mm: memcontrol: consolidate lruvec stat flushing
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
91 #else
92 #define cgroup_memory_noswap            1
93 #endif
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112
113 struct mem_cgroup_tree_per_node {
114         struct rb_root rb_root;
115         struct rb_node *rb_rightmost;
116         spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127         struct list_head list;
128         struct eventfd_ctx *eventfd;
129 };
130
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135         /*
136          * memcg which the event belongs to.
137          */
138         struct mem_cgroup *memcg;
139         /*
140          * eventfd to signal userspace about the event.
141          */
142         struct eventfd_ctx *eventfd;
143         /*
144          * Each of these stored in a list by the cgroup.
145          */
146         struct list_head list;
147         /*
148          * register_event() callback will be used to add new userspace
149          * waiter for changes related to this event.  Use eventfd_signal()
150          * on eventfd to send notification to userspace.
151          */
152         int (*register_event)(struct mem_cgroup *memcg,
153                               struct eventfd_ctx *eventfd, const char *args);
154         /*
155          * unregister_event() callback will be called when userspace closes
156          * the eventfd or on cgroup removing.  This callback must be set,
157          * if you want provide notification functionality.
158          */
159         void (*unregister_event)(struct mem_cgroup *memcg,
160                                  struct eventfd_ctx *eventfd);
161         /*
162          * All fields below needed to unregister event when
163          * userspace closes eventfd.
164          */
165         poll_table pt;
166         wait_queue_head_t *wqh;
167         wait_queue_entry_t wait;
168         struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON       0x1U
179 #define MOVE_FILE       0x2U
180 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184         spinlock_t        lock; /* for from, to */
185         struct mm_struct  *mm;
186         struct mem_cgroup *from;
187         struct mem_cgroup *to;
188         unsigned long flags;
189         unsigned long precharge;
190         unsigned long moved_charge;
191         unsigned long moved_swap;
192         struct task_struct *moving_task;        /* a task moving charges */
193         wait_queue_head_t waitq;                /* a waitq for other context */
194 } mc = {
195         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208         _MEM,
209         _MEMSWAP,
210         _OOM_TYPE,
211         _KMEM,
212         _TCP,
213 };
214
215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
218 /* Used for OOM nofiier */
219 #define OOM_CONTROL             (0)
220
221 /*
222  * Iteration constructs for visiting all cgroups (under a tree).  If
223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
224  * be used for reference counting.
225  */
226 #define for_each_mem_cgroup_tree(iter, root)            \
227         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
228              iter != NULL;                              \
229              iter = mem_cgroup_iter(root, iter, NULL))
230
231 #define for_each_mem_cgroup(iter)                       \
232         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
233              iter != NULL;                              \
234              iter = mem_cgroup_iter(NULL, iter, NULL))
235
236 static inline bool should_force_charge(void)
237 {
238         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239                 (current->flags & PF_EXITING);
240 }
241
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245         if (!memcg)
246                 memcg = root_mem_cgroup;
247         return &memcg->vmpressure;
248 }
249
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
257
258 static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
259                                unsigned int nr_pages);
260 static void __memcg_kmem_uncharge(struct mem_cgroup *memcg,
261                                   unsigned int nr_pages);
262
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266         struct mem_cgroup *memcg;
267         unsigned int nr_bytes;
268         unsigned int nr_pages;
269         unsigned long flags;
270
271         /*
272          * At this point all allocated objects are freed, and
273          * objcg->nr_charged_bytes can't have an arbitrary byte value.
274          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
275          *
276          * The following sequence can lead to it:
277          * 1) CPU0: objcg == stock->cached_objcg
278          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
279          *          PAGE_SIZE bytes are charged
280          * 3) CPU1: a process from another memcg is allocating something,
281          *          the stock if flushed,
282          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
283          * 5) CPU0: we do release this object,
284          *          92 bytes are added to stock->nr_bytes
285          * 6) CPU0: stock is flushed,
286          *          92 bytes are added to objcg->nr_charged_bytes
287          *
288          * In the result, nr_charged_bytes == PAGE_SIZE.
289          * This page will be uncharged in obj_cgroup_release().
290          */
291         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
292         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
293         nr_pages = nr_bytes >> PAGE_SHIFT;
294
295         spin_lock_irqsave(&css_set_lock, flags);
296         memcg = obj_cgroup_memcg(objcg);
297         if (nr_pages)
298                 __memcg_kmem_uncharge(memcg, nr_pages);
299         list_del(&objcg->list);
300         mem_cgroup_put(memcg);
301         spin_unlock_irqrestore(&css_set_lock, flags);
302
303         percpu_ref_exit(ref);
304         kfree_rcu(objcg, rcu);
305 }
306
307 static struct obj_cgroup *obj_cgroup_alloc(void)
308 {
309         struct obj_cgroup *objcg;
310         int ret;
311
312         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
313         if (!objcg)
314                 return NULL;
315
316         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
317                               GFP_KERNEL);
318         if (ret) {
319                 kfree(objcg);
320                 return NULL;
321         }
322         INIT_LIST_HEAD(&objcg->list);
323         return objcg;
324 }
325
326 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
327                                   struct mem_cgroup *parent)
328 {
329         struct obj_cgroup *objcg, *iter;
330
331         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
332
333         spin_lock_irq(&css_set_lock);
334
335         /* Move active objcg to the parent's list */
336         xchg(&objcg->memcg, parent);
337         css_get(&parent->css);
338         list_add(&objcg->list, &parent->objcg_list);
339
340         /* Move already reparented objcgs to the parent's list */
341         list_for_each_entry(iter, &memcg->objcg_list, list) {
342                 css_get(&parent->css);
343                 xchg(&iter->memcg, parent);
344                 css_put(&memcg->css);
345         }
346         list_splice(&memcg->objcg_list, &parent->objcg_list);
347
348         spin_unlock_irq(&css_set_lock);
349
350         percpu_ref_kill(&objcg->refcnt);
351 }
352
353 /*
354  * This will be used as a shrinker list's index.
355  * The main reason for not using cgroup id for this:
356  *  this works better in sparse environments, where we have a lot of memcgs,
357  *  but only a few kmem-limited. Or also, if we have, for instance, 200
358  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
359  *  200 entry array for that.
360  *
361  * The current size of the caches array is stored in memcg_nr_cache_ids. It
362  * will double each time we have to increase it.
363  */
364 static DEFINE_IDA(memcg_cache_ida);
365 int memcg_nr_cache_ids;
366
367 /* Protects memcg_nr_cache_ids */
368 static DECLARE_RWSEM(memcg_cache_ids_sem);
369
370 void memcg_get_cache_ids(void)
371 {
372         down_read(&memcg_cache_ids_sem);
373 }
374
375 void memcg_put_cache_ids(void)
376 {
377         up_read(&memcg_cache_ids_sem);
378 }
379
380 /*
381  * MIN_SIZE is different than 1, because we would like to avoid going through
382  * the alloc/free process all the time. In a small machine, 4 kmem-limited
383  * cgroups is a reasonable guess. In the future, it could be a parameter or
384  * tunable, but that is strictly not necessary.
385  *
386  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
387  * this constant directly from cgroup, but it is understandable that this is
388  * better kept as an internal representation in cgroup.c. In any case, the
389  * cgrp_id space is not getting any smaller, and we don't have to necessarily
390  * increase ours as well if it increases.
391  */
392 #define MEMCG_CACHES_MIN_SIZE 4
393 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
394
395 /*
396  * A lot of the calls to the cache allocation functions are expected to be
397  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
398  * conditional to this static branch, we'll have to allow modules that does
399  * kmem_cache_alloc and the such to see this symbol as well
400  */
401 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
402 EXPORT_SYMBOL(memcg_kmem_enabled_key);
403 #endif
404
405 static int memcg_shrinker_map_size;
406 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
407
408 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
409 {
410         kvfree(container_of(head, struct memcg_shrinker_map, rcu));
411 }
412
413 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
414                                          int size, int old_size)
415 {
416         struct memcg_shrinker_map *new, *old;
417         struct mem_cgroup_per_node *pn;
418         int nid;
419
420         lockdep_assert_held(&memcg_shrinker_map_mutex);
421
422         for_each_node(nid) {
423                 pn = memcg->nodeinfo[nid];
424                 old = rcu_dereference_protected(pn->shrinker_map, true);
425                 /* Not yet online memcg */
426                 if (!old)
427                         return 0;
428
429                 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
430                 if (!new)
431                         return -ENOMEM;
432
433                 /* Set all old bits, clear all new bits */
434                 memset(new->map, (int)0xff, old_size);
435                 memset((void *)new->map + old_size, 0, size - old_size);
436
437                 rcu_assign_pointer(pn->shrinker_map, new);
438                 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
439         }
440
441         return 0;
442 }
443
444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
445 {
446         struct mem_cgroup_per_node *pn;
447         struct memcg_shrinker_map *map;
448         int nid;
449
450         if (mem_cgroup_is_root(memcg))
451                 return;
452
453         for_each_node(nid) {
454                 pn = memcg->nodeinfo[nid];
455                 map = rcu_dereference_protected(pn->shrinker_map, true);
456                 kvfree(map);
457                 rcu_assign_pointer(pn->shrinker_map, NULL);
458         }
459 }
460
461 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
462 {
463         struct memcg_shrinker_map *map;
464         int nid, size, ret = 0;
465
466         if (mem_cgroup_is_root(memcg))
467                 return 0;
468
469         mutex_lock(&memcg_shrinker_map_mutex);
470         size = memcg_shrinker_map_size;
471         for_each_node(nid) {
472                 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
473                 if (!map) {
474                         memcg_free_shrinker_maps(memcg);
475                         ret = -ENOMEM;
476                         break;
477                 }
478                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
479         }
480         mutex_unlock(&memcg_shrinker_map_mutex);
481
482         return ret;
483 }
484
485 int memcg_expand_shrinker_maps(int new_id)
486 {
487         int size, old_size, ret = 0;
488         struct mem_cgroup *memcg;
489
490         size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
491         old_size = memcg_shrinker_map_size;
492         if (size <= old_size)
493                 return 0;
494
495         mutex_lock(&memcg_shrinker_map_mutex);
496         if (!root_mem_cgroup)
497                 goto unlock;
498
499         for_each_mem_cgroup(memcg) {
500                 if (mem_cgroup_is_root(memcg))
501                         continue;
502                 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
503                 if (ret) {
504                         mem_cgroup_iter_break(NULL, memcg);
505                         goto unlock;
506                 }
507         }
508 unlock:
509         if (!ret)
510                 memcg_shrinker_map_size = size;
511         mutex_unlock(&memcg_shrinker_map_mutex);
512         return ret;
513 }
514
515 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
516 {
517         if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
518                 struct memcg_shrinker_map *map;
519
520                 rcu_read_lock();
521                 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
522                 /* Pairs with smp mb in shrink_slab() */
523                 smp_mb__before_atomic();
524                 set_bit(shrinker_id, map->map);
525                 rcu_read_unlock();
526         }
527 }
528
529 /**
530  * mem_cgroup_css_from_page - css of the memcg associated with a page
531  * @page: page of interest
532  *
533  * If memcg is bound to the default hierarchy, css of the memcg associated
534  * with @page is returned.  The returned css remains associated with @page
535  * until it is released.
536  *
537  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
538  * is returned.
539  */
540 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
541 {
542         struct mem_cgroup *memcg;
543
544         memcg = page_memcg(page);
545
546         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
547                 memcg = root_mem_cgroup;
548
549         return &memcg->css;
550 }
551
552 /**
553  * page_cgroup_ino - return inode number of the memcg a page is charged to
554  * @page: the page
555  *
556  * Look up the closest online ancestor of the memory cgroup @page is charged to
557  * and return its inode number or 0 if @page is not charged to any cgroup. It
558  * is safe to call this function without holding a reference to @page.
559  *
560  * Note, this function is inherently racy, because there is nothing to prevent
561  * the cgroup inode from getting torn down and potentially reallocated a moment
562  * after page_cgroup_ino() returns, so it only should be used by callers that
563  * do not care (such as procfs interfaces).
564  */
565 ino_t page_cgroup_ino(struct page *page)
566 {
567         struct mem_cgroup *memcg;
568         unsigned long ino = 0;
569
570         rcu_read_lock();
571         memcg = page_memcg_check(page);
572
573         while (memcg && !(memcg->css.flags & CSS_ONLINE))
574                 memcg = parent_mem_cgroup(memcg);
575         if (memcg)
576                 ino = cgroup_ino(memcg->css.cgroup);
577         rcu_read_unlock();
578         return ino;
579 }
580
581 static struct mem_cgroup_per_node *
582 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
583 {
584         int nid = page_to_nid(page);
585
586         return memcg->nodeinfo[nid];
587 }
588
589 static struct mem_cgroup_tree_per_node *
590 soft_limit_tree_node(int nid)
591 {
592         return soft_limit_tree.rb_tree_per_node[nid];
593 }
594
595 static struct mem_cgroup_tree_per_node *
596 soft_limit_tree_from_page(struct page *page)
597 {
598         int nid = page_to_nid(page);
599
600         return soft_limit_tree.rb_tree_per_node[nid];
601 }
602
603 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
604                                          struct mem_cgroup_tree_per_node *mctz,
605                                          unsigned long new_usage_in_excess)
606 {
607         struct rb_node **p = &mctz->rb_root.rb_node;
608         struct rb_node *parent = NULL;
609         struct mem_cgroup_per_node *mz_node;
610         bool rightmost = true;
611
612         if (mz->on_tree)
613                 return;
614
615         mz->usage_in_excess = new_usage_in_excess;
616         if (!mz->usage_in_excess)
617                 return;
618         while (*p) {
619                 parent = *p;
620                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
621                                         tree_node);
622                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
623                         p = &(*p)->rb_left;
624                         rightmost = false;
625                 } else {
626                         p = &(*p)->rb_right;
627                 }
628         }
629
630         if (rightmost)
631                 mctz->rb_rightmost = &mz->tree_node;
632
633         rb_link_node(&mz->tree_node, parent, p);
634         rb_insert_color(&mz->tree_node, &mctz->rb_root);
635         mz->on_tree = true;
636 }
637
638 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
639                                          struct mem_cgroup_tree_per_node *mctz)
640 {
641         if (!mz->on_tree)
642                 return;
643
644         if (&mz->tree_node == mctz->rb_rightmost)
645                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
646
647         rb_erase(&mz->tree_node, &mctz->rb_root);
648         mz->on_tree = false;
649 }
650
651 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
652                                        struct mem_cgroup_tree_per_node *mctz)
653 {
654         unsigned long flags;
655
656         spin_lock_irqsave(&mctz->lock, flags);
657         __mem_cgroup_remove_exceeded(mz, mctz);
658         spin_unlock_irqrestore(&mctz->lock, flags);
659 }
660
661 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
662 {
663         unsigned long nr_pages = page_counter_read(&memcg->memory);
664         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
665         unsigned long excess = 0;
666
667         if (nr_pages > soft_limit)
668                 excess = nr_pages - soft_limit;
669
670         return excess;
671 }
672
673 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
674 {
675         unsigned long excess;
676         struct mem_cgroup_per_node *mz;
677         struct mem_cgroup_tree_per_node *mctz;
678
679         mctz = soft_limit_tree_from_page(page);
680         if (!mctz)
681                 return;
682         /*
683          * Necessary to update all ancestors when hierarchy is used.
684          * because their event counter is not touched.
685          */
686         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
687                 mz = mem_cgroup_page_nodeinfo(memcg, page);
688                 excess = soft_limit_excess(memcg);
689                 /*
690                  * We have to update the tree if mz is on RB-tree or
691                  * mem is over its softlimit.
692                  */
693                 if (excess || mz->on_tree) {
694                         unsigned long flags;
695
696                         spin_lock_irqsave(&mctz->lock, flags);
697                         /* if on-tree, remove it */
698                         if (mz->on_tree)
699                                 __mem_cgroup_remove_exceeded(mz, mctz);
700                         /*
701                          * Insert again. mz->usage_in_excess will be updated.
702                          * If excess is 0, no tree ops.
703                          */
704                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
705                         spin_unlock_irqrestore(&mctz->lock, flags);
706                 }
707         }
708 }
709
710 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
711 {
712         struct mem_cgroup_tree_per_node *mctz;
713         struct mem_cgroup_per_node *mz;
714         int nid;
715
716         for_each_node(nid) {
717                 mz = memcg->nodeinfo[nid];
718                 mctz = soft_limit_tree_node(nid);
719                 if (mctz)
720                         mem_cgroup_remove_exceeded(mz, mctz);
721         }
722 }
723
724 static struct mem_cgroup_per_node *
725 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
726 {
727         struct mem_cgroup_per_node *mz;
728
729 retry:
730         mz = NULL;
731         if (!mctz->rb_rightmost)
732                 goto done;              /* Nothing to reclaim from */
733
734         mz = rb_entry(mctz->rb_rightmost,
735                       struct mem_cgroup_per_node, tree_node);
736         /*
737          * Remove the node now but someone else can add it back,
738          * we will to add it back at the end of reclaim to its correct
739          * position in the tree.
740          */
741         __mem_cgroup_remove_exceeded(mz, mctz);
742         if (!soft_limit_excess(mz->memcg) ||
743             !css_tryget(&mz->memcg->css))
744                 goto retry;
745 done:
746         return mz;
747 }
748
749 static struct mem_cgroup_per_node *
750 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
751 {
752         struct mem_cgroup_per_node *mz;
753
754         spin_lock_irq(&mctz->lock);
755         mz = __mem_cgroup_largest_soft_limit_node(mctz);
756         spin_unlock_irq(&mctz->lock);
757         return mz;
758 }
759
760 /**
761  * __mod_memcg_state - update cgroup memory statistics
762  * @memcg: the memory cgroup
763  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
764  * @val: delta to add to the counter, can be negative
765  */
766 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
767 {
768         if (mem_cgroup_disabled())
769                 return;
770
771         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
772         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
773 }
774
775 /* idx can be of type enum memcg_stat_item or node_stat_item. */
776 static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
777 {
778         long x = READ_ONCE(memcg->vmstats.state[idx]);
779 #ifdef CONFIG_SMP
780         if (x < 0)
781                 x = 0;
782 #endif
783         return x;
784 }
785
786 /* idx can be of type enum memcg_stat_item or node_stat_item. */
787 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
788 {
789         long x = 0;
790         int cpu;
791
792         for_each_possible_cpu(cpu)
793                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
794 #ifdef CONFIG_SMP
795         if (x < 0)
796                 x = 0;
797 #endif
798         return x;
799 }
800
801 static struct mem_cgroup_per_node *
802 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
803 {
804         struct mem_cgroup *parent;
805
806         parent = parent_mem_cgroup(pn->memcg);
807         if (!parent)
808                 return NULL;
809         return parent->nodeinfo[nid];
810 }
811
812 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
813                               int val)
814 {
815         struct mem_cgroup_per_node *pn;
816         struct mem_cgroup *memcg;
817         long x, threshold = MEMCG_CHARGE_BATCH;
818
819         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
820         memcg = pn->memcg;
821
822         /* Update memcg */
823         __mod_memcg_state(memcg, idx, val);
824
825         /* Update lruvec */
826         __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
827
828         if (vmstat_item_in_bytes(idx))
829                 threshold <<= PAGE_SHIFT;
830
831         x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
832         if (unlikely(abs(x) > threshold)) {
833                 pg_data_t *pgdat = lruvec_pgdat(lruvec);
834                 struct mem_cgroup_per_node *pi;
835
836                 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
837                         atomic_long_add(x, &pi->lruvec_stat[idx]);
838                 x = 0;
839         }
840         __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
841 }
842
843 /**
844  * __mod_lruvec_state - update lruvec memory statistics
845  * @lruvec: the lruvec
846  * @idx: the stat item
847  * @val: delta to add to the counter, can be negative
848  *
849  * The lruvec is the intersection of the NUMA node and a cgroup. This
850  * function updates the all three counters that are affected by a
851  * change of state at this level: per-node, per-cgroup, per-lruvec.
852  */
853 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
854                         int val)
855 {
856         /* Update node */
857         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
858
859         /* Update memcg and lruvec */
860         if (!mem_cgroup_disabled())
861                 __mod_memcg_lruvec_state(lruvec, idx, val);
862 }
863
864 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
865                              int val)
866 {
867         struct page *head = compound_head(page); /* rmap on tail pages */
868         struct mem_cgroup *memcg = page_memcg(head);
869         pg_data_t *pgdat = page_pgdat(page);
870         struct lruvec *lruvec;
871
872         /* Untracked pages have no memcg, no lruvec. Update only the node */
873         if (!memcg) {
874                 __mod_node_page_state(pgdat, idx, val);
875                 return;
876         }
877
878         lruvec = mem_cgroup_lruvec(memcg, pgdat);
879         __mod_lruvec_state(lruvec, idx, val);
880 }
881 EXPORT_SYMBOL(__mod_lruvec_page_state);
882
883 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
884 {
885         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
886         struct mem_cgroup *memcg;
887         struct lruvec *lruvec;
888
889         rcu_read_lock();
890         memcg = mem_cgroup_from_obj(p);
891
892         /*
893          * Untracked pages have no memcg, no lruvec. Update only the
894          * node. If we reparent the slab objects to the root memcg,
895          * when we free the slab object, we need to update the per-memcg
896          * vmstats to keep it correct for the root memcg.
897          */
898         if (!memcg) {
899                 __mod_node_page_state(pgdat, idx, val);
900         } else {
901                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
902                 __mod_lruvec_state(lruvec, idx, val);
903         }
904         rcu_read_unlock();
905 }
906
907 /**
908  * __count_memcg_events - account VM events in a cgroup
909  * @memcg: the memory cgroup
910  * @idx: the event item
911  * @count: the number of events that occured
912  */
913 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
914                           unsigned long count)
915 {
916         if (mem_cgroup_disabled())
917                 return;
918
919         __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
920         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
921 }
922
923 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
924 {
925         return READ_ONCE(memcg->vmstats.events[event]);
926 }
927
928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930         long x = 0;
931         int cpu;
932
933         for_each_possible_cpu(cpu)
934                 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
935         return x;
936 }
937
938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939                                          struct page *page,
940                                          int nr_pages)
941 {
942         /* pagein of a big page is an event. So, ignore page size */
943         if (nr_pages > 0)
944                 __count_memcg_events(memcg, PGPGIN, 1);
945         else {
946                 __count_memcg_events(memcg, PGPGOUT, 1);
947                 nr_pages = -nr_pages; /* for event */
948         }
949
950         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
951 }
952
953 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954                                        enum mem_cgroup_events_target target)
955 {
956         unsigned long val, next;
957
958         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
959         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
960         /* from time_after() in jiffies.h */
961         if ((long)(next - val) < 0) {
962                 switch (target) {
963                 case MEM_CGROUP_TARGET_THRESH:
964                         next = val + THRESHOLDS_EVENTS_TARGET;
965                         break;
966                 case MEM_CGROUP_TARGET_SOFTLIMIT:
967                         next = val + SOFTLIMIT_EVENTS_TARGET;
968                         break;
969                 default:
970                         break;
971                 }
972                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
973                 return true;
974         }
975         return false;
976 }
977
978 /*
979  * Check events in order.
980  *
981  */
982 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
983 {
984         /* threshold event is triggered in finer grain than soft limit */
985         if (unlikely(mem_cgroup_event_ratelimit(memcg,
986                                                 MEM_CGROUP_TARGET_THRESH))) {
987                 bool do_softlimit;
988
989                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
990                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
991                 mem_cgroup_threshold(memcg);
992                 if (unlikely(do_softlimit))
993                         mem_cgroup_update_tree(memcg, page);
994         }
995 }
996
997 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
998 {
999         /*
1000          * mm_update_next_owner() may clear mm->owner to NULL
1001          * if it races with swapoff, page migration, etc.
1002          * So this can be called with p == NULL.
1003          */
1004         if (unlikely(!p))
1005                 return NULL;
1006
1007         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1008 }
1009 EXPORT_SYMBOL(mem_cgroup_from_task);
1010
1011 /**
1012  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1013  * @mm: mm from which memcg should be extracted. It can be NULL.
1014  *
1015  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1016  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1017  * returned.
1018  */
1019 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1020 {
1021         struct mem_cgroup *memcg;
1022
1023         if (mem_cgroup_disabled())
1024                 return NULL;
1025
1026         rcu_read_lock();
1027         do {
1028                 /*
1029                  * Page cache insertions can happen withou an
1030                  * actual mm context, e.g. during disk probing
1031                  * on boot, loopback IO, acct() writes etc.
1032                  */
1033                 if (unlikely(!mm))
1034                         memcg = root_mem_cgroup;
1035                 else {
1036                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037                         if (unlikely(!memcg))
1038                                 memcg = root_mem_cgroup;
1039                 }
1040         } while (!css_tryget(&memcg->css));
1041         rcu_read_unlock();
1042         return memcg;
1043 }
1044 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1045
1046 static __always_inline struct mem_cgroup *active_memcg(void)
1047 {
1048         if (in_interrupt())
1049                 return this_cpu_read(int_active_memcg);
1050         else
1051                 return current->active_memcg;
1052 }
1053
1054 static __always_inline struct mem_cgroup *get_active_memcg(void)
1055 {
1056         struct mem_cgroup *memcg;
1057
1058         rcu_read_lock();
1059         memcg = active_memcg();
1060         /* remote memcg must hold a ref. */
1061         if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1062                 memcg = root_mem_cgroup;
1063         rcu_read_unlock();
1064
1065         return memcg;
1066 }
1067
1068 static __always_inline bool memcg_kmem_bypass(void)
1069 {
1070         /* Allow remote memcg charging from any context. */
1071         if (unlikely(active_memcg()))
1072                 return false;
1073
1074         /* Memcg to charge can't be determined. */
1075         if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1076                 return true;
1077
1078         return false;
1079 }
1080
1081 /**
1082  * If active memcg is set, do not fallback to current->mm->memcg.
1083  */
1084 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1085 {
1086         if (memcg_kmem_bypass())
1087                 return NULL;
1088
1089         if (unlikely(active_memcg()))
1090                 return get_active_memcg();
1091
1092         return get_mem_cgroup_from_mm(current->mm);
1093 }
1094
1095 /**
1096  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1097  * @root: hierarchy root
1098  * @prev: previously returned memcg, NULL on first invocation
1099  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1100  *
1101  * Returns references to children of the hierarchy below @root, or
1102  * @root itself, or %NULL after a full round-trip.
1103  *
1104  * Caller must pass the return value in @prev on subsequent
1105  * invocations for reference counting, or use mem_cgroup_iter_break()
1106  * to cancel a hierarchy walk before the round-trip is complete.
