map to
2089  * @addr: target page aligned user address to start at
2090  * @pfn: page frame number of kernel physical memory address
2091  * @size: size of mapping area
2092  * @prot: page protection flags for this mapping
2093  *
2094  * Note: this is only safe if the mm semaphore is held when called.
2095  *
2096  * Return: %0 on success, negative error code otherwise.
2097  */
2098 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2099                     unsigned long pfn, unsigned long size, pgprot_t prot)
2100 {
2101         pgd_t *pgd;
2102         unsigned long next;
2103         unsigned long end = addr + PAGE_ALIGN(size);
2104         struct mm_struct *mm = vma->vm_mm;
2105         unsigned long remap_pfn = pfn;
2106         int err;
2107
2108         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2109                 return -EINVAL;
2110
2111         /*
2112          * Physically remapped pages are special. Tell the
2113          * rest of the world about it:
2114          *   VM_IO tells people not to look at these pages
2115          *      (accesses can have side effects).
2116          *   VM_PFNMAP tells the core MM that the base pages are just
2117          *      raw PFN mappings, and do not have a "struct page" associated
2118          *      with them.
2119          *   VM_DONTEXPAND
2120          *      Disable vma merging and expanding with mremap().
2121          *   VM_DONTDUMP
2122          *      Omit vma from core dump, even when VM_IO turned off.
2123          *
2124          * There's a horrible special case to handle copy-on-write
2125          * behaviour that some programs depend on. We mark the "original"
2126          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2127          * See vm_normal_page() for details.
2128          */
2129         if (is_cow_mapping(vma->vm_flags)) {
2130                 if (addr != vma->vm_start || end != vma->vm_end)
2131                         return -EINVAL;
2132                 vma->vm_pgoff = pfn;
2133         }
2134
2135         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2136         if (err)
2137                 return -EINVAL;
2138
2139         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2140
2141         BUG_ON(addr >= end);
2142         pfn -= addr >> PAGE_SHIFT;
2143         pgd = pgd_offset(mm, addr);
2144         flush_cache_range(vma, addr, end);
2145         do {
2146                 next = pgd_addr_end(addr, end);
2147                 err = remap_p4d_range(mm, pgd, addr, next,
2148                                 pfn + (addr >> PAGE_SHIFT), prot);
2149                 if (err)
2150                         break;
2151         } while (pgd++, addr = next, addr != end);
2152
2153         if (err)
2154                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2155
2156         return err;
2157 }
2158 EXPORT_SYMBOL(remap_pfn_range);
2159
2160 /**
2161  * vm_iomap_memory - remap memory to userspace
2162  * @vma: user vma to map to
2163  * @start: start of the physical memory to be mapped
2164  * @len: size of area
2165  *
2166  * This is a simplified io_remap_pfn_range() for common driver use. The
2167  * driver just needs to give us the physical memory range to be mapped,
2168  * we'll figure out the rest from the vma information.
2169  *
2170  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2171  * whatever write-combining details or similar.
2172  *
2173  * Return: %0 on success, negative error code otherwise.
2174  */
2175 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2176 {
2177         unsigned long vm_len, pfn, pages;
2178
2179         /* Check that the physical memory area passed in looks valid */
2180         if (start + len < start)
2181                 return -EINVAL;
2182         /*
2183          * You *really* shouldn't map things that aren't page-aligned,
2184          * but we've historically allowed it because IO memory might
2185          * just have smaller alignment.
2186          */
2187         len += start & ~PAGE_MASK;
2188         pfn = start >> PAGE_SHIFT;
2189         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2190         if (pfn + pages < pfn)
2191                 return -EINVAL;
2192
2193         /* We start the mapping 'vm_pgoff' pages into the area */
2194         if (vma->vm_pgoff > pages)
2195                 return -EINVAL;
2196         pfn += vma->vm_pgoff;
2197         pages -= vma->vm_pgoff;
2198
2199         /* Can we fit all of the mapping? */
2200         vm_len = vma->vm_end - vma->vm_start;
2201         if (vm_len >> PAGE_SHIFT > pages)
2202                 return -EINVAL;
2203
2204         /* Ok, let it rip */
2205         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2206 }
2207 EXPORT_SYMBOL(vm_iomap_memory);
2208
2209 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2210                                      unsigned long addr, unsigned long end,
2211                                      pte_fn_t fn, void *data, bool create,
2212                                      pgtbl_mod_mask *mask)
2213 {
2214         pte_t *pte;
2215         int err = 0;
2216         spinlock_t *ptl;
2217
2218         if (create) {
2219                 pte = (mm == &init_mm) ?
2220                         pte_alloc_kernel_track(pmd, addr, mask) :
2221                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2222                 if (!pte)
2223                         return -ENOMEM;
2224         } else {
2225                 pte = (mm == &init_mm) ?
2226                         pte_offset_kernel(pmd, addr) :
2227                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2228         }
2229
2230         BUG_ON(pmd_huge(*pmd));
2231
2232         arch_enter_lazy_mmu_mode();
2233
2234         do {
2235                 if (create || !pte_none(*pte)) {
2236                         err = fn(pte++, addr, data);
2237                         if (err)
2238                                 break;
2239                 }
2240         } while (addr += PAGE_SIZE, addr != end);
2241         *mask |= PGTBL_PTE_MODIFIED;
2242
2243         arch_leave_lazy_mmu_mode();
2244
2245         if (mm != &init_mm)
2246                 pte_unmap_unlock(pte-1, ptl);
2247         return err;
2248 }
2249
2250 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2251                                      unsigned long addr, unsigned long end,
2252                                      pte_fn_t fn, void *data, bool create,
2253                                      pgtbl_mod_mask *mask)
2254 {
2255         pmd_t *pmd;
2256         unsigned long next;
2257         int err = 0;
2258
2259         BUG_ON(pud_huge(*pud));
2260
2261         if (create) {
2262                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2263                 if (!pmd)
2264                         return -ENOMEM;
2265         } else {
2266                 pmd = pmd_offset(pud, addr);
2267         }
2268         do {
2269                 next = pmd_addr_end(addr, end);
2270                 if (create || !pmd_none_or_clear_bad(pmd)) {
2271                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2272                                                  create, mask);
2273                         if (err)
2274                                 break;
2275                 }
2276         } while (pmd++, addr = next, addr != end);
2277         return err;
2278 }
2279
2280 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2281                                      unsigned long addr, unsigned long end,
2282                                      pte_fn_t fn, void *data, bool create,
2283                                      pgtbl_mod_mask *mask)
2284 {
2285         pud_t *pud;
2286         unsigned long next;
2287         int err = 0;
2288
2289         if (create) {
2290                 pud = pud_alloc_track(mm, p4d, addr, mask);
2291                 if (!pud)
2292                         return -ENOMEM;
2293         } else {
2294                 pud = pud_offset(p4d, addr);
2295         }
2296         do {
2297                 next = pud_addr_end(addr, end);
2298                 if (create || !pud_none_or_clear_bad(pud)) {
2299                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2300                                                  create, mask);
2301                         if (err)
2302                                 break;
2303                 }
2304         } while (pud++, addr = next, addr != end);
2305         return err;
2306 }
2307
2308 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2309                                      unsigned long addr, unsigned long end,
2310                                      pte_fn_t fn, void *data, bool create,
2311                                      pgtbl_mod_mask *mask)
2312 {
2313         p4d_t *p4d;
2314         unsigned long next;
2315         int err = 0;
2316
2317         if (create) {
2318                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2319                 if (!p4d)
2320                         return -ENOMEM;
2321         } else {
2322                 p4d = p4d_offset(pgd, addr);
2323         }
2324         do {
2325                 next = p4d_addr_end(addr, end);
2326                 if (create || !p4d_none_or_clear_bad(p4d)) {
2327                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2328                                                  create, mask);
2329                         if (err)
2330                                 break;
2331                 }
2332         } while (p4d++, addr = next, addr != end);
2333         return err;
2334 }
2335
2336 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2337                                  unsigned long size, pte_fn_t fn,
2338                                  void *data, bool create)
2339 {
2340         pgd_t *pgd;
2341         unsigned long start = addr, next;
2342         unsigned long end = addr + size;
2343         pgtbl_mod_mask mask = 0;
2344         int err = 0;
2345
2346         if (WARN_ON(addr >= end))
2347                 return -EINVAL;
2348
2349         pgd = pgd_offset(mm, addr);
2350         do {
2351                 next = pgd_addr_end(addr, end);
2352                 if (!create && pgd_none_or_clear_bad(pgd))
2353                         continue;
2354                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2355                 if (err)
2356                         break;
2357         } while (pgd++, addr = next, addr != end);
2358
2359         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2360                 arch_sync_kernel_mappings(start, start + size);
2361
2362         return err;
2363 }
2364
2365 /*
2366  * Scan a region of virtual memory, filling in page tables as necessary
2367  * and calling a provided function on each leaf page table.
2368  */
2369 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2370                         unsigned long size, pte_fn_t fn, void *data)
2371 {
2372         return __apply_to_page_range(mm, addr, size, fn, data, true);
2373 }
2374 EXPORT_SYMBOL_GPL(apply_to_page_range);
2375
2376 /*
2377  * Scan a region of virtual memory, calling a provided function on
2378  * each leaf page table where it exists.
2379  *
2380  * Unlike apply_to_page_range, this does _not_ fill in page tables
2381  * where they are absent.
2382  */
2383 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2384                                  unsigned long size, pte_fn_t fn, void *data)
2385 {
2386         return __apply_to_page_range(mm, addr, size, fn, data, false);
2387 }
2388 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2389
2390 /*
2391  * handle_pte_fault chooses page fault handler according to an entry which was
2392  * read non-atomically.  Before making any commitment, on those architectures
2393  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2394  * parts, do_swap_page must check under lock before unmapping the pte and
2395  * proceeding (but do_wp_page is only called after already making such a check;
2396  * and do_anonymous_page can safely check later on).
2397  */
2398 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2399                                 pte_t *page_table, pte_t orig_pte)
2400 {
2401         int same = 1;
2402 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2403         if (sizeof(pte_t) > sizeof(unsigned long)) {
2404                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2405                 spin_lock(ptl);
2406                 same = pte_same(*page_table, orig_pte);
2407                 spin_unlock(ptl);
2408         }
2409 #endif
2410         pte_unmap(page_table);
2411         return same;
2412 }
2413
2414 static inline bool cow_user_page(struct page *dst, struct page *src,
2415                                  struct vm_fault *vmf)
2416 {
2417         bool ret;
2418         void *kaddr;
2419         void __user *uaddr;
2420         bool locked = false;
2421         struct vm_area_struct *vma = vmf->vma;
2422         struct mm_struct *mm = vma->vm_mm;
2423         unsigned long addr = vmf->address;
2424
2425         if (likely(src)) {
2426                 copy_user_highpage(dst, src, addr, vma);
2427                 return true;
2428         }
2429
2430         /*
2431          * If the source page was a PFN mapping, we don't have
2432          * a "struct page" for it. We do a best-effort copy by
2433          * just copying from the original user address. If that
2434          * fails, we just zero-fill it. Live with it.
2435          */
2436         kaddr = kmap_atomic(dst);
2437         uaddr = (void __user *)(addr & PAGE_MASK);
2438
2439         /*
2440          * On architectures with software "accessed" bits, we would
2441          * take a double page fault, so mark it accessed here.
