mm: memcg/slab: simplify memcg cache creation
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #define MEM_CGROUP_RECLAIM_RETRIES      5
77
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 bool cgroup_memory_noswap __read_mostly;
87 #else
88 #define cgroup_memory_noswap            1
89 #endif
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105  * Cgroups above their limits are maintained in a RB-Tree, independent of
106  * their hierarchy representation
107  */
108
109 struct mem_cgroup_tree_per_node {
110         struct rb_root rb_root;
111         struct rb_node *rb_rightmost;
112         spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123         struct list_head list;
124         struct eventfd_ctx *eventfd;
125 };
126
127 /*
128  * cgroup_event represents events which userspace want to receive.
129  */
130 struct mem_cgroup_event {
131         /*
132          * memcg which the event belongs to.
133          */
134         struct mem_cgroup *memcg;
135         /*
136          * eventfd to signal userspace about the event.
137          */
138         struct eventfd_ctx *eventfd;
139         /*
140          * Each of these stored in a list by the cgroup.
141          */
142         struct list_head list;
143         /*
144          * register_event() callback will be used to add new userspace
145          * waiter for changes related to this event.  Use eventfd_signal()
146          * on eventfd to send notification to userspace.
147          */
148         int (*register_event)(struct mem_cgroup *memcg,
149                               struct eventfd_ctx *eventfd, const char *args);
150         /*
151          * unregister_event() callback will be called when userspace closes
152          * the eventfd or on cgroup removing.  This callback must be set,
153          * if you want provide notification functionality.
154          */
155         void (*unregister_event)(struct mem_cgroup *memcg,
156                                  struct eventfd_ctx *eventfd);
157         /*
158          * All fields below needed to unregister event when
159          * userspace closes eventfd.
160          */
161         poll_table pt;
162         wait_queue_head_t *wqh;
163         wait_queue_entry_t wait;
164         struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172  * Types of charges to be moved.
173  */
174 #define MOVE_ANON       0x1U
175 #define MOVE_FILE       0x2U
176 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180         spinlock_t        lock; /* for from, to */
181         struct mm_struct  *mm;
182         struct mem_cgroup *from;
183         struct mem_cgroup *to;
184         unsigned long flags;
185         unsigned long precharge;
186         unsigned long moved_charge;
187         unsigned long moved_swap;
188         struct task_struct *moving_task;        /* a task moving charges */
189         wait_queue_head_t waitq;                /* a waitq for other context */
190 } mc = {
191         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197  * limit reclaim to prevent infinite loops, if they ever occur.
198  */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 enum charge_type {
203         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204         MEM_CGROUP_CHARGE_TYPE_ANON,
205         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
207         NR_CHARGE_TYPE,
208 };
209
210 /* for encoding cft->private value on file */
211 enum res_type {
212         _MEM,
213         _MEMSWAP,
214         _OOM_TYPE,
215         _KMEM,
216         _TCP,
217 };
218
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL             (0)
224
225 /*
226  * Iteration constructs for visiting all cgroups (under a tree).  If
227  * loops are exited prematurely (break), mem_cgroup_iter_break() must
228  * be used for reference counting.
229  */
230 #define for_each_mem_cgroup_tree(iter, root)            \
231         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
232              iter != NULL;                              \
233              iter = mem_cgroup_iter(root, iter, NULL))
234
235 #define for_each_mem_cgroup(iter)                       \
236         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
237              iter != NULL;                              \
238              iter = mem_cgroup_iter(NULL, iter, NULL))
239
240 static inline bool should_force_charge(void)
241 {
242         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243                 (current->flags & PF_EXITING);
244 }
245
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249         if (!memcg)
250                 memcg = root_mem_cgroup;
251         return &memcg->vmpressure;
252 }
253
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258
259 #ifdef CONFIG_MEMCG_KMEM
260 extern spinlock_t css_set_lock;
261
262 static void obj_cgroup_release(struct percpu_ref *ref)
263 {
264         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
265         struct mem_cgroup *memcg;
266         unsigned int nr_bytes;
267         unsigned int nr_pages;
268         unsigned long flags;
269
270         /*
271          * At this point all allocated objects are freed, and
272          * objcg->nr_charged_bytes can't have an arbitrary byte value.
273          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274          *
275          * The following sequence can lead to it:
276          * 1) CPU0: objcg == stock->cached_objcg
277          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278          *          PAGE_SIZE bytes are charged
279          * 3) CPU1: a process from another memcg is allocating something,
280          *          the stock if flushed,
281          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282          * 5) CPU0: we do release this object,
283          *          92 bytes are added to stock->nr_bytes
284          * 6) CPU0: stock is flushed,
285          *          92 bytes are added to objcg->nr_charged_bytes
286          *
287          * In the result, nr_charged_bytes == PAGE_SIZE.
288          * This page will be uncharged in obj_cgroup_release().
289          */
290         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292         nr_pages = nr_bytes >> PAGE_SHIFT;
293
294         spin_lock_irqsave(&css_set_lock, flags);
295         memcg = obj_cgroup_memcg(objcg);
296         if (nr_pages)
297                 __memcg_kmem_uncharge(memcg, nr_pages);
298         list_del(&objcg->list);
299         mem_cgroup_put(memcg);
300         spin_unlock_irqrestore(&css_set_lock, flags);
301
302         percpu_ref_exit(ref);
303         kfree_rcu(objcg, rcu);
304 }
305
306 static struct obj_cgroup *obj_cgroup_alloc(void)
307 {
308         struct obj_cgroup *objcg;
309         int ret;
310
311         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
312         if (!objcg)
313                 return NULL;
314
315         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
316                               GFP_KERNEL);
317         if (ret) {
318                 kfree(objcg);
319                 return NULL;
320         }
321         INIT_LIST_HEAD(&objcg->list);
322         return objcg;
323 }
324
325 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
326                                   struct mem_cgroup *parent)
327 {
328         struct obj_cgroup *objcg, *iter;
329
330         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
331
332         spin_lock_irq(&css_set_lock);
333
334         /* Move active objcg to the parent's list */
335         xchg(&objcg->memcg, parent);
336         css_get(&parent->css);
337         list_add(&objcg->list, &parent->objcg_list);
338
339         /* Move already reparented objcgs to the parent's list */
340         list_for_each_entry(iter, &memcg->objcg_list, list) {
341                 css_get(&parent->css);
342                 xchg(&iter->memcg, parent);
343                 css_put(&memcg->css);
344         }
345         list_splice(&memcg->objcg_list, &parent->objcg_list);
346
347         spin_unlock_irq(&css_set_lock);
348
349         percpu_ref_kill(&objcg->refcnt);
350 }
351
352 /*
353  * This will be used as a shrinker list's index.
354  * The main reason for not using cgroup id for this:
355  *  this works better in sparse environments, where we have a lot of memcgs,
356  *  but only a few kmem-limited. Or also, if we have, for instance, 200
357  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
358  *  200 entry array for that.
359  *
360  * The current size of the caches array is stored in memcg_nr_cache_ids. It
361  * will double each time we have to increase it.
362  */
363 static DEFINE_IDA(memcg_cache_ida);
364 int memcg_nr_cache_ids;
365
366 /* Protects memcg_nr_cache_ids */
367 static DECLARE_RWSEM(memcg_cache_ids_sem);
368
369 void memcg_get_cache_ids(void)
370 {
371         down_read(&memcg_cache_ids_sem);
372 }
373
374 void memcg_put_cache_ids(void)
375 {
376         up_read(&memcg_cache_ids_sem);
377 }
378
379 /*
380  * MIN_SIZE is different than 1, because we would like to avoid going through
381  * the alloc/free process all the time. In a small machine, 4 kmem-limited
382  * cgroups is a reasonable guess. In the future, it could be a parameter or
383  * tunable, but that is strictly not necessary.
384  *
385  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
386  * this constant directly from cgroup, but it is understandable that this is
387  * better kept as an internal representation in cgroup.c. In any case, the
388  * cgrp_id space is not getting any smaller, and we don't have to necessarily
389  * increase ours as well if it increases.
390  */
391 #define MEMCG_CACHES_MIN_SIZE 4
392 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
393
394 /*
395  * A lot of the calls to the cache allocation functions are expected to be
396  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
397  * conditional to this static branch, we'll have to allow modules that does
398  * kmem_cache_alloc and the such to see this symbol as well
399  */
400 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
401 EXPORT_SYMBOL(memcg_kmem_enabled_key);
402 #endif
403
404 static int memcg_shrinker_map_size;
405 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
406
407 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
408 {
409         kvfree(container_of(head, struct memcg_shrinker_map, rcu));
410 }
411
412 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
413                                          int size, int old_size)
414 {
415         struct memcg_shrinker_map *new, *old;
416         int nid;
417
418         lockdep_assert_held(&memcg_shrinker_map_mutex);
419
420         for_each_node(nid) {
421                 old = rcu_dereference_protected(
422                         mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
423                 /* Not yet online memcg */
424                 if (!old)
425                         return 0;
426
427                 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
428                 if (!new)
429                         return -ENOMEM;
430
431                 /* Set all old bits, clear all new bits */
432                 memset(new->map, (int)0xff, old_size);
433                 memset((void *)new->map + old_size, 0, size - old_size);
434
435                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
436                 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
437         }
438
439         return 0;
440 }
441
442 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
443 {
444         struct mem_cgroup_per_node *pn;
445         struct memcg_shrinker_map *map;
446         int nid;
447
448         if (mem_cgroup_is_root(memcg))
449                 return;
450
451         for_each_node(nid) {
452                 pn = mem_cgroup_nodeinfo(memcg, nid);
453                 map = rcu_dereference_protected(pn->shrinker_map, true);
454                 if (map)
455                         kvfree(map);
456                 rcu_assign_pointer(pn->shrinker_map, NULL);
457         }
458 }
459
460 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
461 {
462         struct memcg_shrinker_map *map;
463         int nid, size, ret = 0;
464
465         if (mem_cgroup_is_root(memcg))
466                 return 0;
467
468         mutex_lock(&memcg_shrinker_map_mutex);
469         size = memcg_shrinker_map_size;
470         for_each_node(nid) {
471                 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
472                 if (!map) {
473                         memcg_free_shrinker_maps(memcg);
474                         ret = -ENOMEM;
475                         break;
476                 }
477                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
478         }
479         mutex_unlock(&memcg_shrinker_map_mutex);
480
481         return ret;
482 }
483
484 int memcg_expand_shrinker_maps(int new_id)
485 {
486         int size, old_size, ret = 0;
487         struct mem_cgroup *memcg;
488
489         size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
490         old_size = memcg_shrinker_map_size;
491         if (size <= old_size)
492                 return 0;
493
494         mutex_lock(&memcg_shrinker_map_mutex);
495         if (!root_mem_cgroup)
496                 goto unlock;
497
498         for_each_mem_cgroup(memcg) {
499                 if (mem_cgroup_is_root(memcg))
500                         continue;
501                 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
502                 if (ret) {
503                         mem_cgroup_iter_break(NULL, memcg);
504                         goto unlock;
505                 }
506         }
507 unlock:
508         if (!ret)
509                 memcg_shrinker_map_size = size;
510         mutex_unlock(&memcg_shrinker_map_mutex);
511         return ret;
512 }
513
514 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
515 {
516         if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
517                 struct memcg_shrinker_map *map;
518
519                 rcu_read_lock();
520                 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
521                 /* Pairs with smp mb in shrink_slab() */
522                 smp_mb__before_atomic();
523                 set_bit(shrinker_id, map->map);
524                 rcu_read_unlock();
525         }
526 }
527
528 /**
529  * mem_cgroup_css_from_page - css of the memcg associated with a page
530  * @page: page of interest
531  *
532  * If memcg is bound to the default hierarchy, css of the memcg associated
533  * with @page is returned.  The returned css remains associated with @page
534  * until it is released.
535  *
536  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
537  * is returned.
538  */
539 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
540 {
541         struct mem_cgroup *memcg;
542
543         memcg = page->mem_cgroup;
544
545         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
546                 memcg = root_mem_cgroup;
547
548         return &memcg->css;
549 }
550
551 /**
552  * page_cgroup_ino - return inode number of the memcg a page is charged to
553  * @page: the page
554  *
555  * Look up the closest online ancestor of the memory cgroup @page is charged to
556  * and return its inode number or 0 if @page is not charged to any cgroup. It
557  * is safe to call this function without holding a reference to @page.
558  *
559  * Note, this function is inherently racy, because there is nothing to prevent
560  * the cgroup inode from getting torn down and potentially reallocated a moment
561  * after page_cgroup_ino() returns, so it only should be used by callers that
562  * do not care (such as procfs interfaces).
563  */
564 ino_t page_cgroup_ino(struct page *page)
565 {
566         struct mem_cgroup *memcg;
567         unsigned long ino = 0;
568
569         rcu_read_lock();
570         memcg = page->mem_cgroup;
571
572         /*
573          * The lowest bit set means that memcg isn't a valid
574          * memcg pointer, but a obj_cgroups pointer.
575          * In this case the page is shared and doesn't belong
576          * to any specific memory cgroup.
577          */
578         if ((unsigned long) memcg & 0x1UL)
579                 memcg = NULL;
580
581         while (memcg && !(memcg->css.flags & CSS_ONLINE))
582                 memcg = parent_mem_cgroup(memcg);
583         if (memcg)
584                 ino = cgroup_ino(memcg->css.cgroup);
585         rcu_read_unlock();
586         return ino;
587 }
588
589 static struct mem_cgroup_per_node *
590 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
591 {
592         int nid = page_to_nid(page);
593
594         return memcg->nodeinfo[nid];
595 }
596
597 static struct mem_cgroup_tree_per_node *
598 soft_limit_tree_node(int nid)
599 {
600         return soft_limit_tree.rb_tree_per_node[nid];
601 }
602
603 static struct mem_cgroup_tree_per_node *
604 soft_limit_tree_from_page(struct page *page)
605 {
606         int nid = page_to_nid(page);
607
608         return soft_limit_tree.rb_tree_per_node[nid];
609 }
610
611 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
612                                          struct mem_cgroup_tree_per_node *mctz,
613                                          unsigned long new_usage_in_excess)
614 {
615         struct rb_node **p = &mctz->rb_root.rb_node;
616         struct rb_node *parent = NULL;
617         struct mem_cgroup_per_node *mz_node;
618         bool rightmost = true;
619
620         if (mz->on_tree)
621                 return;
622
623         mz->usage_in_excess = new_usage_in_excess;
624         if (!mz->usage_in_excess)
625                 return;
626         while (*p) {
627                 parent = *p;
628                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
629                                         tree_node);
630                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
631                         p = &(*p)->rb_left;
632                         rightmost = false;
633                 }
634
635                 /*
636                  * We can't avoid mem cgroups that are over their soft
637                  * limit by the same amount
638                  */
639                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
640                         p = &(*p)->rb_right;
641         }
642
643         if (rightmost)
644                 mctz->rb_rightmost = &mz->tree_node;
645
646         rb_link_node(&mz->tree_node, parent, p);
647         rb_insert_color(&mz->tree_node, &mctz->rb_root);
648         mz->on_tree = true;
649 }
650
651 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
652                                          struct mem_cgroup_tree_per_node *mctz)
653 {
654         if (!mz->on_tree)
655                 return;
656
657         if (&mz->tree_node == mctz->rb_rightmost)
658                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
659
660         rb_erase(&mz->tree_node, &mctz->rb_root);
661         mz->on_tree = false;
662 }
663
664 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
665                                        struct mem_cgroup_tree_per_node *mctz)
666 {
667         unsigned long flags;
668
669         spin_lock_irqsave(&mctz->lock, flags);
670         __mem_cgroup_remove_exceeded(mz, mctz);
671         spin_unlock_irqrestore(&mctz->lock, flags);
672 }
673
674 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
675 {
676         unsigned long nr_pages = page_counter_read(&memcg->memory);
677         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
678         unsigned long excess = 0;
679
680         if (nr_pages > soft_limit)
681                 excess = nr_pages - soft_limit;
682
683         return excess;
684 }
685
686 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
687 {
688         unsigned long excess;
689         struct mem_cgroup_per_node *mz;
690         struct mem_cgroup_tree_per_node *mctz;
691
692         mctz = soft_limit_tree_from_page(page);
693         if (!mctz)
694                 return;
695         /*
696          * Necessary to update all ancestors when hierarchy is used.
697          * because their event counter is not touched.
698          */
699         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
700                 mz = mem_cgroup_page_nodeinfo(memcg, page);
701                 excess = soft_limit_excess(memcg);
702                 /*
703                  * We have to update the tree if mz is on RB-tree or
704                  * mem is over its softlimit.
705                  */
706                 if (excess || mz->on_tree) {
707                         unsigned long flags;
708
709                         spin_lock_irqsave(&mctz->lock, flags);
710                         /* if on-tree, remove it */
711                         if (mz->on_tree)
712                                 __mem_cgroup_remove_exceeded(mz, mctz);
713                         /*
714                          * Insert again. mz->usage_in_excess will be updated.
715                          * If excess is 0, no tree ops.
716                          */
717                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
718                         spin_unlock_irqrestore(&mctz->lock, flags);
719                 }
720         }
721 }
722
723 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
724 {
725         struct mem_cgroup_tree_per_node *mctz;
726         struct mem_cgroup_per_node *mz;
727         int nid;
728
729         for_each_node(nid) {
730                 mz = mem_cgroup_nodeinfo(memcg, nid);
731                 mctz = soft_limit_tree_node(nid);
732                 if (mctz)
733                         mem_cgroup_remove_exceeded(mz, mctz);
734         }
735 }
736
737 static struct mem_cgroup_per_node *
738 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
739 {
740         struct mem_cgroup_per_node *mz;
741
742 retry:
743         mz = NULL;
744         if (!mctz->rb_rightmost)
745                 goto done;              /* Nothing to reclaim from */
746
747         mz = rb_entry(mctz->rb_rightmost,
748                       struct mem_cgroup_per_node, tree_node);
749         /*
750          * Remove the node now but someone else can add it back,
751          * we will to add it back at the end of reclaim to its correct
752          * position in the tree.
753          */
754         __mem_cgroup_remove_exceeded(mz, mctz);
755         if (!soft_limit_excess(mz->memcg) ||
756             !css_tryget(&mz->memcg->css))
757                 goto retry;
758 done:
759         return mz;
760 }
761
762 static struct mem_cgroup_per_node *
763 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
764 {
765         struct mem_cgroup_per_node *mz;
766
767         spin_lock_irq(&mctz->lock);
768         mz = __mem_cgroup_largest_soft_limit_node(mctz);
769         spin_unlock_irq(&mctz->lock);
770         return mz;
771 }
772
773 /**
774  * __mod_memcg_state - update cgroup memory statistics
775  * @memcg: the memory cgroup
776  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
777  * @val: delta to add to the counter, can be negative
778  */
779 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
780 {
781         long x, threshold = MEMCG_CHARGE_BATCH;
782
783         if (mem_cgroup_disabled())
784                 return;
785
786         if (vmstat_item_in_bytes(idx))
787                 threshold <<= PAGE_SHIFT;
788
789         x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
790         if (unlikely(abs(x) > threshold)) {
791                 struct mem_cgroup *mi;
792
793                 /*
794                  * Batch local counters to keep them in sync with
795                  * the hierarchical ones.
796                  */
797                 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
798                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
799                         atomic_long_add(x, &mi->vmstats[idx]);
800                 x = 0;
801         }
802         __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
803 }
804
805 static struct mem_cgroup_per_node *
806 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
807 {
808         struct mem_cgroup *parent;
809
810         parent = parent_mem_cgroup(pn->memcg);
811         if (!parent)
812                 return NULL;
813         return mem_cgroup_nodeinfo(parent, nid);
814 }
815
816 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
817                               int val)
818 {
819         struct mem_cgroup_per_node *pn;
820         struct mem_cgroup *memcg;
821         long x, threshold = MEMCG_CHARGE_BATCH;
822
823         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
824         memcg = pn->memcg;
825
826         /* Update memcg */
827         __mod_memcg_state(memcg, idx, val);
828
829         /* Update lruvec */
830         __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
831
832         if (vmstat_item_in_bytes(idx))
833                 threshold <<= PAGE_SHIFT;
834
835         x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
836         if (unlikely(abs(x) > threshold)) {
837                 pg_data_t *pgdat = lruvec_pgdat(lruvec);
838                 struct mem_cgroup_per_node *pi;
839
840                 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
841                         atomic_long_add(x, &pi->lruvec_stat[idx]);
842                 x = 0;
843         }
844         __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
845 }
846
847 /**
848  * __mod_lruvec_state - update lruvec memory statistics
849  * @lruvec: the lruvec
850  * @idx: the stat item
851  * @val: delta to add to the counter, can be negative
852  *
853  * The lruvec is the intersection of the NUMA node and a cgroup. This
854  * function updates the all three counters that are affected by a
855  * change of state at this level: per-node, per-cgroup, per-lruvec.
856  */
857 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
858                         int val)
859 {
860         /* Update node */
861         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
862
863         /* Update memcg and lruvec */
864         if (!mem_cgroup_disabled())
865                 __mod_memcg_lruvec_state(lruvec, idx, val);
866 }
867
868 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
869 {
870         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
871         struct mem_cgroup *memcg;
872         struct lruvec *lruvec;
873
874         rcu_read_lock();
875         memcg = mem_cgroup_from_obj(p);
876
877         /* Untracked pages have no memcg, no lruvec. Update only the node */
878         if (!memcg || memcg == root_mem_cgroup) {
879                 __mod_node_page_state(pgdat, idx, val);
880         } else {
881                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
882                 __mod_lruvec_state(lruvec, idx, val);
883         }
884         rcu_read_unlock();
885 }
886
887 void mod_memcg_obj_state(void *p, int idx, int val)
888 {
889         struct mem_cgroup *memcg;
890
891         rcu_read_lock();
892         memcg = mem_cgroup_from_obj(p);
893         if (memcg)
894                 mod_memcg_state(memcg, idx, val);
895         rcu_read_unlock();
896 }
897
898 /**
899  * __count_memcg_events - account VM events in a cgroup
900  * @memcg: the memory cgroup
901  * @idx: the event item
902  * @count: the number of events that occured
903  */
904 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
905                           unsigned long count)
906 {
907         unsigned long x;
908
909         if (mem_cgroup_disabled())
910                 return;
911
912         x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
913         if (unlikely(x > MEMCG_CHARGE_BATCH)) {
914                 struct mem_cgroup *mi;
915
916                 /*
917                  * Batch local counters to keep them in sync with
918                  * the hierarchical ones.
919                  */
920                 __this_cpu_add(memcg->vmstats_local->events[idx], x);
921                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
922                         atomic_long_add(x, &mi->vmevents[idx]);
923                 x = 0;
924         }
925         __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
926 }
927
928 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
929 {
930         return atomic_long_read(&memcg->vmevents[event]);
931 }
932
933 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
934 {
935         long x = 0;
936         int cpu;
937
938         for_each_possible_cpu(cpu)
939                 x += per_cpu(memcg->vmstats_local->events[event], cpu);
940         return x;
941 }
942
943 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
944                                          struct page *page,
945                                          int nr_pages)
946 {
947         /* pagein of a big page is an event. So, ignore page size */
948         if (nr_pages > 0)
949                 __count_memcg_events(memcg, PGPGIN, 1);
950         else {
951                 __count_memcg_events(memcg, PGPGOUT, 1);
952                 nr_pages = -nr_pages; /* for event */
953         }
954
955         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
956 }
957
958 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
959                                        enum mem_cgroup_events_target target)
960 {
961         unsigned long val, next;
962
963         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
964         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
965         /* from time_after() in jiffies.h */
966         if ((long)(next - val) < 0) {
967                 switch (target) {
968                 case MEM_CGROUP_TARGET_THRESH:
969                         next = val + THRESHOLDS_EVENTS_TARGET;
970                         break;
971                 case MEM_CGROUP_TARGET_SOFTLIMIT:
972                         next = val + SOFTLIMIT_EVENTS_TARGET;
973                         break;
974                 default:
975                         break;
976                 }
977                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
978                 return true;
979         }
980         return false;
981 }
982
983 /*
984  * Check events in order.
985  *
986  */
987 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
988 {
989         /* threshold event is triggered in finer grain than soft limit */
990         if (unlikely(mem_cgroup_event_ratelimit(memcg,
991                                                 MEM_CGROUP_TARGET_THRESH))) {
992                 bool do_softlimit;
993
994                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
996                 mem_cgroup_threshold(memcg);
997                 if (unlikely(do_softlimit))
998                         mem_cgroup_update_tree(memcg, page);
999         }
1000 }
1001
1002 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1003 {
1004         /*
1005          * mm_update_next_owner() may clear mm->owner to NULL
1006          * if it races with swapoff, page migration, etc.
1007          * So this can be called with p == NULL.
1008          */
1009         if (unlikely(!p))
1010                 return NULL;
1011
1012         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1013 }
1014 EXPORT_SYMBOL(mem_cgroup_from_task);
1015
1016 /**
1017  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1018  * @mm: mm from which memcg should be extracted. It can be NULL.
1019  *
1020  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1021  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1022  * returned.
1023  */
1024 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1025 {
1026         struct mem_cgroup *memcg;
1027
1028         if (mem_cgroup_disabled())
1029                 return NULL;
1030
1031         rcu_read_lock();
1032         do {
1033                 /*
1034                  * Page cache insertions can happen withou an
1035                  * actual mm context, e.g. during disk probing
1036                  * on boot, loopback IO, acct() writes etc.
1037                  */
1038                 if (unlikely(!mm))
1039                         memcg = root_mem_cgroup;
1040                 else {
1041                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1042                         if (unlikely(!memcg))
1043                                 memcg = root_mem_cgroup;
1044                 }
1045         } while (!css_tryget(&memcg->css));
1046         rcu_read_unlock();
1047         return memcg;
1048 }
1049 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1050
1051 /**
1052  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1053  * @page: page from which memcg should be extracted.
1054  *
1055  * Obtain a reference on page->memcg and returns it if successful. Otherwise
1056  * root_mem_cgroup is returned.