1107  *
1108  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1109  * in the hierarchy among all concurrent reclaimers operating on the
1110  * same node.
1111  */
1112 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1113                                    struct mem_cgroup *prev,
1114                                    struct mem_cgroup_reclaim_cookie *reclaim)
1115 {
1116         struct mem_cgroup_reclaim_iter *iter;
1117         struct cgroup_subsys_state *css = NULL;
1118         struct mem_cgroup *memcg = NULL;
1119         struct mem_cgroup *pos = NULL;
1120
1121         if (mem_cgroup_disabled())
1122                 return NULL;
1123
1124         if (!root)
1125                 root = root_mem_cgroup;
1126
1127         if (prev && !reclaim)
1128                 pos = prev;
1129
1130         rcu_read_lock();
1131
1132         if (reclaim) {
1133                 struct mem_cgroup_per_node *mz;
1134
1135                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1136                 iter = &mz->iter;
1137
1138                 if (prev && reclaim->generation != iter->generation)
1139                         goto out_unlock;
1140
1141                 while (1) {
1142                         pos = READ_ONCE(iter->position);
1143                         if (!pos || css_tryget(&pos->css))
1144                                 break;
1145                         /*
1146                          * css reference reached zero, so iter->position will
1147                          * be cleared by ->css_released. However, we should not
1148                          * rely on this happening soon, because ->css_released
1149                          * is called from a work queue, and by busy-waiting we
1150                          * might block it. So we clear iter->position right
1151                          * away.
1152                          */
1153                         (void)cmpxchg(&iter->position, pos, NULL);
1154                 }
1155         }
1156
1157         if (pos)
1158                 css = &pos->css;
1159
1160         for (;;) {
1161                 css = css_next_descendant_pre(css, &root->css);
1162                 if (!css) {
1163                         /*
1164                          * Reclaimers share the hierarchy walk, and a
1165                          * new one might jump in right at the end of
1166                          * the hierarchy - make sure they see at least
1167                          * one group and restart from the beginning.
1168                          */
1169                         if (!prev)
1170                                 continue;
1171                         break;
1172                 }
1173
1174                 /*
1175                  * Verify the css and acquire a reference.  The root
1176                  * is provided by the caller, so we know it's alive
1177                  * and kicking, and don't take an extra reference.
1178                  */
1179                 memcg = mem_cgroup_from_css(css);
1180
1181                 if (css == &root->css)
1182                         break;
1183
1184                 if (css_tryget(css))
1185                         break;
1186
1187                 memcg = NULL;
1188         }
1189
1190         if (reclaim) {
1191                 /*
1192                  * The position could have already been updated by a competing
1193                  * thread, so check that the value hasn't changed since we read
1194                  * it to avoid reclaiming from the same cgroup twice.
1195                  */
1196                 (void)cmpxchg(&iter->position, pos, memcg);
1197
1198                 if (pos)
1199                         css_put(&pos->css);
1200
1201                 if (!memcg)
1202                         iter->generation++;
1203                 else if (!prev)
1204                         reclaim->generation = iter->generation;
1205         }
1206
1207 out_unlock:
1208         rcu_read_unlock();
1209         if (prev && prev != root)
1210                 css_put(&prev->css);
1211
1212         return memcg;
1213 }
1214
1215 /**
1216  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1217  * @root: hierarchy root
1218  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1219  */
1220 void mem_cgroup_iter_break(struct mem_cgroup *root,
1221                            struct mem_cgroup *prev)
1222 {
1223         if (!root)
1224                 root = root_mem_cgroup;
1225         if (prev && prev != root)
1226                 css_put(&prev->css);
1227 }
1228
1229 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1230                                         struct mem_cgroup *dead_memcg)
1231 {
1232         struct mem_cgroup_reclaim_iter *iter;
1233         struct mem_cgroup_per_node *mz;
1234         int nid;
1235
1236         for_each_node(nid) {
1237                 mz = from->nodeinfo[nid];
1238                 iter = &mz->iter;
1239                 cmpxchg(&iter->position, dead_memcg, NULL);
1240         }
1241 }
1242
1243 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1244 {
1245         struct mem_cgroup *memcg = dead_memcg;
1246         struct mem_cgroup *last;
1247
1248         do {
1249                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1250                 last = memcg;
1251         } while ((memcg = parent_mem_cgroup(memcg)));
1252
1253         /*
1254          * When cgruop1 non-hierarchy mode is used,
1255          * parent_mem_cgroup() does not walk all the way up to the
1256          * cgroup root (root_mem_cgroup). So we have to handle
1257          * dead_memcg from cgroup root separately.
1258          */
1259         if (last != root_mem_cgroup)
1260                 __invalidate_reclaim_iterators(root_mem_cgroup,
1261                                                 dead_memcg);
1262 }
1263
1264 /**
1265  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1266  * @memcg: hierarchy root
1267  * @fn: function to call for each task
1268  * @arg: argument passed to @fn
1269  *
1270  * This function iterates over tasks attached to @memcg or to any of its
1271  * descendants and calls @fn for each task. If @fn returns a non-zero
1272  * value, the function breaks the iteration loop and returns the value.
1273  * Otherwise, it will iterate over all tasks and return 0.
1274  *
1275  * This function must not be called for the root memory cgroup.
1276  */
1277 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1278                           int (*fn)(struct task_struct *, void *), void *arg)
1279 {
1280         struct mem_cgroup *iter;
1281         int ret = 0;
1282
1283         BUG_ON(memcg == root_mem_cgroup);
1284
1285         for_each_mem_cgroup_tree(iter, memcg) {
1286                 struct css_task_iter it;
1287                 struct task_struct *task;
1288
1289                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1290                 while (!ret && (task = css_task_iter_next(&it)))
1291                         ret = fn(task, arg);
1292                 css_task_iter_end(&it);
1293                 if (ret) {
1294                         mem_cgroup_iter_break(memcg, iter);
1295                         break;
1296                 }
1297         }
1298         return ret;
1299 }
1300
1301 #ifdef CONFIG_DEBUG_VM
1302 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1303 {
1304         struct mem_cgroup *memcg;
1305
1306         if (mem_cgroup_disabled())
1307                 return;
1308
1309         memcg = page_memcg(page);
1310
1311         if (!memcg)
1312                 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1313         else
1314                 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1315 }
1316 #endif
1317
1318 /**
1319  * lock_page_lruvec - lock and return lruvec for a given page.
1320  * @page: the page
1321  *
1322  * These functions are safe to use under any of the following conditions:
1323  * - page locked
1324  * - PageLRU cleared
1325  * - lock_page_memcg()
1326  * - page->_refcount is zero
1327  */
1328 struct lruvec *lock_page_lruvec(struct page *page)
1329 {
1330         struct lruvec *lruvec;
1331         struct pglist_data *pgdat = page_pgdat(page);
1332
1333         lruvec = mem_cgroup_page_lruvec(page, pgdat);
1334         spin_lock(&lruvec->lru_lock);
1335
1336         lruvec_memcg_debug(lruvec, page);
1337
1338         return lruvec;
1339 }
1340
1341 struct lruvec *lock_page_lruvec_irq(struct page *page)
1342 {
1343         struct lruvec *lruvec;
1344         struct pglist_data *pgdat = page_pgdat(page);
1345
1346         lruvec = mem_cgroup_page_lruvec(page, pgdat);
1347         spin_lock_irq(&lruvec->lru_lock);
1348
1349         lruvec_memcg_debug(lruvec, page);
1350
1351         return lruvec;
1352 }
1353
1354 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1355 {
1356         struct lruvec *lruvec;
1357         struct pglist_data *pgdat = page_pgdat(page);
1358
1359         lruvec = mem_cgroup_page_lruvec(page, pgdat);
1360         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1361
1362         lruvec_memcg_debug(lruvec, page);
1363
1364         return lruvec;
1365 }
1366
1367 /**
1368  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1369  * @lruvec: mem_cgroup per zone lru vector
1370  * @lru: index of lru list the page is sitting on
1371  * @zid: zone id of the accounted pages
1372  * @nr_pages: positive when adding or negative when removing
1373  *
1374  * This function must be called under lru_lock, just before a page is added
1375  * to or just after a page is removed from an lru list (that ordering being
1376  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1377  */
1378 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1379                                 int zid, int nr_pages)
1380 {
1381         struct mem_cgroup_per_node *mz;
1382         unsigned long *lru_size;
1383         long size;
1384
1385         if (mem_cgroup_disabled())
1386                 return;
1387
1388         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1389         lru_size = &mz->lru_zone_size[zid][lru];
1390
1391         if (nr_pages < 0)
1392                 *lru_size += nr_pages;
1393
1394         size = *lru_size;
1395         if (WARN_ONCE(size < 0,
1396                 "%s(%p, %d, %d): lru_size %ld\n",
1397                 __func__, lruvec, lru, nr_pages, size)) {
1398                 VM_BUG_ON(1);
1399                 *lru_size = 0;
1400         }
1401
1402         if (nr_pages > 0)
1403                 *lru_size += nr_pages;
1404 }
1405
1406 /**
1407  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1408  * @memcg: the memory cgroup
1409  *
1410  * Returns the maximum amount of memory @mem can be charged with, in
1411  * pages.
1412  */
1413 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1414 {
1415         unsigned long margin = 0;
1416         unsigned long count;
1417         unsigned long limit;
1418
1419         count = page_counter_read(&memcg->memory);
1420         limit = READ_ONCE(memcg->memory.max);
1421         if (count < limit)
1422                 margin = limit - count;
1423
1424         if (do_memsw_account()) {
1425                 count = page_counter_read(&memcg->memsw);
1426                 limit = READ_ONCE(memcg->memsw.max);
1427                 if (count < limit)
1428                         margin = min(margin, limit - count);
1429                 else
1430                         margin = 0;
1431         }
1432
1433         return margin;
1434 }
1435
1436 /*
1437  * A routine for checking "mem" is under move_account() or not.
1438  *
1439  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1440  * moving cgroups. This is for waiting at high-memory pressure
1441  * caused by "move".
1442  */
1443 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1444 {
1445         struct mem_cgroup *from;
1446         struct mem_cgroup *to;
1447         bool ret = false;
1448         /*
1449          * Unlike task_move routines, we access mc.to, mc.from not under
1450          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1451          */
1452         spin_lock(&mc.lock);
1453         from = mc.from;
1454         to = mc.to;
1455         if (!from)
1456                 goto unlock;
1457
1458         ret = mem_cgroup_is_descendant(from, memcg) ||
1459                 mem_cgroup_is_descendant(to, memcg);
1460 unlock:
1461         spin_unlock(&mc.lock);
1462         return ret;
1463 }
1464
1465 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1466 {
1467         if (mc.moving_task && current != mc.moving_task) {
1468                 if (mem_cgroup_under_move(memcg)) {
1469                         DEFINE_WAIT(wait);
1470                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1471                         /* moving charge context might have finished. */
1472                         if (mc.moving_task)
1473                                 schedule();
1474                         finish_wait(&mc.waitq, &wait);
1475                         return true;
1476                 }
1477         }
1478         return false;
1479 }
1480
1481 struct memory_stat {
1482         const char *name;
1483         unsigned int idx;
1484 };
1485
1486 static const struct memory_stat memory_stats[] = {
1487         { "anon",                       NR_ANON_MAPPED                  },
1488         { "file",                       NR_FILE_PAGES                   },
1489         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1490         { "pagetables",                 NR_PAGETABLE                    },
1491         { "percpu",                     MEMCG_PERCPU_B                  },
1492         { "sock",                       MEMCG_SOCK                      },
1493         { "shmem",                      NR_SHMEM                        },
1494         { "file_mapped",                NR_FILE_MAPPED                  },
1495         { "file_dirty",                 NR_FILE_DIRTY                   },
1496         { "file_writeback",             NR_WRITEBACK                    },
1497 #ifdef CONFIG_SWAP
1498         { "swapcached",                 NR_SWAPCACHE                    },
1499 #endif
1500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1501         { "anon_thp",                   NR_ANON_THPS                    },
1502         { "file_thp",                   NR_FILE_THPS                    },
1503         { "shmem_thp",                  NR_SHMEM_THPS                   },
1504 #endif
1505         { "inactive_anon",              NR_INACTIVE_ANON                },
1506         { "active_anon",                NR_ACTIVE_ANON                  },
1507         { "inactive_file",              NR_INACTIVE_FILE                },
1508         { "active_file",                NR_ACTIVE_FILE                  },
1509         { "unevictable",                NR_UNEVICTABLE                  },
1510         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1511         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1512
1513         /* The memory events */
1514         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1515         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1516         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1517         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1518         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1519         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1520         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1521 };
1522
1523 /* Translate stat items to the correct unit for memory.stat output */
1524 static int memcg_page_state_unit(int item)
1525 {
1526         switch (item) {
1527         case MEMCG_PERCPU_B:
1528         case NR_SLAB_RECLAIMABLE_B:
1529         case NR_SLAB_UNRECLAIMABLE_B:
1530         case WORKINGSET_REFAULT_ANON:
1531         case WORKINGSET_REFAULT_FILE:
1532         case WORKINGSET_ACTIVATE_ANON:
1533         case WORKINGSET_ACTIVATE_FILE:
1534         case WORKINGSET_RESTORE_ANON:
1535         case WORKINGSET_RESTORE_FILE:
1536         case WORKINGSET_NODERECLAIM:
1537                 return 1;
1538         case NR_KERNEL_STACK_KB:
1539                 return SZ_1K;
1540         default:
1541                 return PAGE_SIZE;
1542         }
1543 }
1544
1545 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1546                                                     int item)
1547 {
1548         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1549 }
1550
1551 static char *memory_stat_format(struct mem_cgroup *memcg)
1552 {
1553         struct seq_buf s;
1554         int i;
1555
1556         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1557         if (!s.buffer)
1558                 return NULL;
1559
1560         /*
1561          * Provide statistics on the state of the memory subsystem as
1562          * well as cumulative event counters that show past behavior.
1563          *
1564          * This list is ordered following a combination of these gradients:
1565          * 1) generic big picture -> specifics and details
1566          * 2) reflecting userspace activity -> reflecting kernel heuristics
1567          *
1568          * Current memory state:
1569          */
1570         cgroup_rstat_flush(memcg->css.cgroup);
1571
1572         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1573                 u64 size;
1574
1575                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1576                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1577
1578                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1579                         size += memcg_page_state_output(memcg,
1580                                                         NR_SLAB_RECLAIMABLE_B);
1581                         seq_buf_printf(&s, "slab %llu\n", size);
1582                 }
1583         }
1584
1585         /* Accumulated memory events */
1586
1587         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1588                        memcg_events(memcg, PGFAULT));
1589         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1590                        memcg_events(memcg, PGMAJFAULT));
1591         seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1592                        memcg_events(memcg, PGREFILL));
1593         seq_buf_printf(&s, "pgscan %lu\n",
1594                        memcg_events(memcg, PGSCAN_KSWAPD) +
1595                        memcg_events(memcg, PGSCAN_DIRECT));
1596         seq_buf_printf(&s, "pgsteal %lu\n",
1597                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1598                        memcg_events(memcg, PGSTEAL_DIRECT));
1599         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1600                        memcg_events(memcg, PGACTIVATE));
1601         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1602                        memcg_events(memcg, PGDEACTIVATE));
1603         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1604                        memcg_events(memcg, PGLAZYFREE));
1605         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1606                        memcg_events(memcg, PGLAZYFREED));
1607
1608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1609         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1610                        memcg_events(memcg, THP_FAULT_ALLOC));
1611         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1612                        memcg_events(memcg, THP_COLLAPSE_ALLOC));
1613 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1614
1615         /* The above should easily fit into one page */
1616         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1617
1618         return s.buffer;
1619 }
1620
1621 #define K(x) ((x) << (PAGE_SHIFT-10))
1622 /**
1623  * mem_cgroup_print_oom_context: Print OOM information relevant to
1624  * memory controller.
1625  * @memcg: The memory cgroup that went over limit
1626  * @p: Task that is going to be killed
1627  *
1628  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1629  * enabled
1630  */
1631 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1632 {
1633         rcu_read_lock();
1634
1635         if (memcg) {
1636                 pr_cont(",oom_memcg=");
1637                 pr_cont_cgroup_path(memcg->css.cgroup);
1638         } else
1639                 pr_cont(",global_oom");
1640         if (p) {
1641                 pr_cont(",task_memcg=");
1642                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1643         }
1644         rcu_read_unlock();
1645 }
1646
1647 /**
1648  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1649  * memory controller.
1650  * @memcg: The memory cgroup that went over limit
1651  */
1652 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1653 {
1654         char *buf;
1655
1656         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1657                 K((u64)page_counter_read(&memcg->memory)),
1658                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1659         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1660                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1661                         K((u64)page_counter_read(&memcg->swap)),
1662                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1663         else {
1664                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1665                         K((u64)page_counter_read(&memcg->memsw)),
1666                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1667                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1668                         K((u64)page_counter_read(&memcg->kmem)),
1669                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1670         }
1671
1672         pr_info("Memory cgroup stats for ");
1673         pr_cont_cgroup_path(memcg->css.cgroup);
1674         pr_cont(":");
1675         buf = memory_stat_format(memcg);
1676         if (!buf)
1677                 return;
1678         pr_info("%s", buf);
1679         kfree(buf);
1680 }
1681
1682 /*
1683  * Return the memory (and swap, if configured) limit for a memcg.
1684  */
1685 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1686 {
1687         unsigned long max = READ_ONCE(memcg->memory.max);
1688
1689         if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1690                 if (mem_cgroup_swappiness(memcg))
1691                         max += min(READ_ONCE(memcg->swap.max),
1692                                    (unsigned long)total_swap_pages);
1693         } else { /* v1 */
1694                 if (mem_cgroup_swappiness(memcg)) {
1695                         /* Calculate swap excess capacity from memsw limit */
1696                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1697
1698                         max += min(swap, (unsigned long)total_swap_pages);
1699                 }
1700         }
1701         return max;
1702 }
1703
1704 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1705 {
1706         return page_counter_read(&memcg->memory);
1707 }
1708
1709 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1710                                      int order)
1711 {
1712         struct oom_control oc = {
1713                 .zonelist = NULL,
1714                 .nodemask = NULL,
1715                 .memcg = memcg,
1716                 .gfp_mask = gfp_mask,
1717                 .order = order,
1718         };
1719         bool ret = true;
1720
1721         if (mutex_lock_killable(&oom_lock))
1722                 return true;
1723
1724         if (mem_cgroup_margin(memcg) >= (1 << order))
1725                 goto unlock;
1726
1727         /*
1728          * A few threads which were not waiting at mutex_lock_killable() can
1729          * fail to bail out. Therefore, check again after holding oom_lock.
1730          */
1731         ret = should_force_charge() || out_of_memory(&oc);
1732
1733 unlock:
1734         mutex_unlock(&oom_lock);
1735         return ret;
1736 }
1737
1738 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1739                                    pg_data_t *pgdat,
1740                                    gfp_t gfp_mask,
1741                                    unsigned long *total_scanned)
1742 {
1743         struct mem_cgroup *victim = NULL;
1744         int total = 0;
1745         int loop = 0;
1746         unsigned long excess;
1747         unsigned long nr_scanned;
1748         struct mem_cgroup_reclaim_cookie reclaim = {
1749                 .pgdat = pgdat,
1750         };
1751
1752         excess = soft_limit_excess(root_memcg);
1753
1754         while (1) {
1755                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1756                 if (!victim) {
1757                         loop++;
1758                         if (loop >= 2) {
1759                                 /*
1760                                  * If we have not been able to reclaim
1761                                  * anything, it might because there are
1762                                  * no reclaimable pages under this hierarchy
1763                                  */
1764                                 if (!total)
1765                                         break;
1766                                 /*
1767                                  * We want to do more targeted reclaim.
1768                                  * excess >> 2 is not to excessive so as to
1769                                  * reclaim too much, nor too less that we keep
1770                                  * coming back to reclaim from this cgroup
1771                                  */
1772                                 if (total >= (excess >> 2) ||
1773                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1774                                         break;
1775                         }
1776                         continue;
1777                 }
1778                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1779                                         pgdat, &nr_scanned);
1780                 *total_scanned += nr_scanned;
1781                 if (!soft_limit_excess(root_memcg))
1782                         break;
1783         }
1784         mem_cgroup_iter_break(root_memcg, victim);
1785         return total;
1786 }
1787
1788 #ifdef CONFIG_LOCKDEP
1789 static struct lockdep_map memcg_oom_lock_dep_map = {
1790         .name = "memcg_oom_lock",
1791 };
1792 #endif
1793
1794 static DEFINE_SPINLOCK(memcg_oom_lock);
1795
1796 /*
1797  * Check OOM-Killer is already running under our hierarchy.
1798  * If someone is running, return false.
1799  */
1800 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1801 {
1802         struct mem_cgroup *iter, *failed = NULL;
1803
1804         spin_lock(&memcg_oom_lock);
1805
1806         for_each_mem_cgroup_tree(iter, memcg) {
1807                 if (iter->oom_lock) {
1808                         /*
1809                          * this subtree of our hierarchy is already locked
1810                          * so we cannot give a lock.
1811                          */
1812                         failed = iter;
1813                         mem_cgroup_iter_break(memcg, iter);
1814                         break;
1815                 } else
1816                         iter->oom_lock = true;
1817         }
1818
1819         if (failed) {
1820                 /*
1821                  * OK, we failed to lock the whole subtree so we have
1822                  * to clean up what we set up to the failing subtree
1823                  */
1824                 for_each_mem_cgroup_tree(iter, memcg) {
1825                         if (iter == failed) {
1826                                 mem_cgroup_iter_break(memcg, iter);
1827                                 break;
1828                         }
1829                         iter->oom_lock = false;
1830                 }
1831         } else
1832                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1833
1834         spin_unlock(&memcg_oom_lock);
1835
1836         return !failed;
1837 }
1838
1839 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1840 {
1841         struct mem_cgroup *iter;
1842
1843         spin_lock(&memcg_oom_lock);
1844         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1845         for_each_mem_cgroup_tree(iter, memcg)
1846                 iter->oom_lock = false;
1847         spin_unlock(&memcg_oom_lock);
1848 }
1849
1850 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1851 {
1852         struct mem_cgroup *iter;
1853
1854         spin_lock(&memcg_oom_lock);
1855         for_each_mem_cgroup_tree(iter, memcg)
1856                 iter->under_oom++;
1857         spin_unlock(&memcg_oom_lock);
1858 }
1859
1860 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1861 {
1862         struct mem_cgroup *iter;
1863
1864         /*
1865          * Be careful about under_oom underflows becase a child memcg
1866          * could have been added after mem_cgroup_mark_under_oom.
1867          */
1868         spin_lock(&memcg_oom_lock);
1869         for_each_mem_cgroup_tree(iter, memcg)
1870                 if (iter->under_oom > 0)
1871                         iter->under_oom--;
1872         spin_unlock(&memcg_oom_lock);
1873 }
1874
1875 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1876
1877 struct oom_wait_info {
1878         struct mem_cgroup *memcg;
1879         wait_queue_entry_t      wait;
1880 };
1881
1882 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1883         unsigned mode, int sync, void *arg)
1884 {
1885         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1886         struct mem_cgroup *oom_wait_memcg;
1887         struct oom_wait_info *oom_wait_info;
1888
1889         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1890         oom_wait_memcg = oom_wait_info->memcg;
1891
1892         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1893             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1894                 return 0;
1895         return autoremove_wake_function(wait, mode, sync, arg);
1896 }
1897
1898 static void memcg_oom_recover(struct mem_cgroup *memcg)
1899 {
1900         /*
1901          * For the following lockless ->under_oom test, the only required
1902          * guarantee is that it must see the state asserted by an OOM when
1903          * this function is called as a result of userland actions
1904          * triggered by the notification of the OOM.  This is trivially
1905          * achieved by invoking mem_cgroup_mark_under_oom() before
1906          * triggering notification.
1907          */
1908         if (memcg && memcg->under_oom)
1909                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1910 }
1911
1912 enum oom_status {
1913         OOM_SUCCESS,
1914         OOM_FAILED,
1915         OOM_ASYNC,
1916         OOM_SKIPPED
1917 };
1918
1919 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1920 {
1921         enum oom_status ret;
1922         bool locked;
1923
1924         if (order > PAGE_ALLOC_COSTLY_ORDER)
1925                 return OOM_SKIPPED;
1926
1927         memcg_memory_event(memcg, MEMCG_OOM);
1928
1929         /*
1930          * We are in the middle of the charge context here, so we
1931          * don't want to block when potentially sitting on a callstack
1932          * that holds all kinds of filesystem and mm locks.
1933          *
1934          * cgroup1 allows disabling the OOM killer and waiting for outside
1935          * handling until the charge can succeed; remember the context and put
1936          * the task to sleep at the end of the page fault when all locks are
1937          * released.
1938          *
1939          * On the other hand, in-kernel OOM killer allows for an async victim
1940          * memory reclaim (oom_reaper) and that means that we are not solely
1941          * relying on the oom victim to make a forward progress and we can
1942          * invoke the oom killer here.
1943          *
1944          * Please note that mem_cgroup_out_of_memory might fail to find a
1945          * victim and then we have to bail out from the charge path.
1946          */
1947         if (memcg->oom_kill_disable) {
1948                 if (!current->in_user_fault)
1949                         return OOM_SKIPPED;
1950                 css_get(&memcg->css);
1951                 current->memcg_in_oom = memcg;
1952                 current->memcg_oom_gfp_mask = mask;
1953                 current->memcg_oom_order = order;
1954
1955                 return OOM_ASYNC;
1956         }
1957
1958         mem_cgroup_mark_under_oom(memcg);
1959
1960         locked = mem_cgroup_oom_trylock(memcg);
1961
1962         if (locked)
1963                 mem_cgroup_oom_notify(memcg);
1964
1965         mem_cgroup_unmark_under_oom(memcg);
1966         if (mem_cgroup_out_of_memory(memcg, mask, order))
1967                 ret = OOM_SUCCESS;
1968         else
1969                 ret = OOM_FAILED;
1970
1971         if (locked)
1972                 mem_cgroup_oom_unlock(memcg);
1973
1974         return ret;
1975 }
1976
1977 /**
1978  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1979  * @handle: actually kill/wait or just clean up the OOM state
1980  *
1981  * This has to be called at the end of a page fault if the memcg OOM
1982  * handler was enabled.
1983  *
1984  * Memcg supports userspace OOM handling where failed allocations must
1985  * sleep on a waitqueue until the userspace task resolves the
1986  * situation.  Sleeping directly in the charge context with all kinds
1987  * of locks held is not a good idea, instead we remember an OOM state
1988  * in the task and mem_cgroup_oom_synchronize() has to be called at
1989  * the end of the page fault to complete the OOM handling.
