drm/amd/display: initialize p_state to proper value
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116                                         1;
117 #else
118                                         2;
119 #endif
120
121 static int __init disable_randmaps(char *s)
122 {
123         randomize_va_space = 0;
124         return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130
131 unsigned long highest_memmap_pfn __read_mostly;
132
133 /*
134  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135  */
136 static int __init init_zero_pfn(void)
137 {
138         zero_pfn = page_to_pfn(ZERO_PAGE(0));
139         return 0;
140 }
141 core_initcall(init_zero_pfn);
142
143
144 #if defined(SPLIT_RSS_COUNTING)
145
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148         int i;
149
150         for (i = 0; i < NR_MM_COUNTERS; i++) {
151                 if (current->rss_stat.count[i]) {
152                         add_mm_counter(mm, i, current->rss_stat.count[i]);
153                         current->rss_stat.count[i] = 0;
154                 }
155         }
156         current->rss_stat.events = 0;
157 }
158
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161         struct task_struct *task = current;
162
163         if (likely(task->mm == mm))
164                 task->rss_stat.count[member] += val;
165         else
166                 add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH  (64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175         if (unlikely(task != current))
176                 return;
177         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178                 sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188
189 #endif /* SPLIT_RSS_COUNTING */
190
191 /*
192  * Note: this doesn't free the actual pages themselves. That
193  * has been handled earlier when unmapping all the memory regions.
194  */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196                            unsigned long addr)
197 {
198         pgtable_t token = pmd_pgtable(*pmd);
199         pmd_clear(pmd);
200         pte_free_tlb(tlb, token, addr);
201         mm_dec_nr_ptes(tlb->mm);
202 }
203
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205                                 unsigned long addr, unsigned long end,
206                                 unsigned long floor, unsigned long ceiling)
207 {
208         pmd_t *pmd;
209         unsigned long next;
210         unsigned long start;
211
212         start = addr;
213         pmd = pmd_offset(pud, addr);
214         do {
215                 next = pmd_addr_end(addr, end);
216                 if (pmd_none_or_clear_bad(pmd))
217                         continue;
218                 free_pte_range(tlb, pmd, addr);
219         } while (pmd++, addr = next, addr != end);
220
221         start &= PUD_MASK;
222         if (start < floor)
223                 return;
224         if (ceiling) {
225                 ceiling &= PUD_MASK;
226                 if (!ceiling)
227                         return;
228         }
229         if (end - 1 > ceiling - 1)
230                 return;
231
232         pmd = pmd_offset(pud, start);
233         pud_clear(pud);
234         pmd_free_tlb(tlb, pmd, start);
235         mm_dec_nr_pmds(tlb->mm);
236 }
237
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239                                 unsigned long addr, unsigned long end,
240                                 unsigned long floor, unsigned long ceiling)
241 {
242         pud_t *pud;
243         unsigned long next;
244         unsigned long start;
245
246         start = addr;
247         pud = pud_offset(p4d, addr);
248         do {
249                 next = pud_addr_end(addr, end);
250                 if (pud_none_or_clear_bad(pud))
251                         continue;
252                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253         } while (pud++, addr = next, addr != end);
254
255         start &= P4D_MASK;
256         if (start < floor)
257                 return;
258         if (ceiling) {
259                 ceiling &= P4D_MASK;
260                 if (!ceiling)
261                         return;
262         }
263         if (end - 1 > ceiling - 1)
264                 return;
265
266         pud = pud_offset(p4d, start);
267         p4d_clear(p4d);
268         pud_free_tlb(tlb, pud, start);
269         mm_dec_nr_puds(tlb->mm);
270 }
271
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273                                 unsigned long addr, unsigned long end,
274                                 unsigned long floor, unsigned long ceiling)
275 {
276         p4d_t *p4d;
277         unsigned long next;
278         unsigned long start;
279
280         start = addr;
281         p4d = p4d_offset(pgd, addr);
282         do {
283                 next = p4d_addr_end(addr, end);
284                 if (p4d_none_or_clear_bad(p4d))
285                         continue;
286                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287         } while (p4d++, addr = next, addr != end);
288
289         start &= PGDIR_MASK;
290         if (start < floor)
291                 return;
292         if (ceiling) {
293                 ceiling &= PGDIR_MASK;
294                 if (!ceiling)
295                         return;
296         }
297         if (end - 1 > ceiling - 1)
298                 return;
299
300         p4d = p4d_offset(pgd, start);
301         pgd_clear(pgd);
302         p4d_free_tlb(tlb, p4d, start);
303 }
304
305 /*
306  * This function frees user-level page tables of a process.
307  */
308 void free_pgd_range(struct mmu_gather *tlb,
309                         unsigned long addr, unsigned long end,
310                         unsigned long floor, unsigned long ceiling)
311 {
312         pgd_t *pgd;
313         unsigned long next;
314
315         /*
316          * The next few lines have given us lots of grief...
317          *
318          * Why are we testing PMD* at this top level?  Because often
319          * there will be no work to do at all, and we'd prefer not to
320          * go all the way down to the bottom just to discover that.
321          *
322          * Why all these "- 1"s?  Because 0 represents both the bottom
323          * of the address space and the top of it (using -1 for the
324          * top wouldn't help much: the masks would do the wrong thing).
325          * The rule is that addr 0 and floor 0 refer to the bottom of
326          * the address space, but end 0 and ceiling 0 refer to the top
327          * Comparisons need to use "end - 1" and "ceiling - 1" (though
328          * that end 0 case should be mythical).
329          *
330          * Wherever addr is brought up or ceiling brought down, we must
331          * be careful to reject "the opposite 0" before it confuses the
332          * subsequent tests.  But what about where end is brought down
333          * by PMD_SIZE below? no, end can't go down to 0 there.
334          *
335          * Whereas we round start (addr) and ceiling down, by different
336          * masks at different levels, in order to test whether a table
337          * now has no other vmas using it, so can be freed, we don't
338          * bother to round floor or end up - the tests don't need that.
339          */
340
341         addr &= PMD_MASK;
342         if (addr < floor) {
343                 addr += PMD_SIZE;
344                 if (!addr)
345                         return;
346         }
347         if (ceiling) {
348                 ceiling &= PMD_MASK;
349                 if (!ceiling)
350                         return;
351         }
352         if (end - 1 > ceiling - 1)
353                 end -= PMD_SIZE;
354         if (addr > end - 1)
355                 return;
356         /*
357          * We add page table cache pages with PAGE_SIZE,
358          * (see pte_free_tlb()), flush the tlb if we need
359          */
360         tlb_change_page_size(tlb, PAGE_SIZE);
361         pgd = pgd_offset(tlb->mm, addr);
362         do {
363                 next = pgd_addr_end(addr, end);
364                 if (pgd_none_or_clear_bad(pgd))
365                         continue;
366                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367         } while (pgd++, addr = next, addr != end);
368 }
369
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371                 unsigned long floor, unsigned long ceiling)
372 {
373         while (vma) {
374                 struct vm_area_struct *next = vma->vm_next;
375                 unsigned long addr = vma->vm_start;
376
377                 /*
378                  * Hide vma from rmap and truncate_pagecache before freeing
379                  * pgtables
380                  */
381                 unlink_anon_vmas(vma);
382                 unlink_file_vma(vma);
383
384                 if (is_vm_hugetlb_page(vma)) {
385                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386                                 floor, next ? next->vm_start : ceiling);
387                 } else {
388                         /*
389                          * Optimization: gather nearby vmas into one call down
390                          */
391                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392                                && !is_vm_hugetlb_page(next)) {
393                                 vma = next;
394                                 next = vma->vm_next;
395                                 unlink_anon_vmas(vma);
396                                 unlink_file_vma(vma);
397                         }
398                         free_pgd_range(tlb, addr, vma->vm_end,
399                                 floor, next ? next->vm_start : ceiling);
400                 }
401                 vma = next;
402         }
403 }
404
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407         spinlock_t *ptl;
408         pgtable_t new = pte_alloc_one(mm);
409         if (!new)
410                 return -ENOMEM;
411
412         /*
413          * Ensure all pte setup (eg. pte page lock and page clearing) are
414          * visible before the pte is made visible to other CPUs by being
415          * put into page tables.
416          *
417          * The other side of the story is the pointer chasing in the page
418          * table walking code (when walking the page table without locking;
419          * ie. most of the time). Fortunately, these data accesses consist
420          * of a chain of data-dependent loads, meaning most CPUs (alpha
421          * being the notable exception) will already guarantee loads are
422          * seen in-order. See the alpha page table accessors for the
423          * smp_read_barrier_depends() barriers in page table walking code.
424          */
425         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
427         ptl = pmd_lock(mm, pmd);
428         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
429                 mm_inc_nr_ptes(mm);
430                 pmd_populate(mm, pmd, new);
431                 new = NULL;
432         }
433         spin_unlock(ptl);
434         if (new)
435                 pte_free(mm, new);
436         return 0;
437 }
438
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441         pte_t *new = pte_alloc_one_kernel(&init_mm);
442         if (!new)
443                 return -ENOMEM;
444
445         smp_wmb(); /* See comment in __pte_alloc */
446
447         spin_lock(&init_mm.page_table_lock);
448         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
449                 pmd_populate_kernel(&init_mm, pmd, new);
450                 new = NULL;
451         }
452         spin_unlock(&init_mm.page_table_lock);
453         if (new)
454                 pte_free_kernel(&init_mm, new);
455         return 0;
456 }
457
458 static inline void init_rss_vec(int *rss)
459 {
460         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465         int i;
466
467         if (current->mm == mm)
468                 sync_mm_rss(mm);
469         for (i = 0; i < NR_MM_COUNTERS; i++)
470                 if (rss[i])
471                         add_mm_counter(mm, i, rss[i]);
472 }
473
474 /*
475  * This function is called to print an error when a bad pte
476  * is found. For example, we might have a PFN-mapped pte in
477  * a region that doesn't allow it.
478  *
479  * The calling function must still handle the error.
480  */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482                           pte_t pte, struct page *page)
483 {
484         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485         p4d_t *p4d = p4d_offset(pgd, addr);
486         pud_t *pud = pud_offset(p4d, addr);
487         pmd_t *pmd = pmd_offset(pud, addr);
488         struct address_space *mapping;
489         pgoff_t index;
490         static unsigned long resume;
491         static unsigned long nr_shown;
492         static unsigned long nr_unshown;
493
494         /*
495          * Allow a burst of 60 reports, then keep quiet for that minute;
496          * or allow a steady drip of one report per second.
497          */
498         if (nr_shown == 60) {
499                 if (time_before(jiffies, resume)) {
500                         nr_unshown++;
501                         return;
502                 }
503                 if (nr_unshown) {
504                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505                                  nr_unshown);
506                         nr_unshown = 0;
507                 }
508                 nr_shown = 0;
509         }
510         if (nr_shown++ == 0)
511                 resume = jiffies + 60 * HZ;
512
513         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514         index = linear_page_index(vma, addr);
515
516         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
517                  current->comm,
518                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
519         if (page)
520                 dump_page(page, "bad pte");
521         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524                  vma->vm_file,
525                  vma->vm_ops ? vma->vm_ops->fault : NULL,
526                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527                  mapping ? mapping->a_ops->readpage : NULL);
528         dump_stack();
529         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531
532 /*
533  * vm_normal_page -- This function gets the "struct page" associated with a pte.
534  *
535  * "Special" mappings do not wish to be associated with a "struct page" (either
536  * it doesn't exist, or it exists but they don't want to touch it). In this
537  * case, NULL is returned here. "Normal" mappings do have a struct page.
538  *
539  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540  * pte bit, in which case this function is trivial. Secondly, an architecture
541  * may not have a spare pte bit, which requires a more complicated scheme,
542  * described below.
543  *
544  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545  * special mapping (even if there are underlying and valid "struct pages").
546  * COWed pages of a VM_PFNMAP are always normal.
547  *
548  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551  * mapping will always honor the rule
552  *
553  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554  *
555  * And for normal mappings this is false.
556  *
557  * This restricts such mappings to be a linear translation from virtual address
558  * to pfn. To get around this restriction, we allow arbitrary mappings so long
559  * as the vma is not a COW mapping; in that case, we know that all ptes are
560  * special (because none can have been COWed).
561  *
562  *
563  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564  *
565  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566  * page" backing, however the difference is that _all_ pages with a struct
567  * page (that is, those where pfn_valid is true) are refcounted and considered
568  * normal pages by the VM. The disadvantage is that pages are refcounted
569  * (which can be slower and simply not an option for some PFNMAP users). The
570  * advantage is that we don't have to follow the strict linearity rule of
571  * PFNMAP mappings in order to support COWable mappings.
572  *
573  */
574 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575                              pte_t pte, bool with_public_device)
576 {
577         unsigned long pfn = pte_pfn(pte);
578
579         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580                 if (likely(!pte_special(pte)))
581                         goto check_pfn;
582                 if (vma->vm_ops && vma->vm_ops->find_special_page)
583                         return vma->vm_ops->find_special_page(vma, addr);
584                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585                         return NULL;
586                 if (is_zero_pfn(pfn))
587                         return NULL;
588
589                 /*
590                  * Device public pages are special pages (they are ZONE_DEVICE
591                  * pages but different from persistent memory). They behave
592                  * allmost like normal pages. The difference is that they are
593                  * not on the lru and thus should never be involve with any-
594                  * thing that involve lru manipulation (mlock, numa balancing,
595                  * ...).
596                  *
597                  * This is why we still want to return NULL for such page from
598                  * vm_normal_page() so that we do not have to special case all
599                  * call site of vm_normal_page().
600                  */
601                 if (likely(pfn <= highest_memmap_pfn)) {
602                         struct page *page = pfn_to_page(pfn);
603
604                         if (is_device_public_page(page)) {
605                                 if (with_public_device)
606                                         return page;
607                                 return NULL;
608                         }
609                 }
610
611                 if (pte_devmap(pte))
612                         return NULL;
613
614                 print_bad_pte(vma, addr, pte, NULL);
615                 return NULL;
616         }
617
618         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
619
620         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
621                 if (vma->vm_flags & VM_MIXEDMAP) {
622                         if (!pfn_valid(pfn))
623                                 return NULL;
624                         goto out;
625                 } else {
626                         unsigned long off;
627                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
628                         if (pfn == vma->vm_pgoff + off)
629                                 return NULL;
630                         if (!is_cow_mapping(vma->vm_flags))
631                                 return NULL;
632                 }
633         }
634
635         if (is_zero_pfn(pfn))
636                 return NULL;
637
638 check_pfn:
639         if (unlikely(pfn > highest_memmap_pfn)) {
640                 print_bad_pte(vma, addr, pte, NULL);
641                 return NULL;
642         }
643
644         /*
645          * NOTE! We still have PageReserved() pages in the page tables.
646          * eg. VDSO mappings can cause them to exist.
647          */
648 out:
649         return pfn_to_page(pfn);
650 }
651
652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
653 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
654                                 pmd_t pmd)
655 {
656         unsigned long pfn = pmd_pfn(pmd);
657
658         /*
659          * There is no pmd_special() but there may be special pmds, e.g.
660          * in a direct-access (dax) mapping, so let's just replicate the
661          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
662          */
663         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
664                 if (vma->vm_flags & VM_MIXEDMAP) {
665                         if (!pfn_valid(pfn))
666                                 return NULL;
667                         goto out;
668                 } else {
669                         unsigned long off;
670                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
671                         if (pfn == vma->vm_pgoff + off)
672                                 return NULL;
673                         if (!is_cow_mapping(vma->vm_flags))
674                                 return NULL;
675                 }
676         }
677
678         if (pmd_devmap(pmd))
679                 return NULL;
680         if (is_zero_pfn(pfn))
681                 return NULL;
682         if (unlikely(pfn > highest_memmap_pfn))
683                 return NULL;
684
685         /*
686          * NOTE! We still have PageReserved() pages in the page tables.
687          * eg. VDSO mappings can cause them to exist.
688          */
689 out:
690         return pfn_to_page(pfn);
691 }
692 #endif
693
694 /*
695  * copy one vm_area from one task to the other. Assumes the page tables
696  * already present in the new task to be cleared in the whole range
697  * covered by this vma.
698  */
699
700 static inline unsigned long
701 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
702                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
703                 unsigned long addr, int *rss)
704 {
705         unsigned long vm_flags = vma->vm_flags;
706         pte_t pte = *src_pte;
707         struct page *page;
708
709         /* pte contains position in swap or file, so copy. */
710         if (unlikely(!pte_present(pte))) {
711                 swp_entry_t entry = pte_to_swp_entry(pte);
712
713                 if (likely(!non_swap_entry(entry))) {
714                         if (swap_duplicate(entry) < 0)
715                                 return entry.val;
716
717                         /* make sure dst_mm is on swapoff's mmlist. */
718                         if (unlikely(list_empty(&dst_mm->mmlist))) {
719                                 spin_lock(&mmlist_lock);
720                                 if (list_empty(&dst_mm->mmlist))
721                                         list_add(&dst_mm->mmlist,
722                                                         &src_mm->mmlist);
723                                 spin_unlock(&mmlist_lock);
724                         }
725                         rss[MM_SWAPENTS]++;
726                 } else if (is_migration_entry(entry)) {
727                         page = migration_entry_to_page(entry);
728
729                         rss[mm_counter(page)]++;
730
731                         if (is_write_migration_entry(entry) &&
732                                         is_cow_mapping(vm_flags)) {
733                                 /*
734                                  * COW mappings require pages in both
735                                  * parent and child to be set to read.
736                                  */
737                                 make_migration_entry_read(&entry);
738                                 pte = swp_entry_to_pte(entry);
739                                 if (pte_swp_soft_dirty(*src_pte))
740                                         pte = pte_swp_mksoft_dirty(pte);
741                                 set_pte_at(src_mm, addr, src_pte, pte);
742                         }
743                 } else if (is_device_private_entry(entry)) {
744                         page = device_private_entry_to_page(entry);
745
746                         /*
747                          * Update rss count even for unaddressable pages, as
748                          * they should treated just like normal pages in this
749                          * respect.
