Merge tag 'libnvdimm-for-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
78
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 bool cgroup_memory_noswap __read_mostly;
85 #else
86 #define cgroup_memory_noswap            1
87 #endif
88
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97 }
98
99 #define THRESHOLDS_EVENTS_TARGET 128
100 #define SOFTLIMIT_EVENTS_TARGET 1024
101
102 /*
103  * Cgroups above their limits are maintained in a RB-Tree, independent of
104  * their hierarchy representation
105  */
106
107 struct mem_cgroup_tree_per_node {
108         struct rb_root rb_root;
109         struct rb_node *rb_rightmost;
110         spinlock_t lock;
111 };
112
113 struct mem_cgroup_tree {
114         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
115 };
116
117 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
118
119 /* for OOM */
120 struct mem_cgroup_eventfd_list {
121         struct list_head list;
122         struct eventfd_ctx *eventfd;
123 };
124
125 /*
126  * cgroup_event represents events which userspace want to receive.
127  */
128 struct mem_cgroup_event {
129         /*
130          * memcg which the event belongs to.
131          */
132         struct mem_cgroup *memcg;
133         /*
134          * eventfd to signal userspace about the event.
135          */
136         struct eventfd_ctx *eventfd;
137         /*
138          * Each of these stored in a list by the cgroup.
139          */
140         struct list_head list;
141         /*
142          * register_event() callback will be used to add new userspace
143          * waiter for changes related to this event.  Use eventfd_signal()
144          * on eventfd to send notification to userspace.
145          */
146         int (*register_event)(struct mem_cgroup *memcg,
147                               struct eventfd_ctx *eventfd, const char *args);
148         /*
149          * unregister_event() callback will be called when userspace closes
150          * the eventfd or on cgroup removing.  This callback must be set,
151          * if you want provide notification functionality.
152          */
153         void (*unregister_event)(struct mem_cgroup *memcg,
154                                  struct eventfd_ctx *eventfd);
155         /*
156          * All fields below needed to unregister event when
157          * userspace closes eventfd.
158          */
159         poll_table pt;
160         wait_queue_head_t *wqh;
161         wait_queue_entry_t wait;
162         struct work_struct remove;
163 };
164
165 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
166 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167
168 /* Stuffs for move charges at task migration. */
169 /*
170  * Types of charges to be moved.
171  */
172 #define MOVE_ANON       0x1U
173 #define MOVE_FILE       0x2U
174 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
175
176 /* "mc" and its members are protected by cgroup_mutex */
177 static struct move_charge_struct {
178         spinlock_t        lock; /* for from, to */
179         struct mm_struct  *mm;
180         struct mem_cgroup *from;
181         struct mem_cgroup *to;
182         unsigned long flags;
183         unsigned long precharge;
184         unsigned long moved_charge;
185         unsigned long moved_swap;
186         struct task_struct *moving_task;        /* a task moving charges */
187         wait_queue_head_t waitq;                /* a waitq for other context */
188 } mc = {
189         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
191 };
192
193 /*
194  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
195  * limit reclaim to prevent infinite loops, if they ever occur.
196  */
197 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
198 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
199
200 enum charge_type {
201         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
202         MEM_CGROUP_CHARGE_TYPE_ANON,
203         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
204         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
205         NR_CHARGE_TYPE,
206 };
207
208 /* for encoding cft->private value on file */
209 enum res_type {
210         _MEM,
211         _MEMSWAP,
212         _OOM_TYPE,
213         _KMEM,
214         _TCP,
215 };
216
217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
220 /* Used for OOM nofiier */
221 #define OOM_CONTROL             (0)
222
223 /*
224  * Iteration constructs for visiting all cgroups (under a tree).  If
225  * loops are exited prematurely (break), mem_cgroup_iter_break() must
226  * be used for reference counting.
227  */
228 #define for_each_mem_cgroup_tree(iter, root)            \
229         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
230              iter != NULL;                              \
231              iter = mem_cgroup_iter(root, iter, NULL))
232
233 #define for_each_mem_cgroup(iter)                       \
234         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
235              iter != NULL;                              \
236              iter = mem_cgroup_iter(NULL, iter, NULL))
237
238 static inline bool should_force_charge(void)
239 {
240         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241                 (current->flags & PF_EXITING);
242 }
243
244 /* Some nice accessors for the vmpressure. */
245 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246 {
247         if (!memcg)
248                 memcg = root_mem_cgroup;
249         return &memcg->vmpressure;
250 }
251
252 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
253 {
254         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
255 }
256
257 #ifdef CONFIG_MEMCG_KMEM
258 extern spinlock_t css_set_lock;
259
260 static void obj_cgroup_release(struct percpu_ref *ref)
261 {
262         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
263         struct mem_cgroup *memcg;
264         unsigned int nr_bytes;
265         unsigned int nr_pages;
266         unsigned long flags;
267
268         /*
269          * At this point all allocated objects are freed, and
270          * objcg->nr_charged_bytes can't have an arbitrary byte value.
271          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
272          *
273          * The following sequence can lead to it:
274          * 1) CPU0: objcg == stock->cached_objcg
275          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
276          *          PAGE_SIZE bytes are charged
277          * 3) CPU1: a process from another memcg is allocating something,
278          *          the stock if flushed,
279          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
280          * 5) CPU0: we do release this object,
281          *          92 bytes are added to stock->nr_bytes
282          * 6) CPU0: stock is flushed,
283          *          92 bytes are added to objcg->nr_charged_bytes
284          *
285          * In the result, nr_charged_bytes == PAGE_SIZE.
286          * This page will be uncharged in obj_cgroup_release().
287          */
288         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
289         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
290         nr_pages = nr_bytes >> PAGE_SHIFT;
291
292         spin_lock_irqsave(&css_set_lock, flags);
293         memcg = obj_cgroup_memcg(objcg);
294         if (nr_pages)
295                 __memcg_kmem_uncharge(memcg, nr_pages);
296         list_del(&objcg->list);
297         mem_cgroup_put(memcg);
298         spin_unlock_irqrestore(&css_set_lock, flags);
299
300         percpu_ref_exit(ref);
301         kfree_rcu(objcg, rcu);
302 }
303
304 static struct obj_cgroup *obj_cgroup_alloc(void)
305 {
306         struct obj_cgroup *objcg;
307         int ret;
308
309         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310         if (!objcg)
311                 return NULL;
312
313         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314                               GFP_KERNEL);
315         if (ret) {
316                 kfree(objcg);
317                 return NULL;
318         }
319         INIT_LIST_HEAD(&objcg->list);
320         return objcg;
321 }
322
323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324                                   struct mem_cgroup *parent)
325 {
326         struct obj_cgroup *objcg, *iter;
327
328         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329
330         spin_lock_irq(&css_set_lock);
331
332         /* Move active objcg to the parent's list */
333         xchg(&objcg->memcg, parent);
334         css_get(&parent->css);
335         list_add(&objcg->list, &parent->objcg_list);
336
337         /* Move already reparented objcgs to the parent's list */
338         list_for_each_entry(iter, &memcg->objcg_list, list) {
339                 css_get(&parent->css);
340                 xchg(&iter->memcg, parent);
341                 css_put(&memcg->css);
342         }
343         list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345         spin_unlock_irq(&css_set_lock);
346
347         percpu_ref_kill(&objcg->refcnt);
348 }
349
350 /*
351  * This will be used as a shrinker list's index.
352  * The main reason for not using cgroup id for this:
353  *  this works better in sparse environments, where we have a lot of memcgs,
354  *  but only a few kmem-limited. Or also, if we have, for instance, 200
355  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
356  *  200 entry array for that.
357  *
358  * The current size of the caches array is stored in memcg_nr_cache_ids. It
359  * will double each time we have to increase it.
360  */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369         down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374         up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378  * MIN_SIZE is different than 1, because we would like to avoid going through
379  * the alloc/free process all the time. In a small machine, 4 kmem-limited
380  * cgroups is a reasonable guess. In the future, it could be a parameter or
381  * tunable, but that is strictly not necessary.
382  *
383  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384  * this constant directly from cgroup, but it is understandable that this is
385  * better kept as an internal representation in cgroup.c. In any case, the
386  * cgrp_id space is not getting any smaller, and we don't have to necessarily
387  * increase ours as well if it increases.
388  */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393  * A lot of the calls to the cache allocation functions are expected to be
394  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395  * conditional to this static branch, we'll have to allow modules that does
396  * kmem_cache_alloc and the such to see this symbol as well
397  */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401
402 static int memcg_shrinker_map_size;
403 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
404
405 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
406 {
407         kvfree(container_of(head, struct memcg_shrinker_map, rcu));
408 }
409
410 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
411                                          int size, int old_size)
412 {
413         struct memcg_shrinker_map *new, *old;
414         int nid;
415
416         lockdep_assert_held(&memcg_shrinker_map_mutex);
417
418         for_each_node(nid) {
419                 old = rcu_dereference_protected(
420                         mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
421                 /* Not yet online memcg */
422                 if (!old)
423                         return 0;
424
425                 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
426                 if (!new)
427                         return -ENOMEM;
428
429                 /* Set all old bits, clear all new bits */
430                 memset(new->map, (int)0xff, old_size);
431                 memset((void *)new->map + old_size, 0, size - old_size);
432
433                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
434                 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
435         }
436
437         return 0;
438 }
439
440 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
441 {
442         struct mem_cgroup_per_node *pn;
443         struct memcg_shrinker_map *map;
444         int nid;
445
446         if (mem_cgroup_is_root(memcg))
447                 return;
448
449         for_each_node(nid) {
450                 pn = mem_cgroup_nodeinfo(memcg, nid);
451                 map = rcu_dereference_protected(pn->shrinker_map, true);
452                 if (map)
453                         kvfree(map);
454                 rcu_assign_pointer(pn->shrinker_map, NULL);
455         }
456 }
457
458 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
459 {
460         struct memcg_shrinker_map *map;
461         int nid, size, ret = 0;
462
463         if (mem_cgroup_is_root(memcg))
464                 return 0;
465
466         mutex_lock(&memcg_shrinker_map_mutex);
467         size = memcg_shrinker_map_size;
468         for_each_node(nid) {
469                 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
470                 if (!map) {
471                         memcg_free_shrinker_maps(memcg);
472                         ret = -ENOMEM;
473                         break;
474                 }
475                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
476         }
477         mutex_unlock(&memcg_shrinker_map_mutex);
478
479         return ret;
480 }
481
482 int memcg_expand_shrinker_maps(int new_id)
483 {
484         int size, old_size, ret = 0;
485         struct mem_cgroup *memcg;
486
487         size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
488         old_size = memcg_shrinker_map_size;
489         if (size <= old_size)
490                 return 0;
491
492         mutex_lock(&memcg_shrinker_map_mutex);
493         if (!root_mem_cgroup)
494                 goto unlock;
495
496         for_each_mem_cgroup(memcg) {
497                 if (mem_cgroup_is_root(memcg))
498                         continue;
499                 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
500                 if (ret) {
501                         mem_cgroup_iter_break(NULL, memcg);
502                         goto unlock;
503                 }
504         }
505 unlock:
506         if (!ret)
507                 memcg_shrinker_map_size = size;
508         mutex_unlock(&memcg_shrinker_map_mutex);
509         return ret;
510 }
511
512 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
513 {
514         if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
515                 struct memcg_shrinker_map *map;
516
517                 rcu_read_lock();
518                 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
519                 /* Pairs with smp mb in shrink_slab() */
520                 smp_mb__before_atomic();
521                 set_bit(shrinker_id, map->map);
522                 rcu_read_unlock();
523         }
524 }
525
526 /**
527  * mem_cgroup_css_from_page - css of the memcg associated with a page
528  * @page: page of interest
529  *
530  * If memcg is bound to the default hierarchy, css of the memcg associated
531  * with @page is returned.  The returned css remains associated with @page
532  * until it is released.
533  *
534  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
535  * is returned.
536  */
537 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
538 {
539         struct mem_cgroup *memcg;
540
541         memcg = page->mem_cgroup;
542
543         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
544                 memcg = root_mem_cgroup;
545
546         return &memcg->css;
547 }
548
549 /**
550  * page_cgroup_ino - return inode number of the memcg a page is charged to
551  * @page: the page
552  *
553  * Look up the closest online ancestor of the memory cgroup @page is charged to
554  * and return its inode number or 0 if @page is not charged to any cgroup. It
555  * is safe to call this function without holding a reference to @page.
556  *
557  * Note, this function is inherently racy, because there is nothing to prevent
558  * the cgroup inode from getting torn down and potentially reallocated a moment
559  * after page_cgroup_ino() returns, so it only should be used by callers that
560  * do not care (such as procfs interfaces).
561  */
562 ino_t page_cgroup_ino(struct page *page)
563 {
564         struct mem_cgroup *memcg;
565         unsigned long ino = 0;
566
567         rcu_read_lock();
568         memcg = page->mem_cgroup;
569
570         /*
571          * The lowest bit set means that memcg isn't a valid
572          * memcg pointer, but a obj_cgroups pointer.
573          * In this case the page is shared and doesn't belong
574          * to any specific memory cgroup.
575          */
576         if ((unsigned long) memcg & 0x1UL)
577                 memcg = NULL;
578
579         while (memcg && !(memcg->css.flags & CSS_ONLINE))
580                 memcg = parent_mem_cgroup(memcg);
581         if (memcg)
582                 ino = cgroup_ino(memcg->css.cgroup);
583         rcu_read_unlock();
584         return ino;
585 }
586
587 static struct mem_cgroup_per_node *
588 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
589 {
590         int nid = page_to_nid(page);
591
592         return memcg->nodeinfo[nid];
593 }
594
595 static struct mem_cgroup_tree_per_node *
596 soft_limit_tree_node(int nid)
597 {
598         return soft_limit_tree.rb_tree_per_node[nid];
599 }
600
601 static struct mem_cgroup_tree_per_node *
602 soft_limit_tree_from_page(struct page *page)
603 {
604         int nid = page_to_nid(page);
605
606         return soft_limit_tree.rb_tree_per_node[nid];
607 }
608
609 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
610                                          struct mem_cgroup_tree_per_node *mctz,
611                                          unsigned long new_usage_in_excess)
612 {
613         struct rb_node **p = &mctz->rb_root.rb_node;
614         struct rb_node *parent = NULL;
615         struct mem_cgroup_per_node *mz_node;
616         bool rightmost = true;
617
618         if (mz->on_tree)
619                 return;
620
621         mz->usage_in_excess = new_usage_in_excess;
622         if (!mz->usage_in_excess)
623                 return;
624         while (*p) {
625                 parent = *p;
626                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
627                                         tree_node);
628                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
629                         p = &(*p)->rb_left;
630                         rightmost = false;
631                 }
632
633                 /*
634                  * We can't avoid mem cgroups that are over their soft
635                  * limit by the same amount
636                  */
637                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
638                         p = &(*p)->rb_right;
639         }
640
641         if (rightmost)
642                 mctz->rb_rightmost = &mz->tree_node;
643
644         rb_link_node(&mz->tree_node, parent, p);
645         rb_insert_color(&mz->tree_node, &mctz->rb_root);
646         mz->on_tree = true;
647 }
648
649 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
650                                          struct mem_cgroup_tree_per_node *mctz)
651 {
652         if (!mz->on_tree)
653                 return;
654
655         if (&mz->tree_node == mctz->rb_rightmost)
656                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
657
658         rb_erase(&mz->tree_node, &mctz->rb_root);
659         mz->on_tree = false;
660 }
661
662 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
663                                        struct mem_cgroup_tree_per_node *mctz)
664 {
665         unsigned long flags;
666
667         spin_lock_irqsave(&mctz->lock, flags);
668         __mem_cgroup_remove_exceeded(mz, mctz);
669         spin_unlock_irqrestore(&mctz->lock, flags);
670 }
671
672 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
673 {
674         unsigned long nr_pages = page_counter_read(&memcg->memory);
675         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
676         unsigned long excess = 0;
677
678         if (nr_pages > soft_limit)
679                 excess = nr_pages - soft_limit;
680
681         return excess;
682 }
683
684 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
685 {
686         unsigned long excess;
687         struct mem_cgroup_per_node *mz;
688         struct mem_cgroup_tree_per_node *mctz;
689
690         mctz = soft_limit_tree_from_page(page);
691         if (!mctz)
692                 return;
693         /*
694          * Necessary to update all ancestors when hierarchy is used.
695          * because their event counter is not touched.
696          */
697         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698                 mz = mem_cgroup_page_nodeinfo(memcg, page);
699                 excess = soft_limit_excess(memcg);
700                 /*
701                  * We have to update the tree if mz is on RB-tree or
702                  * mem is over its softlimit.
703                  */
704                 if (excess || mz->on_tree) {
705                         unsigned long flags;
706
707                         spin_lock_irqsave(&mctz->lock, flags);
708                         /* if on-tree, remove it */
709                         if (mz->on_tree)
710                                 __mem_cgroup_remove_exceeded(mz, mctz);
711                         /*
712                          * Insert again. mz->usage_in_excess will be updated.
713                          * If excess is 0, no tree ops.
714                          */
715                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
716                         spin_unlock_irqrestore(&mctz->lock, flags);
717                 }
718         }
719 }
720
721 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722 {
723         struct mem_cgroup_tree_per_node *mctz;
724         struct mem_cgroup_per_node *mz;
725         int nid;
726
727         for_each_node(nid) {
728                 mz = mem_cgroup_nodeinfo(memcg, nid);
729                 mctz = soft_limit_tree_node(nid);
730                 if (mctz)
731                         mem_cgroup_remove_exceeded(mz, mctz);
732         }
733 }
734
735 static struct mem_cgroup_per_node *
736 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
737 {
738         struct mem_cgroup_per_node *mz;
739
740 retry:
741         mz = NULL;
742         if (!mctz->rb_rightmost)
743                 goto done;              /* Nothing to reclaim from */
744
745         mz = rb_entry(mctz->rb_rightmost,
746                       struct mem_cgroup_per_node, tree_node);
747         /*
748          * Remove the node now but someone else can add it back,
749          * we will to add it back at the end of reclaim to its correct
750          * position in the tree.
751          */
752         __mem_cgroup_remove_exceeded(mz, mctz);
753         if (!soft_limit_excess(mz->memcg) ||
754             !css_tryget(&mz->memcg->css))
755                 goto retry;
756 done:
757         return mz;
758 }
759
760 static struct mem_cgroup_per_node *
761 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
762 {
763         struct mem_cgroup_per_node *mz;
764
765         spin_lock_irq(&mctz->lock);
766         mz = __mem_cgroup_largest_soft_limit_node(mctz);
767         spin_unlock_irq(&mctz->lock);
768         return mz;
769 }
770
771 /**
772  * __mod_memcg_state - update cgroup memory statistics
773  * @memcg: the memory cgroup
774  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
775  * @val: delta to add to the counter, can be negative
776  */
777 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
778 {
779         long x, threshold = MEMCG_CHARGE_BATCH;
780
781         if (mem_cgroup_disabled())
782                 return;
783
784         if (vmstat_item_in_bytes(idx))
785                 threshold <<= PAGE_SHIFT;
786
787         x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
788         if (unlikely(abs(x) > threshold)) {
789                 struct mem_cgroup *mi;
790
791                 /*
792                  * Batch local counters to keep them in sync with
793                  * the hierarchical ones.
794                  */
795                 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
796                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
797                         atomic_long_add(x, &mi->vmstats[idx]);
798                 x = 0;
799         }
800         __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
801 }
802
803 static struct mem_cgroup_per_node *
804 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
805 {
806         struct mem_cgroup *parent;
807
808         parent = parent_mem_cgroup(pn->memcg);
809         if (!parent)
810                 return NULL;
811         return mem_cgroup_nodeinfo(parent, nid);
812 }
813
814 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
815                               int val)
816 {
817         struct mem_cgroup_per_node *pn;
818         struct mem_cgroup *memcg;
819         long x, threshold = MEMCG_CHARGE_BATCH;
820
821         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
822         memcg = pn->memcg;
823
824         /* Update memcg */
825         __mod_memcg_state(memcg, idx, val);
826
827         /* Update lruvec */
828         __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
829
830         if (vmstat_item_in_bytes(idx))
831                 threshold <<= PAGE_SHIFT;
832
833         x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
834         if (unlikely(abs(x) > threshold)) {
835                 pg_data_t *pgdat = lruvec_pgdat(lruvec);
836                 struct mem_cgroup_per_node *pi;
837
838                 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
839                         atomic_long_add(x, &pi->lruvec_stat[idx]);
840                 x = 0;
841         }
842         __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
843 }
844
845 /**
846  * __mod_lruvec_state - update lruvec memory statistics
847  * @lruvec: the lruvec
848  * @idx: the stat item
849  * @val: delta to add to the counter, can be negative
850  *
851  * The lruvec is the intersection of the NUMA node and a cgroup. This
852  * function updates the all three counters that are affected by a
853  * change of state at this level: per-node, per-cgroup, per-lruvec.
854  */
855 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
856                         int val)
857 {
858         /* Update node */
859         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
860
861         /* Update memcg and lruvec */
862         if (!mem_cgroup_disabled())
863                 __mod_memcg_lruvec_state(lruvec, idx, val);
864 }
865
866 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
867 {
868         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
869         struct mem_cgroup *memcg;
870         struct lruvec *lruvec;
871
872         rcu_read_lock();
873         memcg = mem_cgroup_from_obj(p);
874
875         /* Untracked pages have no memcg, no lruvec. Update only the node */
876         if (!memcg || memcg == root_mem_cgroup) {
877                 __mod_node_page_state(pgdat, idx, val);
878         } else {
879                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
880                 __mod_lruvec_state(lruvec, idx, val);
881         }
882         rcu_read_unlock();
883 }
884
885 void mod_memcg_obj_state(void *p, int idx, int val)
886 {
887         struct mem_cgroup *memcg;
888
889         rcu_read_lock();
890         memcg = mem_cgroup_from_obj(p);
891         if (memcg)
892                 mod_memcg_state(memcg, idx, val);
893         rcu_read_unlock();
894 }
895
896 /**
897  * __count_memcg_events - account VM events in a cgroup
898  * @memcg: the memory cgroup
899  * @idx: the event item
900  * @count: the number of events that occured
901  */
902 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903                           unsigned long count)
904 {
905         unsigned long x;
906
907         if (mem_cgroup_disabled())
908                 return;
909
910         x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911         if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912                 struct mem_cgroup *mi;
913
914                 /*
915                  * Batch local counters to keep them in sync with
916                  * the hierarchical ones.
917                  */
918                 __this_cpu_add(memcg->vmstats_local->events[idx], x);
919                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920                         atomic_long_add(x, &mi->vmevents[idx]);
921                 x = 0;
922         }
923         __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924 }
925
926 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927 {
928         return atomic_long_read(&memcg->vmevents[event]);
929 }
930
931 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932 {
933         long x = 0;
934         int cpu;
935
936         for_each_possible_cpu(cpu)
937                 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938         return x;
939 }
940
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942                                          struct page *page,
943                                          int nr_pages)
944 {
945         /* pagein of a big page is an event. So, ignore page size */
946         if (nr_pages > 0)
947                 __count_memcg_events(memcg, PGPGIN, 1);
948         else {
949                 __count_memcg_events(memcg, PGPGOUT, 1);
950                 nr_pages = -nr_pages; /* for event */
951         }
952
953         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954 }
955
956 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957                                        enum mem_cgroup_events_target target)
958 {
959         unsigned long val, next;
960
961         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963         /* from time_after() in jiffies.h */
964         if ((long)(next - val) < 0) {
965                 switch (target) {
966                 case MEM_CGROUP_TARGET_THRESH:
967                         next = val + THRESHOLDS_EVENTS_TARGET;
968                         break;
969                 case MEM_CGROUP_TARGET_SOFTLIMIT:
970                         next = val + SOFTLIMIT_EVENTS_TARGET;
971                         break;
972                 default:
973                         break;
974                 }
975                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976                 return true;
977         }
978         return false;
979 }
980
981 /*
982  * Check events in order.
983  *
984  */
985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986 {
987         /* threshold event is triggered in finer grain than soft limit */
988         if (unlikely(mem_cgroup_event_ratelimit(memcg,
989                                                 MEM_CGROUP_TARGET_THRESH))) {
990                 bool do_softlimit;
991
992                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
994                 mem_cgroup_threshold(memcg);
995                 if (unlikely(do_softlimit))
996                         mem_cgroup_update_tree(memcg, page);
997         }
998 }
999
1000 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001 {
1002         /*
1003          * mm_update_next_owner() may clear mm->owner to NULL
1004          * if it races with swapoff, page migration, etc.
1005          * So this can be called with p == NULL.
1006          */
1007         if (unlikely(!p))
1008                 return NULL;
1009
1010         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011 }
1012 EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014 /**
1015  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016  * @mm: mm from which memcg should be extracted. It can be NULL.
1017  *
1018  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020  * returned.
1021  */
1022 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023 {
1024         struct mem_cgroup *memcg;
1025
1026         if (mem_cgroup_disabled())
1027                 return NULL;
1028
1029         rcu_read_lock();
1030         do {
1031                 /*
1032                  * Page cache insertions can happen withou an
1033                  * actual mm context, e.g. during disk probing
1034                  * on boot, loopback IO, acct() writes etc.
1035                  */
1036                 if (unlikely(!mm))
1037                         memcg = root_mem_cgroup;
1038                 else {
1039                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040                         if (unlikely(!memcg))
1041                                 memcg = root_mem_cgroup;
1042                 }
1043         } while (!css_tryget(&memcg->css));
1044         rcu_read_unlock();
1045         return memcg;
1046 }
1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049 /**
1050  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051  * @page: page from which memcg should be extracted.
1052  *
1053  * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054  * root_mem_cgroup is returned.
1055  */
1056 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057 {
1058         struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060         if (mem_cgroup_disabled())
1061                 return NULL;
1062
1063         rcu_read_lock();
1064         /* Page should not get uncharged and freed memcg under us. */
1065         if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066                 memcg = root_mem_cgroup;
1067         rcu_read_unlock();
1068         return memcg;
1069 }
1070 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072 /**
1073  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1074  */
1075 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1076 {
1077         if (unlikely(current->active_memcg)) {
1078                 struct mem_cgroup *memcg;
1079
1080                 rcu_read_lock();
1081                 /* current->active_memcg must hold a ref. */
1082                 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1083                         memcg = root_mem_cgroup;
1084                 else
1085                         memcg = current->active_memcg;
1086                 rcu_read_unlock();
1087                 return memcg;
1088         }
1089         return get_mem_cgroup_from_mm(current->mm);
1090 }
1091
1092 /**
1093  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1094  * @root: hierarchy root
1095  * @prev: previously returned memcg, NULL on first invocation
1096  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1097  *
1098  * Returns references to children of the hierarchy below @root, or
1099  * @root itself, or %NULL after a full round-trip.