1990  *
1991  * Returns %true if an ongoing memcg OOM situation was detected and
1992  * completed, %false otherwise.
1993  */
1994 bool mem_cgroup_oom_synchronize(bool handle)
1995 {
1996         struct mem_cgroup *memcg = current->memcg_in_oom;
1997         struct oom_wait_info owait;
1998         bool locked;
1999
2000         /* OOM is global, do not handle */
2001         if (!memcg)
2002                 return false;
2003
2004         if (!handle)
2005                 goto cleanup;
2006
2007         owait.memcg = memcg;
2008         owait.wait.flags = 0;
2009         owait.wait.func = memcg_oom_wake_function;
2010         owait.wait.private = current;
2011         INIT_LIST_HEAD(&owait.wait.entry);
2012
2013         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2014         mem_cgroup_mark_under_oom(memcg);
2015
2016         locked = mem_cgroup_oom_trylock(memcg);
2017
2018         if (locked)
2019                 mem_cgroup_oom_notify(memcg);
2020
2021         if (locked && !memcg->oom_kill_disable) {
2022                 mem_cgroup_unmark_under_oom(memcg);
2023                 finish_wait(&memcg_oom_waitq, &owait.wait);
2024                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2025                                          current->memcg_oom_order);
2026         } else {
2027                 schedule();
2028                 mem_cgroup_unmark_under_oom(memcg);
2029                 finish_wait(&memcg_oom_waitq, &owait.wait);
2030         }
2031
2032         if (locked) {
2033                 mem_cgroup_oom_unlock(memcg);
2034                 /*
2035                  * There is no guarantee that an OOM-lock contender
2036                  * sees the wakeups triggered by the OOM kill
2037                  * uncharges.  Wake any sleepers explicitely.
2038                  */
2039                 memcg_oom_recover(memcg);
2040         }
2041 cleanup:
2042         current->memcg_in_oom = NULL;
2043         css_put(&memcg->css);
2044         return true;
2045 }
2046
2047 /**
2048  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2049  * @victim: task to be killed by the OOM killer
2050  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2051  *
2052  * Returns a pointer to a memory cgroup, which has to be cleaned up
2053  * by killing all belonging OOM-killable tasks.
2054  *
2055  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2056  */
2057 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2058                                             struct mem_cgroup *oom_domain)
2059 {
2060         struct mem_cgroup *oom_group = NULL;
2061         struct mem_cgroup *memcg;
2062
2063         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2064                 return NULL;
2065
2066         if (!oom_domain)
2067                 oom_domain = root_mem_cgroup;
2068
2069         rcu_read_lock();
2070
2071         memcg = mem_cgroup_from_task(victim);
2072         if (memcg == root_mem_cgroup)
2073                 goto out;
2074
2075         /*
2076          * If the victim task has been asynchronously moved to a different
2077          * memory cgroup, we might end up killing tasks outside oom_domain.
2078          * In this case it's better to ignore memory.group.oom.
2079          */
2080         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2081                 goto out;
2082
2083         /*
2084          * Traverse the memory cgroup hierarchy from the victim task's
2085          * cgroup up to the OOMing cgroup (or root) to find the
2086          * highest-level memory cgroup with oom.group set.
2087          */
2088         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2089                 if (memcg->oom_group)
2090                         oom_group = memcg;
2091
2092                 if (memcg == oom_domain)
2093                         break;
2094         }
2095
2096         if (oom_group)
2097                 css_get(&oom_group->css);
2098 out:
2099         rcu_read_unlock();
2100
2101         return oom_group;
2102 }
2103
2104 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2105 {
2106         pr_info("Tasks in ");
2107         pr_cont_cgroup_path(memcg->css.cgroup);
2108         pr_cont(" are going to be killed due to memory.oom.group set\n");
2109 }
2110
2111 /**
2112  * lock_page_memcg - lock a page and memcg binding
2113  * @page: the page
2114  *
2115  * This function protects unlocked LRU pages from being moved to
2116  * another cgroup.
2117  *
2118  * It ensures lifetime of the locked memcg. Caller is responsible
2119  * for the lifetime of the page.
2120  */
2121 void lock_page_memcg(struct page *page)
2122 {
2123         struct page *head = compound_head(page); /* rmap on tail pages */
2124         struct mem_cgroup *memcg;
2125         unsigned long flags;
2126
2127         /*
2128          * The RCU lock is held throughout the transaction.  The fast
2129          * path can get away without acquiring the memcg->move_lock
2130          * because page moving starts with an RCU grace period.
2131          */
2132         rcu_read_lock();
2133
2134         if (mem_cgroup_disabled())
2135                 return;
2136 again:
2137         memcg = page_memcg(head);
2138         if (unlikely(!memcg))
2139                 return;
2140
2141 #ifdef CONFIG_PROVE_LOCKING
2142         local_irq_save(flags);
2143         might_lock(&memcg->move_lock);
2144         local_irq_restore(flags);
2145 #endif
2146
2147         if (atomic_read(&memcg->moving_account) <= 0)
2148                 return;
2149
2150         spin_lock_irqsave(&memcg->move_lock, flags);
2151         if (memcg != page_memcg(head)) {
2152                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2153                 goto again;
2154         }
2155
2156         /*
2157          * When charge migration first begins, we can have multiple
2158          * critical sections holding the fast-path RCU lock and one
2159          * holding the slowpath move_lock. Track the task who has the
2160          * move_lock for unlock_page_memcg().
2161          */
2162         memcg->move_lock_task = current;
2163         memcg->move_lock_flags = flags;
2164 }
2165 EXPORT_SYMBOL(lock_page_memcg);
2166
2167 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2168 {
2169         if (memcg && memcg->move_lock_task == current) {
2170                 unsigned long flags = memcg->move_lock_flags;
2171
2172                 memcg->move_lock_task = NULL;
2173                 memcg->move_lock_flags = 0;
2174
2175                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2176         }
2177
2178         rcu_read_unlock();
2179 }
2180
2181 /**
2182  * unlock_page_memcg - unlock a page and memcg binding
2183  * @page: the page
2184  */
2185 void unlock_page_memcg(struct page *page)
2186 {
2187         struct page *head = compound_head(page);
2188
2189         __unlock_page_memcg(page_memcg(head));
2190 }
2191 EXPORT_SYMBOL(unlock_page_memcg);
2192
2193 struct memcg_stock_pcp {
2194         struct mem_cgroup *cached; /* this never be root cgroup */
2195         unsigned int nr_pages;
2196
2197 #ifdef CONFIG_MEMCG_KMEM
2198         struct obj_cgroup *cached_objcg;
2199         unsigned int nr_bytes;
2200 #endif
2201
2202         struct work_struct work;
2203         unsigned long flags;
2204 #define FLUSHING_CACHED_CHARGE  0
2205 };
2206 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2207 static DEFINE_MUTEX(percpu_charge_mutex);
2208
2209 #ifdef CONFIG_MEMCG_KMEM
2210 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2211 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2212                                      struct mem_cgroup *root_memcg);
2213
2214 #else
2215 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2216 {
2217 }
2218 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2219                                      struct mem_cgroup *root_memcg)
2220 {
2221         return false;
2222 }
2223 #endif
2224
2225 /**
2226  * consume_stock: Try to consume stocked charge on this cpu.
2227  * @memcg: memcg to consume from.
2228  * @nr_pages: how many pages to charge.
2229  *
2230  * The charges will only happen if @memcg matches the current cpu's memcg
2231  * stock, and at least @nr_pages are available in that stock.  Failure to
2232  * service an allocation will refill the stock.
2233  *
2234  * returns true if successful, false otherwise.
2235  */
2236 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2237 {
2238         struct memcg_stock_pcp *stock;
2239         unsigned long flags;
2240         bool ret = false;
2241
2242         if (nr_pages > MEMCG_CHARGE_BATCH)
2243                 return ret;
2244
2245         local_irq_save(flags);
2246
2247         stock = this_cpu_ptr(&memcg_stock);
2248         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2249                 stock->nr_pages -= nr_pages;
2250                 ret = true;
2251         }
2252
2253         local_irq_restore(flags);
2254
2255         return ret;
2256 }
2257
2258 /*
2259  * Returns stocks cached in percpu and reset cached information.
2260  */
2261 static void drain_stock(struct memcg_stock_pcp *stock)
2262 {
2263         struct mem_cgroup *old = stock->cached;
2264
2265         if (!old)
2266                 return;
2267
2268         if (stock->nr_pages) {
2269                 page_counter_uncharge(&old->memory, stock->nr_pages);
2270                 if (do_memsw_account())
2271                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2272                 stock->nr_pages = 0;
2273         }
2274
2275         css_put(&old->css);
2276         stock->cached = NULL;
2277 }
2278
2279 static void drain_local_stock(struct work_struct *dummy)
2280 {
2281         struct memcg_stock_pcp *stock;
2282         unsigned long flags;
2283
2284         /*
2285          * The only protection from memory hotplug vs. drain_stock races is
2286          * that we always operate on local CPU stock here with IRQ disabled
2287          */
2288         local_irq_save(flags);
2289
2290         stock = this_cpu_ptr(&memcg_stock);
2291         drain_obj_stock(stock);
2292         drain_stock(stock);
2293         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2294
2295         local_irq_restore(flags);
2296 }
2297
2298 /*
2299  * Cache charges(val) to local per_cpu area.
2300  * This will be consumed by consume_stock() function, later.
2301  */
2302 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2303 {
2304         struct memcg_stock_pcp *stock;
2305         unsigned long flags;
2306
2307         local_irq_save(flags);
2308
2309         stock = this_cpu_ptr(&memcg_stock);
2310         if (stock->cached != memcg) { /* reset if necessary */
2311                 drain_stock(stock);
2312                 css_get(&memcg->css);
2313                 stock->cached = memcg;
2314         }
2315         stock->nr_pages += nr_pages;
2316
2317         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2318                 drain_stock(stock);
2319
2320         local_irq_restore(flags);
2321 }
2322
2323 /*
2324  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2325  * of the hierarchy under it.
2326  */
2327 static void drain_all_stock(struct mem_cgroup *root_memcg)
2328 {
2329         int cpu, curcpu;
2330
2331         /* If someone's already draining, avoid adding running more workers. */
2332         if (!mutex_trylock(&percpu_charge_mutex))
2333                 return;
2334         /*
2335          * Notify other cpus that system-wide "drain" is running
2336          * We do not care about races with the cpu hotplug because cpu down
2337          * as well as workers from this path always operate on the local
2338          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2339          */
2340         curcpu = get_cpu();
2341         for_each_online_cpu(cpu) {
2342                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2343                 struct mem_cgroup *memcg;
2344                 bool flush = false;
2345
2346                 rcu_read_lock();
2347                 memcg = stock->cached;
2348                 if (memcg && stock->nr_pages &&
2349                     mem_cgroup_is_descendant(memcg, root_memcg))
2350                         flush = true;
2351                 if (obj_stock_flush_required(stock, root_memcg))
2352                         flush = true;
2353                 rcu_read_unlock();
2354
2355                 if (flush &&
2356                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2357                         if (cpu == curcpu)
2358                                 drain_local_stock(&stock->work);
2359                         else
2360                                 schedule_work_on(cpu, &stock->work);
2361                 }
2362         }
2363         put_cpu();
2364         mutex_unlock(&percpu_charge_mutex);
2365 }
2366
2367 static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2368 {
2369         int nid;
2370
2371         for_each_node(nid) {
2372                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2373                 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2374                 struct batched_lruvec_stat *lstatc;
2375                 int i;
2376
2377                 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2378                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2379                         stat[i] = lstatc->count[i];
2380                         lstatc->count[i] = 0;
2381                 }
2382
2383                 do {
2384                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2385                                 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2386                 } while ((pn = parent_nodeinfo(pn, nid)));
2387         }
2388 }
2389
2390 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2391 {
2392         struct memcg_stock_pcp *stock;
2393         struct mem_cgroup *memcg;
2394
2395         stock = &per_cpu(memcg_stock, cpu);
2396         drain_stock(stock);
2397
2398         for_each_mem_cgroup(memcg)
2399                 memcg_flush_lruvec_page_state(memcg, cpu);
2400
2401         return 0;
2402 }
2403
2404 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2405                                   unsigned int nr_pages,
2406                                   gfp_t gfp_mask)
2407 {
2408         unsigned long nr_reclaimed = 0;
2409
2410         do {
2411                 unsigned long pflags;
2412
2413                 if (page_counter_read(&memcg->memory) <=
2414                     READ_ONCE(memcg->memory.high))
2415                         continue;
2416
2417                 memcg_memory_event(memcg, MEMCG_HIGH);
2418
2419                 psi_memstall_enter(&pflags);
2420                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2421                                                              gfp_mask, true);
2422                 psi_memstall_leave(&pflags);
2423         } while ((memcg = parent_mem_cgroup(memcg)) &&
2424                  !mem_cgroup_is_root(memcg));
2425
2426         return nr_reclaimed;
2427 }
2428
2429 static void high_work_func(struct work_struct *work)
2430 {
2431         struct mem_cgroup *memcg;
2432
2433         memcg = container_of(work, struct mem_cgroup, high_work);
2434         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2435 }
2436
2437 /*
2438  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2439  * enough to still cause a significant slowdown in most cases, while still
2440  * allowing diagnostics and tracing to proceed without becoming stuck.
2441  */
2442 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2443
2444 /*
2445  * When calculating the delay, we use these either side of the exponentiation to
2446  * maintain precision and scale to a reasonable number of jiffies (see the table
2447  * below.
2448  *
2449  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2450  *   overage ratio to a delay.
2451  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2452  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2453  *   to produce a reasonable delay curve.
2454  *
2455  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2456  * reasonable delay curve compared to precision-adjusted overage, not
2457  * penalising heavily at first, but still making sure that growth beyond the
2458  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2459  * example, with a high of 100 megabytes:
2460  *
2461  *  +-------+------------------------+
2462  *  | usage | time to allocate in ms |
2463  *  +-------+------------------------+
2464  *  | 100M  |                      0 |
2465  *  | 101M  |                      6 |
2466  *  | 102M  |                     25 |
2467  *  | 103M  |                     57 |
2468  *  | 104M  |                    102 |
2469  *  | 105M  |                    159 |
2470  *  | 106M  |                    230 |
2471  *  | 107M  |                    313 |
2472  *  | 108M  |                    409 |
2473  *  | 109M  |                    518 |
2474  *  | 110M  |                    639 |
2475  *  | 111M  |                    774 |
2476  *  | 112M  |                    921 |
2477  *  | 113M  |                   1081 |
2478  *  | 114M  |                   1254 |
2479  *  | 115M  |                   1439 |
2480  *  | 116M  |                   1638 |
2481  *  | 117M  |                   1849 |
2482  *  | 118M  |                   2000 |
2483  *  | 119M  |                   2000 |
2484  *  | 120M  |                   2000 |
2485  *  +-------+------------------------+
2486  */
2487  #define MEMCG_DELAY_PRECISION_SHIFT 20
2488  #define MEMCG_DELAY_SCALING_SHIFT 14
2489
2490 static u64 calculate_overage(unsigned long usage, unsigned long high)
2491 {
2492         u64 overage;
2493
2494         if (usage <= high)
2495                 return 0;
2496
2497         /*
2498          * Prevent division by 0 in overage calculation by acting as if
2499          * it was a threshold of 1 page
2500          */
2501         high = max(high, 1UL);
2502
2503         overage = usage - high;
2504         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2505         return div64_u64(overage, high);
2506 }
2507
2508 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2509 {
2510         u64 overage, max_overage = 0;
2511
2512         do {
2513                 overage = calculate_overage(page_counter_read(&memcg->memory),
2514                                             READ_ONCE(memcg->memory.high));
2515                 max_overage = max(overage, max_overage);
2516         } while ((memcg = parent_mem_cgroup(memcg)) &&
2517                  !mem_cgroup_is_root(memcg));
2518
2519         return max_overage;
2520 }
2521
2522 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2523 {
2524         u64 overage, max_overage = 0;
2525
2526         do {
2527                 overage = calculate_overage(page_counter_read(&memcg->swap),
2528                                             READ_ONCE(memcg->swap.high));
2529                 if (overage)
2530                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2531                 max_overage = max(overage, max_overage);
2532         } while ((memcg = parent_mem_cgroup(memcg)) &&
2533                  !mem_cgroup_is_root(memcg));
2534
2535         return max_overage;
2536 }
2537
2538 /*
2539  * Get the number of jiffies that we should penalise a mischievous cgroup which
2540  * is exceeding its memory.high by checking both it and its ancestors.
2541  */
2542 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2543                                           unsigned int nr_pages,
2544                                           u64 max_overage)
2545 {
2546         unsigned long penalty_jiffies;
2547
2548         if (!max_overage)
2549                 return 0;
2550
2551         /*
2552          * We use overage compared to memory.high to calculate the number of
2553          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2554          * fairly lenient on small overages, and increasingly harsh when the
2555          * memcg in question makes it clear that it has no intention of stopping
2556          * its crazy behaviour, so we exponentially increase the delay based on
2557          * overage amount.
2558          */
2559         penalty_jiffies = max_overage * max_overage * HZ;
2560         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2561         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2562
2563         /*
2564          * Factor in the task's own contribution to the overage, such that four
2565          * N-sized allocations are throttled approximately the same as one
2566          * 4N-sized allocation.
2567          *
2568          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2569          * larger the current charge patch is than that.
2570          */
2571         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2572 }
2573
2574 /*
2575  * Scheduled by try_charge() to be executed from the userland return path
2576  * and reclaims memory over the high limit.
2577  */
2578 void mem_cgroup_handle_over_high(void)
2579 {
2580         unsigned long penalty_jiffies;
2581         unsigned long pflags;
2582         unsigned long nr_reclaimed;
2583         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2584         int nr_retries = MAX_RECLAIM_RETRIES;
2585         struct mem_cgroup *memcg;
2586         bool in_retry = false;
2587
2588         if (likely(!nr_pages))
2589                 return;
2590
2591         memcg = get_mem_cgroup_from_mm(current->mm);
2592         current->memcg_nr_pages_over_high = 0;
2593
2594 retry_reclaim:
2595         /*
2596          * The allocating task should reclaim at least the batch size, but for
2597          * subsequent retries we only want to do what's necessary to prevent oom
2598          * or breaching resource isolation.
2599          *
2600          * This is distinct from memory.max or page allocator behaviour because
2601          * memory.high is currently batched, whereas memory.max and the page
2602          * allocator run every time an allocation is made.
2603          */
2604         nr_reclaimed = reclaim_high(memcg,
2605                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2606                                     GFP_KERNEL);
2607
2608         /*
2609          * memory.high is breached and reclaim is unable to keep up. Throttle
2610          * allocators proactively to slow down excessive growth.
2611          */
2612         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2613                                                mem_find_max_overage(memcg));
2614
2615         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2616                                                 swap_find_max_overage(memcg));
2617
2618         /*
2619          * Clamp the max delay per usermode return so as to still keep the
2620          * application moving forwards and also permit diagnostics, albeit
2621          * extremely slowly.
2622          */
2623         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2624
2625         /*
2626          * Don't sleep if the amount of jiffies this memcg owes us is so low
2627          * that it's not even worth doing, in an attempt to be nice to those who
2628          * go only a small amount over their memory.high value and maybe haven't
2629          * been aggressively reclaimed enough yet.
2630          */
2631         if (penalty_jiffies <= HZ / 100)
2632                 goto out;
2633
2634         /*
2635          * If reclaim is making forward progress but we're still over
2636          * memory.high, we want to encourage that rather than doing allocator
2637          * throttling.
2638          */
2639         if (nr_reclaimed || nr_retries--) {
2640                 in_retry = true;
2641                 goto retry_reclaim;
2642         }
2643
2644         /*
2645          * If we exit early, we're guaranteed to die (since
2646          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2647          * need to account for any ill-begotten jiffies to pay them off later.
2648          */
2649         psi_memstall_enter(&pflags);
2650         schedule_timeout_killable(penalty_jiffies);
2651         psi_memstall_leave(&pflags);
2652
2653 out:
2654         css_put(&memcg->css);
2655 }
2656
2657 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2658                       unsigned int nr_pages)
2659 {
2660         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2661         int nr_retries = MAX_RECLAIM_RETRIES;
2662         struct mem_cgroup *mem_over_limit;
2663         struct page_counter *counter;
2664         enum oom_status oom_status;
2665         unsigned long nr_reclaimed;
2666         bool may_swap = true;
2667         bool drained = false;
2668         unsigned long pflags;
2669
2670         if (mem_cgroup_is_root(memcg))
2671                 return 0;
2672 retry:
2673         if (consume_stock(memcg, nr_pages))
2674                 return 0;
2675
2676         if (!do_memsw_account() ||
2677             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2678                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2679                         goto done_restock;
2680                 if (do_memsw_account())
2681                         page_counter_uncharge(&memcg->memsw, batch);
2682                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2683         } else {
2684                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2685                 may_swap = false;
2686         }
2687
2688         if (batch > nr_pages) {
2689                 batch = nr_pages;
2690                 goto retry;
2691         }
2692
2693         /*
2694          * Memcg doesn't have a dedicated reserve for atomic
2695          * allocations. But like the global atomic pool, we need to
2696          * put the burden of reclaim on regular allocation requests
2697          * and let these go through as privileged allocations.
2698          */
2699         if (gfp_mask & __GFP_ATOMIC)
2700                 goto force;
2701
2702         /*
2703          * Unlike in global OOM situations, memcg is not in a physical
2704          * memory shortage.  Allow dying and OOM-killed tasks to
2705          * bypass the last charges so that they can exit quickly and
2706          * free their memory.
2707          */
2708         if (unlikely(should_force_charge()))
2709                 goto force;
2710
2711         /*
2712          * Prevent unbounded recursion when reclaim operations need to
2713          * allocate memory. This might exceed the limits temporarily,
2714          * but we prefer facilitating memory reclaim and getting back
2715          * under the limit over triggering OOM kills in these cases.
2716          */
2717         if (unlikely(current->flags & PF_MEMALLOC))
2718                 goto force;
2719
2720         if (unlikely(task_in_memcg_oom(current)))
2721                 goto nomem;
2722
2723         if (!gfpflags_allow_blocking(gfp_mask))
2724                 goto nomem;
2725
2726         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2727
2728         psi_memstall_enter(&pflags);
2729         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2730                                                     gfp_mask, may_swap);
2731         psi_memstall_leave(&pflags);
2732
2733         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2734                 goto retry;
2735
2736         if (!drained) {
2737                 drain_all_stock(mem_over_limit);
2738                 drained = true;
2739                 goto retry;
2740         }
2741
2742         if (gfp_mask & __GFP_NORETRY)
2743                 goto nomem;
2744         /*
2745          * Even though the limit is exceeded at this point, reclaim
2746          * may have been able to free some pages.  Retry the charge
2747          * before killing the task.
2748          *
2749          * Only for regular pages, though: huge pages are rather
2750          * unlikely to succeed so close to the limit, and we fall back
2751          * to regular pages anyway in case of failure.
2752          */
2753         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2754                 goto retry;
2755         /*
2756          * At task move, charge accounts can be doubly counted. So, it's
2757          * better to wait until the end of task_move if something is going on.
2758          */
2759         if (mem_cgroup_wait_acct_move(mem_over_limit))
2760                 goto retry;
2761
2762         if (nr_retries--)
2763                 goto retry;
2764
2765         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2766                 goto nomem;
2767
2768         if (fatal_signal_pending(current))
2769                 goto force;
2770
2771         /*
2772          * keep retrying as long as the memcg oom killer is able to make
2773          * a forward progress or bypass the charge if the oom killer
2774          * couldn't make any progress.
2775          */
2776         oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2777                        get_order(nr_pages * PAGE_SIZE));
2778         switch (oom_status) {
2779         case OOM_SUCCESS:
2780                 nr_retries = MAX_RECLAIM_RETRIES;
2781                 goto retry;
2782         case OOM_FAILED:
2783                 goto force;
2784         default:
2785                 goto nomem;
2786         }
2787 nomem:
2788         if (!(gfp_mask & __GFP_NOFAIL))
2789                 return -ENOMEM;
2790 force:
2791         /*
2792          * The allocation either can't fail or will lead to more memory
2793          * being freed very soon.  Allow memory usage go over the limit
2794          * temporarily by force charging it.
2795          */
2796         page_counter_charge(&memcg->memory, nr_pages);
2797         if (do_memsw_account())
2798                 page_counter_charge(&memcg->memsw, nr_pages);
2799
2800         return 0;
2801
2802 done_restock:
2803         if (batch > nr_pages)
2804                 refill_stock(memcg, batch - nr_pages);
2805
2806         /*
2807          * If the hierarchy is above the normal consumption range, schedule
2808          * reclaim on returning to userland.  We can perform reclaim here
2809          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2810          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2811          * not recorded as it most likely matches current's and won't
2812          * change in the meantime.  As high limit is checked again before
2813          * reclaim, the cost of mismatch is negligible.
2814          */
2815         do {
2816                 bool mem_high, swap_high;
2817
2818                 mem_high = page_counter_read(&memcg->memory) >
2819                         READ_ONCE(memcg->memory.high);
2820                 swap_high = page_counter_read(&memcg->swap) >
2821                         READ_ONCE(memcg->swap.high);
2822
2823                 /* Don't bother a random interrupted task */
2824                 if (in_interrupt()) {
2825                         if (mem_high) {
2826                                 schedule_work(&memcg->high_work);
2827                                 break;
2828                         }
2829                         continue;
2830                 }
2831
2832                 if (mem_high || swap_high) {
2833                         /*
2834                          * The allocating tasks in this cgroup will need to do
2835                          * reclaim or be throttled to prevent further growth
2836                          * of the memory or swap footprints.
2837                          *
2838                          * Target some best-effort fairness between the tasks,
2839                          * and distribute reclaim work and delay penalties
2840                          * based on how much each task is actually allocating.