750                          *
751                          * We will likely want to have some new rss counters
752                          * for unaddressable pages, at some point. But for now
753                          * keep things as they are.
754                          */
755                         get_page(page);
756                         rss[mm_counter(page)]++;
757                         page_dup_rmap(page, false);
758
759                         /*
760                          * We do not preserve soft-dirty information, because so
761                          * far, checkpoint/restore is the only feature that
762                          * requires that. And checkpoint/restore does not work
763                          * when a device driver is involved (you cannot easily
764                          * save and restore device driver state).
765                          */
766                         if (is_write_device_private_entry(entry) &&
767                             is_cow_mapping(vm_flags)) {
768                                 make_device_private_entry_read(&entry);
769                                 pte = swp_entry_to_pte(entry);
770                                 set_pte_at(src_mm, addr, src_pte, pte);
771                         }
772                 }
773                 goto out_set_pte;
774         }
775
776         /*
777          * If it's a COW mapping, write protect it both
778          * in the parent and the child
779          */
780         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
781                 ptep_set_wrprotect(src_mm, addr, src_pte);
782                 pte = pte_wrprotect(pte);
783         }
784
785         /*
786          * If it's a shared mapping, mark it clean in
787          * the child
788          */
789         if (vm_flags & VM_SHARED)
790                 pte = pte_mkclean(pte);
791         pte = pte_mkold(pte);
792
793         page = vm_normal_page(vma, addr, pte);
794         if (page) {
795                 get_page(page);
796                 page_dup_rmap(page, false);
797                 rss[mm_counter(page)]++;
798         } else if (pte_devmap(pte)) {
799                 page = pte_page(pte);
800
801                 /*
802                  * Cache coherent device memory behave like regular page and
803                  * not like persistent memory page. For more informations see
804                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
805                  */
806                 if (is_device_public_page(page)) {
807                         get_page(page);
808                         page_dup_rmap(page, false);
809                         rss[mm_counter(page)]++;
810                 }
811         }
812
813 out_set_pte:
814         set_pte_at(dst_mm, addr, dst_pte, pte);
815         return 0;
816 }
817
818 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
819                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
820                    unsigned long addr, unsigned long end)
821 {
822         pte_t *orig_src_pte, *orig_dst_pte;
823         pte_t *src_pte, *dst_pte;
824         spinlock_t *src_ptl, *dst_ptl;
825         int progress = 0;
826         int rss[NR_MM_COUNTERS];
827         swp_entry_t entry = (swp_entry_t){0};
828
829 again:
830         init_rss_vec(rss);
831
832         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
833         if (!dst_pte)
834                 return -ENOMEM;
835         src_pte = pte_offset_map(src_pmd, addr);
836         src_ptl = pte_lockptr(src_mm, src_pmd);
837         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
838         orig_src_pte = src_pte;
839         orig_dst_pte = dst_pte;
840         arch_enter_lazy_mmu_mode();
841
842         do {
843                 /*
844                  * We are holding two locks at this point - either of them
845                  * could generate latencies in another task on another CPU.
846                  */
847                 if (progress >= 32) {
848                         progress = 0;
849                         if (need_resched() ||
850                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
851                                 break;
852                 }
853                 if (pte_none(*src_pte)) {
854                         progress++;
855                         continue;
856                 }
857                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
858                                                         vma, addr, rss);
859                 if (entry.val)
860                         break;
861                 progress += 8;
862         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
863
864         arch_leave_lazy_mmu_mode();
865         spin_unlock(src_ptl);
866         pte_unmap(orig_src_pte);
867         add_mm_rss_vec(dst_mm, rss);
868         pte_unmap_unlock(orig_dst_pte, dst_ptl);
869         cond_resched();
870
871         if (entry.val) {
872                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
873                         return -ENOMEM;
874                 progress = 0;
875         }
876         if (addr != end)
877                 goto again;
878         return 0;
879 }
880
881 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
883                 unsigned long addr, unsigned long end)
884 {
885         pmd_t *src_pmd, *dst_pmd;
886         unsigned long next;
887
888         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
889         if (!dst_pmd)
890                 return -ENOMEM;
891         src_pmd = pmd_offset(src_pud, addr);
892         do {
893                 next = pmd_addr_end(addr, end);
894                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
895                         || pmd_devmap(*src_pmd)) {
896                         int err;
897                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
898                         err = copy_huge_pmd(dst_mm, src_mm,
899                                             dst_pmd, src_pmd, addr, vma);
900                         if (err == -ENOMEM)
901                                 return -ENOMEM;
902                         if (!err)
903                                 continue;
904                         /* fall through */
905                 }
906                 if (pmd_none_or_clear_bad(src_pmd))
907                         continue;
908                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
909                                                 vma, addr, next))
910                         return -ENOMEM;
911         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
912         return 0;
913 }
914
915 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
917                 unsigned long addr, unsigned long end)
918 {
919         pud_t *src_pud, *dst_pud;
920         unsigned long next;
921
922         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
923         if (!dst_pud)
924                 return -ENOMEM;
925         src_pud = pud_offset(src_p4d, addr);
926         do {
927                 next = pud_addr_end(addr, end);
928                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
929                         int err;
930
931                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
932                         err = copy_huge_pud(dst_mm, src_mm,
933                                             dst_pud, src_pud, addr, vma);
934                         if (err == -ENOMEM)
935                                 return -ENOMEM;
936                         if (!err)
937                                 continue;
938                         /* fall through */
939                 }
940                 if (pud_none_or_clear_bad(src_pud))
941                         continue;
942                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
943                                                 vma, addr, next))
944                         return -ENOMEM;
945         } while (dst_pud++, src_pud++, addr = next, addr != end);
946         return 0;
947 }
948
949 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
951                 unsigned long addr, unsigned long end)
952 {
953         p4d_t *src_p4d, *dst_p4d;
954         unsigned long next;
955
956         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
957         if (!dst_p4d)
958                 return -ENOMEM;
959         src_p4d = p4d_offset(src_pgd, addr);
960         do {
961                 next = p4d_addr_end(addr, end);
962                 if (p4d_none_or_clear_bad(src_p4d))
963                         continue;
964                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
965                                                 vma, addr, next))
966                         return -ENOMEM;
967         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
968         return 0;
969 }
970
971 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
972                 struct vm_area_struct *vma)
973 {
974         pgd_t *src_pgd, *dst_pgd;
975         unsigned long next;
976         unsigned long addr = vma->vm_start;
977         unsigned long end = vma->vm_end;
978         struct mmu_notifier_range range;
979         bool is_cow;
980         int ret;
981
982         /*
983          * Don't copy ptes where a page fault will fill them correctly.
984          * Fork becomes much lighter when there are big shared or private
985          * readonly mappings. The tradeoff is that copy_page_range is more
986          * efficient than faulting.
987          */
988         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
989                         !vma->anon_vma)
990                 return 0;
991
992         if (is_vm_hugetlb_page(vma))
993                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
994
995         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
996                 /*
997                  * We do not free on error cases below as remove_vma
998                  * gets called on error from higher level routine
999                  */
1000                 ret = track_pfn_copy(vma);
1001                 if (ret)
1002                         return ret;
1003         }
1004
1005         /*
1006          * We need to invalidate the secondary MMU mappings only when
1007          * there could be a permission downgrade on the ptes of the
1008          * parent mm. And a permission downgrade will only happen if
1009          * is_cow_mapping() returns true.
1010          */
1011         is_cow = is_cow_mapping(vma->vm_flags);
1012
1013         if (is_cow) {
1014                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1015                                         0, vma, src_mm, addr, end);
1016                 mmu_notifier_invalidate_range_start(&range);
1017         }
1018
1019         ret = 0;
1020         dst_pgd = pgd_offset(dst_mm, addr);
1021         src_pgd = pgd_offset(src_mm, addr);
1022         do {
1023                 next = pgd_addr_end(addr, end);
1024                 if (pgd_none_or_clear_bad(src_pgd))
1025                         continue;
1026                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1027                                             vma, addr, next))) {
1028                         ret = -ENOMEM;
1029                         break;
1030                 }
1031         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1032
1033         if (is_cow)
1034                 mmu_notifier_invalidate_range_end(&range);
1035         return ret;
1036 }
1037
1038 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1039                                 struct vm_area_struct *vma, pmd_t *pmd,
1040                                 unsigned long addr, unsigned long end,
1041                                 struct zap_details *details)
1042 {
1043         struct mm_struct *mm = tlb->mm;
1044         int force_flush = 0;
1045         int rss[NR_MM_COUNTERS];
1046         spinlock_t *ptl;
1047         pte_t *start_pte;
1048         pte_t *pte;
1049         swp_entry_t entry;
1050
1051         tlb_change_page_size(tlb, PAGE_SIZE);
1052 again:
1053         init_rss_vec(rss);
1054         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1055         pte = start_pte;
1056         flush_tlb_batched_pending(mm);
1057         arch_enter_lazy_mmu_mode();
1058         do {
1059                 pte_t ptent = *pte;
1060                 if (pte_none(ptent))
1061                         continue;
1062
1063                 if (pte_present(ptent)) {
1064                         struct page *page;
1065
1066                         page = _vm_normal_page(vma, addr, ptent, true);
1067                         if (unlikely(details) && page) {
1068                                 /*
1069                                  * unmap_shared_mapping_pages() wants to
1070                                  * invalidate cache without truncating:
1071                                  * unmap shared but keep private pages.
1072                                  */
1073                                 if (details->check_mapping &&
1074                                     details->check_mapping != page_rmapping(page))
1075                                         continue;
1076                         }
1077                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1078                                                         tlb->fullmm);
1079                         tlb_remove_tlb_entry(tlb, pte, addr);
1080                         if (unlikely(!page))
1081                                 continue;
1082
1083                         if (!PageAnon(page)) {
1084                                 if (pte_dirty(ptent)) {
1085                                         force_flush = 1;
1086                                         set_page_dirty(page);
1087                                 }
1088                                 if (pte_young(ptent) &&
1089                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1090                                         mark_page_accessed(page);
1091                         }
1092                         rss[mm_counter(page)]--;
1093                         page_remove_rmap(page, false);
1094                         if (unlikely(page_mapcount(page) < 0))
1095                                 print_bad_pte(vma, addr, ptent, page);
1096                         if (unlikely(__tlb_remove_page(tlb, page))) {
1097                                 force_flush = 1;
1098                                 addr += PAGE_SIZE;
1099                                 break;
1100                         }
1101                         continue;
1102                 }
1103
1104                 entry = pte_to_swp_entry(ptent);
1105                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1106                         struct page *page = device_private_entry_to_page(entry);
1107
1108                         if (unlikely(details && details->check_mapping)) {
1109                                 /*
1110                                  * unmap_shared_mapping_pages() wants to
1111                                  * invalidate cache without truncating:
1112                                  * unmap shared but keep private pages.
1113                                  */
1114                                 if (details->check_mapping !=
1115                                     page_rmapping(page))
1116                                         continue;
1117                         }
1118
1119                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1120                         rss[mm_counter(page)]--;
1121                         page_remove_rmap(page, false);
1122                         put_page(page);
1123                         continue;
1124                 }
1125
1126                 /* If details->check_mapping, we leave swap entries. */
1127                 if (unlikely(details))
1128                         continue;
1129
1130                 entry = pte_to_swp_entry(ptent);
1131                 if (!non_swap_entry(entry))
1132                         rss[MM_SWAPENTS]--;
1133                 else if (is_migration_entry(entry)) {
1134                         struct page *page;
1135
1136                         page = migration_entry_to_page(entry);
1137                         rss[mm_counter(page)]--;
1138                 }
1139                 if (unlikely(!free_swap_and_cache(entry)))
1140                         print_bad_pte(vma, addr, ptent, NULL);
1141                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142         } while (pte++, addr += PAGE_SIZE, addr != end);
1143
1144         add_mm_rss_vec(mm, rss);
1145         arch_leave_lazy_mmu_mode();
1146
1147         /* Do the actual TLB flush before dropping ptl */
1148         if (force_flush)
1149                 tlb_flush_mmu_tlbonly(tlb);
1150         pte_unmap_unlock(start_pte, ptl);
1151
1152         /*
1153          * If we forced a TLB flush (either due to running out of
1154          * batch buffers or because we needed to flush dirty TLB
1155          * entries before releasing the ptl), free the batched
1156          * memory too. Restart if we didn't do everything.
1157          */
1158         if (force_flush) {
1159                 force_flush = 0;
1160                 tlb_flush_mmu(tlb);
1161                 if (addr != end)
1162                         goto again;
1163         }
1164
1165         return addr;
1166 }
1167
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169                                 struct vm_area_struct *vma, pud_t *pud,
1170                                 unsigned long addr, unsigned long end,
1171                                 struct zap_details *details)
1172 {
1173         pmd_t *pmd;
1174         unsigned long next;
1175
1176         pmd = pmd_offset(pud, addr);
1177         do {
1178                 next = pmd_addr_end(addr, end);
1179                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180                         if (next - addr != HPAGE_PMD_SIZE)
1181                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1182                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1183                                 goto next;
1184                         /* fall through */
1185                 }
1186                 /*
1187                  * Here there can be other concurrent MADV_DONTNEED or
1188                  * trans huge page faults running, and if the pmd is
1189                  * none or trans huge it can change under us. This is
1190                  * because MADV_DONTNEED holds the mmap_sem in read
1191                  * mode.
1192                  */
1193                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194                         goto next;
1195                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1196 next:
1197                 cond_resched();
1198         } while (pmd++, addr = next, addr != end);
1199
1200         return addr;
1201 }
1202
1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204                                 struct vm_area_struct *vma, p4d_t *p4d,
1205                                 unsigned long addr, unsigned long end,
1206                                 struct zap_details *details)
1207 {
1208         pud_t *pud;
1209         unsigned long next;
1210
1211         pud = pud_offset(p4d, addr);
1212         do {
1213                 next = pud_addr_end(addr, end);
1214                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215                         if (next - addr != HPAGE_PUD_SIZE) {
1216                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1217                                 split_huge_pud(vma, pud, addr);
1218                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1219                                 goto next;
1220                         /* fall through */
1221                 }
1222                 if (pud_none_or_clear_bad(pud))
1223                         continue;
1224                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1225 next:
1226                 cond_resched();
1227         } while (pud++, addr = next, addr != end);
1228
1229         return addr;
1230 }
1231
1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233                                 struct vm_area_struct *vma, pgd_t *pgd,
1234                                 unsigned long addr, unsigned long end,
1235                                 struct zap_details *details)
1236 {
1237         p4d_t *p4d;
1238         unsigned long next;
1239
1240         p4d = p4d_offset(pgd, addr);
1241         do {
1242                 next = p4d_addr_end(addr, end);
1243                 if (p4d_none_or_clear_bad(p4d))
1244                         continue;
1245                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246         } while (p4d++, addr = next, addr != end);
1247
1248         return addr;
1249 }
1250
1251 void unmap_page_range(struct mmu_gather *tlb,
1252                              struct vm_area_struct *vma,
1253                              unsigned long addr, unsigned long end,
1254                              struct zap_details *details)
1255 {
1256         pgd_t *pgd;
1257         unsigned long next;
1258
1259         BUG_ON(addr >= end);
1260         tlb_start_vma(tlb, vma);
1261         pgd = pgd_offset(vma->vm_mm, addr);
1262         do {
1263                 next = pgd_addr_end(addr, end);
1264                 if (pgd_none_or_clear_bad(pgd))
1265                         continue;
1266                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267         } while (pgd++, addr = next, addr != end);
1268         tlb_end_vma(tlb, vma);
1269 }
1270
1271
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273                 struct vm_area_struct *vma, unsigned long start_addr,
1274                 unsigned long end_addr,
1275                 struct zap_details *details)
1276 {
1277         unsigned long start = max(vma->vm_start, start_addr);
1278         unsigned long end;
1279
1280         if (start >= vma->vm_end)
1281                 return;
1282         end = min(vma->vm_end, end_addr);
1283         if (end <= vma->vm_start)
1284                 return;
1285
1286         if (vma->vm_file)
1287                 uprobe_munmap(vma, start, end);
1288
1289         if (unlikely(vma->vm_flags & VM_PFNMAP))
1290                 untrack_pfn(vma, 0, 0);
1291
1292         if (start != end) {
1293                 if (unlikely(is_vm_hugetlb_page(vma))) {
1294                         /*
1295                          * It is undesirable to test vma->vm_file as it
1296                          * should be non-null for valid hugetlb area.
1297                          * However, vm_file will be NULL in the error
1298                          * cleanup path of mmap_region. When
1299                          * hugetlbfs ->mmap method fails,
1300                          * mmap_region() nullifies vma->vm_file
1301                          * before calling this function to clean up.
1302                          * Since no pte has actually been setup, it is
1303                          * safe to do nothing in this case.
1304                          */
1305                         if (vma->vm_file) {
1306                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1307                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1309                         }
1310                 } else
1311                         unmap_page_range(tlb, vma, start, end, details);
1312         }
1313 }
1314
1315 /**
1316  * unmap_vmas - unmap a range of memory covered by a list of vma's
1317  * @tlb: address of the caller's struct mmu_gather
1318  * @vma: the starting vma
1319  * @start_addr: virtual address at which to start unmapping
1320  * @end_addr: virtual address at which to end unmapping
1321  *
1322  * Unmap all pages in the vma list.
1323  *
1324  * Only addresses between `start' and `end' will be unmapped.
1325  *
1326  * The VMA list must be sorted in ascending virtual address order.
1327  *
1328  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329  * range after unmap_vmas() returns.  So the only responsibility here is to
1330  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331  * drops the lock and schedules.