1100  *
1101  * Caller must pass the return value in @prev on subsequent
1102  * invocations for reference counting, or use mem_cgroup_iter_break()
1103  * to cancel a hierarchy walk before the round-trip is complete.
1104  *
1105  * Reclaimers can specify a node and a priority level in @reclaim to
1106  * divide up the memcgs in the hierarchy among all concurrent
1107  * reclaimers operating on the same node and priority.
1108  */
1109 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110                                    struct mem_cgroup *prev,
1111                                    struct mem_cgroup_reclaim_cookie *reclaim)
1112 {
1113         struct mem_cgroup_reclaim_iter *iter;
1114         struct cgroup_subsys_state *css = NULL;
1115         struct mem_cgroup *memcg = NULL;
1116         struct mem_cgroup *pos = NULL;
1117
1118         if (mem_cgroup_disabled())
1119                 return NULL;
1120
1121         if (!root)
1122                 root = root_mem_cgroup;
1123
1124         if (prev && !reclaim)
1125                 pos = prev;
1126
1127         if (!root->use_hierarchy && root != root_mem_cgroup) {
1128                 if (prev)
1129                         goto out;
1130                 return root;
1131         }
1132
1133         rcu_read_lock();
1134
1135         if (reclaim) {
1136                 struct mem_cgroup_per_node *mz;
1137
1138                 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139                 iter = &mz->iter;
1140
1141                 if (prev && reclaim->generation != iter->generation)
1142                         goto out_unlock;
1143
1144                 while (1) {
1145                         pos = READ_ONCE(iter->position);
1146                         if (!pos || css_tryget(&pos->css))
1147                                 break;
1148                         /*
1149                          * css reference reached zero, so iter->position will
1150                          * be cleared by ->css_released. However, we should not
1151                          * rely on this happening soon, because ->css_released
1152                          * is called from a work queue, and by busy-waiting we
1153                          * might block it. So we clear iter->position right
1154                          * away.
1155                          */
1156                         (void)cmpxchg(&iter->position, pos, NULL);
1157                 }
1158         }
1159
1160         if (pos)
1161                 css = &pos->css;
1162
1163         for (;;) {
1164                 css = css_next_descendant_pre(css, &root->css);
1165                 if (!css) {
1166                         /*
1167                          * Reclaimers share the hierarchy walk, and a
1168                          * new one might jump in right at the end of
1169                          * the hierarchy - make sure they see at least
1170                          * one group and restart from the beginning.
1171                          */
1172                         if (!prev)
1173                                 continue;
1174                         break;
1175                 }
1176
1177                 /*
1178                  * Verify the css and acquire a reference.  The root
1179                  * is provided by the caller, so we know it's alive
1180                  * and kicking, and don't take an extra reference.
1181                  */
1182                 memcg = mem_cgroup_from_css(css);
1183
1184                 if (css == &root->css)
1185                         break;
1186
1187                 if (css_tryget(css))
1188                         break;
1189
1190                 memcg = NULL;
1191         }
1192
1193         if (reclaim) {
1194                 /*
1195                  * The position could have already been updated by a competing
1196                  * thread, so check that the value hasn't changed since we read
1197                  * it to avoid reclaiming from the same cgroup twice.
1198                  */
1199                 (void)cmpxchg(&iter->position, pos, memcg);
1200
1201                 if (pos)
1202                         css_put(&pos->css);
1203
1204                 if (!memcg)
1205                         iter->generation++;
1206                 else if (!prev)
1207                         reclaim->generation = iter->generation;
1208         }
1209
1210 out_unlock:
1211         rcu_read_unlock();
1212 out:
1213         if (prev && prev != root)
1214                 css_put(&prev->css);
1215
1216         return memcg;
1217 }
1218
1219 /**
1220  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221  * @root: hierarchy root
1222  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223  */
1224 void mem_cgroup_iter_break(struct mem_cgroup *root,
1225                            struct mem_cgroup *prev)
1226 {
1227         if (!root)
1228                 root = root_mem_cgroup;
1229         if (prev && prev != root)
1230                 css_put(&prev->css);
1231 }
1232
1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234                                         struct mem_cgroup *dead_memcg)
1235 {
1236         struct mem_cgroup_reclaim_iter *iter;
1237         struct mem_cgroup_per_node *mz;
1238         int nid;
1239
1240         for_each_node(nid) {
1241                 mz = mem_cgroup_nodeinfo(from, nid);
1242                 iter = &mz->iter;
1243                 cmpxchg(&iter->position, dead_memcg, NULL);
1244         }
1245 }
1246
1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248 {
1249         struct mem_cgroup *memcg = dead_memcg;
1250         struct mem_cgroup *last;
1251
1252         do {
1253                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254                 last = memcg;
1255         } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257         /*
1258          * When cgruop1 non-hierarchy mode is used,
1259          * parent_mem_cgroup() does not walk all the way up to the
1260          * cgroup root (root_mem_cgroup). So we have to handle
1261          * dead_memcg from cgroup root separately.
1262          */
1263         if (last != root_mem_cgroup)
1264                 __invalidate_reclaim_iterators(root_mem_cgroup,
1265                                                 dead_memcg);
1266 }
1267
1268 /**
1269  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270  * @memcg: hierarchy root
1271  * @fn: function to call for each task
1272  * @arg: argument passed to @fn
1273  *
1274  * This function iterates over tasks attached to @memcg or to any of its
1275  * descendants and calls @fn for each task. If @fn returns a non-zero
1276  * value, the function breaks the iteration loop and returns the value.
1277  * Otherwise, it will iterate over all tasks and return 0.
1278  *
1279  * This function must not be called for the root memory cgroup.
1280  */
1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282                           int (*fn)(struct task_struct *, void *), void *arg)
1283 {
1284         struct mem_cgroup *iter;
1285         int ret = 0;
1286
1287         BUG_ON(memcg == root_mem_cgroup);
1288
1289         for_each_mem_cgroup_tree(iter, memcg) {
1290                 struct css_task_iter it;
1291                 struct task_struct *task;
1292
1293                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294                 while (!ret && (task = css_task_iter_next(&it)))
1295                         ret = fn(task, arg);
1296                 css_task_iter_end(&it);
1297                 if (ret) {
1298                         mem_cgroup_iter_break(memcg, iter);
1299                         break;
1300                 }
1301         }
1302         return ret;
1303 }
1304
1305 /**
1306  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307  * @page: the page
1308  * @pgdat: pgdat of the page
1309  *
1310  * This function relies on page->mem_cgroup being stable - see the
1311  * access rules in commit_charge().
1312  */
1313 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1314 {
1315         struct mem_cgroup_per_node *mz;
1316         struct mem_cgroup *memcg;
1317         struct lruvec *lruvec;
1318
1319         if (mem_cgroup_disabled()) {
1320                 lruvec = &pgdat->__lruvec;
1321                 goto out;
1322         }
1323
1324         memcg = page->mem_cgroup;
1325         /*
1326          * Swapcache readahead pages are added to the LRU - and
1327          * possibly migrated - before they are charged.
1328          */
1329         if (!memcg)
1330                 memcg = root_mem_cgroup;
1331
1332         mz = mem_cgroup_page_nodeinfo(memcg, page);
1333         lruvec = &mz->lruvec;
1334 out:
1335         /*
1336          * Since a node can be onlined after the mem_cgroup was created,
1337          * we have to be prepared to initialize lruvec->zone here;
1338          * and if offlined then reonlined, we need to reinitialize it.
1339          */
1340         if (unlikely(lruvec->pgdat != pgdat))
1341                 lruvec->pgdat = pgdat;
1342         return lruvec;
1343 }
1344
1345 /**
1346  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1347  * @lruvec: mem_cgroup per zone lru vector
1348  * @lru: index of lru list the page is sitting on
1349  * @zid: zone id of the accounted pages
1350  * @nr_pages: positive when adding or negative when removing
1351  *
1352  * This function must be called under lru_lock, just before a page is added
1353  * to or just after a page is removed from an lru list (that ordering being
1354  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355  */
1356 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357                                 int zid, int nr_pages)
1358 {
1359         struct mem_cgroup_per_node *mz;
1360         unsigned long *lru_size;
1361         long size;
1362
1363         if (mem_cgroup_disabled())
1364                 return;
1365
1366         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367         lru_size = &mz->lru_zone_size[zid][lru];
1368
1369         if (nr_pages < 0)
1370                 *lru_size += nr_pages;
1371
1372         size = *lru_size;
1373         if (WARN_ONCE(size < 0,
1374                 "%s(%p, %d, %d): lru_size %ld\n",
1375                 __func__, lruvec, lru, nr_pages, size)) {
1376                 VM_BUG_ON(1);
1377                 *lru_size = 0;
1378         }
1379
1380         if (nr_pages > 0)
1381                 *lru_size += nr_pages;
1382 }
1383
1384 /**
1385  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1386  * @memcg: the memory cgroup
1387  *
1388  * Returns the maximum amount of memory @mem can be charged with, in
1389  * pages.
1390  */
1391 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1392 {
1393         unsigned long margin = 0;
1394         unsigned long count;
1395         unsigned long limit;
1396
1397         count = page_counter_read(&memcg->memory);
1398         limit = READ_ONCE(memcg->memory.max);
1399         if (count < limit)
1400                 margin = limit - count;
1401
1402         if (do_memsw_account()) {
1403                 count = page_counter_read(&memcg->memsw);
1404                 limit = READ_ONCE(memcg->memsw.max);
1405                 if (count < limit)
1406                         margin = min(margin, limit - count);
1407                 else
1408                         margin = 0;
1409         }
1410
1411         return margin;
1412 }
1413
1414 /*
1415  * A routine for checking "mem" is under move_account() or not.
1416  *
1417  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1418  * moving cgroups. This is for waiting at high-memory pressure
1419  * caused by "move".
1420  */
1421 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1422 {
1423         struct mem_cgroup *from;
1424         struct mem_cgroup *to;
1425         bool ret = false;
1426         /*
1427          * Unlike task_move routines, we access mc.to, mc.from not under
1428          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1429          */
1430         spin_lock(&mc.lock);
1431         from = mc.from;
1432         to = mc.to;
1433         if (!from)
1434                 goto unlock;
1435
1436         ret = mem_cgroup_is_descendant(from, memcg) ||
1437                 mem_cgroup_is_descendant(to, memcg);
1438 unlock:
1439         spin_unlock(&mc.lock);
1440         return ret;
1441 }
1442
1443 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444 {
1445         if (mc.moving_task && current != mc.moving_task) {
1446                 if (mem_cgroup_under_move(memcg)) {
1447                         DEFINE_WAIT(wait);
1448                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1449                         /* moving charge context might have finished. */
1450                         if (mc.moving_task)
1451                                 schedule();
1452                         finish_wait(&mc.waitq, &wait);
1453                         return true;
1454                 }
1455         }
1456         return false;
1457 }
1458
1459 static char *memory_stat_format(struct mem_cgroup *memcg)
1460 {
1461         struct seq_buf s;
1462         int i;
1463
1464         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1465         if (!s.buffer)
1466                 return NULL;
1467
1468         /*
1469          * Provide statistics on the state of the memory subsystem as
1470          * well as cumulative event counters that show past behavior.
1471          *
1472          * This list is ordered following a combination of these gradients:
1473          * 1) generic big picture -> specifics and details
1474          * 2) reflecting userspace activity -> reflecting kernel heuristics
1475          *
1476          * Current memory state:
1477          */
1478
1479         seq_buf_printf(&s, "anon %llu\n",
1480                        (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481                        PAGE_SIZE);
1482         seq_buf_printf(&s, "file %llu\n",
1483                        (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484                        PAGE_SIZE);
1485         seq_buf_printf(&s, "kernel_stack %llu\n",
1486                        (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487                        1024);
1488         seq_buf_printf(&s, "slab %llu\n",
1489                        (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1490                              memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491         seq_buf_printf(&s, "sock %llu\n",
1492                        (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1493                        PAGE_SIZE);
1494
1495         seq_buf_printf(&s, "shmem %llu\n",
1496                        (u64)memcg_page_state(memcg, NR_SHMEM) *
1497                        PAGE_SIZE);
1498         seq_buf_printf(&s, "file_mapped %llu\n",
1499                        (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1500                        PAGE_SIZE);
1501         seq_buf_printf(&s, "file_dirty %llu\n",
1502                        (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1503                        PAGE_SIZE);
1504         seq_buf_printf(&s, "file_writeback %llu\n",
1505                        (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1506                        PAGE_SIZE);
1507
1508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1509         seq_buf_printf(&s, "anon_thp %llu\n",
1510                        (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1511                        HPAGE_PMD_SIZE);
1512 #endif
1513
1514         for (i = 0; i < NR_LRU_LISTS; i++)
1515                 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1516                                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1517                                PAGE_SIZE);
1518
1519         seq_buf_printf(&s, "slab_reclaimable %llu\n",
1520                        (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1521         seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1522                        (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1523
1524         /* Accumulated memory events */
1525
1526         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1527                        memcg_events(memcg, PGFAULT));
1528         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1529                        memcg_events(memcg, PGMAJFAULT));
1530
1531         seq_buf_printf(&s, "workingset_refault %lu\n",
1532                        memcg_page_state(memcg, WORKINGSET_REFAULT));
1533         seq_buf_printf(&s, "workingset_activate %lu\n",
1534                        memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1535         seq_buf_printf(&s, "workingset_restore %lu\n",
1536                        memcg_page_state(memcg, WORKINGSET_RESTORE));
1537         seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1538                        memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1539
1540         seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1541                        memcg_events(memcg, PGREFILL));
1542         seq_buf_printf(&s, "pgscan %lu\n",
1543                        memcg_events(memcg, PGSCAN_KSWAPD) +
1544                        memcg_events(memcg, PGSCAN_DIRECT));
1545         seq_buf_printf(&s, "pgsteal %lu\n",
1546                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1547                        memcg_events(memcg, PGSTEAL_DIRECT));
1548         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1549                        memcg_events(memcg, PGACTIVATE));
1550         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1551                        memcg_events(memcg, PGDEACTIVATE));
1552         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1553                        memcg_events(memcg, PGLAZYFREE));
1554         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1555                        memcg_events(memcg, PGLAZYFREED));
1556
1557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1558         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1559                        memcg_events(memcg, THP_FAULT_ALLOC));
1560         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1561                        memcg_events(memcg, THP_COLLAPSE_ALLOC));
1562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1563
1564         /* The above should easily fit into one page */
1565         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1566
1567         return s.buffer;
1568 }
1569
1570 #define K(x) ((x) << (PAGE_SHIFT-10))
1571 /**
1572  * mem_cgroup_print_oom_context: Print OOM information relevant to
1573  * memory controller.
1574  * @memcg: The memory cgroup that went over limit
1575  * @p: Task that is going to be killed
1576  *
1577  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1578  * enabled
1579  */
1580 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1581 {
1582         rcu_read_lock();
1583
1584         if (memcg) {
1585                 pr_cont(",oom_memcg=");
1586                 pr_cont_cgroup_path(memcg->css.cgroup);
1587         } else
1588                 pr_cont(",global_oom");
1589         if (p) {
1590                 pr_cont(",task_memcg=");
1591                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1592         }
1593         rcu_read_unlock();
1594 }
1595
1596 /**
1597  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1598  * memory controller.
1599  * @memcg: The memory cgroup that went over limit
1600  */
1601 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1602 {
1603         char *buf;
1604
1605         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1606                 K((u64)page_counter_read(&memcg->memory)),
1607                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1608         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1609                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1610                         K((u64)page_counter_read(&memcg->swap)),
1611                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1612         else {
1613                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1614                         K((u64)page_counter_read(&memcg->memsw)),
1615                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1616                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1617                         K((u64)page_counter_read(&memcg->kmem)),
1618                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1619         }
1620
1621         pr_info("Memory cgroup stats for ");
1622         pr_cont_cgroup_path(memcg->css.cgroup);
1623         pr_cont(":");
1624         buf = memory_stat_format(memcg);
1625         if (!buf)
1626                 return;
1627         pr_info("%s", buf);
1628         kfree(buf);
1629 }
1630
1631 /*
1632  * Return the memory (and swap, if configured) limit for a memcg.
1633  */
1634 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1635 {
1636         unsigned long max;
1637
1638         max = READ_ONCE(memcg->memory.max);
1639         if (mem_cgroup_swappiness(memcg)) {
1640                 unsigned long memsw_max;
1641                 unsigned long swap_max;
1642
1643                 memsw_max = memcg->memsw.max;
1644                 swap_max = READ_ONCE(memcg->swap.max);
1645                 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1646                 max = min(max + swap_max, memsw_max);
1647         }
1648         return max;
1649 }
1650
1651 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1652 {
1653         return page_counter_read(&memcg->memory);
1654 }
1655
1656 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1657                                      int order)
1658 {
1659         struct oom_control oc = {
1660                 .zonelist = NULL,
1661                 .nodemask = NULL,
1662                 .memcg = memcg,
1663                 .gfp_mask = gfp_mask,
1664                 .order = order,
1665         };
1666         bool ret = true;
1667
1668         if (mutex_lock_killable(&oom_lock))
1669                 return true;
1670
1671         if (mem_cgroup_margin(memcg) >= (1 << order))
1672                 goto unlock;
1673
1674         /*
1675          * A few threads which were not waiting at mutex_lock_killable() can
1676          * fail to bail out. Therefore, check again after holding oom_lock.
1677          */
1678         ret = should_force_charge() || out_of_memory(&oc);
1679
1680 unlock:
1681         mutex_unlock(&oom_lock);
1682         return ret;
1683 }
1684
1685 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1686                                    pg_data_t *pgdat,
1687                                    gfp_t gfp_mask,
1688                                    unsigned long *total_scanned)
1689 {
1690         struct mem_cgroup *victim = NULL;
1691         int total = 0;
1692         int loop = 0;
1693         unsigned long excess;
1694         unsigned long nr_scanned;
1695         struct mem_cgroup_reclaim_cookie reclaim = {
1696                 .pgdat = pgdat,
1697         };
1698
1699         excess = soft_limit_excess(root_memcg);
1700
1701         while (1) {
1702                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1703                 if (!victim) {
1704                         loop++;
1705                         if (loop >= 2) {
1706                                 /*
1707                                  * If we have not been able to reclaim
1708                                  * anything, it might because there are
1709                                  * no reclaimable pages under this hierarchy
1710                                  */
1711                                 if (!total)
1712                                         break;
1713                                 /*
1714                                  * We want to do more targeted reclaim.
1715                                  * excess >> 2 is not to excessive so as to
1716                                  * reclaim too much, nor too less that we keep
1717                                  * coming back to reclaim from this cgroup
1718                                  */
1719                                 if (total >= (excess >> 2) ||
1720                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1721                                         break;
1722                         }
1723                         continue;
1724                 }
1725                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1726                                         pgdat, &nr_scanned);
1727                 *total_scanned += nr_scanned;
1728                 if (!soft_limit_excess(root_memcg))
1729                         break;
1730         }
1731         mem_cgroup_iter_break(root_memcg, victim);
1732         return total;
1733 }
1734
1735 #ifdef CONFIG_LOCKDEP
1736 static struct lockdep_map memcg_oom_lock_dep_map = {
1737         .name = "memcg_oom_lock",
1738 };
1739 #endif
1740
1741 static DEFINE_SPINLOCK(memcg_oom_lock);
1742
1743 /*
1744  * Check OOM-Killer is already running under our hierarchy.
1745  * If someone is running, return false.
1746  */
1747 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1748 {
1749         struct mem_cgroup *iter, *failed = NULL;
1750
1751         spin_lock(&memcg_oom_lock);
1752
1753         for_each_mem_cgroup_tree(iter, memcg) {
1754                 if (iter->oom_lock) {
1755                         /*
1756                          * this subtree of our hierarchy is already locked
1757                          * so we cannot give a lock.
1758                          */
1759                         failed = iter;
1760                         mem_cgroup_iter_break(memcg, iter);
1761                         break;
1762                 } else
1763                         iter->oom_lock = true;
1764         }
1765
1766         if (failed) {
1767                 /*
1768                  * OK, we failed to lock the whole subtree so we have
1769                  * to clean up what we set up to the failing subtree
1770                  */
1771                 for_each_mem_cgroup_tree(iter, memcg) {
1772                         if (iter == failed) {
1773                                 mem_cgroup_iter_break(memcg, iter);
1774                                 break;
1775                         }
1776                         iter->oom_lock = false;
1777                 }
1778         } else
1779                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1780
1781         spin_unlock(&memcg_oom_lock);
1782
1783         return !failed;
1784 }
1785
1786 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1787 {
1788         struct mem_cgroup *iter;
1789
1790         spin_lock(&memcg_oom_lock);
1791         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1792         for_each_mem_cgroup_tree(iter, memcg)
1793                 iter->oom_lock = false;
1794         spin_unlock(&memcg_oom_lock);
1795 }
1796
1797 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1798 {
1799         struct mem_cgroup *iter;
1800
1801         spin_lock(&memcg_oom_lock);
1802         for_each_mem_cgroup_tree(iter, memcg)
1803                 iter->under_oom++;
1804         spin_unlock(&memcg_oom_lock);
1805 }
1806
1807 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1808 {
1809         struct mem_cgroup *iter;
1810
1811         /*
1812          * When a new child is created while the hierarchy is under oom,
1813          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1814          */
1815         spin_lock(&memcg_oom_lock);
1816         for_each_mem_cgroup_tree(iter, memcg)
1817                 if (iter->under_oom > 0)
1818                         iter->under_oom--;
1819         spin_unlock(&memcg_oom_lock);
1820 }
1821
1822 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1823
1824 struct oom_wait_info {
1825         struct mem_cgroup *memcg;
1826         wait_queue_entry_t      wait;
1827 };
1828
1829 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1830         unsigned mode, int sync, void *arg)
1831 {
1832         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1833         struct mem_cgroup *oom_wait_memcg;
1834         struct oom_wait_info *oom_wait_info;
1835
1836         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1837         oom_wait_memcg = oom_wait_info->memcg;
1838
1839         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1840             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1841                 return 0;
1842         return autoremove_wake_function(wait, mode, sync, arg);
1843 }
1844
1845 static void memcg_oom_recover(struct mem_cgroup *memcg)
1846 {
1847         /*
1848          * For the following lockless ->under_oom test, the only required
1849          * guarantee is that it must see the state asserted by an OOM when
1850          * this function is called as a result of userland actions
1851          * triggered by the notification of the OOM.  This is trivially
1852          * achieved by invoking mem_cgroup_mark_under_oom() before
1853          * triggering notification.
1854          */
1855         if (memcg && memcg->under_oom)
1856                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1857 }
1858
1859 enum oom_status {
1860         OOM_SUCCESS,
1861         OOM_FAILED,
1862         OOM_ASYNC,
1863         OOM_SKIPPED
1864 };
1865
1866 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1867 {
1868         enum oom_status ret;
1869         bool locked;
1870
1871         if (order > PAGE_ALLOC_COSTLY_ORDER)
1872                 return OOM_SKIPPED;
1873
1874         memcg_memory_event(memcg, MEMCG_OOM);
1875
1876         /*
1877          * We are in the middle of the charge context here, so we
1878          * don't want to block when potentially sitting on a callstack
1879          * that holds all kinds of filesystem and mm locks.
1880          *
1881          * cgroup1 allows disabling the OOM killer and waiting for outside
1882          * handling until the charge can succeed; remember the context and put
1883          * the task to sleep at the end of the page fault when all locks are
1884          * released.
1885          *
1886          * On the other hand, in-kernel OOM killer allows for an async victim
1887          * memory reclaim (oom_reaper) and that means that we are not solely
1888          * relying on the oom victim to make a forward progress and we can
1889          * invoke the oom killer here.
1890          *
1891          * Please note that mem_cgroup_out_of_memory might fail to find a
1892          * victim and then we have to bail out from the charge path.
1893          */
1894         if (memcg->oom_kill_disable) {
1895                 if (!current->in_user_fault)
1896                         return OOM_SKIPPED;
1897                 css_get(&memcg->css);
1898                 current->memcg_in_oom = memcg;
1899                 current->memcg_oom_gfp_mask = mask;
1900                 current->memcg_oom_order = order;
1901
1902                 return OOM_ASYNC;
1903         }
1904
1905         mem_cgroup_mark_under_oom(memcg);
1906
1907         locked = mem_cgroup_oom_trylock(memcg);
1908
1909         if (locked)
1910                 mem_cgroup_oom_notify(memcg);
1911
1912         mem_cgroup_unmark_under_oom(memcg);
1913         if (mem_cgroup_out_of_memory(memcg, mask, order))
1914                 ret = OOM_SUCCESS;
1915         else
1916                 ret = OOM_FAILED;
1917
1918         if (locked)
1919                 mem_cgroup_oom_unlock(memcg);
1920
1921         return ret;
1922 }
1923
1924 /**
1925  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1926  * @handle: actually kill/wait or just clean up the OOM state
1927  *
1928  * This has to be called at the end of a page fault if the memcg OOM
1929  * handler was enabled.
1930  *
1931  * Memcg supports userspace OOM handling where failed allocations must
1932  * sleep on a waitqueue until the userspace task resolves the
1933  * situation.  Sleeping directly in the charge context with all kinds
1934  * of locks held is not a good idea, instead we remember an OOM state
1935  * in the task and mem_cgroup_oom_synchronize() has to be called at
1936  * the end of the page fault to complete the OOM handling.
1937  *
1938  * Returns %true if an ongoing memcg OOM situation was detected and
1939  * completed, %false otherwise.
1940  */
1941 bool mem_cgroup_oom_synchronize(bool handle)
1942 {
1943         struct mem_cgroup *memcg = current->memcg_in_oom;
1944         struct oom_wait_info owait;
1945         bool locked;
1946
1947         /* OOM is global, do not handle */
1948         if (!memcg)
1949                 return false;
1950
1951         if (!handle)
1952                 goto cleanup;
1953
1954         owait.memcg = memcg;
1955         owait.wait.flags = 0;
1956         owait.wait.func = memcg_oom_wake_function;
1957         owait.wait.private = current;
1958         INIT_LIST_HEAD(&owait.wait.entry);
1959
1960         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1961         mem_cgroup_mark_under_oom(memcg);
1962
1963         locked = mem_cgroup_oom_trylock(memcg);
1964
1965         if (locked)
1966                 mem_cgroup_oom_notify(memcg);
1967
1968         if (locked && !memcg->oom_kill_disable) {
1969                 mem_cgroup_unmark_under_oom(memcg);
1970                 finish_wait(&memcg_oom_waitq, &owait.wait);
1971                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1972                                          current->memcg_oom_order);
1973         } else {
1974                 schedule();
1975                 mem_cgroup_unmark_under_oom(memcg);
1976                 finish_wait(&memcg_oom_waitq, &owait.wait);
1977         }
1978
1979         if (locked) {
1980                 mem_cgroup_oom_unlock(memcg);
1981                 /*
1982                  * There is no guarantee that an OOM-lock contender
1983                  * sees the wakeups triggered by the OOM kill
1984                  * uncharges.  Wake any sleepers explicitely.