2841                          */
2842                         current->memcg_nr_pages_over_high += batch;
2843                         set_notify_resume(current);
2844                         break;
2845                 }
2846         } while ((memcg = parent_mem_cgroup(memcg)));
2847
2848         return 0;
2849 }
2850
2851 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2852 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2853 {
2854         if (mem_cgroup_is_root(memcg))
2855                 return;
2856
2857         page_counter_uncharge(&memcg->memory, nr_pages);
2858         if (do_memsw_account())
2859                 page_counter_uncharge(&memcg->memsw, nr_pages);
2860 }
2861 #endif
2862
2863 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2864 {
2865         VM_BUG_ON_PAGE(page_memcg(page), page);
2866         /*
2867          * Any of the following ensures page's memcg stability:
2868          *
2869          * - the page lock
2870          * - LRU isolation
2871          * - lock_page_memcg()
2872          * - exclusive reference
2873          */
2874         page->memcg_data = (unsigned long)memcg;
2875 }
2876
2877 #ifdef CONFIG_MEMCG_KMEM
2878 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2879                                  gfp_t gfp, bool new_page)
2880 {
2881         unsigned int objects = objs_per_slab_page(s, page);
2882         unsigned long memcg_data;
2883         void *vec;
2884
2885         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2886                            page_to_nid(page));
2887         if (!vec)
2888                 return -ENOMEM;
2889
2890         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2891         if (new_page) {
2892                 /*
2893                  * If the slab page is brand new and nobody can yet access
2894                  * it's memcg_data, no synchronization is required and
2895                  * memcg_data can be simply assigned.
2896                  */
2897                 page->memcg_data = memcg_data;
2898         } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2899                 /*
2900                  * If the slab page is already in use, somebody can allocate
2901                  * and assign obj_cgroups in parallel. In this case the existing
2902                  * objcg vector should be reused.
2903                  */
2904                 kfree(vec);
2905                 return 0;
2906         }
2907
2908         kmemleak_not_leak(vec);
2909         return 0;
2910 }
2911
2912 /*
2913  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2914  *
2915  * A passed kernel object can be a slab object or a generic kernel page, so
2916  * different mechanisms for getting the memory cgroup pointer should be used.
2917  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2918  * can not know for sure how the kernel object is implemented.
2919  * mem_cgroup_from_obj() can be safely used in such cases.
2920  *
2921  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2922  * cgroup_mutex, etc.
2923  */
2924 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2925 {
2926         struct page *page;
2927
2928         if (mem_cgroup_disabled())
2929                 return NULL;
2930
2931         page = virt_to_head_page(p);
2932
2933         /*
2934          * Slab objects are accounted individually, not per-page.
2935          * Memcg membership data for each individual object is saved in
2936          * the page->obj_cgroups.
2937          */
2938         if (page_objcgs_check(page)) {
2939                 struct obj_cgroup *objcg;
2940                 unsigned int off;
2941
2942                 off = obj_to_index(page->slab_cache, page, p);
2943                 objcg = page_objcgs(page)[off];
2944                 if (objcg)
2945                         return obj_cgroup_memcg(objcg);
2946
2947                 return NULL;
2948         }
2949
2950         /*
2951          * page_memcg_check() is used here, because page_has_obj_cgroups()
2952          * check above could fail because the object cgroups vector wasn't set
2953          * at that moment, but it can be set concurrently.
2954          * page_memcg_check(page) will guarantee that a proper memory
2955          * cgroup pointer or NULL will be returned.
2956          */
2957         return page_memcg_check(page);
2958 }
2959
2960 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2961 {
2962         struct obj_cgroup *objcg = NULL;
2963         struct mem_cgroup *memcg;
2964
2965         if (memcg_kmem_bypass())
2966                 return NULL;
2967
2968         rcu_read_lock();
2969         if (unlikely(active_memcg()))
2970                 memcg = active_memcg();
2971         else
2972                 memcg = mem_cgroup_from_task(current);
2973
2974         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2975                 objcg = rcu_dereference(memcg->objcg);
2976                 if (objcg && obj_cgroup_tryget(objcg))
2977                         break;
2978                 objcg = NULL;
2979         }
2980         rcu_read_unlock();
2981
2982         return objcg;
2983 }
2984
2985 static int memcg_alloc_cache_id(void)
2986 {
2987         int id, size;
2988         int err;
2989
2990         id = ida_simple_get(&memcg_cache_ida,
2991                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2992         if (id < 0)
2993                 return id;
2994
2995         if (id < memcg_nr_cache_ids)
2996                 return id;
2997
2998         /*
2999          * There's no space for the new id in memcg_caches arrays,
3000          * so we have to grow them.
3001          */
3002         down_write(&memcg_cache_ids_sem);
3003
3004         size = 2 * (id + 1);
3005         if (size < MEMCG_CACHES_MIN_SIZE)
3006                 size = MEMCG_CACHES_MIN_SIZE;
3007         else if (size > MEMCG_CACHES_MAX_SIZE)
3008                 size = MEMCG_CACHES_MAX_SIZE;
3009
3010         err = memcg_update_all_list_lrus(size);
3011         if (!err)
3012                 memcg_nr_cache_ids = size;
3013
3014         up_write(&memcg_cache_ids_sem);
3015
3016         if (err) {
3017                 ida_simple_remove(&memcg_cache_ida, id);
3018                 return err;
3019         }
3020         return id;
3021 }
3022
3023 static void memcg_free_cache_id(int id)
3024 {
3025         ida_simple_remove(&memcg_cache_ida, id);
3026 }
3027
3028 /**
3029  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3030  * @memcg: memory cgroup to charge
3031  * @gfp: reclaim mode
3032  * @nr_pages: number of pages to charge
3033  *
3034  * Returns 0 on success, an error code on failure.
3035  */
3036 static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3037                                unsigned int nr_pages)
3038 {
3039         struct page_counter *counter;
3040         int ret;
3041
3042         ret = try_charge(memcg, gfp, nr_pages);
3043         if (ret)
3044                 return ret;
3045
3046         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3047             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3048
3049                 /*
3050                  * Enforce __GFP_NOFAIL allocation because callers are not
3051                  * prepared to see failures and likely do not have any failure
3052                  * handling code.
3053                  */
3054                 if (gfp & __GFP_NOFAIL) {
3055                         page_counter_charge(&memcg->kmem, nr_pages);
3056                         return 0;
3057                 }
3058                 cancel_charge(memcg, nr_pages);
3059                 return -ENOMEM;
3060         }
3061         return 0;
3062 }
3063
3064 /**
3065  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3066  * @memcg: memcg to uncharge
3067  * @nr_pages: number of pages to uncharge
3068  */
3069 static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3070 {
3071         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3072                 page_counter_uncharge(&memcg->kmem, nr_pages);
3073
3074         refill_stock(memcg, nr_pages);
3075 }
3076
3077 /**
3078  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3079  * @page: page to charge
3080  * @gfp: reclaim mode
3081  * @order: allocation order
3082  *
3083  * Returns 0 on success, an error code on failure.
3084  */
3085 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3086 {
3087         struct mem_cgroup *memcg;
3088         int ret = 0;
3089
3090         memcg = get_mem_cgroup_from_current();
3091         if (memcg && !mem_cgroup_is_root(memcg)) {
3092                 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3093                 if (!ret) {
3094                         page->memcg_data = (unsigned long)memcg |
3095                                 MEMCG_DATA_KMEM;
3096                         return 0;
3097                 }
3098                 css_put(&memcg->css);
3099         }
3100         return ret;
3101 }
3102
3103 /**
3104  * __memcg_kmem_uncharge_page: uncharge a kmem page
3105  * @page: page to uncharge
3106  * @order: allocation order
3107  */
3108 void __memcg_kmem_uncharge_page(struct page *page, int order)
3109 {
3110         struct mem_cgroup *memcg = page_memcg(page);
3111         unsigned int nr_pages = 1 << order;
3112
3113         if (!memcg)
3114                 return;
3115
3116         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3117         __memcg_kmem_uncharge(memcg, nr_pages);
3118         page->memcg_data = 0;
3119         css_put(&memcg->css);
3120 }
3121
3122 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3123 {
3124         struct memcg_stock_pcp *stock;
3125         unsigned long flags;
3126         bool ret = false;
3127
3128         local_irq_save(flags);
3129
3130         stock = this_cpu_ptr(&memcg_stock);
3131         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3132                 stock->nr_bytes -= nr_bytes;
3133                 ret = true;
3134         }
3135
3136         local_irq_restore(flags);
3137
3138         return ret;
3139 }
3140
3141 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3142 {
3143         struct obj_cgroup *old = stock->cached_objcg;
3144
3145         if (!old)
3146                 return;
3147
3148         if (stock->nr_bytes) {
3149                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3150                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3151
3152                 if (nr_pages) {
3153                         rcu_read_lock();
3154                         __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3155                         rcu_read_unlock();
3156                 }
3157
3158                 /*
3159                  * The leftover is flushed to the centralized per-memcg value.
3160                  * On the next attempt to refill obj stock it will be moved
3161                  * to a per-cpu stock (probably, on an other CPU), see
3162                  * refill_obj_stock().
3163                  *
3164                  * How often it's flushed is a trade-off between the memory
3165                  * limit enforcement accuracy and potential CPU contention,
3166                  * so it might be changed in the future.
3167                  */
3168                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3169                 stock->nr_bytes = 0;
3170         }
3171
3172         obj_cgroup_put(old);
3173         stock->cached_objcg = NULL;
3174 }
3175
3176 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3177                                      struct mem_cgroup *root_memcg)
3178 {
3179         struct mem_cgroup *memcg;
3180
3181         if (stock->cached_objcg) {
3182                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3183                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3184                         return true;
3185         }
3186
3187         return false;
3188 }
3189
3190 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3191 {
3192         struct memcg_stock_pcp *stock;
3193         unsigned long flags;
3194
3195         local_irq_save(flags);
3196
3197         stock = this_cpu_ptr(&memcg_stock);
3198         if (stock->cached_objcg != objcg) { /* reset if necessary */
3199                 drain_obj_stock(stock);
3200                 obj_cgroup_get(objcg);
3201                 stock->cached_objcg = objcg;
3202                 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3203         }
3204         stock->nr_bytes += nr_bytes;
3205
3206         if (stock->nr_bytes > PAGE_SIZE)
3207                 drain_obj_stock(stock);
3208
3209         local_irq_restore(flags);
3210 }
3211
3212 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3213 {
3214         struct mem_cgroup *memcg;
3215         unsigned int nr_pages, nr_bytes;
3216         int ret;
3217
3218         if (consume_obj_stock(objcg, size))
3219                 return 0;
3220
3221         /*
3222          * In theory, memcg->nr_charged_bytes can have enough
3223          * pre-charged bytes to satisfy the allocation. However,
3224          * flushing memcg->nr_charged_bytes requires two atomic
3225          * operations, and memcg->nr_charged_bytes can't be big,
3226          * so it's better to ignore it and try grab some new pages.
3227          * memcg->nr_charged_bytes will be flushed in
3228          * refill_obj_stock(), called from this function or
3229          * independently later.
3230          */
3231         rcu_read_lock();
3232 retry:
3233         memcg = obj_cgroup_memcg(objcg);
3234         if (unlikely(!css_tryget(&memcg->css)))
3235                 goto retry;
3236         rcu_read_unlock();
3237
3238         nr_pages = size >> PAGE_SHIFT;
3239         nr_bytes = size & (PAGE_SIZE - 1);
3240
3241         if (nr_bytes)
3242                 nr_pages += 1;
3243
3244         ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3245         if (!ret && nr_bytes)
3246                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3247
3248         css_put(&memcg->css);
3249         return ret;
3250 }
3251
3252 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3253 {
3254         refill_obj_stock(objcg, size);
3255 }
3256
3257 #endif /* CONFIG_MEMCG_KMEM */
3258
3259 /*
3260  * Because page_memcg(head) is not set on tails, set it now.
3261  */
3262 void split_page_memcg(struct page *head, unsigned int nr)
3263 {
3264         struct mem_cgroup *memcg = page_memcg(head);
3265         int i;
3266
3267         if (mem_cgroup_disabled() || !memcg)
3268                 return;
3269
3270         for (i = 1; i < nr; i++)
3271                 head[i].memcg_data = head->memcg_data;
3272         css_get_many(&memcg->css, nr - 1);
3273 }
3274
3275 #ifdef CONFIG_MEMCG_SWAP
3276 /**
3277  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3278  * @entry: swap entry to be moved
3279  * @from:  mem_cgroup which the entry is moved from
3280  * @to:  mem_cgroup which the entry is moved to
3281  *
3282  * It succeeds only when the swap_cgroup's record for this entry is the same
3283  * as the mem_cgroup's id of @from.
3284  *
3285  * Returns 0 on success, -EINVAL on failure.
3286  *
3287  * The caller must have charged to @to, IOW, called page_counter_charge() about
3288  * both res and memsw, and called css_get().
3289  */
3290 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3291                                 struct mem_cgroup *from, struct mem_cgroup *to)
3292 {
3293         unsigned short old_id, new_id;
3294
3295         old_id = mem_cgroup_id(from);
3296         new_id = mem_cgroup_id(to);
3297
3298         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3299                 mod_memcg_state(from, MEMCG_SWAP, -1);
3300                 mod_memcg_state(to, MEMCG_SWAP, 1);
3301                 return 0;
3302         }
3303         return -EINVAL;
3304 }
3305 #else
3306 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3307                                 struct mem_cgroup *from, struct mem_cgroup *to)
3308 {
3309         return -EINVAL;
3310 }
3311 #endif
3312
3313 static DEFINE_MUTEX(memcg_max_mutex);
3314
3315 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3316                                  unsigned long max, bool memsw)
3317 {
3318         bool enlarge = false;
3319         bool drained = false;
3320         int ret;
3321         bool limits_invariant;
3322         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3323
3324         do {
3325                 if (signal_pending(current)) {
3326                         ret = -EINTR;
3327                         break;
3328                 }
3329
3330                 mutex_lock(&memcg_max_mutex);
3331                 /*
3332                  * Make sure that the new limit (memsw or memory limit) doesn't
3333                  * break our basic invariant rule memory.max <= memsw.max.
3334                  */
3335                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3336                                            max <= memcg->memsw.max;
3337                 if (!limits_invariant) {
3338                         mutex_unlock(&memcg_max_mutex);
3339                         ret = -EINVAL;
3340                         break;
3341                 }
3342                 if (max > counter->max)
3343                         enlarge = true;
3344                 ret = page_counter_set_max(counter, max);
3345                 mutex_unlock(&memcg_max_mutex);
3346
3347                 if (!ret)
3348                         break;
3349
3350                 if (!drained) {
3351                         drain_all_stock(memcg);
3352                         drained = true;
3353                         continue;
3354                 }
3355
3356                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3357                                         GFP_KERNEL, !memsw)) {
3358                         ret = -EBUSY;
3359                         break;
3360                 }
3361         } while (true);
3362
3363         if (!ret && enlarge)
3364                 memcg_oom_recover(memcg);
3365
3366         return ret;
3367 }
3368
3369 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3370                                             gfp_t gfp_mask,
3371                                             unsigned long *total_scanned)
3372 {
3373         unsigned long nr_reclaimed = 0;
3374         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3375         unsigned long reclaimed;
3376         int loop = 0;
3377         struct mem_cgroup_tree_per_node *mctz;
3378         unsigned long excess;
3379         unsigned long nr_scanned;
3380
3381         if (order > 0)
3382                 return 0;
3383
3384         mctz = soft_limit_tree_node(pgdat->node_id);
3385
3386         /*
3387          * Do not even bother to check the largest node if the root
3388          * is empty. Do it lockless to prevent lock bouncing. Races
3389          * are acceptable as soft limit is best effort anyway.
3390          */
3391         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3392                 return 0;
3393
3394         /*
3395          * This loop can run a while, specially if mem_cgroup's continuously
3396          * keep exceeding their soft limit and putting the system under
3397          * pressure
3398          */
3399         do {
3400                 if (next_mz)
3401                         mz = next_mz;
3402                 else
3403                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3404                 if (!mz)
3405                         break;
3406
3407                 nr_scanned = 0;
3408                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3409                                                     gfp_mask, &nr_scanned);
3410                 nr_reclaimed += reclaimed;
3411                 *total_scanned += nr_scanned;
3412                 spin_lock_irq(&mctz->lock);
3413                 __mem_cgroup_remove_exceeded(mz, mctz);
3414
3415                 /*
3416                  * If we failed to reclaim anything from this memory cgroup
3417                  * it is time to move on to the next cgroup
3418                  */
3419                 next_mz = NULL;
3420                 if (!reclaimed)
3421                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3422
3423                 excess = soft_limit_excess(mz->memcg);
3424                 /*
3425                  * One school of thought says that we should not add
3426                  * back the node to the tree if reclaim returns 0.
3427                  * But our reclaim could return 0, simply because due
3428                  * to priority we are exposing a smaller subset of
3429                  * memory to reclaim from. Consider this as a longer
3430                  * term TODO.
3431                  */
3432                 /* If excess == 0, no tree ops */
3433                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3434                 spin_unlock_irq(&mctz->lock);
3435                 css_put(&mz->memcg->css);
3436                 loop++;
3437                 /*
3438                  * Could not reclaim anything and there are no more
3439                  * mem cgroups to try or we seem to be looping without
3440                  * reclaiming anything.
3441                  */
3442                 if (!nr_reclaimed &&
3443                         (next_mz == NULL ||
3444                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3445                         break;
3446         } while (!nr_reclaimed);
3447         if (next_mz)
3448                 css_put(&next_mz->memcg->css);
3449         return nr_reclaimed;
3450 }
3451
3452 /*
3453  * Reclaims as many pages from the given memcg as possible.
3454  *
3455  * Caller is responsible for holding css reference for memcg.
3456  */
3457 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3458 {
3459         int nr_retries = MAX_RECLAIM_RETRIES;
3460
3461         /* we call try-to-free pages for make this cgroup empty */
3462         lru_add_drain_all();
3463
3464         drain_all_stock(memcg);
3465
3466         /* try to free all pages in this cgroup */
3467         while (nr_retries && page_counter_read(&memcg->memory)) {
3468                 int progress;
3469
3470                 if (signal_pending(current))
3471                         return -EINTR;
3472
3473                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3474                                                         GFP_KERNEL, true);
3475                 if (!progress) {
3476                         nr_retries--;
3477                         /* maybe some writeback is necessary */
3478                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3479                 }
3480
3481         }
3482
3483         return 0;
3484 }
3485
3486 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3487                                             char *buf, size_t nbytes,
3488                                             loff_t off)
3489 {
3490         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3491
3492         if (mem_cgroup_is_root(memcg))
3493                 return -EINVAL;
3494         return mem_cgroup_force_empty(memcg) ?: nbytes;
3495 }
3496
3497 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3498                                      struct cftype *cft)
3499 {
3500         return 1;
3501 }
3502
3503 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3504                                       struct cftype *cft, u64 val)
3505 {
3506         if (val == 1)
3507                 return 0;
3508
3509         pr_warn_once("Non-hierarchical mode is deprecated. "
3510                      "Please report your usecase to linux-mm@kvack.org if you "
3511                      "depend on this functionality.\n");
3512
3513         return -EINVAL;
3514 }
3515
3516 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3517 {
3518         unsigned long val;
3519
3520         if (mem_cgroup_is_root(memcg)) {
3521                 cgroup_rstat_flush(memcg->css.cgroup);
3522                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3523                         memcg_page_state(memcg, NR_ANON_MAPPED);
3524                 if (swap)
3525                         val += memcg_page_state(memcg, MEMCG_SWAP);
3526         } else {
3527                 if (!swap)
3528                         val = page_counter_read(&memcg->memory);
3529                 else
3530                         val = page_counter_read(&memcg->memsw);
3531         }
3532         return val;
3533 }
3534
3535 enum {
3536         RES_USAGE,
3537         RES_LIMIT,
3538         RES_MAX_USAGE,
3539         RES_FAILCNT,
3540         RES_SOFT_LIMIT,
3541 };
3542
3543 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3544                                struct cftype *cft)
3545 {
3546         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3547         struct page_counter *counter;
3548
3549         switch (MEMFILE_TYPE(cft->private)) {
3550         case _MEM:
3551                 counter = &memcg->memory;
3552                 break;
3553         case _MEMSWAP:
3554                 counter = &memcg->memsw;
3555                 break;
3556         case _KMEM:
3557                 counter = &memcg->kmem;
3558                 break;
3559         case _TCP:
3560                 counter = &memcg->tcpmem;
3561                 break;
3562         default:
3563                 BUG();
3564         }
3565
3566         switch (MEMFILE_ATTR(cft->private)) {
3567         case RES_USAGE:
3568                 if (counter == &memcg->memory)
3569                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3570                 if (counter == &memcg->memsw)
3571                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3572                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3573         case RES_LIMIT:
3574                 return (u64)counter->max * PAGE_SIZE;
3575         case RES_MAX_USAGE:
3576                 return (u64)counter->watermark * PAGE_SIZE;
3577         case RES_FAILCNT:
3578                 return counter->failcnt;
3579         case RES_SOFT_LIMIT:
3580                 return (u64)memcg->soft_limit * PAGE_SIZE;
3581         default:
3582                 BUG();
3583         }
3584 }
3585
3586 #ifdef CONFIG_MEMCG_KMEM
3587 static int memcg_online_kmem(struct mem_cgroup *memcg)
3588 {
3589         struct obj_cgroup *objcg;
3590         int memcg_id;
3591
3592         if (cgroup_memory_nokmem)
3593                 return 0;
3594
3595         BUG_ON(memcg->kmemcg_id >= 0);
3596         BUG_ON(memcg->kmem_state);
3597
3598         memcg_id = memcg_alloc_cache_id();
3599         if (memcg_id < 0)
3600                 return memcg_id;
3601
3602         objcg = obj_cgroup_alloc();
3603         if (!objcg) {
3604                 memcg_free_cache_id(memcg_id);
3605                 return -ENOMEM;
3606         }
3607         objcg->memcg = memcg;
3608         rcu_assign_pointer(memcg->objcg, objcg);
3609
3610         static_branch_enable(&memcg_kmem_enabled_key);
3611
3612         memcg->kmemcg_id = memcg_id;
3613         memcg->kmem_state = KMEM_ONLINE;
3614
3615         return 0;
3616 }
3617
3618 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3619 {
3620         struct cgroup_subsys_state *css;
3621         struct mem_cgroup *parent, *child;
3622         int kmemcg_id;
3623
3624         if (memcg->kmem_state != KMEM_ONLINE)
3625                 return;
3626
3627         memcg->kmem_state = KMEM_ALLOCATED;
3628
3629         parent = parent_mem_cgroup(memcg);
3630         if (!parent)
3631                 parent = root_mem_cgroup;
3632
3633         memcg_reparent_objcgs(memcg, parent);
3634
3635         kmemcg_id = memcg->kmemcg_id;
3636         BUG_ON(kmemcg_id < 0);
3637
3638         /*
3639          * Change kmemcg_id of this cgroup and all its descendants to the
3640          * parent's id, and then move all entries from this cgroup's list_lrus
3641          * to ones of the parent. After we have finished, all list_lrus
3642          * corresponding to this cgroup are guaranteed to remain empty. The
3643          * ordering is imposed by list_lru_node->lock taken by
3644          * memcg_drain_all_list_lrus().
3645          */
3646         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3647         css_for_each_descendant_pre(css, &memcg->css) {
3648                 child = mem_cgroup_from_css(css);
3649                 BUG_ON(child->kmemcg_id != kmemcg_id);
3650                 child->kmemcg_id = parent->kmemcg_id;
3651         }
3652         rcu_read_unlock();
3653
3654         memcg_drain_all_list_lrus(kmemcg_id, parent);
3655
3656         memcg_free_cache_id(kmemcg_id);
3657 }
3658
3659 static void memcg_free_kmem(struct mem_cgroup *memcg)
3660 {
3661         /* css_alloc() failed, offlining didn't happen */
3662         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3663                 memcg_offline_kmem(memcg);
3664 }
3665 #else
3666 static int memcg_online_kmem(struct mem_cgroup *memcg)
3667 {
3668         return 0;
3669 }
3670 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3671 {
3672 }
3673 static void memcg_free_kmem(struct mem_cgroup *memcg)
3674 {
3675 }
3676 #endif /* CONFIG_MEMCG_KMEM */
3677
3678 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3679                                  unsigned long max)
3680 {
3681         int ret;
3682
3683         mutex_lock(&memcg_max_mutex);
3684         ret = page_counter_set_max(&memcg->kmem, max);
3685         mutex_unlock(&memcg_max_mutex);
3686         return ret;
3687 }
3688
3689 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3690 {
3691         int ret;
3692
3693         mutex_lock(&memcg_max_mutex);
3694
3695         ret = page_counter_set_max(&memcg->tcpmem, max);
3696         if (ret)
3697                 goto out;
3698
3699         if (!memcg->tcpmem_active) {
3700                 /*
3701                  * The active flag needs to be written after the static_key
3702                  * update. This is what guarantees that the socket activation
3703                  * function is the last one to run. See mem_cgroup_sk_alloc()
3704                  * for details, and note that we don't mark any socket as
3705                  * belonging to this memcg until that flag is up.
3706                  *
3707                  * We need to do this, because static_keys will span multiple
3708                  * sites, but we can't control their order. If we mark a socket
3709                  * as accounted, but the accounting functions are not patched in
3710                  * yet, we'll lose accounting.
3711                  *
3712                  * We never race with the readers in mem_cgroup_sk_alloc(),
3713                  * because when this value change, the code to process it is not
3714                  * patched in yet.
3715                  */
3716                 static_branch_inc(&memcg_sockets_enabled_key);
3717                 memcg->tcpmem_active = true;
3718         }
3719 out:
3720         mutex_unlock(&memcg_max_mutex);
3721         return ret;
3722 }
3723
3724 /*
3725  * The user of this function is...
3726  * RES_LIMIT.
3727  */
3728 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3729                                 char *buf, size_t nbytes, loff_t off)
3730 {
3731         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3732         unsigned long nr_pages;
3733         int ret;
3734
3735         buf = strstrip(buf);
3736         ret = page_counter_memparse(buf, "-1", &nr_pages);
3737         if (ret)
3738                 return ret;
3739
3740         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3741         case RES_LIMIT:
3742                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3743                         ret = -EINVAL;
3744                         break;
3745                 }
3746                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3747                 case _MEM:
3748                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3749                         break;
3750                 case _MEMSWAP:
3751                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3752                         break;
3753                 case _KMEM:
3754                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3755                                      "Please report your usecase to linux-mm@kvack.org if you "
3756                                      "depend on this functionality.\n");
3757                         ret = memcg_update_kmem_max(memcg, nr_pages);
3758                         break;
3759                 case _TCP:
3760                         ret = memcg_update_tcp_max(memcg, nr_pages);
3761                         break;
3762                 }
3763                 break;
3764         case RES_SOFT_LIMIT:
3765                 memcg->soft_limit = nr_pages;
3766                 ret = 0;
3767                 break;
3768         }
3769         return ret ?: nbytes;
3770 }
3771
3772 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3773                                 size_t nbytes, loff_t off)
3774 {
3775         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3776         struct page_counter *counter;
3777
3778         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3779         case _MEM:
3780                 counter = &memcg->memory;
3781                 break;
3782         case _MEMSWAP:
3783                 counter = &memcg->memsw;
3784                 break;
3785         case _KMEM:
3786                 counter = &memcg->kmem;
3787                 break;
3788         case _TCP:
3789                 counter = &memcg->tcpmem;
3790                 break;
3791         default:
3792                 BUG();
3793         }
3794
3795         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3796         case RES_MAX_USAGE:
3797                 page_counter_reset_watermark(counter);
3798                 break;
3799         case RES_FAILCNT:
3800                 counter->failcnt = 0;
3801                 break;
3802         default:
3803                 BUG();
3804         }
3805
3806         return nbytes;
3807 }
3808
3809 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3810                                         struct cftype *cft)
3811 {
3812         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3813 }
3814
3815 #ifdef CONFIG_MMU
3816 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3817                                         struct cftype *cft, u64 val)
3818 {
3819         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3820
3821         if (val & ~MOVE_MASK)
3822                 return -EINVAL;
3823
3824         /*
3825          * No kind of locking is needed in here, because ->can_attach() will
3826          * check this value once in the beginning of the process, and then carry
3827          * on with stale data. This means that changes to this value will only
3828          * affect task migrations starting after the change.