1332  */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334                 struct vm_area_struct *vma, unsigned long start_addr,
1335                 unsigned long end_addr)
1336 {
1337         struct mmu_notifier_range range;
1338
1339         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340                                 start_addr, end_addr);
1341         mmu_notifier_invalidate_range_start(&range);
1342         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344         mmu_notifier_invalidate_range_end(&range);
1345 }
1346
1347 /**
1348  * zap_page_range - remove user pages in a given range
1349  * @vma: vm_area_struct holding the applicable pages
1350  * @start: starting address of pages to zap
1351  * @size: number of bytes to zap
1352  *
1353  * Caller must protect the VMA list
1354  */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356                 unsigned long size)
1357 {
1358         struct mmu_notifier_range range;
1359         struct mmu_gather tlb;
1360
1361         lru_add_drain();
1362         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363                                 start, start + size);
1364         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365         update_hiwater_rss(vma->vm_mm);
1366         mmu_notifier_invalidate_range_start(&range);
1367         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369         mmu_notifier_invalidate_range_end(&range);
1370         tlb_finish_mmu(&tlb, start, range.end);
1371 }
1372
1373 /**
1374  * zap_page_range_single - remove user pages in a given range
1375  * @vma: vm_area_struct holding the applicable pages
1376  * @address: starting address of pages to zap
1377  * @size: number of bytes to zap
1378  * @details: details of shared cache invalidation
1379  *
1380  * The range must fit into one VMA.
1381  */
1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383                 unsigned long size, struct zap_details *details)
1384 {
1385         struct mmu_notifier_range range;
1386         struct mmu_gather tlb;
1387
1388         lru_add_drain();
1389         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390                                 address, address + size);
1391         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392         update_hiwater_rss(vma->vm_mm);
1393         mmu_notifier_invalidate_range_start(&range);
1394         unmap_single_vma(&tlb, vma, address, range.end, details);
1395         mmu_notifier_invalidate_range_end(&range);
1396         tlb_finish_mmu(&tlb, address, range.end);
1397 }
1398
1399 /**
1400  * zap_vma_ptes - remove ptes mapping the vma
1401  * @vma: vm_area_struct holding ptes to be zapped
1402  * @address: starting address of pages to zap
1403  * @size: number of bytes to zap
1404  *
1405  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406  *
1407  * The entire address range must be fully contained within the vma.
1408  *
1409  */
1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411                 unsigned long size)
1412 {
1413         if (address < vma->vm_start || address + size > vma->vm_end ||
1414                         !(vma->vm_flags & VM_PFNMAP))
1415                 return;
1416
1417         zap_page_range_single(vma, address, size, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420
1421 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1422                         spinlock_t **ptl)
1423 {
1424         pgd_t *pgd;
1425         p4d_t *p4d;
1426         pud_t *pud;
1427         pmd_t *pmd;
1428
1429         pgd = pgd_offset(mm, addr);
1430         p4d = p4d_alloc(mm, pgd, addr);
1431         if (!p4d)
1432                 return NULL;
1433         pud = pud_alloc(mm, p4d, addr);
1434         if (!pud)
1435                 return NULL;
1436         pmd = pmd_alloc(mm, pud, addr);
1437         if (!pmd)
1438                 return NULL;
1439
1440         VM_BUG_ON(pmd_trans_huge(*pmd));
1441         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1442 }
1443
1444 /*
1445  * This is the old fallback for page remapping.
1446  *
1447  * For historical reasons, it only allows reserved pages. Only
1448  * old drivers should use this, and they needed to mark their
1449  * pages reserved for the old functions anyway.
1450  */
1451 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1452                         struct page *page, pgprot_t prot)
1453 {
1454         struct mm_struct *mm = vma->vm_mm;
1455         int retval;
1456         pte_t *pte;
1457         spinlock_t *ptl;
1458
1459         retval = -EINVAL;
1460         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1461                 goto out;
1462         retval = -ENOMEM;
1463         flush_dcache_page(page);
1464         pte = get_locked_pte(mm, addr, &ptl);
1465         if (!pte)
1466                 goto out;
1467         retval = -EBUSY;
1468         if (!pte_none(*pte))
1469                 goto out_unlock;
1470
1471         /* Ok, finally just insert the thing.. */
1472         get_page(page);
1473         inc_mm_counter_fast(mm, mm_counter_file(page));
1474         page_add_file_rmap(page, false);
1475         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1476
1477         retval = 0;
1478         pte_unmap_unlock(pte, ptl);
1479         return retval;
1480 out_unlock:
1481         pte_unmap_unlock(pte, ptl);
1482 out:
1483         return retval;
1484 }
1485
1486 /**
1487  * vm_insert_page - insert single page into user vma
1488  * @vma: user vma to map to
1489  * @addr: target user address of this page
1490  * @page: source kernel page
1491  *
1492  * This allows drivers to insert individual pages they've allocated
1493  * into a user vma.
1494  *
1495  * The page has to be a nice clean _individual_ kernel allocation.
1496  * If you allocate a compound page, you need to have marked it as
1497  * such (__GFP_COMP), or manually just split the page up yourself
1498  * (see split_page()).
1499  *
1500  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1501  * took an arbitrary page protection parameter. This doesn't allow
1502  * that. Your vma protection will have to be set up correctly, which
1503  * means that if you want a shared writable mapping, you'd better
1504  * ask for a shared writable mapping!
1505  *
1506  * The page does not need to be reserved.
1507  *
1508  * Usually this function is called from f_op->mmap() handler
1509  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1510  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1511  * function from other places, for example from page-fault handler.
1512  *
1513  * Return: %0 on success, negative error code otherwise.
1514  */
1515 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1516                         struct page *page)
1517 {
1518         if (addr < vma->vm_start || addr >= vma->vm_end)
1519                 return -EFAULT;
1520         if (!page_count(page))
1521                 return -EINVAL;
1522         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1523                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1524                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1525                 vma->vm_flags |= VM_MIXEDMAP;
1526         }
1527         return insert_page(vma, addr, page, vma->vm_page_prot);
1528 }
1529 EXPORT_SYMBOL(vm_insert_page);
1530
1531 /*
1532  * __vm_map_pages - maps range of kernel pages into user vma
1533  * @vma: user vma to map to
1534  * @pages: pointer to array of source kernel pages
1535  * @num: number of pages in page array
1536  * @offset: user's requested vm_pgoff
1537  *
1538  * This allows drivers to map range of kernel pages into a user vma.
1539  *
1540  * Return: 0 on success and error code otherwise.
1541  */
1542 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1543                                 unsigned long num, unsigned long offset)
1544 {
1545         unsigned long count = vma_pages(vma);
1546         unsigned long uaddr = vma->vm_start;
1547         int ret, i;
1548
1549         /* Fail if the user requested offset is beyond the end of the object */
1550         if (offset > num)
1551                 return -ENXIO;
1552
1553         /* Fail if the user requested size exceeds available object size */
1554         if (count > num - offset)
1555                 return -ENXIO;
1556
1557         for (i = 0; i < count; i++) {
1558                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1559                 if (ret < 0)
1560                         return ret;
1561                 uaddr += PAGE_SIZE;
1562         }
1563
1564         return 0;
1565 }
1566
1567 /**
1568  * vm_map_pages - maps range of kernel pages starts with non zero offset
1569  * @vma: user vma to map to
1570  * @pages: pointer to array of source kernel pages
1571  * @num: number of pages in page array
1572  *
1573  * Maps an object consisting of @num pages, catering for the user's
1574  * requested vm_pgoff
1575  *
1576  * If we fail to insert any page into the vma, the function will return
1577  * immediately leaving any previously inserted pages present.  Callers
1578  * from the mmap handler may immediately return the error as their caller
1579  * will destroy the vma, removing any successfully inserted pages. Other
1580  * callers should make their own arrangements for calling unmap_region().
1581  *
1582  * Context: Process context. Called by mmap handlers.
1583  * Return: 0 on success and error code otherwise.
1584  */
1585 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1586                                 unsigned long num)
1587 {
1588         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1589 }
1590 EXPORT_SYMBOL(vm_map_pages);
1591
1592 /**
1593  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1594  * @vma: user vma to map to
1595  * @pages: pointer to array of source kernel pages
1596  * @num: number of pages in page array
1597  *
1598  * Similar to vm_map_pages(), except that it explicitly sets the offset
1599  * to 0. This function is intended for the drivers that did not consider
1600  * vm_pgoff.
1601  *
1602  * Context: Process context. Called by mmap handlers.
1603  * Return: 0 on success and error code otherwise.
1604  */
1605 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1606                                 unsigned long num)
1607 {
1608         return __vm_map_pages(vma, pages, num, 0);
1609 }
1610 EXPORT_SYMBOL(vm_map_pages_zero);
1611
1612 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1613                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1614 {
1615         struct mm_struct *mm = vma->vm_mm;
1616         pte_t *pte, entry;
1617         spinlock_t *ptl;
1618
1619         pte = get_locked_pte(mm, addr, &ptl);
1620         if (!pte)
1621                 return VM_FAULT_OOM;
1622         if (!pte_none(*pte)) {
1623                 if (mkwrite) {
1624                         /*
1625                          * For read faults on private mappings the PFN passed
1626                          * in may not match the PFN we have mapped if the
1627                          * mapped PFN is a writeable COW page.  In the mkwrite
1628                          * case we are creating a writable PTE for a shared
1629                          * mapping and we expect the PFNs to match. If they
1630                          * don't match, we are likely racing with block
1631                          * allocation and mapping invalidation so just skip the
1632                          * update.
1633                          */
1634                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1635                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1636                                 goto out_unlock;
1637                         }
1638                         entry = pte_mkyoung(*pte);
1639                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1640                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1641                                 update_mmu_cache(vma, addr, pte);
1642                 }
1643                 goto out_unlock;
1644         }
1645
1646         /* Ok, finally just insert the thing.. */
1647         if (pfn_t_devmap(pfn))
1648                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1649         else
1650                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1651
1652         if (mkwrite) {
1653                 entry = pte_mkyoung(entry);
1654                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1655         }
1656
1657         set_pte_at(mm, addr, pte, entry);
1658         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1659
1660 out_unlock:
1661         pte_unmap_unlock(pte, ptl);
1662         return VM_FAULT_NOPAGE;
1663 }
1664
1665 /**
1666  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1667  * @vma: user vma to map to
1668  * @addr: target user address of this page
1669  * @pfn: source kernel pfn
1670  * @pgprot: pgprot flags for the inserted page
1671  *
1672  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1673  * to override pgprot on a per-page basis.
1674  *
1675  * This only makes sense for IO mappings, and it makes no sense for
1676  * COW mappings.  In general, using multiple vmas is preferable;
1677  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1678  * impractical.
1679  *
1680  * Context: Process context.  May allocate using %GFP_KERNEL.
1681  * Return: vm_fault_t value.
1682  */
1683 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1684                         unsigned long pfn, pgprot_t pgprot)
1685 {
1686         /*
1687          * Technically, architectures with pte_special can avoid all these
1688          * restrictions (same for remap_pfn_range).  However we would like
1689          * consistency in testing and feature parity among all, so we should
1690          * try to keep these invariants in place for everybody.
1691          */
1692         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1693         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1694                                                 (VM_PFNMAP|VM_MIXEDMAP));
1695         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1696         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1697
1698         if (addr < vma->vm_start || addr >= vma->vm_end)
1699                 return VM_FAULT_SIGBUS;
1700
1701         if (!pfn_modify_allowed(pfn, pgprot))
1702                 return VM_FAULT_SIGBUS;
1703
1704         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1705
1706         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1707                         false);
1708 }
1709 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1710
1711 /**
1712  * vmf_insert_pfn - insert single pfn into user vma
1713  * @vma: user vma to map to
1714  * @addr: target user address of this page
1715  * @pfn: source kernel pfn
1716  *
1717  * Similar to vm_insert_page, this allows drivers to insert individual pages
1718  * they've allocated into a user vma. Same comments apply.
1719  *
1720  * This function should only be called from a vm_ops->fault handler, and
1721  * in that case the handler should return the result of this function.
1722  *
1723  * vma cannot be a COW mapping.
1724  *
1725  * As this is called only for pages that do not currently exist, we
1726  * do not need to flush old virtual caches or the TLB.
1727  *
1728  * Context: Process context.  May allocate using %GFP_KERNEL.
1729  * Return: vm_fault_t value.
1730  */
1731 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1732                         unsigned long pfn)
1733 {
1734         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1735 }
1736 EXPORT_SYMBOL(vmf_insert_pfn);
1737
1738 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1739 {
1740         /* these checks mirror the abort conditions in vm_normal_page */
1741         if (vma->vm_flags & VM_MIXEDMAP)
1742                 return true;
1743         if (pfn_t_devmap(pfn))
1744                 return true;
1745         if (pfn_t_special(pfn))
1746                 return true;
1747         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1748                 return true;
1749         return false;
1750 }
1751
1752 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1753                 unsigned long addr, pfn_t pfn, bool mkwrite)
1754 {
1755         pgprot_t pgprot = vma->vm_page_prot;
1756         int err;
1757
1758         BUG_ON(!vm_mixed_ok(vma, pfn));
1759
1760         if (addr < vma->vm_start || addr >= vma->vm_end)
1761                 return VM_FAULT_SIGBUS;
1762
1763         track_pfn_insert(vma, &pgprot, pfn);
1764
1765         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1766                 return VM_FAULT_SIGBUS;
1767
1768         /*
1769          * If we don't have pte special, then we have to use the pfn_valid()
1770          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1771          * refcount the page if pfn_valid is true (hence insert_page rather
1772          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1773          * without pte special, it would there be refcounted as a normal page.
1774          */
1775         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1776             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1777                 struct page *page;
1778
1779                 /*
1780                  * At this point we are committed to insert_page()
1781                  * regardless of whether the caller specified flags that
1782                  * result in pfn_t_has_page() == false.
1783                  */
1784                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1785                 err = insert_page(vma, addr, page, pgprot);
1786         } else {
1787                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1788         }
1789
1790         if (err == -ENOMEM)
1791                 return VM_FAULT_OOM;
1792         if (err < 0 && err != -EBUSY)
1793                 return VM_FAULT_SIGBUS;
1794
1795         return VM_FAULT_NOPAGE;
1796 }
1797
1798 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1799                 pfn_t pfn)
1800 {
1801         return __vm_insert_mixed(vma, addr, pfn, false);
1802 }
1803 EXPORT_SYMBOL(vmf_insert_mixed);
1804
1805 /*
1806  *  If the insertion of PTE failed because someone else already added a
1807  *  different entry in the mean time, we treat that as success as we assume
1808  *  the same entry was actually inserted.
1809  */
1810 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1811                 unsigned long addr, pfn_t pfn)
1812 {
1813         return __vm_insert_mixed(vma, addr, pfn, true);
1814 }
1815 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1816
1817 /*
1818  * maps a range of physical memory into the requested pages. the old
1819  * mappings are removed. any references to nonexistent pages results
1820  * in null mappings (currently treated as "copy-on-access")
1821  */
1822 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1823                         unsigned long addr, unsigned long end,
1824                         unsigned long pfn, pgprot_t prot)
1825 {
1826         pte_t *pte;
1827         spinlock_t *ptl;
1828         int err = 0;
1829
1830         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1831         if (!pte)
1832                 return -ENOMEM;
1833         arch_enter_lazy_mmu_mode();
1834         do {
1835                 BUG_ON(!pte_none(*pte));
1836                 if (!pfn_modify_allowed(pfn, prot)) {
1837                         err = -EACCES;
1838                         break;
1839                 }
1840                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1841                 pfn++;
1842         } while (pte++, addr += PAGE_SIZE, addr != end);
1843         arch_leave_lazy_mmu_mode();
1844         pte_unmap_unlock(pte - 1, ptl);
1845         return err;
1846 }
1847
1848 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1849                         unsigned long addr, unsigned long end,
1850                         unsigned long pfn, pgprot_t prot)
1851 {
1852         pmd_t *pmd;
1853         unsigned long next;
1854         int err;
1855
1856         pfn -= addr >> PAGE_SHIFT;
1857         pmd = pmd_alloc(mm, pud, addr);
1858         if (!pmd)
1859                 return -ENOMEM;
1860         VM_BUG_ON(pmd_trans_huge(*pmd));
1861         do {
1862                 next = pmd_addr_end(addr, end);
1863                 err = remap_pte_range(mm, pmd, addr, next,
1864                                 pfn + (addr >> PAGE_SHIFT), prot);
1865                 if (err)
1866                         return err;
1867         } while (pmd++, addr = next, addr != end);
1868         return 0;
1869 }
1870
1871 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1872                         unsigned long addr, unsigned long end,
1873                         unsigned long pfn, pgprot_t prot)
1874 {
1875         pud_t *pud;
1876         unsigned long next;
1877         int err;
1878
1879         pfn -= addr >> PAGE_SHIFT;
1880         pud = pud_alloc(mm, p4d, addr);
1881         if (!pud)
1882                 return -ENOMEM;
1883         do {
1884                 next = pud_addr_end(addr, end);
1885                 err = remap_pmd_range(mm, pud, addr, next,
1886                                 pfn + (addr >> PAGE_SHIFT), prot);
1887                 if (err)
1888                         return err;
1889         } while (pud++, addr = next, addr != end);
1890         return 0;
1891 }
1892
1893 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1894                         unsigned long addr, unsigned long end,
1895                         unsigned long pfn, pgprot_t prot)
1896 {
1897         p4d_t *p4d;
1898         unsigned long next;
1899         int err;
1900
1901         pfn -= addr >> PAGE_SHIFT;
1902         p4d = p4d_alloc(mm, pgd, addr);
1903         if (!p4d)
1904                 return -ENOMEM;
1905         do {
1906                 next = p4d_addr_end(addr, end);
1907                 err = remap_pud_range(mm, p4d, addr, next,
1908                                 pfn + (addr >> PAGE_SHIFT), prot);
1909                 if (err)
1910                         return err;
1911         } while (p4d++, addr = next, addr != end);
1912         return 0;
1913 }
1914
1915 /**
1916  * remap_pfn_range - remap kernel memory to userspace
1917  * @vma: user vma to map to
1918  * @addr: target user address to start at
1919  * @pfn: physical address of kernel memory
1920  * @size: size of map area
1921  * @prot: page protection flags for this mapping
1922  *
1923  * Note: this is only safe if the mm semaphore is held when called.