1985                  */
1986                 memcg_oom_recover(memcg);
1987         }
1988 cleanup:
1989         current->memcg_in_oom = NULL;
1990         css_put(&memcg->css);
1991         return true;
1992 }
1993
1994 /**
1995  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1996  * @victim: task to be killed by the OOM killer
1997  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1998  *
1999  * Returns a pointer to a memory cgroup, which has to be cleaned up
2000  * by killing all belonging OOM-killable tasks.
2001  *
2002  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2003  */
2004 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2005                                             struct mem_cgroup *oom_domain)
2006 {
2007         struct mem_cgroup *oom_group = NULL;
2008         struct mem_cgroup *memcg;
2009
2010         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2011                 return NULL;
2012
2013         if (!oom_domain)
2014                 oom_domain = root_mem_cgroup;
2015
2016         rcu_read_lock();
2017
2018         memcg = mem_cgroup_from_task(victim);
2019         if (memcg == root_mem_cgroup)
2020                 goto out;
2021
2022         /*
2023          * If the victim task has been asynchronously moved to a different
2024          * memory cgroup, we might end up killing tasks outside oom_domain.
2025          * In this case it's better to ignore memory.group.oom.
2026          */
2027         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2028                 goto out;
2029
2030         /*
2031          * Traverse the memory cgroup hierarchy from the victim task's
2032          * cgroup up to the OOMing cgroup (or root) to find the
2033          * highest-level memory cgroup with oom.group set.
2034          */
2035         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2036                 if (memcg->oom_group)
2037                         oom_group = memcg;
2038
2039                 if (memcg == oom_domain)
2040                         break;
2041         }
2042
2043         if (oom_group)
2044                 css_get(&oom_group->css);
2045 out:
2046         rcu_read_unlock();
2047
2048         return oom_group;
2049 }
2050
2051 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2052 {
2053         pr_info("Tasks in ");
2054         pr_cont_cgroup_path(memcg->css.cgroup);
2055         pr_cont(" are going to be killed due to memory.oom.group set\n");
2056 }
2057
2058 /**
2059  * lock_page_memcg - lock a page->mem_cgroup binding
2060  * @page: the page
2061  *
2062  * This function protects unlocked LRU pages from being moved to
2063  * another cgroup.
2064  *
2065  * It ensures lifetime of the returned memcg. Caller is responsible
2066  * for the lifetime of the page; __unlock_page_memcg() is available
2067  * when @page might get freed inside the locked section.
2068  */
2069 struct mem_cgroup *lock_page_memcg(struct page *page)
2070 {
2071         struct page *head = compound_head(page); /* rmap on tail pages */
2072         struct mem_cgroup *memcg;
2073         unsigned long flags;
2074
2075         /*
2076          * The RCU lock is held throughout the transaction.  The fast
2077          * path can get away without acquiring the memcg->move_lock
2078          * because page moving starts with an RCU grace period.
2079          *
2080          * The RCU lock also protects the memcg from being freed when
2081          * the page state that is going to change is the only thing
2082          * preventing the page itself from being freed. E.g. writeback
2083          * doesn't hold a page reference and relies on PG_writeback to
2084          * keep off truncation, migration and so forth.
2085          */
2086         rcu_read_lock();
2087
2088         if (mem_cgroup_disabled())
2089                 return NULL;
2090 again:
2091         memcg = head->mem_cgroup;
2092         if (unlikely(!memcg))
2093                 return NULL;
2094
2095         if (atomic_read(&memcg->moving_account) <= 0)
2096                 return memcg;
2097
2098         spin_lock_irqsave(&memcg->move_lock, flags);
2099         if (memcg != head->mem_cgroup) {
2100                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2101                 goto again;
2102         }
2103
2104         /*
2105          * When charge migration first begins, we can have locked and
2106          * unlocked page stat updates happening concurrently.  Track
2107          * the task who has the lock for unlock_page_memcg().
2108          */
2109         memcg->move_lock_task = current;
2110         memcg->move_lock_flags = flags;
2111
2112         return memcg;
2113 }
2114 EXPORT_SYMBOL(lock_page_memcg);
2115
2116 /**
2117  * __unlock_page_memcg - unlock and unpin a memcg
2118  * @memcg: the memcg
2119  *
2120  * Unlock and unpin a memcg returned by lock_page_memcg().
2121  */
2122 void __unlock_page_memcg(struct mem_cgroup *memcg)
2123 {
2124         if (memcg && memcg->move_lock_task == current) {
2125                 unsigned long flags = memcg->move_lock_flags;
2126
2127                 memcg->move_lock_task = NULL;
2128                 memcg->move_lock_flags = 0;
2129
2130                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2131         }
2132
2133         rcu_read_unlock();
2134 }
2135
2136 /**
2137  * unlock_page_memcg - unlock a page->mem_cgroup binding
2138  * @page: the page
2139  */
2140 void unlock_page_memcg(struct page *page)
2141 {
2142         struct page *head = compound_head(page);
2143
2144         __unlock_page_memcg(head->mem_cgroup);
2145 }
2146 EXPORT_SYMBOL(unlock_page_memcg);
2147
2148 struct memcg_stock_pcp {
2149         struct mem_cgroup *cached; /* this never be root cgroup */
2150         unsigned int nr_pages;
2151
2152 #ifdef CONFIG_MEMCG_KMEM
2153         struct obj_cgroup *cached_objcg;
2154         unsigned int nr_bytes;
2155 #endif
2156
2157         struct work_struct work;
2158         unsigned long flags;
2159 #define FLUSHING_CACHED_CHARGE  0
2160 };
2161 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2162 static DEFINE_MUTEX(percpu_charge_mutex);
2163
2164 #ifdef CONFIG_MEMCG_KMEM
2165 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2166 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2167                                      struct mem_cgroup *root_memcg);
2168
2169 #else
2170 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2171 {
2172 }
2173 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2174                                      struct mem_cgroup *root_memcg)
2175 {
2176         return false;
2177 }
2178 #endif
2179
2180 /**
2181  * consume_stock: Try to consume stocked charge on this cpu.
2182  * @memcg: memcg to consume from.
2183  * @nr_pages: how many pages to charge.
2184  *
2185  * The charges will only happen if @memcg matches the current cpu's memcg
2186  * stock, and at least @nr_pages are available in that stock.  Failure to
2187  * service an allocation will refill the stock.
2188  *
2189  * returns true if successful, false otherwise.
2190  */
2191 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2192 {
2193         struct memcg_stock_pcp *stock;
2194         unsigned long flags;
2195         bool ret = false;
2196
2197         if (nr_pages > MEMCG_CHARGE_BATCH)
2198                 return ret;
2199
2200         local_irq_save(flags);
2201
2202         stock = this_cpu_ptr(&memcg_stock);
2203         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2204                 stock->nr_pages -= nr_pages;
2205                 ret = true;
2206         }
2207
2208         local_irq_restore(flags);
2209
2210         return ret;
2211 }
2212
2213 /*
2214  * Returns stocks cached in percpu and reset cached information.
2215  */
2216 static void drain_stock(struct memcg_stock_pcp *stock)
2217 {
2218         struct mem_cgroup *old = stock->cached;
2219
2220         if (!old)
2221                 return;
2222
2223         if (stock->nr_pages) {
2224                 page_counter_uncharge(&old->memory, stock->nr_pages);
2225                 if (do_memsw_account())
2226                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2227                 stock->nr_pages = 0;
2228         }
2229
2230         css_put(&old->css);
2231         stock->cached = NULL;
2232 }
2233
2234 static void drain_local_stock(struct work_struct *dummy)
2235 {
2236         struct memcg_stock_pcp *stock;
2237         unsigned long flags;
2238
2239         /*
2240          * The only protection from memory hotplug vs. drain_stock races is
2241          * that we always operate on local CPU stock here with IRQ disabled
2242          */
2243         local_irq_save(flags);
2244
2245         stock = this_cpu_ptr(&memcg_stock);
2246         drain_obj_stock(stock);
2247         drain_stock(stock);
2248         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2249
2250         local_irq_restore(flags);
2251 }
2252
2253 /*
2254  * Cache charges(val) to local per_cpu area.
2255  * This will be consumed by consume_stock() function, later.
2256  */
2257 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2258 {
2259         struct memcg_stock_pcp *stock;
2260         unsigned long flags;
2261
2262         local_irq_save(flags);
2263
2264         stock = this_cpu_ptr(&memcg_stock);
2265         if (stock->cached != memcg) { /* reset if necessary */
2266                 drain_stock(stock);
2267                 css_get(&memcg->css);
2268                 stock->cached = memcg;
2269         }
2270         stock->nr_pages += nr_pages;
2271
2272         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2273                 drain_stock(stock);
2274
2275         local_irq_restore(flags);
2276 }
2277
2278 /*
2279  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2280  * of the hierarchy under it.
2281  */
2282 static void drain_all_stock(struct mem_cgroup *root_memcg)
2283 {
2284         int cpu, curcpu;
2285
2286         /* If someone's already draining, avoid adding running more workers. */
2287         if (!mutex_trylock(&percpu_charge_mutex))
2288                 return;
2289         /*
2290          * Notify other cpus that system-wide "drain" is running
2291          * We do not care about races with the cpu hotplug because cpu down
2292          * as well as workers from this path always operate on the local
2293          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2294          */
2295         curcpu = get_cpu();
2296         for_each_online_cpu(cpu) {
2297                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2298                 struct mem_cgroup *memcg;
2299                 bool flush = false;
2300
2301                 rcu_read_lock();
2302                 memcg = stock->cached;
2303                 if (memcg && stock->nr_pages &&
2304                     mem_cgroup_is_descendant(memcg, root_memcg))
2305                         flush = true;
2306                 if (obj_stock_flush_required(stock, root_memcg))
2307                         flush = true;
2308                 rcu_read_unlock();
2309
2310                 if (flush &&
2311                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2312                         if (cpu == curcpu)
2313                                 drain_local_stock(&stock->work);
2314                         else
2315                                 schedule_work_on(cpu, &stock->work);
2316                 }
2317         }
2318         put_cpu();
2319         mutex_unlock(&percpu_charge_mutex);
2320 }
2321
2322 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2323 {
2324         struct memcg_stock_pcp *stock;
2325         struct mem_cgroup *memcg, *mi;
2326
2327         stock = &per_cpu(memcg_stock, cpu);
2328         drain_stock(stock);
2329
2330         for_each_mem_cgroup(memcg) {
2331                 int i;
2332
2333                 for (i = 0; i < MEMCG_NR_STAT; i++) {
2334                         int nid;
2335                         long x;
2336
2337                         x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2338                         if (x)
2339                                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2340                                         atomic_long_add(x, &memcg->vmstats[i]);
2341
2342                         if (i >= NR_VM_NODE_STAT_ITEMS)
2343                                 continue;
2344
2345                         for_each_node(nid) {
2346                                 struct mem_cgroup_per_node *pn;
2347
2348                                 pn = mem_cgroup_nodeinfo(memcg, nid);
2349                                 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2350                                 if (x)
2351                                         do {
2352                                                 atomic_long_add(x, &pn->lruvec_stat[i]);
2353                                         } while ((pn = parent_nodeinfo(pn, nid)));
2354                         }
2355                 }
2356
2357                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2358                         long x;
2359
2360                         x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2361                         if (x)
2362                                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2363                                         atomic_long_add(x, &memcg->vmevents[i]);
2364                 }
2365         }
2366
2367         return 0;
2368 }
2369
2370 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2371                                   unsigned int nr_pages,
2372                                   gfp_t gfp_mask)
2373 {
2374         unsigned long nr_reclaimed = 0;
2375
2376         do {
2377                 unsigned long pflags;
2378
2379                 if (page_counter_read(&memcg->memory) <=
2380                     READ_ONCE(memcg->memory.high))
2381                         continue;
2382
2383                 memcg_memory_event(memcg, MEMCG_HIGH);
2384
2385                 psi_memstall_enter(&pflags);
2386                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2387                                                              gfp_mask, true);
2388                 psi_memstall_leave(&pflags);
2389         } while ((memcg = parent_mem_cgroup(memcg)) &&
2390                  !mem_cgroup_is_root(memcg));
2391
2392         return nr_reclaimed;
2393 }
2394
2395 static void high_work_func(struct work_struct *work)
2396 {
2397         struct mem_cgroup *memcg;
2398
2399         memcg = container_of(work, struct mem_cgroup, high_work);
2400         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2401 }
2402
2403 /*
2404  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2405  * enough to still cause a significant slowdown in most cases, while still
2406  * allowing diagnostics and tracing to proceed without becoming stuck.
2407  */
2408 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2409
2410 /*
2411  * When calculating the delay, we use these either side of the exponentiation to
2412  * maintain precision and scale to a reasonable number of jiffies (see the table
2413  * below.
2414  *
2415  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2416  *   overage ratio to a delay.
2417  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2418  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2419  *   to produce a reasonable delay curve.
2420  *
2421  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2422  * reasonable delay curve compared to precision-adjusted overage, not
2423  * penalising heavily at first, but still making sure that growth beyond the
2424  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2425  * example, with a high of 100 megabytes:
2426  *
2427  *  +-------+------------------------+
2428  *  | usage | time to allocate in ms |
2429  *  +-------+------------------------+
2430  *  | 100M  |                      0 |
2431  *  | 101M  |                      6 |
2432  *  | 102M  |                     25 |
2433  *  | 103M  |                     57 |
2434  *  | 104M  |                    102 |
2435  *  | 105M  |                    159 |
2436  *  | 106M  |                    230 |
2437  *  | 107M  |                    313 |
2438  *  | 108M  |                    409 |
2439  *  | 109M  |                    518 |
2440  *  | 110M  |                    639 |
2441  *  | 111M  |                    774 |
2442  *  | 112M  |                    921 |
2443  *  | 113M  |                   1081 |
2444  *  | 114M  |                   1254 |
2445  *  | 115M  |                   1439 |
2446  *  | 116M  |                   1638 |
2447  *  | 117M  |                   1849 |
2448  *  | 118M  |                   2000 |
2449  *  | 119M  |                   2000 |
2450  *  | 120M  |                   2000 |
2451  *  +-------+------------------------+
2452  */
2453  #define MEMCG_DELAY_PRECISION_SHIFT 20
2454  #define MEMCG_DELAY_SCALING_SHIFT 14
2455
2456 static u64 calculate_overage(unsigned long usage, unsigned long high)
2457 {
2458         u64 overage;
2459
2460         if (usage <= high)
2461                 return 0;
2462
2463         /*
2464          * Prevent division by 0 in overage calculation by acting as if
2465          * it was a threshold of 1 page
2466          */
2467         high = max(high, 1UL);
2468
2469         overage = usage - high;
2470         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2471         return div64_u64(overage, high);
2472 }
2473
2474 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2475 {
2476         u64 overage, max_overage = 0;
2477
2478         do {
2479                 overage = calculate_overage(page_counter_read(&memcg->memory),
2480                                             READ_ONCE(memcg->memory.high));
2481                 max_overage = max(overage, max_overage);
2482         } while ((memcg = parent_mem_cgroup(memcg)) &&
2483                  !mem_cgroup_is_root(memcg));
2484
2485         return max_overage;
2486 }
2487
2488 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2489 {
2490         u64 overage, max_overage = 0;
2491
2492         do {
2493                 overage = calculate_overage(page_counter_read(&memcg->swap),
2494                                             READ_ONCE(memcg->swap.high));
2495                 if (overage)
2496                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2497                 max_overage = max(overage, max_overage);
2498         } while ((memcg = parent_mem_cgroup(memcg)) &&
2499                  !mem_cgroup_is_root(memcg));
2500
2501         return max_overage;
2502 }
2503
2504 /*
2505  * Get the number of jiffies that we should penalise a mischievous cgroup which
2506  * is exceeding its memory.high by checking both it and its ancestors.
2507  */
2508 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2509                                           unsigned int nr_pages,
2510                                           u64 max_overage)
2511 {
2512         unsigned long penalty_jiffies;
2513
2514         if (!max_overage)
2515                 return 0;
2516
2517         /*
2518          * We use overage compared to memory.high to calculate the number of
2519          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2520          * fairly lenient on small overages, and increasingly harsh when the
2521          * memcg in question makes it clear that it has no intention of stopping
2522          * its crazy behaviour, so we exponentially increase the delay based on
2523          * overage amount.
2524          */
2525         penalty_jiffies = max_overage * max_overage * HZ;
2526         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2527         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2528
2529         /*
2530          * Factor in the task's own contribution to the overage, such that four
2531          * N-sized allocations are throttled approximately the same as one
2532          * 4N-sized allocation.
2533          *
2534          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2535          * larger the current charge patch is than that.
2536          */
2537         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2538 }
2539
2540 /*
2541  * Scheduled by try_charge() to be executed from the userland return path
2542  * and reclaims memory over the high limit.
2543  */
2544 void mem_cgroup_handle_over_high(void)
2545 {
2546         unsigned long penalty_jiffies;
2547         unsigned long pflags;
2548         unsigned long nr_reclaimed;
2549         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2550         int nr_retries = MAX_RECLAIM_RETRIES;
2551         struct mem_cgroup *memcg;
2552         bool in_retry = false;
2553
2554         if (likely(!nr_pages))
2555                 return;
2556
2557         memcg = get_mem_cgroup_from_mm(current->mm);
2558         current->memcg_nr_pages_over_high = 0;
2559
2560 retry_reclaim:
2561         /*
2562          * The allocating task should reclaim at least the batch size, but for
2563          * subsequent retries we only want to do what's necessary to prevent oom
2564          * or breaching resource isolation.
2565          *
2566          * This is distinct from memory.max or page allocator behaviour because
2567          * memory.high is currently batched, whereas memory.max and the page
2568          * allocator run every time an allocation is made.
2569          */
2570         nr_reclaimed = reclaim_high(memcg,
2571                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2572                                     GFP_KERNEL);
2573
2574         /*
2575          * memory.high is breached and reclaim is unable to keep up. Throttle
2576          * allocators proactively to slow down excessive growth.
2577          */
2578         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2579                                                mem_find_max_overage(memcg));
2580
2581         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2582                                                 swap_find_max_overage(memcg));
2583
2584         /*
2585          * Clamp the max delay per usermode return so as to still keep the
2586          * application moving forwards and also permit diagnostics, albeit
2587          * extremely slowly.
2588          */
2589         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2590
2591         /*
2592          * Don't sleep if the amount of jiffies this memcg owes us is so low
2593          * that it's not even worth doing, in an attempt to be nice to those who
2594          * go only a small amount over their memory.high value and maybe haven't
2595          * been aggressively reclaimed enough yet.
2596          */
2597         if (penalty_jiffies <= HZ / 100)
2598                 goto out;
2599
2600         /*
2601          * If reclaim is making forward progress but we're still over
2602          * memory.high, we want to encourage that rather than doing allocator
2603          * throttling.
2604          */
2605         if (nr_reclaimed || nr_retries--) {
2606                 in_retry = true;
2607                 goto retry_reclaim;
2608         }
2609
2610         /*
2611          * If we exit early, we're guaranteed to die (since
2612          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2613          * need to account for any ill-begotten jiffies to pay them off later.
2614          */
2615         psi_memstall_enter(&pflags);
2616         schedule_timeout_killable(penalty_jiffies);
2617         psi_memstall_leave(&pflags);
2618
2619 out:
2620         css_put(&memcg->css);
2621 }
2622
2623 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2624                       unsigned int nr_pages)
2625 {
2626         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2627         int nr_retries = MAX_RECLAIM_RETRIES;
2628         struct mem_cgroup *mem_over_limit;
2629         struct page_counter *counter;
2630         enum oom_status oom_status;
2631         unsigned long nr_reclaimed;
2632         bool may_swap = true;
2633         bool drained = false;
2634         unsigned long pflags;
2635
2636         if (mem_cgroup_is_root(memcg))
2637                 return 0;
2638 retry:
2639         if (consume_stock(memcg, nr_pages))
2640                 return 0;
2641
2642         if (!do_memsw_account() ||
2643             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2644                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2645                         goto done_restock;
2646                 if (do_memsw_account())
2647                         page_counter_uncharge(&memcg->memsw, batch);
2648                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2649         } else {
2650                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2651                 may_swap = false;
2652         }
2653
2654         if (batch > nr_pages) {
2655                 batch = nr_pages;
2656                 goto retry;
2657         }
2658
2659         /*
2660          * Memcg doesn't have a dedicated reserve for atomic
2661          * allocations. But like the global atomic pool, we need to
2662          * put the burden of reclaim on regular allocation requests
2663          * and let these go through as privileged allocations.
2664          */
2665         if (gfp_mask & __GFP_ATOMIC)
2666                 goto force;
2667
2668         /*
2669          * Unlike in global OOM situations, memcg is not in a physical
2670          * memory shortage.  Allow dying and OOM-killed tasks to
2671          * bypass the last charges so that they can exit quickly and
2672          * free their memory.
2673          */
2674         if (unlikely(should_force_charge()))
2675                 goto force;
2676
2677         /*
2678          * Prevent unbounded recursion when reclaim operations need to
2679          * allocate memory. This might exceed the limits temporarily,
2680          * but we prefer facilitating memory reclaim and getting back
2681          * under the limit over triggering OOM kills in these cases.
2682          */
2683         if (unlikely(current->flags & PF_MEMALLOC))
2684                 goto force;
2685
2686         if (unlikely(task_in_memcg_oom(current)))
2687                 goto nomem;
2688
2689         if (!gfpflags_allow_blocking(gfp_mask))
2690                 goto nomem;
2691
2692         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2693
2694         psi_memstall_enter(&pflags);
2695         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2696                                                     gfp_mask, may_swap);
2697         psi_memstall_leave(&pflags);
2698
2699         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2700                 goto retry;
2701
2702         if (!drained) {
2703                 drain_all_stock(mem_over_limit);
2704                 drained = true;
2705                 goto retry;
2706         }
2707
2708         if (gfp_mask & __GFP_NORETRY)
2709                 goto nomem;
2710         /*
2711          * Even though the limit is exceeded at this point, reclaim
2712          * may have been able to free some pages.  Retry the charge
2713          * before killing the task.
2714          *
2715          * Only for regular pages, though: huge pages are rather
2716          * unlikely to succeed so close to the limit, and we fall back
2717          * to regular pages anyway in case of failure.
2718          */
2719         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2720                 goto retry;
2721         /*
2722          * At task move, charge accounts can be doubly counted. So, it's
2723          * better to wait until the end of task_move if something is going on.
2724          */
2725         if (mem_cgroup_wait_acct_move(mem_over_limit))
2726                 goto retry;
2727
2728         if (nr_retries--)
2729                 goto retry;
2730
2731         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2732                 goto nomem;
2733
2734         if (gfp_mask & __GFP_NOFAIL)
2735                 goto force;
2736
2737         if (fatal_signal_pending(current))
2738                 goto force;
2739
2740         /*
2741          * keep retrying as long as the memcg oom killer is able to make
2742          * a forward progress or bypass the charge if the oom killer
2743          * couldn't make any progress.
2744          */
2745         oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2746                        get_order(nr_pages * PAGE_SIZE));
2747         switch (oom_status) {
2748         case OOM_SUCCESS:
2749                 nr_retries = MAX_RECLAIM_RETRIES;
2750                 goto retry;
2751         case OOM_FAILED:
2752                 goto force;
2753         default:
2754                 goto nomem;
2755         }
2756 nomem:
2757         if (!(gfp_mask & __GFP_NOFAIL))
2758                 return -ENOMEM;
2759 force:
2760         /*
2761          * The allocation either can't fail or will lead to more memory
2762          * being freed very soon.  Allow memory usage go over the limit
2763          * temporarily by force charging it.
2764          */
2765         page_counter_charge(&memcg->memory, nr_pages);
2766         if (do_memsw_account())
2767                 page_counter_charge(&memcg->memsw, nr_pages);
2768
2769         return 0;
2770
2771 done_restock:
2772         if (batch > nr_pages)
2773                 refill_stock(memcg, batch - nr_pages);
2774
2775         /*
2776          * If the hierarchy is above the normal consumption range, schedule
2777          * reclaim on returning to userland.  We can perform reclaim here
2778          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2779          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2780          * not recorded as it most likely matches current's and won't
2781          * change in the meantime.  As high limit is checked again before
2782          * reclaim, the cost of mismatch is negligible.
2783          */
2784         do {
2785                 bool mem_high, swap_high;
2786
2787                 mem_high = page_counter_read(&memcg->memory) >
2788                         READ_ONCE(memcg->memory.high);
2789                 swap_high = page_counter_read(&memcg->swap) >
2790                         READ_ONCE(memcg->swap.high);
2791
2792                 /* Don't bother a random interrupted task */
2793                 if (in_interrupt()) {
2794                         if (mem_high) {
2795                                 schedule_work(&memcg->high_work);
2796                                 break;
2797                         }
2798                         continue;
2799                 }
2800
2801                 if (mem_high || swap_high) {
2802                         /*
2803                          * The allocating tasks in this cgroup will need to do
2804                          * reclaim or be throttled to prevent further growth
2805                          * of the memory or swap footprints.
2806                          *
2807                          * Target some best-effort fairness between the tasks,
2808                          * and distribute reclaim work and delay penalties
2809                          * based on how much each task is actually allocating.
2810                          */
2811                         current->memcg_nr_pages_over_high += batch;
2812                         set_notify_resume(current);
2813                         break;
2814                 }
2815         } while ((memcg = parent_mem_cgroup(memcg)));
2816
2817         return 0;
2818 }
2819
2820 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2821 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2822 {
2823         if (mem_cgroup_is_root(memcg))
2824                 return;
2825
2826         page_counter_uncharge(&memcg->memory, nr_pages);
2827         if (do_memsw_account())
2828                 page_counter_uncharge(&memcg->memsw, nr_pages);
2829 }
2830 #endif
2831
2832 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2833 {
2834         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2835         /*
2836          * Any of the following ensures page->mem_cgroup stability:
2837          *
2838          * - the page lock
2839          * - LRU isolation
2840          * - lock_page_memcg()
2841          * - exclusive reference
2842          */
2843         page->mem_cgroup = memcg;
2844 }
2845
2846 #ifdef CONFIG_MEMCG_KMEM
2847 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2848                                  gfp_t gfp)
2849 {
2850         unsigned int objects = objs_per_slab_page(s, page);
2851         void *vec;
2852
2853         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2854                            page_to_nid(page));
2855         if (!vec)
2856                 return -ENOMEM;
2857
2858         if (cmpxchg(&page->obj_cgroups, NULL,
2859                     (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2860                 kfree(vec);
2861         else
2862                 kmemleak_not_leak(vec);
2863
2864         return 0;
2865 }
2866
2867 /*
2868  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2869  *
2870  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2871  * cgroup_mutex, etc.