3829          */
3830         memcg->move_charge_at_immigrate = val;
3831         return 0;
3832 }
3833 #else
3834 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3835                                         struct cftype *cft, u64 val)
3836 {
3837         return -ENOSYS;
3838 }
3839 #endif
3840
3841 #ifdef CONFIG_NUMA
3842
3843 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3844 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3845 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3846
3847 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3848                                 int nid, unsigned int lru_mask, bool tree)
3849 {
3850         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3851         unsigned long nr = 0;
3852         enum lru_list lru;
3853
3854         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3855
3856         for_each_lru(lru) {
3857                 if (!(BIT(lru) & lru_mask))
3858                         continue;
3859                 if (tree)
3860                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3861                 else
3862                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3863         }
3864         return nr;
3865 }
3866
3867 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3868                                              unsigned int lru_mask,
3869                                              bool tree)
3870 {
3871         unsigned long nr = 0;
3872         enum lru_list lru;
3873
3874         for_each_lru(lru) {
3875                 if (!(BIT(lru) & lru_mask))
3876                         continue;
3877                 if (tree)
3878                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3879                 else
3880                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3881         }
3882         return nr;
3883 }
3884
3885 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3886 {
3887         struct numa_stat {
3888                 const char *name;
3889                 unsigned int lru_mask;
3890         };
3891
3892         static const struct numa_stat stats[] = {
3893                 { "total", LRU_ALL },
3894                 { "file", LRU_ALL_FILE },
3895                 { "anon", LRU_ALL_ANON },
3896                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3897         };
3898         const struct numa_stat *stat;
3899         int nid;
3900         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3901
3902         cgroup_rstat_flush(memcg->css.cgroup);
3903
3904         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3905                 seq_printf(m, "%s=%lu", stat->name,
3906                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3907                                                    false));
3908                 for_each_node_state(nid, N_MEMORY)
3909                         seq_printf(m, " N%d=%lu", nid,
3910                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3911                                                         stat->lru_mask, false));
3912                 seq_putc(m, '\n');
3913         }
3914
3915         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3916
3917                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3918                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3919                                                    true));
3920                 for_each_node_state(nid, N_MEMORY)
3921                         seq_printf(m, " N%d=%lu", nid,
3922                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3923                                                         stat->lru_mask, true));
3924                 seq_putc(m, '\n');
3925         }
3926
3927         return 0;
3928 }
3929 #endif /* CONFIG_NUMA */
3930
3931 static const unsigned int memcg1_stats[] = {
3932         NR_FILE_PAGES,
3933         NR_ANON_MAPPED,
3934 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3935         NR_ANON_THPS,
3936 #endif
3937         NR_SHMEM,
3938         NR_FILE_MAPPED,
3939         NR_FILE_DIRTY,
3940         NR_WRITEBACK,
3941         MEMCG_SWAP,
3942 };
3943
3944 static const char *const memcg1_stat_names[] = {
3945         "cache",
3946         "rss",
3947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3948         "rss_huge",
3949 #endif
3950         "shmem",
3951         "mapped_file",
3952         "dirty",
3953         "writeback",
3954         "swap",
3955 };
3956
3957 /* Universal VM events cgroup1 shows, original sort order */
3958 static const unsigned int memcg1_events[] = {
3959         PGPGIN,
3960         PGPGOUT,
3961         PGFAULT,
3962         PGMAJFAULT,
3963 };
3964
3965 static int memcg_stat_show(struct seq_file *m, void *v)
3966 {
3967         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3968         unsigned long memory, memsw;
3969         struct mem_cgroup *mi;
3970         unsigned int i;
3971
3972         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3973
3974         cgroup_rstat_flush(memcg->css.cgroup);
3975
3976         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3977                 unsigned long nr;
3978
3979                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3980                         continue;
3981                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3982                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3983         }
3984
3985         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3986                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3987                            memcg_events_local(memcg, memcg1_events[i]));
3988
3989         for (i = 0; i < NR_LRU_LISTS; i++)
3990                 seq_printf(m, "%s %lu\n", lru_list_name(i),
3991                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3992                            PAGE_SIZE);
3993
3994         /* Hierarchical information */
3995         memory = memsw = PAGE_COUNTER_MAX;
3996         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3997                 memory = min(memory, READ_ONCE(mi->memory.max));
3998                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3999         }
4000         seq_printf(m, "hierarchical_memory_limit %llu\n",
4001                    (u64)memory * PAGE_SIZE);
4002         if (do_memsw_account())
4003                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4004                            (u64)memsw * PAGE_SIZE);
4005
4006         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4007                 unsigned long nr;
4008
4009                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4010                         continue;
4011                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4012                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4013                                                 (u64)nr * PAGE_SIZE);
4014         }
4015
4016         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4017                 seq_printf(m, "total_%s %llu\n",
4018                            vm_event_name(memcg1_events[i]),
4019                            (u64)memcg_events(memcg, memcg1_events[i]));
4020
4021         for (i = 0; i < NR_LRU_LISTS; i++)
4022                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4023                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4024                            PAGE_SIZE);
4025
4026 #ifdef CONFIG_DEBUG_VM
4027         {
4028                 pg_data_t *pgdat;
4029                 struct mem_cgroup_per_node *mz;
4030                 unsigned long anon_cost = 0;
4031                 unsigned long file_cost = 0;
4032
4033                 for_each_online_pgdat(pgdat) {
4034                         mz = memcg->nodeinfo[pgdat->node_id];
4035
4036                         anon_cost += mz->lruvec.anon_cost;
4037                         file_cost += mz->lruvec.file_cost;
4038                 }
4039                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4040                 seq_printf(m, "file_cost %lu\n", file_cost);
4041         }
4042 #endif
4043
4044         return 0;
4045 }
4046
4047 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4048                                       struct cftype *cft)
4049 {
4050         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4051
4052         return mem_cgroup_swappiness(memcg);
4053 }
4054
4055 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4056                                        struct cftype *cft, u64 val)
4057 {
4058         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4059
4060         if (val > 100)
4061                 return -EINVAL;
4062
4063         if (!mem_cgroup_is_root(memcg))
4064                 memcg->swappiness = val;
4065         else
4066                 vm_swappiness = val;
4067
4068         return 0;
4069 }
4070
4071 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4072 {
4073         struct mem_cgroup_threshold_ary *t;
4074         unsigned long usage;
4075         int i;
4076
4077         rcu_read_lock();
4078         if (!swap)
4079                 t = rcu_dereference(memcg->thresholds.primary);
4080         else
4081                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4082
4083         if (!t)
4084                 goto unlock;
4085
4086         usage = mem_cgroup_usage(memcg, swap);
4087
4088         /*
4089          * current_threshold points to threshold just below or equal to usage.
4090          * If it's not true, a threshold was crossed after last
4091          * call of __mem_cgroup_threshold().
4092          */
4093         i = t->current_threshold;
4094
4095         /*
4096          * Iterate backward over array of thresholds starting from
4097          * current_threshold and check if a threshold is crossed.
4098          * If none of thresholds below usage is crossed, we read
4099          * only one element of the array here.
4100          */
4101         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4102                 eventfd_signal(t->entries[i].eventfd, 1);
4103
4104         /* i = current_threshold + 1 */
4105         i++;
4106
4107         /*
4108          * Iterate forward over array of thresholds starting from
4109          * current_threshold+1 and check if a threshold is crossed.
4110          * If none of thresholds above usage is crossed, we read
4111          * only one element of the array here.
4112          */
4113         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4114                 eventfd_signal(t->entries[i].eventfd, 1);
4115
4116         /* Update current_threshold */
4117         t->current_threshold = i - 1;
4118 unlock:
4119         rcu_read_unlock();
4120 }
4121
4122 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4123 {
4124         while (memcg) {
4125                 __mem_cgroup_threshold(memcg, false);
4126                 if (do_memsw_account())
4127                         __mem_cgroup_threshold(memcg, true);
4128
4129                 memcg = parent_mem_cgroup(memcg);
4130         }
4131 }
4132
4133 static int compare_thresholds(const void *a, const void *b)
4134 {
4135         const struct mem_cgroup_threshold *_a = a;
4136         const struct mem_cgroup_threshold *_b = b;
4137
4138         if (_a->threshold > _b->threshold)
4139                 return 1;
4140
4141         if (_a->threshold < _b->threshold)
4142                 return -1;
4143
4144         return 0;
4145 }
4146
4147 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4148 {
4149         struct mem_cgroup_eventfd_list *ev;
4150
4151         spin_lock(&memcg_oom_lock);
4152
4153         list_for_each_entry(ev, &memcg->oom_notify, list)
4154                 eventfd_signal(ev->eventfd, 1);
4155
4156         spin_unlock(&memcg_oom_lock);
4157         return 0;
4158 }
4159
4160 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4161 {
4162         struct mem_cgroup *iter;
4163
4164         for_each_mem_cgroup_tree(iter, memcg)
4165                 mem_cgroup_oom_notify_cb(iter);
4166 }
4167
4168 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4169         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4170 {
4171         struct mem_cgroup_thresholds *thresholds;
4172         struct mem_cgroup_threshold_ary *new;
4173         unsigned long threshold;
4174         unsigned long usage;
4175         int i, size, ret;
4176
4177         ret = page_counter_memparse(args, "-1", &threshold);
4178         if (ret)
4179                 return ret;
4180
4181         mutex_lock(&memcg->thresholds_lock);
4182
4183         if (type == _MEM) {
4184                 thresholds = &memcg->thresholds;
4185                 usage = mem_cgroup_usage(memcg, false);
4186         } else if (type == _MEMSWAP) {
4187                 thresholds = &memcg->memsw_thresholds;
4188                 usage = mem_cgroup_usage(memcg, true);
4189         } else
4190                 BUG();
4191
4192         /* Check if a threshold crossed before adding a new one */
4193         if (thresholds->primary)
4194                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4195
4196         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4197
4198         /* Allocate memory for new array of thresholds */
4199         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4200         if (!new) {
4201                 ret = -ENOMEM;
4202                 goto unlock;
4203         }
4204         new->size = size;
4205
4206         /* Copy thresholds (if any) to new array */
4207         if (thresholds->primary)
4208                 memcpy(new->entries, thresholds->primary->entries,
4209                        flex_array_size(new, entries, size - 1));
4210
4211         /* Add new threshold */
4212         new->entries[size - 1].eventfd = eventfd;
4213         new->entries[size - 1].threshold = threshold;
4214
4215         /* Sort thresholds. Registering of new threshold isn't time-critical */
4216         sort(new->entries, size, sizeof(*new->entries),
4217                         compare_thresholds, NULL);
4218
4219         /* Find current threshold */
4220         new->current_threshold = -1;
4221         for (i = 0; i < size; i++) {
4222                 if (new->entries[i].threshold <= usage) {
4223                         /*
4224                          * new->current_threshold will not be used until
4225                          * rcu_assign_pointer(), so it's safe to increment
4226                          * it here.
4227                          */
4228                         ++new->current_threshold;
4229                 } else
4230                         break;
4231         }
4232
4233         /* Free old spare buffer and save old primary buffer as spare */
4234         kfree(thresholds->spare);
4235         thresholds->spare = thresholds->primary;
4236
4237         rcu_assign_pointer(thresholds->primary, new);
4238
4239         /* To be sure that nobody uses thresholds */
4240         synchronize_rcu();
4241
4242 unlock:
4243         mutex_unlock(&memcg->thresholds_lock);
4244
4245         return ret;
4246 }
4247
4248 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4249         struct eventfd_ctx *eventfd, const char *args)
4250 {
4251         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4252 }
4253
4254 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4255         struct eventfd_ctx *eventfd, const char *args)
4256 {
4257         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4258 }
4259
4260 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4261         struct eventfd_ctx *eventfd, enum res_type type)
4262 {
4263         struct mem_cgroup_thresholds *thresholds;
4264         struct mem_cgroup_threshold_ary *new;
4265         unsigned long usage;
4266         int i, j, size, entries;
4267
4268         mutex_lock(&memcg->thresholds_lock);
4269
4270         if (type == _MEM) {
4271                 thresholds = &memcg->thresholds;
4272                 usage = mem_cgroup_usage(memcg, false);
4273         } else if (type == _MEMSWAP) {
4274                 thresholds = &memcg->memsw_thresholds;
4275                 usage = mem_cgroup_usage(memcg, true);
4276         } else
4277                 BUG();
4278
4279         if (!thresholds->primary)
4280                 goto unlock;
4281
4282         /* Check if a threshold crossed before removing */
4283         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4284
4285         /* Calculate new number of threshold */
4286         size = entries = 0;
4287         for (i = 0; i < thresholds->primary->size; i++) {
4288                 if (thresholds->primary->entries[i].eventfd != eventfd)
4289                         size++;
4290                 else
4291                         entries++;
4292         }
4293
4294         new = thresholds->spare;
4295
4296         /* If no items related to eventfd have been cleared, nothing to do */
4297         if (!entries)
4298                 goto unlock;
4299
4300         /* Set thresholds array to NULL if we don't have thresholds */
4301         if (!size) {
4302                 kfree(new);
4303                 new = NULL;
4304                 goto swap_buffers;
4305         }
4306
4307         new->size = size;
4308
4309         /* Copy thresholds and find current threshold */
4310         new->current_threshold = -1;
4311         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4312                 if (thresholds->primary->entries[i].eventfd == eventfd)
4313                         continue;
4314
4315                 new->entries[j] = thresholds->primary->entries[i];
4316                 if (new->entries[j].threshold <= usage) {
4317                         /*
4318                          * new->current_threshold will not be used
4319                          * until rcu_assign_pointer(), so it's safe to increment
4320                          * it here.
4321                          */
4322                         ++new->current_threshold;
4323                 }
4324                 j++;
4325         }
4326
4327 swap_buffers:
4328         /* Swap primary and spare array */
4329         thresholds->spare = thresholds->primary;
4330
4331         rcu_assign_pointer(thresholds->primary, new);
4332
4333         /* To be sure that nobody uses thresholds */
4334         synchronize_rcu();
4335
4336         /* If all events are unregistered, free the spare array */
4337         if (!new) {
4338                 kfree(thresholds->spare);
4339                 thresholds->spare = NULL;
4340         }
4341 unlock:
4342         mutex_unlock(&memcg->thresholds_lock);
4343 }
4344
4345 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4346         struct eventfd_ctx *eventfd)
4347 {
4348         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4349 }
4350
4351 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4352         struct eventfd_ctx *eventfd)
4353 {
4354         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4355 }
4356
4357 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4358         struct eventfd_ctx *eventfd, const char *args)
4359 {
4360         struct mem_cgroup_eventfd_list *event;
4361
4362         event = kmalloc(sizeof(*event), GFP_KERNEL);
4363         if (!event)
4364                 return -ENOMEM;
4365
4366         spin_lock(&memcg_oom_lock);
4367
4368         event->eventfd = eventfd;
4369         list_add(&event->list, &memcg->oom_notify);
4370
4371         /* already in OOM ? */
4372         if (memcg->under_oom)
4373                 eventfd_signal(eventfd, 1);
4374         spin_unlock(&memcg_oom_lock);
4375
4376         return 0;
4377 }
4378
4379 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4380         struct eventfd_ctx *eventfd)
4381 {
4382         struct mem_cgroup_eventfd_list *ev, *tmp;
4383
4384         spin_lock(&memcg_oom_lock);
4385
4386         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4387                 if (ev->eventfd == eventfd) {
4388                         list_del(&ev->list);
4389                         kfree(ev);
4390                 }
4391         }
4392
4393         spin_unlock(&memcg_oom_lock);
4394 }
4395
4396 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4397 {
4398         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4399
4400         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4401         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4402         seq_printf(sf, "oom_kill %lu\n",
4403                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4404         return 0;
4405 }
4406
4407 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4408         struct cftype *cft, u64 val)
4409 {
4410         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4411
4412         /* cannot set to root cgroup and only 0 and 1 are allowed */
4413         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4414                 return -EINVAL;
4415
4416         memcg->oom_kill_disable = val;
4417         if (!val)
4418                 memcg_oom_recover(memcg);
4419
4420         return 0;
4421 }
4422
4423 #ifdef CONFIG_CGROUP_WRITEBACK
4424
4425 #include <trace/events/writeback.h>
4426
4427 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4428 {
4429         return wb_domain_init(&memcg->cgwb_domain, gfp);
4430 }
4431
4432 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4433 {
4434         wb_domain_exit(&memcg->cgwb_domain);
4435 }
4436
4437 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4438 {
4439         wb_domain_size_changed(&memcg->cgwb_domain);
4440 }
4441
4442 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4443 {
4444         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4445
4446         if (!memcg->css.parent)
4447                 return NULL;
4448
4449         return &memcg->cgwb_domain;
4450 }
4451
4452 /**
4453  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4454  * @wb: bdi_writeback in question
4455  * @pfilepages: out parameter for number of file pages
4456  * @pheadroom: out parameter for number of allocatable pages according to memcg
4457  * @pdirty: out parameter for number of dirty pages
4458  * @pwriteback: out parameter for number of pages under writeback
4459  *
4460  * Determine the numbers of file, headroom, dirty, and writeback pages in
4461  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4462  * is a bit more involved.
4463  *
4464  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4465  * headroom is calculated as the lowest headroom of itself and the
4466  * ancestors.  Note that this doesn't consider the actual amount of
4467  * available memory in the system.  The caller should further cap
4468  * *@pheadroom accordingly.
4469  */
4470 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4471                          unsigned long *pheadroom, unsigned long *pdirty,
4472                          unsigned long *pwriteback)
4473 {
4474         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4475         struct mem_cgroup *parent;
4476
4477         cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4478
4479         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4480         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4481         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4482                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4483
4484         *pheadroom = PAGE_COUNTER_MAX;
4485         while ((parent = parent_mem_cgroup(memcg))) {
4486                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4487                                             READ_ONCE(memcg->memory.high));
4488                 unsigned long used = page_counter_read(&memcg->memory);
4489
4490                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4491                 memcg = parent;
4492         }
4493 }
4494
4495 /*
4496  * Foreign dirty flushing
4497  *
4498  * There's an inherent mismatch between memcg and writeback.  The former
4499  * trackes ownership per-page while the latter per-inode.  This was a
4500  * deliberate design decision because honoring per-page ownership in the
4501  * writeback path is complicated, may lead to higher CPU and IO overheads
4502  * and deemed unnecessary given that write-sharing an inode across
4503  * different cgroups isn't a common use-case.
4504  *
4505  * Combined with inode majority-writer ownership switching, this works well
4506  * enough in most cases but there are some pathological cases.  For
4507  * example, let's say there are two cgroups A and B which keep writing to
4508  * different but confined parts of the same inode.  B owns the inode and
4509  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4510  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4511  * triggering background writeback.  A will be slowed down without a way to
4512  * make writeback of the dirty pages happen.
4513  *
4514  * Conditions like the above can lead to a cgroup getting repatedly and
4515  * severely throttled after making some progress after each
4516  * dirty_expire_interval while the underyling IO device is almost
4517  * completely idle.
4518  *
4519  * Solving this problem completely requires matching the ownership tracking
4520  * granularities between memcg and writeback in either direction.  However,
4521  * the more egregious behaviors can be avoided by simply remembering the
4522  * most recent foreign dirtying events and initiating remote flushes on
4523  * them when local writeback isn't enough to keep the memory clean enough.
4524  *
4525  * The following two functions implement such mechanism.  When a foreign
4526  * page - a page whose memcg and writeback ownerships don't match - is
4527  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4528  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4529  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4530  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4531  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4532  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4533  * limited to MEMCG_CGWB_FRN_CNT.
4534  *
4535  * The mechanism only remembers IDs and doesn't hold any object references.
4536  * As being wrong occasionally doesn't matter, updates and accesses to the
4537  * records are lockless and racy.
4538  */
4539 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4540                                              struct bdi_writeback *wb)
4541 {
4542         struct mem_cgroup *memcg = page_memcg(page);
4543         struct memcg_cgwb_frn *frn;
4544         u64 now = get_jiffies_64();
4545         u64 oldest_at = now;
4546         int oldest = -1;
4547         int i;
4548
4549         trace_track_foreign_dirty(page, wb);
4550
4551         /*
4552          * Pick the slot to use.  If there is already a slot for @wb, keep
4553          * using it.  If not replace the oldest one which isn't being
4554          * written out.
4555          */
4556         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4557                 frn = &memcg->cgwb_frn[i];
4558                 if (frn->bdi_id == wb->bdi->id &&
4559                     frn->memcg_id == wb->memcg_css->id)
4560                         break;
4561                 if (time_before64(frn->at, oldest_at) &&
4562                     atomic_read(&frn->done.cnt) == 1) {
4563                         oldest = i;
4564                         oldest_at = frn->at;
4565                 }
4566         }
4567
4568         if (i < MEMCG_CGWB_FRN_CNT) {
4569                 /*
4570                  * Re-using an existing one.  Update timestamp lazily to
4571                  * avoid making the cacheline hot.  We want them to be
4572                  * reasonably up-to-date and significantly shorter than
4573                  * dirty_expire_interval as that's what expires the record.
4574                  * Use the shorter of 1s and dirty_expire_interval / 8.
4575                  */
4576                 unsigned long update_intv =
4577                         min_t(unsigned long, HZ,
4578                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4579
4580                 if (time_before64(frn->at, now - update_intv))
4581                         frn->at = now;
4582         } else if (oldest >= 0) {
4583                 /* replace the oldest free one */
4584                 frn = &memcg->cgwb_frn[oldest];
4585                 frn->bdi_id = wb->bdi->id;
4586                 frn->memcg_id = wb->memcg_css->id;
4587                 frn->at = now;
4588         }
4589 }
4590
4591 /* issue foreign writeback flushes for recorded foreign dirtying events */
4592 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4593 {
4594         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4595         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4596         u64 now = jiffies_64;
4597         int i;
4598
4599         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4600                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4601
4602                 /*
4603                  * If the record is older than dirty_expire_interval,
4604                  * writeback on it has already started.  No need to kick it
4605                  * off again.  Also, don't start a new one if there's
4606                  * already one in flight.
4607                  */
4608                 if (time_after64(frn->at, now - intv) &&
4609                     atomic_read(&frn->done.cnt) == 1) {
4610                         frn->at = 0;
4611                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4612                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4613                                                WB_REASON_FOREIGN_FLUSH,
4614                                                &frn->done);
4615                 }
4616         }
4617 }
4618
4619 #else   /* CONFIG_CGROUP_WRITEBACK */
4620
4621 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4622 {
4623         return 0;
4624 }
4625
4626 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4627 {
4628 }
4629
4630 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4631 {
4632 }
4633
4634 #endif  /* CONFIG_CGROUP_WRITEBACK */
4635
4636 /*
4637  * DO NOT USE IN NEW FILES.
4638  *
4639  * "cgroup.event_control" implementation.
4640  *
4641  * This is way over-engineered.  It tries to support fully configurable
4642  * events for each user.  Such level of flexibility is completely
4643  * unnecessary especially in the light of the planned unified hierarchy.
4644  *
4645  * Please deprecate this and replace with something simpler if at all
4646  * possible.
4647  */
4648
4649 /*
4650  * Unregister event and free resources.
4651  *
4652  * Gets called from workqueue.
4653  */
4654 static void memcg_event_remove(struct work_struct *work)
4655 {
4656         struct mem_cgroup_event *event =
4657                 container_of(work, struct mem_cgroup_event, remove);
4658         struct mem_cgroup *memcg = event->memcg;
4659
4660         remove_wait_queue(event->wqh, &event->wait);
4661
4662         event->unregister_event(memcg, event->eventfd);
4663
4664         /* Notify userspace the event is going away. */
4665         eventfd_signal(event->eventfd, 1);
4666
4667         eventfd_ctx_put(event->eventfd);
4668         kfree(event);
4669         css_put(&memcg->css);
4670 }
4671
4672 /*
4673  * Gets called on EPOLLHUP on eventfd when user closes it.
4674  *
4675  * Called with wqh->lock held and interrupts disabled.
4676  */
4677 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4678                             int sync, void *key)
4679 {
4680         struct mem_cgroup_event *event =
4681                 container_of(wait, struct mem_cgroup_event, wait);
4682         struct mem_cgroup *memcg = event->memcg;
4683         __poll_t flags = key_to_poll(key);
4684
4685         if (flags & EPOLLHUP) {
4686                 /*
4687                  * If the event has been detached at cgroup removal, we
4688                  * can simply return knowing the other side will cleanup
4689                  * for us.
4690                  *
4691                  * We can't race against event freeing since the other
4692                  * side will require wqh->lock via remove_wait_queue(),
4693                  * which we hold.
4694                  */
4695                 spin_lock(&memcg->event_list_lock);
4696                 if (!list_empty(&event->list)) {
4697                         list_del_init(&event->list);
4698                         /*
4699                          * We are in atomic context, but cgroup_event_remove()
4700                          * may sleep, so we have to call it in workqueue.
4701                          */
4702                         schedule_work(&event->remove);
4703                 }
4704                 spin_unlock(&memcg->event_list_lock);
4705         }
4706
4707         return 0;
4708 }
4709
4710 static void memcg_event_ptable_queue_proc(struct file *file,
4711                 wait_queue_head_t *wqh, poll_table *pt)
4712 {
4713         struct mem_cgroup_event *event =
4714                 container_of(pt, struct mem_cgroup_event, pt);
4715
4716         event->wqh = wqh;
4717         add_wait_queue(wqh, &event->wait);
4718 }
4719
4720 /*
4721  * DO NOT USE IN NEW FILES.
4722  *
4723  * Parse input and register new cgroup event handler.