1924  *
1925  * Return: %0 on success, negative error code otherwise.
1926  */
1927 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1928                     unsigned long pfn, unsigned long size, pgprot_t prot)
1929 {
1930         pgd_t *pgd;
1931         unsigned long next;
1932         unsigned long end = addr + PAGE_ALIGN(size);
1933         struct mm_struct *mm = vma->vm_mm;
1934         unsigned long remap_pfn = pfn;
1935         int err;
1936
1937         /*
1938          * Physically remapped pages are special. Tell the
1939          * rest of the world about it:
1940          *   VM_IO tells people not to look at these pages
1941          *      (accesses can have side effects).
1942          *   VM_PFNMAP tells the core MM that the base pages are just
1943          *      raw PFN mappings, and do not have a "struct page" associated
1944          *      with them.
1945          *   VM_DONTEXPAND
1946          *      Disable vma merging and expanding with mremap().
1947          *   VM_DONTDUMP
1948          *      Omit vma from core dump, even when VM_IO turned off.
1949          *
1950          * There's a horrible special case to handle copy-on-write
1951          * behaviour that some programs depend on. We mark the "original"
1952          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1953          * See vm_normal_page() for details.
1954          */
1955         if (is_cow_mapping(vma->vm_flags)) {
1956                 if (addr != vma->vm_start || end != vma->vm_end)
1957                         return -EINVAL;
1958                 vma->vm_pgoff = pfn;
1959         }
1960
1961         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1962         if (err)
1963                 return -EINVAL;
1964
1965         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1966
1967         BUG_ON(addr >= end);
1968         pfn -= addr >> PAGE_SHIFT;
1969         pgd = pgd_offset(mm, addr);
1970         flush_cache_range(vma, addr, end);
1971         do {
1972                 next = pgd_addr_end(addr, end);
1973                 err = remap_p4d_range(mm, pgd, addr, next,
1974                                 pfn + (addr >> PAGE_SHIFT), prot);
1975                 if (err)
1976                         break;
1977         } while (pgd++, addr = next, addr != end);
1978
1979         if (err)
1980                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1981
1982         return err;
1983 }
1984 EXPORT_SYMBOL(remap_pfn_range);
1985
1986 /**
1987  * vm_iomap_memory - remap memory to userspace
1988  * @vma: user vma to map to
1989  * @start: start of area
1990  * @len: size of area
1991  *
1992  * This is a simplified io_remap_pfn_range() for common driver use. The
1993  * driver just needs to give us the physical memory range to be mapped,
1994  * we'll figure out the rest from the vma information.
1995  *
1996  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1997  * whatever write-combining details or similar.
1998  *
1999  * Return: %0 on success, negative error code otherwise.
2000  */
2001 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2002 {
2003         unsigned long vm_len, pfn, pages;
2004
2005         /* Check that the physical memory area passed in looks valid */
2006         if (start + len < start)
2007                 return -EINVAL;
2008         /*
2009          * You *really* shouldn't map things that aren't page-aligned,
2010          * but we've historically allowed it because IO memory might
2011          * just have smaller alignment.
2012          */
2013         len += start & ~PAGE_MASK;
2014         pfn = start >> PAGE_SHIFT;
2015         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2016         if (pfn + pages < pfn)
2017                 return -EINVAL;
2018
2019         /* We start the mapping 'vm_pgoff' pages into the area */
2020         if (vma->vm_pgoff > pages)
2021                 return -EINVAL;
2022         pfn += vma->vm_pgoff;
2023         pages -= vma->vm_pgoff;
2024
2025         /* Can we fit all of the mapping? */
2026         vm_len = vma->vm_end - vma->vm_start;
2027         if (vm_len >> PAGE_SHIFT > pages)
2028                 return -EINVAL;
2029
2030         /* Ok, let it rip */
2031         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2032 }
2033 EXPORT_SYMBOL(vm_iomap_memory);
2034
2035 static int apply_to_pte_range(struct pfn_range_apply *closure, pmd_t *pmd,
2036                               unsigned long addr, unsigned long end)
2037 {
2038         pte_t *pte;
2039         int err;
2040         pgtable_t token;
2041         spinlock_t *uninitialized_var(ptl);
2042
2043         pte = (closure->mm == &init_mm) ?
2044                 pte_alloc_kernel(pmd, addr) :
2045                 pte_alloc_map_lock(closure->mm, pmd, addr, &ptl);
2046         if (!pte)
2047                 return -ENOMEM;
2048
2049         BUG_ON(pmd_huge(*pmd));
2050
2051         arch_enter_lazy_mmu_mode();
2052
2053         token = pmd_pgtable(*pmd);
2054
2055         do {
2056                 err = closure->ptefn(pte++, token, addr, closure);
2057                 if (err)
2058                         break;
2059         } while (addr += PAGE_SIZE, addr != end);
2060
2061         arch_leave_lazy_mmu_mode();
2062
2063         if (closure->mm != &init_mm)
2064                 pte_unmap_unlock(pte-1, ptl);
2065         return err;
2066 }
2067
2068 static int apply_to_pmd_range(struct pfn_range_apply *closure, pud_t *pud,
2069                               unsigned long addr, unsigned long end)
2070 {
2071         pmd_t *pmd;
2072         unsigned long next;
2073         int err = 0;
2074
2075         BUG_ON(pud_huge(*pud));
2076
2077         pmd = pmd_alloc(closure->mm, pud, addr);
2078         if (!pmd)
2079                 return -ENOMEM;
2080
2081         do {
2082                 next = pmd_addr_end(addr, end);
2083                 if (!closure->alloc && pmd_none_or_clear_bad(pmd))
2084                         continue;
2085                 err = apply_to_pte_range(closure, pmd, addr, next);
2086                 if (err)
2087                         break;
2088         } while (pmd++, addr = next, addr != end);
2089         return err;
2090 }
2091
2092 static int apply_to_pud_range(struct pfn_range_apply *closure, p4d_t *p4d,
2093                               unsigned long addr, unsigned long end)
2094 {
2095         pud_t *pud;
2096         unsigned long next;
2097         int err = 0;
2098
2099         pud = pud_alloc(closure->mm, p4d, addr);
2100         if (!pud)
2101                 return -ENOMEM;
2102
2103         do {
2104                 next = pud_addr_end(addr, end);
2105                 if (!closure->alloc && pud_none_or_clear_bad(pud))
2106                         continue;
2107                 err = apply_to_pmd_range(closure, pud, addr, next);
2108                 if (err)
2109                         break;
2110         } while (pud++, addr = next, addr != end);
2111         return err;
2112 }
2113
2114 static int apply_to_p4d_range(struct pfn_range_apply *closure, pgd_t *pgd,
2115                               unsigned long addr, unsigned long end)
2116 {
2117         p4d_t *p4d;
2118         unsigned long next;
2119         int err = 0;
2120
2121         p4d = p4d_alloc(closure->mm, pgd, addr);
2122         if (!p4d)
2123                 return -ENOMEM;
2124
2125         do {
2126                 next = p4d_addr_end(addr, end);
2127                 if (!closure->alloc && p4d_none_or_clear_bad(p4d))
2128                         continue;
2129                 err = apply_to_pud_range(closure, p4d, addr, next);
2130                 if (err)
2131                         break;
2132         } while (p4d++, addr = next, addr != end);
2133         return err;
2134 }
2135
2136 /**
2137  * apply_to_pfn_range - Scan a region of virtual memory, calling a provided
2138  * function on each leaf page table entry
2139  * @closure: Details about how to scan and what function to apply
2140  * @addr: Start virtual address
2141  * @size: Size of the region
2142  *
2143  * If @closure->alloc is set to 1, the function will fill in the page table
2144  * as necessary. Otherwise it will skip non-present parts.
2145  * Note: The caller must ensure that the range does not contain huge pages.
2146  * The caller must also assure that the proper mmu_notifier functions are
2147  * called before and after the call to apply_to_pfn_range.
2148  *
2149  * WARNING: Do not use this function unless you know exactly what you are
2150  * doing. It is lacking support for huge pages and transparent huge pages.
2151  *
2152  * Return: Zero on success. If the provided function returns a non-zero status,
2153  * the page table walk will terminate and that status will be returned.
2154  * If @closure->alloc is set to 1, then this function may also return memory
2155  * allocation errors arising from allocating page table memory.
2156  */
2157 int apply_to_pfn_range(struct pfn_range_apply *closure,
2158                        unsigned long addr, unsigned long size)
2159 {
2160         pgd_t *pgd;
2161         unsigned long next;
2162         unsigned long end = addr + size;
2163         int err;
2164
2165         if (WARN_ON(addr >= end))
2166                 return -EINVAL;
2167
2168         pgd = pgd_offset(closure->mm, addr);
2169         do {
2170                 next = pgd_addr_end(addr, end);
2171                 if (!closure->alloc && pgd_none_or_clear_bad(pgd))
2172                         continue;
2173                 err = apply_to_p4d_range(closure, pgd, addr, next);
2174                 if (err)
2175                         break;
2176         } while (pgd++, addr = next, addr != end);
2177
2178         return err;
2179 }
2180
2181 /**
2182  * struct page_range_apply - Closure structure for apply_to_page_range()
2183  * @pter: The base closure structure we derive from
2184  * @fn: The leaf pte function to call
2185  * @data: The leaf pte function closure
2186  */
2187 struct page_range_apply {
2188         struct pfn_range_apply pter;
2189         pte_fn_t fn;
2190         void *data;
2191 };
2192
2193 /*
2194  * Callback wrapper to enable use of apply_to_pfn_range for
2195  * the apply_to_page_range interface
2196  */
2197 static int apply_to_page_range_wrapper(pte_t *pte, pgtable_t token,
2198                                        unsigned long addr,
2199                                        struct pfn_range_apply *pter)
2200 {
2201         struct page_range_apply *pra =
2202                 container_of(pter, typeof(*pra), pter);
2203
2204         return pra->fn(pte, token, addr, pra->data);
2205 }
2206
2207 /*
2208  * Scan a region of virtual memory, filling in page tables as necessary
2209  * and calling a provided function on each leaf page table.
2210  *
2211  * WARNING: Do not use this function unless you know exactly what you are
2212  * doing. It is lacking support for huge pages and transparent huge pages.
2213  */
2214 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2215                         unsigned long size, pte_fn_t fn, void *data)
2216 {
2217         struct page_range_apply pra = {
2218                 .pter = {.mm = mm,
2219                          .alloc = 1,
2220                          .ptefn = apply_to_page_range_wrapper },
2221                 .fn = fn,
2222                 .data = data
2223         };
2224
2225         return apply_to_pfn_range(&pra.pter, addr, size);
2226 }
2227 EXPORT_SYMBOL_GPL(apply_to_page_range);
2228
2229 /*
2230  * handle_pte_fault chooses page fault handler according to an entry which was
2231  * read non-atomically.  Before making any commitment, on those architectures
2232  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2233  * parts, do_swap_page must check under lock before unmapping the pte and
2234  * proceeding (but do_wp_page is only called after already making such a check;
2235  * and do_anonymous_page can safely check later on).
2236  */
2237 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2238                                 pte_t *page_table, pte_t orig_pte)
2239 {
2240         int same = 1;
2241 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2242         if (sizeof(pte_t) > sizeof(unsigned long)) {
2243                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2244                 spin_lock(ptl);
2245                 same = pte_same(*page_table, orig_pte);
2246                 spin_unlock(ptl);
2247         }
2248 #endif
2249         pte_unmap(page_table);
2250         return same;
2251 }
2252
2253 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2254 {
2255         debug_dma_assert_idle(src);
2256
2257         /*
2258          * If the source page was a PFN mapping, we don't have
2259          * a "struct page" for it. We do a best-effort copy by
2260          * just copying from the original user address. If that
2261          * fails, we just zero-fill it. Live with it.
2262          */
2263         if (unlikely(!src)) {
2264                 void *kaddr = kmap_atomic(dst);
2265                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2266
2267                 /*
2268                  * This really shouldn't fail, because the page is there
2269                  * in the page tables. But it might just be unreadable,
2270                  * in which case we just give up and fill the result with
2271                  * zeroes.
2272                  */
2273                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2274                         clear_page(kaddr);
2275                 kunmap_atomic(kaddr);
2276                 flush_dcache_page(dst);
2277         } else
2278                 copy_user_highpage(dst, src, va, vma);
2279 }
2280
2281 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2282 {
2283         struct file *vm_file = vma->vm_file;
2284
2285         if (vm_file)
2286                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2287
2288         /*
2289          * Special mappings (e.g. VDSO) do not have any file so fake
2290          * a default GFP_KERNEL for them.
2291          */
2292         return GFP_KERNEL;
2293 }
2294
2295 /*
2296  * Notify the address space that the page is about to become writable so that
2297  * it can prohibit this or wait for the page to get into an appropriate state.
2298  *
2299  * We do this without the lock held, so that it can sleep if it needs to.
2300  */
2301 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2302 {
2303         vm_fault_t ret;
2304         struct page *page = vmf->page;
2305         unsigned int old_flags = vmf->flags;
2306
2307         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2308
2309         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2310         /* Restore original flags so that caller is not surprised */
2311         vmf->flags = old_flags;
2312         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2313                 return ret;
2314         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2315                 lock_page(page);
2316                 if (!page->mapping) {
2317                         unlock_page(page);
2318                         return 0; /* retry */
2319                 }
2320                 ret |= VM_FAULT_LOCKED;
2321         } else
2322                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2323         return ret;
2324 }
2325
2326 /*
2327  * Handle dirtying of a page in shared file mapping on a write fault.
2328  *
2329  * The function expects the page to be locked and unlocks it.
2330  */
2331 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2332                                     struct page *page)
2333 {
2334         struct address_space *mapping;
2335         bool dirtied;
2336         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2337
2338         dirtied = set_page_dirty(page);
2339         VM_BUG_ON_PAGE(PageAnon(page), page);
2340         /*
2341          * Take a local copy of the address_space - page.mapping may be zeroed
2342          * by truncate after unlock_page().   The address_space itself remains
2343          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2344          * release semantics to prevent the compiler from undoing this copying.
2345          */
2346         mapping = page_rmapping(page);
2347         unlock_page(page);
2348
2349         if ((dirtied || page_mkwrite) && mapping) {
2350                 /*
2351                  * Some device drivers do not set page.mapping
2352                  * but still dirty their pages
2353                  */
2354                 balance_dirty_pages_ratelimited(mapping);
2355         }
2356
2357         if (!page_mkwrite)
2358                 file_update_time(vma->vm_file);
2359 }
2360
2361 /*
2362  * Handle write page faults for pages that can be reused in the current vma
2363  *
2364  * This can happen either due to the mapping being with the VM_SHARED flag,
2365  * or due to us being the last reference standing to the page. In either
2366  * case, all we need to do here is to mark the page as writable and update
2367  * any related book-keeping.
2368  */
2369 static inline void wp_page_reuse(struct vm_fault *vmf)
2370         __releases(vmf->ptl)
2371 {
2372         struct vm_area_struct *vma = vmf->vma;
2373         struct page *page = vmf->page;
2374         pte_t entry;
2375         /*
2376          * Clear the pages cpupid information as the existing
2377          * information potentially belongs to a now completely
2378          * unrelated process.
2379          */
2380         if (page)
2381                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2382
2383         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2384         entry = pte_mkyoung(vmf->orig_pte);
2385         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2386         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2387                 update_mmu_cache(vma, vmf->address, vmf->pte);
2388         pte_unmap_unlock(vmf->pte, vmf->ptl);
2389 }
2390
2391 /*
2392  * Handle the case of a page which we actually need to copy to a new page.
2393  *
2394  * Called with mmap_sem locked and the old page referenced, but
2395  * without the ptl held.
2396  *
2397  * High level logic flow:
2398  *
2399  * - Allocate a page, copy the content of the old page to the new one.
2400  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2401  * - Take the PTL. If the pte changed, bail out and release the allocated page
2402  * - If the pte is still the way we remember it, update the page table and all
2403  *   relevant references. This includes dropping the reference the page-table
2404  *   held to the old page, as well as updating the rmap.
2405  * - In any case, unlock the PTL and drop the reference we took to the old page.
2406  */
2407 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2408 {
2409         struct vm_area_struct *vma = vmf->vma;
2410         struct mm_struct *mm = vma->vm_mm;
2411         struct page *old_page = vmf->page;
2412         struct page *new_page = NULL;
2413         pte_t entry;
2414         int page_copied = 0;
2415         struct mem_cgroup *memcg;
2416         struct mmu_notifier_range range;
2417
2418         if (unlikely(anon_vma_prepare(vma)))
2419                 goto oom;
2420
2421         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2422                 new_page = alloc_zeroed_user_highpage_movable(vma,
2423                                                               vmf->address);
2424                 if (!new_page)
2425                         goto oom;
2426         } else {
2427                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2428                                 vmf->address);
2429                 if (!new_page)
2430                         goto oom;
2431                 cow_user_page(new_page, old_page, vmf->address, vma);
2432         }
2433
2434         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2435                 goto oom_free_new;
2436
2437         __SetPageUptodate(new_page);
2438
2439         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2440                                 vmf->address & PAGE_MASK,
2441                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2442         mmu_notifier_invalidate_range_start(&range);
2443
2444         /*
2445          * Re-check the pte - we dropped the lock
2446          */
2447         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2448         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2449                 if (old_page) {
2450                         if (!PageAnon(old_page)) {
2451                                 dec_mm_counter_fast(mm,
2452                                                 mm_counter_file(old_page));
2453                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2454                         }
2455                 } else {
2456                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2457                 }
2458                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2459                 entry = mk_pte(new_page, vma->vm_page_prot);
2460                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2461                 /*
2462                  * Clear the pte entry and flush it first, before updating the
2463                  * pte with the new entry. This will avoid a race condition
2464                  * seen in the presence of one thread doing SMC and another
2465                  * thread doing COW.