2872  */
2873 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2874 {
2875         struct page *page;
2876
2877         if (mem_cgroup_disabled())
2878                 return NULL;
2879
2880         page = virt_to_head_page(p);
2881
2882         /*
2883          * Slab objects are accounted individually, not per-page.
2884          * Memcg membership data for each individual object is saved in
2885          * the page->obj_cgroups.
2886          */
2887         if (page_has_obj_cgroups(page)) {
2888                 struct obj_cgroup *objcg;
2889                 unsigned int off;
2890
2891                 off = obj_to_index(page->slab_cache, page, p);
2892                 objcg = page_obj_cgroups(page)[off];
2893                 if (objcg)
2894                         return obj_cgroup_memcg(objcg);
2895
2896                 return NULL;
2897         }
2898
2899         /* All other pages use page->mem_cgroup */
2900         return page->mem_cgroup;
2901 }
2902
2903 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2904 {
2905         struct obj_cgroup *objcg = NULL;
2906         struct mem_cgroup *memcg;
2907
2908         if (unlikely(!current->mm && !current->active_memcg))
2909                 return NULL;
2910
2911         rcu_read_lock();
2912         if (unlikely(current->active_memcg))
2913                 memcg = rcu_dereference(current->active_memcg);
2914         else
2915                 memcg = mem_cgroup_from_task(current);
2916
2917         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2918                 objcg = rcu_dereference(memcg->objcg);
2919                 if (objcg && obj_cgroup_tryget(objcg))
2920                         break;
2921         }
2922         rcu_read_unlock();
2923
2924         return objcg;
2925 }
2926
2927 static int memcg_alloc_cache_id(void)
2928 {
2929         int id, size;
2930         int err;
2931
2932         id = ida_simple_get(&memcg_cache_ida,
2933                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2934         if (id < 0)
2935                 return id;
2936
2937         if (id < memcg_nr_cache_ids)
2938                 return id;
2939
2940         /*
2941          * There's no space for the new id in memcg_caches arrays,
2942          * so we have to grow them.
2943          */
2944         down_write(&memcg_cache_ids_sem);
2945
2946         size = 2 * (id + 1);
2947         if (size < MEMCG_CACHES_MIN_SIZE)
2948                 size = MEMCG_CACHES_MIN_SIZE;
2949         else if (size > MEMCG_CACHES_MAX_SIZE)
2950                 size = MEMCG_CACHES_MAX_SIZE;
2951
2952         err = memcg_update_all_list_lrus(size);
2953         if (!err)
2954                 memcg_nr_cache_ids = size;
2955
2956         up_write(&memcg_cache_ids_sem);
2957
2958         if (err) {
2959                 ida_simple_remove(&memcg_cache_ida, id);
2960                 return err;
2961         }
2962         return id;
2963 }
2964
2965 static void memcg_free_cache_id(int id)
2966 {
2967         ida_simple_remove(&memcg_cache_ida, id);
2968 }
2969
2970 /**
2971  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2972  * @memcg: memory cgroup to charge
2973  * @gfp: reclaim mode
2974  * @nr_pages: number of pages to charge
2975  *
2976  * Returns 0 on success, an error code on failure.
2977  */
2978 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2979                         unsigned int nr_pages)
2980 {
2981         struct page_counter *counter;
2982         int ret;
2983
2984         ret = try_charge(memcg, gfp, nr_pages);
2985         if (ret)
2986                 return ret;
2987
2988         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2989             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2990
2991                 /*
2992                  * Enforce __GFP_NOFAIL allocation because callers are not
2993                  * prepared to see failures and likely do not have any failure
2994                  * handling code.
2995                  */
2996                 if (gfp & __GFP_NOFAIL) {
2997                         page_counter_charge(&memcg->kmem, nr_pages);
2998                         return 0;
2999                 }
3000                 cancel_charge(memcg, nr_pages);
3001                 return -ENOMEM;
3002         }
3003         return 0;
3004 }
3005
3006 /**
3007  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3008  * @memcg: memcg to uncharge
3009  * @nr_pages: number of pages to uncharge
3010  */
3011 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3012 {
3013         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3014                 page_counter_uncharge(&memcg->kmem, nr_pages);
3015
3016         page_counter_uncharge(&memcg->memory, nr_pages);
3017         if (do_memsw_account())
3018                 page_counter_uncharge(&memcg->memsw, nr_pages);
3019 }
3020
3021 /**
3022  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3023  * @page: page to charge
3024  * @gfp: reclaim mode
3025  * @order: allocation order
3026  *
3027  * Returns 0 on success, an error code on failure.
3028  */
3029 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3030 {
3031         struct mem_cgroup *memcg;
3032         int ret = 0;
3033
3034         if (memcg_kmem_bypass())
3035                 return 0;
3036
3037         memcg = get_mem_cgroup_from_current();
3038         if (!mem_cgroup_is_root(memcg)) {
3039                 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3040                 if (!ret) {
3041                         page->mem_cgroup = memcg;
3042                         __SetPageKmemcg(page);
3043                         return 0;
3044                 }
3045         }
3046         css_put(&memcg->css);
3047         return ret;
3048 }
3049
3050 /**
3051  * __memcg_kmem_uncharge_page: uncharge a kmem page
3052  * @page: page to uncharge
3053  * @order: allocation order
3054  */
3055 void __memcg_kmem_uncharge_page(struct page *page, int order)
3056 {
3057         struct mem_cgroup *memcg = page->mem_cgroup;
3058         unsigned int nr_pages = 1 << order;
3059
3060         if (!memcg)
3061                 return;
3062
3063         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3064         __memcg_kmem_uncharge(memcg, nr_pages);
3065         page->mem_cgroup = NULL;
3066         css_put(&memcg->css);
3067
3068         /* slab pages do not have PageKmemcg flag set */
3069         if (PageKmemcg(page))
3070                 __ClearPageKmemcg(page);
3071 }
3072
3073 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3074 {
3075         struct memcg_stock_pcp *stock;
3076         unsigned long flags;
3077         bool ret = false;
3078
3079         local_irq_save(flags);
3080
3081         stock = this_cpu_ptr(&memcg_stock);
3082         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3083                 stock->nr_bytes -= nr_bytes;
3084                 ret = true;
3085         }
3086
3087         local_irq_restore(flags);
3088
3089         return ret;
3090 }
3091
3092 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3093 {
3094         struct obj_cgroup *old = stock->cached_objcg;
3095
3096         if (!old)
3097                 return;
3098
3099         if (stock->nr_bytes) {
3100                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3101                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3102
3103                 if (nr_pages) {
3104                         rcu_read_lock();
3105                         __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3106                         rcu_read_unlock();
3107                 }
3108
3109                 /*
3110                  * The leftover is flushed to the centralized per-memcg value.
3111                  * On the next attempt to refill obj stock it will be moved
3112                  * to a per-cpu stock (probably, on an other CPU), see
3113                  * refill_obj_stock().
3114                  *
3115                  * How often it's flushed is a trade-off between the memory
3116                  * limit enforcement accuracy and potential CPU contention,
3117                  * so it might be changed in the future.
3118                  */
3119                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3120                 stock->nr_bytes = 0;
3121         }
3122
3123         obj_cgroup_put(old);
3124         stock->cached_objcg = NULL;
3125 }
3126
3127 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3128                                      struct mem_cgroup *root_memcg)
3129 {
3130         struct mem_cgroup *memcg;
3131
3132         if (stock->cached_objcg) {
3133                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3134                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3135                         return true;
3136         }
3137
3138         return false;
3139 }
3140
3141 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3142 {
3143         struct memcg_stock_pcp *stock;
3144         unsigned long flags;
3145
3146         local_irq_save(flags);
3147
3148         stock = this_cpu_ptr(&memcg_stock);
3149         if (stock->cached_objcg != objcg) { /* reset if necessary */
3150                 drain_obj_stock(stock);
3151                 obj_cgroup_get(objcg);
3152                 stock->cached_objcg = objcg;
3153                 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3154         }
3155         stock->nr_bytes += nr_bytes;
3156
3157         if (stock->nr_bytes > PAGE_SIZE)
3158                 drain_obj_stock(stock);
3159
3160         local_irq_restore(flags);
3161 }
3162
3163 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3164 {
3165         struct mem_cgroup *memcg;
3166         unsigned int nr_pages, nr_bytes;
3167         int ret;
3168
3169         if (consume_obj_stock(objcg, size))
3170                 return 0;
3171
3172         /*
3173          * In theory, memcg->nr_charged_bytes can have enough
3174          * pre-charged bytes to satisfy the allocation. However,
3175          * flushing memcg->nr_charged_bytes requires two atomic
3176          * operations, and memcg->nr_charged_bytes can't be big,
3177          * so it's better to ignore it and try grab some new pages.
3178          * memcg->nr_charged_bytes will be flushed in
3179          * refill_obj_stock(), called from this function or
3180          * independently later.
3181          */
3182         rcu_read_lock();
3183         memcg = obj_cgroup_memcg(objcg);
3184         css_get(&memcg->css);
3185         rcu_read_unlock();
3186
3187         nr_pages = size >> PAGE_SHIFT;
3188         nr_bytes = size & (PAGE_SIZE - 1);
3189
3190         if (nr_bytes)
3191                 nr_pages += 1;
3192
3193         ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3194         if (!ret && nr_bytes)
3195                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3196
3197         css_put(&memcg->css);
3198         return ret;
3199 }
3200
3201 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3202 {
3203         refill_obj_stock(objcg, size);
3204 }
3205
3206 #endif /* CONFIG_MEMCG_KMEM */
3207
3208 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3209
3210 /*
3211  * Because tail pages are not marked as "used", set it. We're under
3212  * pgdat->lru_lock and migration entries setup in all page mappings.
3213  */
3214 void mem_cgroup_split_huge_fixup(struct page *head)
3215 {
3216         struct mem_cgroup *memcg = head->mem_cgroup;
3217         int i;
3218
3219         if (mem_cgroup_disabled())
3220                 return;
3221
3222         for (i = 1; i < HPAGE_PMD_NR; i++) {
3223                 css_get(&memcg->css);
3224                 head[i].mem_cgroup = memcg;
3225         }
3226 }
3227 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3228
3229 #ifdef CONFIG_MEMCG_SWAP
3230 /**
3231  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3232  * @entry: swap entry to be moved
3233  * @from:  mem_cgroup which the entry is moved from
3234  * @to:  mem_cgroup which the entry is moved to
3235  *
3236  * It succeeds only when the swap_cgroup's record for this entry is the same
3237  * as the mem_cgroup's id of @from.
3238  *
3239  * Returns 0 on success, -EINVAL on failure.
3240  *
3241  * The caller must have charged to @to, IOW, called page_counter_charge() about
3242  * both res and memsw, and called css_get().
3243  */
3244 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3245                                 struct mem_cgroup *from, struct mem_cgroup *to)
3246 {
3247         unsigned short old_id, new_id;
3248
3249         old_id = mem_cgroup_id(from);
3250         new_id = mem_cgroup_id(to);
3251
3252         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3253                 mod_memcg_state(from, MEMCG_SWAP, -1);
3254                 mod_memcg_state(to, MEMCG_SWAP, 1);
3255                 return 0;
3256         }
3257         return -EINVAL;
3258 }
3259 #else
3260 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3261                                 struct mem_cgroup *from, struct mem_cgroup *to)
3262 {
3263         return -EINVAL;
3264 }
3265 #endif
3266
3267 static DEFINE_MUTEX(memcg_max_mutex);
3268
3269 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3270                                  unsigned long max, bool memsw)
3271 {
3272         bool enlarge = false;
3273         bool drained = false;
3274         int ret;
3275         bool limits_invariant;
3276         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3277
3278         do {
3279                 if (signal_pending(current)) {
3280                         ret = -EINTR;
3281                         break;
3282                 }
3283
3284                 mutex_lock(&memcg_max_mutex);
3285                 /*
3286                  * Make sure that the new limit (memsw or memory limit) doesn't
3287                  * break our basic invariant rule memory.max <= memsw.max.
3288                  */
3289                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3290                                            max <= memcg->memsw.max;
3291                 if (!limits_invariant) {
3292                         mutex_unlock(&memcg_max_mutex);
3293                         ret = -EINVAL;
3294                         break;
3295                 }
3296                 if (max > counter->max)
3297                         enlarge = true;
3298                 ret = page_counter_set_max(counter, max);
3299                 mutex_unlock(&memcg_max_mutex);
3300
3301                 if (!ret)
3302                         break;
3303
3304                 if (!drained) {
3305                         drain_all_stock(memcg);
3306                         drained = true;
3307                         continue;
3308                 }
3309
3310                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3311                                         GFP_KERNEL, !memsw)) {
3312                         ret = -EBUSY;
3313                         break;
3314                 }
3315         } while (true);
3316
3317         if (!ret && enlarge)
3318                 memcg_oom_recover(memcg);
3319
3320         return ret;
3321 }
3322
3323 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3324                                             gfp_t gfp_mask,
3325                                             unsigned long *total_scanned)
3326 {
3327         unsigned long nr_reclaimed = 0;
3328         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3329         unsigned long reclaimed;
3330         int loop = 0;
3331         struct mem_cgroup_tree_per_node *mctz;
3332         unsigned long excess;
3333         unsigned long nr_scanned;
3334
3335         if (order > 0)
3336                 return 0;
3337
3338         mctz = soft_limit_tree_node(pgdat->node_id);
3339
3340         /*
3341          * Do not even bother to check the largest node if the root
3342          * is empty. Do it lockless to prevent lock bouncing. Races
3343          * are acceptable as soft limit is best effort anyway.
3344          */
3345         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3346                 return 0;
3347
3348         /*
3349          * This loop can run a while, specially if mem_cgroup's continuously
3350          * keep exceeding their soft limit and putting the system under
3351          * pressure
3352          */
3353         do {
3354                 if (next_mz)
3355                         mz = next_mz;
3356                 else
3357                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3358                 if (!mz)
3359                         break;
3360
3361                 nr_scanned = 0;
3362                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3363                                                     gfp_mask, &nr_scanned);
3364                 nr_reclaimed += reclaimed;
3365                 *total_scanned += nr_scanned;
3366                 spin_lock_irq(&mctz->lock);
3367                 __mem_cgroup_remove_exceeded(mz, mctz);
3368
3369                 /*
3370                  * If we failed to reclaim anything from this memory cgroup
3371                  * it is time to move on to the next cgroup
3372                  */
3373                 next_mz = NULL;
3374                 if (!reclaimed)
3375                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3376
3377                 excess = soft_limit_excess(mz->memcg);
3378                 /*
3379                  * One school of thought says that we should not add
3380                  * back the node to the tree if reclaim returns 0.
3381                  * But our reclaim could return 0, simply because due
3382                  * to priority we are exposing a smaller subset of
3383                  * memory to reclaim from. Consider this as a longer
3384                  * term TODO.
3385                  */
3386                 /* If excess == 0, no tree ops */
3387                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3388                 spin_unlock_irq(&mctz->lock);
3389                 css_put(&mz->memcg->css);
3390                 loop++;
3391                 /*
3392                  * Could not reclaim anything and there are no more
3393                  * mem cgroups to try or we seem to be looping without
3394                  * reclaiming anything.
3395                  */
3396                 if (!nr_reclaimed &&
3397                         (next_mz == NULL ||
3398                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3399                         break;
3400         } while (!nr_reclaimed);
3401         if (next_mz)
3402                 css_put(&next_mz->memcg->css);
3403         return nr_reclaimed;
3404 }
3405
3406 /*
3407  * Test whether @memcg has children, dead or alive.  Note that this
3408  * function doesn't care whether @memcg has use_hierarchy enabled and
3409  * returns %true if there are child csses according to the cgroup
3410  * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3411  */
3412 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3413 {
3414         bool ret;
3415
3416         rcu_read_lock();
3417         ret = css_next_child(NULL, &memcg->css);
3418         rcu_read_unlock();
3419         return ret;
3420 }
3421
3422 /*
3423  * Reclaims as many pages from the given memcg as possible.
3424  *
3425  * Caller is responsible for holding css reference for memcg.
3426  */
3427 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3428 {
3429         int nr_retries = MAX_RECLAIM_RETRIES;
3430
3431         /* we call try-to-free pages for make this cgroup empty */
3432         lru_add_drain_all();
3433
3434         drain_all_stock(memcg);
3435
3436         /* try to free all pages in this cgroup */
3437         while (nr_retries && page_counter_read(&memcg->memory)) {
3438                 int progress;
3439
3440                 if (signal_pending(current))
3441                         return -EINTR;
3442
3443                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3444                                                         GFP_KERNEL, true);
3445                 if (!progress) {
3446                         nr_retries--;
3447                         /* maybe some writeback is necessary */
3448                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3449                 }
3450
3451         }
3452
3453         return 0;
3454 }
3455
3456 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3457                                             char *buf, size_t nbytes,
3458                                             loff_t off)
3459 {
3460         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3461
3462         if (mem_cgroup_is_root(memcg))
3463                 return -EINVAL;
3464         return mem_cgroup_force_empty(memcg) ?: nbytes;
3465 }
3466
3467 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3468                                      struct cftype *cft)
3469 {
3470         return mem_cgroup_from_css(css)->use_hierarchy;
3471 }
3472
3473 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3474                                       struct cftype *cft, u64 val)
3475 {
3476         int retval = 0;
3477         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3478         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3479
3480         if (memcg->use_hierarchy == val)
3481                 return 0;
3482
3483         /*
3484          * If parent's use_hierarchy is set, we can't make any modifications
3485          * in the child subtrees. If it is unset, then the change can
3486          * occur, provided the current cgroup has no children.
3487          *
3488          * For the root cgroup, parent_mem is NULL, we allow value to be
3489          * set if there are no children.
3490          */
3491         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3492                                 (val == 1 || val == 0)) {
3493                 if (!memcg_has_children(memcg))
3494                         memcg->use_hierarchy = val;
3495                 else
3496                         retval = -EBUSY;
3497         } else
3498                 retval = -EINVAL;
3499
3500         return retval;
3501 }
3502
3503 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3504 {
3505         unsigned long val;
3506
3507         if (mem_cgroup_is_root(memcg)) {
3508                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3509                         memcg_page_state(memcg, NR_ANON_MAPPED);
3510                 if (swap)
3511                         val += memcg_page_state(memcg, MEMCG_SWAP);
3512         } else {
3513                 if (!swap)
3514                         val = page_counter_read(&memcg->memory);
3515                 else
3516                         val = page_counter_read(&memcg->memsw);
3517         }
3518         return val;
3519 }
3520
3521 enum {
3522         RES_USAGE,
3523         RES_LIMIT,
3524         RES_MAX_USAGE,
3525         RES_FAILCNT,
3526         RES_SOFT_LIMIT,
3527 };
3528
3529 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3530                                struct cftype *cft)
3531 {
3532         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3533         struct page_counter *counter;
3534
3535         switch (MEMFILE_TYPE(cft->private)) {
3536         case _MEM:
3537                 counter = &memcg->memory;
3538                 break;
3539         case _MEMSWAP:
3540                 counter = &memcg->memsw;
3541                 break;
3542         case _KMEM:
3543                 counter = &memcg->kmem;
3544                 break;
3545         case _TCP:
3546                 counter = &memcg->tcpmem;
3547                 break;
3548         default:
3549                 BUG();
3550         }
3551
3552         switch (MEMFILE_ATTR(cft->private)) {
3553         case RES_USAGE:
3554                 if (counter == &memcg->memory)
3555                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3556                 if (counter == &memcg->memsw)
3557                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3558                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3559         case RES_LIMIT:
3560                 return (u64)counter->max * PAGE_SIZE;
3561         case RES_MAX_USAGE:
3562                 return (u64)counter->watermark * PAGE_SIZE;
3563         case RES_FAILCNT:
3564                 return counter->failcnt;
3565         case RES_SOFT_LIMIT:
3566                 return (u64)memcg->soft_limit * PAGE_SIZE;
3567         default:
3568                 BUG();
3569         }
3570 }
3571
3572 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3573 {
3574         unsigned long stat[MEMCG_NR_STAT] = {0};
3575         struct mem_cgroup *mi;
3576         int node, cpu, i;
3577
3578         for_each_online_cpu(cpu)
3579                 for (i = 0; i < MEMCG_NR_STAT; i++)
3580                         stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3581
3582         for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3583                 for (i = 0; i < MEMCG_NR_STAT; i++)
3584                         atomic_long_add(stat[i], &mi->vmstats[i]);
3585
3586         for_each_node(node) {
3587                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3588                 struct mem_cgroup_per_node *pi;
3589
3590                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3591                         stat[i] = 0;
3592
3593                 for_each_online_cpu(cpu)
3594                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3595                                 stat[i] += per_cpu(
3596                                         pn->lruvec_stat_cpu->count[i], cpu);
3597
3598                 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3599                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3600                                 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3601         }
3602 }
3603
3604 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3605 {
3606         unsigned long events[NR_VM_EVENT_ITEMS];
3607         struct mem_cgroup *mi;
3608         int cpu, i;
3609
3610         for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3611                 events[i] = 0;
3612
3613         for_each_online_cpu(cpu)
3614                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3615                         events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3616                                              cpu);
3617
3618         for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3619                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3620                         atomic_long_add(events[i], &mi->vmevents[i]);
3621 }
3622
3623 #ifdef CONFIG_MEMCG_KMEM
3624 static int memcg_online_kmem(struct mem_cgroup *memcg)
3625 {
3626         struct obj_cgroup *objcg;
3627         int memcg_id;
3628
3629         if (cgroup_memory_nokmem)
3630                 return 0;
3631
3632         BUG_ON(memcg->kmemcg_id >= 0);
3633         BUG_ON(memcg->kmem_state);
3634
3635         memcg_id = memcg_alloc_cache_id();
3636         if (memcg_id < 0)
3637                 return memcg_id;
3638
3639         objcg = obj_cgroup_alloc();
3640         if (!objcg) {
3641                 memcg_free_cache_id(memcg_id);
3642                 return -ENOMEM;
3643         }
3644         objcg->memcg = memcg;
3645         rcu_assign_pointer(memcg->objcg, objcg);
3646
3647         static_branch_enable(&memcg_kmem_enabled_key);
3648
3649         /*
3650          * A memory cgroup is considered kmem-online as soon as it gets
3651          * kmemcg_id. Setting the id after enabling static branching will
3652          * guarantee no one starts accounting before all call sites are
3653          * patched.
3654          */
3655         memcg->kmemcg_id = memcg_id;
3656         memcg->kmem_state = KMEM_ONLINE;
3657
3658         return 0;
3659 }
3660
3661 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3662 {
3663         struct cgroup_subsys_state *css;
3664         struct mem_cgroup *parent, *child;
3665         int kmemcg_id;
3666
3667         if (memcg->kmem_state != KMEM_ONLINE)
3668                 return;
3669
3670         memcg->kmem_state = KMEM_ALLOCATED;
3671
3672         parent = parent_mem_cgroup(memcg);
3673         if (!parent)
3674                 parent = root_mem_cgroup;
3675
3676         memcg_reparent_objcgs(memcg, parent);
3677
3678         kmemcg_id = memcg->kmemcg_id;
3679         BUG_ON(kmemcg_id < 0);
3680
3681         /*
3682          * Change kmemcg_id of this cgroup and all its descendants to the
3683          * parent's id, and then move all entries from this cgroup's list_lrus
3684          * to ones of the parent. After we have finished, all list_lrus
3685          * corresponding to this cgroup are guaranteed to remain empty. The
3686          * ordering is imposed by list_lru_node->lock taken by
3687          * memcg_drain_all_list_lrus().
3688          */
3689         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3690         css_for_each_descendant_pre(css, &memcg->css) {
3691                 child = mem_cgroup_from_css(css);
3692                 BUG_ON(child->kmemcg_id != kmemcg_id);
3693                 child->kmemcg_id = parent->kmemcg_id;
3694                 if (!memcg->use_hierarchy)
3695                         break;
3696         }
3697         rcu_read_unlock();
3698
3699         memcg_drain_all_list_lrus(kmemcg_id, parent);
3700
3701         memcg_free_cache_id(kmemcg_id);
3702 }
3703
3704 static void memcg_free_kmem(struct mem_cgroup *memcg)
3705 {
3706         /* css_alloc() failed, offlining didn't happen */
3707         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3708                 memcg_offline_kmem(memcg);
3709 }
3710 #else
3711 static int memcg_online_kmem(struct mem_cgroup *memcg)
3712 {
3713         return 0;
3714 }
3715 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3716 {
3717 }
3718 static void memcg_free_kmem(struct mem_cgroup *memcg)
3719 {
3720 }
3721 #endif /* CONFIG_MEMCG_KMEM */
3722
3723 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3724                                  unsigned long max)
3725 {
3726         int ret;
3727
3728         mutex_lock(&memcg_max_mutex);
3729         ret = page_counter_set_max(&memcg->kmem, max);
3730         mutex_unlock(&memcg_max_mutex);
3731         return ret;
3732 }
3733
3734 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3735 {
3736         int ret;
3737
3738         mutex_lock(&memcg_max_mutex);
3739
3740         ret = page_counter_set_max(&memcg->tcpmem, max);
3741         if (ret)
3742                 goto out;
3743
3744         if (!memcg->tcpmem_active) {
3745                 /*
3746                  * The active flag needs to be written after the static_key
3747                  * update. This is what guarantees that the socket activation
3748                  * function is the last one to run. See mem_cgroup_sk_alloc()
3749                  * for details, and note that we don't mark any socket as
3750                  * belonging to this memcg until that flag is up.
3751                  *
3752                  * We need to do this, because static_keys will span multiple
3753                  * sites, but we can't control their order. If we mark a socket
3754                  * as accounted, but the accounting functions are not patched in
3755                  * yet, we'll lose accounting.
3756                  *
3757                  * We never race with the readers in mem_cgroup_sk_alloc(),
3758                  * because when this value change, the code to process it is not
3759                  * patched in yet.
3760                  */
3761                 static_branch_inc(&memcg_sockets_enabled_key);
3762                 memcg->tcpmem_active = true;
3763         }
3764 out:
3765         mutex_unlock(&memcg_max_mutex);
3766         return ret;
3767 }
3768
3769 /*
3770  * The user of this function is...