1057  */
1058 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1059 {
1060         struct mem_cgroup *memcg = page->mem_cgroup;
1061
1062         if (mem_cgroup_disabled())
1063                 return NULL;
1064
1065         rcu_read_lock();
1066         /* Page should not get uncharged and freed memcg under us. */
1067         if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1068                 memcg = root_mem_cgroup;
1069         rcu_read_unlock();
1070         return memcg;
1071 }
1072 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1073
1074 /**
1075  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1076  */
1077 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1078 {
1079         if (unlikely(current->active_memcg)) {
1080                 struct mem_cgroup *memcg;
1081
1082                 rcu_read_lock();
1083                 /* current->active_memcg must hold a ref. */
1084                 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1085                         memcg = root_mem_cgroup;
1086                 else
1087                         memcg = current->active_memcg;
1088                 rcu_read_unlock();
1089                 return memcg;
1090         }
1091         return get_mem_cgroup_from_mm(current->mm);
1092 }
1093
1094 /**
1095  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1096  * @root: hierarchy root
1097  * @prev: previously returned memcg, NULL on first invocation
1098  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1099  *
1100  * Returns references to children of the hierarchy below @root, or
1101  * @root itself, or %NULL after a full round-trip.
1102  *
1103  * Caller must pass the return value in @prev on subsequent
1104  * invocations for reference counting, or use mem_cgroup_iter_break()
1105  * to cancel a hierarchy walk before the round-trip is complete.
1106  *
1107  * Reclaimers can specify a node and a priority level in @reclaim to
1108  * divide up the memcgs in the hierarchy among all concurrent
1109  * reclaimers operating on the same node and priority.
1110  */
1111 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1112                                    struct mem_cgroup *prev,
1113                                    struct mem_cgroup_reclaim_cookie *reclaim)
1114 {
1115         struct mem_cgroup_reclaim_iter *iter;
1116         struct cgroup_subsys_state *css = NULL;
1117         struct mem_cgroup *memcg = NULL;
1118         struct mem_cgroup *pos = NULL;
1119
1120         if (mem_cgroup_disabled())
1121                 return NULL;
1122
1123         if (!root)
1124                 root = root_mem_cgroup;
1125
1126         if (prev && !reclaim)
1127                 pos = prev;
1128
1129         if (!root->use_hierarchy && root != root_mem_cgroup) {
1130                 if (prev)
1131                         goto out;
1132                 return root;
1133         }
1134
1135         rcu_read_lock();
1136
1137         if (reclaim) {
1138                 struct mem_cgroup_per_node *mz;
1139
1140                 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1141                 iter = &mz->iter;
1142
1143                 if (prev && reclaim->generation != iter->generation)
1144                         goto out_unlock;
1145
1146                 while (1) {
1147                         pos = READ_ONCE(iter->position);
1148                         if (!pos || css_tryget(&pos->css))
1149                                 break;
1150                         /*
1151                          * css reference reached zero, so iter->position will
1152                          * be cleared by ->css_released. However, we should not
1153                          * rely on this happening soon, because ->css_released
1154                          * is called from a work queue, and by busy-waiting we
1155                          * might block it. So we clear iter->position right
1156                          * away.
1157                          */
1158                         (void)cmpxchg(&iter->position, pos, NULL);
1159                 }
1160         }
1161
1162         if (pos)
1163                 css = &pos->css;
1164
1165         for (;;) {
1166                 css = css_next_descendant_pre(css, &root->css);
1167                 if (!css) {
1168                         /*
1169                          * Reclaimers share the hierarchy walk, and a
1170                          * new one might jump in right at the end of
1171                          * the hierarchy - make sure they see at least
1172                          * one group and restart from the beginning.
1173                          */
1174                         if (!prev)
1175                                 continue;
1176                         break;
1177                 }
1178
1179                 /*
1180                  * Verify the css and acquire a reference.  The root
1181                  * is provided by the caller, so we know it's alive
1182                  * and kicking, and don't take an extra reference.
1183                  */
1184                 memcg = mem_cgroup_from_css(css);
1185
1186                 if (css == &root->css)
1187                         break;
1188
1189                 if (css_tryget(css))
1190                         break;
1191
1192                 memcg = NULL;
1193         }
1194
1195         if (reclaim) {
1196                 /*
1197                  * The position could have already been updated by a competing
1198                  * thread, so check that the value hasn't changed since we read
1199                  * it to avoid reclaiming from the same cgroup twice.
1200                  */
1201                 (void)cmpxchg(&iter->position, pos, memcg);
1202
1203                 if (pos)
1204                         css_put(&pos->css);
1205
1206                 if (!memcg)
1207                         iter->generation++;
1208                 else if (!prev)
1209                         reclaim->generation = iter->generation;
1210         }
1211
1212 out_unlock:
1213         rcu_read_unlock();
1214 out:
1215         if (prev && prev != root)
1216                 css_put(&prev->css);
1217
1218         return memcg;
1219 }
1220
1221 /**
1222  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1223  * @root: hierarchy root
1224  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1225  */
1226 void mem_cgroup_iter_break(struct mem_cgroup *root,
1227                            struct mem_cgroup *prev)
1228 {
1229         if (!root)
1230                 root = root_mem_cgroup;
1231         if (prev && prev != root)
1232                 css_put(&prev->css);
1233 }
1234
1235 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1236                                         struct mem_cgroup *dead_memcg)
1237 {
1238         struct mem_cgroup_reclaim_iter *iter;
1239         struct mem_cgroup_per_node *mz;
1240         int nid;
1241
1242         for_each_node(nid) {
1243                 mz = mem_cgroup_nodeinfo(from, nid);
1244                 iter = &mz->iter;
1245                 cmpxchg(&iter->position, dead_memcg, NULL);
1246         }
1247 }
1248
1249 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1250 {
1251         struct mem_cgroup *memcg = dead_memcg;
1252         struct mem_cgroup *last;
1253
1254         do {
1255                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1256                 last = memcg;
1257         } while ((memcg = parent_mem_cgroup(memcg)));
1258
1259         /*
1260          * When cgruop1 non-hierarchy mode is used,
1261          * parent_mem_cgroup() does not walk all the way up to the
1262          * cgroup root (root_mem_cgroup). So we have to handle
1263          * dead_memcg from cgroup root separately.
1264          */
1265         if (last != root_mem_cgroup)
1266                 __invalidate_reclaim_iterators(root_mem_cgroup,
1267                                                 dead_memcg);
1268 }
1269
1270 /**
1271  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1272  * @memcg: hierarchy root
1273  * @fn: function to call for each task
1274  * @arg: argument passed to @fn
1275  *
1276  * This function iterates over tasks attached to @memcg or to any of its
1277  * descendants and calls @fn for each task. If @fn returns a non-zero
1278  * value, the function breaks the iteration loop and returns the value.
1279  * Otherwise, it will iterate over all tasks and return 0.
1280  *
1281  * This function must not be called for the root memory cgroup.
1282  */
1283 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1284                           int (*fn)(struct task_struct *, void *), void *arg)
1285 {
1286         struct mem_cgroup *iter;
1287         int ret = 0;
1288
1289         BUG_ON(memcg == root_mem_cgroup);
1290
1291         for_each_mem_cgroup_tree(iter, memcg) {
1292                 struct css_task_iter it;
1293                 struct task_struct *task;
1294
1295                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1296                 while (!ret && (task = css_task_iter_next(&it)))
1297                         ret = fn(task, arg);
1298                 css_task_iter_end(&it);
1299                 if (ret) {
1300                         mem_cgroup_iter_break(memcg, iter);
1301                         break;
1302                 }
1303         }
1304         return ret;
1305 }
1306
1307 /**
1308  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1309  * @page: the page
1310  * @pgdat: pgdat of the page
1311  *
1312  * This function relies on page->mem_cgroup being stable - see the
1313  * access rules in commit_charge().
1314  */
1315 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1316 {
1317         struct mem_cgroup_per_node *mz;
1318         struct mem_cgroup *memcg;
1319         struct lruvec *lruvec;
1320
1321         if (mem_cgroup_disabled()) {
1322                 lruvec = &pgdat->__lruvec;
1323                 goto out;
1324         }
1325
1326         memcg = page->mem_cgroup;
1327         /*
1328          * Swapcache readahead pages are added to the LRU - and
1329          * possibly migrated - before they are charged.
1330          */
1331         if (!memcg)
1332                 memcg = root_mem_cgroup;
1333
1334         mz = mem_cgroup_page_nodeinfo(memcg, page);
1335         lruvec = &mz->lruvec;
1336 out:
1337         /*
1338          * Since a node can be onlined after the mem_cgroup was created,
1339          * we have to be prepared to initialize lruvec->zone here;
1340          * and if offlined then reonlined, we need to reinitialize it.
1341          */
1342         if (unlikely(lruvec->pgdat != pgdat))
1343                 lruvec->pgdat = pgdat;
1344         return lruvec;
1345 }
1346
1347 /**
1348  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1349  * @lruvec: mem_cgroup per zone lru vector
1350  * @lru: index of lru list the page is sitting on
1351  * @zid: zone id of the accounted pages
1352  * @nr_pages: positive when adding or negative when removing
1353  *
1354  * This function must be called under lru_lock, just before a page is added
1355  * to or just after a page is removed from an lru list (that ordering being
1356  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1357  */
1358 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1359                                 int zid, int nr_pages)
1360 {
1361         struct mem_cgroup_per_node *mz;
1362         unsigned long *lru_size;
1363         long size;
1364
1365         if (mem_cgroup_disabled())
1366                 return;
1367
1368         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1369         lru_size = &mz->lru_zone_size[zid][lru];
1370
1371         if (nr_pages < 0)
1372                 *lru_size += nr_pages;
1373
1374         size = *lru_size;
1375         if (WARN_ONCE(size < 0,
1376                 "%s(%p, %d, %d): lru_size %ld\n",
1377                 __func__, lruvec, lru, nr_pages, size)) {
1378                 VM_BUG_ON(1);
1379                 *lru_size = 0;
1380         }
1381
1382         if (nr_pages > 0)
1383                 *lru_size += nr_pages;
1384 }
1385
1386 /**
1387  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1388  * @memcg: the memory cgroup
1389  *
1390  * Returns the maximum amount of memory @mem can be charged with, in
1391  * pages.
1392  */
1393 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1394 {
1395         unsigned long margin = 0;
1396         unsigned long count;
1397         unsigned long limit;
1398
1399         count = page_counter_read(&memcg->memory);
1400         limit = READ_ONCE(memcg->memory.max);
1401         if (count < limit)
1402                 margin = limit - count;
1403
1404         if (do_memsw_account()) {
1405                 count = page_counter_read(&memcg->memsw);
1406                 limit = READ_ONCE(memcg->memsw.max);
1407                 if (count < limit)
1408                         margin = min(margin, limit - count);
1409                 else
1410                         margin = 0;
1411         }
1412
1413         return margin;
1414 }
1415
1416 /*
1417  * A routine for checking "mem" is under move_account() or not.
1418  *
1419  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1420  * moving cgroups. This is for waiting at high-memory pressure
1421  * caused by "move".
1422  */
1423 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1424 {
1425         struct mem_cgroup *from;
1426         struct mem_cgroup *to;
1427         bool ret = false;
1428         /*
1429          * Unlike task_move routines, we access mc.to, mc.from not under
1430          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1431          */
1432         spin_lock(&mc.lock);
1433         from = mc.from;
1434         to = mc.to;
1435         if (!from)
1436                 goto unlock;
1437
1438         ret = mem_cgroup_is_descendant(from, memcg) ||
1439                 mem_cgroup_is_descendant(to, memcg);
1440 unlock:
1441         spin_unlock(&mc.lock);
1442         return ret;
1443 }
1444
1445 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1446 {
1447         if (mc.moving_task && current != mc.moving_task) {
1448                 if (mem_cgroup_under_move(memcg)) {
1449                         DEFINE_WAIT(wait);
1450                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1451                         /* moving charge context might have finished. */
1452                         if (mc.moving_task)
1453                                 schedule();
1454                         finish_wait(&mc.waitq, &wait);
1455                         return true;
1456                 }
1457         }
1458         return false;
1459 }
1460
1461 static char *memory_stat_format(struct mem_cgroup *memcg)
1462 {
1463         struct seq_buf s;
1464         int i;
1465
1466         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1467         if (!s.buffer)
1468                 return NULL;
1469
1470         /*
1471          * Provide statistics on the state of the memory subsystem as
1472          * well as cumulative event counters that show past behavior.
1473          *
1474          * This list is ordered following a combination of these gradients:
1475          * 1) generic big picture -> specifics and details
1476          * 2) reflecting userspace activity -> reflecting kernel heuristics
1477          *
1478          * Current memory state:
1479          */
1480
1481         seq_buf_printf(&s, "anon %llu\n",
1482                        (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1483                        PAGE_SIZE);
1484         seq_buf_printf(&s, "file %llu\n",
1485                        (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1486                        PAGE_SIZE);
1487         seq_buf_printf(&s, "kernel_stack %llu\n",
1488                        (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1489                        1024);
1490         seq_buf_printf(&s, "slab %llu\n",
1491                        (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1492                              memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1493         seq_buf_printf(&s, "sock %llu\n",
1494                        (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1495                        PAGE_SIZE);
1496
1497         seq_buf_printf(&s, "shmem %llu\n",
1498                        (u64)memcg_page_state(memcg, NR_SHMEM) *
1499                        PAGE_SIZE);
1500         seq_buf_printf(&s, "file_mapped %llu\n",
1501                        (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1502                        PAGE_SIZE);
1503         seq_buf_printf(&s, "file_dirty %llu\n",
1504                        (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1505                        PAGE_SIZE);
1506         seq_buf_printf(&s, "file_writeback %llu\n",
1507                        (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1508                        PAGE_SIZE);
1509
1510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1511         seq_buf_printf(&s, "anon_thp %llu\n",
1512                        (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1513                        HPAGE_PMD_SIZE);
1514 #endif
1515
1516         for (i = 0; i < NR_LRU_LISTS; i++)
1517                 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1518                                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1519                                PAGE_SIZE);
1520
1521         seq_buf_printf(&s, "slab_reclaimable %llu\n",
1522                        (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1523         seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1524                        (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1525
1526         /* Accumulated memory events */
1527
1528         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1529                        memcg_events(memcg, PGFAULT));
1530         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1531                        memcg_events(memcg, PGMAJFAULT));
1532
1533         seq_buf_printf(&s, "workingset_refault %lu\n",
1534                        memcg_page_state(memcg, WORKINGSET_REFAULT));
1535         seq_buf_printf(&s, "workingset_activate %lu\n",
1536                        memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1537         seq_buf_printf(&s, "workingset_restore %lu\n",
1538                        memcg_page_state(memcg, WORKINGSET_RESTORE));
1539         seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1540                        memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1541
1542         seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1543                        memcg_events(memcg, PGREFILL));
1544         seq_buf_printf(&s, "pgscan %lu\n",
1545                        memcg_events(memcg, PGSCAN_KSWAPD) +
1546                        memcg_events(memcg, PGSCAN_DIRECT));
1547         seq_buf_printf(&s, "pgsteal %lu\n",
1548                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1549                        memcg_events(memcg, PGSTEAL_DIRECT));
1550         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1551                        memcg_events(memcg, PGACTIVATE));
1552         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1553                        memcg_events(memcg, PGDEACTIVATE));
1554         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1555                        memcg_events(memcg, PGLAZYFREE));
1556         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1557                        memcg_events(memcg, PGLAZYFREED));
1558
1559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1560         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1561                        memcg_events(memcg, THP_FAULT_ALLOC));
1562         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1563                        memcg_events(memcg, THP_COLLAPSE_ALLOC));
1564 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1565
1566         /* The above should easily fit into one page */
1567         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1568
1569         return s.buffer;
1570 }
1571
1572 #define K(x) ((x) << (PAGE_SHIFT-10))
1573 /**
1574  * mem_cgroup_print_oom_context: Print OOM information relevant to
1575  * memory controller.
1576  * @memcg: The memory cgroup that went over limit
1577  * @p: Task that is going to be killed
1578  *
1579  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1580  * enabled
1581  */
1582 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1583 {
1584         rcu_read_lock();
1585
1586         if (memcg) {
1587                 pr_cont(",oom_memcg=");
1588                 pr_cont_cgroup_path(memcg->css.cgroup);
1589         } else
1590                 pr_cont(",global_oom");
1591         if (p) {
1592                 pr_cont(",task_memcg=");
1593                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1594         }
1595         rcu_read_unlock();
1596 }
1597
1598 /**
1599  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1600  * memory controller.
1601  * @memcg: The memory cgroup that went over limit
1602  */
1603 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1604 {
1605         char *buf;
1606
1607         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1608                 K((u64)page_counter_read(&memcg->memory)),
1609                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1610         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1611                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1612                         K((u64)page_counter_read(&memcg->swap)),
1613                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1614         else {
1615                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1616                         K((u64)page_counter_read(&memcg->memsw)),
1617                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1618                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1619                         K((u64)page_counter_read(&memcg->kmem)),
1620                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1621         }
1622
1623         pr_info("Memory cgroup stats for ");
1624         pr_cont_cgroup_path(memcg->css.cgroup);
1625         pr_cont(":");
1626         buf = memory_stat_format(memcg);
1627         if (!buf)
1628                 return;
1629         pr_info("%s", buf);
1630         kfree(buf);
1631 }
1632
1633 /*
1634  * Return the memory (and swap, if configured) limit for a memcg.
1635  */
1636 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1637 {
1638         unsigned long max;
1639
1640         max = READ_ONCE(memcg->memory.max);
1641         if (mem_cgroup_swappiness(memcg)) {
1642                 unsigned long memsw_max;
1643                 unsigned long swap_max;
1644
1645                 memsw_max = memcg->memsw.max;
1646                 swap_max = READ_ONCE(memcg->swap.max);
1647                 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1648                 max = min(max + swap_max, memsw_max);
1649         }
1650         return max;
1651 }
1652
1653 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1654 {
1655         return page_counter_read(&memcg->memory);
1656 }
1657
1658 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1659                                      int order)
1660 {
1661         struct oom_control oc = {
1662                 .zonelist = NULL,
1663                 .nodemask = NULL,
1664                 .memcg = memcg,
1665                 .gfp_mask = gfp_mask,
1666                 .order = order,
1667         };
1668         bool ret;
1669
1670         if (mutex_lock_killable(&oom_lock))
1671                 return true;
1672         /*
1673          * A few threads which were not waiting at mutex_lock_killable() can
1674          * fail to bail out. Therefore, check again after holding oom_lock.
1675          */
1676         ret = should_force_charge() || out_of_memory(&oc);
1677         mutex_unlock(&oom_lock);
1678         return ret;
1679 }
1680
1681 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1682                                    pg_data_t *pgdat,
1683                                    gfp_t gfp_mask,
1684                                    unsigned long *total_scanned)
1685 {
1686         struct mem_cgroup *victim = NULL;
1687         int total = 0;
1688         int loop = 0;
1689         unsigned long excess;
1690         unsigned long nr_scanned;
1691         struct mem_cgroup_reclaim_cookie reclaim = {
1692                 .pgdat = pgdat,
1693         };
1694
1695         excess = soft_limit_excess(root_memcg);
1696
1697         while (1) {
1698                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1699                 if (!victim) {
1700                         loop++;
1701                         if (loop >= 2) {
1702                                 /*
1703                                  * If we have not been able to reclaim
1704                                  * anything, it might because there are
1705                                  * no reclaimable pages under this hierarchy
1706                                  */
1707                                 if (!total)
1708                                         break;
1709                                 /*
1710                                  * We want to do more targeted reclaim.
1711                                  * excess >> 2 is not to excessive so as to
1712                                  * reclaim too much, nor too less that we keep
1713                                  * coming back to reclaim from this cgroup
1714                                  */
1715                                 if (total >= (excess >> 2) ||
1716                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1717                                         break;
1718                         }
1719                         continue;
1720                 }
1721                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1722                                         pgdat, &nr_scanned);
1723                 *total_scanned += nr_scanned;
1724                 if (!soft_limit_excess(root_memcg))
1725                         break;
1726         }
1727         mem_cgroup_iter_break(root_memcg, victim);
1728         return total;
1729 }
1730
1731 #ifdef CONFIG_LOCKDEP
1732 static struct lockdep_map memcg_oom_lock_dep_map = {
1733         .name = "memcg_oom_lock",
1734 };
1735 #endif
1736
1737 static DEFINE_SPINLOCK(memcg_oom_lock);
1738
1739 /*
1740  * Check OOM-Killer is already running under our hierarchy.
1741  * If someone is running, return false.
1742  */
1743 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1744 {
1745         struct mem_cgroup *iter, *failed = NULL;
1746
1747         spin_lock(&memcg_oom_lock);
1748
1749         for_each_mem_cgroup_tree(iter, memcg) {
1750                 if (iter->oom_lock) {
1751                         /*
1752                          * this subtree of our hierarchy is already locked
1753                          * so we cannot give a lock.
1754                          */
1755                         failed = iter;
1756                         mem_cgroup_iter_break(memcg, iter);
1757                         break;
1758                 } else
1759                         iter->oom_lock = true;
1760         }
1761
1762         if (failed) {
1763                 /*
1764                  * OK, we failed to lock the whole subtree so we have
1765                  * to clean up what we set up to the failing subtree
1766                  */
1767                 for_each_mem_cgroup_tree(iter, memcg) {
1768                         if (iter == failed) {
1769                                 mem_cgroup_iter_break(memcg, iter);
1770                                 break;
1771                         }
1772                         iter->oom_lock = false;
1773                 }
1774         } else
1775                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1776
1777         spin_unlock(&memcg_oom_lock);
1778
1779         return !failed;
1780 }
1781
1782 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1783 {
1784         struct mem_cgroup *iter;
1785
1786         spin_lock(&memcg_oom_lock);
1787         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1788         for_each_mem_cgroup_tree(iter, memcg)
1789                 iter->oom_lock = false;
1790         spin_unlock(&memcg_oom_lock);
1791 }
1792
1793 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1794 {
1795         struct mem_cgroup *iter;
1796
1797         spin_lock(&memcg_oom_lock);
1798         for_each_mem_cgroup_tree(iter, memcg)
1799                 iter->under_oom++;
1800         spin_unlock(&memcg_oom_lock);
1801 }
1802
1803 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1804 {
1805         struct mem_cgroup *iter;
1806
1807         /*
1808          * When a new child is created while the hierarchy is under oom,
1809          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1810          */
1811         spin_lock(&memcg_oom_lock);
1812         for_each_mem_cgroup_tree(iter, memcg)
1813                 if (iter->under_oom > 0)
1814                         iter->under_oom--;
1815         spin_unlock(&memcg_oom_lock);
1816 }
1817
1818 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1819
1820 struct oom_wait_info {
1821         struct mem_cgroup *memcg;
1822         wait_queue_entry_t      wait;
1823 };
1824
1825 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1826         unsigned mode, int sync, void *arg)
1827 {
1828         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1829         struct mem_cgroup *oom_wait_memcg;
1830         struct oom_wait_info *oom_wait_info;
1831
1832         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1833         oom_wait_memcg = oom_wait_info->memcg;
1834
1835         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1836             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1837                 return 0;
1838         return autoremove_wake_function(wait, mode, sync, arg);
1839 }
1840
1841 static void memcg_oom_recover(struct mem_cgroup *memcg)
1842 {
1843         /*
1844          * For the following lockless ->under_oom test, the only required
1845          * guarantee is that it must see the state asserted by an OOM when
1846          * this function is called as a result of userland actions
1847          * triggered by the notification of the OOM.  This is trivially
1848          * achieved by invoking mem_cgroup_mark_under_oom() before
1849          * triggering notification.
1850          */
1851         if (memcg && memcg->under_oom)
1852                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1853 }
1854
1855 enum oom_status {
1856         OOM_SUCCESS,
1857         OOM_FAILED,
1858         OOM_ASYNC,
1859         OOM_SKIPPED
1860 };
1861
1862 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1863 {
1864         enum oom_status ret;
1865         bool locked;
1866
1867         if (order > PAGE_ALLOC_COSTLY_ORDER)
1868                 return OOM_SKIPPED;
1869
1870         memcg_memory_event(memcg, MEMCG_OOM);
1871
1872         /*
1873          * We are in the middle of the charge context here, so we
1874          * don't want to block when potentially sitting on a callstack
1875          * that holds all kinds of filesystem and mm locks.
1876          *
1877          * cgroup1 allows disabling the OOM killer and waiting for outside
1878          * handling until the charge can succeed; remember the context and put
1879          * the task to sleep at the end of the page fault when all locks are
1880          * released.
1881          *
1882          * On the other hand, in-kernel OOM killer allows for an async victim
1883          * memory reclaim (oom_reaper) and that means that we are not solely
1884          * relying on the oom victim to make a forward progress and we can
1885          * invoke the oom killer here.
1886          *
1887          * Please note that mem_cgroup_out_of_memory might fail to find a
1888          * victim and then we have to bail out from the charge path.
1889          */
1890         if (memcg->oom_kill_disable) {
1891                 if (!current->in_user_fault)
1892                         return OOM_SKIPPED;
1893                 css_get(&memcg->css);
1894                 current->memcg_in_oom = memcg;
1895                 current->memcg_oom_gfp_mask = mask;
1896                 current->memcg_oom_order = order;
1897
1898                 return OOM_ASYNC;
1899         }
1900
1901         mem_cgroup_mark_under_oom(memcg);
1902
1903         locked = mem_cgroup_oom_trylock(memcg);
1904
1905         if (locked)
1906                 mem_cgroup_oom_notify(memcg);
1907
1908         mem_cgroup_unmark_under_oom(memcg);
1909         if (mem_cgroup_out_of_memory(memcg, mask, order))
1910                 ret = OOM_SUCCESS;
1911         else
1912                 ret = OOM_FAILED;
1913
1914         if (locked)
1915                 mem_cgroup_oom_unlock(memcg);
1916
1917         return ret;
1918 }
1919
1920 /**
1921  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1922  * @handle: actually kill/wait or just clean up the OOM state
1923  *
1924  * This has to be called at the end of a page fault if the memcg OOM
1925  * handler was enabled.
1926  *
1927  * Memcg supports userspace OOM handling where failed allocations must
1928  * sleep on a waitqueue until the userspace task resolves the
1929  * situation.  Sleeping directly in the charge context with all kinds
1930  * of locks held is not a good idea, instead we remember an OOM state
1931  * in the task and mem_cgroup_oom_synchronize() has to be called at
1932  * the end of the page fault to complete the OOM handling.
1933  *
1934  * Returns %true if an ongoing memcg OOM situation was detected and
1935  * completed, %false otherwise.