2466                  */
2467                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2468                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2469                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2470                 lru_cache_add_active_or_unevictable(new_page, vma);
2471                 /*
2472                  * We call the notify macro here because, when using secondary
2473                  * mmu page tables (such as kvm shadow page tables), we want the
2474                  * new page to be mapped directly into the secondary page table.
2475                  */
2476                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2477                 update_mmu_cache(vma, vmf->address, vmf->pte);
2478                 if (old_page) {
2479                         /*
2480                          * Only after switching the pte to the new page may
2481                          * we remove the mapcount here. Otherwise another
2482                          * process may come and find the rmap count decremented
2483                          * before the pte is switched to the new page, and
2484                          * "reuse" the old page writing into it while our pte
2485                          * here still points into it and can be read by other
2486                          * threads.
2487                          *
2488                          * The critical issue is to order this
2489                          * page_remove_rmap with the ptp_clear_flush above.
2490                          * Those stores are ordered by (if nothing else,)
2491                          * the barrier present in the atomic_add_negative
2492                          * in page_remove_rmap.
2493                          *
2494                          * Then the TLB flush in ptep_clear_flush ensures that
2495                          * no process can access the old page before the
2496                          * decremented mapcount is visible. And the old page
2497                          * cannot be reused until after the decremented
2498                          * mapcount is visible. So transitively, TLBs to
2499                          * old page will be flushed before it can be reused.
2500                          */
2501                         page_remove_rmap(old_page, false);
2502                 }
2503
2504                 /* Free the old page.. */
2505                 new_page = old_page;
2506                 page_copied = 1;
2507         } else {
2508                 mem_cgroup_cancel_charge(new_page, memcg, false);
2509         }
2510
2511         if (new_page)
2512                 put_page(new_page);
2513
2514         pte_unmap_unlock(vmf->pte, vmf->ptl);
2515         /*
2516          * No need to double call mmu_notifier->invalidate_range() callback as
2517          * the above ptep_clear_flush_notify() did already call it.
2518          */
2519         mmu_notifier_invalidate_range_only_end(&range);
2520         if (old_page) {
2521                 /*
2522                  * Don't let another task, with possibly unlocked vma,
2523                  * keep the mlocked page.
2524                  */
2525                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2526                         lock_page(old_page);    /* LRU manipulation */
2527                         if (PageMlocked(old_page))
2528                                 munlock_vma_page(old_page);
2529                         unlock_page(old_page);
2530                 }
2531                 put_page(old_page);
2532         }
2533         return page_copied ? VM_FAULT_WRITE : 0;
2534 oom_free_new:
2535         put_page(new_page);
2536 oom:
2537         if (old_page)
2538                 put_page(old_page);
2539         return VM_FAULT_OOM;
2540 }
2541
2542 /**
2543  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2544  *                        writeable once the page is prepared
2545  *
2546  * @vmf: structure describing the fault
2547  *
2548  * This function handles all that is needed to finish a write page fault in a
2549  * shared mapping due to PTE being read-only once the mapped page is prepared.
2550  * It handles locking of PTE and modifying it.
2551  *
2552  * The function expects the page to be locked or other protection against
2553  * concurrent faults / writeback (such as DAX radix tree locks).
2554  *
2555  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2556  * we acquired PTE lock.
2557  */
2558 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2559 {
2560         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2561         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2562                                        &vmf->ptl);
2563         /*
2564          * We might have raced with another page fault while we released the
2565          * pte_offset_map_lock.
2566          */
2567         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2568                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2569                 return VM_FAULT_NOPAGE;
2570         }
2571         wp_page_reuse(vmf);
2572         return 0;
2573 }
2574
2575 /*
2576  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2577  * mapping
2578  */
2579 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2580 {
2581         struct vm_area_struct *vma = vmf->vma;
2582
2583         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2584                 vm_fault_t ret;
2585
2586                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2587                 vmf->flags |= FAULT_FLAG_MKWRITE;
2588                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2589                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))
2590                         return ret;
2591                 return finish_mkwrite_fault(vmf);
2592         }
2593         wp_page_reuse(vmf);
2594         return VM_FAULT_WRITE;
2595 }
2596
2597 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2598         __releases(vmf->ptl)
2599 {
2600         struct vm_area_struct *vma = vmf->vma;
2601
2602         get_page(vmf->page);
2603
2604         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2605                 vm_fault_t tmp;
2606
2607                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2608                 tmp = do_page_mkwrite(vmf);
2609                 if (unlikely(!tmp || (tmp &
2610                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
2611                                        VM_FAULT_RETRY)))) {
2612                         put_page(vmf->page);
2613                         return tmp;
2614                 }
2615                 tmp = finish_mkwrite_fault(vmf);
2616                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2617                         unlock_page(vmf->page);
2618                         put_page(vmf->page);
2619                         return tmp;
2620                 }
2621         } else {
2622                 wp_page_reuse(vmf);
2623                 lock_page(vmf->page);
2624         }
2625         fault_dirty_shared_page(vma, vmf->page);
2626         put_page(vmf->page);
2627
2628         return VM_FAULT_WRITE;
2629 }
2630
2631 /*
2632  * This routine handles present pages, when users try to write
2633  * to a shared page. It is done by copying the page to a new address
2634  * and decrementing the shared-page counter for the old page.
2635  *
2636  * Note that this routine assumes that the protection checks have been
2637  * done by the caller (the low-level page fault routine in most cases).
2638  * Thus we can safely just mark it writable once we've done any necessary
2639  * COW.
2640  *
2641  * We also mark the page dirty at this point even though the page will
2642  * change only once the write actually happens. This avoids a few races,
2643  * and potentially makes it more efficient.
2644  *
2645  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2646  * but allow concurrent faults), with pte both mapped and locked.
2647  * We return with mmap_sem still held, but pte unmapped and unlocked.
2648  */
2649 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2650         __releases(vmf->ptl)
2651 {
2652         struct vm_area_struct *vma = vmf->vma;
2653
2654         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2655         if (!vmf->page) {
2656                 /*
2657                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2658                  * VM_PFNMAP VMA.
2659                  *
2660                  * We should not cow pages in a shared writeable mapping.
2661                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2662                  */
2663                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2664                                      (VM_WRITE|VM_SHARED))
2665                         return wp_pfn_shared(vmf);
2666
2667                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2668                 return wp_page_copy(vmf);
2669         }
2670
2671         /*
2672          * Take out anonymous pages first, anonymous shared vmas are
2673          * not dirty accountable.
2674          */
2675         if (PageAnon(vmf->page)) {
2676                 int total_map_swapcount;
2677                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2678                                            page_count(vmf->page) != 1))
2679                         goto copy;
2680                 if (!trylock_page(vmf->page)) {
2681                         get_page(vmf->page);
2682                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2683                         lock_page(vmf->page);
2684                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2685                                         vmf->address, &vmf->ptl);
2686                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2687                                 unlock_page(vmf->page);
2688                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2689                                 put_page(vmf->page);
2690                                 return 0;
2691                         }
2692                         put_page(vmf->page);
2693                 }
2694                 if (PageKsm(vmf->page)) {
2695                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2696                                                      vmf->address);
2697                         unlock_page(vmf->page);
2698                         if (!reused)
2699                                 goto copy;
2700                         wp_page_reuse(vmf);
2701                         return VM_FAULT_WRITE;
2702                 }
2703                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2704                         if (total_map_swapcount == 1) {
2705                                 /*
2706                                  * The page is all ours. Move it to
2707                                  * our anon_vma so the rmap code will
2708                                  * not search our parent or siblings.
2709                                  * Protected against the rmap code by
2710                                  * the page lock.
2711                                  */
2712                                 page_move_anon_rmap(vmf->page, vma);
2713                         }
2714                         unlock_page(vmf->page);
2715                         wp_page_reuse(vmf);
2716                         return VM_FAULT_WRITE;
2717                 }
2718                 unlock_page(vmf->page);
2719         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2720                                         (VM_WRITE|VM_SHARED))) {
2721                 return wp_page_shared(vmf);
2722         }
2723 copy:
2724         /*
2725          * Ok, we need to copy. Oh, well..
2726          */
2727         get_page(vmf->page);
2728
2729         pte_unmap_unlock(vmf->pte, vmf->ptl);
2730         return wp_page_copy(vmf);
2731 }
2732
2733 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2734                 unsigned long start_addr, unsigned long end_addr,
2735                 struct zap_details *details)
2736 {
2737         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2738 }
2739
2740 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2741                                             struct zap_details *details)
2742 {
2743         struct vm_area_struct *vma;
2744         pgoff_t vba, vea, zba, zea;
2745
2746         vma_interval_tree_foreach(vma, root,
2747                         details->first_index, details->last_index) {
2748
2749                 vba = vma->vm_pgoff;
2750                 vea = vba + vma_pages(vma) - 1;
2751                 zba = details->first_index;
2752                 if (zba < vba)
2753                         zba = vba;
2754                 zea = details->last_index;
2755                 if (zea > vea)
2756                         zea = vea;
2757
2758                 unmap_mapping_range_vma(vma,
2759                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2760                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2761                                 details);
2762         }
2763 }
2764
2765 /**
2766  * unmap_mapping_pages() - Unmap pages from processes.
2767  * @mapping: The address space containing pages to be unmapped.
2768  * @start: Index of first page to be unmapped.
2769  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2770  * @even_cows: Whether to unmap even private COWed pages.
2771  *
2772  * Unmap the pages in this address space from any userspace process which
2773  * has them mmaped.  Generally, you want to remove COWed pages as well when
2774  * a file is being truncated, but not when invalidating pages from the page
2775  * cache.
2776  */
2777 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2778                 pgoff_t nr, bool even_cows)
2779 {
2780         struct zap_details details = { };
2781
2782         details.check_mapping = even_cows ? NULL : mapping;
2783         details.first_index = start;
2784         details.last_index = start + nr - 1;
2785         if (details.last_index < details.first_index)
2786                 details.last_index = ULONG_MAX;
2787
2788         i_mmap_lock_write(mapping);
2789         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2790                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2791         i_mmap_unlock_write(mapping);
2792 }
2793
2794 /**
2795  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2796  * address_space corresponding to the specified byte range in the underlying
2797  * file.
2798  *
2799  * @mapping: the address space containing mmaps to be unmapped.
2800  * @holebegin: byte in first page to unmap, relative to the start of
2801  * the underlying file.  This will be rounded down to a PAGE_SIZE
2802  * boundary.  Note that this is different from truncate_pagecache(), which
2803  * must keep the partial page.  In contrast, we must get rid of
2804  * partial pages.
2805  * @holelen: size of prospective hole in bytes.  This will be rounded
2806  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2807  * end of the file.
2808  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2809  * but 0 when invalidating pagecache, don't throw away private data.
2810  */
2811 void unmap_mapping_range(struct address_space *mapping,
2812                 loff_t const holebegin, loff_t const holelen, int even_cows)
2813 {
2814         pgoff_t hba = holebegin >> PAGE_SHIFT;
2815         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2816
2817         /* Check for overflow. */
2818         if (sizeof(holelen) > sizeof(hlen)) {
2819                 long long holeend =
2820                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2821                 if (holeend & ~(long long)ULONG_MAX)
2822                         hlen = ULONG_MAX - hba + 1;
2823         }
2824
2825         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2826 }
2827 EXPORT_SYMBOL(unmap_mapping_range);
2828
2829 /*
2830  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2831  * but allow concurrent faults), and pte mapped but not yet locked.
2832  * We return with pte unmapped and unlocked.
2833  *
2834  * We return with the mmap_sem locked or unlocked in the same cases
2835  * as does filemap_fault().
2836  */
2837 vm_fault_t do_swap_page(struct vm_fault *vmf)
2838 {
2839         struct vm_area_struct *vma = vmf->vma;
2840         struct page *page = NULL, *swapcache;
2841         struct mem_cgroup *memcg;
2842         swp_entry_t entry;
2843         pte_t pte;
2844         int locked;
2845         int exclusive = 0;
2846         vm_fault_t ret = 0;
2847
2848         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2849                 goto out;
2850
2851         entry = pte_to_swp_entry(vmf->orig_pte);
2852         if (unlikely(non_swap_entry(entry))) {
2853                 if (is_migration_entry(entry)) {
2854                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2855                                              vmf->address);
2856                 } else if (is_device_private_entry(entry)) {
2857                         /*
2858                          * For un-addressable device memory we call the pgmap
2859                          * fault handler callback. The callback must migrate
2860                          * the page back to some CPU accessible page.
2861                          */
2862                         ret = device_private_entry_fault(vma, vmf->address, entry,
2863                                                  vmf->flags, vmf->pmd);
2864                 } else if (is_hwpoison_entry(entry)) {
2865                         ret = VM_FAULT_HWPOISON;
2866                 } else {
2867                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2868                         ret = VM_FAULT_SIGBUS;
2869                 }
2870                 goto out;
2871         }
2872
2873
2874         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2875         page = lookup_swap_cache(entry, vma, vmf->address);
2876         swapcache = page;
2877
2878         if (!page) {
2879                 struct swap_info_struct *si = swp_swap_info(entry);
2880
2881                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2882                                 __swap_count(si, entry) == 1) {
2883                         /* skip swapcache */
2884                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2885                                                         vmf->address);
2886                         if (page) {
2887                                 __SetPageLocked(page);
2888                                 __SetPageSwapBacked(page);
2889                                 set_page_private(page, entry.val);
2890                                 lru_cache_add_anon(page);
2891                                 swap_readpage(page, true);
2892                         }
2893                 } else {
2894                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2895                                                 vmf);
2896                         swapcache = page;
2897                 }
2898
2899                 if (!page) {
2900                         /*
2901                          * Back out if somebody else faulted in this pte
2902                          * while we released the pte lock.
2903                          */
2904                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2905                                         vmf->address, &vmf->ptl);
2906                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2907                                 ret = VM_FAULT_OOM;
2908                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2909                         goto unlock;
2910                 }
2911
2912                 /* Had to read the page from swap area: Major fault */
2913                 ret = VM_FAULT_MAJOR;
2914                 count_vm_event(PGMAJFAULT);
2915                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2916         } else if (PageHWPoison(page)) {
2917                 /*
2918                  * hwpoisoned dirty swapcache pages are kept for killing
2919                  * owner processes (which may be unknown at hwpoison time)
2920                  */
2921                 ret = VM_FAULT_HWPOISON;
2922                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2923                 goto out_release;
2924         }
2925
2926         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2927
2928         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2929         if (!locked) {
2930                 ret |= VM_FAULT_RETRY;
2931                 goto out_release;
2932         }
2933
2934         /*
2935          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2936          * release the swapcache from under us.  The page pin, and pte_same
2937          * test below, are not enough to exclude that.  Even if it is still
2938          * swapcache, we need to check that the page's swap has not changed.
2939          */
2940         if (unlikely((!PageSwapCache(page) ||
2941                         page_private(page) != entry.val)) && swapcache)
2942                 goto out_page;
2943
2944         page = ksm_might_need_to_copy(page, vma, vmf->address);
2945         if (unlikely(!page)) {
2946                 ret = VM_FAULT_OOM;
2947                 page = swapcache;
2948                 goto out_page;
2949         }
2950
2951         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2952                                         &memcg, false)) {
2953                 ret = VM_FAULT_OOM;
2954                 goto out_page;
2955         }
2956
2957         /*
2958          * Back out if somebody else already faulted in this pte.
2959          */
2960         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2961                         &vmf->ptl);
2962         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2963                 goto out_nomap;
2964
2965         if (unlikely(!PageUptodate(page))) {
2966                 ret = VM_FAULT_SIGBUS;
2967                 goto out_nomap;
2968         }
2969
2970         /*
2971          * The page isn't present yet, go ahead with the fault.
2972          *
2973          * Be careful about the sequence of operations here.
2974          * To get its accounting right, reuse_swap_page() must be called
2975          * while the page is counted on swap but not yet in mapcount i.e.
2976          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2977          * must be called after the swap_free(), or it will never succeed.
2978          */
2979
2980         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2981         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2982         pte = mk_pte(page, vma->vm_page_prot);
2983         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2984                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2985                 vmf->flags &= ~FAULT_FLAG_WRITE;
2986                 ret |= VM_FAULT_WRITE;
2987                 exclusive = RMAP_EXCLUSIVE;
2988         }
2989         flush_icache_page(vma, page);
2990         if (pte_swp_soft_dirty(vmf->orig_pte))
2991                 pte = pte_mksoft_dirty(pte);
2992         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2993         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994         vmf->orig_pte = pte;
2995
2996         /* ksm created a completely new copy */
2997         if (unlikely(page != swapcache && swapcache)) {
2998                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2999                 mem_cgroup_commit_charge(page, memcg, false, false);
3000                 lru_cache_add_active_or_unevictable(page, vma);
3001         } else {
3002                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3003                 mem_cgroup_commit_charge(page, memcg, true, false);
3004                 activate_page(page);
3005         }
3006
3007         swap_free(entry);
3008         if (mem_cgroup_swap_full(page) ||
3009             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3010                 try_to_free_swap(page);
3011         unlock_page(page);
3012         if (page != swapcache && swapcache) {
3013                 /*
3014                  * Hold the lock to avoid the swap entry to be reused
3015                  * until we take the PT lock for the pte_same() check
3016                  * (to avoid false positives from pte_same). For
3017                  * further safety release the lock after the swap_free
3018                  * so that the swap count won't change under a
3019                  * parallel locked swapcache.