3771  * RES_LIMIT.
3772  */
3773 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3774                                 char *buf, size_t nbytes, loff_t off)
3775 {
3776         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3777         unsigned long nr_pages;
3778         int ret;
3779
3780         buf = strstrip(buf);
3781         ret = page_counter_memparse(buf, "-1", &nr_pages);
3782         if (ret)
3783                 return ret;
3784
3785         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3786         case RES_LIMIT:
3787                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3788                         ret = -EINVAL;
3789                         break;
3790                 }
3791                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3792                 case _MEM:
3793                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3794                         break;
3795                 case _MEMSWAP:
3796                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3797                         break;
3798                 case _KMEM:
3799                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3800                                      "Please report your usecase to linux-mm@kvack.org if you "
3801                                      "depend on this functionality.\n");
3802                         ret = memcg_update_kmem_max(memcg, nr_pages);
3803                         break;
3804                 case _TCP:
3805                         ret = memcg_update_tcp_max(memcg, nr_pages);
3806                         break;
3807                 }
3808                 break;
3809         case RES_SOFT_LIMIT:
3810                 memcg->soft_limit = nr_pages;
3811                 ret = 0;
3812                 break;
3813         }
3814         return ret ?: nbytes;
3815 }
3816
3817 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3818                                 size_t nbytes, loff_t off)
3819 {
3820         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3821         struct page_counter *counter;
3822
3823         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3824         case _MEM:
3825                 counter = &memcg->memory;
3826                 break;
3827         case _MEMSWAP:
3828                 counter = &memcg->memsw;
3829                 break;
3830         case _KMEM:
3831                 counter = &memcg->kmem;
3832                 break;
3833         case _TCP:
3834                 counter = &memcg->tcpmem;
3835                 break;
3836         default:
3837                 BUG();
3838         }
3839
3840         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3841         case RES_MAX_USAGE:
3842                 page_counter_reset_watermark(counter);
3843                 break;
3844         case RES_FAILCNT:
3845                 counter->failcnt = 0;
3846                 break;
3847         default:
3848                 BUG();
3849         }
3850
3851         return nbytes;
3852 }
3853
3854 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3855                                         struct cftype *cft)
3856 {
3857         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3858 }
3859
3860 #ifdef CONFIG_MMU
3861 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3862                                         struct cftype *cft, u64 val)
3863 {
3864         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3865
3866         if (val & ~MOVE_MASK)
3867                 return -EINVAL;
3868
3869         /*
3870          * No kind of locking is needed in here, because ->can_attach() will
3871          * check this value once in the beginning of the process, and then carry
3872          * on with stale data. This means that changes to this value will only
3873          * affect task migrations starting after the change.
3874          */
3875         memcg->move_charge_at_immigrate = val;
3876         return 0;
3877 }
3878 #else
3879 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3880                                         struct cftype *cft, u64 val)
3881 {
3882         return -ENOSYS;
3883 }
3884 #endif
3885
3886 #ifdef CONFIG_NUMA
3887
3888 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3889 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3890 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3891
3892 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3893                                 int nid, unsigned int lru_mask, bool tree)
3894 {
3895         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3896         unsigned long nr = 0;
3897         enum lru_list lru;
3898
3899         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3900
3901         for_each_lru(lru) {
3902                 if (!(BIT(lru) & lru_mask))
3903                         continue;
3904                 if (tree)
3905                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3906                 else
3907                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3908         }
3909         return nr;
3910 }
3911
3912 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3913                                              unsigned int lru_mask,
3914                                              bool tree)
3915 {
3916         unsigned long nr = 0;
3917         enum lru_list lru;
3918
3919         for_each_lru(lru) {
3920                 if (!(BIT(lru) & lru_mask))
3921                         continue;
3922                 if (tree)
3923                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3924                 else
3925                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3926         }
3927         return nr;
3928 }
3929
3930 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3931 {
3932         struct numa_stat {
3933                 const char *name;
3934                 unsigned int lru_mask;
3935         };
3936
3937         static const struct numa_stat stats[] = {
3938                 { "total", LRU_ALL },
3939                 { "file", LRU_ALL_FILE },
3940                 { "anon", LRU_ALL_ANON },
3941                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3942         };
3943         const struct numa_stat *stat;
3944         int nid;
3945         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3946
3947         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3948                 seq_printf(m, "%s=%lu", stat->name,
3949                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3950                                                    false));
3951                 for_each_node_state(nid, N_MEMORY)
3952                         seq_printf(m, " N%d=%lu", nid,
3953                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3954                                                         stat->lru_mask, false));
3955                 seq_putc(m, '\n');
3956         }
3957
3958         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3959
3960                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3961                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3962                                                    true));
3963                 for_each_node_state(nid, N_MEMORY)
3964                         seq_printf(m, " N%d=%lu", nid,
3965                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3966                                                         stat->lru_mask, true));
3967                 seq_putc(m, '\n');
3968         }
3969
3970         return 0;
3971 }
3972 #endif /* CONFIG_NUMA */
3973
3974 static const unsigned int memcg1_stats[] = {
3975         NR_FILE_PAGES,
3976         NR_ANON_MAPPED,
3977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3978         NR_ANON_THPS,
3979 #endif
3980         NR_SHMEM,
3981         NR_FILE_MAPPED,
3982         NR_FILE_DIRTY,
3983         NR_WRITEBACK,
3984         MEMCG_SWAP,
3985 };
3986
3987 static const char *const memcg1_stat_names[] = {
3988         "cache",
3989         "rss",
3990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3991         "rss_huge",
3992 #endif
3993         "shmem",
3994         "mapped_file",
3995         "dirty",
3996         "writeback",
3997         "swap",
3998 };
3999
4000 /* Universal VM events cgroup1 shows, original sort order */
4001 static const unsigned int memcg1_events[] = {
4002         PGPGIN,
4003         PGPGOUT,
4004         PGFAULT,
4005         PGMAJFAULT,
4006 };
4007
4008 static int memcg_stat_show(struct seq_file *m, void *v)
4009 {
4010         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4011         unsigned long memory, memsw;
4012         struct mem_cgroup *mi;
4013         unsigned int i;
4014
4015         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4016
4017         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4018                 unsigned long nr;
4019
4020                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4021                         continue;
4022                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4024                 if (memcg1_stats[i] == NR_ANON_THPS)
4025                         nr *= HPAGE_PMD_NR;
4026 #endif
4027                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4028         }
4029
4030         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4031                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4032                            memcg_events_local(memcg, memcg1_events[i]));
4033
4034         for (i = 0; i < NR_LRU_LISTS; i++)
4035                 seq_printf(m, "%s %lu\n", lru_list_name(i),
4036                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4037                            PAGE_SIZE);
4038
4039         /* Hierarchical information */
4040         memory = memsw = PAGE_COUNTER_MAX;
4041         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4042                 memory = min(memory, READ_ONCE(mi->memory.max));
4043                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4044         }
4045         seq_printf(m, "hierarchical_memory_limit %llu\n",
4046                    (u64)memory * PAGE_SIZE);
4047         if (do_memsw_account())
4048                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4049                            (u64)memsw * PAGE_SIZE);
4050
4051         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4052                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4053                         continue;
4054                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4055                            (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4056                            PAGE_SIZE);
4057         }
4058
4059         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4060                 seq_printf(m, "total_%s %llu\n",
4061                            vm_event_name(memcg1_events[i]),
4062                            (u64)memcg_events(memcg, memcg1_events[i]));
4063
4064         for (i = 0; i < NR_LRU_LISTS; i++)
4065                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4066                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4067                            PAGE_SIZE);
4068
4069 #ifdef CONFIG_DEBUG_VM
4070         {
4071                 pg_data_t *pgdat;
4072                 struct mem_cgroup_per_node *mz;
4073                 unsigned long anon_cost = 0;
4074                 unsigned long file_cost = 0;
4075
4076                 for_each_online_pgdat(pgdat) {
4077                         mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4078
4079                         anon_cost += mz->lruvec.anon_cost;
4080                         file_cost += mz->lruvec.file_cost;
4081                 }
4082                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4083                 seq_printf(m, "file_cost %lu\n", file_cost);
4084         }
4085 #endif
4086
4087         return 0;
4088 }
4089
4090 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4091                                       struct cftype *cft)
4092 {
4093         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4094
4095         return mem_cgroup_swappiness(memcg);
4096 }
4097
4098 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4099                                        struct cftype *cft, u64 val)
4100 {
4101         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4102
4103         if (val > 100)
4104                 return -EINVAL;
4105
4106         if (css->parent)
4107                 memcg->swappiness = val;
4108         else
4109                 vm_swappiness = val;
4110
4111         return 0;
4112 }
4113
4114 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4115 {
4116         struct mem_cgroup_threshold_ary *t;
4117         unsigned long usage;
4118         int i;
4119
4120         rcu_read_lock();
4121         if (!swap)
4122                 t = rcu_dereference(memcg->thresholds.primary);
4123         else
4124                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4125
4126         if (!t)
4127                 goto unlock;
4128
4129         usage = mem_cgroup_usage(memcg, swap);
4130
4131         /*
4132          * current_threshold points to threshold just below or equal to usage.
4133          * If it's not true, a threshold was crossed after last
4134          * call of __mem_cgroup_threshold().
4135          */
4136         i = t->current_threshold;
4137
4138         /*
4139          * Iterate backward over array of thresholds starting from
4140          * current_threshold and check if a threshold is crossed.
4141          * If none of thresholds below usage is crossed, we read
4142          * only one element of the array here.
4143          */
4144         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4145                 eventfd_signal(t->entries[i].eventfd, 1);
4146
4147         /* i = current_threshold + 1 */
4148         i++;
4149
4150         /*
4151          * Iterate forward over array of thresholds starting from
4152          * current_threshold+1 and check if a threshold is crossed.
4153          * If none of thresholds above usage is crossed, we read
4154          * only one element of the array here.
4155          */
4156         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4157                 eventfd_signal(t->entries[i].eventfd, 1);
4158
4159         /* Update current_threshold */
4160         t->current_threshold = i - 1;
4161 unlock:
4162         rcu_read_unlock();
4163 }
4164
4165 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4166 {
4167         while (memcg) {
4168                 __mem_cgroup_threshold(memcg, false);
4169                 if (do_memsw_account())
4170                         __mem_cgroup_threshold(memcg, true);
4171
4172                 memcg = parent_mem_cgroup(memcg);
4173         }
4174 }
4175
4176 static int compare_thresholds(const void *a, const void *b)
4177 {
4178         const struct mem_cgroup_threshold *_a = a;
4179         const struct mem_cgroup_threshold *_b = b;
4180
4181         if (_a->threshold > _b->threshold)
4182                 return 1;
4183
4184         if (_a->threshold < _b->threshold)
4185                 return -1;
4186
4187         return 0;
4188 }
4189
4190 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4191 {
4192         struct mem_cgroup_eventfd_list *ev;
4193
4194         spin_lock(&memcg_oom_lock);
4195
4196         list_for_each_entry(ev, &memcg->oom_notify, list)
4197                 eventfd_signal(ev->eventfd, 1);
4198
4199         spin_unlock(&memcg_oom_lock);
4200         return 0;
4201 }
4202
4203 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4204 {
4205         struct mem_cgroup *iter;
4206
4207         for_each_mem_cgroup_tree(iter, memcg)
4208                 mem_cgroup_oom_notify_cb(iter);
4209 }
4210
4211 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4212         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4213 {
4214         struct mem_cgroup_thresholds *thresholds;
4215         struct mem_cgroup_threshold_ary *new;
4216         unsigned long threshold;
4217         unsigned long usage;
4218         int i, size, ret;
4219
4220         ret = page_counter_memparse(args, "-1", &threshold);
4221         if (ret)
4222                 return ret;
4223
4224         mutex_lock(&memcg->thresholds_lock);
4225
4226         if (type == _MEM) {
4227                 thresholds = &memcg->thresholds;
4228                 usage = mem_cgroup_usage(memcg, false);
4229         } else if (type == _MEMSWAP) {
4230                 thresholds = &memcg->memsw_thresholds;
4231                 usage = mem_cgroup_usage(memcg, true);
4232         } else
4233                 BUG();
4234
4235         /* Check if a threshold crossed before adding a new one */
4236         if (thresholds->primary)
4237                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4238
4239         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4240
4241         /* Allocate memory for new array of thresholds */
4242         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4243         if (!new) {
4244                 ret = -ENOMEM;
4245                 goto unlock;
4246         }
4247         new->size = size;
4248
4249         /* Copy thresholds (if any) to new array */
4250         if (thresholds->primary) {
4251                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4252                                 sizeof(struct mem_cgroup_threshold));
4253         }
4254
4255         /* Add new threshold */
4256         new->entries[size - 1].eventfd = eventfd;
4257         new->entries[size - 1].threshold = threshold;
4258
4259         /* Sort thresholds. Registering of new threshold isn't time-critical */
4260         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4261                         compare_thresholds, NULL);
4262
4263         /* Find current threshold */
4264         new->current_threshold = -1;
4265         for (i = 0; i < size; i++) {
4266                 if (new->entries[i].threshold <= usage) {
4267                         /*
4268                          * new->current_threshold will not be used until
4269                          * rcu_assign_pointer(), so it's safe to increment
4270                          * it here.
4271                          */
4272                         ++new->current_threshold;
4273                 } else
4274                         break;
4275         }
4276
4277         /* Free old spare buffer and save old primary buffer as spare */
4278         kfree(thresholds->spare);
4279         thresholds->spare = thresholds->primary;
4280
4281         rcu_assign_pointer(thresholds->primary, new);
4282
4283         /* To be sure that nobody uses thresholds */
4284         synchronize_rcu();
4285
4286 unlock:
4287         mutex_unlock(&memcg->thresholds_lock);
4288
4289         return ret;
4290 }
4291
4292 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4293         struct eventfd_ctx *eventfd, const char *args)
4294 {
4295         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4296 }
4297
4298 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4299         struct eventfd_ctx *eventfd, const char *args)
4300 {
4301         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4302 }
4303
4304 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4305         struct eventfd_ctx *eventfd, enum res_type type)
4306 {
4307         struct mem_cgroup_thresholds *thresholds;
4308         struct mem_cgroup_threshold_ary *new;
4309         unsigned long usage;
4310         int i, j, size, entries;
4311
4312         mutex_lock(&memcg->thresholds_lock);
4313
4314         if (type == _MEM) {
4315                 thresholds = &memcg->thresholds;
4316                 usage = mem_cgroup_usage(memcg, false);
4317         } else if (type == _MEMSWAP) {
4318                 thresholds = &memcg->memsw_thresholds;
4319                 usage = mem_cgroup_usage(memcg, true);
4320         } else
4321                 BUG();
4322
4323         if (!thresholds->primary)
4324                 goto unlock;
4325
4326         /* Check if a threshold crossed before removing */
4327         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4328
4329         /* Calculate new number of threshold */
4330         size = entries = 0;
4331         for (i = 0; i < thresholds->primary->size; i++) {
4332                 if (thresholds->primary->entries[i].eventfd != eventfd)
4333                         size++;
4334                 else
4335                         entries++;
4336         }
4337
4338         new = thresholds->spare;
4339
4340         /* If no items related to eventfd have been cleared, nothing to do */
4341         if (!entries)
4342                 goto unlock;
4343
4344         /* Set thresholds array to NULL if we don't have thresholds */
4345         if (!size) {
4346                 kfree(new);
4347                 new = NULL;
4348                 goto swap_buffers;
4349         }
4350
4351         new->size = size;
4352
4353         /* Copy thresholds and find current threshold */
4354         new->current_threshold = -1;
4355         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4356                 if (thresholds->primary->entries[i].eventfd == eventfd)
4357                         continue;
4358
4359                 new->entries[j] = thresholds->primary->entries[i];
4360                 if (new->entries[j].threshold <= usage) {
4361                         /*
4362                          * new->current_threshold will not be used
4363                          * until rcu_assign_pointer(), so it's safe to increment
4364                          * it here.
4365                          */
4366                         ++new->current_threshold;
4367                 }
4368                 j++;
4369         }
4370
4371 swap_buffers:
4372         /* Swap primary and spare array */
4373         thresholds->spare = thresholds->primary;
4374
4375         rcu_assign_pointer(thresholds->primary, new);
4376
4377         /* To be sure that nobody uses thresholds */
4378         synchronize_rcu();
4379
4380         /* If all events are unregistered, free the spare array */
4381         if (!new) {
4382                 kfree(thresholds->spare);
4383                 thresholds->spare = NULL;
4384         }
4385 unlock:
4386         mutex_unlock(&memcg->thresholds_lock);
4387 }
4388
4389 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4390         struct eventfd_ctx *eventfd)
4391 {
4392         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4393 }
4394
4395 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4396         struct eventfd_ctx *eventfd)
4397 {
4398         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4399 }
4400
4401 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4402         struct eventfd_ctx *eventfd, const char *args)
4403 {
4404         struct mem_cgroup_eventfd_list *event;
4405
4406         event = kmalloc(sizeof(*event), GFP_KERNEL);
4407         if (!event)
4408                 return -ENOMEM;
4409
4410         spin_lock(&memcg_oom_lock);
4411
4412         event->eventfd = eventfd;
4413         list_add(&event->list, &memcg->oom_notify);
4414
4415         /* already in OOM ? */
4416         if (memcg->under_oom)
4417                 eventfd_signal(eventfd, 1);
4418         spin_unlock(&memcg_oom_lock);
4419
4420         return 0;
4421 }
4422
4423 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4424         struct eventfd_ctx *eventfd)
4425 {
4426         struct mem_cgroup_eventfd_list *ev, *tmp;
4427
4428         spin_lock(&memcg_oom_lock);
4429
4430         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4431                 if (ev->eventfd == eventfd) {
4432                         list_del(&ev->list);
4433                         kfree(ev);
4434                 }
4435         }
4436
4437         spin_unlock(&memcg_oom_lock);
4438 }
4439
4440 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4441 {
4442         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4443
4444         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4445         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4446         seq_printf(sf, "oom_kill %lu\n",
4447                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4448         return 0;
4449 }
4450
4451 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4452         struct cftype *cft, u64 val)
4453 {
4454         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4455
4456         /* cannot set to root cgroup and only 0 and 1 are allowed */
4457         if (!css->parent || !((val == 0) || (val == 1)))
4458                 return -EINVAL;
4459
4460         memcg->oom_kill_disable = val;
4461         if (!val)
4462                 memcg_oom_recover(memcg);
4463
4464         return 0;
4465 }
4466
4467 #ifdef CONFIG_CGROUP_WRITEBACK
4468
4469 #include <trace/events/writeback.h>
4470
4471 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4472 {
4473         return wb_domain_init(&memcg->cgwb_domain, gfp);
4474 }
4475
4476 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4477 {
4478         wb_domain_exit(&memcg->cgwb_domain);
4479 }
4480
4481 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4482 {
4483         wb_domain_size_changed(&memcg->cgwb_domain);
4484 }
4485
4486 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4487 {
4488         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4489
4490         if (!memcg->css.parent)
4491                 return NULL;
4492
4493         return &memcg->cgwb_domain;
4494 }
4495
4496 /*
4497  * idx can be of type enum memcg_stat_item or node_stat_item.
4498  * Keep in sync with memcg_exact_page().
4499  */
4500 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4501 {
4502         long x = atomic_long_read(&memcg->vmstats[idx]);
4503         int cpu;
4504
4505         for_each_online_cpu(cpu)
4506                 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4507         if (x < 0)
4508                 x = 0;
4509         return x;
4510 }
4511
4512 /**
4513  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4514  * @wb: bdi_writeback in question
4515  * @pfilepages: out parameter for number of file pages
4516  * @pheadroom: out parameter for number of allocatable pages according to memcg
4517  * @pdirty: out parameter for number of dirty pages
4518  * @pwriteback: out parameter for number of pages under writeback
4519  *
4520  * Determine the numbers of file, headroom, dirty, and writeback pages in
4521  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4522  * is a bit more involved.
4523  *
4524  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4525  * headroom is calculated as the lowest headroom of itself and the
4526  * ancestors.  Note that this doesn't consider the actual amount of
4527  * available memory in the system.  The caller should further cap
4528  * *@pheadroom accordingly.
4529  */
4530 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4531                          unsigned long *pheadroom, unsigned long *pdirty,
4532                          unsigned long *pwriteback)
4533 {
4534         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4535         struct mem_cgroup *parent;
4536
4537         *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4538
4539         *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4540         *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4541                         memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4542         *pheadroom = PAGE_COUNTER_MAX;
4543
4544         while ((parent = parent_mem_cgroup(memcg))) {
4545                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4546                                             READ_ONCE(memcg->memory.high));
4547                 unsigned long used = page_counter_read(&memcg->memory);
4548
4549                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4550                 memcg = parent;
4551         }
4552 }
4553
4554 /*
4555  * Foreign dirty flushing
4556  *
4557  * There's an inherent mismatch between memcg and writeback.  The former
4558  * trackes ownership per-page while the latter per-inode.  This was a
4559  * deliberate design decision because honoring per-page ownership in the
4560  * writeback path is complicated, may lead to higher CPU and IO overheads
4561  * and deemed unnecessary given that write-sharing an inode across
4562  * different cgroups isn't a common use-case.
4563  *
4564  * Combined with inode majority-writer ownership switching, this works well
4565  * enough in most cases but there are some pathological cases.  For
4566  * example, let's say there are two cgroups A and B which keep writing to
4567  * different but confined parts of the same inode.  B owns the inode and
4568  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4569  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4570  * triggering background writeback.  A will be slowed down without a way to
4571  * make writeback of the dirty pages happen.
4572  *
4573  * Conditions like the above can lead to a cgroup getting repatedly and
4574  * severely throttled after making some progress after each
4575  * dirty_expire_interval while the underyling IO device is almost
4576  * completely idle.
4577  *
4578  * Solving this problem completely requires matching the ownership tracking
4579  * granularities between memcg and writeback in either direction.  However,
4580  * the more egregious behaviors can be avoided by simply remembering the
4581  * most recent foreign dirtying events and initiating remote flushes on
4582  * them when local writeback isn't enough to keep the memory clean enough.
4583  *
4584  * The following two functions implement such mechanism.  When a foreign
4585  * page - a page whose memcg and writeback ownerships don't match - is
4586  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4587  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4588  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4589  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4590  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4591  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4592  * limited to MEMCG_CGWB_FRN_CNT.
4593  *
4594  * The mechanism only remembers IDs and doesn't hold any object references.
4595  * As being wrong occasionally doesn't matter, updates and accesses to the
4596  * records are lockless and racy.
4597  */
4598 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4599                                              struct bdi_writeback *wb)
4600 {
4601         struct mem_cgroup *memcg = page->mem_cgroup;
4602         struct memcg_cgwb_frn *frn;
4603         u64 now = get_jiffies_64();
4604         u64 oldest_at = now;
4605         int oldest = -1;
4606         int i;
4607
4608         trace_track_foreign_dirty(page, wb);
4609
4610         /*
4611          * Pick the slot to use.  If there is already a slot for @wb, keep
4612          * using it.  If not replace the oldest one which isn't being
4613          * written out.
4614          */
4615         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4616                 frn = &memcg->cgwb_frn[i];
4617                 if (frn->bdi_id == wb->bdi->id &&
4618                     frn->memcg_id == wb->memcg_css->id)
4619                         break;
4620                 if (time_before64(frn->at, oldest_at) &&
4621                     atomic_read(&frn->done.cnt) == 1) {
4622                         oldest = i;
4623                         oldest_at = frn->at;
4624                 }
4625         }
4626
4627         if (i < MEMCG_CGWB_FRN_CNT) {
4628                 /*
4629                  * Re-using an existing one.  Update timestamp lazily to
4630                  * avoid making the cacheline hot.  We want them to be
4631                  * reasonably up-to-date and significantly shorter than
4632                  * dirty_expire_interval as that's what expires the record.
4633                  * Use the shorter of 1s and dirty_expire_interval / 8.
4634                  */
4635                 unsigned long update_intv =
4636                         min_t(unsigned long, HZ,
4637                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4638
4639                 if (time_before64(frn->at, now - update_intv))
4640                         frn->at = now;
4641         } else if (oldest >= 0) {
4642                 /* replace the oldest free one */
4643                 frn = &memcg->cgwb_frn[oldest];
4644                 frn->bdi_id = wb->bdi->id;
4645                 frn->memcg_id = wb->memcg_css->id;
4646                 frn->at = now;
4647         }
4648 }
4649
4650 /* issue foreign writeback flushes for recorded foreign dirtying events */
4651 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4652 {
4653         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4655         u64 now = jiffies_64;
4656         int i;
4657
4658         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4659                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4660
4661                 /*
4662                  * If the record is older than dirty_expire_interval,
4663                  * writeback on it has already started.  No need to kick it
4664                  * off again.  Also, don't start a new one if there's
4665                  * already one in flight.
4666                  */
4667                 if (time_after64(frn->at, now - intv) &&
4668                     atomic_read(&frn->done.cnt) == 1) {
4669                         frn->at = 0;
4670                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4671                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4672                                                WB_REASON_FOREIGN_FLUSH,
4673                                                &frn->done);
4674                 }
4675         }
4676 }
4677
4678 #else   /* CONFIG_CGROUP_WRITEBACK */
4679
4680 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4681 {
4682         return 0;
4683 }
4684
4685 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4686 {
4687 }
4688
4689 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4690 {
4691 }
4692
4693 #endif  /* CONFIG_CGROUP_WRITEBACK */
4694
4695 /*
4696  * DO NOT USE IN NEW FILES.
4697  *
4698  * "cgroup.event_control" implementation.
4699  *
4700  * This is way over-engineered.  It tries to support fully configurable
4701  * events for each user.  Such level of flexibility is completely
4702  * unnecessary especially in the light of the planned unified hierarchy.
4703  *
4704  * Please deprecate this and replace with something simpler if at all
4705  * possible.
4706  */
4707
4708 /*
4709  * Unregister event and free resources.
4710  *
4711  * Gets called from workqueue.
4712  */
4713 static void memcg_event_remove(struct work_struct *work)
4714 {
4715         struct mem_cgroup_event *event =
4716                 container_of(work, struct mem_cgroup_event, remove);
4717         struct mem_cgroup *memcg = event->memcg;
4718
4719         remove_wait_queue(event->wqh, &event->wait);
4720
4721         event->unregister_event(memcg, event->eventfd);
4722
4723         /* Notify userspace the event is going away. */
4724         eventfd_signal(event->eventfd, 1);
4725
4726         eventfd_ctx_put(event->eventfd);
4727         kfree(event);
4728         css_put(&memcg->css);
4729 }
4730
4731 /*
4732  * Gets called on EPOLLHUP on eventfd when user closes it.