1936  */
1937 bool mem_cgroup_oom_synchronize(bool handle)
1938 {
1939         struct mem_cgroup *memcg = current->memcg_in_oom;
1940         struct oom_wait_info owait;
1941         bool locked;
1942
1943         /* OOM is global, do not handle */
1944         if (!memcg)
1945                 return false;
1946
1947         if (!handle)
1948                 goto cleanup;
1949
1950         owait.memcg = memcg;
1951         owait.wait.flags = 0;
1952         owait.wait.func = memcg_oom_wake_function;
1953         owait.wait.private = current;
1954         INIT_LIST_HEAD(&owait.wait.entry);
1955
1956         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1957         mem_cgroup_mark_under_oom(memcg);
1958
1959         locked = mem_cgroup_oom_trylock(memcg);
1960
1961         if (locked)
1962                 mem_cgroup_oom_notify(memcg);
1963
1964         if (locked && !memcg->oom_kill_disable) {
1965                 mem_cgroup_unmark_under_oom(memcg);
1966                 finish_wait(&memcg_oom_waitq, &owait.wait);
1967                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1968                                          current->memcg_oom_order);
1969         } else {
1970                 schedule();
1971                 mem_cgroup_unmark_under_oom(memcg);
1972                 finish_wait(&memcg_oom_waitq, &owait.wait);
1973         }
1974
1975         if (locked) {
1976                 mem_cgroup_oom_unlock(memcg);
1977                 /*
1978                  * There is no guarantee that an OOM-lock contender
1979                  * sees the wakeups triggered by the OOM kill
1980                  * uncharges.  Wake any sleepers explicitely.
1981                  */
1982                 memcg_oom_recover(memcg);
1983         }
1984 cleanup:
1985         current->memcg_in_oom = NULL;
1986         css_put(&memcg->css);
1987         return true;
1988 }
1989
1990 /**
1991  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1992  * @victim: task to be killed by the OOM killer
1993  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1994  *
1995  * Returns a pointer to a memory cgroup, which has to be cleaned up
1996  * by killing all belonging OOM-killable tasks.
1997  *
1998  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1999  */
2000 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2001                                             struct mem_cgroup *oom_domain)
2002 {
2003         struct mem_cgroup *oom_group = NULL;
2004         struct mem_cgroup *memcg;
2005
2006         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2007                 return NULL;
2008
2009         if (!oom_domain)
2010                 oom_domain = root_mem_cgroup;
2011
2012         rcu_read_lock();
2013
2014         memcg = mem_cgroup_from_task(victim);
2015         if (memcg == root_mem_cgroup)
2016                 goto out;
2017
2018         /*
2019          * If the victim task has been asynchronously moved to a different
2020          * memory cgroup, we might end up killing tasks outside oom_domain.
2021          * In this case it's better to ignore memory.group.oom.
2022          */
2023         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2024                 goto out;
2025
2026         /*
2027          * Traverse the memory cgroup hierarchy from the victim task's
2028          * cgroup up to the OOMing cgroup (or root) to find the
2029          * highest-level memory cgroup with oom.group set.
2030          */
2031         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2032                 if (memcg->oom_group)
2033                         oom_group = memcg;
2034
2035                 if (memcg == oom_domain)
2036                         break;
2037         }
2038
2039         if (oom_group)
2040                 css_get(&oom_group->css);
2041 out:
2042         rcu_read_unlock();
2043
2044         return oom_group;
2045 }
2046
2047 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2048 {
2049         pr_info("Tasks in ");
2050         pr_cont_cgroup_path(memcg->css.cgroup);
2051         pr_cont(" are going to be killed due to memory.oom.group set\n");
2052 }
2053
2054 /**
2055  * lock_page_memcg - lock a page->mem_cgroup binding
2056  * @page: the page
2057  *
2058  * This function protects unlocked LRU pages from being moved to
2059  * another cgroup.
2060  *
2061  * It ensures lifetime of the returned memcg. Caller is responsible
2062  * for the lifetime of the page; __unlock_page_memcg() is available
2063  * when @page might get freed inside the locked section.
2064  */
2065 struct mem_cgroup *lock_page_memcg(struct page *page)
2066 {
2067         struct page *head = compound_head(page); /* rmap on tail pages */
2068         struct mem_cgroup *memcg;
2069         unsigned long flags;
2070
2071         /*
2072          * The RCU lock is held throughout the transaction.  The fast
2073          * path can get away without acquiring the memcg->move_lock
2074          * because page moving starts with an RCU grace period.
2075          *
2076          * The RCU lock also protects the memcg from being freed when
2077          * the page state that is going to change is the only thing
2078          * preventing the page itself from being freed. E.g. writeback
2079          * doesn't hold a page reference and relies on PG_writeback to
2080          * keep off truncation, migration and so forth.
2081          */
2082         rcu_read_lock();
2083
2084         if (mem_cgroup_disabled())
2085                 return NULL;
2086 again:
2087         memcg = head->mem_cgroup;
2088         if (unlikely(!memcg))
2089                 return NULL;
2090
2091         if (atomic_read(&memcg->moving_account) <= 0)
2092                 return memcg;
2093
2094         spin_lock_irqsave(&memcg->move_lock, flags);
2095         if (memcg != head->mem_cgroup) {
2096                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2097                 goto again;
2098         }
2099
2100         /*
2101          * When charge migration first begins, we can have locked and
2102          * unlocked page stat updates happening concurrently.  Track
2103          * the task who has the lock for unlock_page_memcg().
2104          */
2105         memcg->move_lock_task = current;
2106         memcg->move_lock_flags = flags;
2107
2108         return memcg;
2109 }
2110 EXPORT_SYMBOL(lock_page_memcg);
2111
2112 /**
2113  * __unlock_page_memcg - unlock and unpin a memcg
2114  * @memcg: the memcg
2115  *
2116  * Unlock and unpin a memcg returned by lock_page_memcg().
2117  */
2118 void __unlock_page_memcg(struct mem_cgroup *memcg)
2119 {
2120         if (memcg && memcg->move_lock_task == current) {
2121                 unsigned long flags = memcg->move_lock_flags;
2122
2123                 memcg->move_lock_task = NULL;
2124                 memcg->move_lock_flags = 0;
2125
2126                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2127         }
2128
2129         rcu_read_unlock();
2130 }
2131
2132 /**
2133  * unlock_page_memcg - unlock a page->mem_cgroup binding
2134  * @page: the page
2135  */
2136 void unlock_page_memcg(struct page *page)
2137 {
2138         struct page *head = compound_head(page);
2139
2140         __unlock_page_memcg(head->mem_cgroup);
2141 }
2142 EXPORT_SYMBOL(unlock_page_memcg);
2143
2144 struct memcg_stock_pcp {
2145         struct mem_cgroup *cached; /* this never be root cgroup */
2146         unsigned int nr_pages;
2147
2148 #ifdef CONFIG_MEMCG_KMEM
2149         struct obj_cgroup *cached_objcg;
2150         unsigned int nr_bytes;
2151 #endif
2152
2153         struct work_struct work;
2154         unsigned long flags;
2155 #define FLUSHING_CACHED_CHARGE  0
2156 };
2157 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2158 static DEFINE_MUTEX(percpu_charge_mutex);
2159
2160 #ifdef CONFIG_MEMCG_KMEM
2161 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2162 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2163                                      struct mem_cgroup *root_memcg);
2164
2165 #else
2166 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2167 {
2168 }
2169 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2170                                      struct mem_cgroup *root_memcg)
2171 {
2172         return false;
2173 }
2174 #endif
2175
2176 /**
2177  * consume_stock: Try to consume stocked charge on this cpu.
2178  * @memcg: memcg to consume from.
2179  * @nr_pages: how many pages to charge.
2180  *
2181  * The charges will only happen if @memcg matches the current cpu's memcg
2182  * stock, and at least @nr_pages are available in that stock.  Failure to
2183  * service an allocation will refill the stock.
2184  *
2185  * returns true if successful, false otherwise.
2186  */
2187 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2188 {
2189         struct memcg_stock_pcp *stock;
2190         unsigned long flags;
2191         bool ret = false;
2192
2193         if (nr_pages > MEMCG_CHARGE_BATCH)
2194                 return ret;
2195
2196         local_irq_save(flags);
2197
2198         stock = this_cpu_ptr(&memcg_stock);
2199         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2200                 stock->nr_pages -= nr_pages;
2201                 ret = true;
2202         }
2203
2204         local_irq_restore(flags);
2205
2206         return ret;
2207 }
2208
2209 /*
2210  * Returns stocks cached in percpu and reset cached information.
2211  */
2212 static void drain_stock(struct memcg_stock_pcp *stock)
2213 {
2214         struct mem_cgroup *old = stock->cached;
2215
2216         if (!old)
2217                 return;
2218
2219         if (stock->nr_pages) {
2220                 page_counter_uncharge(&old->memory, stock->nr_pages);
2221                 if (do_memsw_account())
2222                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2223                 stock->nr_pages = 0;
2224         }
2225
2226         css_put(&old->css);
2227         stock->cached = NULL;
2228 }
2229
2230 static void drain_local_stock(struct work_struct *dummy)
2231 {
2232         struct memcg_stock_pcp *stock;
2233         unsigned long flags;
2234
2235         /*
2236          * The only protection from memory hotplug vs. drain_stock races is
2237          * that we always operate on local CPU stock here with IRQ disabled
2238          */
2239         local_irq_save(flags);
2240
2241         stock = this_cpu_ptr(&memcg_stock);
2242         drain_obj_stock(stock);
2243         drain_stock(stock);
2244         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2245
2246         local_irq_restore(flags);
2247 }
2248
2249 /*
2250  * Cache charges(val) to local per_cpu area.
2251  * This will be consumed by consume_stock() function, later.
2252  */
2253 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2254 {
2255         struct memcg_stock_pcp *stock;
2256         unsigned long flags;
2257
2258         local_irq_save(flags);
2259
2260         stock = this_cpu_ptr(&memcg_stock);
2261         if (stock->cached != memcg) { /* reset if necessary */
2262                 drain_stock(stock);
2263                 css_get(&memcg->css);
2264                 stock->cached = memcg;
2265         }
2266         stock->nr_pages += nr_pages;
2267
2268         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2269                 drain_stock(stock);
2270
2271         local_irq_restore(flags);
2272 }
2273
2274 /*
2275  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2276  * of the hierarchy under it.
2277  */
2278 static void drain_all_stock(struct mem_cgroup *root_memcg)
2279 {
2280         int cpu, curcpu;
2281
2282         /* If someone's already draining, avoid adding running more workers. */
2283         if (!mutex_trylock(&percpu_charge_mutex))
2284                 return;
2285         /*
2286          * Notify other cpus that system-wide "drain" is running
2287          * We do not care about races with the cpu hotplug because cpu down
2288          * as well as workers from this path always operate on the local
2289          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2290          */
2291         curcpu = get_cpu();
2292         for_each_online_cpu(cpu) {
2293                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2294                 struct mem_cgroup *memcg;
2295                 bool flush = false;
2296
2297                 rcu_read_lock();
2298                 memcg = stock->cached;
2299                 if (memcg && stock->nr_pages &&
2300                     mem_cgroup_is_descendant(memcg, root_memcg))
2301                         flush = true;
2302                 if (obj_stock_flush_required(stock, root_memcg))
2303                         flush = true;
2304                 rcu_read_unlock();
2305
2306                 if (flush &&
2307                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2308                         if (cpu == curcpu)
2309                                 drain_local_stock(&stock->work);
2310                         else
2311                                 schedule_work_on(cpu, &stock->work);
2312                 }
2313         }
2314         put_cpu();
2315         mutex_unlock(&percpu_charge_mutex);
2316 }
2317
2318 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2319 {
2320         struct memcg_stock_pcp *stock;
2321         struct mem_cgroup *memcg, *mi;
2322
2323         stock = &per_cpu(memcg_stock, cpu);
2324         drain_stock(stock);
2325
2326         for_each_mem_cgroup(memcg) {
2327                 int i;
2328
2329                 for (i = 0; i < MEMCG_NR_STAT; i++) {
2330                         int nid;
2331                         long x;
2332
2333                         x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2334                         if (x)
2335                                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2336                                         atomic_long_add(x, &memcg->vmstats[i]);
2337
2338                         if (i >= NR_VM_NODE_STAT_ITEMS)
2339                                 continue;
2340
2341                         for_each_node(nid) {
2342                                 struct mem_cgroup_per_node *pn;
2343
2344                                 pn = mem_cgroup_nodeinfo(memcg, nid);
2345                                 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2346                                 if (x)
2347                                         do {
2348                                                 atomic_long_add(x, &pn->lruvec_stat[i]);
2349                                         } while ((pn = parent_nodeinfo(pn, nid)));
2350                         }
2351                 }
2352
2353                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2354                         long x;
2355
2356                         x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2357                         if (x)
2358                                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2359                                         atomic_long_add(x, &memcg->vmevents[i]);
2360                 }
2361         }
2362
2363         return 0;
2364 }
2365
2366 static void reclaim_high(struct mem_cgroup *memcg,
2367                          unsigned int nr_pages,
2368                          gfp_t gfp_mask)
2369 {
2370         do {
2371                 if (page_counter_read(&memcg->memory) <=
2372                     READ_ONCE(memcg->memory.high))
2373                         continue;
2374                 memcg_memory_event(memcg, MEMCG_HIGH);
2375                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2376         } while ((memcg = parent_mem_cgroup(memcg)) &&
2377                  !mem_cgroup_is_root(memcg));
2378 }
2379
2380 static void high_work_func(struct work_struct *work)
2381 {
2382         struct mem_cgroup *memcg;
2383
2384         memcg = container_of(work, struct mem_cgroup, high_work);
2385         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2386 }
2387
2388 /*
2389  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2390  * enough to still cause a significant slowdown in most cases, while still
2391  * allowing diagnostics and tracing to proceed without becoming stuck.
2392  */
2393 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2394
2395 /*
2396  * When calculating the delay, we use these either side of the exponentiation to
2397  * maintain precision and scale to a reasonable number of jiffies (see the table
2398  * below.
2399  *
2400  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2401  *   overage ratio to a delay.
2402  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2403  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2404  *   to produce a reasonable delay curve.
2405  *
2406  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2407  * reasonable delay curve compared to precision-adjusted overage, not
2408  * penalising heavily at first, but still making sure that growth beyond the
2409  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2410  * example, with a high of 100 megabytes:
2411  *
2412  *  +-------+------------------------+
2413  *  | usage | time to allocate in ms |
2414  *  +-------+------------------------+
2415  *  | 100M  |                      0 |
2416  *  | 101M  |                      6 |
2417  *  | 102M  |                     25 |
2418  *  | 103M  |                     57 |
2419  *  | 104M  |                    102 |
2420  *  | 105M  |                    159 |
2421  *  | 106M  |                    230 |
2422  *  | 107M  |                    313 |
2423  *  | 108M  |                    409 |
2424  *  | 109M  |                    518 |
2425  *  | 110M  |                    639 |
2426  *  | 111M  |                    774 |
2427  *  | 112M  |                    921 |
2428  *  | 113M  |                   1081 |
2429  *  | 114M  |                   1254 |
2430  *  | 115M  |                   1439 |
2431  *  | 116M  |                   1638 |
2432  *  | 117M  |                   1849 |
2433  *  | 118M  |                   2000 |
2434  *  | 119M  |                   2000 |
2435  *  | 120M  |                   2000 |
2436  *  +-------+------------------------+
2437  */
2438  #define MEMCG_DELAY_PRECISION_SHIFT 20
2439  #define MEMCG_DELAY_SCALING_SHIFT 14
2440
2441 static u64 calculate_overage(unsigned long usage, unsigned long high)
2442 {
2443         u64 overage;
2444
2445         if (usage <= high)
2446                 return 0;
2447
2448         /*
2449          * Prevent division by 0 in overage calculation by acting as if
2450          * it was a threshold of 1 page
2451          */
2452         high = max(high, 1UL);
2453
2454         overage = usage - high;
2455         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2456         return div64_u64(overage, high);
2457 }
2458
2459 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2460 {
2461         u64 overage, max_overage = 0;
2462
2463         do {
2464                 overage = calculate_overage(page_counter_read(&memcg->memory),
2465                                             READ_ONCE(memcg->memory.high));
2466                 max_overage = max(overage, max_overage);
2467         } while ((memcg = parent_mem_cgroup(memcg)) &&
2468                  !mem_cgroup_is_root(memcg));
2469
2470         return max_overage;
2471 }
2472
2473 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2474 {
2475         u64 overage, max_overage = 0;
2476
2477         do {
2478                 overage = calculate_overage(page_counter_read(&memcg->swap),
2479                                             READ_ONCE(memcg->swap.high));
2480                 if (overage)
2481                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2482                 max_overage = max(overage, max_overage);
2483         } while ((memcg = parent_mem_cgroup(memcg)) &&
2484                  !mem_cgroup_is_root(memcg));
2485
2486         return max_overage;
2487 }
2488
2489 /*
2490  * Get the number of jiffies that we should penalise a mischievous cgroup which
2491  * is exceeding its memory.high by checking both it and its ancestors.
2492  */
2493 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2494                                           unsigned int nr_pages,
2495                                           u64 max_overage)
2496 {
2497         unsigned long penalty_jiffies;
2498
2499         if (!max_overage)
2500                 return 0;
2501
2502         /*
2503          * We use overage compared to memory.high to calculate the number of
2504          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2505          * fairly lenient on small overages, and increasingly harsh when the
2506          * memcg in question makes it clear that it has no intention of stopping
2507          * its crazy behaviour, so we exponentially increase the delay based on
2508          * overage amount.
2509          */
2510         penalty_jiffies = max_overage * max_overage * HZ;
2511         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2512         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2513
2514         /*
2515          * Factor in the task's own contribution to the overage, such that four
2516          * N-sized allocations are throttled approximately the same as one
2517          * 4N-sized allocation.
2518          *
2519          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2520          * larger the current charge patch is than that.
2521          */
2522         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2523 }
2524
2525 /*
2526  * Scheduled by try_charge() to be executed from the userland return path
2527  * and reclaims memory over the high limit.
2528  */
2529 void mem_cgroup_handle_over_high(void)
2530 {
2531         unsigned long penalty_jiffies;
2532         unsigned long pflags;
2533         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2534         struct mem_cgroup *memcg;
2535
2536         if (likely(!nr_pages))
2537                 return;
2538
2539         memcg = get_mem_cgroup_from_mm(current->mm);
2540         reclaim_high(memcg, nr_pages, GFP_KERNEL);
2541         current->memcg_nr_pages_over_high = 0;
2542
2543         /*
2544          * memory.high is breached and reclaim is unable to keep up. Throttle
2545          * allocators proactively to slow down excessive growth.
2546          */
2547         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2548                                                mem_find_max_overage(memcg));
2549
2550         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2551                                                 swap_find_max_overage(memcg));
2552
2553         /*
2554          * Clamp the max delay per usermode return so as to still keep the
2555          * application moving forwards and also permit diagnostics, albeit
2556          * extremely slowly.
2557          */
2558         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2559
2560         /*
2561          * Don't sleep if the amount of jiffies this memcg owes us is so low
2562          * that it's not even worth doing, in an attempt to be nice to those who
2563          * go only a small amount over their memory.high value and maybe haven't
2564          * been aggressively reclaimed enough yet.
2565          */
2566         if (penalty_jiffies <= HZ / 100)
2567                 goto out;
2568
2569         /*
2570          * If we exit early, we're guaranteed to die (since
2571          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572          * need to account for any ill-begotten jiffies to pay them off later.
2573          */
2574         psi_memstall_enter(&pflags);
2575         schedule_timeout_killable(penalty_jiffies);
2576         psi_memstall_leave(&pflags);
2577
2578 out:
2579         css_put(&memcg->css);
2580 }
2581
2582 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583                       unsigned int nr_pages)
2584 {
2585         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2587         struct mem_cgroup *mem_over_limit;
2588         struct page_counter *counter;
2589         unsigned long nr_reclaimed;
2590         bool may_swap = true;
2591         bool drained = false;
2592         enum oom_status oom_status;
2593
2594         if (mem_cgroup_is_root(memcg))
2595                 return 0;
2596 retry:
2597         if (consume_stock(memcg, nr_pages))
2598                 return 0;
2599
2600         if (!do_memsw_account() ||
2601             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2602                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2603                         goto done_restock;
2604                 if (do_memsw_account())
2605                         page_counter_uncharge(&memcg->memsw, batch);
2606                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2607         } else {
2608                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2609                 may_swap = false;
2610         }
2611
2612         if (batch > nr_pages) {
2613                 batch = nr_pages;
2614                 goto retry;
2615         }
2616
2617         /*
2618          * Memcg doesn't have a dedicated reserve for atomic
2619          * allocations. But like the global atomic pool, we need to
2620          * put the burden of reclaim on regular allocation requests
2621          * and let these go through as privileged allocations.
2622          */
2623         if (gfp_mask & __GFP_ATOMIC)
2624                 goto force;
2625
2626         /*
2627          * Unlike in global OOM situations, memcg is not in a physical
2628          * memory shortage.  Allow dying and OOM-killed tasks to
2629          * bypass the last charges so that they can exit quickly and
2630          * free their memory.
2631          */
2632         if (unlikely(should_force_charge()))
2633                 goto force;
2634
2635         /*
2636          * Prevent unbounded recursion when reclaim operations need to
2637          * allocate memory. This might exceed the limits temporarily,
2638          * but we prefer facilitating memory reclaim and getting back
2639          * under the limit over triggering OOM kills in these cases.
2640          */
2641         if (unlikely(current->flags & PF_MEMALLOC))
2642                 goto force;
2643
2644         if (unlikely(task_in_memcg_oom(current)))
2645                 goto nomem;
2646
2647         if (!gfpflags_allow_blocking(gfp_mask))
2648                 goto nomem;
2649
2650         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2651
2652         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653                                                     gfp_mask, may_swap);
2654
2655         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2656                 goto retry;
2657
2658         if (!drained) {
2659                 drain_all_stock(mem_over_limit);
2660                 drained = true;
2661                 goto retry;
2662         }
2663
2664         if (gfp_mask & __GFP_NORETRY)
2665                 goto nomem;
2666         /*
2667          * Even though the limit is exceeded at this point, reclaim
2668          * may have been able to free some pages.  Retry the charge
2669          * before killing the task.
2670          *
2671          * Only for regular pages, though: huge pages are rather
2672          * unlikely to succeed so close to the limit, and we fall back
2673          * to regular pages anyway in case of failure.
2674          */
2675         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2676                 goto retry;
2677         /*
2678          * At task move, charge accounts can be doubly counted. So, it's
2679          * better to wait until the end of task_move if something is going on.
2680          */
2681         if (mem_cgroup_wait_acct_move(mem_over_limit))
2682                 goto retry;
2683
2684         if (nr_retries--)
2685                 goto retry;
2686
2687         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2688                 goto nomem;
2689
2690         if (gfp_mask & __GFP_NOFAIL)
2691                 goto force;
2692
2693         if (fatal_signal_pending(current))
2694                 goto force;
2695
2696         /*
2697          * keep retrying as long as the memcg oom killer is able to make
2698          * a forward progress or bypass the charge if the oom killer
2699          * couldn't make any progress.
2700          */
2701         oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2702                        get_order(nr_pages * PAGE_SIZE));
2703         switch (oom_status) {
2704         case OOM_SUCCESS:
2705                 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2706                 goto retry;
2707         case OOM_FAILED:
2708                 goto force;
2709         default:
2710                 goto nomem;
2711         }
2712 nomem:
2713         if (!(gfp_mask & __GFP_NOFAIL))
2714                 return -ENOMEM;
2715 force:
2716         /*
2717          * The allocation either can't fail or will lead to more memory
2718          * being freed very soon.  Allow memory usage go over the limit
2719          * temporarily by force charging it.
2720          */
2721         page_counter_charge(&memcg->memory, nr_pages);
2722         if (do_memsw_account())
2723                 page_counter_charge(&memcg->memsw, nr_pages);
2724
2725         return 0;
2726
2727 done_restock:
2728         if (batch > nr_pages)
2729                 refill_stock(memcg, batch - nr_pages);
2730
2731         /*
2732          * If the hierarchy is above the normal consumption range, schedule
2733          * reclaim on returning to userland.  We can perform reclaim here
2734          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2735          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2736          * not recorded as it most likely matches current's and won't
2737          * change in the meantime.  As high limit is checked again before
2738          * reclaim, the cost of mismatch is negligible.
2739          */
2740         do {
2741                 bool mem_high, swap_high;
2742
2743                 mem_high = page_counter_read(&memcg->memory) >
2744                         READ_ONCE(memcg->memory.high);
2745                 swap_high = page_counter_read(&memcg->swap) >
2746                         READ_ONCE(memcg->swap.high);
2747
2748                 /* Don't bother a random interrupted task */
2749                 if (in_interrupt()) {
2750                         if (mem_high) {
2751                                 schedule_work(&memcg->high_work);
2752                                 break;
2753                         }
2754                         continue;
2755                 }
2756
2757                 if (mem_high || swap_high) {
2758                         /*
2759                          * The allocating tasks in this cgroup will need to do
2760                          * reclaim or be throttled to prevent further growth
2761                          * of the memory or swap footprints.
2762                          *
2763                          * Target some best-effort fairness between the tasks,
2764                          * and distribute reclaim work and delay penalties
2765                          * based on how much each task is actually allocating.
2766                          */
2767                         current->memcg_nr_pages_over_high += batch;
2768                         set_notify_resume(current);
2769                         break;
2770                 }
2771         } while ((memcg = parent_mem_cgroup(memcg)));
2772
2773         return 0;
2774 }
2775
2776 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2777 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2778 {
2779         if (mem_cgroup_is_root(memcg))
2780                 return;
2781
2782         page_counter_uncharge(&memcg->memory, nr_pages);
2783         if (do_memsw_account())
2784                 page_counter_uncharge(&memcg->memsw, nr_pages);
2785 }
2786 #endif
2787
2788 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2789 {
2790         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2791         /*
2792          * Any of the following ensures page->mem_cgroup stability:
2793          *
2794          * - the page lock
2795          * - LRU isolation
2796          * - lock_page_memcg()
2797          * - exclusive reference
2798          */
2799         page->mem_cgroup = memcg;
2800 }
2801
2802 #ifdef CONFIG_MEMCG_KMEM
2803 /*
2804  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2805  *
2806  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2807  * cgroup_mutex, etc.
2808  */
2809 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2810 {
2811         struct page *page;
2812
2813         if (mem_cgroup_disabled())
2814                 return NULL;
2815
2816         page = virt_to_head_page(p);
2817
2818         /*
2819          * Slab objects are accounted individually, not per-page.
2820          * Memcg membership data for each individual object is saved in
2821          * the page->obj_cgroups.