2442          */
2443         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2444                 pte_t entry;
2445
2446                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2447                 locked = true;
2448                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2449                         /*
2450                          * Other thread has already handled the fault
2451                          * and update local tlb only
2452                          */
2453                         update_mmu_tlb(vma, addr, vmf->pte);
2454                         ret = false;
2455                         goto pte_unlock;
2456                 }
2457
2458                 entry = pte_mkyoung(vmf->orig_pte);
2459                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2460                         update_mmu_cache(vma, addr, vmf->pte);
2461         }
2462
2463         /*
2464          * This really shouldn't fail, because the page is there
2465          * in the page tables. But it might just be unreadable,
2466          * in which case we just give up and fill the result with
2467          * zeroes.
2468          */
2469         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2470                 if (locked)
2471                         goto warn;
2472
2473                 /* Re-validate under PTL if the page is still mapped */
2474                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2475                 locked = true;
2476                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2477                         /* The PTE changed under us, update local tlb */
2478                         update_mmu_tlb(vma, addr, vmf->pte);
2479                         ret = false;
2480                         goto pte_unlock;
2481                 }
2482
2483                 /*
2484                  * The same page can be mapped back since last copy attempt.
2485                  * Try to copy again under PTL.
2486                  */
2487                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2488                         /*
2489                          * Give a warn in case there can be some obscure
2490                          * use-case
2491                          */
2492 warn:
2493                         WARN_ON_ONCE(1);
2494                         clear_page(kaddr);
2495                 }
2496         }
2497
2498         ret = true;
2499
2500 pte_unlock:
2501         if (locked)
2502                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2503         kunmap_atomic(kaddr);
2504         flush_dcache_page(dst);
2505
2506         return ret;
2507 }
2508
2509 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2510 {
2511         struct file *vm_file = vma->vm_file;
2512
2513         if (vm_file)
2514                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2515
2516         /*
2517          * Special mappings (e.g. VDSO) do not have any file so fake
2518          * a default GFP_KERNEL for them.
2519          */
2520         return GFP_KERNEL;
2521 }
2522
2523 /*
2524  * Notify the address space that the page is about to become writable so that
2525  * it can prohibit this or wait for the page to get into an appropriate state.
2526  *
2527  * We do this without the lock held, so that it can sleep if it needs to.
2528  */
2529 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2530 {
2531         vm_fault_t ret;
2532         struct page *page = vmf->page;
2533         unsigned int old_flags = vmf->flags;
2534
2535         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2536
2537         if (vmf->vma->vm_file &&
2538             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2539                 return VM_FAULT_SIGBUS;
2540
2541         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2542         /* Restore original flags so that caller is not surprised */
2543         vmf->flags = old_flags;
2544         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2545                 return ret;
2546         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2547                 lock_page(page);
2548                 if (!page->mapping) {
2549                         unlock_page(page);
2550                         return 0; /* retry */
2551                 }
2552                 ret |= VM_FAULT_LOCKED;
2553         } else
2554                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2555         return ret;
2556 }
2557
2558 /*
2559  * Handle dirtying of a page in shared file mapping on a write fault.
2560  *
2561  * The function expects the page to be locked and unlocks it.
2562  */
2563 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2564 {
2565         struct vm_area_struct *vma = vmf->vma;
2566         struct address_space *mapping;
2567         struct page *page = vmf->page;
2568         bool dirtied;
2569         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2570
2571         dirtied = set_page_dirty(page);
2572         VM_BUG_ON_PAGE(PageAnon(page), page);
2573         /*
2574          * Take a local copy of the address_space - page.mapping may be zeroed
2575          * by truncate after unlock_page().   The address_space itself remains
2576          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2577          * release semantics to prevent the compiler from undoing this copying.
2578          */
2579         mapping = page_rmapping(page);
2580         unlock_page(page);
2581
2582         if (!page_mkwrite)
2583                 file_update_time(vma->vm_file);
2584
2585         /*
2586          * Throttle page dirtying rate down to writeback speed.
2587          *
2588          * mapping may be NULL here because some device drivers do not
2589          * set page.mapping but still dirty their pages
2590          *
2591          * Drop the mmap_lock before waiting on IO, if we can. The file
2592          * is pinning the mapping, as per above.
2593          */
2594         if ((dirtied || page_mkwrite) && mapping) {
2595                 struct file *fpin;
2596
2597                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2598                 balance_dirty_pages_ratelimited(mapping);
2599                 if (fpin) {
2600                         fput(fpin);
2601                         return VM_FAULT_RETRY;
2602                 }
2603         }
2604
2605         return 0;
2606 }
2607
2608 /*
2609  * Handle write page faults for pages that can be reused in the current vma
2610  *
2611  * This can happen either due to the mapping being with the VM_SHARED flag,
2612  * or due to us being the last reference standing to the page. In either
2613  * case, all we need to do here is to mark the page as writable and update
2614  * any related book-keeping.
2615  */
2616 static inline void wp_page_reuse(struct vm_fault *vmf)
2617         __releases(vmf->ptl)
2618 {
2619         struct vm_area_struct *vma = vmf->vma;
2620         struct page *page = vmf->page;
2621         pte_t entry;
2622         /*
2623          * Clear the pages cpupid information as the existing
2624          * information potentially belongs to a now completely
2625          * unrelated process.
2626          */
2627         if (page)
2628                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2629
2630         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2631         entry = pte_mkyoung(vmf->orig_pte);
2632         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2633         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2634                 update_mmu_cache(vma, vmf->address, vmf->pte);
2635         pte_unmap_unlock(vmf->pte, vmf->ptl);
2636         count_vm_event(PGREUSE);
2637 }
2638
2639 /*
2640  * Handle the case of a page which we actually need to copy to a new page.
2641  *
2642  * Called with mmap_lock locked and the old page referenced, but
2643  * without the ptl held.
2644  *
2645  * High level logic flow:
2646  *
2647  * - Allocate a page, copy the content of the old page to the new one.
2648  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2649  * - Take the PTL. If the pte changed, bail out and release the allocated page
2650  * - If the pte is still the way we remember it, update the page table and all
2651  *   relevant references. This includes dropping the reference the page-table
2652  *   held to the old page, as well as updating the rmap.
2653  * - In any case, unlock the PTL and drop the reference we took to the old page.
2654  */
2655 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2656 {
2657         struct vm_area_struct *vma = vmf->vma;
2658         struct mm_struct *mm = vma->vm_mm;
2659         struct page *old_page = vmf->page;
2660         struct page *new_page = NULL;
2661         pte_t entry;
2662         int page_copied = 0;
2663         struct mmu_notifier_range range;
2664
2665         if (unlikely(anon_vma_prepare(vma)))
2666                 goto oom;
2667
2668         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2669                 new_page = alloc_zeroed_user_highpage_movable(vma,
2670                                                               vmf->address);
2671                 if (!new_page)
2672                         goto oom;
2673         } else {
2674                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2675                                 vmf->address);
2676                 if (!new_page)
2677                         goto oom;
2678
2679                 if (!cow_user_page(new_page, old_page, vmf)) {
2680                         /*
2681                          * COW failed, if the fault was solved by other,
2682                          * it's fine. If not, userspace would re-fault on
2683                          * the same address and we will handle the fault
2684                          * from the second attempt.
2685                          */
2686                         put_page(new_page);
2687                         if (old_page)
2688                                 put_page(old_page);
2689                         return 0;
2690                 }
2691         }
2692
2693         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2694                 goto oom_free_new;
2695         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2696
2697         __SetPageUptodate(new_page);
2698
2699         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2700                                 vmf->address & PAGE_MASK,
2701                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2702         mmu_notifier_invalidate_range_start(&range);
2703
2704         /*
2705          * Re-check the pte - we dropped the lock
2706          */
2707         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2708         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2709                 if (old_page) {
2710                         if (!PageAnon(old_page)) {
2711                                 dec_mm_counter_fast(mm,
2712                                                 mm_counter_file(old_page));
2713                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2714                         }
2715                 } else {
2716                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2717                 }
2718                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2719                 entry = mk_pte(new_page, vma->vm_page_prot);
2720                 entry = pte_sw_mkyoung(entry);
2721                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2722                 /*
2723                  * Clear the pte entry and flush it first, before updating the
2724                  * pte with the new entry. This will avoid a race condition
2725                  * seen in the presence of one thread doing SMC and another
2726                  * thread doing COW.
2727                  */
2728                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2729                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2730                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2731                 /*
2732                  * We call the notify macro here because, when using secondary
2733                  * mmu page tables (such as kvm shadow page tables), we want the
2734                  * new page to be mapped directly into the secondary page table.
2735                  */
2736                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2737                 update_mmu_cache(vma, vmf->address, vmf->pte);
2738                 if (old_page) {
2739                         /*
2740                          * Only after switching the pte to the new page may
2741                          * we remove the mapcount here. Otherwise another
2742                          * process may come and find the rmap count decremented
2743                          * before the pte is switched to the new page, and
2744                          * "reuse" the old page writing into it while our pte
2745                          * here still points into it and can be read by other
2746                          * threads.
2747                          *
2748                          * The critical issue is to order this
2749                          * page_remove_rmap with the ptp_clear_flush above.
2750                          * Those stores are ordered by (if nothing else,)
2751                          * the barrier present in the atomic_add_negative
2752                          * in page_remove_rmap.
2753                          *
2754                          * Then the TLB flush in ptep_clear_flush ensures that
2755                          * no process can access the old page before the
2756                          * decremented mapcount is visible. And the old page
2757                          * cannot be reused until after the decremented
2758                          * mapcount is visible. So transitively, TLBs to
2759                          * old page will be flushed before it can be reused.
2760                          */
2761                         page_remove_rmap(old_page, false);
2762                 }
2763
2764                 /* Free the old page.. */
2765                 new_page = old_page;
2766                 page_copied = 1;
2767         } else {
2768                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2769         }
2770
2771         if (new_page)
2772                 put_page(new_page);
2773
2774         pte_unmap_unlock(vmf->pte, vmf->ptl);
2775         /*
2776          * No need to double call mmu_notifier->invalidate_range() callback as
2777          * the above ptep_clear_flush_notify() did already call it.
2778          */
2779         mmu_notifier_invalidate_range_only_end(&range);
2780         if (old_page) {
2781                 /*
2782                  * Don't let another task, with possibly unlocked vma,
2783                  * keep the mlocked page.
2784                  */
2785                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2786                         lock_page(old_page);    /* LRU manipulation */
2787                         if (PageMlocked(old_page))
2788                                 munlock_vma_page(old_page);
2789                         unlock_page(old_page);
2790                 }
2791                 put_page(old_page);
2792         }
2793         return page_copied ? VM_FAULT_WRITE : 0;
2794 oom_free_new:
2795         put_page(new_page);
2796 oom:
2797         if (old_page)
2798                 put_page(old_page);
2799         return VM_FAULT_OOM;
2800 }
2801
2802 /**
2803  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2804  *                        writeable once the page is prepared
2805  *
2806  * @vmf: structure describing the fault
2807  *
2808  * This function handles all that is needed to finish a write page fault in a
2809  * shared mapping due to PTE being read-only once the mapped page is prepared.
2810  * It handles locking of PTE and modifying it.
2811  *
2812  * The function expects the page to be locked or other protection against
2813  * concurrent faults / writeback (such as DAX radix tree locks).
2814  *
2815  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2816  * we acquired PTE lock.
2817  */
2818 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2819 {
2820         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2821         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2822                                        &vmf->ptl);
2823         /*
2824          * We might have raced with another page fault while we released the
2825          * pte_offset_map_lock.