4733  *
4734  * Called with wqh->lock held and interrupts disabled.
4735  */
4736 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4737                             int sync, void *key)
4738 {
4739         struct mem_cgroup_event *event =
4740                 container_of(wait, struct mem_cgroup_event, wait);
4741         struct mem_cgroup *memcg = event->memcg;
4742         __poll_t flags = key_to_poll(key);
4743
4744         if (flags & EPOLLHUP) {
4745                 /*
4746                  * If the event has been detached at cgroup removal, we
4747                  * can simply return knowing the other side will cleanup
4748                  * for us.
4749                  *
4750                  * We can't race against event freeing since the other
4751                  * side will require wqh->lock via remove_wait_queue(),
4752                  * which we hold.
4753                  */
4754                 spin_lock(&memcg->event_list_lock);
4755                 if (!list_empty(&event->list)) {
4756                         list_del_init(&event->list);
4757                         /*
4758                          * We are in atomic context, but cgroup_event_remove()
4759                          * may sleep, so we have to call it in workqueue.
4760                          */
4761                         schedule_work(&event->remove);
4762                 }
4763                 spin_unlock(&memcg->event_list_lock);
4764         }
4765
4766         return 0;
4767 }
4768
4769 static void memcg_event_ptable_queue_proc(struct file *file,
4770                 wait_queue_head_t *wqh, poll_table *pt)
4771 {
4772         struct mem_cgroup_event *event =
4773                 container_of(pt, struct mem_cgroup_event, pt);
4774
4775         event->wqh = wqh;
4776         add_wait_queue(wqh, &event->wait);
4777 }
4778
4779 /*
4780  * DO NOT USE IN NEW FILES.
4781  *
4782  * Parse input and register new cgroup event handler.
4783  *
4784  * Input must be in format '<event_fd> <control_fd> <args>'.
4785  * Interpretation of args is defined by control file implementation.
4786  */
4787 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4788                                          char *buf, size_t nbytes, loff_t off)
4789 {
4790         struct cgroup_subsys_state *css = of_css(of);
4791         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4792         struct mem_cgroup_event *event;
4793         struct cgroup_subsys_state *cfile_css;
4794         unsigned int efd, cfd;
4795         struct fd efile;
4796         struct fd cfile;
4797         const char *name;
4798         char *endp;
4799         int ret;
4800
4801         buf = strstrip(buf);
4802
4803         efd = simple_strtoul(buf, &endp, 10);
4804         if (*endp != ' ')
4805                 return -EINVAL;
4806         buf = endp + 1;
4807
4808         cfd = simple_strtoul(buf, &endp, 10);
4809         if ((*endp != ' ') && (*endp != '\0'))
4810                 return -EINVAL;
4811         buf = endp + 1;
4812
4813         event = kzalloc(sizeof(*event), GFP_KERNEL);
4814         if (!event)
4815                 return -ENOMEM;
4816
4817         event->memcg = memcg;
4818         INIT_LIST_HEAD(&event->list);
4819         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4820         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4821         INIT_WORK(&event->remove, memcg_event_remove);
4822
4823         efile = fdget(efd);
4824         if (!efile.file) {
4825                 ret = -EBADF;
4826                 goto out_kfree;
4827         }
4828
4829         event->eventfd = eventfd_ctx_fileget(efile.file);
4830         if (IS_ERR(event->eventfd)) {
4831                 ret = PTR_ERR(event->eventfd);
4832                 goto out_put_efile;
4833         }
4834
4835         cfile = fdget(cfd);
4836         if (!cfile.file) {
4837                 ret = -EBADF;
4838                 goto out_put_eventfd;
4839         }
4840
4841         /* the process need read permission on control file */
4842         /* AV: shouldn't we check that it's been opened for read instead? */
4843         ret = inode_permission(file_inode(cfile.file), MAY_READ);
4844         if (ret < 0)
4845                 goto out_put_cfile;
4846
4847         /*
4848          * Determine the event callbacks and set them in @event.  This used
4849          * to be done via struct cftype but cgroup core no longer knows
4850          * about these events.  The following is crude but the whole thing
4851          * is for compatibility anyway.
4852          *
4853          * DO NOT ADD NEW FILES.
4854          */
4855         name = cfile.file->f_path.dentry->d_name.name;
4856
4857         if (!strcmp(name, "memory.usage_in_bytes")) {
4858                 event->register_event = mem_cgroup_usage_register_event;
4859                 event->unregister_event = mem_cgroup_usage_unregister_event;
4860         } else if (!strcmp(name, "memory.oom_control")) {
4861                 event->register_event = mem_cgroup_oom_register_event;
4862                 event->unregister_event = mem_cgroup_oom_unregister_event;
4863         } else if (!strcmp(name, "memory.pressure_level")) {
4864                 event->register_event = vmpressure_register_event;
4865                 event->unregister_event = vmpressure_unregister_event;
4866         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4867                 event->register_event = memsw_cgroup_usage_register_event;
4868                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4869         } else {
4870                 ret = -EINVAL;
4871                 goto out_put_cfile;
4872         }
4873
4874         /*
4875          * Verify @cfile should belong to @css.  Also, remaining events are
4876          * automatically removed on cgroup destruction but the removal is
4877          * asynchronous, so take an extra ref on @css.
4878          */
4879         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4880                                                &memory_cgrp_subsys);
4881         ret = -EINVAL;
4882         if (IS_ERR(cfile_css))
4883                 goto out_put_cfile;
4884         if (cfile_css != css) {
4885                 css_put(cfile_css);
4886                 goto out_put_cfile;
4887         }
4888
4889         ret = event->register_event(memcg, event->eventfd, buf);
4890         if (ret)
4891                 goto out_put_css;
4892
4893         vfs_poll(efile.file, &event->pt);
4894
4895         spin_lock(&memcg->event_list_lock);
4896         list_add(&event->list, &memcg->event_list);
4897         spin_unlock(&memcg->event_list_lock);
4898
4899         fdput(cfile);
4900         fdput(efile);
4901
4902         return nbytes;
4903
4904 out_put_css:
4905         css_put(css);
4906 out_put_cfile:
4907         fdput(cfile);
4908 out_put_eventfd:
4909         eventfd_ctx_put(event->eventfd);
4910 out_put_efile:
4911         fdput(efile);
4912 out_kfree:
4913         kfree(event);
4914
4915         return ret;
4916 }
4917
4918 static struct cftype mem_cgroup_legacy_files[] = {
4919         {
4920                 .name = "usage_in_bytes",
4921                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4922                 .read_u64 = mem_cgroup_read_u64,
4923         },
4924         {
4925                 .name = "max_usage_in_bytes",
4926                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4927                 .write = mem_cgroup_reset,
4928                 .read_u64 = mem_cgroup_read_u64,
4929         },
4930         {
4931                 .name = "limit_in_bytes",
4932                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4933                 .write = mem_cgroup_write,
4934                 .read_u64 = mem_cgroup_read_u64,
4935         },
4936         {
4937                 .name = "soft_limit_in_bytes",
4938                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4939                 .write = mem_cgroup_write,
4940                 .read_u64 = mem_cgroup_read_u64,
4941         },
4942         {
4943                 .name = "failcnt",
4944                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4945                 .write = mem_cgroup_reset,
4946                 .read_u64 = mem_cgroup_read_u64,
4947         },
4948         {
4949                 .name = "stat",
4950                 .seq_show = memcg_stat_show,
4951         },
4952         {
4953                 .name = "force_empty",
4954                 .write = mem_cgroup_force_empty_write,
4955         },
4956         {
4957                 .name = "use_hierarchy",
4958                 .write_u64 = mem_cgroup_hierarchy_write,
4959                 .read_u64 = mem_cgroup_hierarchy_read,
4960         },
4961         {
4962                 .name = "cgroup.event_control",         /* XXX: for compat */
4963                 .write = memcg_write_event_control,
4964                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4965         },
4966         {
4967                 .name = "swappiness",
4968                 .read_u64 = mem_cgroup_swappiness_read,
4969                 .write_u64 = mem_cgroup_swappiness_write,
4970         },
4971         {
4972                 .name = "move_charge_at_immigrate",
4973                 .read_u64 = mem_cgroup_move_charge_read,
4974                 .write_u64 = mem_cgroup_move_charge_write,
4975         },
4976         {
4977                 .name = "oom_control",
4978                 .seq_show = mem_cgroup_oom_control_read,
4979                 .write_u64 = mem_cgroup_oom_control_write,
4980                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4981         },
4982         {
4983                 .name = "pressure_level",
4984         },
4985 #ifdef CONFIG_NUMA
4986         {
4987                 .name = "numa_stat",
4988                 .seq_show = memcg_numa_stat_show,
4989         },
4990 #endif
4991         {
4992                 .name = "kmem.limit_in_bytes",
4993                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4994                 .write = mem_cgroup_write,
4995                 .read_u64 = mem_cgroup_read_u64,
4996         },
4997         {
4998                 .name = "kmem.usage_in_bytes",
4999                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5000                 .read_u64 = mem_cgroup_read_u64,
5001         },
5002         {
5003                 .name = "kmem.failcnt",
5004                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5005                 .write = mem_cgroup_reset,
5006                 .read_u64 = mem_cgroup_read_u64,
5007         },
5008         {
5009                 .name = "kmem.max_usage_in_bytes",
5010                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5011                 .write = mem_cgroup_reset,
5012                 .read_u64 = mem_cgroup_read_u64,
5013         },
5014 #if defined(CONFIG_MEMCG_KMEM) && \
5015         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5016         {
5017                 .name = "kmem.slabinfo",
5018                 .seq_show = memcg_slab_show,
5019         },
5020 #endif
5021         {
5022                 .name = "kmem.tcp.limit_in_bytes",
5023                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5024                 .write = mem_cgroup_write,
5025                 .read_u64 = mem_cgroup_read_u64,
5026         },
5027         {
5028                 .name = "kmem.tcp.usage_in_bytes",
5029                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5030                 .read_u64 = mem_cgroup_read_u64,
5031         },
5032         {
5033                 .name = "kmem.tcp.failcnt",
5034                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5035                 .write = mem_cgroup_reset,
5036                 .read_u64 = mem_cgroup_read_u64,
5037         },
5038         {
5039                 .name = "kmem.tcp.max_usage_in_bytes",
5040                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5041                 .write = mem_cgroup_reset,
5042                 .read_u64 = mem_cgroup_read_u64,
5043         },
5044         { },    /* terminate */
5045 };
5046
5047 /*
5048  * Private memory cgroup IDR
5049  *
5050  * Swap-out records and page cache shadow entries need to store memcg
5051  * references in constrained space, so we maintain an ID space that is
5052  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5053  * memory-controlled cgroups to 64k.
5054  *
5055  * However, there usually are many references to the offline CSS after
5056  * the cgroup has been destroyed, such as page cache or reclaimable
5057  * slab objects, that don't need to hang on to the ID. We want to keep
5058  * those dead CSS from occupying IDs, or we might quickly exhaust the
5059  * relatively small ID space and prevent the creation of new cgroups
5060  * even when there are much fewer than 64k cgroups - possibly none.
5061  *
5062  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5063  * be freed and recycled when it's no longer needed, which is usually
5064  * when the CSS is offlined.
5065  *
5066  * The only exception to that are records of swapped out tmpfs/shmem
5067  * pages that need to be attributed to live ancestors on swapin. But
5068  * those references are manageable from userspace.
5069  */
5070
5071 static DEFINE_IDR(mem_cgroup_idr);
5072
5073 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5074 {
5075         if (memcg->id.id > 0) {
5076                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5077                 memcg->id.id = 0;
5078         }
5079 }
5080
5081 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5082                                                   unsigned int n)
5083 {
5084         refcount_add(n, &memcg->id.ref);
5085 }
5086
5087 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5088 {
5089         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5090                 mem_cgroup_id_remove(memcg);
5091
5092                 /* Memcg ID pins CSS */
5093                 css_put(&memcg->css);
5094         }
5095 }
5096
5097 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5098 {
5099         mem_cgroup_id_put_many(memcg, 1);
5100 }
5101
5102 /**
5103  * mem_cgroup_from_id - look up a memcg from a memcg id
5104  * @id: the memcg id to look up
5105  *
5106  * Caller must hold rcu_read_lock().
5107  */
5108 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5109 {
5110         WARN_ON_ONCE(!rcu_read_lock_held());
5111         return idr_find(&mem_cgroup_idr, id);
5112 }
5113
5114 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115 {
5116         struct mem_cgroup_per_node *pn;
5117         int tmp = node;
5118         /*
5119          * This routine is called against possible nodes.
5120          * But it's BUG to call kmalloc() against offline node.
5121          *
5122          * TODO: this routine can waste much memory for nodes which will
5123          *       never be onlined. It's better to use memory hotplug callback
5124          *       function.
5125          */
5126         if (!node_state(node, N_NORMAL_MEMORY))
5127                 tmp = -1;
5128         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5129         if (!pn)
5130                 return 1;
5131
5132         pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
5133         if (!pn->lruvec_stat_local) {
5134                 kfree(pn);
5135                 return 1;
5136         }
5137
5138         pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
5139         if (!pn->lruvec_stat_cpu) {
5140                 free_percpu(pn->lruvec_stat_local);
5141                 kfree(pn);
5142                 return 1;
5143         }
5144
5145         lruvec_init(&pn->lruvec);
5146         pn->usage_in_excess = 0;
5147         pn->on_tree = false;
5148         pn->memcg = memcg;
5149
5150         memcg->nodeinfo[node] = pn;
5151         return 0;
5152 }
5153
5154 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5155 {
5156         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5157
5158         if (!pn)
5159                 return;
5160
5161         free_percpu(pn->lruvec_stat_cpu);
5162         free_percpu(pn->lruvec_stat_local);
5163         kfree(pn);
5164 }
5165
5166 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5167 {
5168         int node;
5169
5170         for_each_node(node)
5171                 free_mem_cgroup_per_node_info(memcg, node);
5172         free_percpu(memcg->vmstats_percpu);
5173         free_percpu(memcg->vmstats_local);
5174         kfree(memcg);
5175 }
5176
5177 static void mem_cgroup_free(struct mem_cgroup *memcg)
5178 {
5179         memcg_wb_domain_exit(memcg);
5180         /*
5181          * Flush percpu vmstats and vmevents to guarantee the value correctness
5182          * on parent's and all ancestor levels.
5183          */
5184         memcg_flush_percpu_vmstats(memcg);
5185         memcg_flush_percpu_vmevents(memcg);
5186         __mem_cgroup_free(memcg);
5187 }
5188
5189 static struct mem_cgroup *mem_cgroup_alloc(void)
5190 {
5191         struct mem_cgroup *memcg;
5192         unsigned int size;
5193         int node;
5194         int __maybe_unused i;
5195         long error = -ENOMEM;
5196
5197         size = sizeof(struct mem_cgroup);
5198         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5199
5200         memcg = kzalloc(size, GFP_KERNEL);
5201         if (!memcg)
5202                 return ERR_PTR(error);
5203
5204         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5205                                  1, MEM_CGROUP_ID_MAX,
5206                                  GFP_KERNEL);
5207         if (memcg->id.id < 0) {
5208                 error = memcg->id.id;
5209                 goto fail;
5210         }
5211
5212         memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5213         if (!memcg->vmstats_local)
5214                 goto fail;
5215
5216         memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5217         if (!memcg->vmstats_percpu)
5218                 goto fail;
5219
5220         for_each_node(node)
5221                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5222                         goto fail;
5223
5224         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5225                 goto fail;
5226
5227         INIT_WORK(&memcg->high_work, high_work_func);
5228         INIT_LIST_HEAD(&memcg->oom_notify);
5229         mutex_init(&memcg->thresholds_lock);
5230         spin_lock_init(&memcg->move_lock);
5231         vmpressure_init(&memcg->vmpressure);
5232         INIT_LIST_HEAD(&memcg->event_list);
5233         spin_lock_init(&memcg->event_list_lock);
5234         memcg->socket_pressure = jiffies;
5235 #ifdef CONFIG_MEMCG_KMEM
5236         memcg->kmemcg_id = -1;
5237         INIT_LIST_HEAD(&memcg->objcg_list);
5238 #endif
5239 #ifdef CONFIG_CGROUP_WRITEBACK
5240         INIT_LIST_HEAD(&memcg->cgwb_list);
5241         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242                 memcg->cgwb_frn[i].done =
5243                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5244 #endif
5245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5246         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5247         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5248         memcg->deferred_split_queue.split_queue_len = 0;
5249 #endif
5250         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5251         return memcg;
5252 fail:
5253         mem_cgroup_id_remove(memcg);
5254         __mem_cgroup_free(memcg);
5255         return ERR_PTR(error);
5256 }
5257
5258 static struct cgroup_subsys_state * __ref
5259 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5260 {
5261         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5262         struct mem_cgroup *memcg;
5263         long error = -ENOMEM;
5264
5265         memcg = mem_cgroup_alloc();
5266         if (IS_ERR(memcg))
5267                 return ERR_CAST(memcg);
5268
5269         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5270         memcg->soft_limit = PAGE_COUNTER_MAX;
5271         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5272         if (parent) {
5273                 memcg->swappiness = mem_cgroup_swappiness(parent);
5274                 memcg->oom_kill_disable = parent->oom_kill_disable;
5275         }
5276         if (parent && parent->use_hierarchy) {
5277                 memcg->use_hierarchy = true;
5278                 page_counter_init(&memcg->memory, &parent->memory);
5279                 page_counter_init(&memcg->swap, &parent->swap);
5280                 page_counter_init(&memcg->memsw, &parent->memsw);
5281                 page_counter_init(&memcg->kmem, &parent->kmem);
5282                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5283         } else {
5284                 page_counter_init(&memcg->memory, NULL);
5285                 page_counter_init(&memcg->swap, NULL);
5286                 page_counter_init(&memcg->memsw, NULL);
5287                 page_counter_init(&memcg->kmem, NULL);
5288                 page_counter_init(&memcg->tcpmem, NULL);
5289                 /*
5290                  * Deeper hierachy with use_hierarchy == false doesn't make
5291                  * much sense so let cgroup subsystem know about this
5292                  * unfortunate state in our controller.
5293                  */
5294                 if (parent != root_mem_cgroup)
5295                         memory_cgrp_subsys.broken_hierarchy = true;
5296         }
5297
5298         /* The following stuff does not apply to the root */
5299         if (!parent) {
5300                 root_mem_cgroup = memcg;
5301                 return &memcg->css;
5302         }
5303
5304         error = memcg_online_kmem(memcg);
5305         if (error)
5306                 goto fail;
5307
5308         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5309                 static_branch_inc(&memcg_sockets_enabled_key);
5310
5311         return &memcg->css;
5312 fail:
5313         mem_cgroup_id_remove(memcg);
5314         mem_cgroup_free(memcg);
5315         return ERR_PTR(error);
5316 }
5317
5318 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5319 {
5320         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5321
5322         /*
5323          * A memcg must be visible for memcg_expand_shrinker_maps()
5324          * by the time the maps are allocated. So, we allocate maps
5325          * here, when for_each_mem_cgroup() can't skip it.
5326          */
5327         if (memcg_alloc_shrinker_maps(memcg)) {
5328                 mem_cgroup_id_remove(memcg);
5329                 return -ENOMEM;
5330         }
5331
5332         /* Online state pins memcg ID, memcg ID pins CSS */
5333         refcount_set(&memcg->id.ref, 1);
5334         css_get(css);
5335         return 0;
5336 }
5337
5338 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5339 {
5340         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5341         struct mem_cgroup_event *event, *tmp;
5342
5343         /*
5344          * Unregister events and notify userspace.
5345          * Notify userspace about cgroup removing only after rmdir of cgroup
5346          * directory to avoid race between userspace and kernelspace.
5347          */
5348         spin_lock(&memcg->event_list_lock);
5349         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5350                 list_del_init(&event->list);
5351                 schedule_work(&event->remove);
5352         }
5353         spin_unlock(&memcg->event_list_lock);
5354
5355         page_counter_set_min(&memcg->memory, 0);
5356         page_counter_set_low(&memcg->memory, 0);
5357
5358         memcg_offline_kmem(memcg);
5359         wb_memcg_offline(memcg);
5360
5361         drain_all_stock(memcg);
5362
5363         mem_cgroup_id_put(memcg);
5364 }
5365
5366 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5367 {
5368         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5369
5370         invalidate_reclaim_iterators(memcg);
5371 }
5372
5373 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5374 {
5375         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5376         int __maybe_unused i;
5377
5378 #ifdef CONFIG_CGROUP_WRITEBACK
5379         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5380                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5381 #endif
5382         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5383                 static_branch_dec(&memcg_sockets_enabled_key);
5384
5385         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5386                 static_branch_dec(&memcg_sockets_enabled_key);
5387
5388         vmpressure_cleanup(&memcg->vmpressure);
5389         cancel_work_sync(&memcg->high_work);
5390         mem_cgroup_remove_from_trees(memcg);
5391         memcg_free_shrinker_maps(memcg);
5392         memcg_free_kmem(memcg);
5393         mem_cgroup_free(memcg);
5394 }
5395
5396 /**
5397  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5398  * @css: the target css
5399  *
5400  * Reset the states of the mem_cgroup associated with @css.  This is
5401  * invoked when the userland requests disabling on the default hierarchy
5402  * but the memcg is pinned through dependency.  The memcg should stop
5403  * applying policies and should revert to the vanilla state as it may be
5404  * made visible again.
5405  *
5406  * The current implementation only resets the essential configurations.
5407  * This needs to be expanded to cover all the visible parts.
5408  */
5409 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5410 {
5411         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5412
5413         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5414         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5415         page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5416         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5417         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5418         page_counter_set_min(&memcg->memory, 0);
5419         page_counter_set_low(&memcg->memory, 0);
5420         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5421         memcg->soft_limit = PAGE_COUNTER_MAX;
5422         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5423         memcg_wb_domain_size_changed(memcg);
5424 }
5425
5426 #ifdef CONFIG_MMU
5427 /* Handlers for move charge at task migration. */
5428 static int mem_cgroup_do_precharge(unsigned long count)
5429 {
5430         int ret;
5431
5432         /* Try a single bulk charge without reclaim first, kswapd may wake */
5433         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5434         if (!ret) {
5435                 mc.precharge += count;
5436                 return ret;
5437         }
5438
5439         /* Try charges one by one with reclaim, but do not retry */
5440         while (count--) {
5441                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5442                 if (ret)
5443                         return ret;
5444                 mc.precharge++;
5445                 cond_resched();
5446         }
5447         return 0;
5448 }
5449
5450 union mc_target {
5451         struct page     *page;
5452         swp_entry_t     ent;
5453 };
5454
5455 enum mc_target_type {
5456         MC_TARGET_NONE = 0,
5457         MC_TARGET_PAGE,
5458         MC_TARGET_SWAP,
5459         MC_TARGET_DEVICE,
5460 };
5461
5462 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5463                                                 unsigned long addr, pte_t ptent)
5464 {
5465         struct page *page = vm_normal_page(vma, addr, ptent);
5466
5467         if (!page || !page_mapped(page))
5468                 return NULL;
5469         if (PageAnon(page)) {
5470                 if (!(mc.flags & MOVE_ANON))
5471                         return NULL;
5472         } else {
5473                 if (!(mc.flags & MOVE_FILE))
5474                         return NULL;
5475         }
5476         if (!get_page_unless_zero(page))
5477                 return NULL;
5478
5479         return page;
5480 }
5481
5482 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5483 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5484                         pte_t ptent, swp_entry_t *entry)
5485 {
5486         struct page *page = NULL;
5487         swp_entry_t ent = pte_to_swp_entry(ptent);
5488
5489         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5490                 return NULL;
5491
5492         /*
5493          * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5494          * a device and because they are not accessible by CPU they are store
5495          * as special swap entry in the CPU page table.
5496          */
5497         if (is_device_private_entry(ent)) {
5498                 page = device_private_entry_to_page(ent);
5499                 /*
5500                  * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5501                  * a refcount of 1 when free (unlike normal page)
5502                  */
5503                 if (!page_ref_add_unless(page, 1, 1))
5504                         return NULL;
5505                 return page;
5506         }
5507
5508         /*
5509          * Because lookup_swap_cache() updates some statistics counter,
5510          * we call find_get_page() with swapper_space directly.
5511          */
5512         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5513         entry->val = ent.val;
5514
5515         return page;
5516 }
5517 #else
5518 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5519                         pte_t ptent, swp_entry_t *entry)
5520 {
5521         return NULL;
5522 }
5523 #endif
5524
5525 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5526                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5527 {
5528         struct page *page = NULL;
5529         struct address_space *mapping;
5530         pgoff_t pgoff;
5531
5532         if (!vma->vm_file) /* anonymous vma */
5533                 return NULL;
5534         if (!(mc.flags & MOVE_FILE))
5535                 return NULL;
5536
5537         mapping = vma->vm_file->f_mapping;
5538         pgoff = linear_page_index(vma, addr);
5539
5540         /* page is moved even if it's not RSS of this task(page-faulted). */
5541 #ifdef CONFIG_SWAP
5542         /* shmem/tmpfs may report page out on swap: account for that too. */
5543         if (shmem_mapping(mapping)) {
5544                 page = find_get_entry(mapping, pgoff);
5545                 if (xa_is_value(page)) {
5546                         swp_entry_t swp = radix_to_swp_entry(page);
5547                         *entry = swp;
5548                         page = find_get_page(swap_address_space(swp),
5549                                              swp_offset(swp));
5550                 }
5551         } else
5552                 page = find_get_page(mapping, pgoff);
5553 #else
5554         page = find_get_page(mapping, pgoff);
5555 #endif
5556         return page;
5557 }
5558
5559 /**
5560  * mem_cgroup_move_account - move account of the page
5561  * @page: the page
5562  * @compound: charge the page as compound or small page
5563  * @from: mem_cgroup which the page is moved from.
5564  * @to: mem_cgroup which the page is moved to. @from != @to.
5565  *
5566  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5567  *
5568  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5569  * from old cgroup.
5570  */
5571 static int mem_cgroup_move_account(struct page *page,
5572                                    bool compound,
5573                                    struct mem_cgroup *from,
5574                                    struct mem_cgroup *to)
5575 {
5576         struct lruvec *from_vec, *to_vec;
5577         struct pglist_data *pgdat;
5578         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5579         int ret;
5580
5581         VM_BUG_ON(from == to);
5582         VM_BUG_ON_PAGE(PageLRU(page), page);
5583         VM_BUG_ON(compound && !PageTransHuge(page));
5584
5585         /*
5586          * Prevent mem_cgroup_migrate() from looking at
5587          * page->mem_cgroup of its source page while we change it.