2822          */
2823         if (page_has_obj_cgroups(page)) {
2824                 struct obj_cgroup *objcg;
2825                 unsigned int off;
2826
2827                 off = obj_to_index(page->slab_cache, page, p);
2828                 objcg = page_obj_cgroups(page)[off];
2829                 return obj_cgroup_memcg(objcg);
2830         }
2831
2832         /* All other pages use page->mem_cgroup */
2833         return page->mem_cgroup;
2834 }
2835
2836 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2837 {
2838         struct obj_cgroup *objcg = NULL;
2839         struct mem_cgroup *memcg;
2840
2841         if (unlikely(!current->mm && !current->active_memcg))
2842                 return NULL;
2843
2844         rcu_read_lock();
2845         if (unlikely(current->active_memcg))
2846                 memcg = rcu_dereference(current->active_memcg);
2847         else
2848                 memcg = mem_cgroup_from_task(current);
2849
2850         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2851                 objcg = rcu_dereference(memcg->objcg);
2852                 if (objcg && obj_cgroup_tryget(objcg))
2853                         break;
2854         }
2855         rcu_read_unlock();
2856
2857         return objcg;
2858 }
2859
2860 static int memcg_alloc_cache_id(void)
2861 {
2862         int id, size;
2863         int err;
2864
2865         id = ida_simple_get(&memcg_cache_ida,
2866                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2867         if (id < 0)
2868                 return id;
2869
2870         if (id < memcg_nr_cache_ids)
2871                 return id;
2872
2873         /*
2874          * There's no space for the new id in memcg_caches arrays,
2875          * so we have to grow them.
2876          */
2877         down_write(&memcg_cache_ids_sem);
2878
2879         size = 2 * (id + 1);
2880         if (size < MEMCG_CACHES_MIN_SIZE)
2881                 size = MEMCG_CACHES_MIN_SIZE;
2882         else if (size > MEMCG_CACHES_MAX_SIZE)
2883                 size = MEMCG_CACHES_MAX_SIZE;
2884
2885         err = memcg_update_all_list_lrus(size);
2886         if (!err)
2887                 memcg_nr_cache_ids = size;
2888
2889         up_write(&memcg_cache_ids_sem);
2890
2891         if (err) {
2892                 ida_simple_remove(&memcg_cache_ida, id);
2893                 return err;
2894         }
2895         return id;
2896 }
2897
2898 static void memcg_free_cache_id(int id)
2899 {
2900         ida_simple_remove(&memcg_cache_ida, id);
2901 }
2902
2903 /**
2904  * memcg_kmem_get_cache: select memcg or root cache for allocation
2905  * @cachep: the original global kmem cache
2906  *
2907  * Return the kmem_cache we're supposed to use for a slab allocation.
2908  *
2909  * If the cache does not exist yet, if we are the first user of it, we
2910  * create it asynchronously in a workqueue and let the current allocation
2911  * go through with the original cache.
2912  */
2913 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2914 {
2915         struct kmem_cache *memcg_cachep;
2916
2917         memcg_cachep = READ_ONCE(cachep->memcg_params.memcg_cache);
2918         if (unlikely(!memcg_cachep)) {
2919                 queue_work(system_wq, &cachep->memcg_params.work);
2920                 return cachep;
2921         }
2922
2923         return memcg_cachep;
2924 }
2925
2926 /**
2927  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2928  * @memcg: memory cgroup to charge
2929  * @gfp: reclaim mode
2930  * @nr_pages: number of pages to charge
2931  *
2932  * Returns 0 on success, an error code on failure.
2933  */
2934 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2935                         unsigned int nr_pages)
2936 {
2937         struct page_counter *counter;
2938         int ret;
2939
2940         ret = try_charge(memcg, gfp, nr_pages);
2941         if (ret)
2942                 return ret;
2943
2944         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2945             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2946
2947                 /*
2948                  * Enforce __GFP_NOFAIL allocation because callers are not
2949                  * prepared to see failures and likely do not have any failure
2950                  * handling code.
2951                  */
2952                 if (gfp & __GFP_NOFAIL) {
2953                         page_counter_charge(&memcg->kmem, nr_pages);
2954                         return 0;
2955                 }
2956                 cancel_charge(memcg, nr_pages);
2957                 return -ENOMEM;
2958         }
2959         return 0;
2960 }
2961
2962 /**
2963  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2964  * @memcg: memcg to uncharge
2965  * @nr_pages: number of pages to uncharge
2966  */
2967 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2968 {
2969         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2970                 page_counter_uncharge(&memcg->kmem, nr_pages);
2971
2972         page_counter_uncharge(&memcg->memory, nr_pages);
2973         if (do_memsw_account())
2974                 page_counter_uncharge(&memcg->memsw, nr_pages);
2975 }
2976
2977 /**
2978  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2979  * @page: page to charge
2980  * @gfp: reclaim mode
2981  * @order: allocation order
2982  *
2983  * Returns 0 on success, an error code on failure.
2984  */
2985 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2986 {
2987         struct mem_cgroup *memcg;
2988         int ret = 0;
2989
2990         if (memcg_kmem_bypass())
2991                 return 0;
2992
2993         memcg = get_mem_cgroup_from_current();
2994         if (!mem_cgroup_is_root(memcg)) {
2995                 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2996                 if (!ret) {
2997                         page->mem_cgroup = memcg;
2998                         __SetPageKmemcg(page);
2999                         return 0;
3000                 }
3001         }
3002         css_put(&memcg->css);
3003         return ret;
3004 }
3005
3006 /**
3007  * __memcg_kmem_uncharge_page: uncharge a kmem page
3008  * @page: page to uncharge
3009  * @order: allocation order
3010  */
3011 void __memcg_kmem_uncharge_page(struct page *page, int order)
3012 {
3013         struct mem_cgroup *memcg = page->mem_cgroup;
3014         unsigned int nr_pages = 1 << order;
3015
3016         if (!memcg)
3017                 return;
3018
3019         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3020         __memcg_kmem_uncharge(memcg, nr_pages);
3021         page->mem_cgroup = NULL;
3022         css_put(&memcg->css);
3023
3024         /* slab pages do not have PageKmemcg flag set */
3025         if (PageKmemcg(page))
3026                 __ClearPageKmemcg(page);
3027 }
3028
3029 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3030 {
3031         struct memcg_stock_pcp *stock;
3032         unsigned long flags;
3033         bool ret = false;
3034
3035         local_irq_save(flags);
3036
3037         stock = this_cpu_ptr(&memcg_stock);
3038         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3039                 stock->nr_bytes -= nr_bytes;
3040                 ret = true;
3041         }
3042
3043         local_irq_restore(flags);
3044
3045         return ret;
3046 }
3047
3048 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3049 {
3050         struct obj_cgroup *old = stock->cached_objcg;
3051
3052         if (!old)
3053                 return;
3054
3055         if (stock->nr_bytes) {
3056                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3057                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3058
3059                 if (nr_pages) {
3060                         rcu_read_lock();
3061                         __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3062                         rcu_read_unlock();
3063                 }
3064
3065                 /*
3066                  * The leftover is flushed to the centralized per-memcg value.
3067                  * On the next attempt to refill obj stock it will be moved
3068                  * to a per-cpu stock (probably, on an other CPU), see
3069                  * refill_obj_stock().
3070                  *
3071                  * How often it's flushed is a trade-off between the memory
3072                  * limit enforcement accuracy and potential CPU contention,
3073                  * so it might be changed in the future.
3074                  */
3075                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3076                 stock->nr_bytes = 0;
3077         }
3078
3079         obj_cgroup_put(old);
3080         stock->cached_objcg = NULL;
3081 }
3082
3083 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3084                                      struct mem_cgroup *root_memcg)
3085 {
3086         struct mem_cgroup *memcg;
3087
3088         if (stock->cached_objcg) {
3089                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3090                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3091                         return true;
3092         }
3093
3094         return false;
3095 }
3096
3097 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3098 {
3099         struct memcg_stock_pcp *stock;
3100         unsigned long flags;
3101
3102         local_irq_save(flags);
3103
3104         stock = this_cpu_ptr(&memcg_stock);
3105         if (stock->cached_objcg != objcg) { /* reset if necessary */
3106                 drain_obj_stock(stock);
3107                 obj_cgroup_get(objcg);
3108                 stock->cached_objcg = objcg;
3109                 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3110         }
3111         stock->nr_bytes += nr_bytes;
3112
3113         if (stock->nr_bytes > PAGE_SIZE)
3114                 drain_obj_stock(stock);
3115
3116         local_irq_restore(flags);
3117 }
3118
3119 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3120 {
3121         struct mem_cgroup *memcg;
3122         unsigned int nr_pages, nr_bytes;
3123         int ret;
3124
3125         if (consume_obj_stock(objcg, size))
3126                 return 0;
3127
3128         /*
3129          * In theory, memcg->nr_charged_bytes can have enough
3130          * pre-charged bytes to satisfy the allocation. However,
3131          * flushing memcg->nr_charged_bytes requires two atomic
3132          * operations, and memcg->nr_charged_bytes can't be big,
3133          * so it's better to ignore it and try grab some new pages.
3134          * memcg->nr_charged_bytes will be flushed in
3135          * refill_obj_stock(), called from this function or
3136          * independently later.
3137          */
3138         rcu_read_lock();
3139         memcg = obj_cgroup_memcg(objcg);
3140         css_get(&memcg->css);
3141         rcu_read_unlock();
3142
3143         nr_pages = size >> PAGE_SHIFT;
3144         nr_bytes = size & (PAGE_SIZE - 1);
3145
3146         if (nr_bytes)
3147                 nr_pages += 1;
3148
3149         ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3150         if (!ret && nr_bytes)
3151                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3152
3153         css_put(&memcg->css);
3154         return ret;
3155 }
3156
3157 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3158 {
3159         refill_obj_stock(objcg, size);
3160 }
3161
3162 #endif /* CONFIG_MEMCG_KMEM */
3163
3164 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3165
3166 /*
3167  * Because tail pages are not marked as "used", set it. We're under
3168  * pgdat->lru_lock and migration entries setup in all page mappings.
3169  */
3170 void mem_cgroup_split_huge_fixup(struct page *head)
3171 {
3172         struct mem_cgroup *memcg = head->mem_cgroup;
3173         int i;
3174
3175         if (mem_cgroup_disabled())
3176                 return;
3177
3178         for (i = 1; i < HPAGE_PMD_NR; i++) {
3179                 css_get(&memcg->css);
3180                 head[i].mem_cgroup = memcg;
3181         }
3182 }
3183 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3184
3185 #ifdef CONFIG_MEMCG_SWAP
3186 /**
3187  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3188  * @entry: swap entry to be moved
3189  * @from:  mem_cgroup which the entry is moved from
3190  * @to:  mem_cgroup which the entry is moved to
3191  *
3192  * It succeeds only when the swap_cgroup's record for this entry is the same
3193  * as the mem_cgroup's id of @from.
3194  *
3195  * Returns 0 on success, -EINVAL on failure.
3196  *
3197  * The caller must have charged to @to, IOW, called page_counter_charge() about
3198  * both res and memsw, and called css_get().
3199  */
3200 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3201                                 struct mem_cgroup *from, struct mem_cgroup *to)
3202 {
3203         unsigned short old_id, new_id;
3204
3205         old_id = mem_cgroup_id(from);
3206         new_id = mem_cgroup_id(to);
3207
3208         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3209                 mod_memcg_state(from, MEMCG_SWAP, -1);
3210                 mod_memcg_state(to, MEMCG_SWAP, 1);
3211                 return 0;
3212         }
3213         return -EINVAL;
3214 }
3215 #else
3216 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3217                                 struct mem_cgroup *from, struct mem_cgroup *to)
3218 {
3219         return -EINVAL;
3220 }
3221 #endif
3222
3223 static DEFINE_MUTEX(memcg_max_mutex);
3224
3225 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3226                                  unsigned long max, bool memsw)
3227 {
3228         bool enlarge = false;
3229         bool drained = false;
3230         int ret;
3231         bool limits_invariant;
3232         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3233
3234         do {
3235                 if (signal_pending(current)) {
3236                         ret = -EINTR;
3237                         break;
3238                 }
3239
3240                 mutex_lock(&memcg_max_mutex);
3241                 /*
3242                  * Make sure that the new limit (memsw or memory limit) doesn't
3243                  * break our basic invariant rule memory.max <= memsw.max.
3244                  */
3245                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3246                                            max <= memcg->memsw.max;
3247                 if (!limits_invariant) {
3248                         mutex_unlock(&memcg_max_mutex);
3249                         ret = -EINVAL;
3250                         break;
3251                 }
3252                 if (max > counter->max)
3253                         enlarge = true;
3254                 ret = page_counter_set_max(counter, max);
3255                 mutex_unlock(&memcg_max_mutex);
3256
3257                 if (!ret)
3258                         break;
3259
3260                 if (!drained) {
3261                         drain_all_stock(memcg);
3262                         drained = true;
3263                         continue;
3264                 }
3265
3266                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3267                                         GFP_KERNEL, !memsw)) {
3268                         ret = -EBUSY;
3269                         break;
3270                 }
3271         } while (true);
3272
3273         if (!ret && enlarge)
3274                 memcg_oom_recover(memcg);
3275
3276         return ret;
3277 }
3278
3279 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3280                                             gfp_t gfp_mask,
3281                                             unsigned long *total_scanned)
3282 {
3283         unsigned long nr_reclaimed = 0;
3284         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3285         unsigned long reclaimed;
3286         int loop = 0;
3287         struct mem_cgroup_tree_per_node *mctz;
3288         unsigned long excess;
3289         unsigned long nr_scanned;
3290
3291         if (order > 0)
3292                 return 0;
3293
3294         mctz = soft_limit_tree_node(pgdat->node_id);
3295
3296         /*
3297          * Do not even bother to check the largest node if the root
3298          * is empty. Do it lockless to prevent lock bouncing. Races
3299          * are acceptable as soft limit is best effort anyway.
3300          */
3301         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3302                 return 0;
3303
3304         /*
3305          * This loop can run a while, specially if mem_cgroup's continuously
3306          * keep exceeding their soft limit and putting the system under
3307          * pressure
3308          */
3309         do {
3310                 if (next_mz)
3311                         mz = next_mz;
3312                 else
3313                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3314                 if (!mz)
3315                         break;
3316
3317                 nr_scanned = 0;
3318                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3319                                                     gfp_mask, &nr_scanned);
3320                 nr_reclaimed += reclaimed;
3321                 *total_scanned += nr_scanned;
3322                 spin_lock_irq(&mctz->lock);
3323                 __mem_cgroup_remove_exceeded(mz, mctz);
3324
3325                 /*
3326                  * If we failed to reclaim anything from this memory cgroup
3327                  * it is time to move on to the next cgroup
3328                  */
3329                 next_mz = NULL;
3330                 if (!reclaimed)
3331                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3332
3333                 excess = soft_limit_excess(mz->memcg);
3334                 /*
3335                  * One school of thought says that we should not add
3336                  * back the node to the tree if reclaim returns 0.
3337                  * But our reclaim could return 0, simply because due
3338                  * to priority we are exposing a smaller subset of
3339                  * memory to reclaim from. Consider this as a longer
3340                  * term TODO.
3341                  */
3342                 /* If excess == 0, no tree ops */
3343                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3344                 spin_unlock_irq(&mctz->lock);
3345                 css_put(&mz->memcg->css);
3346                 loop++;
3347                 /*
3348                  * Could not reclaim anything and there are no more
3349                  * mem cgroups to try or we seem to be looping without
3350                  * reclaiming anything.
3351                  */
3352                 if (!nr_reclaimed &&
3353                         (next_mz == NULL ||
3354                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3355                         break;
3356         } while (!nr_reclaimed);
3357         if (next_mz)
3358                 css_put(&next_mz->memcg->css);
3359         return nr_reclaimed;
3360 }
3361
3362 /*
3363  * Test whether @memcg has children, dead or alive.  Note that this
3364  * function doesn't care whether @memcg has use_hierarchy enabled and
3365  * returns %true if there are child csses according to the cgroup
3366  * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3367  */
3368 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3369 {
3370         bool ret;
3371
3372         rcu_read_lock();
3373         ret = css_next_child(NULL, &memcg->css);
3374         rcu_read_unlock();
3375         return ret;
3376 }
3377
3378 /*
3379  * Reclaims as many pages from the given memcg as possible.
3380  *
3381  * Caller is responsible for holding css reference for memcg.
3382  */
3383 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3384 {
3385         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3386
3387         /* we call try-to-free pages for make this cgroup empty */
3388         lru_add_drain_all();
3389
3390         drain_all_stock(memcg);
3391
3392         /* try to free all pages in this cgroup */
3393         while (nr_retries && page_counter_read(&memcg->memory)) {
3394                 int progress;
3395
3396                 if (signal_pending(current))
3397                         return -EINTR;
3398
3399                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3400                                                         GFP_KERNEL, true);
3401                 if (!progress) {
3402                         nr_retries--;
3403                         /* maybe some writeback is necessary */
3404                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3405                 }
3406
3407         }
3408
3409         return 0;
3410 }
3411
3412 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3413                                             char *buf, size_t nbytes,
3414                                             loff_t off)
3415 {
3416         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3417
3418         if (mem_cgroup_is_root(memcg))
3419                 return -EINVAL;
3420         return mem_cgroup_force_empty(memcg) ?: nbytes;
3421 }
3422
3423 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3424                                      struct cftype *cft)
3425 {
3426         return mem_cgroup_from_css(css)->use_hierarchy;
3427 }
3428
3429 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3430                                       struct cftype *cft, u64 val)
3431 {
3432         int retval = 0;
3433         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3434         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3435
3436         if (memcg->use_hierarchy == val)
3437                 return 0;
3438
3439         /*
3440          * If parent's use_hierarchy is set, we can't make any modifications
3441          * in the child subtrees. If it is unset, then the change can
3442          * occur, provided the current cgroup has no children.
3443          *
3444          * For the root cgroup, parent_mem is NULL, we allow value to be
3445          * set if there are no children.
3446          */
3447         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3448                                 (val == 1 || val == 0)) {
3449                 if (!memcg_has_children(memcg))
3450                         memcg->use_hierarchy = val;
3451                 else
3452                         retval = -EBUSY;
3453         } else
3454                 retval = -EINVAL;
3455
3456         return retval;
3457 }
3458
3459 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3460 {
3461         unsigned long val;
3462
3463         if (mem_cgroup_is_root(memcg)) {
3464                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3465                         memcg_page_state(memcg, NR_ANON_MAPPED);
3466                 if (swap)
3467                         val += memcg_page_state(memcg, MEMCG_SWAP);
3468         } else {
3469                 if (!swap)
3470                         val = page_counter_read(&memcg->memory);
3471                 else
3472                         val = page_counter_read(&memcg->memsw);
3473         }
3474         return val;
3475 }
3476
3477 enum {
3478         RES_USAGE,
3479         RES_LIMIT,
3480         RES_MAX_USAGE,
3481         RES_FAILCNT,
3482         RES_SOFT_LIMIT,
3483 };
3484
3485 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3486                                struct cftype *cft)
3487 {
3488         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3489         struct page_counter *counter;
3490
3491         switch (MEMFILE_TYPE(cft->private)) {
3492         case _MEM:
3493                 counter = &memcg->memory;
3494                 break;
3495         case _MEMSWAP:
3496                 counter = &memcg->memsw;
3497                 break;
3498         case _KMEM:
3499                 counter = &memcg->kmem;
3500                 break;
3501         case _TCP:
3502                 counter = &memcg->tcpmem;
3503                 break;
3504         default:
3505                 BUG();
3506         }
3507
3508         switch (MEMFILE_ATTR(cft->private)) {
3509         case RES_USAGE:
3510                 if (counter == &memcg->memory)
3511                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3512                 if (counter == &memcg->memsw)
3513                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3514                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3515         case RES_LIMIT:
3516                 return (u64)counter->max * PAGE_SIZE;
3517         case RES_MAX_USAGE:
3518                 return (u64)counter->watermark * PAGE_SIZE;
3519         case RES_FAILCNT:
3520                 return counter->failcnt;
3521         case RES_SOFT_LIMIT:
3522                 return (u64)memcg->soft_limit * PAGE_SIZE;
3523         default:
3524                 BUG();
3525         }
3526 }
3527
3528 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3529 {
3530         unsigned long stat[MEMCG_NR_STAT] = {0};
3531         struct mem_cgroup *mi;
3532         int node, cpu, i;
3533
3534         for_each_online_cpu(cpu)
3535                 for (i = 0; i < MEMCG_NR_STAT; i++)
3536                         stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3537
3538         for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3539                 for (i = 0; i < MEMCG_NR_STAT; i++)
3540                         atomic_long_add(stat[i], &mi->vmstats[i]);
3541
3542         for_each_node(node) {
3543                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3544                 struct mem_cgroup_per_node *pi;
3545
3546                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3547                         stat[i] = 0;
3548
3549                 for_each_online_cpu(cpu)
3550                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3551                                 stat[i] += per_cpu(
3552                                         pn->lruvec_stat_cpu->count[i], cpu);
3553
3554                 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3555                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3556                                 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3557         }
3558 }
3559
3560 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3561 {
3562         unsigned long events[NR_VM_EVENT_ITEMS];
3563         struct mem_cgroup *mi;
3564         int cpu, i;
3565
3566         for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3567                 events[i] = 0;
3568
3569         for_each_online_cpu(cpu)
3570                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3571                         events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3572                                              cpu);
3573
3574         for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3575                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3576                         atomic_long_add(events[i], &mi->vmevents[i]);
3577 }
3578
3579 #ifdef CONFIG_MEMCG_KMEM
3580 static int memcg_online_kmem(struct mem_cgroup *memcg)
3581 {
3582         struct obj_cgroup *objcg;
3583         int memcg_id;
3584
3585         if (cgroup_memory_nokmem)
3586                 return 0;
3587
3588         BUG_ON(memcg->kmemcg_id >= 0);
3589         BUG_ON(memcg->kmem_state);
3590
3591         memcg_id = memcg_alloc_cache_id();
3592         if (memcg_id < 0)
3593                 return memcg_id;
3594
3595         objcg = obj_cgroup_alloc();
3596         if (!objcg) {
3597                 memcg_free_cache_id(memcg_id);
3598                 return -ENOMEM;
3599         }
3600         objcg->memcg = memcg;
3601         rcu_assign_pointer(memcg->objcg, objcg);
3602
3603         static_branch_enable(&memcg_kmem_enabled_key);
3604
3605         /*
3606          * A memory cgroup is considered kmem-online as soon as it gets
3607          * kmemcg_id. Setting the id after enabling static branching will
3608          * guarantee no one starts accounting before all call sites are
3609          * patched.
3610          */
3611         memcg->kmemcg_id = memcg_id;
3612         memcg->kmem_state = KMEM_ONLINE;
3613
3614         return 0;
3615 }
3616
3617 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3618 {
3619         struct cgroup_subsys_state *css;
3620         struct mem_cgroup *parent, *child;
3621         int kmemcg_id;
3622
3623         if (memcg->kmem_state != KMEM_ONLINE)
3624                 return;
3625
3626         memcg->kmem_state = KMEM_ALLOCATED;
3627
3628         parent = parent_mem_cgroup(memcg);
3629         if (!parent)
3630                 parent = root_mem_cgroup;
3631
3632         memcg_reparent_objcgs(memcg, parent);
3633
3634         kmemcg_id = memcg->kmemcg_id;
3635         BUG_ON(kmemcg_id < 0);
3636
3637         /*
3638          * Change kmemcg_id of this cgroup and all its descendants to the
3639          * parent's id, and then move all entries from this cgroup's list_lrus
3640          * to ones of the parent. After we have finished, all list_lrus
3641          * corresponding to this cgroup are guaranteed to remain empty. The
3642          * ordering is imposed by list_lru_node->lock taken by
3643          * memcg_drain_all_list_lrus().
3644          */
3645         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3646         css_for_each_descendant_pre(css, &memcg->css) {
3647                 child = mem_cgroup_from_css(css);
3648                 BUG_ON(child->kmemcg_id != kmemcg_id);
3649                 child->kmemcg_id = parent->kmemcg_id;
3650                 if (!memcg->use_hierarchy)
3651                         break;
3652         }
3653         rcu_read_unlock();
3654
3655         memcg_drain_all_list_lrus(kmemcg_id, parent);
3656
3657         memcg_free_cache_id(kmemcg_id);
3658 }
3659
3660 static void memcg_free_kmem(struct mem_cgroup *memcg)
3661 {
3662         /* css_alloc() failed, offlining didn't happen */
3663         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3664                 memcg_offline_kmem(memcg);
3665 }
3666 #else
3667 static int memcg_online_kmem(struct mem_cgroup *memcg)
3668 {
3669         return 0;
3670 }
3671 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3672 {
3673 }
3674 static void memcg_free_kmem(struct mem_cgroup *memcg)
3675 {
3676 }
3677 #endif /* CONFIG_MEMCG_KMEM */
3678
3679 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3680                                  unsigned long max)
3681 {
3682         int ret;
3683
3684         mutex_lock(&memcg_max_mutex);
3685         ret = page_counter_set_max(&memcg->kmem, max);
3686         mutex_unlock(&memcg_max_mutex);
3687         return ret;
3688 }
3689
3690 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3691 {
3692         int ret;
3693
3694         mutex_lock(&memcg_max_mutex);
3695
3696         ret = page_counter_set_max(&memcg->tcpmem, max);
3697         if (ret)
3698                 goto out;
3699
3700         if (!memcg->tcpmem_active) {
3701                 /*
3702                  * The active flag needs to be written after the static_key
3703                  * update. This is what guarantees that the socket activation
3704                  * function is the last one to run. See mem_cgroup_sk_alloc()
3705                  * for details, and note that we don't mark any socket as
3706                  * belonging to this memcg until that flag is up.
3707                  *
3708                  * We need to do this, because static_keys will span multiple
3709                  * sites, but we can't control their order. If we mark a socket
3710                  * as accounted, but the accounting functions are not patched in
3711                  * yet, we'll lose accounting.
3712                  *
3713                  * We never race with the readers in mem_cgroup_sk_alloc(),
3714                  * because when this value change, the code to process it is not
3715                  * patched in yet.
3716                  */
3717                 static_branch_inc(&memcg_sockets_enabled_key);
3718                 memcg->tcpmem_active = true;
3719         }
3720 out:
3721         mutex_unlock(&memcg_max_mutex);
3722         return ret;
3723 }
3724
3725 /*
3726  * The user of this function is...
3727  * RES_LIMIT.