2826          */
2827         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2828                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2829                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2830                 return VM_FAULT_NOPAGE;
2831         }
2832         wp_page_reuse(vmf);
2833         return 0;
2834 }
2835
2836 /*
2837  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2838  * mapping
2839  */
2840 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2841 {
2842         struct vm_area_struct *vma = vmf->vma;
2843
2844         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2845                 vm_fault_t ret;
2846
2847                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2848                 vmf->flags |= FAULT_FLAG_MKWRITE;
2849                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2850                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2851                         return ret;
2852                 return finish_mkwrite_fault(vmf);
2853         }
2854         wp_page_reuse(vmf);
2855         return VM_FAULT_WRITE;
2856 }
2857
2858 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2859         __releases(vmf->ptl)
2860 {
2861         struct vm_area_struct *vma = vmf->vma;
2862         vm_fault_t ret = VM_FAULT_WRITE;
2863
2864         get_page(vmf->page);
2865
2866         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2867                 vm_fault_t tmp;
2868
2869                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2870                 tmp = do_page_mkwrite(vmf);
2871                 if (unlikely(!tmp || (tmp &
2872                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2873                         put_page(vmf->page);
2874                         return tmp;
2875                 }
2876                 tmp = finish_mkwrite_fault(vmf);
2877                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2878                         unlock_page(vmf->page);
2879                         put_page(vmf->page);
2880                         return tmp;
2881                 }
2882         } else {
2883                 wp_page_reuse(vmf);
2884                 lock_page(vmf->page);
2885         }
2886         ret |= fault_dirty_shared_page(vmf);
2887         put_page(vmf->page);
2888
2889         return ret;
2890 }
2891
2892 /*
2893  * This routine handles present pages, when users try to write
2894  * to a shared page. It is done by copying the page to a new address
2895  * and decrementing the shared-page counter for the old page.
2896  *
2897  * Note that this routine assumes that the protection checks have been
2898  * done by the caller (the low-level page fault routine in most cases).
2899  * Thus we can safely just mark it writable once we've done any necessary
2900  * COW.
2901  *
2902  * We also mark the page dirty at this point even though the page will
2903  * change only once the write actually happens. This avoids a few races,
2904  * and potentially makes it more efficient.
2905  *
2906  * We enter with non-exclusive mmap_lock (to exclude vma changes,
2907  * but allow concurrent faults), with pte both mapped and locked.
2908  * We return with mmap_lock still held, but pte unmapped and unlocked.
2909  */
2910 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2911         __releases(vmf->ptl)
2912 {
2913         struct vm_area_struct *vma = vmf->vma;
2914
2915         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2916                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2917                 return handle_userfault(vmf, VM_UFFD_WP);
2918         }
2919
2920         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2921         if (!vmf->page) {
2922                 /*
2923                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2924                  * VM_PFNMAP VMA.
2925                  *
2926                  * We should not cow pages in a shared writeable mapping.
2927                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2928                  */
2929                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2930                                      (VM_WRITE|VM_SHARED))
2931                         return wp_pfn_shared(vmf);
2932
2933                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2934                 return wp_page_copy(vmf);
2935         }
2936
2937         /*
2938          * Take out anonymous pages first, anonymous shared vmas are
2939          * not dirty accountable.
2940          */
2941         if (PageAnon(vmf->page)) {
2942                 struct page *page = vmf->page;
2943
2944                 /* PageKsm() doesn't necessarily raise the page refcount */
2945                 if (PageKsm(page) || page_count(page) != 1)
2946                         goto copy;
2947                 if (!trylock_page(page))
2948                         goto copy;
2949                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
2950                         unlock_page(page);
2951                         goto copy;
2952                 }
2953                 /*
2954                  * Ok, we've got the only map reference, and the only
2955                  * page count reference, and the page is locked,
2956                  * it's dark out, and we're wearing sunglasses. Hit it.
2957                  */
2958                 wp_page_reuse(vmf);
2959                 unlock_page(page);
2960                 return VM_FAULT_WRITE;
2961         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2962                                         (VM_WRITE|VM_SHARED))) {
2963                 return wp_page_shared(vmf);
2964         }
2965 copy:
2966         /*
2967          * Ok, we need to copy. Oh, well..
2968          */
2969         get_page(vmf->page);
2970
2971         pte_unmap_unlock(vmf->pte, vmf->ptl);
2972         return wp_page_copy(vmf);
2973 }
2974
2975 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2976                 unsigned long start_addr, unsigned long end_addr,
2977                 struct zap_details *details)
2978 {
2979         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2980 }
2981
2982 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2983                                             struct zap_details *details)
2984 {
2985         struct vm_area_struct *vma;
2986         pgoff_t vba, vea, zba, zea;
2987
2988         vma_interval_tree_foreach(vma, root,
2989                         details->first_index, details->last_index) {
2990
2991                 vba = vma->vm_pgoff;
2992                 vea = vba + vma_pages(vma) - 1;
2993                 zba = details->first_index;
2994                 if (zba < vba)
2995                         zba = vba;
2996                 zea = details->last_index;
2997                 if (zea > vea)
2998                         zea = vea;
2999
3000                 unmap_mapping_range_vma(vma,
3001                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3002                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3003                                 details);
3004         }
3005 }
3006
3007 /**
3008  * unmap_mapping_pages() - Unmap pages from processes.
3009  * @mapping: The address space containing pages to be unmapped.
3010  * @start: Index of first page to be unmapped.
3011  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3012  * @even_cows: Whether to unmap even private COWed pages.
3013  *
3014  * Unmap the pages in this address space from any userspace process which
3015  * has them mmaped.  Generally, you want to remove COWed pages as well when
3016  * a file is being truncated, but not when invalidating pages from the page
3017  * cache.
3018  */
3019 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3020                 pgoff_t nr, bool even_cows)
3021 {
3022         struct zap_details details = { };
3023
3024         details.check_mapping = even_cows ? NULL : mapping;
3025         details.first_index = start;
3026         details.last_index = start + nr - 1;
3027         if (details.last_index < details.first_index)
3028                 details.last_index = ULONG_MAX;
3029
3030         i_mmap_lock_write(mapping);
3031         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3032                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3033         i_mmap_unlock_write(mapping);
3034 }
3035
3036 /**
3037  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3038  * address_space corresponding to the specified byte range in the underlying
3039  * file.
3040  *
3041  * @mapping: the address space containing mmaps to be unmapped.
3042  * @holebegin: byte in first page to unmap, relative to the start of
3043  * the underlying file.  This will be rounded down to a PAGE_SIZE
3044  * boundary.  Note that this is different from truncate_pagecache(), which
3045  * must keep the partial page.  In contrast, we must get rid of
3046  * partial pages.
3047  * @holelen: size of prospective hole in bytes.  This will be rounded
3048  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3049  * end of the file.
3050  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3051  * but 0 when invalidating pagecache, don't throw away private data.
3052  */
3053 void unmap_mapping_range(struct address_space *mapping,
3054                 loff_t const holebegin, loff_t const holelen, int even_cows)
3055 {
3056         pgoff_t hba = holebegin >> PAGE_SHIFT;
3057         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3058
3059         /* Check for overflow. */
3060         if (sizeof(holelen) > sizeof(hlen)) {
3061                 long long holeend =
3062                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3063                 if (holeend & ~(long long)ULONG_MAX)
3064                         hlen = ULONG_MAX - hba + 1;
3065         }
3066
3067         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3068 }
3069 EXPORT_SYMBOL(unmap_mapping_range);
3070
3071 /*
3072  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3073  * but allow concurrent faults), and pte mapped but not yet locked.
3074  * We return with pte unmapped and unlocked.
3075  *
3076  * We return with the mmap_lock locked or unlocked in the same cases
3077  * as does filemap_fault().
3078  */
3079 vm_fault_t do_swap_page(struct vm_fault *vmf)
3080 {
3081         struct vm_area_struct *vma = vmf->vma;
3082         struct page *page = NULL, *swapcache;
3083         swp_entry_t entry;
3084         pte_t pte;
3085         int locked;
3086         int exclusive = 0;
3087         vm_fault_t ret = 0;
3088         void *shadow = NULL;
3089
3090         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3091                 goto out;
3092
3093         entry = pte_to_swp_entry(vmf->orig_pte);
3094         if (unlikely(non_swap_entry(entry))) {
3095                 if (is_migration_entry(entry)) {
3096                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3097                                              vmf->address);
3098                 } else if (is_device_private_entry(entry)) {
3099                         vmf->page = device_private_entry_to_page(entry);
3100                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3101                 } else if (is_hwpoison_entry(entry)) {
3102                         ret = VM_FAULT_HWPOISON;
3103                 } else {
3104                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3105                         ret = VM_FAULT_SIGBUS;
3106                 }
3107                 goto out;
3108         }
3109
3110
3111         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3112         page = lookup_swap_cache(entry, vma, vmf->address);
3113         swapcache = page;
3114
3115         if (!page) {
3116                 struct swap_info_struct *si = swp_swap_info(entry);
3117
3118                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3119                     __swap_count(entry) == 1) {
3120                         /* skip swapcache */
3121                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3122                                                         vmf->address);
3123                         if (page) {
3124                                 int err;
3125
3126                                 __SetPageLocked(page);
3127                                 __SetPageSwapBacked(page);
3128                                 set_page_private(page, entry.val);
3129
3130                                 /* Tell memcg to use swap ownership records */
3131                                 SetPageSwapCache(page);
3132                                 err = mem_cgroup_charge(page, vma->vm_mm,
3133                                                         GFP_KERNEL);
3134                                 ClearPageSwapCache(page);
3135                                 if (err) {
3136                                         ret = VM_FAULT_OOM;
3137                                         goto out_page;
3138                                 }
3139
3140                                 shadow = get_shadow_from_swap_cache(entry);
3141                                 if (shadow)
3142                                         workingset_refault(page, shadow);
3143
3144                                 lru_cache_add(page);
3145                                 swap_readpage(page, true);
3146                         }
3147                 } else {
3148                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3149                                                 vmf);
3150                         swapcache = page;
3151                 }
3152
3153                 if (!page) {
3154                         /*
3155                          * Back out if somebody else faulted in this pte
3156                          * while we released the pte lock.
3157                          */
3158                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3159                                         vmf->address, &vmf->ptl);
3160                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3161                                 ret = VM_FAULT_OOM;
3162                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3163                         goto unlock;
3164                 }
3165
3166                 /* Had to read the page from swap area: Major fault */
3167                 ret = VM_FAULT_MAJOR;
3168                 count_vm_event(PGMAJFAULT);
3169                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3170         } else if (PageHWPoison(page)) {
3171                 /*
3172                  * hwpoisoned dirty swapcache pages are kept for killing
3173                  * owner processes (which may be unknown at hwpoison time)
3174                  */
3175                 ret = VM_FAULT_HWPOISON;
3176                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3177                 goto out_release;
3178         }
3179
3180         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3181
3182         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3183         if (!locked) {
3184                 ret |= VM_FAULT_RETRY;
3185                 goto out_release;
3186         }
3187
3188         /*
3189          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3190          * release the swapcache from under us.  The page pin, and pte_same
3191          * test below, are not enough to exclude that.  Even if it is still
3192          * swapcache, we need to check that the page's swap has not changed.