3020                  */
3021                 unlock_page(swapcache);
3022                 put_page(swapcache);
3023         }
3024
3025         if (vmf->flags & FAULT_FLAG_WRITE) {
3026                 ret |= do_wp_page(vmf);
3027                 if (ret & VM_FAULT_ERROR)
3028                         ret &= VM_FAULT_ERROR;
3029                 goto out;
3030         }
3031
3032         /* No need to invalidate - it was non-present before */
3033         update_mmu_cache(vma, vmf->address, vmf->pte);
3034 unlock:
3035         pte_unmap_unlock(vmf->pte, vmf->ptl);
3036 out:
3037         return ret;
3038 out_nomap:
3039         mem_cgroup_cancel_charge(page, memcg, false);
3040         pte_unmap_unlock(vmf->pte, vmf->ptl);
3041 out_page:
3042         unlock_page(page);
3043 out_release:
3044         put_page(page);
3045         if (page != swapcache && swapcache) {
3046                 unlock_page(swapcache);
3047                 put_page(swapcache);
3048         }
3049         return ret;
3050 }
3051
3052 /*
3053  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3054  * but allow concurrent faults), and pte mapped but not yet locked.
3055  * We return with mmap_sem still held, but pte unmapped and unlocked.
3056  */
3057 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3058 {
3059         struct vm_area_struct *vma = vmf->vma;
3060         struct mem_cgroup *memcg;
3061         struct page *page;
3062         vm_fault_t ret = 0;
3063         pte_t entry;
3064
3065         /* File mapping without ->vm_ops ? */
3066         if (vma->vm_flags & VM_SHARED)
3067                 return VM_FAULT_SIGBUS;
3068
3069         /*
3070          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3071          * pte_offset_map() on pmds where a huge pmd might be created
3072          * from a different thread.
3073          *
3074          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3075          * parallel threads are excluded by other means.
3076          *
3077          * Here we only have down_read(mmap_sem).
3078          */
3079         if (pte_alloc(vma->vm_mm, vmf->pmd))
3080                 return VM_FAULT_OOM;
3081
3082         /* See the comment in pte_alloc_one_map() */
3083         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3084                 return 0;
3085
3086         /* Use the zero-page for reads */
3087         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3088                         !mm_forbids_zeropage(vma->vm_mm)) {
3089                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3090                                                 vma->vm_page_prot));
3091                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3092                                 vmf->address, &vmf->ptl);
3093                 if (!pte_none(*vmf->pte))
3094                         goto unlock;
3095                 ret = check_stable_address_space(vma->vm_mm);
3096                 if (ret)
3097                         goto unlock;
3098                 /* Deliver the page fault to userland, check inside PT lock */
3099                 if (userfaultfd_missing(vma)) {
3100                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3101                         return handle_userfault(vmf, VM_UFFD_MISSING);
3102                 }
3103                 goto setpte;
3104         }
3105
3106         /* Allocate our own private page. */
3107         if (unlikely(anon_vma_prepare(vma)))
3108                 goto oom;
3109         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3110         if (!page)
3111                 goto oom;
3112
3113         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3114                                         false))
3115                 goto oom_free_page;
3116
3117         /*
3118          * The memory barrier inside __SetPageUptodate makes sure that
3119          * preceeding stores to the page contents become visible before
3120          * the set_pte_at() write.
3121          */
3122         __SetPageUptodate(page);
3123
3124         entry = mk_pte(page, vma->vm_page_prot);
3125         if (vma->vm_flags & VM_WRITE)
3126                 entry = pte_mkwrite(pte_mkdirty(entry));
3127
3128         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3129                         &vmf->ptl);
3130         if (!pte_none(*vmf->pte))
3131                 goto release;
3132
3133         ret = check_stable_address_space(vma->vm_mm);
3134         if (ret)
3135                 goto release;
3136
3137         /* Deliver the page fault to userland, check inside PT lock */
3138         if (userfaultfd_missing(vma)) {
3139                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3140                 mem_cgroup_cancel_charge(page, memcg, false);
3141                 put_page(page);
3142                 return handle_userfault(vmf, VM_UFFD_MISSING);
3143         }
3144
3145         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3146         page_add_new_anon_rmap(page, vma, vmf->address, false);
3147         mem_cgroup_commit_charge(page, memcg, false, false);
3148         lru_cache_add_active_or_unevictable(page, vma);
3149 setpte:
3150         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3151
3152         /* No need to invalidate - it was non-present before */
3153         update_mmu_cache(vma, vmf->address, vmf->pte);
3154 unlock:
3155         pte_unmap_unlock(vmf->pte, vmf->ptl);
3156         return ret;
3157 release:
3158         mem_cgroup_cancel_charge(page, memcg, false);
3159         put_page(page);
3160         goto unlock;
3161 oom_free_page:
3162         put_page(page);
3163 oom:
3164         return VM_FAULT_OOM;
3165 }
3166
3167 /*
3168  * The mmap_sem must have been held on entry, and may have been
3169  * released depending on flags and vma->vm_ops->fault() return value.
3170  * See filemap_fault() and __lock_page_retry().
3171  */
3172 static vm_fault_t __do_fault(struct vm_fault *vmf)
3173 {
3174         struct vm_area_struct *vma = vmf->vma;
3175         vm_fault_t ret;
3176
3177         /*
3178          * Preallocate pte before we take page_lock because this might lead to
3179          * deadlocks for memcg reclaim which waits for pages under writeback:
3180          *                              lock_page(A)
3181          *                              SetPageWriteback(A)
3182          *                              unlock_page(A)
3183          * lock_page(B)
3184          *                              lock_page(B)
3185          * pte_alloc_pne
3186          *   shrink_page_list
3187          *     wait_on_page_writeback(A)
3188          *                              SetPageWriteback(B)
3189          *                              unlock_page(B)
3190          *                              # flush A, B to clear the writeback
3191          */
3192         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3193                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3194                 if (!vmf->prealloc_pte)
3195                         return VM_FAULT_OOM;
3196                 smp_wmb(); /* See comment in __pte_alloc() */
3197         }
3198
3199         ret = vma->vm_ops->fault(vmf);
3200         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3201                             VM_FAULT_DONE_COW)))
3202                 return ret;
3203
3204         if (unlikely(PageHWPoison(vmf->page))) {
3205                 if (ret & VM_FAULT_LOCKED)
3206                         unlock_page(vmf->page);
3207                 put_page(vmf->page);
3208                 vmf->page = NULL;
3209                 return VM_FAULT_HWPOISON;
3210         }
3211
3212         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3213                 lock_page(vmf->page);
3214         else
3215                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3216
3217         return ret;
3218 }
3219
3220 /*
3221  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3222  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3223  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3224  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3225  */
3226 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3227 {
3228         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3229 }
3230
3231 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3232 {
3233         struct vm_area_struct *vma = vmf->vma;
3234
3235         if (!pmd_none(*vmf->pmd))
3236                 goto map_pte;
3237         if (vmf->prealloc_pte) {
3238                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3239                 if (unlikely(!pmd_none(*vmf->pmd))) {
3240                         spin_unlock(vmf->ptl);
3241                         goto map_pte;
3242                 }
3243
3244                 mm_inc_nr_ptes(vma->vm_mm);
3245                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3246                 spin_unlock(vmf->ptl);
3247                 vmf->prealloc_pte = NULL;
3248         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3249                 return VM_FAULT_OOM;
3250         }
3251 map_pte:
3252         /*
3253          * If a huge pmd materialized under us just retry later.  Use
3254          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3255          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3256          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3257          * running immediately after a huge pmd fault in a different thread of
3258          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3259          * All we have to ensure is that it is a regular pmd that we can walk
3260          * with pte_offset_map() and we can do that through an atomic read in
3261          * C, which is what pmd_trans_unstable() provides.
3262          */
3263         if (pmd_devmap_trans_unstable(vmf->pmd))
3264                 return VM_FAULT_NOPAGE;
3265
3266         /*
3267          * At this point we know that our vmf->pmd points to a page of ptes
3268          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3269          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3270          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3271          * be valid and we will re-check to make sure the vmf->pte isn't
3272          * pte_none() under vmf->ptl protection when we return to
3273          * alloc_set_pte().
3274          */
3275         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3276                         &vmf->ptl);
3277         return 0;
3278 }
3279
3280 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3281
3282 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3283 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3284                 unsigned long haddr)
3285 {
3286         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3287                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3288                 return false;
3289         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3290                 return false;
3291         return true;
3292 }
3293
3294 static void deposit_prealloc_pte(struct vm_fault *vmf)
3295 {
3296         struct vm_area_struct *vma = vmf->vma;
3297
3298         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3299         /*
3300          * We are going to consume the prealloc table,
3301          * count that as nr_ptes.
3302          */
3303         mm_inc_nr_ptes(vma->vm_mm);
3304         vmf->prealloc_pte = NULL;
3305 }
3306
3307 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3308 {
3309         struct vm_area_struct *vma = vmf->vma;
3310         bool write = vmf->flags & FAULT_FLAG_WRITE;
3311         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3312         pmd_t entry;
3313         int i;
3314         vm_fault_t ret;
3315
3316         if (!transhuge_vma_suitable(vma, haddr))
3317                 return VM_FAULT_FALLBACK;
3318
3319         ret = VM_FAULT_FALLBACK;
3320         page = compound_head(page);
3321
3322         /*
3323          * Archs like ppc64 need additonal space to store information
3324          * related to pte entry. Use the preallocated table for that.
3325          */
3326         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3327                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3328                 if (!vmf->prealloc_pte)
3329                         return VM_FAULT_OOM;
3330                 smp_wmb(); /* See comment in __pte_alloc() */
3331         }
3332
3333         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3334         if (unlikely(!pmd_none(*vmf->pmd)))
3335                 goto out;
3336
3337         for (i = 0; i < HPAGE_PMD_NR; i++)
3338                 flush_icache_page(vma, page + i);
3339
3340         entry = mk_huge_pmd(page, vma->vm_page_prot);
3341         if (write)
3342                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3343
3344         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3345         page_add_file_rmap(page, true);
3346         /*
3347          * deposit and withdraw with pmd lock held
3348          */
3349         if (arch_needs_pgtable_deposit())
3350                 deposit_prealloc_pte(vmf);
3351
3352         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3353
3354         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3355
3356         /* fault is handled */
3357         ret = 0;
3358         count_vm_event(THP_FILE_MAPPED);
3359 out:
3360         spin_unlock(vmf->ptl);
3361         return ret;
3362 }
3363 #else
3364 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3365 {
3366         BUILD_BUG();
3367         return 0;
3368 }
3369 #endif
3370
3371 /**
3372  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3373  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3374  *
3375  * @vmf: fault environment
3376  * @memcg: memcg to charge page (only for private mappings)
3377  * @page: page to map
3378  *
3379  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3380  * return.
3381  *
3382  * Target users are page handler itself and implementations of
3383  * vm_ops->map_pages.
3384  *
3385  * Return: %0 on success, %VM_FAULT_ code in case of error.
3386  */
3387 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3388                 struct page *page)
3389 {
3390         struct vm_area_struct *vma = vmf->vma;
3391         bool write = vmf->flags & FAULT_FLAG_WRITE;
3392         pte_t entry;
3393         vm_fault_t ret;
3394
3395         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3396                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3397                 /* THP on COW? */
3398                 VM_BUG_ON_PAGE(memcg, page);
3399
3400                 ret = do_set_pmd(vmf, page);
3401                 if (ret != VM_FAULT_FALLBACK)
3402                         return ret;
3403         }
3404
3405         if (!vmf->pte) {
3406                 ret = pte_alloc_one_map(vmf);
3407                 if (ret)
3408                         return ret;
3409         }
3410
3411         /* Re-check under ptl */
3412         if (unlikely(!pte_none(*vmf->pte)))
3413                 return VM_FAULT_NOPAGE;
3414
3415         flush_icache_page(vma, page);
3416         entry = mk_pte(page, vma->vm_page_prot);
3417         if (write)
3418                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3419         /* copy-on-write page */
3420         if (write && !(vma->vm_flags & VM_SHARED)) {
3421                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3422                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3423                 mem_cgroup_commit_charge(page, memcg, false, false);
3424                 lru_cache_add_active_or_unevictable(page, vma);
3425         } else {
3426                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3427                 page_add_file_rmap(page, false);
3428         }
3429         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3430
3431         /* no need to invalidate: a not-present page won't be cached */
3432         update_mmu_cache(vma, vmf->address, vmf->pte);
3433
3434         return 0;
3435 }
3436
3437
3438 /**
3439  * finish_fault - finish page fault once we have prepared the page to fault
3440  *
3441  * @vmf: structure describing the fault
3442  *
3443  * This function handles all that is needed to finish a page fault once the
3444  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3445  * given page, adds reverse page mapping, handles memcg charges and LRU
3446  * addition.
3447  *
3448  * The function expects the page to be locked and on success it consumes a
3449  * reference of a page being mapped (for the PTE which maps it).
3450  *
3451  * Return: %0 on success, %VM_FAULT_ code in case of error.
3452  */
3453 vm_fault_t finish_fault(struct vm_fault *vmf)
3454 {
3455         struct page *page;
3456         vm_fault_t ret = 0;
3457
3458         /* Did we COW the page? */
3459         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3460             !(vmf->vma->vm_flags & VM_SHARED))
3461                 page = vmf->cow_page;
3462         else
3463                 page = vmf->page;
3464
3465         /*
3466          * check even for read faults because we might have lost our CoWed
3467          * page
3468          */
3469         if (!(vmf->vma->vm_flags & VM_SHARED))
3470                 ret = check_stable_address_space(vmf->vma->vm_mm);
3471         if (!ret)
3472                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3473         if (vmf->pte)
3474                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3475         return ret;
3476 }
3477
3478 static unsigned long fault_around_bytes __read_mostly =
3479         rounddown_pow_of_two(65536);
3480
3481 #ifdef CONFIG_DEBUG_FS
3482 static int fault_around_bytes_get(void *data, u64 *val)
3483 {
3484         *val = fault_around_bytes;
3485         return 0;
3486 }
3487
3488 /*
3489  * fault_around_bytes must be rounded down to the nearest page order as it's
3490  * what do_fault_around() expects to see.
3491  */
3492 static int fault_around_bytes_set(void *data, u64 val)
3493 {
3494         if (val / PAGE_SIZE > PTRS_PER_PTE)
3495                 return -EINVAL;
3496         if (val > PAGE_SIZE)
3497                 fault_around_bytes = rounddown_pow_of_two(val);
3498         else
3499                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3500         return 0;
3501 }
3502 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3503                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3504
3505 static int __init fault_around_debugfs(void)
3506 {
3507         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3508                                    &fault_around_bytes_fops);
3509         return 0;
3510 }
3511 late_initcall(fault_around_debugfs);
3512 #endif
3513
3514 /*
3515  * do_fault_around() tries to map few pages around the fault address. The hope
3516  * is that the pages will be needed soon and this will lower the number of
3517  * faults to handle.
3518  *
3519  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3520  * not ready to be mapped: not up-to-date, locked, etc.
3521  *
3522  * This function is called with the page table lock taken. In the split ptlock
3523  * case the page table lock only protects only those entries which belong to
3524  * the page table corresponding to the fault address.
3525  *
3526  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3527  * only once.
3528  *
3529  * fault_around_bytes defines how many bytes we'll try to map.
3530  * do_fault_around() expects it to be set to a power of two less than or equal
3531  * to PTRS_PER_PTE.
3532  *
3533  * The virtual address of the area that we map is naturally aligned to
3534  * fault_around_bytes rounded down to the machine page size
3535  * (and therefore to page order).  This way it's easier to guarantee
3536  * that we don't cross page table boundaries.
3537  */
3538 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3539 {
3540         unsigned long address = vmf->address, nr_pages, mask;
3541         pgoff_t start_pgoff = vmf->pgoff;
3542         pgoff_t end_pgoff;
3543         int off;
3544         vm_fault_t ret = 0;
3545
3546         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3547         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3548
3549         vmf->address = max(address & mask, vmf->vma->vm_start);
3550         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3551         start_pgoff -= off;
3552
3553         /*
3554          *  end_pgoff is either the end of the page table, the end of
3555          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3556          */
3557         end_pgoff = start_pgoff -
3558                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3559                 PTRS_PER_PTE - 1;
3560         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3561                         start_pgoff + nr_pages - 1);
3562
3563         if (pmd_none(*vmf->pmd)) {
3564                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3565                 if (!vmf->prealloc_pte)
3566                         goto out;
3567                 smp_wmb(); /* See comment in __pte_alloc() */
3568         }
3569
3570         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3571
3572         /* Huge page is mapped? Page fault is solved */
3573         if (pmd_trans_huge(*vmf->pmd)) {
3574                 ret = VM_FAULT_NOPAGE;
3575                 goto out;
3576         }
3577
3578         /* ->map_pages() haven't done anything useful. Cold page cache? */
3579         if (!vmf->pte)
3580                 goto out;
3581
3582         /* check if the page fault is solved */
3583         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3584         if (!pte_none(*vmf->pte))
3585                 ret = VM_FAULT_NOPAGE;
3586         pte_unmap_unlock(vmf->pte, vmf->ptl);
3587 out:
3588         vmf->address = address;
3589         vmf->pte = NULL;
3590         return ret;
3591 }
3592
3593 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3594 {
3595         struct vm_area_struct *vma = vmf->vma;
3596         vm_fault_t ret = 0;
3597
3598         /*
3599          * Let's call ->map_pages() first and use ->fault() as fallback
3600          * if page by the offset is not ready to be mapped (cold cache or
3601          * something).