3728  */
3729 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3730                                 char *buf, size_t nbytes, loff_t off)
3731 {
3732         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3733         unsigned long nr_pages;
3734         int ret;
3735
3736         buf = strstrip(buf);
3737         ret = page_counter_memparse(buf, "-1", &nr_pages);
3738         if (ret)
3739                 return ret;
3740
3741         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3742         case RES_LIMIT:
3743                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3744                         ret = -EINVAL;
3745                         break;
3746                 }
3747                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3748                 case _MEM:
3749                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3750                         break;
3751                 case _MEMSWAP:
3752                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3753                         break;
3754                 case _KMEM:
3755                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3756                                      "Please report your usecase to linux-mm@kvack.org if you "
3757                                      "depend on this functionality.\n");
3758                         ret = memcg_update_kmem_max(memcg, nr_pages);
3759                         break;
3760                 case _TCP:
3761                         ret = memcg_update_tcp_max(memcg, nr_pages);
3762                         break;
3763                 }
3764                 break;
3765         case RES_SOFT_LIMIT:
3766                 memcg->soft_limit = nr_pages;
3767                 ret = 0;
3768                 break;
3769         }
3770         return ret ?: nbytes;
3771 }
3772
3773 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3774                                 size_t nbytes, loff_t off)
3775 {
3776         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3777         struct page_counter *counter;
3778
3779         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3780         case _MEM:
3781                 counter = &memcg->memory;
3782                 break;
3783         case _MEMSWAP:
3784                 counter = &memcg->memsw;
3785                 break;
3786         case _KMEM:
3787                 counter = &memcg->kmem;
3788                 break;
3789         case _TCP:
3790                 counter = &memcg->tcpmem;
3791                 break;
3792         default:
3793                 BUG();
3794         }
3795
3796         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3797         case RES_MAX_USAGE:
3798                 page_counter_reset_watermark(counter);
3799                 break;
3800         case RES_FAILCNT:
3801                 counter->failcnt = 0;
3802                 break;
3803         default:
3804                 BUG();
3805         }
3806
3807         return nbytes;
3808 }
3809
3810 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3811                                         struct cftype *cft)
3812 {
3813         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3814 }
3815
3816 #ifdef CONFIG_MMU
3817 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3818                                         struct cftype *cft, u64 val)
3819 {
3820         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3821
3822         if (val & ~MOVE_MASK)
3823                 return -EINVAL;
3824
3825         /*
3826          * No kind of locking is needed in here, because ->can_attach() will
3827          * check this value once in the beginning of the process, and then carry
3828          * on with stale data. This means that changes to this value will only
3829          * affect task migrations starting after the change.
3830          */
3831         memcg->move_charge_at_immigrate = val;
3832         return 0;
3833 }
3834 #else
3835 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3836                                         struct cftype *cft, u64 val)
3837 {
3838         return -ENOSYS;
3839 }
3840 #endif
3841
3842 #ifdef CONFIG_NUMA
3843
3844 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3845 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3846 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3847
3848 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3849                                 int nid, unsigned int lru_mask, bool tree)
3850 {
3851         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3852         unsigned long nr = 0;
3853         enum lru_list lru;
3854
3855         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3856
3857         for_each_lru(lru) {
3858                 if (!(BIT(lru) & lru_mask))
3859                         continue;
3860                 if (tree)
3861                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3862                 else
3863                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3864         }
3865         return nr;
3866 }
3867
3868 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3869                                              unsigned int lru_mask,
3870                                              bool tree)
3871 {
3872         unsigned long nr = 0;
3873         enum lru_list lru;
3874
3875         for_each_lru(lru) {
3876                 if (!(BIT(lru) & lru_mask))
3877                         continue;
3878                 if (tree)
3879                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3880                 else
3881                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3882         }
3883         return nr;
3884 }
3885
3886 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3887 {
3888         struct numa_stat {
3889                 const char *name;
3890                 unsigned int lru_mask;
3891         };
3892
3893         static const struct numa_stat stats[] = {
3894                 { "total", LRU_ALL },
3895                 { "file", LRU_ALL_FILE },
3896                 { "anon", LRU_ALL_ANON },
3897                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3898         };
3899         const struct numa_stat *stat;
3900         int nid;
3901         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3902
3903         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3904                 seq_printf(m, "%s=%lu", stat->name,
3905                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3906                                                    false));
3907                 for_each_node_state(nid, N_MEMORY)
3908                         seq_printf(m, " N%d=%lu", nid,
3909                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3910                                                         stat->lru_mask, false));
3911                 seq_putc(m, '\n');
3912         }
3913
3914         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3915
3916                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3917                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3918                                                    true));
3919                 for_each_node_state(nid, N_MEMORY)
3920                         seq_printf(m, " N%d=%lu", nid,
3921                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3922                                                         stat->lru_mask, true));
3923                 seq_putc(m, '\n');
3924         }
3925
3926         return 0;
3927 }
3928 #endif /* CONFIG_NUMA */
3929
3930 static const unsigned int memcg1_stats[] = {
3931         NR_FILE_PAGES,
3932         NR_ANON_MAPPED,
3933 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3934         NR_ANON_THPS,
3935 #endif
3936         NR_SHMEM,
3937         NR_FILE_MAPPED,
3938         NR_FILE_DIRTY,
3939         NR_WRITEBACK,
3940         MEMCG_SWAP,
3941 };
3942
3943 static const char *const memcg1_stat_names[] = {
3944         "cache",
3945         "rss",
3946 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3947         "rss_huge",
3948 #endif
3949         "shmem",
3950         "mapped_file",
3951         "dirty",
3952         "writeback",
3953         "swap",
3954 };
3955
3956 /* Universal VM events cgroup1 shows, original sort order */
3957 static const unsigned int memcg1_events[] = {
3958         PGPGIN,
3959         PGPGOUT,
3960         PGFAULT,
3961         PGMAJFAULT,
3962 };
3963
3964 static int memcg_stat_show(struct seq_file *m, void *v)
3965 {
3966         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3967         unsigned long memory, memsw;
3968         struct mem_cgroup *mi;
3969         unsigned int i;
3970
3971         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3972
3973         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3974                 unsigned long nr;
3975
3976                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3977                         continue;
3978                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3979 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3980                 if (memcg1_stats[i] == NR_ANON_THPS)
3981                         nr *= HPAGE_PMD_NR;
3982 #endif
3983                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3984         }
3985
3986         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3987                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3988                            memcg_events_local(memcg, memcg1_events[i]));
3989
3990         for (i = 0; i < NR_LRU_LISTS; i++)
3991                 seq_printf(m, "%s %lu\n", lru_list_name(i),
3992                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3993                            PAGE_SIZE);
3994
3995         /* Hierarchical information */
3996         memory = memsw = PAGE_COUNTER_MAX;
3997         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3998                 memory = min(memory, READ_ONCE(mi->memory.max));
3999                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4000         }
4001         seq_printf(m, "hierarchical_memory_limit %llu\n",
4002                    (u64)memory * PAGE_SIZE);
4003         if (do_memsw_account())
4004                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4005                            (u64)memsw * PAGE_SIZE);
4006
4007         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4008                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4009                         continue;
4010                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4011                            (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4012                            PAGE_SIZE);
4013         }
4014
4015         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4016                 seq_printf(m, "total_%s %llu\n",
4017                            vm_event_name(memcg1_events[i]),
4018                            (u64)memcg_events(memcg, memcg1_events[i]));
4019
4020         for (i = 0; i < NR_LRU_LISTS; i++)
4021                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4022                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4023                            PAGE_SIZE);
4024
4025 #ifdef CONFIG_DEBUG_VM
4026         {
4027                 pg_data_t *pgdat;
4028                 struct mem_cgroup_per_node *mz;
4029                 unsigned long anon_cost = 0;
4030                 unsigned long file_cost = 0;
4031
4032                 for_each_online_pgdat(pgdat) {
4033                         mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4034
4035                         anon_cost += mz->lruvec.anon_cost;
4036                         file_cost += mz->lruvec.file_cost;
4037                 }
4038                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4039                 seq_printf(m, "file_cost %lu\n", file_cost);
4040         }
4041 #endif
4042
4043         return 0;
4044 }
4045
4046 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4047                                       struct cftype *cft)
4048 {
4049         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4050
4051         return mem_cgroup_swappiness(memcg);
4052 }
4053
4054 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4055                                        struct cftype *cft, u64 val)
4056 {
4057         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4058
4059         if (val > 100)
4060                 return -EINVAL;
4061
4062         if (css->parent)
4063                 memcg->swappiness = val;
4064         else
4065                 vm_swappiness = val;
4066
4067         return 0;
4068 }
4069
4070 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4071 {
4072         struct mem_cgroup_threshold_ary *t;
4073         unsigned long usage;
4074         int i;
4075
4076         rcu_read_lock();
4077         if (!swap)
4078                 t = rcu_dereference(memcg->thresholds.primary);
4079         else
4080                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4081
4082         if (!t)
4083                 goto unlock;
4084
4085         usage = mem_cgroup_usage(memcg, swap);
4086
4087         /*
4088          * current_threshold points to threshold just below or equal to usage.
4089          * If it's not true, a threshold was crossed after last
4090          * call of __mem_cgroup_threshold().
4091          */
4092         i = t->current_threshold;
4093
4094         /*
4095          * Iterate backward over array of thresholds starting from
4096          * current_threshold and check if a threshold is crossed.
4097          * If none of thresholds below usage is crossed, we read
4098          * only one element of the array here.
4099          */
4100         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4101                 eventfd_signal(t->entries[i].eventfd, 1);
4102
4103         /* i = current_threshold + 1 */
4104         i++;
4105
4106         /*
4107          * Iterate forward over array of thresholds starting from
4108          * current_threshold+1 and check if a threshold is crossed.
4109          * If none of thresholds above usage is crossed, we read
4110          * only one element of the array here.
4111          */
4112         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4113                 eventfd_signal(t->entries[i].eventfd, 1);
4114
4115         /* Update current_threshold */
4116         t->current_threshold = i - 1;
4117 unlock:
4118         rcu_read_unlock();
4119 }
4120
4121 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4122 {
4123         while (memcg) {
4124                 __mem_cgroup_threshold(memcg, false);
4125                 if (do_memsw_account())
4126                         __mem_cgroup_threshold(memcg, true);
4127
4128                 memcg = parent_mem_cgroup(memcg);
4129         }
4130 }
4131
4132 static int compare_thresholds(const void *a, const void *b)
4133 {
4134         const struct mem_cgroup_threshold *_a = a;
4135         const struct mem_cgroup_threshold *_b = b;
4136
4137         if (_a->threshold > _b->threshold)
4138                 return 1;
4139
4140         if (_a->threshold < _b->threshold)
4141                 return -1;
4142
4143         return 0;
4144 }
4145
4146 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4147 {
4148         struct mem_cgroup_eventfd_list *ev;
4149
4150         spin_lock(&memcg_oom_lock);
4151
4152         list_for_each_entry(ev, &memcg->oom_notify, list)
4153                 eventfd_signal(ev->eventfd, 1);
4154
4155         spin_unlock(&memcg_oom_lock);
4156         return 0;
4157 }
4158
4159 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4160 {
4161         struct mem_cgroup *iter;
4162
4163         for_each_mem_cgroup_tree(iter, memcg)
4164                 mem_cgroup_oom_notify_cb(iter);
4165 }
4166
4167 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4168         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4169 {
4170         struct mem_cgroup_thresholds *thresholds;
4171         struct mem_cgroup_threshold_ary *new;
4172         unsigned long threshold;
4173         unsigned long usage;
4174         int i, size, ret;
4175
4176         ret = page_counter_memparse(args, "-1", &threshold);
4177         if (ret)
4178                 return ret;
4179
4180         mutex_lock(&memcg->thresholds_lock);
4181
4182         if (type == _MEM) {
4183                 thresholds = &memcg->thresholds;
4184                 usage = mem_cgroup_usage(memcg, false);
4185         } else if (type == _MEMSWAP) {
4186                 thresholds = &memcg->memsw_thresholds;
4187                 usage = mem_cgroup_usage(memcg, true);
4188         } else
4189                 BUG();
4190
4191         /* Check if a threshold crossed before adding a new one */
4192         if (thresholds->primary)
4193                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4194
4195         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4196
4197         /* Allocate memory for new array of thresholds */
4198         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4199         if (!new) {
4200                 ret = -ENOMEM;
4201                 goto unlock;
4202         }
4203         new->size = size;
4204
4205         /* Copy thresholds (if any) to new array */
4206         if (thresholds->primary) {
4207                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4208                                 sizeof(struct mem_cgroup_threshold));
4209         }
4210
4211         /* Add new threshold */
4212         new->entries[size - 1].eventfd = eventfd;
4213         new->entries[size - 1].threshold = threshold;
4214
4215         /* Sort thresholds. Registering of new threshold isn't time-critical */
4216         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4217                         compare_thresholds, NULL);
4218
4219         /* Find current threshold */
4220         new->current_threshold = -1;
4221         for (i = 0; i < size; i++) {
4222                 if (new->entries[i].threshold <= usage) {
4223                         /*
4224                          * new->current_threshold will not be used until
4225                          * rcu_assign_pointer(), so it's safe to increment
4226                          * it here.
4227                          */
4228                         ++new->current_threshold;
4229                 } else
4230                         break;
4231         }
4232
4233         /* Free old spare buffer and save old primary buffer as spare */
4234         kfree(thresholds->spare);
4235         thresholds->spare = thresholds->primary;
4236
4237         rcu_assign_pointer(thresholds->primary, new);
4238
4239         /* To be sure that nobody uses thresholds */
4240         synchronize_rcu();
4241
4242 unlock:
4243         mutex_unlock(&memcg->thresholds_lock);
4244
4245         return ret;
4246 }
4247
4248 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4249         struct eventfd_ctx *eventfd, const char *args)
4250 {
4251         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4252 }
4253
4254 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4255         struct eventfd_ctx *eventfd, const char *args)
4256 {
4257         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4258 }
4259
4260 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4261         struct eventfd_ctx *eventfd, enum res_type type)
4262 {
4263         struct mem_cgroup_thresholds *thresholds;
4264         struct mem_cgroup_threshold_ary *new;
4265         unsigned long usage;
4266         int i, j, size, entries;
4267
4268         mutex_lock(&memcg->thresholds_lock);
4269
4270         if (type == _MEM) {
4271                 thresholds = &memcg->thresholds;
4272                 usage = mem_cgroup_usage(memcg, false);
4273         } else if (type == _MEMSWAP) {
4274                 thresholds = &memcg->memsw_thresholds;
4275                 usage = mem_cgroup_usage(memcg, true);
4276         } else
4277                 BUG();
4278
4279         if (!thresholds->primary)
4280                 goto unlock;
4281
4282         /* Check if a threshold crossed before removing */
4283         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4284
4285         /* Calculate new number of threshold */
4286         size = entries = 0;
4287         for (i = 0; i < thresholds->primary->size; i++) {
4288                 if (thresholds->primary->entries[i].eventfd != eventfd)
4289                         size++;
4290                 else
4291                         entries++;
4292         }
4293
4294         new = thresholds->spare;
4295
4296         /* If no items related to eventfd have been cleared, nothing to do */
4297         if (!entries)
4298                 goto unlock;
4299
4300         /* Set thresholds array to NULL if we don't have thresholds */
4301         if (!size) {
4302                 kfree(new);
4303                 new = NULL;
4304                 goto swap_buffers;
4305         }
4306
4307         new->size = size;
4308
4309         /* Copy thresholds and find current threshold */
4310         new->current_threshold = -1;
4311         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4312                 if (thresholds->primary->entries[i].eventfd == eventfd)
4313                         continue;
4314
4315                 new->entries[j] = thresholds->primary->entries[i];
4316                 if (new->entries[j].threshold <= usage) {
4317                         /*
4318                          * new->current_threshold will not be used
4319                          * until rcu_assign_pointer(), so it's safe to increment
4320                          * it here.
4321                          */
4322                         ++new->current_threshold;
4323                 }
4324                 j++;
4325         }
4326
4327 swap_buffers:
4328         /* Swap primary and spare array */
4329         thresholds->spare = thresholds->primary;
4330
4331         rcu_assign_pointer(thresholds->primary, new);
4332
4333         /* To be sure that nobody uses thresholds */
4334         synchronize_rcu();
4335
4336         /* If all events are unregistered, free the spare array */
4337         if (!new) {
4338                 kfree(thresholds->spare);
4339                 thresholds->spare = NULL;
4340         }
4341 unlock:
4342         mutex_unlock(&memcg->thresholds_lock);
4343 }
4344
4345 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4346         struct eventfd_ctx *eventfd)
4347 {
4348         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4349 }
4350
4351 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4352         struct eventfd_ctx *eventfd)
4353 {
4354         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4355 }
4356
4357 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4358         struct eventfd_ctx *eventfd, const char *args)
4359 {
4360         struct mem_cgroup_eventfd_list *event;
4361
4362         event = kmalloc(sizeof(*event), GFP_KERNEL);
4363         if (!event)
4364                 return -ENOMEM;
4365
4366         spin_lock(&memcg_oom_lock);
4367
4368         event->eventfd = eventfd;
4369         list_add(&event->list, &memcg->oom_notify);
4370
4371         /* already in OOM ? */
4372         if (memcg->under_oom)
4373                 eventfd_signal(eventfd, 1);
4374         spin_unlock(&memcg_oom_lock);
4375
4376         return 0;
4377 }
4378
4379 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4380         struct eventfd_ctx *eventfd)
4381 {
4382         struct mem_cgroup_eventfd_list *ev, *tmp;
4383
4384         spin_lock(&memcg_oom_lock);
4385
4386         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4387                 if (ev->eventfd == eventfd) {
4388                         list_del(&ev->list);
4389                         kfree(ev);
4390                 }
4391         }
4392
4393         spin_unlock(&memcg_oom_lock);
4394 }
4395
4396 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4397 {
4398         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4399
4400         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4401         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4402         seq_printf(sf, "oom_kill %lu\n",
4403                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4404         return 0;
4405 }
4406
4407 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4408         struct cftype *cft, u64 val)
4409 {
4410         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4411
4412         /* cannot set to root cgroup and only 0 and 1 are allowed */
4413         if (!css->parent || !((val == 0) || (val == 1)))
4414                 return -EINVAL;
4415
4416         memcg->oom_kill_disable = val;
4417         if (!val)
4418                 memcg_oom_recover(memcg);
4419
4420         return 0;
4421 }
4422
4423 #ifdef CONFIG_CGROUP_WRITEBACK
4424
4425 #include <trace/events/writeback.h>
4426
4427 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4428 {
4429         return wb_domain_init(&memcg->cgwb_domain, gfp);
4430 }
4431
4432 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4433 {
4434         wb_domain_exit(&memcg->cgwb_domain);
4435 }
4436
4437 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4438 {
4439         wb_domain_size_changed(&memcg->cgwb_domain);
4440 }
4441
4442 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4443 {
4444         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4445
4446         if (!memcg->css.parent)
4447                 return NULL;
4448
4449         return &memcg->cgwb_domain;
4450 }
4451
4452 /*
4453  * idx can be of type enum memcg_stat_item or node_stat_item.
4454  * Keep in sync with memcg_exact_page().
4455  */
4456 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4457 {
4458         long x = atomic_long_read(&memcg->vmstats[idx]);
4459         int cpu;
4460
4461         for_each_online_cpu(cpu)
4462                 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4463         if (x < 0)
4464                 x = 0;
4465         return x;
4466 }
4467
4468 /**
4469  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4470  * @wb: bdi_writeback in question
4471  * @pfilepages: out parameter for number of file pages
4472  * @pheadroom: out parameter for number of allocatable pages according to memcg
4473  * @pdirty: out parameter for number of dirty pages
4474  * @pwriteback: out parameter for number of pages under writeback
4475  *
4476  * Determine the numbers of file, headroom, dirty, and writeback pages in
4477  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4478  * is a bit more involved.
4479  *
4480  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4481  * headroom is calculated as the lowest headroom of itself and the
4482  * ancestors.  Note that this doesn't consider the actual amount of
4483  * available memory in the system.  The caller should further cap
4484  * *@pheadroom accordingly.
4485  */
4486 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4487                          unsigned long *pheadroom, unsigned long *pdirty,
4488                          unsigned long *pwriteback)
4489 {
4490         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4491         struct mem_cgroup *parent;
4492
4493         *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4494
4495         *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4496         *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4497                         memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4498         *pheadroom = PAGE_COUNTER_MAX;
4499
4500         while ((parent = parent_mem_cgroup(memcg))) {
4501                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4502                                             READ_ONCE(memcg->memory.high));
4503                 unsigned long used = page_counter_read(&memcg->memory);
4504
4505                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4506                 memcg = parent;
4507         }
4508 }
4509
4510 /*
4511  * Foreign dirty flushing
4512  *
4513  * There's an inherent mismatch between memcg and writeback.  The former
4514  * trackes ownership per-page while the latter per-inode.  This was a
4515  * deliberate design decision because honoring per-page ownership in the
4516  * writeback path is complicated, may lead to higher CPU and IO overheads
4517  * and deemed unnecessary given that write-sharing an inode across
4518  * different cgroups isn't a common use-case.
4519  *
4520  * Combined with inode majority-writer ownership switching, this works well
4521  * enough in most cases but there are some pathological cases.  For
4522  * example, let's say there are two cgroups A and B which keep writing to
4523  * different but confined parts of the same inode.  B owns the inode and
4524  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4525  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4526  * triggering background writeback.  A will be slowed down without a way to
4527  * make writeback of the dirty pages happen.
4528  *
4529  * Conditions like the above can lead to a cgroup getting repatedly and
4530  * severely throttled after making some progress after each
4531  * dirty_expire_interval while the underyling IO device is almost
4532  * completely idle.
4533  *
4534  * Solving this problem completely requires matching the ownership tracking
4535  * granularities between memcg and writeback in either direction.  However,
4536  * the more egregious behaviors can be avoided by simply remembering the
4537  * most recent foreign dirtying events and initiating remote flushes on
4538  * them when local writeback isn't enough to keep the memory clean enough.
4539  *
4540  * The following two functions implement such mechanism.  When a foreign
4541  * page - a page whose memcg and writeback ownerships don't match - is
4542  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4543  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4544  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4545  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4546  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4547  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4548  * limited to MEMCG_CGWB_FRN_CNT.
4549  *
4550  * The mechanism only remembers IDs and doesn't hold any object references.
4551  * As being wrong occasionally doesn't matter, updates and accesses to the
4552  * records are lockless and racy.
4553  */
4554 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4555                                              struct bdi_writeback *wb)
4556 {
4557         struct mem_cgroup *memcg = page->mem_cgroup;
4558         struct memcg_cgwb_frn *frn;
4559         u64 now = get_jiffies_64();
4560         u64 oldest_at = now;
4561         int oldest = -1;
4562         int i;
4563
4564         trace_track_foreign_dirty(page, wb);
4565
4566         /*
4567          * Pick the slot to use.  If there is already a slot for @wb, keep
4568          * using it.  If not replace the oldest one which isn't being
4569          * written out.
4570          */
4571         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4572                 frn = &memcg->cgwb_frn[i];
4573                 if (frn->bdi_id == wb->bdi->id &&
4574                     frn->memcg_id == wb->memcg_css->id)
4575                         break;
4576                 if (time_before64(frn->at, oldest_at) &&
4577                     atomic_read(&frn->done.cnt) == 1) {
4578                         oldest = i;
4579                         oldest_at = frn->at;
4580                 }
4581         }
4582
4583         if (i < MEMCG_CGWB_FRN_CNT) {
4584                 /*
4585                  * Re-using an existing one.  Update timestamp lazily to
4586                  * avoid making the cacheline hot.  We want them to be
4587                  * reasonably up-to-date and significantly shorter than
4588                  * dirty_expire_interval as that's what expires the record.
4589                  * Use the shorter of 1s and dirty_expire_interval / 8.
4590                  */
4591                 unsigned long update_intv =
4592                         min_t(unsigned long, HZ,
4593                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4594
4595                 if (time_before64(frn->at, now - update_intv))
4596                         frn->at = now;
4597         } else if (oldest >= 0) {
4598                 /* replace the oldest free one */
4599                 frn = &memcg->cgwb_frn[oldest];
4600                 frn->bdi_id = wb->bdi->id;
4601                 frn->memcg_id = wb->memcg_css->id;
4602                 frn->at = now;
4603         }
4604 }
4605
4606 /* issue foreign writeback flushes for recorded foreign dirtying events */
4607 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4608 {
4609         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4610         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4611         u64 now = jiffies_64;
4612         int i;
4613
4614         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4615                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4616
4617                 /*
4618                  * If the record is older than dirty_expire_interval,
4619                  * writeback on it has already started.  No need to kick it
4620                  * off again.  Also, don't start a new one if there's
4621                  * already one in flight.
4622                  */
4623                 if (time_after64(frn->at, now - intv) &&
4624                     atomic_read(&frn->done.cnt) == 1) {
4625                         frn->at = 0;
4626                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4627                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4628                                                WB_REASON_FOREIGN_FLUSH,
4629                                                &frn->done);
4630                 }
4631         }
4632 }
4633
4634 #else   /* CONFIG_CGROUP_WRITEBACK */
4635
4636 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4637 {
4638         return 0;
4639 }
4640
4641 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4642 {
4643 }
4644
4645 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4646 {
4647 }
4648
4649 #endif  /* CONFIG_CGROUP_WRITEBACK */
4650
4651 /*
4652  * DO NOT USE IN NEW FILES.
4653  *
4654  * "cgroup.event_control" implementation.
4655  *
4656  * This is way over-engineered.  It tries to support fully configurable
4657  * events for each user.  Such level of flexibility is completely
4658  * unnecessary especially in the light of the planned unified hierarchy.
4659  *
4660  * Please deprecate this and replace with something simpler if at all
4661  * possible.
4662  */
4663
4664 /*
4665  * Unregister event and free resources.
4666  *
4667  * Gets called from workqueue.
4668  */
4669 static void memcg_event_remove(struct work_struct *work)
4670 {
4671         struct mem_cgroup_event *event =
4672                 container_of(work, struct mem_cgroup_event, remove);
4673         struct mem_cgroup *memcg = event->memcg;
4674
4675         remove_wait_queue(event->wqh, &event->wait);
4676
4677         event->unregister_event(memcg, event->eventfd);
4678
4679         /* Notify userspace the event is going away. */
4680         eventfd_signal(event->eventfd, 1);
4681
4682         eventfd_ctx_put(event->eventfd);
4683         kfree(event);
4684         css_put(&memcg->css);
4685 }
4686
4687 /*
4688  * Gets called on EPOLLHUP on eventfd when user closes it.
4689  *
4690  * Called with wqh->lock held and interrupts disabled.
4691  */
4692 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4693                             int sync, void *key)
4694 {
4695         struct mem_cgroup_event *event =
4696                 container_of(wait, struct mem_cgroup_event, wait);
4697         struct mem_cgroup *memcg = event->memcg;
4698         __poll_t flags = key_to_poll(key);
4699
4700         if (flags & EPOLLHUP) {
4701                 /*
4702                  * If the event has been detached at cgroup removal, we
4703                  * can simply return knowing the other side will cleanup
4704                  * for us.