3193          */
3194         if (unlikely((!PageSwapCache(page) ||
3195                         page_private(page) != entry.val)) && swapcache)
3196                 goto out_page;
3197
3198         page = ksm_might_need_to_copy(page, vma, vmf->address);
3199         if (unlikely(!page)) {
3200                 ret = VM_FAULT_OOM;
3201                 page = swapcache;
3202                 goto out_page;
3203         }
3204
3205         cgroup_throttle_swaprate(page, GFP_KERNEL);
3206
3207         /*
3208          * Back out if somebody else already faulted in this pte.
3209          */
3210         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3211                         &vmf->ptl);
3212         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3213                 goto out_nomap;
3214
3215         if (unlikely(!PageUptodate(page))) {
3216                 ret = VM_FAULT_SIGBUS;
3217                 goto out_nomap;
3218         }
3219
3220         /*
3221          * The page isn't present yet, go ahead with the fault.
3222          *
3223          * Be careful about the sequence of operations here.
3224          * To get its accounting right, reuse_swap_page() must be called
3225          * while the page is counted on swap but not yet in mapcount i.e.
3226          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3227          * must be called after the swap_free(), or it will never succeed.
3228          */
3229
3230         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3231         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3232         pte = mk_pte(page, vma->vm_page_prot);
3233         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3234                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3235                 vmf->flags &= ~FAULT_FLAG_WRITE;
3236                 ret |= VM_FAULT_WRITE;
3237                 exclusive = RMAP_EXCLUSIVE;
3238         }
3239         flush_icache_page(vma, page);
3240         if (pte_swp_soft_dirty(vmf->orig_pte))
3241                 pte = pte_mksoft_dirty(pte);
3242         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3243                 pte = pte_mkuffd_wp(pte);
3244                 pte = pte_wrprotect(pte);
3245         }
3246         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3247         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3248         vmf->orig_pte = pte;
3249
3250         /* ksm created a completely new copy */
3251         if (unlikely(page != swapcache && swapcache)) {
3252                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3253                 lru_cache_add_inactive_or_unevictable(page, vma);
3254         } else {
3255                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3256         }
3257
3258         swap_free(entry);
3259         if (mem_cgroup_swap_full(page) ||
3260             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3261                 try_to_free_swap(page);
3262         unlock_page(page);
3263         if (page != swapcache && swapcache) {
3264                 /*
3265                  * Hold the lock to avoid the swap entry to be reused
3266                  * until we take the PT lock for the pte_same() check
3267                  * (to avoid false positives from pte_same). For
3268                  * further safety release the lock after the swap_free
3269                  * so that the swap count won't change under a
3270                  * parallel locked swapcache.
3271                  */
3272                 unlock_page(swapcache);
3273                 put_page(swapcache);
3274         }
3275
3276         if (vmf->flags & FAULT_FLAG_WRITE) {
3277                 ret |= do_wp_page(vmf);
3278                 if (ret & VM_FAULT_ERROR)
3279                         ret &= VM_FAULT_ERROR;
3280                 goto out;
3281         }
3282
3283         /* No need to invalidate - it was non-present before */
3284         update_mmu_cache(vma, vmf->address, vmf->pte);
3285 unlock:
3286         pte_unmap_unlock(vmf->pte, vmf->ptl);
3287 out:
3288         return ret;
3289 out_nomap:
3290         pte_unmap_unlock(vmf->pte, vmf->ptl);
3291 out_page:
3292         unlock_page(page);
3293 out_release:
3294         put_page(page);
3295         if (page != swapcache && swapcache) {
3296                 unlock_page(swapcache);
3297                 put_page(swapcache);
3298         }
3299         return ret;
3300 }
3301
3302 /*
3303  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3304  * but allow concurrent faults), and pte mapped but not yet locked.
3305  * We return with mmap_lock still held, but pte unmapped and unlocked.
3306  */
3307 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3308 {
3309         struct vm_area_struct *vma = vmf->vma;
3310         struct page *page;
3311         vm_fault_t ret = 0;
3312         pte_t entry;
3313
3314         /* File mapping without ->vm_ops ? */
3315         if (vma->vm_flags & VM_SHARED)
3316                 return VM_FAULT_SIGBUS;
3317
3318         /*
3319          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3320          * pte_offset_map() on pmds where a huge pmd might be created
3321          * from a different thread.
3322          *
3323          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3324          * parallel threads are excluded by other means.
3325          *
3326          * Here we only have mmap_read_lock(mm).
3327          */
3328         if (pte_alloc(vma->vm_mm, vmf->pmd))
3329                 return VM_FAULT_OOM;
3330
3331         /* See the comment in pte_alloc_one_map() */
3332         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3333                 return 0;
3334
3335         /* Use the zero-page for reads */
3336         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3337                         !mm_forbids_zeropage(vma->vm_mm)) {
3338                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3339                                                 vma->vm_page_prot));
3340                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3341                                 vmf->address, &vmf->ptl);
3342                 if (!pte_none(*vmf->pte)) {
3343                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3344                         goto unlock;
3345                 }
3346                 ret = check_stable_address_space(vma->vm_mm);
3347                 if (ret)
3348                         goto unlock;
3349                 /* Deliver the page fault to userland, check inside PT lock */
3350                 if (userfaultfd_missing(vma)) {
3351                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3352                         return handle_userfault(vmf, VM_UFFD_MISSING);
3353                 }
3354                 goto setpte;
3355         }
3356
3357         /* Allocate our own private page. */
3358         if (unlikely(anon_vma_prepare(vma)))
3359                 goto oom;
3360         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3361         if (!page)
3362                 goto oom;
3363
3364         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3365                 goto oom_free_page;
3366         cgroup_throttle_swaprate(page, GFP_KERNEL);
3367
3368         /*
3369          * The memory barrier inside __SetPageUptodate makes sure that
3370          * preceding stores to the page contents become visible before
3371          * the set_pte_at() write.
3372          */
3373         __SetPageUptodate(page);
3374
3375         entry = mk_pte(page, vma->vm_page_prot);
3376         entry = pte_sw_mkyoung(entry);
3377         if (vma->vm_flags & VM_WRITE)
3378                 entry = pte_mkwrite(pte_mkdirty(entry));
3379
3380         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3381                         &vmf->ptl);
3382         if (!pte_none(*vmf->pte)) {
3383                 update_mmu_cache(vma, vmf->address, vmf->pte);
3384                 goto release;
3385         }
3386
3387         ret = check_stable_address_space(vma->vm_mm);
3388         if (ret)
3389                 goto release;
3390
3391         /* Deliver the page fault to userland, check inside PT lock */
3392         if (userfaultfd_missing(vma)) {
3393                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3394                 put_page(page);
3395                 return handle_userfault(vmf, VM_UFFD_MISSING);
3396         }
3397
3398         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3399         page_add_new_anon_rmap(page, vma, vmf->address, false);
3400         lru_cache_add_inactive_or_unevictable(page, vma);
3401 setpte:
3402         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3403
3404         /* No need to invalidate - it was non-present before */
3405         update_mmu_cache(vma, vmf->address, vmf->pte);
3406 unlock:
3407         pte_unmap_unlock(vmf->pte, vmf->ptl);
3408         return ret;
3409 release:
3410         put_page(page);
3411         goto unlock;
3412 oom_free_page:
3413         put_page(page);
3414 oom:
3415         return VM_FAULT_OOM;
3416 }
3417
3418 /*
3419  * The mmap_lock must have been held on entry, and may have been
3420  * released depending on flags and vma->vm_ops->fault() return value.
3421  * See filemap_fault() and __lock_page_retry().
3422  */
3423 static vm_fault_t __do_fault(struct vm_fault *vmf)
3424 {
3425         struct vm_area_struct *vma = vmf->vma;
3426         vm_fault_t ret;
3427
3428         /*
3429          * Preallocate pte before we take page_lock because this might lead to
3430          * deadlocks for memcg reclaim which waits for pages under writeback:
3431          *                              lock_page(A)
3432          *                              SetPageWriteback(A)
3433          *                              unlock_page(A)
3434          * lock_page(B)
3435          *                              lock_page(B)
3436          * pte_alloc_pne
3437          *   shrink_page_list
3438          *     wait_on_page_writeback(A)
3439          *                              SetPageWriteback(B)
3440          *                              unlock_page(B)
3441          *                              # flush A, B to clear the writeback
3442          */
3443         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3444                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3445                 if (!vmf->prealloc_pte)
3446                         return VM_FAULT_OOM;
3447                 smp_wmb(); /* See comment in __pte_alloc() */
3448         }
3449
3450         ret = vma->vm_ops->fault(vmf);
3451         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3452                             VM_FAULT_DONE_COW)))
3453                 return ret;
3454
3455         if (unlikely(PageHWPoison(vmf->page))) {
3456                 if (ret & VM_FAULT_LOCKED)
3457                         unlock_page(vmf->page);
3458                 put_page(vmf->page);
3459                 vmf->page = NULL;
3460                 return VM_FAULT_HWPOISON;
3461         }
3462
3463         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3464                 lock_page(vmf->page);
3465         else
3466                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3467
3468         return ret;
3469 }
3470
3471 /*
3472  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3473  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3474  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3475  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3476  */
3477 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3478 {
3479         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3480 }
3481
3482 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3483 {
3484         struct vm_area_struct *vma = vmf->vma;
3485
3486         if (!pmd_none(*vmf->pmd))
3487                 goto map_pte;
3488         if (vmf->prealloc_pte) {
3489                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3490                 if (unlikely(!pmd_none(*vmf->pmd))) {
3491                         spin_unlock(vmf->ptl);
3492                         goto map_pte;
3493                 }
3494
3495                 mm_inc_nr_ptes(vma->vm_mm);
3496                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3497                 spin_unlock(vmf->ptl);
3498                 vmf->prealloc_pte = NULL;
3499         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3500                 return VM_FAULT_OOM;
3501         }
3502 map_pte:
3503         /*
3504          * If a huge pmd materialized under us just retry later.  Use
3505          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3506          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3507          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3508          * running immediately after a huge pmd fault in a different thread of
3509          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3510          * All we have to ensure is that it is a regular pmd that we can walk
3511          * with pte_offset_map() and we can do that through an atomic read in
3512          * C, which is what pmd_trans_unstable() provides.
3513          */
3514         if (pmd_devmap_trans_unstable(vmf->pmd))
3515                 return VM_FAULT_NOPAGE;
3516
3517         /*
3518          * At this point we know that our vmf->pmd points to a page of ptes
3519          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3520          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3521          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3522          * be valid and we will re-check to make sure the vmf->pte isn't
3523          * pte_none() under vmf->ptl protection when we return to
3524          * alloc_set_pte().
3525          */
3526         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3527                         &vmf->ptl);
3528         return 0;
3529 }
3530
3531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3532 static void deposit_prealloc_pte(struct vm_fault *vmf)
3533 {
3534         struct vm_area_struct *vma = vmf->vma;
3535
3536         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3537         /*
3538          * We are going to consume the prealloc table,
3539          * count that as nr_ptes.
3540          */
3541         mm_inc_nr_ptes(vma->vm_mm);
3542         vmf->prealloc_pte = NULL;
3543 }
3544
3545 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3546 {
3547         struct vm_area_struct *vma = vmf->vma;
3548         bool write = vmf->flags & FAULT_FLAG_WRITE;
3549         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3550         pmd_t entry;
3551         int i;
3552         vm_fault_t ret;
3553
3554         if (!transhuge_vma_suitable(vma, haddr))
3555                 return VM_FAULT_FALLBACK;
3556
3557         ret = VM_FAULT_FALLBACK;
3558         page = compound_head(page);
3559
3560         /*
3561          * Archs like ppc64 need additonal space to store information
3562          * related to pte entry. Use the preallocated table for that.
