mm: memcontrol: restore proper dirty throttling when memory.high changes
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
78
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 bool cgroup_memory_noswap __read_mostly;
85 #else
86 #define cgroup_memory_noswap            1
87 #endif
88
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97 }
98
99 #define THRESHOLDS_EVENTS_TARGET 128
100 #define SOFTLIMIT_EVENTS_TARGET 1024
101
102 /*
103  * Cgroups above their limits are maintained in a RB-Tree, independent of
104  * their hierarchy representation
105  */
106
107 struct mem_cgroup_tree_per_node {
108         struct rb_root rb_root;
109         struct rb_node *rb_rightmost;
110         spinlock_t lock;
111 };
112
113 struct mem_cgroup_tree {
114         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
115 };
116
117 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
118
119 /* for OOM */
120 struct mem_cgroup_eventfd_list {
121         struct list_head list;
122         struct eventfd_ctx *eventfd;
123 };
124
125 /*
126  * cgroup_event represents events which userspace want to receive.
127  */
128 struct mem_cgroup_event {
129         /*
130          * memcg which the event belongs to.
131          */
132         struct mem_cgroup *memcg;
133         /*
134          * eventfd to signal userspace about the event.
135          */
136         struct eventfd_ctx *eventfd;
137         /*
138          * Each of these stored in a list by the cgroup.
139          */
140         struct list_head list;
141         /*
142          * register_event() callback will be used to add new userspace
143          * waiter for changes related to this event.  Use eventfd_signal()
144          * on eventfd to send notification to userspace.
145          */
146         int (*register_event)(struct mem_cgroup *memcg,
147                               struct eventfd_ctx *eventfd, const char *args);
148         /*
149          * unregister_event() callback will be called when userspace closes
150          * the eventfd or on cgroup removing.  This callback must be set,
151          * if you want provide notification functionality.
152          */
153         void (*unregister_event)(struct mem_cgroup *memcg,
154                                  struct eventfd_ctx *eventfd);
155         /*
156          * All fields below needed to unregister event when
157          * userspace closes eventfd.
158          */
159         poll_table pt;
160         wait_queue_head_t *wqh;
161         wait_queue_entry_t wait;
162         struct work_struct remove;
163 };
164
165 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
166 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167
168 /* Stuffs for move charges at task migration. */
169 /*
170  * Types of charges to be moved.
171  */
172 #define MOVE_ANON       0x1U
173 #define MOVE_FILE       0x2U
174 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
175
176 /* "mc" and its members are protected by cgroup_mutex */
177 static struct move_charge_struct {
178         spinlock_t        lock; /* for from, to */
179         struct mm_struct  *mm;
180         struct mem_cgroup *from;
181         struct mem_cgroup *to;
182         unsigned long flags;
183         unsigned long precharge;
184         unsigned long moved_charge;
185         unsigned long moved_swap;
186         struct task_struct *moving_task;        /* a task moving charges */
187         wait_queue_head_t waitq;                /* a waitq for other context */
188 } mc = {
189         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
191 };
192
193 /*
194  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
195  * limit reclaim to prevent infinite loops, if they ever occur.
196  */
197 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
198 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
199
200 enum charge_type {
201         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
202         MEM_CGROUP_CHARGE_TYPE_ANON,
203         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
204         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
205         NR_CHARGE_TYPE,
206 };
207
208 /* for encoding cft->private value on file */
209 enum res_type {
210         _MEM,
211         _MEMSWAP,
212         _OOM_TYPE,
213         _KMEM,
214         _TCP,
215 };
216
217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
220 /* Used for OOM nofiier */
221 #define OOM_CONTROL             (0)
222
223 /*
224  * Iteration constructs for visiting all cgroups (under a tree).  If
225  * loops are exited prematurely (break), mem_cgroup_iter_break() must
226  * be used for reference counting.
227  */
228 #define for_each_mem_cgroup_tree(iter, root)            \
229         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
230              iter != NULL;                              \
231              iter = mem_cgroup_iter(root, iter, NULL))
232
233 #define for_each_mem_cgroup(iter)                       \
234         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
235              iter != NULL;                              \
236              iter = mem_cgroup_iter(NULL, iter, NULL))
237
238 static inline bool should_force_charge(void)
239 {
240         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241                 (current->flags & PF_EXITING);
242 }
243
244 /* Some nice accessors for the vmpressure. */
245 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246 {
247         if (!memcg)
248                 memcg = root_mem_cgroup;
249         return &memcg->vmpressure;
250 }
251
252 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
253 {
254         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
255 }
256
257 #ifdef CONFIG_MEMCG_KMEM
258 extern spinlock_t css_set_lock;
259
260 static void obj_cgroup_release(struct percpu_ref *ref)
261 {
262         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
263         struct mem_cgroup *memcg;
264         unsigned int nr_bytes;
265         unsigned int nr_pages;
266         unsigned long flags;
267
268         /*
269          * At this point all allocated objects are freed, and
270          * objcg->nr_charged_bytes can't have an arbitrary byte value.