4705                  *
4706                  * We can't race against event freeing since the other
4707                  * side will require wqh->lock via remove_wait_queue(),
4708                  * which we hold.
4709                  */
4710                 spin_lock(&memcg->event_list_lock);
4711                 if (!list_empty(&event->list)) {
4712                         list_del_init(&event->list);
4713                         /*
4714                          * We are in atomic context, but cgroup_event_remove()
4715                          * may sleep, so we have to call it in workqueue.
4716                          */
4717                         schedule_work(&event->remove);
4718                 }
4719                 spin_unlock(&memcg->event_list_lock);
4720         }
4721
4722         return 0;
4723 }
4724
4725 static void memcg_event_ptable_queue_proc(struct file *file,
4726                 wait_queue_head_t *wqh, poll_table *pt)
4727 {
4728         struct mem_cgroup_event *event =
4729                 container_of(pt, struct mem_cgroup_event, pt);
4730
4731         event->wqh = wqh;
4732         add_wait_queue(wqh, &event->wait);
4733 }
4734
4735 /*
4736  * DO NOT USE IN NEW FILES.
4737  *
4738  * Parse input and register new cgroup event handler.
4739  *
4740  * Input must be in format '<event_fd> <control_fd> <args>'.
4741  * Interpretation of args is defined by control file implementation.
4742  */
4743 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4744                                          char *buf, size_t nbytes, loff_t off)
4745 {
4746         struct cgroup_subsys_state *css = of_css(of);
4747         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4748         struct mem_cgroup_event *event;
4749         struct cgroup_subsys_state *cfile_css;
4750         unsigned int efd, cfd;
4751         struct fd efile;
4752         struct fd cfile;
4753         const char *name;
4754         char *endp;
4755         int ret;
4756
4757         buf = strstrip(buf);
4758
4759         efd = simple_strtoul(buf, &endp, 10);
4760         if (*endp != ' ')
4761                 return -EINVAL;
4762         buf = endp + 1;
4763
4764         cfd = simple_strtoul(buf, &endp, 10);
4765         if ((*endp != ' ') && (*endp != '\0'))
4766                 return -EINVAL;
4767         buf = endp + 1;
4768
4769         event = kzalloc(sizeof(*event), GFP_KERNEL);
4770         if (!event)
4771                 return -ENOMEM;
4772
4773         event->memcg = memcg;
4774         INIT_LIST_HEAD(&event->list);
4775         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4776         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4777         INIT_WORK(&event->remove, memcg_event_remove);
4778
4779         efile = fdget(efd);
4780         if (!efile.file) {
4781                 ret = -EBADF;
4782                 goto out_kfree;
4783         }
4784
4785         event->eventfd = eventfd_ctx_fileget(efile.file);
4786         if (IS_ERR(event->eventfd)) {
4787                 ret = PTR_ERR(event->eventfd);
4788                 goto out_put_efile;
4789         }
4790
4791         cfile = fdget(cfd);
4792         if (!cfile.file) {
4793                 ret = -EBADF;
4794                 goto out_put_eventfd;
4795         }
4796
4797         /* the process need read permission on control file */
4798         /* AV: shouldn't we check that it's been opened for read instead? */
4799         ret = inode_permission(file_inode(cfile.file), MAY_READ);
4800         if (ret < 0)
4801                 goto out_put_cfile;
4802
4803         /*
4804          * Determine the event callbacks and set them in @event.  This used
4805          * to be done via struct cftype but cgroup core no longer knows
4806          * about these events.  The following is crude but the whole thing
4807          * is for compatibility anyway.
4808          *
4809          * DO NOT ADD NEW FILES.
4810          */
4811         name = cfile.file->f_path.dentry->d_name.name;
4812
4813         if (!strcmp(name, "memory.usage_in_bytes")) {
4814                 event->register_event = mem_cgroup_usage_register_event;
4815                 event->unregister_event = mem_cgroup_usage_unregister_event;
4816         } else if (!strcmp(name, "memory.oom_control")) {
4817                 event->register_event = mem_cgroup_oom_register_event;
4818                 event->unregister_event = mem_cgroup_oom_unregister_event;
4819         } else if (!strcmp(name, "memory.pressure_level")) {
4820                 event->register_event = vmpressure_register_event;
4821                 event->unregister_event = vmpressure_unregister_event;
4822         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4823                 event->register_event = memsw_cgroup_usage_register_event;
4824                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4825         } else {
4826                 ret = -EINVAL;
4827                 goto out_put_cfile;
4828         }
4829
4830         /*
4831          * Verify @cfile should belong to @css.  Also, remaining events are
4832          * automatically removed on cgroup destruction but the removal is
4833          * asynchronous, so take an extra ref on @css.
4834          */
4835         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4836                                                &memory_cgrp_subsys);
4837         ret = -EINVAL;
4838         if (IS_ERR(cfile_css))
4839                 goto out_put_cfile;
4840         if (cfile_css != css) {
4841                 css_put(cfile_css);
4842                 goto out_put_cfile;
4843         }
4844
4845         ret = event->register_event(memcg, event->eventfd, buf);
4846         if (ret)
4847                 goto out_put_css;
4848
4849         vfs_poll(efile.file, &event->pt);
4850
4851         spin_lock(&memcg->event_list_lock);
4852         list_add(&event->list, &memcg->event_list);
4853         spin_unlock(&memcg->event_list_lock);
4854
4855         fdput(cfile);
4856         fdput(efile);
4857
4858         return nbytes;
4859
4860 out_put_css:
4861         css_put(css);
4862 out_put_cfile:
4863         fdput(cfile);
4864 out_put_eventfd:
4865         eventfd_ctx_put(event->eventfd);
4866 out_put_efile:
4867         fdput(efile);
4868 out_kfree:
4869         kfree(event);
4870
4871         return ret;
4872 }
4873
4874 static struct cftype mem_cgroup_legacy_files[] = {
4875         {
4876                 .name = "usage_in_bytes",
4877                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4878                 .read_u64 = mem_cgroup_read_u64,
4879         },
4880         {
4881                 .name = "max_usage_in_bytes",
4882                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4883                 .write = mem_cgroup_reset,
4884                 .read_u64 = mem_cgroup_read_u64,
4885         },
4886         {
4887                 .name = "limit_in_bytes",
4888                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4889                 .write = mem_cgroup_write,
4890                 .read_u64 = mem_cgroup_read_u64,
4891         },
4892         {
4893                 .name = "soft_limit_in_bytes",
4894                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4895                 .write = mem_cgroup_write,
4896                 .read_u64 = mem_cgroup_read_u64,
4897         },
4898         {
4899                 .name = "failcnt",
4900                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4901                 .write = mem_cgroup_reset,
4902                 .read_u64 = mem_cgroup_read_u64,
4903         },
4904         {
4905                 .name = "stat",
4906                 .seq_show = memcg_stat_show,
4907         },
4908         {
4909                 .name = "force_empty",
4910                 .write = mem_cgroup_force_empty_write,
4911         },
4912         {
4913                 .name = "use_hierarchy",
4914                 .write_u64 = mem_cgroup_hierarchy_write,
4915                 .read_u64 = mem_cgroup_hierarchy_read,
4916         },
4917         {
4918                 .name = "cgroup.event_control",         /* XXX: for compat */
4919                 .write = memcg_write_event_control,
4920                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4921         },
4922         {
4923                 .name = "swappiness",
4924                 .read_u64 = mem_cgroup_swappiness_read,
4925                 .write_u64 = mem_cgroup_swappiness_write,
4926         },
4927         {
4928                 .name = "move_charge_at_immigrate",
4929                 .read_u64 = mem_cgroup_move_charge_read,
4930                 .write_u64 = mem_cgroup_move_charge_write,
4931         },
4932         {
4933                 .name = "oom_control",
4934                 .seq_show = mem_cgroup_oom_control_read,
4935                 .write_u64 = mem_cgroup_oom_control_write,
4936                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4937         },
4938         {
4939                 .name = "pressure_level",
4940         },
4941 #ifdef CONFIG_NUMA
4942         {
4943                 .name = "numa_stat",
4944                 .seq_show = memcg_numa_stat_show,
4945         },
4946 #endif
4947         {
4948                 .name = "kmem.limit_in_bytes",
4949                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4950                 .write = mem_cgroup_write,
4951                 .read_u64 = mem_cgroup_read_u64,
4952         },
4953         {
4954                 .name = "kmem.usage_in_bytes",
4955                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4956                 .read_u64 = mem_cgroup_read_u64,
4957         },
4958         {
4959                 .name = "kmem.failcnt",
4960                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4961                 .write = mem_cgroup_reset,
4962                 .read_u64 = mem_cgroup_read_u64,
4963         },
4964         {
4965                 .name = "kmem.max_usage_in_bytes",
4966                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4967                 .write = mem_cgroup_reset,
4968                 .read_u64 = mem_cgroup_read_u64,
4969         },
4970 #if defined(CONFIG_MEMCG_KMEM) && \
4971         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4972         {
4973                 .name = "kmem.slabinfo",
4974                 .seq_show = memcg_slab_show,
4975         },
4976 #endif
4977         {
4978                 .name = "kmem.tcp.limit_in_bytes",
4979                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4980                 .write = mem_cgroup_write,
4981                 .read_u64 = mem_cgroup_read_u64,
4982         },
4983         {
4984                 .name = "kmem.tcp.usage_in_bytes",
4985                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4986                 .read_u64 = mem_cgroup_read_u64,
4987         },
4988         {
4989                 .name = "kmem.tcp.failcnt",
4990                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4991                 .write = mem_cgroup_reset,
4992                 .read_u64 = mem_cgroup_read_u64,
4993         },
4994         {
4995                 .name = "kmem.tcp.max_usage_in_bytes",
4996                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4997                 .write = mem_cgroup_reset,
4998                 .read_u64 = mem_cgroup_read_u64,
4999         },
5000         { },    /* terminate */
5001 };
5002
5003 /*
5004  * Private memory cgroup IDR
5005  *
5006  * Swap-out records and page cache shadow entries need to store memcg
5007  * references in constrained space, so we maintain an ID space that is
5008  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5009  * memory-controlled cgroups to 64k.
5010  *
5011  * However, there usually are many references to the offline CSS after
5012  * the cgroup has been destroyed, such as page cache or reclaimable
5013  * slab objects, that don't need to hang on to the ID. We want to keep
5014  * those dead CSS from occupying IDs, or we might quickly exhaust the
5015  * relatively small ID space and prevent the creation of new cgroups
5016  * even when there are much fewer than 64k cgroups - possibly none.
5017  *
5018  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5019  * be freed and recycled when it's no longer needed, which is usually
5020  * when the CSS is offlined.
5021  *
5022  * The only exception to that are records of swapped out tmpfs/shmem
5023  * pages that need to be attributed to live ancestors on swapin. But
5024  * those references are manageable from userspace.
5025  */
5026
5027 static DEFINE_IDR(mem_cgroup_idr);
5028
5029 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5030 {
5031         if (memcg->id.id > 0) {
5032                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5033                 memcg->id.id = 0;
5034         }
5035 }
5036
5037 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5038                                                   unsigned int n)
5039 {
5040         refcount_add(n, &memcg->id.ref);
5041 }
5042
5043 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5044 {
5045         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5046                 mem_cgroup_id_remove(memcg);
5047
5048                 /* Memcg ID pins CSS */
5049                 css_put(&memcg->css);
5050         }
5051 }
5052
5053 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5054 {
5055         mem_cgroup_id_put_many(memcg, 1);
5056 }
5057
5058 /**
5059  * mem_cgroup_from_id - look up a memcg from a memcg id
5060  * @id: the memcg id to look up
5061  *
5062  * Caller must hold rcu_read_lock().
5063  */
5064 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5065 {
5066         WARN_ON_ONCE(!rcu_read_lock_held());
5067         return idr_find(&mem_cgroup_idr, id);
5068 }
5069
5070 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5071 {
5072         struct mem_cgroup_per_node *pn;
5073         int tmp = node;
5074         /*
5075          * This routine is called against possible nodes.
5076          * But it's BUG to call kmalloc() against offline node.
5077          *
5078          * TODO: this routine can waste much memory for nodes which will
5079          *       never be onlined. It's better to use memory hotplug callback
5080          *       function.
5081          */
5082         if (!node_state(node, N_NORMAL_MEMORY))
5083                 tmp = -1;
5084         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5085         if (!pn)
5086                 return 1;
5087
5088         pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
5089         if (!pn->lruvec_stat_local) {
5090                 kfree(pn);
5091                 return 1;
5092         }
5093
5094         pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
5095         if (!pn->lruvec_stat_cpu) {
5096                 free_percpu(pn->lruvec_stat_local);
5097                 kfree(pn);
5098                 return 1;
5099         }
5100
5101         lruvec_init(&pn->lruvec);
5102         pn->usage_in_excess = 0;
5103         pn->on_tree = false;
5104         pn->memcg = memcg;
5105
5106         memcg->nodeinfo[node] = pn;
5107         return 0;
5108 }
5109
5110 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5111 {
5112         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5113
5114         if (!pn)
5115                 return;
5116
5117         free_percpu(pn->lruvec_stat_cpu);
5118         free_percpu(pn->lruvec_stat_local);
5119         kfree(pn);
5120 }
5121
5122 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5123 {
5124         int node;
5125
5126         for_each_node(node)
5127                 free_mem_cgroup_per_node_info(memcg, node);
5128         free_percpu(memcg->vmstats_percpu);
5129         free_percpu(memcg->vmstats_local);
5130         kfree(memcg);
5131 }
5132
5133 static void mem_cgroup_free(struct mem_cgroup *memcg)
5134 {
5135         memcg_wb_domain_exit(memcg);
5136         /*
5137          * Flush percpu vmstats and vmevents to guarantee the value correctness
5138          * on parent's and all ancestor levels.
5139          */
5140         memcg_flush_percpu_vmstats(memcg);
5141         memcg_flush_percpu_vmevents(memcg);
5142         __mem_cgroup_free(memcg);
5143 }
5144
5145 static struct mem_cgroup *mem_cgroup_alloc(void)
5146 {
5147         struct mem_cgroup *memcg;
5148         unsigned int size;
5149         int node;
5150         int __maybe_unused i;
5151         long error = -ENOMEM;
5152
5153         size = sizeof(struct mem_cgroup);
5154         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5155
5156         memcg = kzalloc(size, GFP_KERNEL);
5157         if (!memcg)
5158                 return ERR_PTR(error);
5159
5160         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5161                                  1, MEM_CGROUP_ID_MAX,
5162                                  GFP_KERNEL);
5163         if (memcg->id.id < 0) {
5164                 error = memcg->id.id;
5165                 goto fail;
5166         }
5167
5168         memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5169         if (!memcg->vmstats_local)
5170                 goto fail;
5171
5172         memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5173         if (!memcg->vmstats_percpu)
5174                 goto fail;
5175
5176         for_each_node(node)
5177                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5178                         goto fail;
5179
5180         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5181                 goto fail;
5182
5183         INIT_WORK(&memcg->high_work, high_work_func);
5184         INIT_LIST_HEAD(&memcg->oom_notify);
5185         mutex_init(&memcg->thresholds_lock);
5186         spin_lock_init(&memcg->move_lock);
5187         vmpressure_init(&memcg->vmpressure);
5188         INIT_LIST_HEAD(&memcg->event_list);
5189         spin_lock_init(&memcg->event_list_lock);
5190         memcg->socket_pressure = jiffies;
5191 #ifdef CONFIG_MEMCG_KMEM
5192         memcg->kmemcg_id = -1;
5193         INIT_LIST_HEAD(&memcg->objcg_list);
5194 #endif
5195 #ifdef CONFIG_CGROUP_WRITEBACK
5196         INIT_LIST_HEAD(&memcg->cgwb_list);
5197         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5198                 memcg->cgwb_frn[i].done =
5199                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5200 #endif
5201 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5202         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5203         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5204         memcg->deferred_split_queue.split_queue_len = 0;
5205 #endif
5206         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5207         return memcg;
5208 fail:
5209         mem_cgroup_id_remove(memcg);
5210         __mem_cgroup_free(memcg);
5211         return ERR_PTR(error);
5212 }
5213
5214 static struct cgroup_subsys_state * __ref
5215 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5216 {
5217         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5218         struct mem_cgroup *memcg;
5219         long error = -ENOMEM;
5220
5221         memcg = mem_cgroup_alloc();
5222         if (IS_ERR(memcg))
5223                 return ERR_CAST(memcg);
5224
5225         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5226         memcg->soft_limit = PAGE_COUNTER_MAX;
5227         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5228         if (parent) {
5229                 memcg->swappiness = mem_cgroup_swappiness(parent);
5230                 memcg->oom_kill_disable = parent->oom_kill_disable;
5231         }
5232         if (parent && parent->use_hierarchy) {
5233                 memcg->use_hierarchy = true;
5234                 page_counter_init(&memcg->memory, &parent->memory);
5235                 page_counter_init(&memcg->swap, &parent->swap);
5236                 page_counter_init(&memcg->memsw, &parent->memsw);
5237                 page_counter_init(&memcg->kmem, &parent->kmem);
5238                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5239         } else {
5240                 page_counter_init(&memcg->memory, NULL);
5241                 page_counter_init(&memcg->swap, NULL);
5242                 page_counter_init(&memcg->memsw, NULL);
5243                 page_counter_init(&memcg->kmem, NULL);
5244                 page_counter_init(&memcg->tcpmem, NULL);
5245                 /*
5246                  * Deeper hierachy with use_hierarchy == false doesn't make
5247                  * much sense so let cgroup subsystem know about this
5248                  * unfortunate state in our controller.
5249                  */
5250                 if (parent != root_mem_cgroup)
5251                         memory_cgrp_subsys.broken_hierarchy = true;
5252         }
5253
5254         /* The following stuff does not apply to the root */
5255         if (!parent) {
5256                 root_mem_cgroup = memcg;
5257                 return &memcg->css;
5258         }
5259
5260         error = memcg_online_kmem(memcg);
5261         if (error)
5262                 goto fail;
5263
5264         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5265                 static_branch_inc(&memcg_sockets_enabled_key);
5266
5267         return &memcg->css;
5268 fail:
5269         mem_cgroup_id_remove(memcg);
5270         mem_cgroup_free(memcg);
5271         return ERR_PTR(error);
5272 }
5273
5274 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5275 {
5276         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5277
5278         /*
5279          * A memcg must be visible for memcg_expand_shrinker_maps()
5280          * by the time the maps are allocated. So, we allocate maps
5281          * here, when for_each_mem_cgroup() can't skip it.
5282          */
5283         if (memcg_alloc_shrinker_maps(memcg)) {
5284                 mem_cgroup_id_remove(memcg);
5285                 return -ENOMEM;
5286         }
5287
5288         /* Online state pins memcg ID, memcg ID pins CSS */
5289         refcount_set(&memcg->id.ref, 1);
5290         css_get(css);
5291         return 0;
5292 }
5293
5294 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5295 {
5296         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5297         struct mem_cgroup_event *event, *tmp;
5298
5299         /*
5300          * Unregister events and notify userspace.
5301          * Notify userspace about cgroup removing only after rmdir of cgroup
5302          * directory to avoid race between userspace and kernelspace.
5303          */
5304         spin_lock(&memcg->event_list_lock);
5305         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5306                 list_del_init(&event->list);
5307                 schedule_work(&event->remove);
5308         }
5309         spin_unlock(&memcg->event_list_lock);
5310
5311         page_counter_set_min(&memcg->memory, 0);
5312         page_counter_set_low(&memcg->memory, 0);
5313
5314         memcg_offline_kmem(memcg);
5315         wb_memcg_offline(memcg);
5316
5317         drain_all_stock(memcg);
5318
5319         mem_cgroup_id_put(memcg);
5320 }
5321
5322 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5323 {
5324         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5325
5326         invalidate_reclaim_iterators(memcg);
5327 }
5328
5329 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5330 {
5331         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5332         int __maybe_unused i;
5333
5334 #ifdef CONFIG_CGROUP_WRITEBACK
5335         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5336                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5337 #endif
5338         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5339                 static_branch_dec(&memcg_sockets_enabled_key);
5340
5341         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5342                 static_branch_dec(&memcg_sockets_enabled_key);
5343
5344         vmpressure_cleanup(&memcg->vmpressure);
5345         cancel_work_sync(&memcg->high_work);
5346         mem_cgroup_remove_from_trees(memcg);
5347         memcg_free_shrinker_maps(memcg);
5348         memcg_free_kmem(memcg);
5349         mem_cgroup_free(memcg);
5350 }
5351
5352 /**
5353  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5354  * @css: the target css
5355  *
5356  * Reset the states of the mem_cgroup associated with @css.  This is
5357  * invoked when the userland requests disabling on the default hierarchy
5358  * but the memcg is pinned through dependency.  The memcg should stop
5359  * applying policies and should revert to the vanilla state as it may be
5360  * made visible again.
5361  *
5362  * The current implementation only resets the essential configurations.
5363  * This needs to be expanded to cover all the visible parts.
5364  */
5365 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5366 {
5367         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5368
5369         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5370         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5371         page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5372         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5373         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5374         page_counter_set_min(&memcg->memory, 0);
5375         page_counter_set_low(&memcg->memory, 0);
5376         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5377         memcg->soft_limit = PAGE_COUNTER_MAX;
5378         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5379         memcg_wb_domain_size_changed(memcg);
5380 }
5381
5382 #ifdef CONFIG_MMU
5383 /* Handlers for move charge at task migration. */
5384 static int mem_cgroup_do_precharge(unsigned long count)
5385 {
5386         int ret;
5387
5388         /* Try a single bulk charge without reclaim first, kswapd may wake */
5389         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5390         if (!ret) {
5391                 mc.precharge += count;
5392                 return ret;
5393         }
5394
5395         /* Try charges one by one with reclaim, but do not retry */
5396         while (count--) {
5397                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5398                 if (ret)
5399                         return ret;
5400                 mc.precharge++;
5401                 cond_resched();
5402         }
5403         return 0;
5404 }
5405
5406 union mc_target {
5407         struct page     *page;
5408         swp_entry_t     ent;
5409 };
5410
5411 enum mc_target_type {
5412         MC_TARGET_NONE = 0,
5413         MC_TARGET_PAGE,
5414         MC_TARGET_SWAP,
5415         MC_TARGET_DEVICE,
5416 };
5417
5418 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5419                                                 unsigned long addr, pte_t ptent)
5420 {
5421         struct page *page = vm_normal_page(vma, addr, ptent);
5422
5423         if (!page || !page_mapped(page))
5424                 return NULL;
5425         if (PageAnon(page)) {
5426                 if (!(mc.flags & MOVE_ANON))
5427                         return NULL;
5428         } else {
5429                 if (!(mc.flags & MOVE_FILE))
5430                         return NULL;
5431         }
5432         if (!get_page_unless_zero(page))
5433                 return NULL;
5434
5435         return page;
5436 }
5437
5438 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5439 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5440                         pte_t ptent, swp_entry_t *entry)
5441 {
5442         struct page *page = NULL;
5443         swp_entry_t ent = pte_to_swp_entry(ptent);
5444
5445         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5446                 return NULL;
5447
5448         /*
5449          * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5450          * a device and because they are not accessible by CPU they are store
5451          * as special swap entry in the CPU page table.
5452          */
5453         if (is_device_private_entry(ent)) {
5454                 page = device_private_entry_to_page(ent);
5455                 /*
5456                  * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5457                  * a refcount of 1 when free (unlike normal page)
5458                  */
5459                 if (!page_ref_add_unless(page, 1, 1))
5460                         return NULL;
5461                 return page;
5462         }
5463
5464         /*
5465          * Because lookup_swap_cache() updates some statistics counter,
5466          * we call find_get_page() with swapper_space directly.
5467          */
5468         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5469         entry->val = ent.val;
5470
5471         return page;
5472 }
5473 #else
5474 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5475                         pte_t ptent, swp_entry_t *entry)
5476 {
5477         return NULL;
5478 }
5479 #endif
5480
5481 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5482                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5483 {
5484         struct page *page = NULL;
5485         struct address_space *mapping;
5486         pgoff_t pgoff;
5487
5488         if (!vma->vm_file) /* anonymous vma */
5489                 return NULL;
5490         if (!(mc.flags & MOVE_FILE))
5491                 return NULL;
5492
5493         mapping = vma->vm_file->f_mapping;
5494         pgoff = linear_page_index(vma, addr);
5495
5496         /* page is moved even if it's not RSS of this task(page-faulted). */
5497 #ifdef CONFIG_SWAP
5498         /* shmem/tmpfs may report page out on swap: account for that too. */
5499         if (shmem_mapping(mapping)) {
5500                 page = find_get_entry(mapping, pgoff);
5501                 if (xa_is_value(page)) {
5502                         swp_entry_t swp = radix_to_swp_entry(page);
5503                         *entry = swp;
5504                         page = find_get_page(swap_address_space(swp),
5505                                              swp_offset(swp));
5506                 }
5507         } else
5508                 page = find_get_page(mapping, pgoff);
5509 #else
5510         page = find_get_page(mapping, pgoff);
5511 #endif
5512         return page;
5513 }
5514
5515 /**
5516  * mem_cgroup_move_account - move account of the page
5517  * @page: the page
5518  * @compound: charge the page as compound or small page
5519  * @from: mem_cgroup which the page is moved from.
5520  * @to: mem_cgroup which the page is moved to. @from != @to.
5521  *
5522  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5523  *
5524  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5525  * from old cgroup.
5526  */
5527 static int mem_cgroup_move_account(struct page *page,
5528                                    bool compound,
5529                                    struct mem_cgroup *from,
5530                                    struct mem_cgroup *to)
5531 {
5532         struct lruvec *from_vec, *to_vec;
5533         struct pglist_data *pgdat;
5534         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5535         int ret;
5536
5537         VM_BUG_ON(from == to);
5538         VM_BUG_ON_PAGE(PageLRU(page), page);
5539         VM_BUG_ON(compound && !PageTransHuge(page));
5540
5541         /*
5542          * Prevent mem_cgroup_migrate() from looking at
5543          * page->mem_cgroup of its source page while we change it.