3563          */
3564         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3565                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3566                 if (!vmf->prealloc_pte)
3567                         return VM_FAULT_OOM;
3568                 smp_wmb(); /* See comment in __pte_alloc() */
3569         }
3570
3571         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3572         if (unlikely(!pmd_none(*vmf->pmd)))
3573                 goto out;
3574
3575         for (i = 0; i < HPAGE_PMD_NR; i++)
3576                 flush_icache_page(vma, page + i);
3577
3578         entry = mk_huge_pmd(page, vma->vm_page_prot);
3579         if (write)
3580                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3581
3582         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3583         page_add_file_rmap(page, true);
3584         /*
3585          * deposit and withdraw with pmd lock held
3586          */
3587         if (arch_needs_pgtable_deposit())
3588                 deposit_prealloc_pte(vmf);
3589
3590         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3591
3592         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3593
3594         /* fault is handled */
3595         ret = 0;
3596         count_vm_event(THP_FILE_MAPPED);
3597 out:
3598         spin_unlock(vmf->ptl);
3599         return ret;
3600 }
3601 #else
3602 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3603 {
3604         BUILD_BUG();
3605         return 0;
3606 }
3607 #endif
3608
3609 /**
3610  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3611  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3612  *
3613  * @vmf: fault environment
3614  * @page: page to map
3615  *
3616  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3617  * return.
3618  *
3619  * Target users are page handler itself and implementations of
3620  * vm_ops->map_pages.
3621  *
3622  * Return: %0 on success, %VM_FAULT_ code in case of error.
3623  */
3624 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3625 {
3626         struct vm_area_struct *vma = vmf->vma;
3627         bool write = vmf->flags & FAULT_FLAG_WRITE;
3628         pte_t entry;
3629         vm_fault_t ret;
3630
3631         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3632                 ret = do_set_pmd(vmf, page);
3633                 if (ret != VM_FAULT_FALLBACK)
3634                         return ret;
3635         }
3636
3637         if (!vmf->pte) {
3638                 ret = pte_alloc_one_map(vmf);
3639                 if (ret)
3640                         return ret;
3641         }
3642
3643         /* Re-check under ptl */
3644         if (unlikely(!pte_none(*vmf->pte))) {
3645                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3646                 return VM_FAULT_NOPAGE;
3647         }
3648
3649         flush_icache_page(vma, page);
3650         entry = mk_pte(page, vma->vm_page_prot);
3651         entry = pte_sw_mkyoung(entry);
3652         if (write)
3653                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3654         /* copy-on-write page */
3655         if (write && !(vma->vm_flags & VM_SHARED)) {
3656                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3657                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3658                 lru_cache_add_inactive_or_unevictable(page, vma);
3659         } else {
3660                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3661                 page_add_file_rmap(page, false);
3662         }
3663         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3664
3665         /* no need to invalidate: a not-present page won't be cached */
3666         update_mmu_cache(vma, vmf->address, vmf->pte);
3667
3668         return 0;
3669 }
3670
3671
3672 /**
3673  * finish_fault - finish page fault once we have prepared the page to fault
3674  *
3675  * @vmf: structure describing the fault
3676  *
3677  * This function handles all that is needed to finish a page fault once the
3678  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3679  * given page, adds reverse page mapping, handles memcg charges and LRU
3680  * addition.
3681  *
3682  * The function expects the page to be locked and on success it consumes a
3683  * reference of a page being mapped (for the PTE which maps it).
3684  *
3685  * Return: %0 on success, %VM_FAULT_ code in case of error.
3686  */
3687 vm_fault_t finish_fault(struct vm_fault *vmf)
3688 {
3689         struct page *page;
3690         vm_fault_t ret = 0;
3691
3692         /* Did we COW the page? */
3693         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3694             !(vmf->vma->vm_flags & VM_SHARED))
3695                 page = vmf->cow_page;
3696         else
3697                 page = vmf->page;
3698
3699         /*
3700          * check even for read faults because we might have lost our CoWed
3701          * page
3702          */
3703         if (!(vmf->vma->vm_flags & VM_SHARED))
3704                 ret = check_stable_address_space(vmf->vma->vm_mm);
3705         if (!ret)
3706                 ret = alloc_set_pte(vmf, page);
3707         if (vmf->pte)
3708                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3709         return ret;
3710 }
3711
3712 static unsigned long fault_around_bytes __read_mostly =
3713         rounddown_pow_of_two(65536);
3714
3715 #ifdef CONFIG_DEBUG_FS
3716 static int fault_around_bytes_get(void *data, u64 *val)
3717 {
3718         *val = fault_around_bytes;
3719         return 0;
3720 }
3721
3722 /*
3723  * fault_around_bytes must be rounded down to the nearest page order as it's
3724  * what do_fault_around() expects to see.
3725  */
3726 static int fault_around_bytes_set(void *data, u64 val)
3727 {
3728         if (val / PAGE_SIZE > PTRS_PER_PTE)
3729                 return -EINVAL;
3730         if (val > PAGE_SIZE)
3731                 fault_around_bytes = rounddown_pow_of_two(val);
3732         else
3733                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3734         return 0;
3735 }
3736 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3737                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3738
3739 static int __init fault_around_debugfs(void)
3740 {
3741         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3742                                    &fault_around_bytes_fops);
3743         return 0;
3744 }
3745 late_initcall(fault_around_debugfs);
3746 #endif
3747
3748 /*
3749  * do_fault_around() tries to map few pages around the fault address. The hope
3750  * is that the pages will be needed soon and this will lower the number of
3751  * faults to handle.
3752  *
3753  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3754  * not ready to be mapped: not up-to-date, locked, etc.
3755  *
3756  * This function is called with the page table lock taken. In the split ptlock
3757  * case the page table lock only protects only those entries which belong to
3758  * the page table corresponding to the fault address.
3759  *
3760  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3761  * only once.
3762  *
3763  * fault_around_bytes defines how many bytes we'll try to map.
3764  * do_fault_around() expects it to be set to a power of two less than or equal
3765  * to PTRS_PER_PTE.
3766  *
3767  * The virtual address of the area that we map is naturally aligned to
3768  * fault_around_bytes rounded down to the machine page size
3769  * (and therefore to page order).  This way it's easier to guarantee
3770  * that we don't cross page table boundaries.
3771  */
3772 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3773 {
3774         unsigned long address = vmf->address, nr_pages, mask;
3775         pgoff_t start_pgoff = vmf->pgoff;
3776         pgoff_t end_pgoff;
3777         int off;
3778         vm_fault_t ret = 0;
3779
3780         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3781         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3782
3783         vmf->address = max(address & mask, vmf->vma->vm_start);
3784         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3785         start_pgoff -= off;
3786
3787         /*
3788          *  end_pgoff is either the end of the page table, the end of
3789          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3790          */
3791         end_pgoff = start_pgoff -
3792                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3793                 PTRS_PER_PTE - 1;
3794         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3795                         start_pgoff + nr_pages - 1);
3796
3797         if (pmd_none(*vmf->pmd)) {
3798                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3799                 if (!vmf->prealloc_pte)
3800                         goto out;
3801                 smp_wmb(); /* See comment in __pte_alloc() */
3802         }
3803
3804         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3805
3806         /* Huge page is mapped? Page fault is solved */
3807         if (pmd_trans_huge(*vmf->pmd)) {
3808                 ret = VM_FAULT_NOPAGE;
3809                 goto out;
3810         }
3811
3812         /* ->map_pages() haven't done anything useful. Cold page cache? */
3813         if (!vmf->pte)
3814                 goto out;
3815
3816         /* check if the page fault is solved */
3817         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3818         if (!pte_none(*vmf->pte))
3819                 ret = VM_FAULT_NOPAGE;
3820         pte_unmap_unlock(vmf->pte, vmf->ptl);
3821 out:
3822         vmf->address = address;
3823         vmf->pte = NULL;
3824         return ret;
3825 }
3826
3827 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3828 {
3829         struct vm_area_struct *vma = vmf->vma;
3830         vm_fault_t ret = 0;
3831
3832         /*
3833          * Let's call ->map_pages() first and use ->fault() as fallback
3834          * if page by the offset is not ready to be mapped (cold cache or
3835          * something).
3836          */
3837         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3838                 ret = do_fault_around(vmf);
3839                 if (ret)
3840                         return ret;
3841         }
3842
3843         ret = __do_fault(vmf);
3844         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3845                 return ret;
3846
3847         ret |= finish_fault(vmf);
3848         unlock_page(vmf->page);
3849         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3850                 put_page(vmf->page);
3851         return ret;
3852 }
3853
3854 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3855 {
3856         struct vm_area_struct *vma = vmf->vma;
3857         vm_fault_t ret;
3858
3859         if (unlikely(anon_vma_prepare(vma)))
3860                 return VM_FAULT_OOM;
3861
3862         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3863         if (!vmf->cow_page)
3864                 return VM_FAULT_OOM;
3865
3866         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3867                 put_page(vmf->cow_page);
3868                 return VM_FAULT_OOM;
3869         }
3870         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3871
3872         ret = __do_fault(vmf);
3873         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3874                 goto uncharge_out;
3875         if (ret & VM_FAULT_DONE_COW)
3876                 return ret;
3877
3878         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3879         __SetPageUptodate(vmf->cow_page);
3880
3881         ret |= finish_fault(vmf);
3882         unlock_page(vmf->page);
3883         put_page(vmf->page);
3884         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3885                 goto uncharge_out;
3886         return ret;
3887 uncharge_out:
3888         put_page(vmf->cow_page);
3889         return ret;
3890 }
3891
3892 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3893 {
3894         struct vm_area_struct *vma = vmf->vma;
3895         vm_fault_t ret, tmp;
3896
3897         ret = __do_fault(vmf);
3898         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3899                 return ret;
3900
3901         /*
3902          * Check if the backing address space wants to know that the page is
3903          * about to become writable
3904          */
3905         if (vma->vm_ops->page_mkwrite) {
3906                 unlock_page(vmf->page);
3907                 tmp = do_page_mkwrite(vmf);
3908                 if (unlikely(!tmp ||
3909                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3910                         put_page(vmf->page);
3911                         return tmp;
3912                 }
3913         }
3914
3915         ret |= finish_fault(vmf);
3916         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3917                                         VM_FAULT_RETRY))) {
3918                 unlock_page(vmf->page);
3919                 put_page(vmf->page);
3920                 return ret;
3921         }
3922
3923         ret |= fault_dirty_shared_page(vmf);
3924         return ret;
3925 }
3926
3927 /*
3928  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3929  * but allow concurrent faults).
3930  * The mmap_lock may have been released depending on flags and our
3931  * return value.  See filemap_fault() and __lock_page_or_retry().
3932  * If mmap_lock is released, vma may become invalid (for example
3933  * by other thread calling munmap()).
3934  */
3935 static vm_fault_t do_fault(struct vm_fault *vmf)
3936 {
3937         struct vm_area_struct *vma = vmf->vma;
3938         struct mm_struct *vm_mm = vma->vm_mm;
3939         vm_fault_t ret;
3940
3941         /*
3942          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3943          */
3944         if (!vma->vm_ops->fault) {
3945                 /*
3946                  * If we find a migration pmd entry or a none pmd entry, which
3947                  * should never happen, return SIGBUS
3948                  */
3949                 if (unlikely(!pmd_present(*vmf->pmd)))
3950                         ret = VM_FAULT_SIGBUS;
3951                 else {
3952                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3953                                                        vmf->pmd,
3954                                                        vmf->address,
3955                                                        &vmf->ptl);
3956                         /*
3957                          * Make sure this is not a temporary clearing of pte
3958                          * by holding ptl and checking again. A R/M/W update
3959                          * of pte involves: take ptl, clearing the pte so that
3960                          * we don't have concurrent modification by hardware
3961                          * followed by an update.