4724  *
4725  * Input must be in format '<event_fd> <control_fd> <args>'.
4726  * Interpretation of args is defined by control file implementation.
4727  */
4728 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4729                                          char *buf, size_t nbytes, loff_t off)
4730 {
4731         struct cgroup_subsys_state *css = of_css(of);
4732         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4733         struct mem_cgroup_event *event;
4734         struct cgroup_subsys_state *cfile_css;
4735         unsigned int efd, cfd;
4736         struct fd efile;
4737         struct fd cfile;
4738         const char *name;
4739         char *endp;
4740         int ret;
4741
4742         buf = strstrip(buf);
4743
4744         efd = simple_strtoul(buf, &endp, 10);
4745         if (*endp != ' ')
4746                 return -EINVAL;
4747         buf = endp + 1;
4748
4749         cfd = simple_strtoul(buf, &endp, 10);
4750         if ((*endp != ' ') && (*endp != '\0'))
4751                 return -EINVAL;
4752         buf = endp + 1;
4753
4754         event = kzalloc(sizeof(*event), GFP_KERNEL);
4755         if (!event)
4756                 return -ENOMEM;
4757
4758         event->memcg = memcg;
4759         INIT_LIST_HEAD(&event->list);
4760         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4761         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4762         INIT_WORK(&event->remove, memcg_event_remove);
4763
4764         efile = fdget(efd);
4765         if (!efile.file) {
4766                 ret = -EBADF;
4767                 goto out_kfree;
4768         }
4769
4770         event->eventfd = eventfd_ctx_fileget(efile.file);
4771         if (IS_ERR(event->eventfd)) {
4772                 ret = PTR_ERR(event->eventfd);
4773                 goto out_put_efile;
4774         }
4775
4776         cfile = fdget(cfd);
4777         if (!cfile.file) {
4778                 ret = -EBADF;
4779                 goto out_put_eventfd;
4780         }
4781
4782         /* the process need read permission on control file */
4783         /* AV: shouldn't we check that it's been opened for read instead? */
4784         ret = file_permission(cfile.file, MAY_READ);
4785         if (ret < 0)
4786                 goto out_put_cfile;
4787
4788         /*
4789          * Determine the event callbacks and set them in @event.  This used
4790          * to be done via struct cftype but cgroup core no longer knows
4791          * about these events.  The following is crude but the whole thing
4792          * is for compatibility anyway.
4793          *
4794          * DO NOT ADD NEW FILES.
4795          */
4796         name = cfile.file->f_path.dentry->d_name.name;
4797
4798         if (!strcmp(name, "memory.usage_in_bytes")) {
4799                 event->register_event = mem_cgroup_usage_register_event;
4800                 event->unregister_event = mem_cgroup_usage_unregister_event;
4801         } else if (!strcmp(name, "memory.oom_control")) {
4802                 event->register_event = mem_cgroup_oom_register_event;
4803                 event->unregister_event = mem_cgroup_oom_unregister_event;
4804         } else if (!strcmp(name, "memory.pressure_level")) {
4805                 event->register_event = vmpressure_register_event;
4806                 event->unregister_event = vmpressure_unregister_event;
4807         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4808                 event->register_event = memsw_cgroup_usage_register_event;
4809                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4810         } else {
4811                 ret = -EINVAL;
4812                 goto out_put_cfile;
4813         }
4814
4815         /*
4816          * Verify @cfile should belong to @css.  Also, remaining events are
4817          * automatically removed on cgroup destruction but the removal is
4818          * asynchronous, so take an extra ref on @css.
4819          */
4820         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4821                                                &memory_cgrp_subsys);
4822         ret = -EINVAL;
4823         if (IS_ERR(cfile_css))
4824                 goto out_put_cfile;
4825         if (cfile_css != css) {
4826                 css_put(cfile_css);
4827                 goto out_put_cfile;
4828         }
4829
4830         ret = event->register_event(memcg, event->eventfd, buf);
4831         if (ret)
4832                 goto out_put_css;
4833
4834         vfs_poll(efile.file, &event->pt);
4835
4836         spin_lock(&memcg->event_list_lock);
4837         list_add(&event->list, &memcg->event_list);
4838         spin_unlock(&memcg->event_list_lock);
4839
4840         fdput(cfile);
4841         fdput(efile);
4842
4843         return nbytes;
4844
4845 out_put_css:
4846         css_put(css);
4847 out_put_cfile:
4848         fdput(cfile);
4849 out_put_eventfd:
4850         eventfd_ctx_put(event->eventfd);
4851 out_put_efile:
4852         fdput(efile);
4853 out_kfree:
4854         kfree(event);
4855
4856         return ret;
4857 }
4858
4859 static struct cftype mem_cgroup_legacy_files[] = {
4860         {
4861                 .name = "usage_in_bytes",
4862                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4863                 .read_u64 = mem_cgroup_read_u64,
4864         },
4865         {
4866                 .name = "max_usage_in_bytes",
4867                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4868                 .write = mem_cgroup_reset,
4869                 .read_u64 = mem_cgroup_read_u64,
4870         },
4871         {
4872                 .name = "limit_in_bytes",
4873                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4874                 .write = mem_cgroup_write,
4875                 .read_u64 = mem_cgroup_read_u64,
4876         },
4877         {
4878                 .name = "soft_limit_in_bytes",
4879                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4880                 .write = mem_cgroup_write,
4881                 .read_u64 = mem_cgroup_read_u64,
4882         },
4883         {
4884                 .name = "failcnt",
4885                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4886                 .write = mem_cgroup_reset,
4887                 .read_u64 = mem_cgroup_read_u64,
4888         },
4889         {
4890                 .name = "stat",
4891                 .seq_show = memcg_stat_show,
4892         },
4893         {
4894                 .name = "force_empty",
4895                 .write = mem_cgroup_force_empty_write,
4896         },
4897         {
4898                 .name = "use_hierarchy",
4899                 .write_u64 = mem_cgroup_hierarchy_write,
4900                 .read_u64 = mem_cgroup_hierarchy_read,
4901         },
4902         {
4903                 .name = "cgroup.event_control",         /* XXX: for compat */
4904                 .write = memcg_write_event_control,
4905                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4906         },
4907         {
4908                 .name = "swappiness",
4909                 .read_u64 = mem_cgroup_swappiness_read,
4910                 .write_u64 = mem_cgroup_swappiness_write,
4911         },
4912         {
4913                 .name = "move_charge_at_immigrate",
4914                 .read_u64 = mem_cgroup_move_charge_read,
4915                 .write_u64 = mem_cgroup_move_charge_write,
4916         },
4917         {
4918                 .name = "oom_control",
4919                 .seq_show = mem_cgroup_oom_control_read,
4920                 .write_u64 = mem_cgroup_oom_control_write,
4921                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4922         },
4923         {
4924                 .name = "pressure_level",
4925         },
4926 #ifdef CONFIG_NUMA
4927         {
4928                 .name = "numa_stat",
4929                 .seq_show = memcg_numa_stat_show,
4930         },
4931 #endif
4932         {
4933                 .name = "kmem.limit_in_bytes",
4934                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4935                 .write = mem_cgroup_write,
4936                 .read_u64 = mem_cgroup_read_u64,
4937         },
4938         {
4939                 .name = "kmem.usage_in_bytes",
4940                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4941                 .read_u64 = mem_cgroup_read_u64,
4942         },
4943         {
4944                 .name = "kmem.failcnt",
4945                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4946                 .write = mem_cgroup_reset,
4947                 .read_u64 = mem_cgroup_read_u64,
4948         },
4949         {
4950                 .name = "kmem.max_usage_in_bytes",
4951                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4952                 .write = mem_cgroup_reset,
4953                 .read_u64 = mem_cgroup_read_u64,
4954         },
4955 #if defined(CONFIG_MEMCG_KMEM) && \
4956         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4957         {
4958                 .name = "kmem.slabinfo",
4959                 .seq_show = memcg_slab_show,
4960         },
4961 #endif
4962         {
4963                 .name = "kmem.tcp.limit_in_bytes",
4964                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4965                 .write = mem_cgroup_write,
4966                 .read_u64 = mem_cgroup_read_u64,
4967         },
4968         {
4969                 .name = "kmem.tcp.usage_in_bytes",
4970                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4971                 .read_u64 = mem_cgroup_read_u64,
4972         },
4973         {
4974                 .name = "kmem.tcp.failcnt",
4975                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4976                 .write = mem_cgroup_reset,
4977                 .read_u64 = mem_cgroup_read_u64,
4978         },
4979         {
4980                 .name = "kmem.tcp.max_usage_in_bytes",
4981                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4982                 .write = mem_cgroup_reset,
4983                 .read_u64 = mem_cgroup_read_u64,
4984         },
4985         { },    /* terminate */
4986 };
4987
4988 /*
4989  * Private memory cgroup IDR
4990  *
4991  * Swap-out records and page cache shadow entries need to store memcg
4992  * references in constrained space, so we maintain an ID space that is
4993  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4994  * memory-controlled cgroups to 64k.
4995  *
4996  * However, there usually are many references to the offline CSS after
4997  * the cgroup has been destroyed, such as page cache or reclaimable
4998  * slab objects, that don't need to hang on to the ID. We want to keep
4999  * those dead CSS from occupying IDs, or we might quickly exhaust the
5000  * relatively small ID space and prevent the creation of new cgroups
5001  * even when there are much fewer than 64k cgroups - possibly none.
5002  *
5003  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5004  * be freed and recycled when it's no longer needed, which is usually
5005  * when the CSS is offlined.
5006  *
5007  * The only exception to that are records of swapped out tmpfs/shmem
5008  * pages that need to be attributed to live ancestors on swapin. But
5009  * those references are manageable from userspace.
5010  */
5011
5012 static DEFINE_IDR(mem_cgroup_idr);
5013
5014 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5015 {
5016         if (memcg->id.id > 0) {
5017                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5018                 memcg->id.id = 0;
5019         }
5020 }
5021
5022 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5023                                                   unsigned int n)
5024 {
5025         refcount_add(n, &memcg->id.ref);
5026 }
5027
5028 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5029 {
5030         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5031                 mem_cgroup_id_remove(memcg);
5032
5033                 /* Memcg ID pins CSS */
5034                 css_put(&memcg->css);
5035         }
5036 }
5037
5038 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5039 {
5040         mem_cgroup_id_put_many(memcg, 1);
5041 }
5042
5043 /**
5044  * mem_cgroup_from_id - look up a memcg from a memcg id
5045  * @id: the memcg id to look up
5046  *
5047  * Caller must hold rcu_read_lock().
5048  */
5049 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5050 {
5051         WARN_ON_ONCE(!rcu_read_lock_held());
5052         return idr_find(&mem_cgroup_idr, id);
5053 }
5054
5055 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5056 {
5057         struct mem_cgroup_per_node *pn;
5058         int tmp = node;
5059         /*
5060          * This routine is called against possible nodes.
5061          * But it's BUG to call kmalloc() against offline node.
5062          *
5063          * TODO: this routine can waste much memory for nodes which will
5064          *       never be onlined. It's better to use memory hotplug callback
5065          *       function.
5066          */
5067         if (!node_state(node, N_NORMAL_MEMORY))
5068                 tmp = -1;
5069         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5070         if (!pn)
5071                 return 1;
5072
5073         pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5074                                                  GFP_KERNEL_ACCOUNT);
5075         if (!pn->lruvec_stat_local) {
5076                 kfree(pn);
5077                 return 1;
5078         }
5079
5080         pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5081                                                GFP_KERNEL_ACCOUNT);
5082         if (!pn->lruvec_stat_cpu) {
5083                 free_percpu(pn->lruvec_stat_local);
5084                 kfree(pn);
5085                 return 1;
5086         }
5087
5088         lruvec_init(&pn->lruvec);
5089         pn->usage_in_excess = 0;
5090         pn->on_tree = false;
5091         pn->memcg = memcg;
5092
5093         memcg->nodeinfo[node] = pn;
5094         return 0;
5095 }
5096
5097 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5098 {
5099         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5100
5101         if (!pn)
5102                 return;
5103
5104         free_percpu(pn->lruvec_stat_cpu);
5105         free_percpu(pn->lruvec_stat_local);
5106         kfree(pn);
5107 }
5108
5109 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5110 {
5111         int node;
5112
5113         for_each_node(node)
5114                 free_mem_cgroup_per_node_info(memcg, node);
5115         free_percpu(memcg->vmstats_percpu);
5116         kfree(memcg);
5117 }
5118
5119 static void mem_cgroup_free(struct mem_cgroup *memcg)
5120 {
5121         int cpu;
5122
5123         memcg_wb_domain_exit(memcg);
5124         /*
5125          * Flush percpu lruvec stats to guarantee the value
5126          * correctness on parent's and all ancestor levels.
5127          */
5128         for_each_online_cpu(cpu)
5129                 memcg_flush_lruvec_page_state(memcg, cpu);
5130         __mem_cgroup_free(memcg);
5131 }
5132
5133 static struct mem_cgroup *mem_cgroup_alloc(void)
5134 {
5135         struct mem_cgroup *memcg;
5136         unsigned int size;
5137         int node;
5138         int __maybe_unused i;
5139         long error = -ENOMEM;
5140
5141         size = sizeof(struct mem_cgroup);
5142         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5143
5144         memcg = kzalloc(size, GFP_KERNEL);
5145         if (!memcg)
5146                 return ERR_PTR(error);
5147
5148         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5149                                  1, MEM_CGROUP_ID_MAX,
5150                                  GFP_KERNEL);
5151         if (memcg->id.id < 0) {
5152                 error = memcg->id.id;
5153                 goto fail;
5154         }
5155
5156         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5157                                                  GFP_KERNEL_ACCOUNT);
5158         if (!memcg->vmstats_percpu)
5159                 goto fail;
5160
5161         for_each_node(node)
5162                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5163                         goto fail;
5164
5165         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5166                 goto fail;
5167
5168         INIT_WORK(&memcg->high_work, high_work_func);
5169         INIT_LIST_HEAD(&memcg->oom_notify);
5170         mutex_init(&memcg->thresholds_lock);
5171         spin_lock_init(&memcg->move_lock);
5172         vmpressure_init(&memcg->vmpressure);
5173         INIT_LIST_HEAD(&memcg->event_list);
5174         spin_lock_init(&memcg->event_list_lock);
5175         memcg->socket_pressure = jiffies;
5176 #ifdef CONFIG_MEMCG_KMEM
5177         memcg->kmemcg_id = -1;
5178         INIT_LIST_HEAD(&memcg->objcg_list);
5179 #endif
5180 #ifdef CONFIG_CGROUP_WRITEBACK
5181         INIT_LIST_HEAD(&memcg->cgwb_list);
5182         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5183                 memcg->cgwb_frn[i].done =
5184                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5185 #endif
5186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5187         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5188         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5189         memcg->deferred_split_queue.split_queue_len = 0;
5190 #endif
5191         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5192         return memcg;
5193 fail:
5194         mem_cgroup_id_remove(memcg);
5195         __mem_cgroup_free(memcg);
5196         return ERR_PTR(error);
5197 }
5198
5199 static struct cgroup_subsys_state * __ref
5200 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5201 {
5202         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5203         struct mem_cgroup *memcg, *old_memcg;
5204         long error = -ENOMEM;
5205
5206         old_memcg = set_active_memcg(parent);
5207         memcg = mem_cgroup_alloc();
5208         set_active_memcg(old_memcg);
5209         if (IS_ERR(memcg))
5210                 return ERR_CAST(memcg);
5211
5212         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5213         memcg->soft_limit = PAGE_COUNTER_MAX;
5214         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5215         if (parent) {
5216                 memcg->swappiness = mem_cgroup_swappiness(parent);
5217                 memcg->oom_kill_disable = parent->oom_kill_disable;
5218
5219                 page_counter_init(&memcg->memory, &parent->memory);
5220                 page_counter_init(&memcg->swap, &parent->swap);
5221                 page_counter_init(&memcg->kmem, &parent->kmem);
5222                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5223         } else {
5224                 page_counter_init(&memcg->memory, NULL);
5225                 page_counter_init(&memcg->swap, NULL);
5226                 page_counter_init(&memcg->kmem, NULL);
5227                 page_counter_init(&memcg->tcpmem, NULL);
5228
5229                 root_mem_cgroup = memcg;
5230                 return &memcg->css;
5231         }
5232
5233         /* The following stuff does not apply to the root */
5234         error = memcg_online_kmem(memcg);
5235         if (error)
5236                 goto fail;
5237
5238         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5239                 static_branch_inc(&memcg_sockets_enabled_key);
5240
5241         return &memcg->css;
5242 fail:
5243         mem_cgroup_id_remove(memcg);
5244         mem_cgroup_free(memcg);
5245         return ERR_PTR(error);
5246 }
5247
5248 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5249 {
5250         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5251
5252         /*
5253          * A memcg must be visible for memcg_expand_shrinker_maps()
5254          * by the time the maps are allocated. So, we allocate maps
5255          * here, when for_each_mem_cgroup() can't skip it.
5256          */
5257         if (memcg_alloc_shrinker_maps(memcg)) {
5258                 mem_cgroup_id_remove(memcg);
5259                 return -ENOMEM;
5260         }
5261
5262         /* Online state pins memcg ID, memcg ID pins CSS */
5263         refcount_set(&memcg->id.ref, 1);
5264         css_get(css);
5265         return 0;
5266 }
5267
5268 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5269 {
5270         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5271         struct mem_cgroup_event *event, *tmp;
5272
5273         /*
5274          * Unregister events and notify userspace.
5275          * Notify userspace about cgroup removing only after rmdir of cgroup
5276          * directory to avoid race between userspace and kernelspace.
5277          */
5278         spin_lock(&memcg->event_list_lock);
5279         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5280                 list_del_init(&event->list);
5281                 schedule_work(&event->remove);
5282         }
5283         spin_unlock(&memcg->event_list_lock);
5284
5285         page_counter_set_min(&memcg->memory, 0);
5286         page_counter_set_low(&memcg->memory, 0);
5287
5288         memcg_offline_kmem(memcg);
5289         wb_memcg_offline(memcg);
5290
5291         drain_all_stock(memcg);
5292
5293         mem_cgroup_id_put(memcg);
5294 }
5295
5296 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5297 {
5298         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5299
5300         invalidate_reclaim_iterators(memcg);
5301 }
5302
5303 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5304 {
5305         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5306         int __maybe_unused i;
5307
5308 #ifdef CONFIG_CGROUP_WRITEBACK
5309         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5310                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5311 #endif
5312         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5313                 static_branch_dec(&memcg_sockets_enabled_key);
5314
5315         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5316                 static_branch_dec(&memcg_sockets_enabled_key);
5317
5318         vmpressure_cleanup(&memcg->vmpressure);
5319         cancel_work_sync(&memcg->high_work);
5320         mem_cgroup_remove_from_trees(memcg);
5321         memcg_free_shrinker_maps(memcg);
5322         memcg_free_kmem(memcg);
5323         mem_cgroup_free(memcg);
5324 }
5325
5326 /**
5327  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5328  * @css: the target css
5329  *
5330  * Reset the states of the mem_cgroup associated with @css.  This is
5331  * invoked when the userland requests disabling on the default hierarchy
5332  * but the memcg is pinned through dependency.  The memcg should stop
5333  * applying policies and should revert to the vanilla state as it may be
5334  * made visible again.
5335  *
5336  * The current implementation only resets the essential configurations.
5337  * This needs to be expanded to cover all the visible parts.
5338  */
5339 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5340 {
5341         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5342
5343         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5344         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5345         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5346         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5347         page_counter_set_min(&memcg->memory, 0);
5348         page_counter_set_low(&memcg->memory, 0);
5349         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5350         memcg->soft_limit = PAGE_COUNTER_MAX;
5351         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5352         memcg_wb_domain_size_changed(memcg);
5353 }
5354
5355 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5356 {
5357         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5358         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5359         struct memcg_vmstats_percpu *statc;
5360         long delta, v;
5361         int i;
5362
5363         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5364
5365         for (i = 0; i < MEMCG_NR_STAT; i++) {
5366                 /*
5367                  * Collect the aggregated propagation counts of groups
5368                  * below us. We're in a per-cpu loop here and this is
5369                  * a global counter, so the first cycle will get them.
5370                  */
5371                 delta = memcg->vmstats.state_pending[i];
5372                 if (delta)
5373                         memcg->vmstats.state_pending[i] = 0;
5374
5375                 /* Add CPU changes on this level since the last flush */
5376                 v = READ_ONCE(statc->state[i]);
5377                 if (v != statc->state_prev[i]) {
5378                         delta += v - statc->state_prev[i];
5379                         statc->state_prev[i] = v;
5380                 }
5381
5382                 if (!delta)
5383                         continue;
5384
5385                 /* Aggregate counts on this level and propagate upwards */
5386                 memcg->vmstats.state[i] += delta;
5387                 if (parent)
5388                         parent->vmstats.state_pending[i] += delta;
5389         }
5390
5391         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5392                 delta = memcg->vmstats.events_pending[i];
5393                 if (delta)
5394                         memcg->vmstats.events_pending[i] = 0;
5395
5396                 v = READ_ONCE(statc->events[i]);
5397                 if (v != statc->events_prev[i]) {
5398                         delta += v - statc->events_prev[i];
5399                         statc->events_prev[i] = v;
5400                 }
5401
5402                 if (!delta)
5403                         continue;
5404
5405                 memcg->vmstats.events[i] += delta;
5406                 if (parent)
5407                         parent->vmstats.events_pending[i] += delta;
5408         }
5409 }
5410
5411 #ifdef CONFIG_MMU
5412 /* Handlers for move charge at task migration. */
5413 static int mem_cgroup_do_precharge(unsigned long count)
5414 {
5415         int ret;
5416
5417         /* Try a single bulk charge without reclaim first, kswapd may wake */
5418         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5419         if (!ret) {
5420                 mc.precharge += count;
5421                 return ret;
5422         }
5423
5424         /* Try charges one by one with reclaim, but do not retry */
5425         while (count--) {
5426                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5427                 if (ret)
5428                         return ret;
5429                 mc.precharge++;
5430                 cond_resched();
5431         }
5432         return 0;
5433 }
5434
5435 union mc_target {
5436         struct page     *page;
5437         swp_entry_t     ent;
5438 };
5439
5440 enum mc_target_type {
5441         MC_TARGET_NONE = 0,
5442         MC_TARGET_PAGE,
5443         MC_TARGET_SWAP,
5444         MC_TARGET_DEVICE,
5445 };
5446
5447 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5448                                                 unsigned long addr, pte_t ptent)
5449 {
5450         struct page *page = vm_normal_page(vma, addr, ptent);
5451
5452         if (!page || !page_mapped(page))
5453                 return NULL;
5454         if (PageAnon(page)) {
5455                 if (!(mc.flags & MOVE_ANON))
5456                         return NULL;
5457         } else {
5458                 if (!(mc.flags & MOVE_FILE))
5459                         return NULL;
5460         }
5461         if (!get_page_unless_zero(page))
5462                 return NULL;
5463
5464         return page;
5465 }
5466
5467 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5468 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5469                         pte_t ptent, swp_entry_t *entry)
5470 {
5471         struct page *page = NULL;
5472         swp_entry_t ent = pte_to_swp_entry(ptent);
5473
5474         if (!(mc.flags & MOVE_ANON))
5475                 return NULL;
5476
5477         /*
5478          * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5479          * a device and because they are not accessible by CPU they are store
5480          * as special swap entry in the CPU page table.
5481          */
5482         if (is_device_private_entry(ent)) {
5483                 page = device_private_entry_to_page(ent);
5484                 /*
5485                  * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5486                  * a refcount of 1 when free (unlike normal page)
5487                  */
5488                 if (!page_ref_add_unless(page, 1, 1))
5489                         return NULL;
5490                 return page;
5491         }
5492
5493         if (non_swap_entry(ent))
5494                 return NULL;
5495
5496         /*
5497          * Because lookup_swap_cache() updates some statistics counter,
5498          * we call find_get_page() with swapper_space directly.
5499          */
5500         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5501         entry->val = ent.val;
5502
5503         return page;
5504 }
5505 #else
5506 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5507                         pte_t ptent, swp_entry_t *entry)
5508 {
5509         return NULL;
5510 }
5511 #endif
5512
5513 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5514                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5515 {
5516         if (!vma->vm_file) /* anonymous vma */
5517                 return NULL;
5518         if (!(mc.flags & MOVE_FILE))
5519                 return NULL;
5520
5521         /* page is moved even if it's not RSS of this task(page-faulted). */
5522         /* shmem/tmpfs may report page out on swap: account for that too. */
5523         return find_get_incore_page(vma->vm_file->f_mapping,
5524                         linear_page_index(vma, addr));
5525 }
5526
5527 /**
5528  * mem_cgroup_move_account - move account of the page
5529  * @page: the page
5530  * @compound: charge the page as compound or small page
5531  * @from: mem_cgroup which the page is moved from.
5532  * @to: mem_cgroup which the page is moved to. @from != @to.
5533  *
5534  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5535  *
5536  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5537  * from old cgroup.
5538  */
5539 static int mem_cgroup_move_account(struct page *page,
5540                                    bool compound,
5541                                    struct mem_cgroup *from,
5542                                    struct mem_cgroup *to)
5543 {
5544         struct lruvec *from_vec, *to_vec;
5545         struct pglist_data *pgdat;
5546         unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5547         int ret;
5548
5549         VM_BUG_ON(from == to);
5550         VM_BUG_ON_PAGE(PageLRU(page), page);
5551         VM_BUG_ON(compound && !PageTransHuge(page));
5552
5553         /*
5554          * Prevent mem_cgroup_migrate() from looking at
5555          * page's memory cgroup of its source page while we change it.
5556          */
5557         ret = -EBUSY;
5558         if (!trylock_page(page))
5559                 goto out;
5560
5561         ret = -EINVAL;
5562         if (page_memcg(page) != from)
5563                 goto out_unlock;
5564
5565         pgdat = page_pgdat(page);
5566         from_vec = mem_cgroup_lruvec(from, pgdat);
5567         to_vec = mem_cgroup_lruvec(to, pgdat);
5568
5569         lock_page_memcg(page);
5570
5571         if (PageAnon(page)) {
5572                 if (page_mapped(page)) {
5573                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5574                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5575                         if (PageTransHuge(page)) {
5576                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5577                                                    -nr_pages);
5578                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5579                                                    nr_pages);
5580                         }
5581                 }
5582         } else {
5583                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5584                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5585
5586                 if (PageSwapBacked(page)) {
5587                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5588                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5589                 }
5590
5591                 if (page_mapped(page)) {
5592                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5593                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5594                 }
5595
5596                 if (PageDirty(page)) {
5597                         struct address_space *mapping = page_mapping(page);
5598
5599                         if (mapping_can_writeback(mapping)) {
5600                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5601                                                    -nr_pages);
5602                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5603                                                    nr_pages);
5604                         }
5605                 }
5606         }
5607
5608         if (PageWriteback(page)) {
5609                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5610                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5611         }
5612
5613         /*
5614          * All state has been migrated, let's switch to the new memcg.