5544          */
5545         ret = -EBUSY;
5546         if (!trylock_page(page))
5547                 goto out;
5548
5549         ret = -EINVAL;
5550         if (page->mem_cgroup != from)
5551                 goto out_unlock;
5552
5553         pgdat = page_pgdat(page);
5554         from_vec = mem_cgroup_lruvec(from, pgdat);
5555         to_vec = mem_cgroup_lruvec(to, pgdat);
5556
5557         lock_page_memcg(page);
5558
5559         if (PageAnon(page)) {
5560                 if (page_mapped(page)) {
5561                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5562                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5563                         if (PageTransHuge(page)) {
5564                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5565                                                    -nr_pages);
5566                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5567                                                    nr_pages);
5568                         }
5569
5570                 }
5571         } else {
5572                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5573                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5574
5575                 if (PageSwapBacked(page)) {
5576                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5577                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5578                 }
5579
5580                 if (page_mapped(page)) {
5581                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5582                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5583                 }
5584
5585                 if (PageDirty(page)) {
5586                         struct address_space *mapping = page_mapping(page);
5587
5588                         if (mapping_cap_account_dirty(mapping)) {
5589                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5590                                                    -nr_pages);
5591                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5592                                                    nr_pages);
5593                         }
5594                 }
5595         }
5596
5597         if (PageWriteback(page)) {
5598                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5599                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5600         }
5601
5602         /*
5603          * All state has been migrated, let's switch to the new memcg.
5604          *
5605          * It is safe to change page->mem_cgroup here because the page
5606          * is referenced, charged, isolated, and locked: we can't race
5607          * with (un)charging, migration, LRU putback, or anything else
5608          * that would rely on a stable page->mem_cgroup.
5609          *
5610          * Note that lock_page_memcg is a memcg lock, not a page lock,
5611          * to save space. As soon as we switch page->mem_cgroup to a
5612          * new memcg that isn't locked, the above state can change
5613          * concurrently again. Make sure we're truly done with it.
5614          */
5615         smp_mb();
5616
5617         css_get(&to->css);
5618         css_put(&from->css);
5619
5620         page->mem_cgroup = to;
5621
5622         __unlock_page_memcg(from);
5623
5624         ret = 0;
5625
5626         local_irq_disable();
5627         mem_cgroup_charge_statistics(to, page, nr_pages);
5628         memcg_check_events(to, page);
5629         mem_cgroup_charge_statistics(from, page, -nr_pages);
5630         memcg_check_events(from, page);
5631         local_irq_enable();
5632 out_unlock:
5633         unlock_page(page);
5634 out:
5635         return ret;
5636 }
5637
5638 /**
5639  * get_mctgt_type - get target type of moving charge
5640  * @vma: the vma the pte to be checked belongs
5641  * @addr: the address corresponding to the pte to be checked
5642  * @ptent: the pte to be checked
5643  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5644  *
5645  * Returns
5646  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5647  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5648  *     move charge. if @target is not NULL, the page is stored in target->page
5649  *     with extra refcnt got(Callers should handle it).
5650  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5651  *     target for charge migration. if @target is not NULL, the entry is stored
5652  *     in target->ent.
5653  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5654  *     (so ZONE_DEVICE page and thus not on the lru).
5655  *     For now we such page is charge like a regular page would be as for all
5656  *     intent and purposes it is just special memory taking the place of a
5657  *     regular page.
5658  *
5659  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5660  *
5661  * Called with pte lock held.
5662  */
5663
5664 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5665                 unsigned long addr, pte_t ptent, union mc_target *target)
5666 {
5667         struct page *page = NULL;
5668         enum mc_target_type ret = MC_TARGET_NONE;
5669         swp_entry_t ent = { .val = 0 };
5670
5671         if (pte_present(ptent))
5672                 page = mc_handle_present_pte(vma, addr, ptent);
5673         else if (is_swap_pte(ptent))
5674                 page = mc_handle_swap_pte(vma, ptent, &ent);
5675         else if (pte_none(ptent))
5676                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5677
5678         if (!page && !ent.val)
5679                 return ret;
5680         if (page) {
5681                 /*
5682                  * Do only loose check w/o serialization.
5683                  * mem_cgroup_move_account() checks the page is valid or
5684                  * not under LRU exclusion.
5685                  */
5686                 if (page->mem_cgroup == mc.from) {
5687                         ret = MC_TARGET_PAGE;
5688                         if (is_device_private_page(page))
5689                                 ret = MC_TARGET_DEVICE;
5690                         if (target)
5691                                 target->page = page;
5692                 }
5693                 if (!ret || !target)
5694                         put_page(page);
5695         }
5696         /*
5697          * There is a swap entry and a page doesn't exist or isn't charged.
5698          * But we cannot move a tail-page in a THP.
5699          */
5700         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5701             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5702                 ret = MC_TARGET_SWAP;
5703                 if (target)
5704                         target->ent = ent;
5705         }
5706         return ret;
5707 }
5708
5709 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5710 /*
5711  * We don't consider PMD mapped swapping or file mapped pages because THP does
5712  * not support them for now.
5713  * Caller should make sure that pmd_trans_huge(pmd) is true.
5714  */
5715 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5716                 unsigned long addr, pmd_t pmd, union mc_target *target)
5717 {
5718         struct page *page = NULL;
5719         enum mc_target_type ret = MC_TARGET_NONE;
5720
5721         if (unlikely(is_swap_pmd(pmd))) {
5722                 VM_BUG_ON(thp_migration_supported() &&
5723                                   !is_pmd_migration_entry(pmd));
5724                 return ret;
5725         }
5726         page = pmd_page(pmd);
5727         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5728         if (!(mc.flags & MOVE_ANON))
5729                 return ret;
5730         if (page->mem_cgroup == mc.from) {
5731                 ret = MC_TARGET_PAGE;
5732                 if (target) {
5733                         get_page(page);
5734                         target->page = page;
5735                 }
5736         }
5737         return ret;
5738 }
5739 #else
5740 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5741                 unsigned long addr, pmd_t pmd, union mc_target *target)
5742 {
5743         return MC_TARGET_NONE;
5744 }
5745 #endif
5746
5747 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5748                                         unsigned long addr, unsigned long end,
5749                                         struct mm_walk *walk)
5750 {
5751         struct vm_area_struct *vma = walk->vma;
5752         pte_t *pte;
5753         spinlock_t *ptl;
5754
5755         ptl = pmd_trans_huge_lock(pmd, vma);
5756         if (ptl) {
5757                 /*
5758                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5759                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5760                  * this might change.
5761                  */
5762                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5763                         mc.precharge += HPAGE_PMD_NR;
5764                 spin_unlock(ptl);
5765                 return 0;
5766         }
5767
5768         if (pmd_trans_unstable(pmd))
5769                 return 0;
5770         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5771         for (; addr != end; pte++, addr += PAGE_SIZE)
5772                 if (get_mctgt_type(vma, addr, *pte, NULL))
5773                         mc.precharge++; /* increment precharge temporarily */
5774         pte_unmap_unlock(pte - 1, ptl);
5775         cond_resched();
5776
5777         return 0;
5778 }
5779
5780 static const struct mm_walk_ops precharge_walk_ops = {
5781         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5782 };
5783
5784 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5785 {
5786         unsigned long precharge;
5787
5788         mmap_read_lock(mm);
5789         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5790         mmap_read_unlock(mm);
5791
5792         precharge = mc.precharge;
5793         mc.precharge = 0;
5794
5795         return precharge;
5796 }
5797
5798 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5799 {
5800         unsigned long precharge = mem_cgroup_count_precharge(mm);
5801
5802         VM_BUG_ON(mc.moving_task);
5803         mc.moving_task = current;
5804         return mem_cgroup_do_precharge(precharge);
5805 }
5806
5807 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5808 static void __mem_cgroup_clear_mc(void)
5809 {
5810         struct mem_cgroup *from = mc.from;
5811         struct mem_cgroup *to = mc.to;
5812
5813         /* we must uncharge all the leftover precharges from mc.to */
5814         if (mc.precharge) {
5815                 cancel_charge(mc.to, mc.precharge);
5816                 mc.precharge = 0;
5817         }
5818         /*
5819          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5820          * we must uncharge here.
5821          */
5822         if (mc.moved_charge) {
5823                 cancel_charge(mc.from, mc.moved_charge);
5824                 mc.moved_charge = 0;
5825         }
5826         /* we must fixup refcnts and charges */
5827         if (mc.moved_swap) {
5828                 /* uncharge swap account from the old cgroup */
5829                 if (!mem_cgroup_is_root(mc.from))
5830                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5831
5832                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5833
5834                 /*
5835                  * we charged both to->memory and to->memsw, so we
5836                  * should uncharge to->memory.
5837                  */
5838                 if (!mem_cgroup_is_root(mc.to))
5839                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5840
5841                 mc.moved_swap = 0;
5842         }
5843         memcg_oom_recover(from);
5844         memcg_oom_recover(to);
5845         wake_up_all(&mc.waitq);
5846 }
5847
5848 static void mem_cgroup_clear_mc(void)
5849 {
5850         struct mm_struct *mm = mc.mm;
5851
5852         /*
5853          * we must clear moving_task before waking up waiters at the end of
5854          * task migration.
5855          */
5856         mc.moving_task = NULL;
5857         __mem_cgroup_clear_mc();
5858         spin_lock(&mc.lock);
5859         mc.from = NULL;
5860         mc.to = NULL;
5861         mc.mm = NULL;
5862         spin_unlock(&mc.lock);
5863
5864         mmput(mm);
5865 }
5866
5867 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5868 {
5869         struct cgroup_subsys_state *css;
5870         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5871         struct mem_cgroup *from;
5872         struct task_struct *leader, *p;
5873         struct mm_struct *mm;
5874         unsigned long move_flags;
5875         int ret = 0;
5876
5877         /* charge immigration isn't supported on the default hierarchy */
5878         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5879                 return 0;
5880
5881         /*
5882          * Multi-process migrations only happen on the default hierarchy
5883          * where charge immigration is not used.  Perform charge
5884          * immigration if @tset contains a leader and whine if there are
5885          * multiple.
5886          */
5887         p = NULL;
5888         cgroup_taskset_for_each_leader(leader, css, tset) {
5889                 WARN_ON_ONCE(p);
5890                 p = leader;
5891                 memcg = mem_cgroup_from_css(css);
5892         }
5893         if (!p)
5894                 return 0;
5895
5896         /*
5897          * We are now commited to this value whatever it is. Changes in this
5898          * tunable will only affect upcoming migrations, not the current one.
5899          * So we need to save it, and keep it going.
5900          */
5901         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5902         if (!move_flags)
5903                 return 0;
5904
5905         from = mem_cgroup_from_task(p);
5906
5907         VM_BUG_ON(from == memcg);
5908
5909         mm = get_task_mm(p);
5910         if (!mm)
5911                 return 0;
5912         /* We move charges only when we move a owner of the mm */
5913         if (mm->owner == p) {
5914                 VM_BUG_ON(mc.from);
5915                 VM_BUG_ON(mc.to);
5916                 VM_BUG_ON(mc.precharge);
5917                 VM_BUG_ON(mc.moved_charge);
5918                 VM_BUG_ON(mc.moved_swap);
5919
5920                 spin_lock(&mc.lock);
5921                 mc.mm = mm;
5922                 mc.from = from;
5923                 mc.to = memcg;
5924                 mc.flags = move_flags;
5925                 spin_unlock(&mc.lock);
5926                 /* We set mc.moving_task later */
5927
5928                 ret = mem_cgroup_precharge_mc(mm);
5929                 if (ret)
5930                         mem_cgroup_clear_mc();
5931         } else {
5932                 mmput(mm);
5933         }
5934         return ret;
5935 }
5936
5937 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5938 {
5939         if (mc.to)
5940                 mem_cgroup_clear_mc();
5941 }
5942
5943 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5944                                 unsigned long addr, unsigned long end,
5945                                 struct mm_walk *walk)
5946 {
5947         int ret = 0;
5948         struct vm_area_struct *vma = walk->vma;
5949         pte_t *pte;
5950         spinlock_t *ptl;
5951         enum mc_target_type target_type;
5952         union mc_target target;
5953         struct page *page;
5954
5955         ptl = pmd_trans_huge_lock(pmd, vma);
5956         if (ptl) {
5957                 if (mc.precharge < HPAGE_PMD_NR) {
5958                         spin_unlock(ptl);
5959                         return 0;
5960                 }
5961                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5962                 if (target_type == MC_TARGET_PAGE) {
5963                         page = target.page;
5964                         if (!isolate_lru_page(page)) {
5965                                 if (!mem_cgroup_move_account(page, true,
5966                                                              mc.from, mc.to)) {
5967                                         mc.precharge -= HPAGE_PMD_NR;
5968                                         mc.moved_charge += HPAGE_PMD_NR;
5969                                 }
5970                                 putback_lru_page(page);
5971                         }
5972                         put_page(page);
5973                 } else if (target_type == MC_TARGET_DEVICE) {
5974                         page = target.page;
5975                         if (!mem_cgroup_move_account(page, true,
5976                                                      mc.from, mc.to)) {
5977                                 mc.precharge -= HPAGE_PMD_NR;
5978                                 mc.moved_charge += HPAGE_PMD_NR;
5979                         }
5980                         put_page(page);
5981                 }
5982                 spin_unlock(ptl);
5983                 return 0;
5984         }
5985
5986         if (pmd_trans_unstable(pmd))
5987                 return 0;
5988 retry:
5989         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5990         for (; addr != end; addr += PAGE_SIZE) {
5991                 pte_t ptent = *(pte++);
5992                 bool device = false;
5993                 swp_entry_t ent;
5994
5995                 if (!mc.precharge)
5996                         break;
5997
5998                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5999                 case MC_TARGET_DEVICE:
6000                         device = true;
6001                         fallthrough;
6002                 case MC_TARGET_PAGE:
6003                         page = target.page;
6004                         /*
6005                          * We can have a part of the split pmd here. Moving it
6006                          * can be done but it would be too convoluted so simply
6007                          * ignore such a partial THP and keep it in original
6008                          * memcg. There should be somebody mapping the head.
6009                          */
6010                         if (PageTransCompound(page))
6011                                 goto put;
6012                         if (!device && isolate_lru_page(page))
6013                                 goto put;
6014                         if (!mem_cgroup_move_account(page, false,
6015                                                 mc.from, mc.to)) {
6016                                 mc.precharge--;
6017                                 /* we uncharge from mc.from later. */
6018                                 mc.moved_charge++;
6019                         }
6020                         if (!device)
6021                                 putback_lru_page(page);
6022 put:                    /* get_mctgt_type() gets the page */
6023                         put_page(page);
6024                         break;
6025                 case MC_TARGET_SWAP:
6026                         ent = target.ent;
6027                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6028                                 mc.precharge--;
6029                                 mem_cgroup_id_get_many(mc.to, 1);
6030                                 /* we fixup other refcnts and charges later. */
6031                                 mc.moved_swap++;
6032                         }
6033                         break;
6034                 default:
6035                         break;
6036                 }
6037         }
6038         pte_unmap_unlock(pte - 1, ptl);
6039         cond_resched();
6040
6041         if (addr != end) {
6042                 /*
6043                  * We have consumed all precharges we got in can_attach().
6044                  * We try charge one by one, but don't do any additional
6045                  * charges to mc.to if we have failed in charge once in attach()
6046                  * phase.
6047                  */
6048                 ret = mem_cgroup_do_precharge(1);
6049                 if (!ret)
6050                         goto retry;
6051         }
6052
6053         return ret;
6054 }
6055
6056 static const struct mm_walk_ops charge_walk_ops = {
6057         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6058 };
6059
6060 static void mem_cgroup_move_charge(void)
6061 {
6062         lru_add_drain_all();
6063         /*
6064          * Signal lock_page_memcg() to take the memcg's move_lock
6065          * while we're moving its pages to another memcg. Then wait
6066          * for already started RCU-only updates to finish.
6067          */
6068         atomic_inc(&mc.from->moving_account);
6069         synchronize_rcu();
6070 retry:
6071         if (unlikely(!mmap_read_trylock(mc.mm))) {
6072                 /*
6073                  * Someone who are holding the mmap_lock might be waiting in
6074                  * waitq. So we cancel all extra charges, wake up all waiters,
6075                  * and retry. Because we cancel precharges, we might not be able
6076                  * to move enough charges, but moving charge is a best-effort
6077                  * feature anyway, so it wouldn't be a big problem.
6078                  */
6079                 __mem_cgroup_clear_mc();
6080                 cond_resched();
6081                 goto retry;
6082         }
6083         /*
6084          * When we have consumed all precharges and failed in doing
6085          * additional charge, the page walk just aborts.
6086          */
6087         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6088                         NULL);
6089
6090         mmap_read_unlock(mc.mm);
6091         atomic_dec(&mc.from->moving_account);
6092 }
6093
6094 static void mem_cgroup_move_task(void)
6095 {
6096         if (mc.to) {
6097                 mem_cgroup_move_charge();
6098                 mem_cgroup_clear_mc();
6099         }
6100 }
6101 #else   /* !CONFIG_MMU */
6102 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6103 {
6104         return 0;
6105 }
6106 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6107 {
6108 }
6109 static void mem_cgroup_move_task(void)
6110 {
6111 }
6112 #endif
6113
6114 /*
6115  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6116  * to verify whether we're attached to the default hierarchy on each mount
6117  * attempt.
6118  */
6119 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6120 {
6121         /*
6122          * use_hierarchy is forced on the default hierarchy.  cgroup core
6123          * guarantees that @root doesn't have any children, so turning it
6124          * on for the root memcg is enough.
6125          */
6126         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6127                 root_mem_cgroup->use_hierarchy = true;
6128         else
6129                 root_mem_cgroup->use_hierarchy = false;
6130 }
6131
6132 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6133 {
6134         if (value == PAGE_COUNTER_MAX)
6135                 seq_puts(m, "max\n");
6136         else
6137                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6138
6139         return 0;
6140 }
6141
6142 static u64 memory_current_read(struct cgroup_subsys_state *css,
6143                                struct cftype *cft)
6144 {
6145         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6146
6147         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6148 }
6149
6150 static int memory_min_show(struct seq_file *m, void *v)
6151 {
6152         return seq_puts_memcg_tunable(m,
6153                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6154 }
6155
6156 static ssize_t memory_min_write(struct kernfs_open_file *of,
6157                                 char *buf, size_t nbytes, loff_t off)
6158 {
6159         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6160         unsigned long min;
6161         int err;
6162
6163         buf = strstrip(buf);
6164         err = page_counter_memparse(buf, "max", &min);
6165         if (err)
6166                 return err;
6167
6168         page_counter_set_min(&memcg->memory, min);
6169
6170         return nbytes;
6171 }
6172
6173 static int memory_low_show(struct seq_file *m, void *v)
6174 {
6175         return seq_puts_memcg_tunable(m,
6176                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6177 }
6178
6179 static ssize_t memory_low_write(struct kernfs_open_file *of,
6180                                 char *buf, size_t nbytes, loff_t off)
6181 {
6182         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6183         unsigned long low;
6184         int err;
6185
6186         buf = strstrip(buf);
6187         err = page_counter_memparse(buf, "max", &low);
6188         if (err)
6189                 return err;
6190
6191         page_counter_set_low(&memcg->memory, low);
6192
6193         return nbytes;
6194 }
6195
6196 static int memory_high_show(struct seq_file *m, void *v)
6197 {
6198         return seq_puts_memcg_tunable(m,
6199                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6200 }
6201
6202 static ssize_t memory_high_write(struct kernfs_open_file *of,
6203                                  char *buf, size_t nbytes, loff_t off)
6204 {
6205         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6206         unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6207         bool drained = false;
6208         unsigned long high;
6209         int err;
6210
6211         buf = strstrip(buf);
6212         err = page_counter_memparse(buf, "max", &high);
6213         if (err)
6214                 return err;
6215
6216         page_counter_set_high(&memcg->memory, high);
6217
6218         for (;;) {
6219                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6220                 unsigned long reclaimed;
6221
6222                 if (nr_pages <= high)
6223                         break;
6224
6225                 if (signal_pending(current))
6226                         break;
6227
6228                 if (!drained) {
6229                         drain_all_stock(memcg);
6230                         drained = true;
6231                         continue;
6232                 }
6233
6234                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6235                                                          GFP_KERNEL, true);
6236
6237                 if (!reclaimed && !nr_retries--)
6238                         break;
6239         }
6240
6241         return nbytes;
6242 }
6243
6244 static int memory_max_show(struct seq_file *m, void *v)
6245 {
6246         return seq_puts_memcg_tunable(m,
6247                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6248 }
6249
6250 static ssize_t memory_max_write(struct kernfs_open_file *of,
6251                                 char *buf, size_t nbytes, loff_t off)
6252 {
6253         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6254         unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6255         bool drained = false;
6256         unsigned long max;
6257         int err;
6258
6259         buf = strstrip(buf);
6260         err = page_counter_memparse(buf, "max", &max);
6261         if (err)
6262                 return err;
6263
6264         xchg(&memcg->memory.max, max);
6265
6266         for (;;) {
6267                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6268
6269                 if (nr_pages <= max)
6270                         break;
6271
6272                 if (signal_pending(current))
6273                         break;
6274
6275                 if (!drained) {
6276                         drain_all_stock(memcg);
6277                         drained = true;
6278                         continue;
6279                 }
6280
6281                 if (nr_reclaims) {
6282                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6283                                                           GFP_KERNEL, true))
6284                                 nr_reclaims--;
6285                         continue;
6286                 }
6287
6288                 memcg_memory_event(memcg, MEMCG_OOM);
6289                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6290                         break;
6291         }
6292
6293         memcg_wb_domain_size_changed(memcg);
6294         return nbytes;
6295 }
6296
6297 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6298 {
6299         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6300         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6301         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6302         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6303         seq_printf(m, "oom_kill %lu\n",
6304                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6305 }
6306
6307 static int memory_events_show(struct seq_file *m, void *v)
6308 {
6309         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6310
6311         __memory_events_show(m, memcg->memory_events);
6312         return 0;
6313 }
6314
6315 static int memory_events_local_show(struct seq_file *m, void *v)
6316 {
6317         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6318
6319         __memory_events_show(m, memcg->memory_events_local);
6320         return 0;
6321 }
6322
6323 static int memory_stat_show(struct seq_file *m, void *v)
6324 {
6325         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6326         char *buf;
6327
6328         buf = memory_stat_format(memcg);
6329         if (!buf)
6330                 return -ENOMEM;
6331         seq_puts(m, buf);
6332         kfree(buf);
6333         return 0;
6334 }
6335
6336 static int memory_oom_group_show(struct seq_file *m, void *v)
6337 {
6338         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6339
6340         seq_printf(m, "%d\n", memcg->oom_group);
6341
6342         return 0;
6343 }
6344
6345 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6346                                       char *buf, size_t nbytes, loff_t off)
6347 {
6348         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6349         int ret, oom_group;
6350
6351         buf = strstrip(buf);
6352         if (!buf)
6353                 return -EINVAL;
6354
6355         ret = kstrtoint(buf, 0, &oom_group);
6356         if (ret)
6357                 return ret;
6358
6359         if (oom_group != 0 && oom_group != 1)
6360                 return -EINVAL;
6361
6362         memcg->oom_group = oom_group;
6363
6364         return nbytes;
6365 }
6366
6367 static struct cftype memory_files[] = {
6368         {
6369                 .name = "current",
6370                 .flags = CFTYPE_NOT_ON_ROOT,
6371                 .read_u64 = memory_current_read,
6372         },
6373         {
6374                 .name = "min",
6375                 .flags = CFTYPE_NOT_ON_ROOT,
6376                 .seq_show = memory_min_show,
6377                 .write = memory_min_write,
6378         },
6379         {
6380                 .name = "low",
6381                 .flags = CFTYPE_NOT_ON_ROOT,
6382                 .seq_show = memory_low_show,
6383                 .write = memory_low_write,
6384         },
6385         {
6386                 .name = "high",
6387                 .flags = CFTYPE_NOT_ON_ROOT,
6388                 .seq_show = memory_high_show,
6389                 .write = memory_high_write,
6390         },
6391         {
6392                 .name = "max",
6393                 .flags = CFTYPE_NOT_ON_ROOT,
6394                 .seq_show = memory_max_show,
6395                 .write = memory_max_write,
6396         },
6397         {
6398                 .name = "events",
6399                 .flags = CFTYPE_NOT_ON_ROOT,
6400                 .file_offset = offsetof(struct mem_cgroup, events_file),
6401                 .seq_show = memory_events_show,
6402         },
6403         {
6404                 .name = "events.local",
6405                 .flags = CFTYPE_NOT_ON_ROOT,
6406                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6407                 .seq_show = memory_events_local_show,
6408         },
6409         {
6410                 .name = "stat",
6411                 .seq_show = memory_stat_show,
6412         },
6413         {
6414                 .name = "oom.group",
6415                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6416                 .seq_show = memory_oom_group_show,
6417                 .write = memory_oom_group_write,
6418         },
6419         { }     /* terminate */
6420 };
6421
6422 struct cgroup_subsys memory_cgrp_subsys = {
6423         .css_alloc = mem_cgroup_css_alloc,
6424         .css_online = mem_cgroup_css_online,
6425         .css_offline = mem_cgroup_css_offline,
6426         .css_released = mem_cgroup_css_released,
6427         .css_free = mem_cgroup_css_free,
6428         .css_reset = mem_cgroup_css_reset,
6429         .can_attach = mem_cgroup_can_attach,
6430         .cancel_attach = mem_cgroup_cancel_attach,
6431         .post_attach = mem_cgroup_move_task,
6432         .bind = mem_cgroup_bind,
6433         .dfl_cftypes = memory_files,
6434         .legacy_cftypes = mem_cgroup_legacy_files,
6435         .early_init = 0,
6436 };
6437
6438 /*
6439  * This function calculates an individual cgroup's effective
6440  * protection which is derived from its own memory.min/low, its
6441  * parent's and siblings' settings, as well as the actual memory
6442  * distribution in the tree.
6443  *
6444  * The following rules apply to the effective protection values:
6445  *
6446  * 1. At the first level of reclaim, effective protection is equal to
6447  *    the declared protection in memory.min and memory.low.
6448  *
6449  * 2. To enable safe delegation of the protection configuration, at
6450  *    subsequent levels the effective protection is capped to the
6451  *    parent's effective protection.
6452  *
6453  * 3. To make complex and dynamic subtrees easier to configure, the
6454  *    user is allowed to overcommit the declared protection at a given
6455  *    level. If that is the case, the parent's effective protection is
6456  *    distributed to the children in proportion to how much protection
6457  *    they have declared and how much of it they are utilizing.
6458  *
6459  *    This makes distribution proportional, but also work-conserving:
6460  *    if one cgroup claims much more protection than it uses memory,
6461  *    the unused remainder is available to its siblings.
6462  *
6463  * 4. Conversely, when the declared protection is undercommitted at a
6464  *    given level, the distribution of the larger parental protection
6465  *    budget is NOT proportional. A cgroup's protection from a sibling
6466  *    is capped to its own memory.min/low setting.