3962                          */
3963                         if (unlikely(pte_none(*vmf->pte)))
3964                                 ret = VM_FAULT_SIGBUS;
3965                         else
3966                                 ret = VM_FAULT_NOPAGE;
3967
3968                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3969                 }
3970         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3971                 ret = do_read_fault(vmf);
3972         else if (!(vma->vm_flags & VM_SHARED))
3973                 ret = do_cow_fault(vmf);
3974         else
3975                 ret = do_shared_fault(vmf);
3976
3977         /* preallocated pagetable is unused: free it */
3978         if (vmf->prealloc_pte) {
3979                 pte_free(vm_mm, vmf->prealloc_pte);
3980                 vmf->prealloc_pte = NULL;
3981         }
3982         return ret;
3983 }
3984
3985 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3986                                 unsigned long addr, int page_nid,
3987                                 int *flags)
3988 {
3989         get_page(page);
3990
3991         count_vm_numa_event(NUMA_HINT_FAULTS);
3992         if (page_nid == numa_node_id()) {
3993                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3994                 *flags |= TNF_FAULT_LOCAL;
3995         }
3996
3997         return mpol_misplaced(page, vma, addr);
3998 }
3999
4000 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4001 {
4002         struct vm_area_struct *vma = vmf->vma;
4003         struct page *page = NULL;
4004         int page_nid = NUMA_NO_NODE;
4005         int last_cpupid;
4006         int target_nid;
4007         bool migrated = false;
4008         pte_t pte, old_pte;
4009         bool was_writable = pte_savedwrite(vmf->orig_pte);
4010         int flags = 0;
4011
4012         /*
4013          * The "pte" at this point cannot be used safely without
4014          * validation through pte_unmap_same(). It's of NUMA type but
4015          * the pfn may be screwed if the read is non atomic.
4016          */
4017         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4018         spin_lock(vmf->ptl);
4019         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4020                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4021                 goto out;
4022         }
4023
4024         /*
4025          * Make it present again, Depending on how arch implementes non
4026          * accessible ptes, some can allow access by kernel mode.
4027          */
4028         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4029         pte = pte_modify(old_pte, vma->vm_page_prot);
4030         pte = pte_mkyoung(pte);
4031         if (was_writable)
4032                 pte = pte_mkwrite(pte);
4033         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4034         update_mmu_cache(vma, vmf->address, vmf->pte);
4035
4036         page = vm_normal_page(vma, vmf->address, pte);
4037         if (!page) {
4038                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4039                 return 0;
4040         }
4041
4042         /* TODO: handle PTE-mapped THP */
4043         if (PageCompound(page)) {
4044                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4045                 return 0;
4046         }
4047
4048         /*
4049          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4050          * much anyway since they can be in shared cache state. This misses
4051          * the case where a mapping is writable but the process never writes
4052          * to it but pte_write gets cleared during protection updates and
4053          * pte_dirty has unpredictable behaviour between PTE scan updates,
4054          * background writeback, dirty balancing and application behaviour.
4055          */
4056         if (!pte_write(pte))
4057                 flags |= TNF_NO_GROUP;
4058
4059         /*
4060          * Flag if the page is shared between multiple address spaces. This
4061          * is later used when determining whether to group tasks together
4062          */
4063         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4064                 flags |= TNF_SHARED;
4065
4066         last_cpupid = page_cpupid_last(page);
4067         page_nid = page_to_nid(page);
4068         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4069                         &flags);
4070         pte_unmap_unlock(vmf->pte, vmf->ptl);
4071         if (target_nid == NUMA_NO_NODE) {
4072                 put_page(page);
4073                 goto out;
4074         }
4075
4076         /* Migrate to the requested node */
4077         migrated = migrate_misplaced_page(page, vma, target_nid);
4078         if (migrated) {
4079                 page_nid = target_nid;
4080                 flags |= TNF_MIGRATED;
4081         } else
4082                 flags |= TNF_MIGRATE_FAIL;
4083
4084 out:
4085         if (page_nid != NUMA_NO_NODE)
4086                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4087         return 0;
4088 }
4089
4090 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4091 {
4092         if (vma_is_anonymous(vmf->vma))
4093                 return do_huge_pmd_anonymous_page(vmf);
4094         if (vmf->vma->vm_ops->huge_fault)
4095                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4096         return VM_FAULT_FALLBACK;
4097 }
4098
4099 /* `inline' is required to avoid gcc 4.1.2 build error */
4100 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4101 {
4102         if (vma_is_anonymous(vmf->vma)) {
4103                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4104                         return handle_userfault(vmf, VM_UFFD_WP);
4105                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4106         }
4107         if (vmf->vma->vm_ops->huge_fault) {
4108                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4109
4110                 if (!(ret & VM_FAULT_FALLBACK))
4111                         return ret;
4112         }
4113
4114         /* COW or write-notify handled on pte level: split pmd. */
4115         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4116
4117         return VM_FAULT_FALLBACK;
4118 }
4119
4120 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4121 {
4122 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4123         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4124         /* No support for anonymous transparent PUD pages yet */
4125         if (vma_is_anonymous(vmf->vma))
4126                 goto split;
4127         if (vmf->vma->vm_ops->huge_fault) {
4128                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4129
4130                 if (!(ret & VM_FAULT_FALLBACK))
4131                         return ret;
4132         }
4133 split:
4134         /* COW or write-notify not handled on PUD level: split pud.*/
4135         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4136 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4137         return VM_FAULT_FALLBACK;
4138 }
4139
4140 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4141 {
4142 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4143         /* No support for anonymous transparent PUD pages yet */
4144         if (vma_is_anonymous(vmf->vma))
4145                 return VM_FAULT_FALLBACK;
4146         if (vmf->vma->vm_ops->huge_fault)
4147                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4148 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4149         return VM_FAULT_FALLBACK;
4150 }
4151
4152 /*
4153  * These routines also need to handle stuff like marking pages dirty
4154  * and/or accessed for architectures that don't do it in hardware (most
4155  * RISC architectures).  The early dirtying is also good on the i386.
4156  *
4157  * There is also a hook called "update_mmu_cache()" that architectures
4158  * with external mmu caches can use to update those (ie the Sparc or
4159  * PowerPC hashed page tables that act as extended TLBs).
4160  *
4161  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4162  * concurrent faults).
4163  *
4164  * The mmap_lock may have been released depending on flags and our return value.
4165  * See filemap_fault() and __lock_page_or_retry().
4166  */
4167 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4168 {
4169         pte_t entry;
4170
4171         if (unlikely(pmd_none(*vmf->pmd))) {
4172                 /*
4173                  * Leave __pte_alloc() until later: because vm_ops->fault may
4174                  * want to allocate huge page, and if we expose page table
4175                  * for an instant, it will be difficult to retract from
4176                  * concurrent faults and from rmap lookups.
4177                  */
4178                 vmf->pte = NULL;
4179         } else {
4180                 /* See comment in pte_alloc_one_map() */
4181                 if (pmd_devmap_trans_unstable(vmf->pmd))
4182                         return 0;
4183                 /*
4184                  * A regular pmd is established and it can't morph into a huge
4185                  * pmd from under us anymore at this point because we hold the
4186                  * mmap_lock read mode and khugepaged takes it in write mode.
4187                  * So now it's safe to run pte_offset_map().
4188                  */
4189                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4190                 vmf->orig_pte = *vmf->pte;
4191
4192                 /*
4193                  * some architectures can have larger ptes than wordsize,
4194                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4195                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4196                  * accesses.  The code below just needs a consistent view
4197                  * for the ifs and we later double check anyway with the
4198                  * ptl lock held. So here a barrier will do.
4199                  */
4200                 barrier();
4201                 if (pte_none(vmf->orig_pte)) {
4202                         pte_unmap(vmf->pte);
4203                         vmf->pte = NULL;
4204                 }
4205         }
4206
4207         if (!vmf->pte) {
4208                 if (vma_is_anonymous(vmf->vma))
4209                         return do_anonymous_page(vmf);
4210                 else
4211                         return do_fault(vmf);
4212         }
4213
4214         if (!pte_present(vmf->orig_pte))
4215                 return do_swap_page(vmf);
4216
4217         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4218                 return do_numa_page(vmf);
4219
4220         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4221         spin_lock(vmf->ptl);
4222         entry = vmf->orig_pte;
4223         if (unlikely(!pte_same(*vmf->pte, entry))) {
4224                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4225                 goto unlock;
4226         }
4227         if (vmf->flags & FAULT_FLAG_WRITE) {
4228                 if (!pte_write(entry))
4229                         return do_wp_page(vmf);
4230                 entry = pte_mkdirty(entry);
4231         }
4232         entry = pte_mkyoung(entry);
4233         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4234                                 vmf->flags & FAULT_FLAG_WRITE)) {
4235                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4236         } else {
4237                 /* Skip spurious TLB flush for retried page fault */
4238                 if (vmf->flags & FAULT_FLAG_TRIED)
4239                         goto unlock;
4240                 /*
4241                  * This is needed only for protection faults but the arch code
4242                  * is not yet telling us if this is a protection fault or not.
4243                  * This still avoids useless tlb flushes for .text page faults
4244                  * with threads.
4245                  */
4246                 if (vmf->flags & FAULT_FLAG_WRITE)
4247                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4248         }
4249 unlock:
4250         pte_unmap_unlock(vmf->pte, vmf->ptl);
4251         return 0;
4252 }
4253
4254 /*
4255  * By the time we get here, we already hold the mm semaphore
4256  *
4257  * The mmap_lock may have been released depending on flags and our
4258  * return value.  See filemap_fault() and __lock_page_or_retry().