5615          *
5616          * It is safe to change page's memcg here because the page
5617          * is referenced, charged, isolated, and locked: we can't race
5618          * with (un)charging, migration, LRU putback, or anything else
5619          * that would rely on a stable page's memory cgroup.
5620          *
5621          * Note that lock_page_memcg is a memcg lock, not a page lock,
5622          * to save space. As soon as we switch page's memory cgroup to a
5623          * new memcg that isn't locked, the above state can change
5624          * concurrently again. Make sure we're truly done with it.
5625          */
5626         smp_mb();
5627
5628         css_get(&to->css);
5629         css_put(&from->css);
5630
5631         page->memcg_data = (unsigned long)to;
5632
5633         __unlock_page_memcg(from);
5634
5635         ret = 0;
5636
5637         local_irq_disable();
5638         mem_cgroup_charge_statistics(to, page, nr_pages);
5639         memcg_check_events(to, page);
5640         mem_cgroup_charge_statistics(from, page, -nr_pages);
5641         memcg_check_events(from, page);
5642         local_irq_enable();
5643 out_unlock:
5644         unlock_page(page);
5645 out:
5646         return ret;
5647 }
5648
5649 /**
5650  * get_mctgt_type - get target type of moving charge
5651  * @vma: the vma the pte to be checked belongs
5652  * @addr: the address corresponding to the pte to be checked
5653  * @ptent: the pte to be checked
5654  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5655  *
5656  * Returns
5657  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5658  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5659  *     move charge. if @target is not NULL, the page is stored in target->page
5660  *     with extra refcnt got(Callers should handle it).
5661  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5662  *     target for charge migration. if @target is not NULL, the entry is stored
5663  *     in target->ent.
5664  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5665  *     (so ZONE_DEVICE page and thus not on the lru).
5666  *     For now we such page is charge like a regular page would be as for all
5667  *     intent and purposes it is just special memory taking the place of a
5668  *     regular page.
5669  *
5670  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5671  *
5672  * Called with pte lock held.
5673  */
5674
5675 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5676                 unsigned long addr, pte_t ptent, union mc_target *target)
5677 {
5678         struct page *page = NULL;
5679         enum mc_target_type ret = MC_TARGET_NONE;
5680         swp_entry_t ent = { .val = 0 };
5681
5682         if (pte_present(ptent))
5683                 page = mc_handle_present_pte(vma, addr, ptent);
5684         else if (is_swap_pte(ptent))
5685                 page = mc_handle_swap_pte(vma, ptent, &ent);
5686         else if (pte_none(ptent))
5687                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5688
5689         if (!page && !ent.val)
5690                 return ret;
5691         if (page) {
5692                 /*
5693                  * Do only loose check w/o serialization.
5694                  * mem_cgroup_move_account() checks the page is valid or
5695                  * not under LRU exclusion.
5696                  */
5697                 if (page_memcg(page) == mc.from) {
5698                         ret = MC_TARGET_PAGE;
5699                         if (is_device_private_page(page))
5700                                 ret = MC_TARGET_DEVICE;
5701                         if (target)
5702                                 target->page = page;
5703                 }
5704                 if (!ret || !target)
5705                         put_page(page);
5706         }
5707         /*
5708          * There is a swap entry and a page doesn't exist or isn't charged.
5709          * But we cannot move a tail-page in a THP.
5710          */
5711         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5712             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5713                 ret = MC_TARGET_SWAP;
5714                 if (target)
5715                         target->ent = ent;
5716         }
5717         return ret;
5718 }
5719
5720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5721 /*
5722  * We don't consider PMD mapped swapping or file mapped pages because THP does
5723  * not support them for now.
5724  * Caller should make sure that pmd_trans_huge(pmd) is true.
5725  */
5726 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5727                 unsigned long addr, pmd_t pmd, union mc_target *target)
5728 {
5729         struct page *page = NULL;
5730         enum mc_target_type ret = MC_TARGET_NONE;
5731
5732         if (unlikely(is_swap_pmd(pmd))) {
5733                 VM_BUG_ON(thp_migration_supported() &&
5734                                   !is_pmd_migration_entry(pmd));
5735                 return ret;
5736         }
5737         page = pmd_page(pmd);
5738         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5739         if (!(mc.flags & MOVE_ANON))
5740                 return ret;
5741         if (page_memcg(page) == mc.from) {
5742                 ret = MC_TARGET_PAGE;
5743                 if (target) {
5744                         get_page(page);
5745                         target->page = page;
5746                 }
5747         }
5748         return ret;
5749 }
5750 #else
5751 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5752                 unsigned long addr, pmd_t pmd, union mc_target *target)
5753 {
5754         return MC_TARGET_NONE;
5755 }
5756 #endif
5757
5758 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5759                                         unsigned long addr, unsigned long end,
5760                                         struct mm_walk *walk)
5761 {
5762         struct vm_area_struct *vma = walk->vma;
5763         pte_t *pte;
5764         spinlock_t *ptl;
5765
5766         ptl = pmd_trans_huge_lock(pmd, vma);
5767         if (ptl) {
5768                 /*
5769                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5770                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5771                  * this might change.
5772                  */
5773                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5774                         mc.precharge += HPAGE_PMD_NR;
5775                 spin_unlock(ptl);
5776                 return 0;
5777         }
5778
5779         if (pmd_trans_unstable(pmd))
5780                 return 0;
5781         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5782         for (; addr != end; pte++, addr += PAGE_SIZE)
5783                 if (get_mctgt_type(vma, addr, *pte, NULL))
5784                         mc.precharge++; /* increment precharge temporarily */
5785         pte_unmap_unlock(pte - 1, ptl);
5786         cond_resched();
5787
5788         return 0;
5789 }
5790
5791 static const struct mm_walk_ops precharge_walk_ops = {
5792         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5793 };
5794
5795 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5796 {
5797         unsigned long precharge;
5798
5799         mmap_read_lock(mm);
5800         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5801         mmap_read_unlock(mm);
5802
5803         precharge = mc.precharge;
5804         mc.precharge = 0;
5805
5806         return precharge;
5807 }
5808
5809 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5810 {
5811         unsigned long precharge = mem_cgroup_count_precharge(mm);
5812
5813         VM_BUG_ON(mc.moving_task);
5814         mc.moving_task = current;
5815         return mem_cgroup_do_precharge(precharge);
5816 }
5817
5818 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5819 static void __mem_cgroup_clear_mc(void)
5820 {
5821         struct mem_cgroup *from = mc.from;
5822         struct mem_cgroup *to = mc.to;
5823
5824         /* we must uncharge all the leftover precharges from mc.to */
5825         if (mc.precharge) {
5826                 cancel_charge(mc.to, mc.precharge);
5827                 mc.precharge = 0;
5828         }
5829         /*
5830          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5831          * we must uncharge here.
5832          */
5833         if (mc.moved_charge) {
5834                 cancel_charge(mc.from, mc.moved_charge);
5835                 mc.moved_charge = 0;
5836         }
5837         /* we must fixup refcnts and charges */
5838         if (mc.moved_swap) {
5839                 /* uncharge swap account from the old cgroup */
5840                 if (!mem_cgroup_is_root(mc.from))
5841                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5842
5843                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5844
5845                 /*
5846                  * we charged both to->memory and to->memsw, so we
5847                  * should uncharge to->memory.
5848                  */
5849                 if (!mem_cgroup_is_root(mc.to))
5850                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5851
5852                 mc.moved_swap = 0;
5853         }
5854         memcg_oom_recover(from);
5855         memcg_oom_recover(to);
5856         wake_up_all(&mc.waitq);
5857 }
5858
5859 static void mem_cgroup_clear_mc(void)
5860 {
5861         struct mm_struct *mm = mc.mm;
5862
5863         /*
5864          * we must clear moving_task before waking up waiters at the end of
5865          * task migration.
5866          */
5867         mc.moving_task = NULL;
5868         __mem_cgroup_clear_mc();
5869         spin_lock(&mc.lock);
5870         mc.from = NULL;
5871         mc.to = NULL;
5872         mc.mm = NULL;
5873         spin_unlock(&mc.lock);
5874
5875         mmput(mm);
5876 }
5877
5878 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5879 {
5880         struct cgroup_subsys_state *css;
5881         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5882         struct mem_cgroup *from;
5883         struct task_struct *leader, *p;
5884         struct mm_struct *mm;
5885         unsigned long move_flags;
5886         int ret = 0;
5887
5888         /* charge immigration isn't supported on the default hierarchy */
5889         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5890                 return 0;
5891
5892         /*
5893          * Multi-process migrations only happen on the default hierarchy
5894          * where charge immigration is not used.  Perform charge
5895          * immigration if @tset contains a leader and whine if there are
5896          * multiple.
5897          */
5898         p = NULL;
5899         cgroup_taskset_for_each_leader(leader, css, tset) {
5900                 WARN_ON_ONCE(p);
5901                 p = leader;
5902                 memcg = mem_cgroup_from_css(css);
5903         }
5904         if (!p)
5905                 return 0;
5906
5907         /*
5908          * We are now commited to this value whatever it is. Changes in this
5909          * tunable will only affect upcoming migrations, not the current one.
5910          * So we need to save it, and keep it going.
5911          */
5912         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5913         if (!move_flags)
5914                 return 0;
5915
5916         from = mem_cgroup_from_task(p);
5917
5918         VM_BUG_ON(from == memcg);
5919
5920         mm = get_task_mm(p);
5921         if (!mm)
5922                 return 0;
5923         /* We move charges only when we move a owner of the mm */
5924         if (mm->owner == p) {
5925                 VM_BUG_ON(mc.from);
5926                 VM_BUG_ON(mc.to);
5927                 VM_BUG_ON(mc.precharge);
5928                 VM_BUG_ON(mc.moved_charge);
5929                 VM_BUG_ON(mc.moved_swap);
5930
5931                 spin_lock(&mc.lock);
5932                 mc.mm = mm;
5933                 mc.from = from;
5934                 mc.to = memcg;
5935                 mc.flags = move_flags;
5936                 spin_unlock(&mc.lock);
5937                 /* We set mc.moving_task later */
5938
5939                 ret = mem_cgroup_precharge_mc(mm);
5940                 if (ret)
5941                         mem_cgroup_clear_mc();
5942         } else {
5943                 mmput(mm);
5944         }
5945         return ret;
5946 }
5947
5948 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5949 {
5950         if (mc.to)
5951                 mem_cgroup_clear_mc();
5952 }
5953
5954 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5955                                 unsigned long addr, unsigned long end,
5956                                 struct mm_walk *walk)
5957 {
5958         int ret = 0;
5959         struct vm_area_struct *vma = walk->vma;
5960         pte_t *pte;
5961         spinlock_t *ptl;
5962         enum mc_target_type target_type;
5963         union mc_target target;
5964         struct page *page;
5965
5966         ptl = pmd_trans_huge_lock(pmd, vma);
5967         if (ptl) {
5968                 if (mc.precharge < HPAGE_PMD_NR) {
5969                         spin_unlock(ptl);
5970                         return 0;
5971                 }
5972                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5973                 if (target_type == MC_TARGET_PAGE) {
5974                         page = target.page;
5975                         if (!isolate_lru_page(page)) {
5976                                 if (!mem_cgroup_move_account(page, true,
5977                                                              mc.from, mc.to)) {
5978                                         mc.precharge -= HPAGE_PMD_NR;
5979                                         mc.moved_charge += HPAGE_PMD_NR;
5980                                 }
5981                                 putback_lru_page(page);
5982                         }
5983                         put_page(page);
5984                 } else if (target_type == MC_TARGET_DEVICE) {
5985                         page = target.page;
5986                         if (!mem_cgroup_move_account(page, true,
5987                                                      mc.from, mc.to)) {
5988                                 mc.precharge -= HPAGE_PMD_NR;
5989                                 mc.moved_charge += HPAGE_PMD_NR;
5990                         }
5991                         put_page(page);
5992                 }
5993                 spin_unlock(ptl);
5994                 return 0;
5995         }
5996
5997         if (pmd_trans_unstable(pmd))
5998                 return 0;
5999 retry:
6000         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6001         for (; addr != end; addr += PAGE_SIZE) {
6002                 pte_t ptent = *(pte++);
6003                 bool device = false;
6004                 swp_entry_t ent;
6005
6006                 if (!mc.precharge)
6007                         break;
6008
6009                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6010                 case MC_TARGET_DEVICE:
6011                         device = true;
6012                         fallthrough;
6013                 case MC_TARGET_PAGE:
6014                         page = target.page;
6015                         /*
6016                          * We can have a part of the split pmd here. Moving it
6017                          * can be done but it would be too convoluted so simply
6018                          * ignore such a partial THP and keep it in original
6019                          * memcg. There should be somebody mapping the head.
6020                          */
6021                         if (PageTransCompound(page))
6022                                 goto put;
6023                         if (!device && isolate_lru_page(page))
6024                                 goto put;
6025                         if (!mem_cgroup_move_account(page, false,
6026                                                 mc.from, mc.to)) {
6027                                 mc.precharge--;
6028                                 /* we uncharge from mc.from later. */
6029                                 mc.moved_charge++;
6030                         }
6031                         if (!device)
6032                                 putback_lru_page(page);
6033 put:                    /* get_mctgt_type() gets the page */
6034                         put_page(page);
6035                         break;
6036                 case MC_TARGET_SWAP:
6037                         ent = target.ent;
6038                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6039                                 mc.precharge--;
6040                                 mem_cgroup_id_get_many(mc.to, 1);
6041                                 /* we fixup other refcnts and charges later. */
6042                                 mc.moved_swap++;
6043                         }
6044                         break;
6045                 default:
6046                         break;
6047                 }
6048         }
6049         pte_unmap_unlock(pte - 1, ptl);
6050         cond_resched();
6051
6052         if (addr != end) {
6053                 /*
6054                  * We have consumed all precharges we got in can_attach().
6055                  * We try charge one by one, but don't do any additional
6056                  * charges to mc.to if we have failed in charge once in attach()
6057                  * phase.
6058                  */
6059                 ret = mem_cgroup_do_precharge(1);
6060                 if (!ret)
6061                         goto retry;
6062         }
6063
6064         return ret;
6065 }
6066
6067 static const struct mm_walk_ops charge_walk_ops = {
6068         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6069 };
6070
6071 static void mem_cgroup_move_charge(void)
6072 {
6073         lru_add_drain_all();
6074         /*
6075          * Signal lock_page_memcg() to take the memcg's move_lock
6076          * while we're moving its pages to another memcg. Then wait
6077          * for already started RCU-only updates to finish.
6078          */
6079         atomic_inc(&mc.from->moving_account);
6080         synchronize_rcu();
6081 retry:
6082         if (unlikely(!mmap_read_trylock(mc.mm))) {
6083                 /*
6084                  * Someone who are holding the mmap_lock might be waiting in
6085                  * waitq. So we cancel all extra charges, wake up all waiters,
6086                  * and retry. Because we cancel precharges, we might not be able
6087                  * to move enough charges, but moving charge is a best-effort
6088                  * feature anyway, so it wouldn't be a big problem.
6089                  */
6090                 __mem_cgroup_clear_mc();
6091                 cond_resched();
6092                 goto retry;
6093         }
6094         /*
6095          * When we have consumed all precharges and failed in doing
6096          * additional charge, the page walk just aborts.
6097          */
6098         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6099                         NULL);
6100
6101         mmap_read_unlock(mc.mm);
6102         atomic_dec(&mc.from->moving_account);
6103 }
6104
6105 static void mem_cgroup_move_task(void)
6106 {
6107         if (mc.to) {
6108                 mem_cgroup_move_charge();
6109                 mem_cgroup_clear_mc();
6110         }
6111 }
6112 #else   /* !CONFIG_MMU */
6113 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6114 {
6115         return 0;
6116 }
6117 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6118 {
6119 }
6120 static void mem_cgroup_move_task(void)
6121 {
6122 }
6123 #endif
6124
6125 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6126 {
6127         if (value == PAGE_COUNTER_MAX)
6128                 seq_puts(m, "max\n");
6129         else
6130                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6131
6132         return 0;
6133 }
6134
6135 static u64 memory_current_read(struct cgroup_subsys_state *css,
6136                                struct cftype *cft)
6137 {
6138         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6139
6140         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6141 }
6142
6143 static int memory_min_show(struct seq_file *m, void *v)
6144 {
6145         return seq_puts_memcg_tunable(m,
6146                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6147 }
6148
6149 static ssize_t memory_min_write(struct kernfs_open_file *of,
6150                                 char *buf, size_t nbytes, loff_t off)
6151 {
6152         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6153         unsigned long min;
6154         int err;
6155
6156         buf = strstrip(buf);
6157         err = page_counter_memparse(buf, "max", &min);
6158         if (err)
6159                 return err;
6160
6161         page_counter_set_min(&memcg->memory, min);
6162
6163         return nbytes;
6164 }
6165
6166 static int memory_low_show(struct seq_file *m, void *v)
6167 {
6168         return seq_puts_memcg_tunable(m,
6169                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6170 }
6171
6172 static ssize_t memory_low_write(struct kernfs_open_file *of,
6173                                 char *buf, size_t nbytes, loff_t off)
6174 {
6175         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6176         unsigned long low;
6177         int err;
6178
6179         buf = strstrip(buf);
6180         err = page_counter_memparse(buf, "max", &low);
6181         if (err)
6182                 return err;
6183
6184         page_counter_set_low(&memcg->memory, low);
6185
6186         return nbytes;
6187 }
6188
6189 static int memory_high_show(struct seq_file *m, void *v)
6190 {
6191         return seq_puts_memcg_tunable(m,
6192                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6193 }
6194
6195 static ssize_t memory_high_write(struct kernfs_open_file *of,
6196                                  char *buf, size_t nbytes, loff_t off)
6197 {
6198         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6199         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6200         bool drained = false;
6201         unsigned long high;
6202         int err;
6203
6204         buf = strstrip(buf);
6205         err = page_counter_memparse(buf, "max", &high);
6206         if (err)
6207                 return err;
6208
6209         page_counter_set_high(&memcg->memory, high);
6210
6211         for (;;) {
6212                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6213                 unsigned long reclaimed;
6214
6215                 if (nr_pages <= high)
6216                         break;
6217
6218                 if (signal_pending(current))
6219                         break;
6220
6221                 if (!drained) {
6222                         drain_all_stock(memcg);
6223                         drained = true;
6224                         continue;
6225                 }
6226
6227                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6228                                                          GFP_KERNEL, true);
6229
6230                 if (!reclaimed && !nr_retries--)
6231                         break;
6232         }
6233
6234         memcg_wb_domain_size_changed(memcg);
6235         return nbytes;
6236 }
6237
6238 static int memory_max_show(struct seq_file *m, void *v)
6239 {
6240         return seq_puts_memcg_tunable(m,
6241                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6242 }
6243
6244 static ssize_t memory_max_write(struct kernfs_open_file *of,
6245                                 char *buf, size_t nbytes, loff_t off)
6246 {
6247         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6248         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6249         bool drained = false;
6250         unsigned long max;
6251         int err;
6252
6253         buf = strstrip(buf);
6254         err = page_counter_memparse(buf, "max", &max);
6255         if (err)
6256                 return err;
6257
6258         xchg(&memcg->memory.max, max);
6259
6260         for (;;) {
6261                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6262
6263                 if (nr_pages <= max)
6264                         break;
6265
6266                 if (signal_pending(current))
6267                         break;
6268
6269                 if (!drained) {
6270                         drain_all_stock(memcg);
6271                         drained = true;
6272                         continue;
6273                 }
6274
6275                 if (nr_reclaims) {
6276                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6277                                                           GFP_KERNEL, true))
6278                                 nr_reclaims--;
6279                         continue;
6280                 }
6281
6282                 memcg_memory_event(memcg, MEMCG_OOM);
6283                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6284                         break;
6285         }
6286
6287         memcg_wb_domain_size_changed(memcg);
6288         return nbytes;
6289 }
6290
6291 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6292 {
6293         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6294         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6295         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6296         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6297         seq_printf(m, "oom_kill %lu\n",
6298                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6299 }
6300
6301 static int memory_events_show(struct seq_file *m, void *v)
6302 {
6303         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6304
6305         __memory_events_show(m, memcg->memory_events);
6306         return 0;
6307 }
6308
6309 static int memory_events_local_show(struct seq_file *m, void *v)
6310 {
6311         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6312
6313         __memory_events_show(m, memcg->memory_events_local);
6314         return 0;
6315 }
6316
6317 static int memory_stat_show(struct seq_file *m, void *v)
6318 {
6319         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6320         char *buf;
6321
6322         buf = memory_stat_format(memcg);
6323         if (!buf)
6324                 return -ENOMEM;
6325         seq_puts(m, buf);
6326         kfree(buf);
6327         return 0;
6328 }
6329
6330 #ifdef CONFIG_NUMA
6331 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6332                                                      int item)
6333 {
6334         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6335 }
6336
6337 static int memory_numa_stat_show(struct seq_file *m, void *v)
6338 {
6339         int i;
6340         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6341
6342         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6343                 int nid;
6344
6345                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6346                         continue;
6347
6348                 seq_printf(m, "%s", memory_stats[i].name);
6349                 for_each_node_state(nid, N_MEMORY) {
6350                         u64 size;
6351                         struct lruvec *lruvec;
6352
6353                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6354                         size = lruvec_page_state_output(lruvec,
6355                                                         memory_stats[i].idx);
6356                         seq_printf(m, " N%d=%llu", nid, size);
6357                 }
6358                 seq_putc(m, '\n');
6359         }
6360
6361         return 0;
6362 }
6363 #endif
6364
6365 static int memory_oom_group_show(struct seq_file *m, void *v)
6366 {
6367         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6368
6369         seq_printf(m, "%d\n", memcg->oom_group);
6370
6371         return 0;
6372 }
6373
6374 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6375                                       char *buf, size_t nbytes, loff_t off)
6376 {
6377         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6378         int ret, oom_group;
6379
6380         buf = strstrip(buf);
6381         if (!buf)
6382                 return -EINVAL;
6383
6384         ret = kstrtoint(buf, 0, &oom_group);
6385         if (ret)
6386                 return ret;
6387
6388         if (oom_group != 0 && oom_group != 1)
6389                 return -EINVAL;
6390
6391         memcg->oom_group = oom_group;
6392
6393         return nbytes;
6394 }
6395
6396 static struct cftype memory_files[] = {
6397         {
6398                 .name = "current",
6399                 .flags = CFTYPE_NOT_ON_ROOT,
6400                 .read_u64 = memory_current_read,
6401         },
6402         {
6403                 .name = "min",
6404                 .flags = CFTYPE_NOT_ON_ROOT,
6405                 .seq_show = memory_min_show,
6406                 .write = memory_min_write,
6407         },
6408         {
6409                 .name = "low",
6410                 .flags = CFTYPE_NOT_ON_ROOT,
6411                 .seq_show = memory_low_show,
6412                 .write = memory_low_write,
6413         },
6414         {
6415                 .name = "high",
6416                 .flags = CFTYPE_NOT_ON_ROOT,
6417                 .seq_show = memory_high_show,
6418                 .write = memory_high_write,
6419         },
6420         {
6421                 .name = "max",
6422                 .flags = CFTYPE_NOT_ON_ROOT,
6423                 .seq_show = memory_max_show,
6424                 .write = memory_max_write,
6425         },
6426         {
6427                 .name = "events",
6428                 .flags = CFTYPE_NOT_ON_ROOT,
6429                 .file_offset = offsetof(struct mem_cgroup, events_file),
6430                 .seq_show = memory_events_show,
6431         },
6432         {
6433                 .name = "events.local",
6434                 .flags = CFTYPE_NOT_ON_ROOT,
6435                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6436                 .seq_show = memory_events_local_show,
6437         },
6438         {
6439                 .name = "stat",
6440                 .seq_show = memory_stat_show,
6441         },
6442 #ifdef CONFIG_NUMA
6443         {
6444                 .name = "numa_stat",
6445                 .seq_show = memory_numa_stat_show,
6446         },
6447 #endif
6448         {
6449                 .name = "oom.group",
6450                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6451                 .seq_show = memory_oom_group_show,
6452                 .write = memory_oom_group_write,
6453         },
6454         { }     /* terminate */
6455 };
6456
6457 struct cgroup_subsys memory_cgrp_subsys = {
6458         .css_alloc = mem_cgroup_css_alloc,
6459         .css_online = mem_cgroup_css_online,
6460         .css_offline = mem_cgroup_css_offline,
6461         .css_released = mem_cgroup_css_released,
6462         .css_free = mem_cgroup_css_free,
6463         .css_reset = mem_cgroup_css_reset,
6464         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6465         .can_attach = mem_cgroup_can_attach,
6466         .cancel_attach = mem_cgroup_cancel_attach,
6467         .post_attach = mem_cgroup_move_task,
6468         .dfl_cftypes = memory_files,
6469         .legacy_cftypes = mem_cgroup_legacy_files,
6470         .early_init = 0,
6471 };
6472
6473 /*
6474  * This function calculates an individual cgroup's effective
6475  * protection which is derived from its own memory.min/low, its
6476  * parent's and siblings' settings, as well as the actual memory
6477  * distribution in the tree.
6478  *
6479  * The following rules apply to the effective protection values:
6480  *
6481  * 1. At the first level of reclaim, effective protection is equal to
6482  *    the declared protection in memory.min and memory.low.
6483  *
6484  * 2. To enable safe delegation of the protection configuration, at
6485  *    subsequent levels the effective protection is capped to the
6486  *    parent's effective protection.
6487  *
6488  * 3. To make complex and dynamic subtrees easier to configure, the
6489  *    user is allowed to overcommit the declared protection at a given
6490  *    level. If that is the case, the parent's effective protection is
6491  *    distributed to the children in proportion to how much protection
6492  *    they have declared and how much of it they are utilizing.
6493  *
6494  *    This makes distribution proportional, but also work-conserving:
6495  *    if one cgroup claims much more protection than it uses memory,
6496  *    the unused remainder is available to its siblings.
6497  *
6498  * 4. Conversely, when the declared protection is undercommitted at a
6499  *    given level, the distribution of the larger parental protection
6500  *    budget is NOT proportional. A cgroup's protection from a sibling
6501  *    is capped to its own memory.min/low setting.