271          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
272          *
273          * The following sequence can lead to it:
274          * 1) CPU0: objcg == stock->cached_objcg
275          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
276          *          PAGE_SIZE bytes are charged
277          * 3) CPU1: a process from another memcg is allocating something,
278          *          the stock if flushed,
279          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
280          * 5) CPU0: we do release this object,
281          *          92 bytes are added to stock->nr_bytes
282          * 6) CPU0: stock is flushed,
283          *          92 bytes are added to objcg->nr_charged_bytes
284          *
285          * In the result, nr_charged_bytes == PAGE_SIZE.
286          * This page will be uncharged in obj_cgroup_release().
287          */
288         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
289         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
290         nr_pages = nr_bytes >> PAGE_SHIFT;
291
292         spin_lock_irqsave(&css_set_lock, flags);
293         memcg = obj_cgroup_memcg(objcg);
294         if (nr_pages)
295                 __memcg_kmem_uncharge(memcg, nr_pages);
296         list_del(&objcg->list);
297         mem_cgroup_put(memcg);
298         spin_unlock_irqrestore(&css_set_lock, flags);
299
300         percpu_ref_exit(ref);
301         kfree_rcu(objcg, rcu);
302 }
303
304 static struct obj_cgroup *obj_cgroup_alloc(void)
305 {
306         struct obj_cgroup *objcg;
307         int ret;
308
309         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310         if (!objcg)
311                 return NULL;
312
313         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314                               GFP_KERNEL);
315         if (ret) {
316                 kfree(objcg);
317                 return NULL;
318         }
319         INIT_LIST_HEAD(&objcg->list);
320         return objcg;
321 }
322
323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324                                   struct mem_cgroup *parent)
325 {
326         struct obj_cgroup *objcg, *iter;
327
328         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329
330         spin_lock_irq(&css_set_lock);
331
332         /* Move active objcg to the parent's list */
333         xchg(&objcg->memcg, parent);
334         css_get(&parent->css);
335         list_add(&objcg->list, &parent->objcg_list);
336
337         /* Move already reparented objcgs to the parent's list */
338         list_for_each_entry(iter, &memcg->objcg_list, list) {
339                 css_get(&parent->css);
340                 xchg(&iter->memcg, parent);
341                 css_put(&memcg->css);
342         }
343         list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345         spin_unlock_irq(&css_set_lock);
346
347         percpu_ref_kill(&objcg->refcnt);
348 }
349
350 /*
351  * This will be used as a shrinker list's index.
352  * The main reason for not using cgroup id for this:
353  *  this works better in sparse environments, where we have a lot of memcgs,
354  *  but only a few kmem-limited. Or also, if we have, for instance, 200
355  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
356  *  200 entry array for that.
357  *
358  * The current size of the caches array is stored in memcg_nr_cache_ids. It
359  * will double each time we have to increase it.
360  */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369         down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374         up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378  * MIN_SIZE is different than 1, because we would like to avoid going through
379  * the alloc/free process all the time. In a small machine, 4 kmem-limited
380  * cgroups is a reasonable guess. In the future, it could be a parameter or
381  * tunable, but that is strictly not necessary.
382  *
383  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384  * this constant directly from cgroup, but it is understandable that this is
385  * better kept as an internal representation in cgroup.c. In any case, the
386  * cgrp_id space is not getting any smaller, and we don't have to necessarily
387  * increase ours as well if it increases.