4259  */
4260 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4261                 unsigned long address, unsigned int flags)
4262 {
4263         struct vm_fault vmf = {
4264                 .vma = vma,
4265                 .address = address & PAGE_MASK,
4266                 .flags = flags,
4267                 .pgoff = linear_page_index(vma, address),
4268                 .gfp_mask = __get_fault_gfp_mask(vma),
4269         };
4270         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4271         struct mm_struct *mm = vma->vm_mm;
4272         pgd_t *pgd;
4273         p4d_t *p4d;
4274         vm_fault_t ret;
4275
4276         pgd = pgd_offset(mm, address);
4277         p4d = p4d_alloc(mm, pgd, address);
4278         if (!p4d)
4279                 return VM_FAULT_OOM;
4280
4281         vmf.pud = pud_alloc(mm, p4d, address);
4282         if (!vmf.pud)
4283                 return VM_FAULT_OOM;
4284 retry_pud:
4285         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4286                 ret = create_huge_pud(&vmf);
4287                 if (!(ret & VM_FAULT_FALLBACK))
4288                         return ret;
4289         } else {
4290                 pud_t orig_pud = *vmf.pud;
4291
4292                 barrier();
4293                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4294
4295                         /* NUMA case for anonymous PUDs would go here */
4296
4297                         if (dirty && !pud_write(orig_pud)) {
4298                                 ret = wp_huge_pud(&vmf, orig_pud);
4299                                 if (!(ret & VM_FAULT_FALLBACK))
4300                                         return ret;
4301                         } else {
4302                                 huge_pud_set_accessed(&vmf, orig_pud);
4303                                 return 0;
4304                         }
4305                 }
4306         }
4307
4308         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4309         if (!vmf.pmd)
4310                 return VM_FAULT_OOM;
4311
4312         /* Huge pud page fault raced with pmd_alloc? */
4313         if (pud_trans_unstable(vmf.pud))
4314                 goto retry_pud;
4315
4316         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4317                 ret = create_huge_pmd(&vmf);
4318                 if (!(ret & VM_FAULT_FALLBACK))
4319                         return ret;
4320         } else {
4321                 pmd_t orig_pmd = *vmf.pmd;
4322
4323                 barrier();
4324                 if (unlikely(is_swap_pmd(orig_pmd))) {
4325                         VM_BUG_ON(thp_migration_supported() &&
4326                                           !is_pmd_migration_entry(orig_pmd));
4327                         if (is_pmd_migration_entry(orig_pmd))
4328                                 pmd_migration_entry_wait(mm, vmf.pmd);
4329                         return 0;
4330                 }
4331                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4332                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4333                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4334
4335                         if (dirty && !pmd_write(orig_pmd)) {
4336                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4337                                 if (!(ret & VM_FAULT_FALLBACK))
4338                                         return ret;
4339                         } else {
4340                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4341                                 return 0;
4342                         }
4343                 }
4344         }
4345
4346         return handle_pte_fault(&vmf);
4347 }
4348
4349 /**
4350  * mm_account_fault - Do page fault accountings
4351  *
4352  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4353  *        of perf event counters, but we'll still do the per-task accounting to
4354  *        the task who triggered this page fault.
4355  * @address: the faulted address.
4356  * @flags: the fault flags.
4357  * @ret: the fault retcode.
4358  *
4359  * This will take care of most of the page fault accountings.  Meanwhile, it
4360  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4361  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4362  * still be in per-arch page fault handlers at the entry of page fault.
4363  */
4364 static inline void mm_account_fault(struct pt_regs *regs,
4365                                     unsigned long address, unsigned int flags,
4366                                     vm_fault_t ret)
4367 {
4368         bool major;
4369
4370         /*
4371          * We don't do accounting for some specific faults:
4372          *
4373          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4374          *   includes arch_vma_access_permitted() failing before reaching here.
4375          *   So this is not a "this many hardware page faults" counter.  We
4376          *   should use the hw profiling for that.
4377          *
4378          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4379          *   once they're completed.
4380          */
4381         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4382                 return;
4383
4384         /*
4385          * We define the fault as a major fault when the final successful fault
4386          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4387          * handle it immediately previously).
4388          */
4389         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4390
4391         if (major)
4392                 current->maj_flt++;
4393         else
4394                 current->min_flt++;
4395
4396         /*
4397          * If the fault is done for GUP, regs will be NULL.  We only do the
4398          * accounting for the per thread fault counters who triggered the
4399          * fault, and we skip the perf event updates.
4400          */
4401         if (!regs)
4402                 return;
4403
4404         if (major)
4405                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4406         else
4407                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4408 }
4409
4410 /*
4411  * By the time we get here, we already hold the mm semaphore
4412  *
4413  * The mmap_lock may have been released depending on flags and our
4414  * return value.  See filemap_fault() and __lock_page_or_retry().
4415  */
4416 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4417                            unsigned int flags, struct pt_regs *regs)
4418 {
4419         vm_fault_t ret;
4420
4421         __set_current_state(TASK_RUNNING);
4422
4423         count_vm_event(PGFAULT);
4424         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4425
4426         /* do counter updates before entering really critical section. */
4427         check_sync_rss_stat(current);
4428
4429         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4430                                             flags & FAULT_FLAG_INSTRUCTION,
4431                                             flags & FAULT_FLAG_REMOTE))
4432                 return VM_FAULT_SIGSEGV;
4433
4434         /*
4435          * Enable the memcg OOM handling for faults triggered in user
4436          * space.  Kernel faults are handled more gracefully.
4437          */
4438         if (flags & FAULT_FLAG_USER)
4439                 mem_cgroup_enter_user_fault();
4440
4441         if (unlikely(is_vm_hugetlb_page(vma)))
4442                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4443         else
4444                 ret = __handle_mm_fault(vma, address, flags);
4445
4446         if (flags & FAULT_FLAG_USER) {
4447                 mem_cgroup_exit_user_fault();
4448                 /*
4449                  * The task may have entered a memcg OOM situation but
4450                  * if the allocation error was handled gracefully (no
4451                  * VM_FAULT_OOM), there is no need to kill anything.
4452                  * Just clean up the OOM state peacefully.
4453                  */
4454                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4455                         mem_cgroup_oom_synchronize(false);
4456         }
4457
4458         mm_account_fault(regs, address, flags, ret);
4459
4460         return ret;
4461 }
4462 EXPORT_SYMBOL_GPL(handle_mm_fault);
4463
4464 #ifndef __PAGETABLE_P4D_FOLDED
4465 /*
4466  * Allocate p4d page table.
4467  * We've already handled the fast-path in-line.
4468  */
4469 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4470 {
4471         p4d_t *new = p4d_alloc_one(mm, address);
4472         if (!new)
4473                 return -ENOMEM;
4474
4475         smp_wmb(); /* See comment in __pte_alloc */
4476
4477         spin_lock(&mm->page_table_lock);
4478         if (pgd_present(*pgd))          /* Another has populated it */
4479                 p4d_free(mm, new);
4480         else
4481                 pgd_populate(mm, pgd, new);
4482         spin_unlock(&mm->page_table_lock);
4483         return 0;
4484 }
4485 #endif /* __PAGETABLE_P4D_FOLDED */
4486
4487 #ifndef __PAGETABLE_PUD_FOLDED
4488 /*
4489  * Allocate page upper directory.
4490  * We've already handled the fast-path in-line.
4491  */
4492 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4493 {
4494         pud_t *new = pud_alloc_one(mm, address);
4495         if (!new)
4496                 return -ENOMEM;
4497
4498         smp_wmb(); /* See comment in __pte_alloc */
4499
4500         spin_lock(&mm->page_table_lock);
4501         if (!p4d_present(*p4d)) {
4502                 mm_inc_nr_puds(mm);
4503                 p4d_populate(mm, p4d, new);
4504         } else  /* Another has populated it */
4505                 pud_free(mm, new);
4506         spin_unlock(&mm->page_table_lock);
4507         return 0;
4508 }
4509 #endif /* __PAGETABLE_PUD_FOLDED */
4510
4511 #ifndef __PAGETABLE_PMD_FOLDED
4512 /*
4513  * Allocate page middle directory.
4514  * We've already handled the fast-path in-line.
4515  */
4516 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4517 {
4518         spinlock_t *ptl;
4519         pmd_t *new = pmd_alloc_one(mm, address);
4520         if (!new)
4521                 return -ENOMEM;
4522
4523         smp_wmb(); /* See comment in __pte_alloc */
4524
4525         ptl = pud_lock(mm, pud);
4526         if (!pud_present(*pud)) {
4527                 mm_inc_nr_pmds(mm);
4528                 pud_populate(mm, pud, new);
4529         } else  /* Another has populated it */
4530                 pmd_free(mm, new);
4531         spin_unlock(ptl);
4532         return 0;
4533 }
4534 #endif /* __PAGETABLE_PMD_FOLDED */
4535
4536 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4537                             struct mmu_notifier_range *range,
4538                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4539 {
4540         pgd_t *pgd;
4541         p4d_t *p4d;
4542         pud_t *pud;
4543         pmd_t *pmd;
4544         pte_t *ptep;
4545
4546         pgd = pgd_offset(mm, address);
4547         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4548                 goto out;
4549
4550         p4d = p4d_offset(pgd, address);
4551         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4552                 goto out;
4553
4554         pud = pud_offset(p4d, address);
4555         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4556                 goto out;
4557
4558         pmd = pmd_offset(pud, address);
4559         VM_BUG_ON(pmd_trans_huge(*pmd));
4560
4561         if (pmd_huge(*pmd)) {
4562                 if (!pmdpp)
4563                         goto out;
4564
4565                 if (range) {
4566                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4567                                                 NULL, mm, address & PMD_MASK,
4568                                                 (address & PMD_MASK) + PMD_SIZE);
4569                         mmu_notifier_invalidate_range_start(range);
4570                 }
4571                 *ptlp = pmd_lock(mm, pmd);
4572                 if (pmd_huge(*pmd)) {
4573                         *pmdpp = pmd;
4574                         return 0;
4575                 }
4576                 spin_unlock(*ptlp);
4577                 if (range)
4578                         mmu_notifier_invalidate_range_end(range);
4579         }
4580
4581         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4582                 goto out;
4583
4584         if (range) {
4585                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4586                                         address & PAGE_MASK,
4587                                         (address & PAGE_MASK) + PAGE_SIZE);
4588                 mmu_notifier_invalidate_range_start(range);
4589         }
4590         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4591         if (!pte_present(*ptep))
4592                 goto unlock;
4593         *ptepp = ptep;
4594         return 0;
4595 unlock:
4596         pte_unmap_unlock(ptep, *ptlp);
4597         if (range)
4598                 mmu_notifier_invalidate_range_end(range);
4599 out:
4600         return -EINVAL;
4601 }
4602
4603 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4604                              pte_t **ptepp, spinlock_t **ptlp)
4605 {
4606         int res;
4607
4608         /* (void) is needed to make gcc happy */
4609         (void) __cond_lock(*ptlp,
4610                            !(res = __follow_pte_pmd(mm, address, NULL,
4611                                                     ptepp, NULL, ptlp)));
4612         return res;
4613 }
4614
4615 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4616                    struct mmu_notifier_range *range,
4617                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4618 {
4619         int res;
4620
4621         /* (void) is needed to make gcc happy */
4622         (void) __cond_lock(*ptlp,
4623                            !(res = __follow_pte_pmd(mm, address, range,
4624                                                     ptepp, pmdpp, ptlp)));
4625         return res;
4626 }
4627 EXPORT_SYMBOL(follow_pte_pmd);
4628
4629 /**
4630  * follow_pfn - look up PFN at a user virtual address
4631  * @vma: memory mapping
4632  * @address: user virtual address
4633  * @pfn: location to store found PFN
4634  *
4635  * Only IO mappings and raw PFN mappings are allowed.