5588          */
5589         ret = -EBUSY;
5590         if (!trylock_page(page))
5591                 goto out;
5592
5593         ret = -EINVAL;
5594         if (page->mem_cgroup != from)
5595                 goto out_unlock;
5596
5597         pgdat = page_pgdat(page);
5598         from_vec = mem_cgroup_lruvec(from, pgdat);
5599         to_vec = mem_cgroup_lruvec(to, pgdat);
5600
5601         lock_page_memcg(page);
5602
5603         if (PageAnon(page)) {
5604                 if (page_mapped(page)) {
5605                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5606                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5607                         if (PageTransHuge(page)) {
5608                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5609                                                    -nr_pages);
5610                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5611                                                    nr_pages);
5612                         }
5613
5614                 }
5615         } else {
5616                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5617                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5618
5619                 if (PageSwapBacked(page)) {
5620                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5621                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5622                 }
5623
5624                 if (page_mapped(page)) {
5625                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5626                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5627                 }
5628
5629                 if (PageDirty(page)) {
5630                         struct address_space *mapping = page_mapping(page);
5631
5632                         if (mapping_cap_account_dirty(mapping)) {
5633                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5634                                                    -nr_pages);
5635                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5636                                                    nr_pages);
5637                         }
5638                 }
5639         }
5640
5641         if (PageWriteback(page)) {
5642                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5643                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5644         }
5645
5646         /*
5647          * All state has been migrated, let's switch to the new memcg.
5648          *
5649          * It is safe to change page->mem_cgroup here because the page
5650          * is referenced, charged, isolated, and locked: we can't race
5651          * with (un)charging, migration, LRU putback, or anything else
5652          * that would rely on a stable page->mem_cgroup.
5653          *
5654          * Note that lock_page_memcg is a memcg lock, not a page lock,
5655          * to save space. As soon as we switch page->mem_cgroup to a
5656          * new memcg that isn't locked, the above state can change
5657          * concurrently again. Make sure we're truly done with it.
5658          */
5659         smp_mb();
5660
5661         css_get(&to->css);
5662         css_put(&from->css);
5663
5664         page->mem_cgroup = to;
5665
5666         __unlock_page_memcg(from);
5667
5668         ret = 0;
5669
5670         local_irq_disable();
5671         mem_cgroup_charge_statistics(to, page, nr_pages);
5672         memcg_check_events(to, page);
5673         mem_cgroup_charge_statistics(from, page, -nr_pages);
5674         memcg_check_events(from, page);
5675         local_irq_enable();
5676 out_unlock:
5677         unlock_page(page);
5678 out:
5679         return ret;
5680 }
5681
5682 /**
5683  * get_mctgt_type - get target type of moving charge
5684  * @vma: the vma the pte to be checked belongs
5685  * @addr: the address corresponding to the pte to be checked
5686  * @ptent: the pte to be checked
5687  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5688  *
5689  * Returns
5690  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5691  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5692  *     move charge. if @target is not NULL, the page is stored in target->page
5693  *     with extra refcnt got(Callers should handle it).
5694  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5695  *     target for charge migration. if @target is not NULL, the entry is stored
5696  *     in target->ent.
5697  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5698  *     (so ZONE_DEVICE page and thus not on the lru).
5699  *     For now we such page is charge like a regular page would be as for all
5700  *     intent and purposes it is just special memory taking the place of a
5701  *     regular page.
5702  *
5703  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5704  *
5705  * Called with pte lock held.
5706  */
5707
5708 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5709                 unsigned long addr, pte_t ptent, union mc_target *target)
5710 {
5711         struct page *page = NULL;
5712         enum mc_target_type ret = MC_TARGET_NONE;
5713         swp_entry_t ent = { .val = 0 };
5714
5715         if (pte_present(ptent))
5716                 page = mc_handle_present_pte(vma, addr, ptent);
5717         else if (is_swap_pte(ptent))
5718                 page = mc_handle_swap_pte(vma, ptent, &ent);
5719         else if (pte_none(ptent))
5720                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5721
5722         if (!page && !ent.val)
5723                 return ret;
5724         if (page) {
5725                 /*
5726                  * Do only loose check w/o serialization.
5727                  * mem_cgroup_move_account() checks the page is valid or
5728                  * not under LRU exclusion.
5729                  */
5730                 if (page->mem_cgroup == mc.from) {
5731                         ret = MC_TARGET_PAGE;
5732                         if (is_device_private_page(page))
5733                                 ret = MC_TARGET_DEVICE;
5734                         if (target)
5735                                 target->page = page;
5736                 }
5737                 if (!ret || !target)
5738                         put_page(page);
5739         }
5740         /*
5741          * There is a swap entry and a page doesn't exist or isn't charged.
5742          * But we cannot move a tail-page in a THP.
5743          */
5744         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5745             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5746                 ret = MC_TARGET_SWAP;
5747                 if (target)
5748                         target->ent = ent;
5749         }
5750         return ret;
5751 }
5752
5753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5754 /*
5755  * We don't consider PMD mapped swapping or file mapped pages because THP does
5756  * not support them for now.
5757  * Caller should make sure that pmd_trans_huge(pmd) is true.
5758  */
5759 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5760                 unsigned long addr, pmd_t pmd, union mc_target *target)
5761 {
5762         struct page *page = NULL;
5763         enum mc_target_type ret = MC_TARGET_NONE;
5764
5765         if (unlikely(is_swap_pmd(pmd))) {
5766                 VM_BUG_ON(thp_migration_supported() &&
5767                                   !is_pmd_migration_entry(pmd));
5768                 return ret;
5769         }
5770         page = pmd_page(pmd);
5771         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5772         if (!(mc.flags & MOVE_ANON))
5773                 return ret;
5774         if (page->mem_cgroup == mc.from) {
5775                 ret = MC_TARGET_PAGE;
5776                 if (target) {
5777                         get_page(page);
5778                         target->page = page;
5779                 }
5780         }
5781         return ret;
5782 }
5783 #else
5784 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5785                 unsigned long addr, pmd_t pmd, union mc_target *target)
5786 {
5787         return MC_TARGET_NONE;
5788 }
5789 #endif
5790
5791 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5792                                         unsigned long addr, unsigned long end,
5793                                         struct mm_walk *walk)
5794 {
5795         struct vm_area_struct *vma = walk->vma;
5796         pte_t *pte;
5797         spinlock_t *ptl;
5798
5799         ptl = pmd_trans_huge_lock(pmd, vma);
5800         if (ptl) {
5801                 /*
5802                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5803                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5804                  * this might change.
5805                  */
5806                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5807                         mc.precharge += HPAGE_PMD_NR;
5808                 spin_unlock(ptl);
5809                 return 0;
5810         }
5811
5812         if (pmd_trans_unstable(pmd))
5813                 return 0;
5814         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5815         for (; addr != end; pte++, addr += PAGE_SIZE)
5816                 if (get_mctgt_type(vma, addr, *pte, NULL))
5817                         mc.precharge++; /* increment precharge temporarily */
5818         pte_unmap_unlock(pte - 1, ptl);
5819         cond_resched();
5820
5821         return 0;
5822 }
5823
5824 static const struct mm_walk_ops precharge_walk_ops = {
5825         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5826 };
5827
5828 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5829 {
5830         unsigned long precharge;
5831
5832         mmap_read_lock(mm);
5833         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5834         mmap_read_unlock(mm);
5835
5836         precharge = mc.precharge;
5837         mc.precharge = 0;
5838
5839         return precharge;
5840 }
5841
5842 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5843 {
5844         unsigned long precharge = mem_cgroup_count_precharge(mm);
5845
5846         VM_BUG_ON(mc.moving_task);
5847         mc.moving_task = current;
5848         return mem_cgroup_do_precharge(precharge);
5849 }
5850
5851 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5852 static void __mem_cgroup_clear_mc(void)
5853 {
5854         struct mem_cgroup *from = mc.from;
5855         struct mem_cgroup *to = mc.to;
5856
5857         /* we must uncharge all the leftover precharges from mc.to */
5858         if (mc.precharge) {
5859                 cancel_charge(mc.to, mc.precharge);
5860                 mc.precharge = 0;
5861         }
5862         /*
5863          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5864          * we must uncharge here.
5865          */
5866         if (mc.moved_charge) {
5867                 cancel_charge(mc.from, mc.moved_charge);
5868                 mc.moved_charge = 0;
5869         }
5870         /* we must fixup refcnts and charges */
5871         if (mc.moved_swap) {
5872                 /* uncharge swap account from the old cgroup */
5873                 if (!mem_cgroup_is_root(mc.from))
5874                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5875
5876                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5877
5878                 /*
5879                  * we charged both to->memory and to->memsw, so we
5880                  * should uncharge to->memory.
5881                  */
5882                 if (!mem_cgroup_is_root(mc.to))
5883                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5884
5885                 mc.moved_swap = 0;
5886         }
5887         memcg_oom_recover(from);
5888         memcg_oom_recover(to);
5889         wake_up_all(&mc.waitq);
5890 }
5891
5892 static void mem_cgroup_clear_mc(void)
5893 {
5894         struct mm_struct *mm = mc.mm;
5895
5896         /*
5897          * we must clear moving_task before waking up waiters at the end of
5898          * task migration.
5899          */
5900         mc.moving_task = NULL;
5901         __mem_cgroup_clear_mc();
5902         spin_lock(&mc.lock);
5903         mc.from = NULL;
5904         mc.to = NULL;
5905         mc.mm = NULL;
5906         spin_unlock(&mc.lock);
5907
5908         mmput(mm);
5909 }
5910
5911 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5912 {
5913         struct cgroup_subsys_state *css;
5914         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5915         struct mem_cgroup *from;
5916         struct task_struct *leader, *p;
5917         struct mm_struct *mm;
5918         unsigned long move_flags;
5919         int ret = 0;
5920
5921         /* charge immigration isn't supported on the default hierarchy */
5922         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5923                 return 0;
5924
5925         /*
5926          * Multi-process migrations only happen on the default hierarchy
5927          * where charge immigration is not used.  Perform charge
5928          * immigration if @tset contains a leader and whine if there are
5929          * multiple.
5930          */
5931         p = NULL;
5932         cgroup_taskset_for_each_leader(leader, css, tset) {
5933                 WARN_ON_ONCE(p);
5934                 p = leader;
5935                 memcg = mem_cgroup_from_css(css);
5936         }
5937         if (!p)
5938                 return 0;
5939
5940         /*
5941          * We are now commited to this value whatever it is. Changes in this
5942          * tunable will only affect upcoming migrations, not the current one.
5943          * So we need to save it, and keep it going.
5944          */
5945         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5946         if (!move_flags)
5947                 return 0;
5948
5949         from = mem_cgroup_from_task(p);
5950
5951         VM_BUG_ON(from == memcg);
5952
5953         mm = get_task_mm(p);
5954         if (!mm)
5955                 return 0;
5956         /* We move charges only when we move a owner of the mm */
5957         if (mm->owner == p) {
5958                 VM_BUG_ON(mc.from);
5959                 VM_BUG_ON(mc.to);
5960                 VM_BUG_ON(mc.precharge);
5961                 VM_BUG_ON(mc.moved_charge);
5962                 VM_BUG_ON(mc.moved_swap);
5963
5964                 spin_lock(&mc.lock);
5965                 mc.mm = mm;
5966                 mc.from = from;
5967                 mc.to = memcg;
5968                 mc.flags = move_flags;
5969                 spin_unlock(&mc.lock);
5970                 /* We set mc.moving_task later */
5971
5972                 ret = mem_cgroup_precharge_mc(mm);
5973                 if (ret)
5974                         mem_cgroup_clear_mc();
5975         } else {
5976                 mmput(mm);
5977         }
5978         return ret;
5979 }
5980
5981 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5982 {
5983         if (mc.to)
5984                 mem_cgroup_clear_mc();
5985 }
5986
5987 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5988                                 unsigned long addr, unsigned long end,
5989                                 struct mm_walk *walk)
5990 {
5991         int ret = 0;
5992         struct vm_area_struct *vma = walk->vma;
5993         pte_t *pte;
5994         spinlock_t *ptl;
5995         enum mc_target_type target_type;
5996         union mc_target target;
5997         struct page *page;
5998
5999         ptl = pmd_trans_huge_lock(pmd, vma);
6000         if (ptl) {
6001                 if (mc.precharge < HPAGE_PMD_NR) {
6002                         spin_unlock(ptl);
6003                         return 0;
6004                 }
6005                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6006                 if (target_type == MC_TARGET_PAGE) {
6007                         page = target.page;
6008                         if (!isolate_lru_page(page)) {
6009                                 if (!mem_cgroup_move_account(page, true,
6010                                                              mc.from, mc.to)) {
6011                                         mc.precharge -= HPAGE_PMD_NR;
6012                                         mc.moved_charge += HPAGE_PMD_NR;
6013                                 }
6014                                 putback_lru_page(page);
6015                         }
6016                         put_page(page);
6017                 } else if (target_type == MC_TARGET_DEVICE) {
6018                         page = target.page;
6019                         if (!mem_cgroup_move_account(page, true,
6020                                                      mc.from, mc.to)) {
6021                                 mc.precharge -= HPAGE_PMD_NR;
6022                                 mc.moved_charge += HPAGE_PMD_NR;
6023                         }
6024                         put_page(page);
6025                 }
6026                 spin_unlock(ptl);
6027                 return 0;
6028         }
6029
6030         if (pmd_trans_unstable(pmd))
6031                 return 0;
6032 retry:
6033         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6034         for (; addr != end; addr += PAGE_SIZE) {
6035                 pte_t ptent = *(pte++);
6036                 bool device = false;
6037                 swp_entry_t ent;
6038
6039                 if (!mc.precharge)
6040                         break;
6041
6042                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6043                 case MC_TARGET_DEVICE:
6044                         device = true;
6045                         fallthrough;
6046                 case MC_TARGET_PAGE:
6047                         page = target.page;
6048                         /*
6049                          * We can have a part of the split pmd here. Moving it
6050                          * can be done but it would be too convoluted so simply
6051                          * ignore such a partial THP and keep it in original
6052                          * memcg. There should be somebody mapping the head.
6053                          */
6054                         if (PageTransCompound(page))
6055                                 goto put;
6056                         if (!device && isolate_lru_page(page))
6057                                 goto put;
6058                         if (!mem_cgroup_move_account(page, false,
6059                                                 mc.from, mc.to)) {
6060                                 mc.precharge--;
6061                                 /* we uncharge from mc.from later. */
6062                                 mc.moved_charge++;
6063                         }
6064                         if (!device)
6065                                 putback_lru_page(page);
6066 put:                    /* get_mctgt_type() gets the page */
6067                         put_page(page);
6068                         break;
6069                 case MC_TARGET_SWAP:
6070                         ent = target.ent;
6071                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6072                                 mc.precharge--;
6073                                 mem_cgroup_id_get_many(mc.to, 1);
6074                                 /* we fixup other refcnts and charges later. */
6075                                 mc.moved_swap++;
6076                         }
6077                         break;
6078                 default:
6079                         break;
6080                 }
6081         }
6082         pte_unmap_unlock(pte - 1, ptl);
6083         cond_resched();
6084
6085         if (addr != end) {
6086                 /*
6087                  * We have consumed all precharges we got in can_attach().
6088                  * We try charge one by one, but don't do any additional
6089                  * charges to mc.to if we have failed in charge once in attach()
6090                  * phase.
6091                  */
6092                 ret = mem_cgroup_do_precharge(1);
6093                 if (!ret)
6094                         goto retry;
6095         }
6096
6097         return ret;
6098 }
6099
6100 static const struct mm_walk_ops charge_walk_ops = {
6101         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6102 };
6103
6104 static void mem_cgroup_move_charge(void)
6105 {
6106         lru_add_drain_all();
6107         /*
6108          * Signal lock_page_memcg() to take the memcg's move_lock
6109          * while we're moving its pages to another memcg. Then wait
6110          * for already started RCU-only updates to finish.
6111          */
6112         atomic_inc(&mc.from->moving_account);
6113         synchronize_rcu();
6114 retry:
6115         if (unlikely(!mmap_read_trylock(mc.mm))) {
6116                 /*
6117                  * Someone who are holding the mmap_lock might be waiting in
6118                  * waitq. So we cancel all extra charges, wake up all waiters,
6119                  * and retry. Because we cancel precharges, we might not be able
6120                  * to move enough charges, but moving charge is a best-effort
6121                  * feature anyway, so it wouldn't be a big problem.
6122                  */
6123                 __mem_cgroup_clear_mc();
6124                 cond_resched();
6125                 goto retry;
6126         }
6127         /*
6128          * When we have consumed all precharges and failed in doing
6129          * additional charge, the page walk just aborts.
6130          */
6131         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6132                         NULL);
6133
6134         mmap_read_unlock(mc.mm);
6135         atomic_dec(&mc.from->moving_account);
6136 }
6137
6138 static void mem_cgroup_move_task(void)
6139 {
6140         if (mc.to) {
6141                 mem_cgroup_move_charge();
6142                 mem_cgroup_clear_mc();
6143         }
6144 }
6145 #else   /* !CONFIG_MMU */
6146 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6147 {
6148         return 0;
6149 }
6150 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6151 {
6152 }
6153 static void mem_cgroup_move_task(void)
6154 {
6155 }
6156 #endif
6157
6158 /*
6159  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6160  * to verify whether we're attached to the default hierarchy on each mount
6161  * attempt.
6162  */
6163 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6164 {
6165         /*
6166          * use_hierarchy is forced on the default hierarchy.  cgroup core
6167          * guarantees that @root doesn't have any children, so turning it
6168          * on for the root memcg is enough.
6169          */
6170         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6171                 root_mem_cgroup->use_hierarchy = true;
6172         else
6173                 root_mem_cgroup->use_hierarchy = false;
6174 }
6175
6176 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6177 {
6178         if (value == PAGE_COUNTER_MAX)
6179                 seq_puts(m, "max\n");
6180         else
6181                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6182
6183         return 0;
6184 }
6185
6186 static u64 memory_current_read(struct cgroup_subsys_state *css,
6187                                struct cftype *cft)
6188 {
6189         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6190
6191         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6192 }
6193
6194 static int memory_min_show(struct seq_file *m, void *v)
6195 {
6196         return seq_puts_memcg_tunable(m,
6197                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6198 }
6199
6200 static ssize_t memory_min_write(struct kernfs_open_file *of,
6201                                 char *buf, size_t nbytes, loff_t off)
6202 {
6203         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6204         unsigned long min;
6205         int err;
6206
6207         buf = strstrip(buf);
6208         err = page_counter_memparse(buf, "max", &min);
6209         if (err)
6210                 return err;
6211
6212         page_counter_set_min(&memcg->memory, min);
6213
6214         return nbytes;
6215 }
6216
6217 static int memory_low_show(struct seq_file *m, void *v)
6218 {
6219         return seq_puts_memcg_tunable(m,
6220                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6221 }
6222
6223 static ssize_t memory_low_write(struct kernfs_open_file *of,
6224                                 char *buf, size_t nbytes, loff_t off)
6225 {
6226         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6227         unsigned long low;
6228         int err;
6229
6230         buf = strstrip(buf);
6231         err = page_counter_memparse(buf, "max", &low);
6232         if (err)
6233                 return err;
6234
6235         page_counter_set_low(&memcg->memory, low);
6236
6237         return nbytes;
6238 }
6239
6240 static int memory_high_show(struct seq_file *m, void *v)
6241 {
6242         return seq_puts_memcg_tunable(m,
6243                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6244 }
6245
6246 static ssize_t memory_high_write(struct kernfs_open_file *of,
6247                                  char *buf, size_t nbytes, loff_t off)
6248 {
6249         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6250         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6251         bool drained = false;
6252         unsigned long high;
6253         int err;
6254
6255         buf = strstrip(buf);
6256         err = page_counter_memparse(buf, "max", &high);
6257         if (err)
6258                 return err;
6259
6260         for (;;) {
6261                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6262                 unsigned long reclaimed;
6263
6264                 if (nr_pages <= high)
6265                         break;
6266
6267                 if (signal_pending(current))
6268                         break;
6269
6270                 if (!drained) {
6271                         drain_all_stock(memcg);
6272                         drained = true;
6273                         continue;
6274                 }
6275
6276                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6277                                                          GFP_KERNEL, true);
6278
6279                 if (!reclaimed && !nr_retries--)
6280                         break;
6281         }
6282
6283         page_counter_set_high(&memcg->memory, high);
6284
6285         memcg_wb_domain_size_changed(memcg);
6286
6287         return nbytes;
6288 }
6289
6290 static int memory_max_show(struct seq_file *m, void *v)
6291 {
6292         return seq_puts_memcg_tunable(m,
6293                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6294 }
6295
6296 static ssize_t memory_max_write(struct kernfs_open_file *of,
6297                                 char *buf, size_t nbytes, loff_t off)
6298 {
6299         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6300         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6301         bool drained = false;
6302         unsigned long max;
6303         int err;
6304
6305         buf = strstrip(buf);
6306         err = page_counter_memparse(buf, "max", &max);
6307         if (err)
6308                 return err;
6309
6310         xchg(&memcg->memory.max, max);
6311
6312         for (;;) {
6313                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6314
6315                 if (nr_pages <= max)
6316                         break;
6317
6318                 if (signal_pending(current))
6319                         break;
6320
6321                 if (!drained) {
6322                         drain_all_stock(memcg);
6323                         drained = true;
6324                         continue;
6325                 }
6326
6327                 if (nr_reclaims) {
6328                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6329                                                           GFP_KERNEL, true))
6330                                 nr_reclaims--;
6331                         continue;
6332                 }
6333
6334                 memcg_memory_event(memcg, MEMCG_OOM);
6335                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6336                         break;
6337         }
6338
6339         memcg_wb_domain_size_changed(memcg);
6340         return nbytes;
6341 }
6342
6343 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6344 {
6345         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6346         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6347         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6348         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6349         seq_printf(m, "oom_kill %lu\n",
6350                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6351 }
6352
6353 static int memory_events_show(struct seq_file *m, void *v)
6354 {
6355         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6356
6357         __memory_events_show(m, memcg->memory_events);
6358         return 0;
6359 }
6360
6361 static int memory_events_local_show(struct seq_file *m, void *v)
6362 {
6363         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364
6365         __memory_events_show(m, memcg->memory_events_local);
6366         return 0;
6367 }
6368
6369 static int memory_stat_show(struct seq_file *m, void *v)
6370 {
6371         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372         char *buf;
6373
6374         buf = memory_stat_format(memcg);
6375         if (!buf)
6376                 return -ENOMEM;
6377         seq_puts(m, buf);
6378         kfree(buf);
6379         return 0;
6380 }
6381
6382 static int memory_oom_group_show(struct seq_file *m, void *v)
6383 {
6384         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6385
6386         seq_printf(m, "%d\n", memcg->oom_group);
6387
6388         return 0;
6389 }
6390
6391 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6392                                       char *buf, size_t nbytes, loff_t off)
6393 {
6394         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6395         int ret, oom_group;
6396
6397         buf = strstrip(buf);
6398         if (!buf)
6399                 return -EINVAL;
6400
6401         ret = kstrtoint(buf, 0, &oom_group);
6402         if (ret)
6403                 return ret;
6404
6405         if (oom_group != 0 && oom_group != 1)
6406                 return -EINVAL;
6407
6408         memcg->oom_group = oom_group;
6409
6410         return nbytes;
6411 }
6412
6413 static struct cftype memory_files[] = {
6414         {
6415                 .name = "current",
6416                 .flags = CFTYPE_NOT_ON_ROOT,
6417                 .read_u64 = memory_current_read,
6418         },
6419         {
6420                 .name = "min",
6421                 .flags = CFTYPE_NOT_ON_ROOT,
6422                 .seq_show = memory_min_show,
6423                 .write = memory_min_write,
6424         },
6425         {
6426                 .name = "low",
6427                 .flags = CFTYPE_NOT_ON_ROOT,
6428                 .seq_show = memory_low_show,
6429                 .write = memory_low_write,
6430         },
6431         {
6432                 .name = "high",
6433                 .flags = CFTYPE_NOT_ON_ROOT,
6434                 .seq_show = memory_high_show,
6435                 .write = memory_high_write,
6436         },
6437         {
6438                 .name = "max",
6439                 .flags = CFTYPE_NOT_ON_ROOT,
6440                 .seq_show = memory_max_show,
6441                 .write = memory_max_write,
6442         },
6443         {
6444                 .name = "events",
6445                 .flags = CFTYPE_NOT_ON_ROOT,
6446                 .file_offset = offsetof(struct mem_cgroup, events_file),
6447                 .seq_show = memory_events_show,
6448         },
6449         {
6450                 .name = "events.local",
6451                 .flags = CFTYPE_NOT_ON_ROOT,
6452                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6453                 .seq_show = memory_events_local_show,
6454         },
6455         {
6456                 .name = "stat",
6457                 .seq_show = memory_stat_show,
6458         },
6459         {
6460                 .name = "oom.group",
6461                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6462                 .seq_show = memory_oom_group_show,
6463                 .write = memory_oom_group_write,
6464         },
6465         { }     /* terminate */
6466 };
6467
6468 struct cgroup_subsys memory_cgrp_subsys = {
6469         .css_alloc = mem_cgroup_css_alloc,
6470         .css_online = mem_cgroup_css_online,
6471         .css_offline = mem_cgroup_css_offline,
6472         .css_released = mem_cgroup_css_released,
6473         .css_free = mem_cgroup_css_free,
6474         .css_reset = mem_cgroup_css_reset,
6475         .can_attach = mem_cgroup_can_attach,
6476         .cancel_attach = mem_cgroup_cancel_attach,
6477         .post_attach = mem_cgroup_move_task,
6478         .bind = mem_cgroup_bind,
6479         .dfl_cftypes = memory_files,
6480         .legacy_cftypes = mem_cgroup_legacy_files,
6481         .early_init = 0,
6482 };
6483
6484 /*
6485  * This function calculates an individual cgroup's effective
6486  * protection which is derived from its own memory.min/low, its
6487  * parent's and siblings' settings, as well as the actual memory
6488  * distribution in the tree.
6489  *
6490  * The following rules apply to the effective protection values:
6491  *
6492  * 1. At the first level of reclaim, effective protection is equal to
6493  *    the declared protection in memory.min and memory.low.
6494  *
6495  * 2. To enable safe delegation of the protection configuration, at
6496  *    subsequent levels the effective protection is capped to the
6497  *    parent's effective protection.
6498  *
6499  * 3. To make complex and dynamic subtrees easier to configure, the
6500  *    user is allowed to overcommit the declared protection at a given
6501  *    level. If that is the case, the parent's effective protection is
6502  *    distributed to the children in proportion to how much protection
6503  *    they have declared and how much of it they are utilizing.