6467  *
6468  * 5. However, to allow protecting recursive subtrees from each other
6469  *    without having to declare each individual cgroup's fixed share
6470  *    of the ancestor's claim to protection, any unutilized -
6471  *    "floating" - protection from up the tree is distributed in
6472  *    proportion to each cgroup's *usage*. This makes the protection
6473  *    neutral wrt sibling cgroups and lets them compete freely over
6474  *    the shared parental protection budget, but it protects the
6475  *    subtree as a whole from neighboring subtrees.
6476  *
6477  * Note that 4. and 5. are not in conflict: 4. is about protecting
6478  * against immediate siblings whereas 5. is about protecting against
6479  * neighboring subtrees.
6480  */
6481 static unsigned long effective_protection(unsigned long usage,
6482                                           unsigned long parent_usage,
6483                                           unsigned long setting,
6484                                           unsigned long parent_effective,
6485                                           unsigned long siblings_protected)
6486 {
6487         unsigned long protected;
6488         unsigned long ep;
6489
6490         protected = min(usage, setting);
6491         /*
6492          * If all cgroups at this level combined claim and use more
6493          * protection then what the parent affords them, distribute
6494          * shares in proportion to utilization.
6495          *
6496          * We are using actual utilization rather than the statically
6497          * claimed protection in order to be work-conserving: claimed
6498          * but unused protection is available to siblings that would
6499          * otherwise get a smaller chunk than what they claimed.
6500          */
6501         if (siblings_protected > parent_effective)
6502                 return protected * parent_effective / siblings_protected;
6503
6504         /*
6505          * Ok, utilized protection of all children is within what the
6506          * parent affords them, so we know whatever this child claims
6507          * and utilizes is effectively protected.
6508          *
6509          * If there is unprotected usage beyond this value, reclaim
6510          * will apply pressure in proportion to that amount.
6511          *
6512          * If there is unutilized protection, the cgroup will be fully
6513          * shielded from reclaim, but we do return a smaller value for
6514          * protection than what the group could enjoy in theory. This
6515          * is okay. With the overcommit distribution above, effective
6516          * protection is always dependent on how memory is actually
6517          * consumed among the siblings anyway.
6518          */
6519         ep = protected;
6520
6521         /*
6522          * If the children aren't claiming (all of) the protection
6523          * afforded to them by the parent, distribute the remainder in
6524          * proportion to the (unprotected) memory of each cgroup. That
6525          * way, cgroups that aren't explicitly prioritized wrt each
6526          * other compete freely over the allowance, but they are
6527          * collectively protected from neighboring trees.
6528          *
6529          * We're using unprotected memory for the weight so that if
6530          * some cgroups DO claim explicit protection, we don't protect
6531          * the same bytes twice.
6532          *
6533          * Check both usage and parent_usage against the respective
6534          * protected values. One should imply the other, but they
6535          * aren't read atomically - make sure the division is sane.
6536          */
6537         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6538                 return ep;
6539         if (parent_effective > siblings_protected &&
6540             parent_usage > siblings_protected &&
6541             usage > protected) {
6542                 unsigned long unclaimed;
6543
6544                 unclaimed = parent_effective - siblings_protected;
6545                 unclaimed *= usage - protected;
6546                 unclaimed /= parent_usage - siblings_protected;
6547
6548                 ep += unclaimed;
6549         }
6550
6551         return ep;
6552 }
6553
6554 /**
6555  * mem_cgroup_protected - check if memory consumption is in the normal range
6556  * @root: the top ancestor of the sub-tree being checked
6557  * @memcg: the memory cgroup to check
6558  *
6559  * WARNING: This function is not stateless! It can only be used as part
6560  *          of a top-down tree iteration, not for isolated queries.
6561  *
6562  * Returns one of the following:
6563  *   MEMCG_PROT_NONE: cgroup memory is not protected
6564  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6565  *     an unprotected supply of reclaimable memory from other cgroups.
6566  *   MEMCG_PROT_MIN: cgroup memory is protected
6567  */
6568 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6569                                                 struct mem_cgroup *memcg)
6570 {
6571         unsigned long usage, parent_usage;
6572         struct mem_cgroup *parent;
6573
6574         if (mem_cgroup_disabled())
6575                 return MEMCG_PROT_NONE;
6576
6577         if (!root)
6578                 root = root_mem_cgroup;
6579         if (memcg == root)
6580                 return MEMCG_PROT_NONE;
6581
6582         usage = page_counter_read(&memcg->memory);
6583         if (!usage)
6584                 return MEMCG_PROT_NONE;
6585
6586         parent = parent_mem_cgroup(memcg);
6587         /* No parent means a non-hierarchical mode on v1 memcg */
6588         if (!parent)
6589                 return MEMCG_PROT_NONE;
6590
6591         if (parent == root) {
6592                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6593                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6594                 goto out;
6595         }
6596
6597         parent_usage = page_counter_read(&parent->memory);
6598
6599         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6600                         READ_ONCE(memcg->memory.min),
6601                         READ_ONCE(parent->memory.emin),
6602                         atomic_long_read(&parent->memory.children_min_usage)));
6603
6604         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6605                         READ_ONCE(memcg->memory.low),
6606                         READ_ONCE(parent->memory.elow),
6607                         atomic_long_read(&parent->memory.children_low_usage)));
6608
6609 out:
6610         if (usage <= memcg->memory.emin)
6611                 return MEMCG_PROT_MIN;
6612         else if (usage <= memcg->memory.elow)
6613                 return MEMCG_PROT_LOW;
6614         else
6615                 return MEMCG_PROT_NONE;
6616 }
6617
6618 /**
6619  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6620  * @page: page to charge
6621  * @mm: mm context of the victim
6622  * @gfp_mask: reclaim mode
6623  *
6624  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6625  * pages according to @gfp_mask if necessary.
6626  *
6627  * Returns 0 on success. Otherwise, an error code is returned.
6628  */
6629 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6630 {
6631         unsigned int nr_pages = hpage_nr_pages(page);
6632         struct mem_cgroup *memcg = NULL;
6633         int ret = 0;
6634
6635         if (mem_cgroup_disabled())
6636                 goto out;
6637
6638         if (PageSwapCache(page)) {
6639                 swp_entry_t ent = { .val = page_private(page), };
6640                 unsigned short id;
6641
6642                 /*
6643                  * Every swap fault against a single page tries to charge the
6644                  * page, bail as early as possible.  shmem_unuse() encounters
6645                  * already charged pages, too.  page->mem_cgroup is protected
6646                  * by the page lock, which serializes swap cache removal, which
6647                  * in turn serializes uncharging.
6648                  */
6649                 VM_BUG_ON_PAGE(!PageLocked(page), page);
6650                 if (compound_head(page)->mem_cgroup)
6651                         goto out;
6652
6653                 id = lookup_swap_cgroup_id(ent);
6654                 rcu_read_lock();
6655                 memcg = mem_cgroup_from_id(id);
6656                 if (memcg && !css_tryget_online(&memcg->css))
6657                         memcg = NULL;
6658                 rcu_read_unlock();
6659         }
6660
6661         if (!memcg)
6662                 memcg = get_mem_cgroup_from_mm(mm);
6663
6664         ret = try_charge(memcg, gfp_mask, nr_pages);
6665         if (ret)
6666                 goto out_put;
6667
6668         css_get(&memcg->css);
6669         commit_charge(page, memcg);
6670
6671         local_irq_disable();
6672         mem_cgroup_charge_statistics(memcg, page, nr_pages);
6673         memcg_check_events(memcg, page);
6674         local_irq_enable();
6675
6676         if (PageSwapCache(page)) {
6677                 swp_entry_t entry = { .val = page_private(page) };
6678                 /*
6679                  * The swap entry might not get freed for a long time,
6680                  * let's not wait for it.  The page already received a
6681                  * memory+swap charge, drop the swap entry duplicate.
6682                  */
6683                 mem_cgroup_uncharge_swap(entry, nr_pages);
6684         }
6685
6686 out_put:
6687         css_put(&memcg->css);
6688 out:
6689         return ret;
6690 }
6691
6692 struct uncharge_gather {
6693         struct mem_cgroup *memcg;
6694         unsigned long nr_pages;
6695         unsigned long pgpgout;
6696         unsigned long nr_kmem;
6697         struct page *dummy_page;
6698 };
6699
6700 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6701 {
6702         memset(ug, 0, sizeof(*ug));
6703 }
6704
6705 static void uncharge_batch(const struct uncharge_gather *ug)
6706 {
6707         unsigned long flags;
6708
6709         if (!mem_cgroup_is_root(ug->memcg)) {
6710                 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6711                 if (do_memsw_account())
6712                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6713                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6714                         page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6715                 memcg_oom_recover(ug->memcg);
6716         }
6717
6718         local_irq_save(flags);
6719         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6720         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6721         memcg_check_events(ug->memcg, ug->dummy_page);
6722         local_irq_restore(flags);
6723 }
6724
6725 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6726 {
6727         unsigned long nr_pages;
6728
6729         VM_BUG_ON_PAGE(PageLRU(page), page);
6730
6731         if (!page->mem_cgroup)
6732                 return;
6733
6734         /*
6735          * Nobody should be changing or seriously looking at
6736          * page->mem_cgroup at this point, we have fully
6737          * exclusive access to the page.
6738          */
6739
6740         if (ug->memcg != page->mem_cgroup) {
6741                 if (ug->memcg) {
6742                         uncharge_batch(ug);
6743                         uncharge_gather_clear(ug);
6744                 }
6745                 ug->memcg = page->mem_cgroup;
6746         }
6747
6748         nr_pages = compound_nr(page);
6749         ug->nr_pages += nr_pages;
6750
6751         if (!PageKmemcg(page)) {
6752                 ug->pgpgout++;
6753         } else {
6754                 ug->nr_kmem += nr_pages;
6755                 __ClearPageKmemcg(page);
6756         }
6757
6758         ug->dummy_page = page;
6759         page->mem_cgroup = NULL;
6760         css_put(&ug->memcg->css);
6761 }
6762
6763 static void uncharge_list(struct list_head *page_list)
6764 {
6765         struct uncharge_gather ug;
6766         struct list_head *next;
6767
6768         uncharge_gather_clear(&ug);
6769
6770         /*
6771          * Note that the list can be a single page->lru; hence the
6772          * do-while loop instead of a simple list_for_each_entry().
6773          */
6774         next = page_list->next;
6775         do {
6776                 struct page *page;
6777
6778                 page = list_entry(next, struct page, lru);
6779                 next = page->lru.next;
6780
6781                 uncharge_page(page, &ug);
6782         } while (next != page_list);
6783
6784         if (ug.memcg)
6785                 uncharge_batch(&ug);
6786 }
6787
6788 /**
6789  * mem_cgroup_uncharge - uncharge a page
6790  * @page: page to uncharge
6791  *
6792  * Uncharge a page previously charged with mem_cgroup_charge().
6793  */
6794 void mem_cgroup_uncharge(struct page *page)
6795 {
6796         struct uncharge_gather ug;
6797
6798         if (mem_cgroup_disabled())
6799                 return;
6800
6801         /* Don't touch page->lru of any random page, pre-check: */
6802         if (!page->mem_cgroup)
6803                 return;
6804
6805         uncharge_gather_clear(&ug);
6806         uncharge_page(page, &ug);
6807         uncharge_batch(&ug);
6808 }
6809
6810 /**
6811  * mem_cgroup_uncharge_list - uncharge a list of page
6812  * @page_list: list of pages to uncharge
6813  *
6814  * Uncharge a list of pages previously charged with
6815  * mem_cgroup_charge().
6816  */
6817 void mem_cgroup_uncharge_list(struct list_head *page_list)
6818 {
6819         if (mem_cgroup_disabled())
6820                 return;
6821
6822         if (!list_empty(page_list))
6823                 uncharge_list(page_list);
6824 }
6825
6826 /**
6827  * mem_cgroup_migrate - charge a page's replacement
6828  * @oldpage: currently circulating page
6829  * @newpage: replacement page
6830  *
6831  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6832  * be uncharged upon free.
6833  *
6834  * Both pages must be locked, @newpage->mapping must be set up.
6835  */
6836 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6837 {
6838         struct mem_cgroup *memcg;
6839         unsigned int nr_pages;
6840         unsigned long flags;
6841
6842         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6843         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6844         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6845         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6846                        newpage);
6847
6848         if (mem_cgroup_disabled())
6849                 return;
6850
6851         /* Page cache replacement: new page already charged? */
6852         if (newpage->mem_cgroup)
6853                 return;
6854
6855         /* Swapcache readahead pages can get replaced before being charged */
6856         memcg = oldpage->mem_cgroup;
6857         if (!memcg)
6858                 return;
6859
6860         /* Force-charge the new page. The old one will be freed soon */
6861         nr_pages = hpage_nr_pages(newpage);
6862
6863         page_counter_charge(&memcg->memory, nr_pages);
6864         if (do_memsw_account())
6865                 page_counter_charge(&memcg->memsw, nr_pages);
6866
6867         css_get(&memcg->css);
6868         commit_charge(newpage, memcg);
6869
6870         local_irq_save(flags);
6871         mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6872         memcg_check_events(memcg, newpage);
6873         local_irq_restore(flags);
6874 }
6875
6876 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6877 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6878
6879 void mem_cgroup_sk_alloc(struct sock *sk)
6880 {
6881         struct mem_cgroup *memcg;
6882
6883         if (!mem_cgroup_sockets_enabled)
6884                 return;
6885
6886         /* Do not associate the sock with unrelated interrupted task's memcg. */
6887         if (in_interrupt())
6888                 return;
6889
6890         rcu_read_lock();
6891         memcg = mem_cgroup_from_task(current);
6892         if (memcg == root_mem_cgroup)
6893                 goto out;
6894         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6895                 goto out;
6896         if (css_tryget(&memcg->css))
6897                 sk->sk_memcg = memcg;
6898 out:
6899         rcu_read_unlock();
6900 }
6901
6902 void mem_cgroup_sk_free(struct sock *sk)
6903 {
6904         if (sk->sk_memcg)
6905                 css_put(&sk->sk_memcg->css);
6906 }
6907
6908 /**
6909  * mem_cgroup_charge_skmem - charge socket memory
6910  * @memcg: memcg to charge
6911  * @nr_pages: number of pages to charge
6912  *
6913  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6914  * @memcg's configured limit, %false if the charge had to be forced.
6915  */
6916 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6917 {
6918         gfp_t gfp_mask = GFP_KERNEL;
6919
6920         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6921                 struct page_counter *fail;
6922
6923                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6924                         memcg->tcpmem_pressure = 0;
6925                         return true;
6926                 }
6927                 page_counter_charge(&memcg->tcpmem, nr_pages);
6928                 memcg->tcpmem_pressure = 1;
6929                 return false;
6930         }
6931
6932         /* Don't block in the packet receive path */
6933         if (in_softirq())
6934                 gfp_mask = GFP_NOWAIT;
6935
6936         mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6937
6938         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6939                 return true;
6940
6941         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6942         return false;
6943 }
6944
6945 /**
6946  * mem_cgroup_uncharge_skmem - uncharge socket memory
6947  * @memcg: memcg to uncharge
6948  * @nr_pages: number of pages to uncharge
6949  */
6950 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6951 {
6952         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6953                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6954                 return;
6955         }
6956
6957         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6958
6959         refill_stock(memcg, nr_pages);
6960 }
6961
6962 static int __init cgroup_memory(char *s)
6963 {
6964         char *token;
6965
6966         while ((token = strsep(&s, ",")) != NULL) {
6967                 if (!*token)
6968                         continue;
6969                 if (!strcmp(token, "nosocket"))
6970                         cgroup_memory_nosocket = true;
6971                 if (!strcmp(token, "nokmem"))
6972                         cgroup_memory_nokmem = true;
6973         }
6974         return 0;
6975 }
6976 __setup("cgroup.memory=", cgroup_memory);
6977
6978 /*
6979  * subsys_initcall() for memory controller.
6980  *
6981  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6982  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6983  * basically everything that doesn't depend on a specific mem_cgroup structure
6984  * should be initialized from here.
6985  */
6986 static int __init mem_cgroup_init(void)
6987 {
6988         int cpu, node;
6989
6990         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6991                                   memcg_hotplug_cpu_dead);
6992
6993         for_each_possible_cpu(cpu)
6994                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6995                           drain_local_stock);
6996
6997         for_each_node(node) {
6998                 struct mem_cgroup_tree_per_node *rtpn;
6999
7000                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7001                                     node_online(node) ? node : NUMA_NO_NODE);
7002
7003                 rtpn->rb_root = RB_ROOT;
7004                 rtpn->rb_rightmost = NULL;
7005                 spin_lock_init(&rtpn->lock);
7006                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7007         }
7008
7009         return 0;
7010 }
7011 subsys_initcall(mem_cgroup_init);
7012
7013 #ifdef CONFIG_MEMCG_SWAP
7014 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7015 {
7016         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7017                 /*
7018                  * The root cgroup cannot be destroyed, so it's refcount must
7019                  * always be >= 1.
7020                  */
7021                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7022                         VM_BUG_ON(1);
7023                         break;
7024                 }
7025                 memcg = parent_mem_cgroup(memcg);
7026                 if (!memcg)
7027                         memcg = root_mem_cgroup;
7028         }
7029         return memcg;
7030 }
7031
7032 /**
7033  * mem_cgroup_swapout - transfer a memsw charge to swap
7034  * @page: page whose memsw charge to transfer
7035  * @entry: swap entry to move the charge to
7036  *
7037  * Transfer the memsw charge of @page to @entry.
7038  */
7039 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7040 {
7041         struct mem_cgroup *memcg, *swap_memcg;
7042         unsigned int nr_entries;
7043         unsigned short oldid;
7044
7045         VM_BUG_ON_PAGE(PageLRU(page), page);
7046         VM_BUG_ON_PAGE(page_count(page), page);
7047
7048         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7049                 return;
7050
7051         memcg = page->mem_cgroup;
7052
7053         /* Readahead page, never charged */
7054         if (!memcg)
7055                 return;
7056
7057         /*
7058          * In case the memcg owning these pages has been offlined and doesn't
7059          * have an ID allocated to it anymore, charge the closest online
7060          * ancestor for the swap instead and transfer the memory+swap charge.
7061          */
7062         swap_memcg = mem_cgroup_id_get_online(memcg);
7063         nr_entries = hpage_nr_pages(page);
7064         /* Get references for the tail pages, too */
7065         if (nr_entries > 1)
7066                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7067         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7068                                    nr_entries);
7069         VM_BUG_ON_PAGE(oldid, page);
7070         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7071
7072         page->mem_cgroup = NULL;
7073
7074         if (!mem_cgroup_is_root(memcg))
7075                 page_counter_uncharge(&memcg->memory, nr_entries);
7076
7077         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7078                 if (!mem_cgroup_is_root(swap_memcg))
7079                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7080                 page_counter_uncharge(&memcg->memsw, nr_entries);
7081         }
7082
7083         /*
7084          * Interrupts should be disabled here because the caller holds the
7085          * i_pages lock which is taken with interrupts-off. It is
7086          * important here to have the interrupts disabled because it is the
7087          * only synchronisation we have for updating the per-CPU variables.
7088          */
7089         VM_BUG_ON(!irqs_disabled());
7090         mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7091         memcg_check_events(memcg, page);
7092
7093         css_put(&memcg->css);
7094 }
7095
7096 /**
7097  * mem_cgroup_try_charge_swap - try charging swap space for a page
7098  * @page: page being added to swap
7099  * @entry: swap entry to charge
7100  *
7101  * Try to charge @page's memcg for the swap space at @entry.
7102  *
7103  * Returns 0 on success, -ENOMEM on failure.
7104  */
7105 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7106 {
7107         unsigned int nr_pages = hpage_nr_pages(page);
7108         struct page_counter *counter;
7109         struct mem_cgroup *memcg;
7110         unsigned short oldid;
7111
7112         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7113                 return 0;
7114
7115         memcg = page->mem_cgroup;
7116
7117         /* Readahead page, never charged */
7118         if (!memcg)
7119                 return 0;
7120
7121         if (!entry.val) {
7122                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7123                 return 0;
7124         }
7125
7126         memcg = mem_cgroup_id_get_online(memcg);
7127
7128         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7129             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7130                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7131                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7132                 mem_cgroup_id_put(memcg);
7133                 return -ENOMEM;
7134         }
7135
7136         /* Get references for the tail pages, too */
7137         if (nr_pages > 1)
7138                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7139         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7140         VM_BUG_ON_PAGE(oldid, page);
7141         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7142
7143         return 0;
7144 }
7145
7146 /**
7147  * mem_cgroup_uncharge_swap - uncharge swap space
7148  * @entry: swap entry to uncharge
7149  * @nr_pages: the amount of swap space to uncharge
7150  */
7151 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7152 {
7153         struct mem_cgroup *memcg;
7154         unsigned short id;
7155
7156         id = swap_cgroup_record(entry, 0, nr_pages);
7157         rcu_read_lock();
7158         memcg = mem_cgroup_from_id(id);
7159         if (memcg) {
7160                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7161                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7162                                 page_counter_uncharge(&memcg->swap, nr_pages);
7163                         else
7164                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7165                 }
7166                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7167                 mem_cgroup_id_put_many(memcg, nr_pages);
7168         }
7169         rcu_read_unlock();
7170 }
7171
7172 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7173 {
7174         long nr_swap_pages = get_nr_swap_pages();
7175
7176         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7177                 return nr_swap_pages;
7178         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7179                 nr_swap_pages = min_t(long, nr_swap_pages,
7180                                       READ_ONCE(memcg->swap.max) -
7181                                       page_counter_read(&memcg->swap));
7182         return nr_swap_pages;
7183 }
7184
7185 bool mem_cgroup_swap_full(struct page *page)
7186 {
7187         struct mem_cgroup *memcg;
7188
7189         VM_BUG_ON_PAGE(!PageLocked(page), page);
7190
7191         if (vm_swap_full())
7192                 return true;
7193         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7194                 return false;
7195
7196         memcg = page->mem_cgroup;
7197         if (!memcg)
7198                 return false;
7199
7200         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7201                 unsigned long usage = page_counter_read(&memcg->swap);
7202
7203                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7204                     usage * 2 >= READ_ONCE(memcg->swap.max))
7205                         return true;
7206         }
7207
7208         return false;
7209 }
7210
7211 static int __init setup_swap_account(char *s)
7212 {
7213         if (!strcmp(s, "1"))
7214                 cgroup_memory_noswap = 0;
7215         else if (!strcmp(s, "0"))
7216                 cgroup_memory_noswap = 1;
7217         return 1;
7218 }
7219 __setup("swapaccount=", setup_swap_account);
7220
7221 static u64 swap_current_read(struct cgroup_subsys_state *css,
7222                              struct cftype *cft)
7223 {
7224         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7225
7226         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7227 }
7228
7229 static int swap_high_show(struct seq_file *m, void *v)
7230 {
7231         return seq_puts_memcg_tunable(m,
7232                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7233 }
7234
7235 static ssize_t swap_high_write(struct kernfs_open_file *of,
7236                                char *buf, size_t nbytes, loff_t off)
7237 {
7238         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7239         unsigned long high;
7240         int err;
7241
7242         buf = strstrip(buf);
7243         err = page_counter_memparse(buf, "max", &high);
7244         if (err)
7245                 return err;
7246
7247         page_counter_set_high(&memcg->swap, high);
7248
7249         return nbytes;
7250 }
7251
7252 static int swap_max_show(struct seq_file *m, void *v)
7253 {
7254         return seq_puts_memcg_tunable(m,
7255                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7256 }
7257
7258 static ssize_t swap_max_write(struct kernfs_open_file *of,
7259                               char *buf, size_t nbytes, loff_t off)
7260 {
7261         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7262         unsigned long max;
7263         int err;
7264
7265         buf = strstrip(buf);
7266         err = page_counter_memparse(buf, "max", &max);
7267         if (err)
7268                 return err;
7269
7270         xchg(&memcg->swap.max, max);
7271
7272         return nbytes;
7273 }
7274
7275 static int swap_events_show(struct seq_file *m, void *v)
7276 {
7277         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7278
7279         seq_printf(m, "high %lu\n",
7280                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7281         seq_printf(m, "max %lu\n",
7282                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7283         seq_printf(m, "fail %lu\n",
7284                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7285
7286         return 0;
7287 }
7288
7289 static struct cftype swap_files[] = {
7290         {
7291                 .name = "swap.current",
7292                 .flags = CFTYPE_NOT_ON_ROOT,
7293                 .read_u64 = swap_current_read,
7294         },
7295         {
7296                 .name = "swap.high",
7297                 .flags = CFTYPE_NOT_ON_ROOT,
7298                 .seq_show = swap_high_show,
7299                 .write = swap_high_write,
7300         },
7301         {
7302                 .name = "swap.max",
7303                 .flags = CFTYPE_NOT_ON_ROOT,
7304                 .seq_show = swap_max_show,
7305                 .write = swap_max_write,
7306         },
7307         {
7308                 .name = "swap.events",
7309                 .flags = CFTYPE_NOT_ON_ROOT,
7310                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7311                 .seq_show = swap_events_show,
7312         },
7313         { }     /* terminate */
7314 };
7315
7316 static struct cftype memsw_files[] = {
7317         {
7318                 .name = "memsw.usage_in_bytes",
7319                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7320                 .read_u64 = mem_cgroup_read_u64,
7321         },
7322         {
7323                 .name = "memsw.max_usage_in_bytes",
7324                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7325                 .write = mem_cgroup_reset,
7326                 .read_u64 = mem_cgroup_read_u64,
7327         },
7328         {
7329                 .name = "memsw.limit_in_bytes",
7330                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7331                 .write = mem_cgroup_write,
7332                 .read_u64 = mem_cgroup_read_u64,
7333         },
7334         {
7335                 .name = "memsw.failcnt",
7336                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7337                 .write = mem_cgroup_reset,
7338                 .read_u64 = mem_cgroup_read_u64,
7339         },
7340         { },    /* terminate */
7341 };
7342
7343 /*
7344  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7345  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7346  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7347  * boot parameter. This may result in premature OOPS inside
7348  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7349  */
7350 static int __init mem_cgroup_swap_init(void)
7351 {
7352         /* No memory control -> no swap control */
7353         if (mem_cgroup_disabled())
7354                 cgroup_memory_noswap = true;
7355
7356         if (cgroup_memory_noswap)
7357                 return 0;
7358
7359         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7360         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7361
7362         return 0;
7363 }
7364 core_initcall(mem_cgroup_swap_init);
7365
7366 #endif /* CONFIG_MEMCG_SWAP */