4636  *
4637  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4638  */
4639 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4640         unsigned long *pfn)
4641 {
4642         int ret = -EINVAL;
4643         spinlock_t *ptl;
4644         pte_t *ptep;
4645
4646         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4647                 return ret;
4648
4649         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4650         if (ret)
4651                 return ret;
4652         *pfn = pte_pfn(*ptep);
4653         pte_unmap_unlock(ptep, ptl);
4654         return 0;
4655 }
4656 EXPORT_SYMBOL(follow_pfn);
4657
4658 #ifdef CONFIG_HAVE_IOREMAP_PROT
4659 int follow_phys(struct vm_area_struct *vma,
4660                 unsigned long address, unsigned int flags,
4661                 unsigned long *prot, resource_size_t *phys)
4662 {
4663         int ret = -EINVAL;
4664         pte_t *ptep, pte;
4665         spinlock_t *ptl;
4666
4667         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4668                 goto out;
4669
4670         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4671                 goto out;
4672         pte = *ptep;
4673
4674         if ((flags & FOLL_WRITE) && !pte_write(pte))
4675                 goto unlock;
4676
4677         *prot = pgprot_val(pte_pgprot(pte));
4678         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4679
4680         ret = 0;
4681 unlock:
4682         pte_unmap_unlock(ptep, ptl);
4683 out:
4684         return ret;
4685 }
4686
4687 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4688                         void *buf, int len, int write)
4689 {
4690         resource_size_t phys_addr;
4691         unsigned long prot = 0;
4692         void __iomem *maddr;
4693         int offset = addr & (PAGE_SIZE-1);
4694
4695         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4696                 return -EINVAL;
4697
4698         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4699         if (!maddr)
4700                 return -ENOMEM;
4701
4702         if (write)
4703                 memcpy_toio(maddr + offset, buf, len);
4704         else
4705                 memcpy_fromio(buf, maddr + offset, len);
4706         iounmap(maddr);
4707
4708         return len;
4709 }
4710 EXPORT_SYMBOL_GPL(generic_access_phys);
4711 #endif
4712
4713 /*
4714  * Access another process' address space as given in mm.  If non-NULL, use the
4715  * given task for page fault accounting.
4716  */
4717 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4718                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4719 {
4720         struct vm_area_struct *vma;
4721         void *old_buf = buf;
4722         int write = gup_flags & FOLL_WRITE;
4723
4724         if (mmap_read_lock_killable(mm))
4725                 return 0;
4726
4727         /* ignore errors, just check how much was successfully transferred */
4728         while (len) {
4729                 int bytes, ret, offset;
4730                 void *maddr;
4731                 struct page *page = NULL;
4732
4733                 ret = get_user_pages_remote(mm, addr, 1,
4734                                 gup_flags, &page, &vma, NULL);
4735                 if (ret <= 0) {
4736 #ifndef CONFIG_HAVE_IOREMAP_PROT
4737                         break;
4738 #else
4739                         /*
4740                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4741                          * we can access using slightly different code.
4742                          */
4743                         vma = find_vma(mm, addr);
4744                         if (!vma || vma->vm_start > addr)
4745                                 break;
4746                         if (vma->vm_ops && vma->vm_ops->access)
4747                                 ret = vma->vm_ops->access(vma, addr, buf,
4748                                                           len, write);
4749                         if (ret <= 0)
4750                                 break;
4751                         bytes = ret;
4752 #endif
4753                 } else {
4754                         bytes = len;
4755                         offset = addr & (PAGE_SIZE-1);
4756                         if (bytes > PAGE_SIZE-offset)
4757                                 bytes = PAGE_SIZE-offset;
4758
4759                         maddr = kmap(page);
4760                         if (write) {
4761                                 copy_to_user_page(vma, page, addr,
4762                                                   maddr + offset, buf, bytes);
4763                                 set_page_dirty_lock(page);
4764                         } else {
4765                                 copy_from_user_page(vma, page, addr,
4766                                                     buf, maddr + offset, bytes);
4767                         }
4768                         kunmap(page);
4769                         put_page(page);
4770                 }
4771                 len -= bytes;
4772                 buf += bytes;
4773                 addr += bytes;
4774         }
4775         mmap_read_unlock(mm);
4776
4777         return buf - old_buf;
4778 }
4779
4780 /**
4781  * access_remote_vm - access another process' address space
4782  * @mm:         the mm_struct of the target address space
4783  * @addr:       start address to access
4784  * @buf:        source or destination buffer
4785  * @len:        number of bytes to transfer
4786  * @gup_flags:  flags modifying lookup behaviour
4787  *
4788  * The caller must hold a reference on @mm.
4789  *
4790  * Return: number of bytes copied from source to destination.
4791  */
4792 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4793                 void *buf, int len, unsigned int gup_flags)
4794 {
4795         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4796 }
4797
4798 /*
4799  * Access another process' address space.
4800  * Source/target buffer must be kernel space,
4801  * Do not walk the page table directly, use get_user_pages
4802  */
4803 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4804                 void *buf, int len, unsigned int gup_flags)
4805 {
4806         struct mm_struct *mm;
4807         int ret;
4808
4809         mm = get_task_mm(tsk);
4810         if (!mm)
4811                 return 0;
4812
4813         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4814
4815         mmput(mm);
4816
4817         return ret;
4818 }
4819 EXPORT_SYMBOL_GPL(access_process_vm);
4820
4821 /*
4822  * Print the name of a VMA.
4823  */
4824 void print_vma_addr(char *prefix, unsigned long ip)
4825 {
4826         struct mm_struct *mm = current->mm;
4827         struct vm_area_struct *vma;
4828
4829         /*
4830          * we might be running from an atomic context so we cannot sleep
4831          */
4832         if (!mmap_read_trylock(mm))
4833                 return;
4834
4835         vma = find_vma(mm, ip);
4836         if (vma && vma->vm_file) {
4837                 struct file *f = vma->vm_file;
4838                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4839                 if (buf) {
4840                         char *p;
4841
4842                         p = file_path(f, buf, PAGE_SIZE);
4843                         if (IS_ERR(p))
4844                                 p = "?";
4845                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4846                                         vma->vm_start,
4847                                         vma->vm_end - vma->vm_start);
4848                         free_page((unsigned long)buf);
4849                 }
4850         }
4851         mmap_read_unlock(mm);
4852 }
4853
4854 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4855 void __might_fault(const char *file, int line)
4856 {
4857         /*
4858          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4859          * holding the mmap_lock, this is safe because kernel memory doesn't
4860          * get paged out, therefore we'll never actually fault, and the
4861          * below annotations will generate false positives.
4862          */
4863         if (uaccess_kernel())
4864                 return;
4865         if (pagefault_disabled())
4866                 return;
4867         __might_sleep(file, line, 0);
4868 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4869         if (current->mm)
4870                 might_lock_read(&current->mm->mmap_lock);
4871 #endif
4872 }
4873 EXPORT_SYMBOL(__might_fault);
4874 #endif
4875
4876 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4877 /*
4878  * Process all subpages of the specified huge page with the specified
4879  * operation.  The target subpage will be processed last to keep its
4880  * cache lines hot.
4881  */
4882 static inline void process_huge_page(
4883         unsigned long addr_hint, unsigned int pages_per_huge_page,
4884         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4885         void *arg)
4886 {
4887         int i, n, base, l;
4888         unsigned long addr = addr_hint &
4889                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4890
4891         /* Process target subpage last to keep its cache lines hot */
4892         might_sleep();
4893         n = (addr_hint - addr) / PAGE_SIZE;
4894         if (2 * n <= pages_per_huge_page) {
4895                 /* If target subpage in first half of huge page */
4896                 base = 0;
4897                 l = n;
4898                 /* Process subpages at the end of huge page */
4899                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4900                         cond_resched();
4901                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4902                 }
4903         } else {
4904                 /* If target subpage in second half of huge page */
4905                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4906                 l = pages_per_huge_page - n;
4907                 /* Process subpages at the begin of huge page */
4908                 for (i = 0; i < base; i++) {
4909                         cond_resched();
4910                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4911                 }
4912         }
4913         /*
4914          * Process remaining subpages in left-right-left-right pattern
4915          * towards the target subpage
4916          */
4917         for (i = 0; i < l; i++) {
4918                 int left_idx = base + i;
4919                 int right_idx = base + 2 * l - 1 - i;
4920
4921                 cond_resched();
4922                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4923                 cond_resched();
4924                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4925         }
4926 }
4927
4928 static void clear_gigantic_page(struct page *page,
4929                                 unsigned long addr,
4930                                 unsigned int pages_per_huge_page)
4931 {
4932         int i;
4933         struct page *p = page;
4934
4935         might_sleep();
4936         for (i = 0; i < pages_per_huge_page;
4937              i++, p = mem_map_next(p, page, i)) {
4938                 cond_resched();
4939                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4940         }
4941 }
4942
4943 static void clear_subpage(unsigned long addr, int idx, void *arg)
4944 {
4945         struct page *page = arg;
4946
4947         clear_user_highpage(page + idx, addr);
4948 }
4949
4950 void clear_huge_page(struct page *page,
4951                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4952 {
4953         unsigned long addr = addr_hint &
4954                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4955
4956         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4957                 clear_gigantic_page(page, addr, pages_per_huge_page);
4958                 return;
4959         }
4960
4961         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4962 }
4963
4964 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4965                                     unsigned long addr,
4966                                     struct vm_area_struct *vma,
4967                                     unsigned int pages_per_huge_page)
4968 {
4969         int i;
4970         struct page *dst_base = dst;
4971         struct page *src_base = src;
4972
4973         for (i = 0; i < pages_per_huge_page; ) {
4974                 cond_resched();
4975                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4976
4977                 i++;
4978                 dst = mem_map_next(dst, dst_base, i);
4979                 src = mem_map_next(src, src_base, i);
4980         }
4981 }
4982
4983 struct copy_subpage_arg {
4984         struct page *dst;
4985         struct page *src;
4986         struct vm_area_struct *vma;
4987 };
4988
4989 static void copy_subpage(unsigned long addr, int idx, void *arg)
4990 {
4991         struct copy_subpage_arg *copy_arg = arg;
4992
4993         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4994                            addr, copy_arg->vma);
4995 }
4996
4997 void copy_user_huge_page(struct page *dst, struct page *src,
4998                          unsigned long addr_hint, struct vm_area_struct *vma,
4999                          unsigned int pages_per_huge_page)
5000 {
5001         unsigned long addr = addr_hint &
5002                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5003         struct copy_subpage_arg arg = {
5004                 .dst = dst,
5005                 .src = src,
5006                 .vma = vma,
5007         };
5008
5009         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5010                 copy_user_gigantic_page(dst, src, addr, vma,
5011                                         pages_per_huge_page);
5012                 return;
5013         }
5014
5015         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5016 }
5017
5018 long copy_huge_page_from_user(struct page *dst_page,
5019                                 const void __user *usr_src,
5020                                 unsigned int pages_per_huge_page,
5021                                 bool allow_pagefault)
5022 {
5023         void *src = (void *)usr_src;
5024         void *page_kaddr;
5025         unsigned long i, rc = 0;
5026         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5027
5028         for (i = 0; i < pages_per_huge_page; i++) {
5029                 if (allow_pagefault)
5030                         page_kaddr = kmap(dst_page + i);
5031                 else
5032                         page_kaddr = kmap_atomic(dst_page + i);
5033                 rc = copy_from_user(page_kaddr,
5034                                 (const void __user *)(src + i * PAGE_SIZE),
5035                                 PAGE_SIZE);
5036                 if (allow_pagefault)
5037                         kunmap(dst_page + i);
5038                 else
5039                         kunmap_atomic(page_kaddr);
5040
5041                 ret_val -= (PAGE_SIZE - rc);
5042                 if (rc)
5043                         break;
5044
5045                 cond_resched();
5046         }
5047         return ret_val;
5048 }
5049 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5050
5051 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5052
5053 static struct kmem_cache *page_ptl_cachep;
5054
5055 void __init ptlock_cache_init(void)
5056 {
5057         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5058                         SLAB_PANIC, NULL);
5059 }
5060
5061 bool ptlock_alloc(struct page *page)
5062 {
5063         spinlock_t *ptl;
5064
5065         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5066         if (!ptl)
5067                 return false;
5068         page->ptl = ptl;
5069         return true;
5070 }
5071
5072 void ptlock_free(struct page *page)
5073 {
5074         kmem_cache_free(page_ptl_cachep, page->ptl);
5075 }
5076 #endif