6502  *
6503  * 5. However, to allow protecting recursive subtrees from each other
6504  *    without having to declare each individual cgroup's fixed share
6505  *    of the ancestor's claim to protection, any unutilized -
6506  *    "floating" - protection from up the tree is distributed in
6507  *    proportion to each cgroup's *usage*. This makes the protection
6508  *    neutral wrt sibling cgroups and lets them compete freely over
6509  *    the shared parental protection budget, but it protects the
6510  *    subtree as a whole from neighboring subtrees.
6511  *
6512  * Note that 4. and 5. are not in conflict: 4. is about protecting
6513  * against immediate siblings whereas 5. is about protecting against
6514  * neighboring subtrees.
6515  */
6516 static unsigned long effective_protection(unsigned long usage,
6517                                           unsigned long parent_usage,
6518                                           unsigned long setting,
6519                                           unsigned long parent_effective,
6520                                           unsigned long siblings_protected)
6521 {
6522         unsigned long protected;
6523         unsigned long ep;
6524
6525         protected = min(usage, setting);
6526         /*
6527          * If all cgroups at this level combined claim and use more
6528          * protection then what the parent affords them, distribute
6529          * shares in proportion to utilization.
6530          *
6531          * We are using actual utilization rather than the statically
6532          * claimed protection in order to be work-conserving: claimed
6533          * but unused protection is available to siblings that would
6534          * otherwise get a smaller chunk than what they claimed.
6535          */
6536         if (siblings_protected > parent_effective)
6537                 return protected * parent_effective / siblings_protected;
6538
6539         /*
6540          * Ok, utilized protection of all children is within what the
6541          * parent affords them, so we know whatever this child claims
6542          * and utilizes is effectively protected.
6543          *
6544          * If there is unprotected usage beyond this value, reclaim
6545          * will apply pressure in proportion to that amount.
6546          *
6547          * If there is unutilized protection, the cgroup will be fully
6548          * shielded from reclaim, but we do return a smaller value for
6549          * protection than what the group could enjoy in theory. This
6550          * is okay. With the overcommit distribution above, effective
6551          * protection is always dependent on how memory is actually
6552          * consumed among the siblings anyway.
6553          */
6554         ep = protected;
6555
6556         /*
6557          * If the children aren't claiming (all of) the protection
6558          * afforded to them by the parent, distribute the remainder in
6559          * proportion to the (unprotected) memory of each cgroup. That
6560          * way, cgroups that aren't explicitly prioritized wrt each
6561          * other compete freely over the allowance, but they are
6562          * collectively protected from neighboring trees.
6563          *
6564          * We're using unprotected memory for the weight so that if
6565          * some cgroups DO claim explicit protection, we don't protect
6566          * the same bytes twice.
6567          *
6568          * Check both usage and parent_usage against the respective
6569          * protected values. One should imply the other, but they
6570          * aren't read atomically - make sure the division is sane.
6571          */
6572         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6573                 return ep;
6574         if (parent_effective > siblings_protected &&
6575             parent_usage > siblings_protected &&
6576             usage > protected) {
6577                 unsigned long unclaimed;
6578
6579                 unclaimed = parent_effective - siblings_protected;
6580                 unclaimed *= usage - protected;
6581                 unclaimed /= parent_usage - siblings_protected;
6582
6583                 ep += unclaimed;
6584         }
6585
6586         return ep;
6587 }
6588
6589 /**
6590  * mem_cgroup_protected - check if memory consumption is in the normal range
6591  * @root: the top ancestor of the sub-tree being checked
6592  * @memcg: the memory cgroup to check
6593  *
6594  * WARNING: This function is not stateless! It can only be used as part
6595  *          of a top-down tree iteration, not for isolated queries.
6596  */
6597 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6598                                      struct mem_cgroup *memcg)
6599 {
6600         unsigned long usage, parent_usage;
6601         struct mem_cgroup *parent;
6602
6603         if (mem_cgroup_disabled())
6604                 return;
6605
6606         if (!root)
6607                 root = root_mem_cgroup;
6608
6609         /*
6610          * Effective values of the reclaim targets are ignored so they
6611          * can be stale. Have a look at mem_cgroup_protection for more
6612          * details.
6613          * TODO: calculation should be more robust so that we do not need
6614          * that special casing.
6615          */
6616         if (memcg == root)
6617                 return;
6618
6619         usage = page_counter_read(&memcg->memory);
6620         if (!usage)
6621                 return;
6622
6623         parent = parent_mem_cgroup(memcg);
6624         /* No parent means a non-hierarchical mode on v1 memcg */
6625         if (!parent)
6626                 return;
6627
6628         if (parent == root) {
6629                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6630                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6631                 return;
6632         }
6633
6634         parent_usage = page_counter_read(&parent->memory);
6635
6636         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6637                         READ_ONCE(memcg->memory.min),
6638                         READ_ONCE(parent->memory.emin),
6639                         atomic_long_read(&parent->memory.children_min_usage)));
6640
6641         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6642                         READ_ONCE(memcg->memory.low),
6643                         READ_ONCE(parent->memory.elow),
6644                         atomic_long_read(&parent->memory.children_low_usage)));
6645 }
6646
6647 /**
6648  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6649  * @page: page to charge
6650  * @mm: mm context of the victim
6651  * @gfp_mask: reclaim mode
6652  *
6653  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6654  * pages according to @gfp_mask if necessary.
6655  *
6656  * Returns 0 on success. Otherwise, an error code is returned.
6657  */
6658 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6659 {
6660         unsigned int nr_pages = thp_nr_pages(page);
6661         struct mem_cgroup *memcg = NULL;
6662         int ret = 0;
6663
6664         if (mem_cgroup_disabled())
6665                 goto out;
6666
6667         if (PageSwapCache(page)) {
6668                 swp_entry_t ent = { .val = page_private(page), };
6669                 unsigned short id;
6670
6671                 /*
6672                  * Every swap fault against a single page tries to charge the
6673                  * page, bail as early as possible.  shmem_unuse() encounters
6674                  * already charged pages, too.  page and memcg binding is
6675                  * protected by the page lock, which serializes swap cache
6676                  * removal, which in turn serializes uncharging.
6677                  */
6678                 VM_BUG_ON_PAGE(!PageLocked(page), page);
6679                 if (page_memcg(compound_head(page)))
6680                         goto out;
6681
6682                 id = lookup_swap_cgroup_id(ent);
6683                 rcu_read_lock();
6684                 memcg = mem_cgroup_from_id(id);
6685                 if (memcg && !css_tryget_online(&memcg->css))
6686                         memcg = NULL;
6687                 rcu_read_unlock();
6688         }
6689
6690         if (!memcg)
6691                 memcg = get_mem_cgroup_from_mm(mm);
6692
6693         ret = try_charge(memcg, gfp_mask, nr_pages);
6694         if (ret)
6695                 goto out_put;
6696
6697         css_get(&memcg->css);
6698         commit_charge(page, memcg);
6699
6700         local_irq_disable();
6701         mem_cgroup_charge_statistics(memcg, page, nr_pages);
6702         memcg_check_events(memcg, page);
6703         local_irq_enable();
6704
6705         /*
6706          * Cgroup1's unified memory+swap counter has been charged with the
6707          * new swapcache page, finish the transfer by uncharging the swap
6708          * slot. The swap slot would also get uncharged when it dies, but
6709          * it can stick around indefinitely and we'd count the page twice
6710          * the entire time.
6711          *
6712          * Cgroup2 has separate resource counters for memory and swap,
6713          * so this is a non-issue here. Memory and swap charge lifetimes
6714          * correspond 1:1 to page and swap slot lifetimes: we charge the
6715          * page to memory here, and uncharge swap when the slot is freed.
6716          */
6717         if (do_memsw_account() && PageSwapCache(page)) {
6718                 swp_entry_t entry = { .val = page_private(page) };
6719                 /*
6720                  * The swap entry might not get freed for a long time,
6721                  * let's not wait for it.  The page already received a
6722                  * memory+swap charge, drop the swap entry duplicate.
6723                  */
6724                 mem_cgroup_uncharge_swap(entry, nr_pages);
6725         }
6726
6727 out_put:
6728         css_put(&memcg->css);
6729 out:
6730         return ret;
6731 }
6732
6733 struct uncharge_gather {
6734         struct mem_cgroup *memcg;
6735         unsigned long nr_pages;
6736         unsigned long pgpgout;
6737         unsigned long nr_kmem;
6738         struct page *dummy_page;
6739 };
6740
6741 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6742 {
6743         memset(ug, 0, sizeof(*ug));
6744 }
6745
6746 static void uncharge_batch(const struct uncharge_gather *ug)
6747 {
6748         unsigned long flags;
6749
6750         if (!mem_cgroup_is_root(ug->memcg)) {
6751                 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6752                 if (do_memsw_account())
6753                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6754                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6755                         page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6756                 memcg_oom_recover(ug->memcg);
6757         }
6758
6759         local_irq_save(flags);
6760         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6761         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6762         memcg_check_events(ug->memcg, ug->dummy_page);
6763         local_irq_restore(flags);
6764
6765         /* drop reference from uncharge_page */
6766         css_put(&ug->memcg->css);
6767 }
6768
6769 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6770 {
6771         unsigned long nr_pages;
6772
6773         VM_BUG_ON_PAGE(PageLRU(page), page);
6774
6775         if (!page_memcg(page))
6776                 return;
6777
6778         /*
6779          * Nobody should be changing or seriously looking at
6780          * page_memcg(page) at this point, we have fully
6781          * exclusive access to the page.
6782          */
6783
6784         if (ug->memcg != page_memcg(page)) {
6785                 if (ug->memcg) {
6786                         uncharge_batch(ug);
6787                         uncharge_gather_clear(ug);
6788                 }
6789                 ug->memcg = page_memcg(page);
6790
6791                 /* pairs with css_put in uncharge_batch */
6792                 css_get(&ug->memcg->css);
6793         }
6794
6795         nr_pages = compound_nr(page);
6796         ug->nr_pages += nr_pages;
6797
6798         if (PageMemcgKmem(page))
6799                 ug->nr_kmem += nr_pages;
6800         else
6801                 ug->pgpgout++;
6802
6803         ug->dummy_page = page;
6804         page->memcg_data = 0;
6805         css_put(&ug->memcg->css);
6806 }
6807
6808 /**
6809  * mem_cgroup_uncharge - uncharge a page
6810  * @page: page to uncharge
6811  *
6812  * Uncharge a page previously charged with mem_cgroup_charge().
6813  */
6814 void mem_cgroup_uncharge(struct page *page)
6815 {
6816         struct uncharge_gather ug;
6817
6818         if (mem_cgroup_disabled())
6819                 return;
6820
6821         /* Don't touch page->lru of any random page, pre-check: */
6822         if (!page_memcg(page))
6823                 return;
6824
6825         uncharge_gather_clear(&ug);
6826         uncharge_page(page, &ug);
6827         uncharge_batch(&ug);
6828 }
6829
6830 /**
6831  * mem_cgroup_uncharge_list - uncharge a list of page
6832  * @page_list: list of pages to uncharge
6833  *
6834  * Uncharge a list of pages previously charged with
6835  * mem_cgroup_charge().
6836  */
6837 void mem_cgroup_uncharge_list(struct list_head *page_list)
6838 {
6839         struct uncharge_gather ug;
6840         struct page *page;
6841
6842         if (mem_cgroup_disabled())
6843                 return;
6844
6845         uncharge_gather_clear(&ug);
6846         list_for_each_entry(page, page_list, lru)
6847                 uncharge_page(page, &ug);
6848         if (ug.memcg)
6849                 uncharge_batch(&ug);
6850 }
6851
6852 /**
6853  * mem_cgroup_migrate - charge a page's replacement
6854  * @oldpage: currently circulating page
6855  * @newpage: replacement page
6856  *
6857  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6858  * be uncharged upon free.
6859  *
6860  * Both pages must be locked, @newpage->mapping must be set up.
6861  */
6862 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6863 {
6864         struct mem_cgroup *memcg;
6865         unsigned int nr_pages;
6866         unsigned long flags;
6867
6868         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6869         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6870         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6871         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6872                        newpage);
6873
6874         if (mem_cgroup_disabled())
6875                 return;
6876
6877         /* Page cache replacement: new page already charged? */
6878         if (page_memcg(newpage))
6879                 return;
6880
6881         memcg = page_memcg(oldpage);
6882         VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6883         if (!memcg)
6884                 return;
6885
6886         /* Force-charge the new page. The old one will be freed soon */
6887         nr_pages = thp_nr_pages(newpage);
6888
6889         page_counter_charge(&memcg->memory, nr_pages);
6890         if (do_memsw_account())
6891                 page_counter_charge(&memcg->memsw, nr_pages);
6892
6893         css_get(&memcg->css);
6894         commit_charge(newpage, memcg);
6895
6896         local_irq_save(flags);
6897         mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6898         memcg_check_events(memcg, newpage);
6899         local_irq_restore(flags);
6900 }
6901
6902 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6903 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6904
6905 void mem_cgroup_sk_alloc(struct sock *sk)
6906 {
6907         struct mem_cgroup *memcg;
6908
6909         if (!mem_cgroup_sockets_enabled)
6910                 return;
6911
6912         /* Do not associate the sock with unrelated interrupted task's memcg. */
6913         if (in_interrupt())
6914                 return;
6915
6916         rcu_read_lock();
6917         memcg = mem_cgroup_from_task(current);
6918         if (memcg == root_mem_cgroup)
6919                 goto out;
6920         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6921                 goto out;
6922         if (css_tryget(&memcg->css))
6923                 sk->sk_memcg = memcg;
6924 out:
6925         rcu_read_unlock();
6926 }
6927
6928 void mem_cgroup_sk_free(struct sock *sk)
6929 {
6930         if (sk->sk_memcg)
6931                 css_put(&sk->sk_memcg->css);
6932 }
6933
6934 /**
6935  * mem_cgroup_charge_skmem - charge socket memory
6936  * @memcg: memcg to charge
6937  * @nr_pages: number of pages to charge
6938  *
6939  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6940  * @memcg's configured limit, %false if the charge had to be forced.
6941  */
6942 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6943 {
6944         gfp_t gfp_mask = GFP_KERNEL;
6945
6946         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6947                 struct page_counter *fail;
6948
6949                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6950                         memcg->tcpmem_pressure = 0;
6951                         return true;
6952                 }
6953                 page_counter_charge(&memcg->tcpmem, nr_pages);
6954                 memcg->tcpmem_pressure = 1;
6955                 return false;
6956         }
6957
6958         /* Don't block in the packet receive path */
6959         if (in_softirq())
6960                 gfp_mask = GFP_NOWAIT;
6961
6962         mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6963
6964         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6965                 return true;
6966
6967         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6968         return false;
6969 }
6970
6971 /**
6972  * mem_cgroup_uncharge_skmem - uncharge socket memory
6973  * @memcg: memcg to uncharge
6974  * @nr_pages: number of pages to uncharge
6975  */
6976 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6977 {
6978         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6979                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6980                 return;
6981         }
6982
6983         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6984
6985         refill_stock(memcg, nr_pages);
6986 }
6987
6988 static int __init cgroup_memory(char *s)
6989 {
6990         char *token;
6991
6992         while ((token = strsep(&s, ",")) != NULL) {
6993                 if (!*token)
6994                         continue;
6995                 if (!strcmp(token, "nosocket"))
6996                         cgroup_memory_nosocket = true;
6997                 if (!strcmp(token, "nokmem"))
6998                         cgroup_memory_nokmem = true;
6999         }
7000         return 0;
7001 }
7002 __setup("cgroup.memory=", cgroup_memory);
7003
7004 /*
7005  * subsys_initcall() for memory controller.
7006  *
7007  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7008  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7009  * basically everything that doesn't depend on a specific mem_cgroup structure
7010  * should be initialized from here.
7011  */
7012 static int __init mem_cgroup_init(void)
7013 {
7014         int cpu, node;
7015
7016         /*
7017          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7018          * used for per-memcg-per-cpu caching of per-node statistics. In order
7019          * to work fine, we should make sure that the overfill threshold can't
7020          * exceed S32_MAX / PAGE_SIZE.
7021          */
7022         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7023
7024         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7025                                   memcg_hotplug_cpu_dead);
7026
7027         for_each_possible_cpu(cpu)
7028                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7029                           drain_local_stock);
7030
7031         for_each_node(node) {
7032                 struct mem_cgroup_tree_per_node *rtpn;
7033
7034                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7035                                     node_online(node) ? node : NUMA_NO_NODE);
7036
7037                 rtpn->rb_root = RB_ROOT;
7038                 rtpn->rb_rightmost = NULL;
7039                 spin_lock_init(&rtpn->lock);
7040                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7041         }
7042
7043         return 0;
7044 }
7045 subsys_initcall(mem_cgroup_init);
7046
7047 #ifdef CONFIG_MEMCG_SWAP
7048 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7049 {
7050         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7051                 /*
7052                  * The root cgroup cannot be destroyed, so it's refcount must
7053                  * always be >= 1.
7054                  */
7055                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7056                         VM_BUG_ON(1);
7057                         break;
7058                 }
7059                 memcg = parent_mem_cgroup(memcg);
7060                 if (!memcg)
7061                         memcg = root_mem_cgroup;
7062         }
7063         return memcg;
7064 }
7065
7066 /**
7067  * mem_cgroup_swapout - transfer a memsw charge to swap
7068  * @page: page whose memsw charge to transfer
7069  * @entry: swap entry to move the charge to
7070  *
7071  * Transfer the memsw charge of @page to @entry.
7072  */
7073 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7074 {
7075         struct mem_cgroup *memcg, *swap_memcg;
7076         unsigned int nr_entries;
7077         unsigned short oldid;
7078
7079         VM_BUG_ON_PAGE(PageLRU(page), page);
7080         VM_BUG_ON_PAGE(page_count(page), page);
7081
7082         if (mem_cgroup_disabled())
7083                 return;
7084
7085         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7086                 return;
7087
7088         memcg = page_memcg(page);
7089
7090         VM_WARN_ON_ONCE_PAGE(!memcg, page);
7091         if (!memcg)
7092                 return;
7093
7094         /*
7095          * In case the memcg owning these pages has been offlined and doesn't
7096          * have an ID allocated to it anymore, charge the closest online
7097          * ancestor for the swap instead and transfer the memory+swap charge.
7098          */
7099         swap_memcg = mem_cgroup_id_get_online(memcg);
7100         nr_entries = thp_nr_pages(page);
7101         /* Get references for the tail pages, too */
7102         if (nr_entries > 1)
7103                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7104         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7105                                    nr_entries);
7106         VM_BUG_ON_PAGE(oldid, page);
7107         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7108
7109         page->memcg_data = 0;
7110
7111         if (!mem_cgroup_is_root(memcg))
7112                 page_counter_uncharge(&memcg->memory, nr_entries);
7113
7114         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7115                 if (!mem_cgroup_is_root(swap_memcg))
7116                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7117                 page_counter_uncharge(&memcg->memsw, nr_entries);
7118         }
7119
7120         /*
7121          * Interrupts should be disabled here because the caller holds the
7122          * i_pages lock which is taken with interrupts-off. It is
7123          * important here to have the interrupts disabled because it is the
7124          * only synchronisation we have for updating the per-CPU variables.
7125          */
7126         VM_BUG_ON(!irqs_disabled());
7127         mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7128         memcg_check_events(memcg, page);
7129
7130         css_put(&memcg->css);
7131 }
7132
7133 /**
7134  * mem_cgroup_try_charge_swap - try charging swap space for a page
7135  * @page: page being added to swap
7136  * @entry: swap entry to charge
7137  *
7138  * Try to charge @page's memcg for the swap space at @entry.
7139  *
7140  * Returns 0 on success, -ENOMEM on failure.
7141  */
7142 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7143 {
7144         unsigned int nr_pages = thp_nr_pages(page);
7145         struct page_counter *counter;
7146         struct mem_cgroup *memcg;
7147         unsigned short oldid;
7148
7149         if (mem_cgroup_disabled())
7150                 return 0;
7151
7152         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7153                 return 0;
7154
7155         memcg = page_memcg(page);
7156
7157         VM_WARN_ON_ONCE_PAGE(!memcg, page);
7158         if (!memcg)
7159                 return 0;
7160
7161         if (!entry.val) {
7162                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7163                 return 0;
7164         }
7165
7166         memcg = mem_cgroup_id_get_online(memcg);
7167
7168         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7169             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7170                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7171                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7172                 mem_cgroup_id_put(memcg);
7173                 return -ENOMEM;
7174         }
7175
7176         /* Get references for the tail pages, too */
7177         if (nr_pages > 1)
7178                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7179         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7180         VM_BUG_ON_PAGE(oldid, page);
7181         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7182
7183         return 0;
7184 }
7185
7186 /**
7187  * mem_cgroup_uncharge_swap - uncharge swap space
7188  * @entry: swap entry to uncharge
7189  * @nr_pages: the amount of swap space to uncharge
7190  */
7191 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7192 {
7193         struct mem_cgroup *memcg;
7194         unsigned short id;
7195
7196         id = swap_cgroup_record(entry, 0, nr_pages);
7197         rcu_read_lock();
7198         memcg = mem_cgroup_from_id(id);
7199         if (memcg) {
7200                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7201                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7202                                 page_counter_uncharge(&memcg->swap, nr_pages);
7203                         else
7204                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7205                 }
7206                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7207                 mem_cgroup_id_put_many(memcg, nr_pages);
7208         }
7209         rcu_read_unlock();
7210 }
7211
7212 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7213 {
7214         long nr_swap_pages = get_nr_swap_pages();
7215
7216         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7217                 return nr_swap_pages;
7218         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7219                 nr_swap_pages = min_t(long, nr_swap_pages,
7220                                       READ_ONCE(memcg->swap.max) -
7221                                       page_counter_read(&memcg->swap));
7222         return nr_swap_pages;
7223 }
7224
7225 bool mem_cgroup_swap_full(struct page *page)
7226 {
7227         struct mem_cgroup *memcg;
7228
7229         VM_BUG_ON_PAGE(!PageLocked(page), page);
7230
7231         if (vm_swap_full())
7232                 return true;
7233         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7234                 return false;
7235
7236         memcg = page_memcg(page);
7237         if (!memcg)
7238                 return false;
7239
7240         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7241                 unsigned long usage = page_counter_read(&memcg->swap);
7242
7243                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7244                     usage * 2 >= READ_ONCE(memcg->swap.max))
7245                         return true;
7246         }
7247
7248         return false;
7249 }
7250
7251 static int __init setup_swap_account(char *s)
7252 {
7253         if (!strcmp(s, "1"))
7254                 cgroup_memory_noswap = false;
7255         else if (!strcmp(s, "0"))
7256                 cgroup_memory_noswap = true;
7257         return 1;
7258 }
7259 __setup("swapaccount=", setup_swap_account);
7260
7261 static u64 swap_current_read(struct cgroup_subsys_state *css,
7262                              struct cftype *cft)
7263 {
7264         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7265
7266         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7267 }
7268
7269 static int swap_high_show(struct seq_file *m, void *v)
7270 {
7271         return seq_puts_memcg_tunable(m,
7272                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7273 }
7274
7275 static ssize_t swap_high_write(struct kernfs_open_file *of,
7276                                char *buf, size_t nbytes, loff_t off)
7277 {
7278         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7279         unsigned long high;
7280         int err;
7281
7282         buf = strstrip(buf);
7283         err = page_counter_memparse(buf, "max", &high);
7284         if (err)
7285                 return err;
7286
7287         page_counter_set_high(&memcg->swap, high);
7288
7289         return nbytes;
7290 }
7291
7292 static int swap_max_show(struct seq_file *m, void *v)
7293 {
7294         return seq_puts_memcg_tunable(m,
7295                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7296 }
7297
7298 static ssize_t swap_max_write(struct kernfs_open_file *of,
7299                               char *buf, size_t nbytes, loff_t off)
7300 {
7301         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7302         unsigned long max;
7303         int err;
7304
7305         buf = strstrip(buf);
7306         err = page_counter_memparse(buf, "max", &max);
7307         if (err)
7308                 return err;
7309
7310         xchg(&memcg->swap.max, max);
7311
7312         return nbytes;
7313 }
7314
7315 static int swap_events_show(struct seq_file *m, void *v)
7316 {
7317         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7318
7319         seq_printf(m, "high %lu\n",
7320                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7321         seq_printf(m, "max %lu\n",
7322                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7323         seq_printf(m, "fail %lu\n",
7324                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7325
7326         return 0;
7327 }
7328
7329 static struct cftype swap_files[] = {
7330         {
7331                 .name = "swap.current",
7332                 .flags = CFTYPE_NOT_ON_ROOT,
7333                 .read_u64 = swap_current_read,
7334         },
7335         {
7336                 .name = "swap.high",
7337                 .flags = CFTYPE_NOT_ON_ROOT,
7338                 .seq_show = swap_high_show,
7339                 .write = swap_high_write,
7340         },
7341         {
7342                 .name = "swap.max",
7343                 .flags = CFTYPE_NOT_ON_ROOT,
7344                 .seq_show = swap_max_show,
7345                 .write = swap_max_write,
7346         },
7347         {
7348                 .name = "swap.events",
7349                 .flags = CFTYPE_NOT_ON_ROOT,
7350                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7351                 .seq_show = swap_events_show,
7352         },
7353         { }     /* terminate */
7354 };
7355
7356 static struct cftype memsw_files[] = {
7357         {
7358                 .name = "memsw.usage_in_bytes",
7359                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7360                 .read_u64 = mem_cgroup_read_u64,
7361         },
7362         {
7363                 .name = "memsw.max_usage_in_bytes",
7364                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7365                 .write = mem_cgroup_reset,
7366                 .read_u64 = mem_cgroup_read_u64,
7367         },
7368         {
7369                 .name = "memsw.limit_in_bytes",
7370                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7371                 .write = mem_cgroup_write,
7372                 .read_u64 = mem_cgroup_read_u64,
7373         },
7374         {
7375                 .name = "memsw.failcnt",
7376                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7377                 .write = mem_cgroup_reset,
7378                 .read_u64 = mem_cgroup_read_u64,
7379         },
7380         { },    /* terminate */
7381 };
7382
7383 /*
7384  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7385  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7386  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7387  * boot parameter. This may result in premature OOPS inside
7388  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7389  */
7390 static int __init mem_cgroup_swap_init(void)
7391 {
7392         /* No memory control -> no swap control */
7393         if (mem_cgroup_disabled())
7394                 cgroup_memory_noswap = true;
7395
7396         if (cgroup_memory_noswap)
7397                 return 0;
7398
7399         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7400         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7401
7402         return 0;
7403 }
7404 core_initcall(mem_cgroup_swap_init);
7405
7406 #endif /* CONFIG_MEMCG_SWAP */