3602          */
3603         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3604                 ret = do_fault_around(vmf);
3605                 if (ret)
3606                         return ret;
3607         }
3608
3609         ret = __do_fault(vmf);
3610         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3611                 return ret;
3612
3613         ret |= finish_fault(vmf);
3614         unlock_page(vmf->page);
3615         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3616                 put_page(vmf->page);
3617         return ret;
3618 }
3619
3620 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3621 {
3622         struct vm_area_struct *vma = vmf->vma;
3623         vm_fault_t ret;
3624
3625         if (unlikely(anon_vma_prepare(vma)))
3626                 return VM_FAULT_OOM;
3627
3628         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3629         if (!vmf->cow_page)
3630                 return VM_FAULT_OOM;
3631
3632         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3633                                 &vmf->memcg, false)) {
3634                 put_page(vmf->cow_page);
3635                 return VM_FAULT_OOM;
3636         }
3637
3638         ret = __do_fault(vmf);
3639         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3640                 goto uncharge_out;
3641         if (ret & VM_FAULT_DONE_COW)
3642                 return ret;
3643
3644         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3645         __SetPageUptodate(vmf->cow_page);
3646
3647         ret |= finish_fault(vmf);
3648         unlock_page(vmf->page);
3649         put_page(vmf->page);
3650         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3651                 goto uncharge_out;
3652         return ret;
3653 uncharge_out:
3654         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3655         put_page(vmf->cow_page);
3656         return ret;
3657 }
3658
3659 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3660 {
3661         struct vm_area_struct *vma = vmf->vma;
3662         vm_fault_t ret, tmp;
3663
3664         ret = __do_fault(vmf);
3665         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3666                 return ret;
3667
3668         /*
3669          * Check if the backing address space wants to know that the page is
3670          * about to become writable
3671          */
3672         if (vma->vm_ops->page_mkwrite) {
3673                 unlock_page(vmf->page);
3674                 tmp = do_page_mkwrite(vmf);
3675                 if (unlikely(!tmp ||
3676                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3677                                         VM_FAULT_RETRY)))) {
3678                         put_page(vmf->page);
3679                         return tmp;
3680                 }
3681         }
3682
3683         ret |= finish_fault(vmf);
3684         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3685                                         VM_FAULT_RETRY))) {
3686                 unlock_page(vmf->page);
3687                 put_page(vmf->page);
3688                 return ret;
3689         }
3690
3691         fault_dirty_shared_page(vma, vmf->page);
3692         return ret;
3693 }
3694
3695 /*
3696  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3697  * but allow concurrent faults).
3698  * The mmap_sem may have been released depending on flags and our
3699  * return value.  See filemap_fault() and __lock_page_or_retry().
3700  * If mmap_sem is released, vma may become invalid (for example
3701  * by other thread calling munmap()).
3702  */
3703 static vm_fault_t do_fault(struct vm_fault *vmf)
3704 {
3705         struct vm_area_struct *vma = vmf->vma;
3706         struct mm_struct *vm_mm = vma->vm_mm;
3707         vm_fault_t ret;
3708
3709         /*
3710          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3711          */
3712         if (!vma->vm_ops->fault) {
3713                 /*
3714                  * If we find a migration pmd entry or a none pmd entry, which
3715                  * should never happen, return SIGBUS
3716                  */
3717                 if (unlikely(!pmd_present(*vmf->pmd)))
3718                         ret = VM_FAULT_SIGBUS;
3719                 else {
3720                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3721                                                        vmf->pmd,
3722                                                        vmf->address,
3723                                                        &vmf->ptl);
3724                         /*
3725                          * Make sure this is not a temporary clearing of pte
3726                          * by holding ptl and checking again. A R/M/W update
3727                          * of pte involves: take ptl, clearing the pte so that
3728                          * we don't have concurrent modification by hardware
3729                          * followed by an update.
3730                          */
3731                         if (unlikely(pte_none(*vmf->pte)))
3732                                 ret = VM_FAULT_SIGBUS;
3733                         else
3734                                 ret = VM_FAULT_NOPAGE;
3735
3736                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3737                 }
3738         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3739                 ret = do_read_fault(vmf);
3740         else if (!(vma->vm_flags & VM_SHARED))
3741                 ret = do_cow_fault(vmf);
3742         else
3743                 ret = do_shared_fault(vmf);
3744
3745         /* preallocated pagetable is unused: free it */
3746         if (vmf->prealloc_pte) {
3747                 pte_free(vm_mm, vmf->prealloc_pte);
3748                 vmf->prealloc_pte = NULL;
3749         }
3750         return ret;
3751 }
3752
3753 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3754                                 unsigned long addr, int page_nid,
3755                                 int *flags)
3756 {
3757         get_page(page);
3758
3759         count_vm_numa_event(NUMA_HINT_FAULTS);
3760         if (page_nid == numa_node_id()) {
3761                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3762                 *flags |= TNF_FAULT_LOCAL;
3763         }
3764
3765         return mpol_misplaced(page, vma, addr);
3766 }
3767
3768 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3769 {
3770         struct vm_area_struct *vma = vmf->vma;
3771         struct page *page = NULL;
3772         int page_nid = NUMA_NO_NODE;
3773         int last_cpupid;
3774         int target_nid;
3775         bool migrated = false;
3776         pte_t pte, old_pte;
3777         bool was_writable = pte_savedwrite(vmf->orig_pte);
3778         int flags = 0;
3779
3780         /*
3781          * The "pte" at this point cannot be used safely without
3782          * validation through pte_unmap_same(). It's of NUMA type but
3783          * the pfn may be screwed if the read is non atomic.
3784          */
3785         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3786         spin_lock(vmf->ptl);
3787         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3788                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3789                 goto out;
3790         }
3791
3792         /*
3793          * Make it present again, Depending on how arch implementes non
3794          * accessible ptes, some can allow access by kernel mode.
3795          */
3796         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3797         pte = pte_modify(old_pte, vma->vm_page_prot);
3798         pte = pte_mkyoung(pte);
3799         if (was_writable)
3800                 pte = pte_mkwrite(pte);
3801         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3802         update_mmu_cache(vma, vmf->address, vmf->pte);
3803
3804         page = vm_normal_page(vma, vmf->address, pte);
3805         if (!page) {
3806                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3807                 return 0;
3808         }
3809
3810         /* TODO: handle PTE-mapped THP */
3811         if (PageCompound(page)) {
3812                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3813                 return 0;
3814         }
3815
3816         /*
3817          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3818          * much anyway since they can be in shared cache state. This misses
3819          * the case where a mapping is writable but the process never writes
3820          * to it but pte_write gets cleared during protection updates and
3821          * pte_dirty has unpredictable behaviour between PTE scan updates,
3822          * background writeback, dirty balancing and application behaviour.
3823          */
3824         if (!pte_write(pte))
3825                 flags |= TNF_NO_GROUP;
3826
3827         /*
3828          * Flag if the page is shared between multiple address spaces. This
3829          * is later used when determining whether to group tasks together
3830          */
3831         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3832                 flags |= TNF_SHARED;
3833
3834         last_cpupid = page_cpupid_last(page);
3835         page_nid = page_to_nid(page);
3836         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3837                         &flags);
3838         pte_unmap_unlock(vmf->pte, vmf->ptl);
3839         if (target_nid == NUMA_NO_NODE) {
3840                 put_page(page);
3841                 goto out;
3842         }
3843
3844         /* Migrate to the requested node */
3845         migrated = migrate_misplaced_page(page, vma, target_nid);
3846         if (migrated) {
3847                 page_nid = target_nid;
3848                 flags |= TNF_MIGRATED;
3849         } else
3850                 flags |= TNF_MIGRATE_FAIL;
3851
3852 out:
3853         if (page_nid != NUMA_NO_NODE)
3854                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3855         return 0;
3856 }
3857
3858 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3859 {
3860         if (vma_is_anonymous(vmf->vma))
3861                 return do_huge_pmd_anonymous_page(vmf);
3862         if (vmf->vma->vm_ops->huge_fault)
3863                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3864         return VM_FAULT_FALLBACK;
3865 }
3866
3867 /* `inline' is required to avoid gcc 4.1.2 build error */
3868 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3869 {
3870         if (vma_is_anonymous(vmf->vma))
3871                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3872         if (vmf->vma->vm_ops->huge_fault)
3873                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3874
3875         /* COW handled on pte level: split pmd */
3876         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3877         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3878
3879         return VM_FAULT_FALLBACK;
3880 }
3881
3882 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3883 {
3884         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3885 }
3886
3887 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3888 {
3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3890         /* No support for anonymous transparent PUD pages yet */
3891         if (vma_is_anonymous(vmf->vma))
3892                 return VM_FAULT_FALLBACK;
3893         if (vmf->vma->vm_ops->huge_fault)
3894                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3895 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3896         return VM_FAULT_FALLBACK;
3897 }
3898
3899 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3900 {
3901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3902         /* No support for anonymous transparent PUD pages yet */
3903         if (vma_is_anonymous(vmf->vma))
3904                 return VM_FAULT_FALLBACK;
3905         if (vmf->vma->vm_ops->huge_fault)
3906                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3908         return VM_FAULT_FALLBACK;
3909 }
3910
3911 /*
3912  * These routines also need to handle stuff like marking pages dirty
3913  * and/or accessed for architectures that don't do it in hardware (most
3914  * RISC architectures).  The early dirtying is also good on the i386.
3915  *
3916  * There is also a hook called "update_mmu_cache()" that architectures
3917  * with external mmu caches can use to update those (ie the Sparc or
3918  * PowerPC hashed page tables that act as extended TLBs).
3919  *
3920  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3921  * concurrent faults).
3922  *
3923  * The mmap_sem may have been released depending on flags and our return value.
3924  * See filemap_fault() and __lock_page_or_retry().
3925  */
3926 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3927 {
3928         pte_t entry;
3929
3930         if (unlikely(pmd_none(*vmf->pmd))) {
3931                 /*
3932                  * Leave __pte_alloc() until later: because vm_ops->fault may
3933                  * want to allocate huge page, and if we expose page table
3934                  * for an instant, it will be difficult to retract from
3935                  * concurrent faults and from rmap lookups.
3936                  */
3937                 vmf->pte = NULL;
3938         } else {
3939                 /* See comment in pte_alloc_one_map() */
3940                 if (pmd_devmap_trans_unstable(vmf->pmd))
3941                         return 0;
3942                 /*
3943                  * A regular pmd is established and it can't morph into a huge
3944                  * pmd from under us anymore at this point because we hold the
3945                  * mmap_sem read mode and khugepaged takes it in write mode.
3946                  * So now it's safe to run pte_offset_map().
3947                  */
3948                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3949                 vmf->orig_pte = *vmf->pte;
3950
3951                 /*
3952                  * some architectures can have larger ptes than wordsize,
3953                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3954                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3955                  * accesses.  The code below just needs a consistent view
3956                  * for the ifs and we later double check anyway with the
3957                  * ptl lock held. So here a barrier will do.
3958                  */
3959                 barrier();
3960                 if (pte_none(vmf->orig_pte)) {
3961                         pte_unmap(vmf->pte);
3962                         vmf->pte = NULL;
3963                 }
3964         }
3965
3966         if (!vmf->pte) {
3967                 if (vma_is_anonymous(vmf->vma))
3968                         return do_anonymous_page(vmf);
3969                 else
3970                         return do_fault(vmf);
3971         }
3972
3973         if (!pte_present(vmf->orig_pte))
3974                 return do_swap_page(vmf);
3975
3976         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3977                 return do_numa_page(vmf);
3978
3979         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3980         spin_lock(vmf->ptl);
3981         entry = vmf->orig_pte;
3982         if (unlikely(!pte_same(*vmf->pte, entry)))
3983                 goto unlock;
3984         if (vmf->flags & FAULT_FLAG_WRITE) {
3985                 if (!pte_write(entry))
3986                         return do_wp_page(vmf);
3987                 entry = pte_mkdirty(entry);
3988         }
3989         entry = pte_mkyoung(entry);
3990         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3991                                 vmf->flags & FAULT_FLAG_WRITE)) {
3992                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3993         } else {
3994                 /*
3995                  * This is needed only for protection faults but the arch code
3996                  * is not yet telling us if this is a protection fault or not.
3997                  * This still avoids useless tlb flushes for .text page faults
3998                  * with threads.
3999                  */
4000                 if (vmf->flags & FAULT_FLAG_WRITE)
4001                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4002         }
4003 unlock:
4004         pte_unmap_unlock(vmf->pte, vmf->ptl);
4005         return 0;
4006 }
4007
4008 /*
4009  * By the time we get here, we already hold the mm semaphore
4010  *
4011  * The mmap_sem may have been released depending on flags and our
4012  * return value.  See filemap_fault() and __lock_page_or_retry().
4013  */
4014 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4015                 unsigned long address, unsigned int flags)
4016 {
4017         struct vm_fault vmf = {
4018                 .vma = vma,
4019                 .address = address & PAGE_MASK,
4020                 .flags = flags,
4021                 .pgoff = linear_page_index(vma, address),
4022                 .gfp_mask = __get_fault_gfp_mask(vma),
4023         };
4024         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4025         struct mm_struct *mm = vma->vm_mm;
4026         pgd_t *pgd;
4027         p4d_t *p4d;
4028         vm_fault_t ret;
4029
4030         pgd = pgd_offset(mm, address);
4031         p4d = p4d_alloc(mm, pgd, address);
4032         if (!p4d)
4033                 return VM_FAULT_OOM;
4034
4035         vmf.pud = pud_alloc(mm, p4d, address);
4036         if (!vmf.pud)
4037                 return VM_FAULT_OOM;
4038         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4039                 ret = create_huge_pud(&vmf);
4040                 if (!(ret & VM_FAULT_FALLBACK))
4041                         return ret;
4042         } else {
4043                 pud_t orig_pud = *vmf.pud;
4044
4045                 barrier();
4046                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4047
4048                         /* NUMA case for anonymous PUDs would go here */
4049
4050                         if (dirty && !pud_write(orig_pud)) {
4051                                 ret = wp_huge_pud(&vmf, orig_pud);
4052                                 if (!(ret & VM_FAULT_FALLBACK))
4053                                         return ret;
4054                         } else {
4055                                 huge_pud_set_accessed(&vmf, orig_pud);
4056                                 return 0;
4057                         }
4058                 }
4059         }
4060
4061         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4062         if (!vmf.pmd)
4063                 return VM_FAULT_OOM;
4064         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4065                 ret = create_huge_pmd(&vmf);
4066                 if (!(ret & VM_FAULT_FALLBACK))
4067                         return ret;
4068         } else {
4069                 pmd_t orig_pmd = *vmf.pmd;
4070
4071                 barrier();
4072                 if (unlikely(is_swap_pmd(orig_pmd))) {
4073                         VM_BUG_ON(thp_migration_supported() &&
4074                                           !is_pmd_migration_entry(orig_pmd));
4075                         if (is_pmd_migration_entry(orig_pmd))
4076                                 pmd_migration_entry_wait(mm, vmf.pmd);
4077                         return 0;
4078                 }
4079                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4080                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4081                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4082
4083                         if (dirty && !pmd_write(orig_pmd)) {
4084                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4085                                 if (!(ret & VM_FAULT_FALLBACK))
4086                                         return ret;
4087                         } else {
4088                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4089                                 return 0;
4090                         }
4091                 }
4092         }
4093
4094         return handle_pte_fault(&vmf);
4095 }
4096
4097 /*
4098  * By the time we get here, we already hold the mm semaphore
4099  *
4100  * The mmap_sem may have been released depending on flags and our
4101  * return value.  See filemap_fault() and __lock_page_or_retry().
4102  */
4103 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4104                 unsigned int flags)
4105 {
4106         vm_fault_t ret;
4107
4108         __set_current_state(TASK_RUNNING);
4109
4110         count_vm_event(PGFAULT);
4111         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4112
4113         /* do counter updates before entering really critical section. */
4114         check_sync_rss_stat(current);
4115
4116         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4117                                             flags & FAULT_FLAG_INSTRUCTION,
4118                                             flags & FAULT_FLAG_REMOTE))
4119                 return VM_FAULT_SIGSEGV;
4120
4121         /*
4122          * Enable the memcg OOM handling for faults triggered in user
4123          * space.  Kernel faults are handled more gracefully.
4124          */
4125         if (flags & FAULT_FLAG_USER)
4126                 mem_cgroup_enter_user_fault();
4127
4128         if (unlikely(is_vm_hugetlb_page(vma)))
4129                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4130         else
4131                 ret = __handle_mm_fault(vma, address, flags);
4132
4133         if (flags & FAULT_FLAG_USER) {
4134                 mem_cgroup_exit_user_fault();
4135                 /*
4136                  * The task may have entered a memcg OOM situation but
4137                  * if the allocation error was handled gracefully (no
4138                  * VM_FAULT_OOM), there is no need to kill anything.
4139                  * Just clean up the OOM state peacefully.
4140                  */
4141                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4142                         mem_cgroup_oom_synchronize(false);
4143         }
4144
4145         return ret;
4146 }
4147 EXPORT_SYMBOL_GPL(handle_mm_fault);
4148
4149 #ifndef __PAGETABLE_P4D_FOLDED
4150 /*
4151  * Allocate p4d page table.
4152  * We've already handled the fast-path in-line.
4153  */
4154 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4155 {
4156         p4d_t *new = p4d_alloc_one(mm, address);
4157         if (!new)
4158                 return -ENOMEM;
4159
4160         smp_wmb(); /* See comment in __pte_alloc */
4161
4162         spin_lock(&mm->page_table_lock);
4163         if (pgd_present(*pgd))          /* Another has populated it */
4164                 p4d_free(mm, new);
4165         else
4166                 pgd_populate(mm, pgd, new);
4167         spin_unlock(&mm->page_table_lock);
4168         return 0;
4169 }
4170 #endif /* __PAGETABLE_P4D_FOLDED */
4171
4172 #ifndef __PAGETABLE_PUD_FOLDED
4173 /*
4174  * Allocate page upper directory.