6504  *
6505  *    This makes distribution proportional, but also work-conserving:
6506  *    if one cgroup claims much more protection than it uses memory,
6507  *    the unused remainder is available to its siblings.
6508  *
6509  * 4. Conversely, when the declared protection is undercommitted at a
6510  *    given level, the distribution of the larger parental protection
6511  *    budget is NOT proportional. A cgroup's protection from a sibling
6512  *    is capped to its own memory.min/low setting.
6513  *
6514  * 5. However, to allow protecting recursive subtrees from each other
6515  *    without having to declare each individual cgroup's fixed share
6516  *    of the ancestor's claim to protection, any unutilized -
6517  *    "floating" - protection from up the tree is distributed in
6518  *    proportion to each cgroup's *usage*. This makes the protection
6519  *    neutral wrt sibling cgroups and lets them compete freely over
6520  *    the shared parental protection budget, but it protects the
6521  *    subtree as a whole from neighboring subtrees.
6522  *
6523  * Note that 4. and 5. are not in conflict: 4. is about protecting
6524  * against immediate siblings whereas 5. is about protecting against
6525  * neighboring subtrees.
6526  */
6527 static unsigned long effective_protection(unsigned long usage,
6528                                           unsigned long parent_usage,
6529                                           unsigned long setting,
6530                                           unsigned long parent_effective,
6531                                           unsigned long siblings_protected)
6532 {
6533         unsigned long protected;
6534         unsigned long ep;
6535
6536         protected = min(usage, setting);
6537         /*
6538          * If all cgroups at this level combined claim and use more
6539          * protection then what the parent affords them, distribute
6540          * shares in proportion to utilization.
6541          *
6542          * We are using actual utilization rather than the statically
6543          * claimed protection in order to be work-conserving: claimed
6544          * but unused protection is available to siblings that would
6545          * otherwise get a smaller chunk than what they claimed.
6546          */
6547         if (siblings_protected > parent_effective)
6548                 return protected * parent_effective / siblings_protected;
6549
6550         /*
6551          * Ok, utilized protection of all children is within what the
6552          * parent affords them, so we know whatever this child claims
6553          * and utilizes is effectively protected.
6554          *
6555          * If there is unprotected usage beyond this value, reclaim
6556          * will apply pressure in proportion to that amount.
6557          *
6558          * If there is unutilized protection, the cgroup will be fully
6559          * shielded from reclaim, but we do return a smaller value for
6560          * protection than what the group could enjoy in theory. This
6561          * is okay. With the overcommit distribution above, effective
6562          * protection is always dependent on how memory is actually
6563          * consumed among the siblings anyway.
6564          */
6565         ep = protected;
6566
6567         /*
6568          * If the children aren't claiming (all of) the protection
6569          * afforded to them by the parent, distribute the remainder in
6570          * proportion to the (unprotected) memory of each cgroup. That
6571          * way, cgroups that aren't explicitly prioritized wrt each
6572          * other compete freely over the allowance, but they are
6573          * collectively protected from neighboring trees.
6574          *
6575          * We're using unprotected memory for the weight so that if
6576          * some cgroups DO claim explicit protection, we don't protect
6577          * the same bytes twice.
6578          *
6579          * Check both usage and parent_usage against the respective
6580          * protected values. One should imply the other, but they
6581          * aren't read atomically - make sure the division is sane.
6582          */
6583         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6584                 return ep;
6585         if (parent_effective > siblings_protected &&
6586             parent_usage > siblings_protected &&
6587             usage > protected) {
6588                 unsigned long unclaimed;
6589
6590                 unclaimed = parent_effective - siblings_protected;
6591                 unclaimed *= usage - protected;
6592                 unclaimed /= parent_usage - siblings_protected;
6593
6594                 ep += unclaimed;
6595         }
6596
6597         return ep;
6598 }
6599
6600 /**
6601  * mem_cgroup_protected - check if memory consumption is in the normal range
6602  * @root: the top ancestor of the sub-tree being checked
6603  * @memcg: the memory cgroup to check
6604  *
6605  * WARNING: This function is not stateless! It can only be used as part
6606  *          of a top-down tree iteration, not for isolated queries.
6607  */
6608 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6609                                      struct mem_cgroup *memcg)
6610 {
6611         unsigned long usage, parent_usage;
6612         struct mem_cgroup *parent;
6613
6614         if (mem_cgroup_disabled())
6615                 return;
6616
6617         if (!root)
6618                 root = root_mem_cgroup;
6619
6620         /*
6621          * Effective values of the reclaim targets are ignored so they
6622          * can be stale. Have a look at mem_cgroup_protection for more
6623          * details.
6624          * TODO: calculation should be more robust so that we do not need
6625          * that special casing.
6626          */
6627         if (memcg == root)
6628                 return;
6629
6630         usage = page_counter_read(&memcg->memory);
6631         if (!usage)
6632                 return;
6633
6634         parent = parent_mem_cgroup(memcg);
6635         /* No parent means a non-hierarchical mode on v1 memcg */
6636         if (!parent)
6637                 return;
6638
6639         if (parent == root) {
6640                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6641                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6642                 return;
6643         }
6644
6645         parent_usage = page_counter_read(&parent->memory);
6646
6647         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6648                         READ_ONCE(memcg->memory.min),
6649                         READ_ONCE(parent->memory.emin),
6650                         atomic_long_read(&parent->memory.children_min_usage)));
6651
6652         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6653                         READ_ONCE(memcg->memory.low),
6654                         READ_ONCE(parent->memory.elow),
6655                         atomic_long_read(&parent->memory.children_low_usage)));
6656 }
6657
6658 /**
6659  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6660  * @page: page to charge
6661  * @mm: mm context of the victim
6662  * @gfp_mask: reclaim mode
6663  *
6664  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6665  * pages according to @gfp_mask if necessary.
6666  *
6667  * Returns 0 on success. Otherwise, an error code is returned.
6668  */
6669 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6670 {
6671         unsigned int nr_pages = hpage_nr_pages(page);
6672         struct mem_cgroup *memcg = NULL;
6673         int ret = 0;
6674
6675         if (mem_cgroup_disabled())
6676                 goto out;
6677
6678         if (PageSwapCache(page)) {
6679                 swp_entry_t ent = { .val = page_private(page), };
6680                 unsigned short id;
6681
6682                 /*
6683                  * Every swap fault against a single page tries to charge the
6684                  * page, bail as early as possible.  shmem_unuse() encounters
6685                  * already charged pages, too.  page->mem_cgroup is protected
6686                  * by the page lock, which serializes swap cache removal, which
6687                  * in turn serializes uncharging.
6688                  */
6689                 VM_BUG_ON_PAGE(!PageLocked(page), page);
6690                 if (compound_head(page)->mem_cgroup)
6691                         goto out;
6692
6693                 id = lookup_swap_cgroup_id(ent);
6694                 rcu_read_lock();
6695                 memcg = mem_cgroup_from_id(id);
6696                 if (memcg && !css_tryget_online(&memcg->css))
6697                         memcg = NULL;
6698                 rcu_read_unlock();
6699         }
6700
6701         if (!memcg)
6702                 memcg = get_mem_cgroup_from_mm(mm);
6703
6704         ret = try_charge(memcg, gfp_mask, nr_pages);
6705         if (ret)
6706                 goto out_put;
6707
6708         css_get(&memcg->css);
6709         commit_charge(page, memcg);
6710
6711         local_irq_disable();
6712         mem_cgroup_charge_statistics(memcg, page, nr_pages);
6713         memcg_check_events(memcg, page);
6714         local_irq_enable();
6715
6716         if (PageSwapCache(page)) {
6717                 swp_entry_t entry = { .val = page_private(page) };
6718                 /*
6719                  * The swap entry might not get freed for a long time,
6720                  * let's not wait for it.  The page already received a
6721                  * memory+swap charge, drop the swap entry duplicate.
6722                  */
6723                 mem_cgroup_uncharge_swap(entry, nr_pages);
6724         }
6725
6726 out_put:
6727         css_put(&memcg->css);
6728 out:
6729         return ret;
6730 }
6731
6732 struct uncharge_gather {
6733         struct mem_cgroup *memcg;
6734         unsigned long nr_pages;
6735         unsigned long pgpgout;
6736         unsigned long nr_kmem;
6737         struct page *dummy_page;
6738 };
6739
6740 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6741 {
6742         memset(ug, 0, sizeof(*ug));
6743 }
6744
6745 static void uncharge_batch(const struct uncharge_gather *ug)
6746 {
6747         unsigned long flags;
6748
6749         if (!mem_cgroup_is_root(ug->memcg)) {
6750                 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6751                 if (do_memsw_account())
6752                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6753                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6754                         page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6755                 memcg_oom_recover(ug->memcg);
6756         }
6757
6758         local_irq_save(flags);
6759         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6760         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6761         memcg_check_events(ug->memcg, ug->dummy_page);
6762         local_irq_restore(flags);
6763 }
6764
6765 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6766 {
6767         unsigned long nr_pages;
6768
6769         VM_BUG_ON_PAGE(PageLRU(page), page);
6770
6771         if (!page->mem_cgroup)
6772                 return;
6773
6774         /*
6775          * Nobody should be changing or seriously looking at
6776          * page->mem_cgroup at this point, we have fully
6777          * exclusive access to the page.
6778          */
6779
6780         if (ug->memcg != page->mem_cgroup) {
6781                 if (ug->memcg) {
6782                         uncharge_batch(ug);
6783                         uncharge_gather_clear(ug);
6784                 }
6785                 ug->memcg = page->mem_cgroup;
6786         }
6787
6788         nr_pages = compound_nr(page);
6789         ug->nr_pages += nr_pages;
6790
6791         if (!PageKmemcg(page)) {
6792                 ug->pgpgout++;
6793         } else {
6794                 ug->nr_kmem += nr_pages;
6795                 __ClearPageKmemcg(page);
6796         }
6797
6798         ug->dummy_page = page;
6799         page->mem_cgroup = NULL;
6800         css_put(&ug->memcg->css);
6801 }
6802
6803 static void uncharge_list(struct list_head *page_list)
6804 {
6805         struct uncharge_gather ug;
6806         struct list_head *next;
6807
6808         uncharge_gather_clear(&ug);
6809
6810         /*
6811          * Note that the list can be a single page->lru; hence the
6812          * do-while loop instead of a simple list_for_each_entry().
6813          */
6814         next = page_list->next;
6815         do {
6816                 struct page *page;
6817
6818                 page = list_entry(next, struct page, lru);
6819                 next = page->lru.next;
6820
6821                 uncharge_page(page, &ug);
6822         } while (next != page_list);
6823
6824         if (ug.memcg)
6825                 uncharge_batch(&ug);
6826 }
6827
6828 /**
6829  * mem_cgroup_uncharge - uncharge a page
6830  * @page: page to uncharge
6831  *
6832  * Uncharge a page previously charged with mem_cgroup_charge().
6833  */
6834 void mem_cgroup_uncharge(struct page *page)
6835 {
6836         struct uncharge_gather ug;
6837
6838         if (mem_cgroup_disabled())
6839                 return;
6840
6841         /* Don't touch page->lru of any random page, pre-check: */
6842         if (!page->mem_cgroup)
6843                 return;
6844
6845         uncharge_gather_clear(&ug);
6846         uncharge_page(page, &ug);
6847         uncharge_batch(&ug);
6848 }
6849
6850 /**
6851  * mem_cgroup_uncharge_list - uncharge a list of page
6852  * @page_list: list of pages to uncharge
6853  *
6854  * Uncharge a list of pages previously charged with
6855  * mem_cgroup_charge().
6856  */
6857 void mem_cgroup_uncharge_list(struct list_head *page_list)
6858 {
6859         if (mem_cgroup_disabled())
6860                 return;
6861
6862         if (!list_empty(page_list))
6863                 uncharge_list(page_list);
6864 }
6865
6866 /**
6867  * mem_cgroup_migrate - charge a page's replacement
6868  * @oldpage: currently circulating page
6869  * @newpage: replacement page
6870  *
6871  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6872  * be uncharged upon free.
6873  *
6874  * Both pages must be locked, @newpage->mapping must be set up.
6875  */
6876 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6877 {
6878         struct mem_cgroup *memcg;
6879         unsigned int nr_pages;
6880         unsigned long flags;
6881
6882         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6883         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6884         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6885         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6886                        newpage);
6887
6888         if (mem_cgroup_disabled())
6889                 return;
6890
6891         /* Page cache replacement: new page already charged? */
6892         if (newpage->mem_cgroup)
6893                 return;
6894
6895         /* Swapcache readahead pages can get replaced before being charged */
6896         memcg = oldpage->mem_cgroup;
6897         if (!memcg)
6898                 return;
6899
6900         /* Force-charge the new page. The old one will be freed soon */
6901         nr_pages = hpage_nr_pages(newpage);
6902
6903         page_counter_charge(&memcg->memory, nr_pages);
6904         if (do_memsw_account())
6905                 page_counter_charge(&memcg->memsw, nr_pages);
6906
6907         css_get(&memcg->css);
6908         commit_charge(newpage, memcg);
6909
6910         local_irq_save(flags);
6911         mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6912         memcg_check_events(memcg, newpage);
6913         local_irq_restore(flags);
6914 }
6915
6916 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6917 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6918
6919 void mem_cgroup_sk_alloc(struct sock *sk)
6920 {
6921         struct mem_cgroup *memcg;
6922
6923         if (!mem_cgroup_sockets_enabled)
6924                 return;
6925
6926         /* Do not associate the sock with unrelated interrupted task's memcg. */
6927         if (in_interrupt())
6928                 return;
6929
6930         rcu_read_lock();
6931         memcg = mem_cgroup_from_task(current);
6932         if (memcg == root_mem_cgroup)
6933                 goto out;
6934         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6935                 goto out;
6936         if (css_tryget(&memcg->css))
6937                 sk->sk_memcg = memcg;
6938 out:
6939         rcu_read_unlock();
6940 }
6941
6942 void mem_cgroup_sk_free(struct sock *sk)
6943 {
6944         if (sk->sk_memcg)
6945                 css_put(&sk->sk_memcg->css);
6946 }
6947
6948 /**
6949  * mem_cgroup_charge_skmem - charge socket memory
6950  * @memcg: memcg to charge
6951  * @nr_pages: number of pages to charge
6952  *
6953  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6954  * @memcg's configured limit, %false if the charge had to be forced.
6955  */
6956 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6957 {
6958         gfp_t gfp_mask = GFP_KERNEL;
6959
6960         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6961                 struct page_counter *fail;
6962
6963                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6964                         memcg->tcpmem_pressure = 0;
6965                         return true;
6966                 }
6967                 page_counter_charge(&memcg->tcpmem, nr_pages);
6968                 memcg->tcpmem_pressure = 1;
6969                 return false;
6970         }
6971
6972         /* Don't block in the packet receive path */
6973         if (in_softirq())
6974                 gfp_mask = GFP_NOWAIT;
6975
6976         mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6977
6978         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6979                 return true;
6980
6981         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6982         return false;
6983 }
6984
6985 /**
6986  * mem_cgroup_uncharge_skmem - uncharge socket memory
6987  * @memcg: memcg to uncharge
6988  * @nr_pages: number of pages to uncharge
6989  */
6990 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6991 {
6992         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6993                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6994                 return;
6995         }
6996
6997         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6998
6999         refill_stock(memcg, nr_pages);
7000 }
7001
7002 static int __init cgroup_memory(char *s)
7003 {
7004         char *token;
7005
7006         while ((token = strsep(&s, ",")) != NULL) {
7007                 if (!*token)
7008                         continue;
7009                 if (!strcmp(token, "nosocket"))
7010                         cgroup_memory_nosocket = true;
7011                 if (!strcmp(token, "nokmem"))
7012                         cgroup_memory_nokmem = true;
7013         }
7014         return 0;
7015 }
7016 __setup("cgroup.memory=", cgroup_memory);
7017
7018 /*
7019  * subsys_initcall() for memory controller.
7020  *
7021  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7022  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7023  * basically everything that doesn't depend on a specific mem_cgroup structure
7024  * should be initialized from here.
7025  */
7026 static int __init mem_cgroup_init(void)
7027 {
7028         int cpu, node;
7029
7030         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7031                                   memcg_hotplug_cpu_dead);
7032
7033         for_each_possible_cpu(cpu)
7034                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7035                           drain_local_stock);
7036
7037         for_each_node(node) {
7038                 struct mem_cgroup_tree_per_node *rtpn;
7039
7040                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7041                                     node_online(node) ? node : NUMA_NO_NODE);
7042
7043                 rtpn->rb_root = RB_ROOT;
7044                 rtpn->rb_rightmost = NULL;
7045                 spin_lock_init(&rtpn->lock);
7046                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7047         }
7048
7049         return 0;
7050 }
7051 subsys_initcall(mem_cgroup_init);
7052
7053 #ifdef CONFIG_MEMCG_SWAP
7054 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7055 {
7056         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7057                 /*
7058                  * The root cgroup cannot be destroyed, so it's refcount must
7059                  * always be >= 1.
7060                  */
7061                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7062                         VM_BUG_ON(1);
7063                         break;
7064                 }
7065                 memcg = parent_mem_cgroup(memcg);
7066                 if (!memcg)
7067                         memcg = root_mem_cgroup;
7068         }
7069         return memcg;
7070 }
7071
7072 /**
7073  * mem_cgroup_swapout - transfer a memsw charge to swap
7074  * @page: page whose memsw charge to transfer
7075  * @entry: swap entry to move the charge to
7076  *
7077  * Transfer the memsw charge of @page to @entry.
7078  */
7079 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7080 {
7081         struct mem_cgroup *memcg, *swap_memcg;
7082         unsigned int nr_entries;
7083         unsigned short oldid;
7084
7085         VM_BUG_ON_PAGE(PageLRU(page), page);
7086         VM_BUG_ON_PAGE(page_count(page), page);
7087
7088         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7089                 return;
7090
7091         memcg = page->mem_cgroup;
7092
7093         /* Readahead page, never charged */
7094         if (!memcg)
7095                 return;
7096
7097         /*
7098          * In case the memcg owning these pages has been offlined and doesn't
7099          * have an ID allocated to it anymore, charge the closest online
7100          * ancestor for the swap instead and transfer the memory+swap charge.
7101          */
7102         swap_memcg = mem_cgroup_id_get_online(memcg);
7103         nr_entries = hpage_nr_pages(page);
7104         /* Get references for the tail pages, too */
7105         if (nr_entries > 1)
7106                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7107         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7108                                    nr_entries);
7109         VM_BUG_ON_PAGE(oldid, page);
7110         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7111
7112         page->mem_cgroup = NULL;
7113
7114         if (!mem_cgroup_is_root(memcg))
7115                 page_counter_uncharge(&memcg->memory, nr_entries);
7116
7117         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7118                 if (!mem_cgroup_is_root(swap_memcg))
7119                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7120                 page_counter_uncharge(&memcg->memsw, nr_entries);
7121         }
7122
7123         /*
7124          * Interrupts should be disabled here because the caller holds the
7125          * i_pages lock which is taken with interrupts-off. It is
7126          * important here to have the interrupts disabled because it is the
7127          * only synchronisation we have for updating the per-CPU variables.
7128          */
7129         VM_BUG_ON(!irqs_disabled());
7130         mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7131         memcg_check_events(memcg, page);
7132
7133         css_put(&memcg->css);
7134 }
7135
7136 /**
7137  * mem_cgroup_try_charge_swap - try charging swap space for a page
7138  * @page: page being added to swap
7139  * @entry: swap entry to charge
7140  *
7141  * Try to charge @page's memcg for the swap space at @entry.
7142  *
7143  * Returns 0 on success, -ENOMEM on failure.
7144  */
7145 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7146 {
7147         unsigned int nr_pages = hpage_nr_pages(page);
7148         struct page_counter *counter;
7149         struct mem_cgroup *memcg;
7150         unsigned short oldid;
7151
7152         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7153                 return 0;
7154
7155         memcg = page->mem_cgroup;
7156
7157         /* Readahead page, never charged */
7158         if (!memcg)
7159                 return 0;
7160
7161         if (!entry.val) {
7162                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7163                 return 0;
7164         }
7165
7166         memcg = mem_cgroup_id_get_online(memcg);
7167
7168         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7169             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7170                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7171                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7172                 mem_cgroup_id_put(memcg);
7173                 return -ENOMEM;
7174         }
7175
7176         /* Get references for the tail pages, too */
7177         if (nr_pages > 1)
7178                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7179         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7180         VM_BUG_ON_PAGE(oldid, page);
7181         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7182
7183         return 0;
7184 }
7185
7186 /**
7187  * mem_cgroup_uncharge_swap - uncharge swap space
7188  * @entry: swap entry to uncharge
7189  * @nr_pages: the amount of swap space to uncharge
7190  */
7191 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7192 {
7193         struct mem_cgroup *memcg;
7194         unsigned short id;
7195
7196         id = swap_cgroup_record(entry, 0, nr_pages);
7197         rcu_read_lock();
7198         memcg = mem_cgroup_from_id(id);
7199         if (memcg) {
7200                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7201                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7202                                 page_counter_uncharge(&memcg->swap, nr_pages);
7203                         else
7204                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7205                 }
7206                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7207                 mem_cgroup_id_put_many(memcg, nr_pages);
7208         }
7209         rcu_read_unlock();
7210 }
7211
7212 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7213 {
7214         long nr_swap_pages = get_nr_swap_pages();
7215
7216         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7217                 return nr_swap_pages;
7218         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7219                 nr_swap_pages = min_t(long, nr_swap_pages,
7220                                       READ_ONCE(memcg->swap.max) -
7221                                       page_counter_read(&memcg->swap));
7222         return nr_swap_pages;
7223 }
7224
7225 bool mem_cgroup_swap_full(struct page *page)
7226 {
7227         struct mem_cgroup *memcg;
7228
7229         VM_BUG_ON_PAGE(!PageLocked(page), page);
7230
7231         if (vm_swap_full())
7232                 return true;
7233         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7234                 return false;
7235
7236         memcg = page->mem_cgroup;
7237         if (!memcg)
7238                 return false;
7239
7240         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7241                 unsigned long usage = page_counter_read(&memcg->swap);
7242
7243                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7244                     usage * 2 >= READ_ONCE(memcg->swap.max))
7245                         return true;
7246         }
7247
7248         return false;
7249 }
7250
7251 static int __init setup_swap_account(char *s)
7252 {
7253         if (!strcmp(s, "1"))
7254                 cgroup_memory_noswap = 0;
7255         else if (!strcmp(s, "0"))
7256                 cgroup_memory_noswap = 1;
7257         return 1;
7258 }
7259 __setup("swapaccount=", setup_swap_account);
7260
7261 static u64 swap_current_read(struct cgroup_subsys_state *css,
7262                              struct cftype *cft)
7263 {
7264         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7265
7266         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7267 }
7268
7269 static int swap_high_show(struct seq_file *m, void *v)
7270 {
7271         return seq_puts_memcg_tunable(m,
7272                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7273 }
7274
7275 static ssize_t swap_high_write(struct kernfs_open_file *of,
7276                                char *buf, size_t nbytes, loff_t off)
7277 {
7278         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7279         unsigned long high;
7280         int err;
7281
7282         buf = strstrip(buf);
7283         err = page_counter_memparse(buf, "max", &high);
7284         if (err)
7285                 return err;
7286
7287         page_counter_set_high(&memcg->swap, high);
7288
7289         return nbytes;
7290 }
7291
7292 static int swap_max_show(struct seq_file *m, void *v)
7293 {
7294         return seq_puts_memcg_tunable(m,
7295                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7296 }
7297
7298 static ssize_t swap_max_write(struct kernfs_open_file *of,
7299                               char *buf, size_t nbytes, loff_t off)
7300 {
7301         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7302         unsigned long max;
7303         int err;
7304
7305         buf = strstrip(buf);
7306         err = page_counter_memparse(buf, "max", &max);
7307         if (err)
7308                 return err;
7309
7310         xchg(&memcg->swap.max, max);
7311
7312         return nbytes;
7313 }
7314
7315 static int swap_events_show(struct seq_file *m, void *v)
7316 {
7317         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7318
7319         seq_printf(m, "high %lu\n",
7320                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7321         seq_printf(m, "max %lu\n",
7322                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7323         seq_printf(m, "fail %lu\n",
7324                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7325
7326         return 0;
7327 }
7328
7329 static struct cftype swap_files[] = {
7330         {
7331                 .name = "swap.current",
7332                 .flags = CFTYPE_NOT_ON_ROOT,
7333                 .read_u64 = swap_current_read,
7334         },
7335         {
7336                 .name = "swap.high",
7337                 .flags = CFTYPE_NOT_ON_ROOT,
7338                 .seq_show = swap_high_show,
7339                 .write = swap_high_write,
7340         },
7341         {
7342                 .name = "swap.max",
7343                 .flags = CFTYPE_NOT_ON_ROOT,
7344                 .seq_show = swap_max_show,
7345                 .write = swap_max_write,
7346         },
7347         {
7348                 .name = "swap.events",
7349                 .flags = CFTYPE_NOT_ON_ROOT,
7350                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7351                 .seq_show = swap_events_show,
7352         },
7353         { }     /* terminate */
7354 };
7355
7356 static struct cftype memsw_files[] = {
7357         {
7358                 .name = "memsw.usage_in_bytes",
7359                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7360                 .read_u64 = mem_cgroup_read_u64,
7361         },
7362         {
7363                 .name = "memsw.max_usage_in_bytes",
7364                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7365                 .write = mem_cgroup_reset,
7366                 .read_u64 = mem_cgroup_read_u64,
7367         },
7368         {
7369                 .name = "memsw.limit_in_bytes",
7370                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7371                 .write = mem_cgroup_write,
7372                 .read_u64 = mem_cgroup_read_u64,
7373         },
7374         {
7375                 .name = "memsw.failcnt",
7376                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7377                 .write = mem_cgroup_reset,
7378                 .read_u64 = mem_cgroup_read_u64,
7379         },
7380         { },    /* terminate */
7381 };
7382
7383 /*
7384  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7385  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7386  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7387  * boot parameter. This may result in premature OOPS inside
7388  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7389  */
7390 static int __init mem_cgroup_swap_init(void)
7391 {
7392         /* No memory control -> no swap control */
7393         if (mem_cgroup_disabled())
7394                 cgroup_memory_noswap = true;
7395
7396         if (cgroup_memory_noswap)
7397                 return 0;
7398
7399         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7400         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7401
7402         return 0;
7403 }
7404 core_initcall(mem_cgroup_swap_init);
7405
7406 #endif /* CONFIG_MEMCG_SWAP */