4175  * We've already handled the fast-path in-line.
4176  */
4177 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4178 {
4179         pud_t *new = pud_alloc_one(mm, address);
4180         if (!new)
4181                 return -ENOMEM;
4182
4183         smp_wmb(); /* See comment in __pte_alloc */
4184
4185         spin_lock(&mm->page_table_lock);
4186 #ifndef __ARCH_HAS_5LEVEL_HACK
4187         if (!p4d_present(*p4d)) {
4188                 mm_inc_nr_puds(mm);
4189                 p4d_populate(mm, p4d, new);
4190         } else  /* Another has populated it */
4191                 pud_free(mm, new);
4192 #else
4193         if (!pgd_present(*p4d)) {
4194                 mm_inc_nr_puds(mm);
4195                 pgd_populate(mm, p4d, new);
4196         } else  /* Another has populated it */
4197                 pud_free(mm, new);
4198 #endif /* __ARCH_HAS_5LEVEL_HACK */
4199         spin_unlock(&mm->page_table_lock);
4200         return 0;
4201 }
4202 #endif /* __PAGETABLE_PUD_FOLDED */
4203
4204 #ifndef __PAGETABLE_PMD_FOLDED
4205 /*
4206  * Allocate page middle directory.
4207  * We've already handled the fast-path in-line.
4208  */
4209 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4210 {
4211         spinlock_t *ptl;
4212         pmd_t *new = pmd_alloc_one(mm, address);
4213         if (!new)
4214                 return -ENOMEM;
4215
4216         smp_wmb(); /* See comment in __pte_alloc */
4217
4218         ptl = pud_lock(mm, pud);
4219 #ifndef __ARCH_HAS_4LEVEL_HACK
4220         if (!pud_present(*pud)) {
4221                 mm_inc_nr_pmds(mm);
4222                 pud_populate(mm, pud, new);
4223         } else  /* Another has populated it */
4224                 pmd_free(mm, new);
4225 #else
4226         if (!pgd_present(*pud)) {
4227                 mm_inc_nr_pmds(mm);
4228                 pgd_populate(mm, pud, new);
4229         } else /* Another has populated it */
4230                 pmd_free(mm, new);
4231 #endif /* __ARCH_HAS_4LEVEL_HACK */
4232         spin_unlock(ptl);
4233         return 0;
4234 }
4235 #endif /* __PAGETABLE_PMD_FOLDED */
4236
4237 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4238                             struct mmu_notifier_range *range,
4239                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4240 {
4241         pgd_t *pgd;
4242         p4d_t *p4d;
4243         pud_t *pud;
4244         pmd_t *pmd;
4245         pte_t *ptep;
4246
4247         pgd = pgd_offset(mm, address);
4248         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4249                 goto out;
4250
4251         p4d = p4d_offset(pgd, address);
4252         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4253                 goto out;
4254
4255         pud = pud_offset(p4d, address);
4256         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4257                 goto out;
4258
4259         pmd = pmd_offset(pud, address);
4260         VM_BUG_ON(pmd_trans_huge(*pmd));
4261
4262         if (pmd_huge(*pmd)) {
4263                 if (!pmdpp)
4264                         goto out;
4265
4266                 if (range) {
4267                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4268                                                 NULL, mm, address & PMD_MASK,
4269                                                 (address & PMD_MASK) + PMD_SIZE);
4270                         mmu_notifier_invalidate_range_start(range);
4271                 }
4272                 *ptlp = pmd_lock(mm, pmd);
4273                 if (pmd_huge(*pmd)) {
4274                         *pmdpp = pmd;
4275                         return 0;
4276                 }
4277                 spin_unlock(*ptlp);
4278                 if (range)
4279                         mmu_notifier_invalidate_range_end(range);
4280         }
4281
4282         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4283                 goto out;
4284
4285         if (range) {
4286                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4287                                         address & PAGE_MASK,
4288                                         (address & PAGE_MASK) + PAGE_SIZE);
4289                 mmu_notifier_invalidate_range_start(range);
4290         }
4291         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4292         if (!pte_present(*ptep))
4293                 goto unlock;
4294         *ptepp = ptep;
4295         return 0;
4296 unlock:
4297         pte_unmap_unlock(ptep, *ptlp);
4298         if (range)
4299                 mmu_notifier_invalidate_range_end(range);
4300 out:
4301         return -EINVAL;
4302 }
4303
4304 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4305                              pte_t **ptepp, spinlock_t **ptlp)
4306 {
4307         int res;
4308
4309         /* (void) is needed to make gcc happy */
4310         (void) __cond_lock(*ptlp,
4311                            !(res = __follow_pte_pmd(mm, address, NULL,
4312                                                     ptepp, NULL, ptlp)));
4313         return res;
4314 }
4315
4316 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4317                    struct mmu_notifier_range *range,
4318                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4319 {
4320         int res;
4321
4322         /* (void) is needed to make gcc happy */
4323         (void) __cond_lock(*ptlp,
4324                            !(res = __follow_pte_pmd(mm, address, range,
4325                                                     ptepp, pmdpp, ptlp)));
4326         return res;
4327 }
4328 EXPORT_SYMBOL(follow_pte_pmd);
4329
4330 /**
4331  * follow_pfn - look up PFN at a user virtual address
4332  * @vma: memory mapping
4333  * @address: user virtual address
4334  * @pfn: location to store found PFN
4335  *
4336  * Only IO mappings and raw PFN mappings are allowed.
4337  *
4338  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4339  */
4340 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4341         unsigned long *pfn)
4342 {
4343         int ret = -EINVAL;
4344         spinlock_t *ptl;
4345         pte_t *ptep;
4346
4347         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4348                 return ret;
4349
4350         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4351         if (ret)
4352                 return ret;
4353         *pfn = pte_pfn(*ptep);
4354         pte_unmap_unlock(ptep, ptl);
4355         return 0;
4356 }
4357 EXPORT_SYMBOL(follow_pfn);
4358
4359 #ifdef CONFIG_HAVE_IOREMAP_PROT
4360 int follow_phys(struct vm_area_struct *vma,
4361                 unsigned long address, unsigned int flags,
4362                 unsigned long *prot, resource_size_t *phys)
4363 {
4364         int ret = -EINVAL;
4365         pte_t *ptep, pte;
4366         spinlock_t *ptl;
4367
4368         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4369                 goto out;
4370
4371         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4372                 goto out;
4373         pte = *ptep;
4374
4375         if ((flags & FOLL_WRITE) && !pte_write(pte))
4376                 goto unlock;
4377
4378         *prot = pgprot_val(pte_pgprot(pte));
4379         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4380
4381         ret = 0;
4382 unlock:
4383         pte_unmap_unlock(ptep, ptl);
4384 out:
4385         return ret;
4386 }
4387
4388 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4389                         void *buf, int len, int write)
4390 {
4391         resource_size_t phys_addr;
4392         unsigned long prot = 0;
4393         void __iomem *maddr;
4394         int offset = addr & (PAGE_SIZE-1);
4395
4396         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4397                 return -EINVAL;
4398
4399         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4400         if (!maddr)
4401                 return -ENOMEM;
4402
4403         if (write)
4404                 memcpy_toio(maddr + offset, buf, len);
4405         else
4406                 memcpy_fromio(buf, maddr + offset, len);
4407         iounmap(maddr);
4408
4409         return len;
4410 }
4411 EXPORT_SYMBOL_GPL(generic_access_phys);
4412 #endif
4413
4414 /*
4415  * Access another process' address space as given in mm.  If non-NULL, use the
4416  * given task for page fault accounting.
4417  */
4418 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4419                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4420 {
4421         struct vm_area_struct *vma;
4422         void *old_buf = buf;
4423         int write = gup_flags & FOLL_WRITE;
4424
4425         down_read(&mm->mmap_sem);
4426         /* ignore errors, just check how much was successfully transferred */
4427         while (len) {
4428                 int bytes, ret, offset;
4429                 void *maddr;
4430                 struct page *page = NULL;
4431
4432                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4433                                 gup_flags, &page, &vma, NULL);
4434                 if (ret <= 0) {
4435 #ifndef CONFIG_HAVE_IOREMAP_PROT
4436                         break;
4437 #else
4438                         /*
4439                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4440                          * we can access using slightly different code.
4441                          */
4442                         vma = find_vma(mm, addr);
4443                         if (!vma || vma->vm_start > addr)
4444                                 break;
4445                         if (vma->vm_ops && vma->vm_ops->access)
4446                                 ret = vma->vm_ops->access(vma, addr, buf,
4447                                                           len, write);
4448                         if (ret <= 0)
4449                                 break;
4450                         bytes = ret;
4451 #endif
4452                 } else {
4453                         bytes = len;
4454                         offset = addr & (PAGE_SIZE-1);
4455                         if (bytes > PAGE_SIZE-offset)
4456                                 bytes = PAGE_SIZE-offset;
4457
4458                         maddr = kmap(page);
4459                         if (write) {
4460                                 copy_to_user_page(vma, page, addr,
4461                                                   maddr + offset, buf, bytes);
4462                                 set_page_dirty_lock(page);
4463                         } else {
4464                                 copy_from_user_page(vma, page, addr,
4465                                                     buf, maddr + offset, bytes);
4466                         }
4467                         kunmap(page);
4468                         put_page(page);
4469                 }
4470                 len -= bytes;
4471                 buf += bytes;
4472                 addr += bytes;
4473         }
4474         up_read(&mm->mmap_sem);
4475
4476         return buf - old_buf;
4477 }
4478
4479 /**
4480  * access_remote_vm - access another process' address space
4481  * @mm:         the mm_struct of the target address space
4482  * @addr:       start address to access
4483  * @buf:        source or destination buffer
4484  * @len:        number of bytes to transfer
4485  * @gup_flags:  flags modifying lookup behaviour
4486  *
4487  * The caller must hold a reference on @mm.
4488  *
4489  * Return: number of bytes copied from source to destination.
4490  */
4491 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4492                 void *buf, int len, unsigned int gup_flags)
4493 {
4494         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4495 }
4496
4497 /*
4498  * Access another process' address space.
4499  * Source/target buffer must be kernel space,
4500  * Do not walk the page table directly, use get_user_pages
4501  */
4502 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4503                 void *buf, int len, unsigned int gup_flags)
4504 {
4505         struct mm_struct *mm;
4506         int ret;
4507
4508         mm = get_task_mm(tsk);
4509         if (!mm)
4510                 return 0;
4511
4512         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4513
4514         mmput(mm);
4515
4516         return ret;
4517 }
4518 EXPORT_SYMBOL_GPL(access_process_vm);
4519
4520 /*
4521  * Print the name of a VMA.
4522  */
4523 void print_vma_addr(char *prefix, unsigned long ip)
4524 {
4525         struct mm_struct *mm = current->mm;
4526         struct vm_area_struct *vma;
4527
4528         /*
4529          * we might be running from an atomic context so we cannot sleep
4530          */
4531         if (!down_read_trylock(&mm->mmap_sem))
4532                 return;
4533
4534         vma = find_vma(mm, ip);
4535         if (vma && vma->vm_file) {
4536                 struct file *f = vma->vm_file;
4537                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4538                 if (buf) {
4539                         char *p;
4540
4541                         p = file_path(f, buf, PAGE_SIZE);
4542                         if (IS_ERR(p))
4543                                 p = "?";
4544                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4545                                         vma->vm_start,
4546                                         vma->vm_end - vma->vm_start);
4547                         free_page((unsigned long)buf);
4548                 }
4549         }
4550         up_read(&mm->mmap_sem);
4551 }
4552
4553 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4554 void __might_fault(const char *file, int line)
4555 {
4556         /*
4557          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4558          * holding the mmap_sem, this is safe because kernel memory doesn't
4559          * get paged out, therefore we'll never actually fault, and the
4560          * below annotations will generate false positives.
4561          */
4562         if (uaccess_kernel())
4563                 return;
4564         if (pagefault_disabled())
4565                 return;
4566         __might_sleep(file, line, 0);
4567 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4568         if (current->mm)
4569                 might_lock_read(&current->mm->mmap_sem);
4570 #endif
4571 }
4572 EXPORT_SYMBOL(__might_fault);
4573 #endif
4574
4575 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4576 /*
4577  * Process all subpages of the specified huge page with the specified
4578  * operation.  The target subpage will be processed last to keep its
4579  * cache lines hot.
4580  */
4581 static inline void process_huge_page(
4582         unsigned long addr_hint, unsigned int pages_per_huge_page,
4583         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4584         void *arg)
4585 {
4586         int i, n, base, l;
4587         unsigned long addr = addr_hint &
4588                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4589
4590         /* Process target subpage last to keep its cache lines hot */
4591         might_sleep();
4592         n = (addr_hint - addr) / PAGE_SIZE;
4593         if (2 * n <= pages_per_huge_page) {
4594                 /* If target subpage in first half of huge page */
4595                 base = 0;
4596                 l = n;
4597                 /* Process subpages at the end of huge page */
4598                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4599                         cond_resched();
4600                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4601                 }
4602         } else {
4603                 /* If target subpage in second half of huge page */
4604                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4605                 l = pages_per_huge_page - n;
4606                 /* Process subpages at the begin of huge page */
4607                 for (i = 0; i < base; i++) {
4608                         cond_resched();
4609                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4610                 }
4611         }
4612         /*
4613          * Process remaining subpages in left-right-left-right pattern
4614          * towards the target subpage
4615          */
4616         for (i = 0; i < l; i++) {
4617                 int left_idx = base + i;
4618                 int right_idx = base + 2 * l - 1 - i;
4619
4620                 cond_resched();
4621                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4622                 cond_resched();
4623                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4624         }
4625 }
4626
4627 static void clear_gigantic_page(struct page *page,
4628                                 unsigned long addr,
4629                                 unsigned int pages_per_huge_page)
4630 {
4631         int i;
4632         struct page *p = page;
4633
4634         might_sleep();
4635         for (i = 0; i < pages_per_huge_page;
4636              i++, p = mem_map_next(p, page, i)) {
4637                 cond_resched();
4638                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4639         }
4640 }
4641
4642 static void clear_subpage(unsigned long addr, int idx, void *arg)
4643 {
4644         struct page *page = arg;
4645
4646         clear_user_highpage(page + idx, addr);
4647 }
4648
4649 void clear_huge_page(struct page *page,
4650                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4651 {
4652         unsigned long addr = addr_hint &
4653                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4654
4655         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4656                 clear_gigantic_page(page, addr, pages_per_huge_page);
4657                 return;
4658         }
4659
4660         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4661 }
4662
4663 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4664                                     unsigned long addr,
4665                                     struct vm_area_struct *vma,
4666                                     unsigned int pages_per_huge_page)
4667 {
4668         int i;
4669         struct page *dst_base = dst;
4670         struct page *src_base = src;
4671
4672         for (i = 0; i < pages_per_huge_page; ) {
4673                 cond_resched();
4674                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4675
4676                 i++;
4677                 dst = mem_map_next(dst, dst_base, i);
4678                 src = mem_map_next(src, src_base, i);
4679         }
4680 }
4681
4682 struct copy_subpage_arg {
4683         struct page *dst;
4684         struct page *src;
4685         struct vm_area_struct *vma;
4686 };
4687
4688 static void copy_subpage(unsigned long addr, int idx, void *arg)
4689 {
4690         struct copy_subpage_arg *copy_arg = arg;
4691
4692         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4693                            addr, copy_arg->vma);
4694 }
4695
4696 void copy_user_huge_page(struct page *dst, struct page *src,
4697                          unsigned long addr_hint, struct vm_area_struct *vma,
4698                          unsigned int pages_per_huge_page)
4699 {
4700         unsigned long addr = addr_hint &
4701                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4702         struct copy_subpage_arg arg = {
4703                 .dst = dst,
4704                 .src = src,
4705                 .vma = vma,
4706         };
4707
4708         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4709                 copy_user_gigantic_page(dst, src, addr, vma,
4710                                         pages_per_huge_page);
4711                 return;
4712         }
4713
4714         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4715 }
4716
4717 long copy_huge_page_from_user(struct page *dst_page,
4718                                 const void __user *usr_src,
4719                                 unsigned int pages_per_huge_page,
4720                                 bool allow_pagefault)
4721 {
4722         void *src = (void *)usr_src;
4723         void *page_kaddr;
4724         unsigned long i, rc = 0;
4725         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4726
4727         for (i = 0; i < pages_per_huge_page; i++) {
4728                 if (allow_pagefault)
4729                         page_kaddr = kmap(dst_page + i);
4730                 else
4731                         page_kaddr = kmap_atomic(dst_page + i);
4732                 rc = copy_from_user(page_kaddr,
4733                                 (const void __user *)(src + i * PAGE_SIZE),
4734                                 PAGE_SIZE);
4735                 if (allow_pagefault)
4736                         kunmap(dst_page + i);
4737                 else
4738                         kunmap_atomic(page_kaddr);
4739
4740                 ret_val -= (PAGE_SIZE - rc);
4741                 if (rc)
4742                         break;
4743
4744                 cond_resched();
4745         }
4746         return ret_val;
4747 }
4748 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4749
4750 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4751
4752 static struct kmem_cache *page_ptl_cachep;
4753
4754 void __init ptlock_cache_init(void)
4755 {
4756         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4757                         SLAB_PANIC, NULL);
4758 }
4759
4760 bool ptlock_alloc(struct page *page)
4761 {
4762         spinlock_t *ptl;
4763
4764         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4765         if (!ptl)
4766                 return false;
4767         page->ptl = ptl;
4768         return true;
4769 }
4770
4771 void ptlock_free(struct page *page)
4772 {
4773         kmem_cache_free(page_ptl_cachep, page->ptl);
4774 }
4775 #endif