388  */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393  * A lot of the calls to the cache allocation functions are expected to be
394  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395  * conditional to this static branch, we'll have to allow modules that does
396  * kmem_cache_alloc and the such to see this symbol as well
397  */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401
402 static int memcg_shrinker_map_size;
403 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
404
405 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
406 {
407         kvfree(container_of(head, struct memcg_shrinker_map, rcu));
408 }
409
410 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
411                                          int size, int old_size)
412 {
413         struct memcg_shrinker_map *new, *old;
414         int nid;
415
416         lockdep_assert_held(&memcg_shrinker_map_mutex);
417
418         for_each_node(nid) {
419                 old = rcu_dereference_protected(
420                         mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
421                 /* Not yet online memcg */
422                 if (!old)
423                         return 0;
424
425                 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
426                 if (!new)
427                         return -ENOMEM;
428
429                 /* Set all old bits, clear all new bits */
430                 memset(new->map, (int)0xff, old_size);
431                 memset((void *)new->map + old_size, 0, size - old_size);
432
433                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
434                 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
435         }
436
437         return 0;
438 }
439
440 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
441 {
442         struct mem_cgroup_per_node *pn;
443         struct memcg_shrinker_map *map;
444         int nid;
445
446         if (mem_cgroup_is_root(memcg))
447                 return;
448
449         for_each_node(nid) {
450                 pn = mem_cgroup_nodeinfo(memcg, nid);
451                 map = rcu_dereference_protected(pn->shrinker_map, true);
452                 if (map)
453                         kvfree(map);
454                 rcu_assign_pointer(pn->shrinker_map, NULL);
455         }
456 }
457
458 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
459 {
460         struct memcg_shrinker_map *map;
461         int nid, size, ret = 0;
462
463         if (mem_cgroup_is_root(memcg))
464                 return 0;
465
466         mutex_lock(&memcg_shrinker_map_mutex);
467         size = memcg_shrinker_map_size;
468         for_each_node(nid) {
469                 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
470                 if (!map) {
471                         memcg_free_shrinker_maps(memcg);
472                         ret = -ENOMEM;
473                         break;
474                 }
475                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
476         }
477         mutex_unlock(&memcg_shrinker_map_mutex);
478
479         return ret;
480 }
481
482 int memcg_expand_shrinker_maps(int new_id)
483 {
484         int size, old_size, ret = 0;
485         struct mem_cgroup *memcg;
486
487         size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
488         old_size = memcg_shrinker_map_size;
489         if (size <= old_size)
490                 return 0;
491
492         mutex_lock(&memcg_shrinker_map_mutex);
493         if (!root_mem_cgroup)
494                 goto unlock;
495
496         for_each_mem_cgroup(memcg) {
497                 if (mem_cgroup_is_root(memcg))
498                         continue;
499                 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
500                 if (ret) {
501                         mem_cgroup_iter_break(NULL, memcg);
502                         goto unlock;
503                 }
504         }
505 unlock:
506         if (!ret)
507                 memcg_shrinker_map_size = size;
508         mutex_unlock(&memcg_shrinker_map_mutex);
509         return ret;
510 }
511
512 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
513 {
514         if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
515                 struct memcg_shrinker_map *map;
516
517                 rcu_read_lock();
518                 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
519                 /* Pairs with smp mb in shrink_slab() */
520                 smp_mb__before_atomic();
521                 set_bit(shrinker_id, map->map);
522                 rcu_read_unlock();
523         }
524 }
525
526 /**
527  * mem_cgroup_css_from_page - css of the memcg associated with a page
528  * @page: page of interest
529  *
530  * If memcg is bound to the default hierarchy, css of the memcg associated
531  * with @page is returned.  The returned css remains associated with @page
532  * until it is released.
533  *
534  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
535  * is returned.
536  */
537 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
538 {
539         struct mem_cgroup *memcg;
540
541         memcg = page->mem_cgroup;
542
543         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
544                 memcg = root_mem_cgroup;
545
546         return &memcg->css;
547 }
548
549 /**
550  * page_cgroup_ino - return inode number of the memcg a page is charged to
551  * @page: the page
552  *
553  * Look up the closest online ancestor of the memory cgroup @page is charged to
554  * and return its inode number or 0 if @page is not charged to any cgroup. It
555  * is safe to call this function without holding a reference to @page.
556  *
557  * Note, this function is inherently racy, because there is nothing to prevent
558  * the cgroup inode from getting torn down and potentially reallocated a moment
559  * after page_cgroup_ino() returns, so it only should be used by callers that
560  * do not care (such as procfs interfaces).
561  */
562 ino_t page_cgroup_ino(struct page *page)
563 {
564         struct mem_cgroup *memcg;
565         unsigned long ino = 0;
566
567         rcu_read_lock();
568         memcg = page->mem_cgroup;
569
570         /*
571          * The lowest bit set means that memcg isn't a valid
572          * memcg pointer, but a obj_cgroups pointer.
573          * In this case the page is shared and doesn't belong
574          * to any specific memory cgroup.
575          */
576         if ((unsigned long) memcg & 0x1UL)
577                 memcg = NULL;
578
579         while (memcg && !(memcg->css.flags & CSS_ONLINE))
580                 memcg = parent_mem_cgroup(memcg);
581         if (memcg)
582                 ino = cgroup_ino(memcg->css.cgroup);
583         rcu_read_unlock();
584         return ino;
585 }
586
587 static struct mem_cgroup_per_node *
588 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
589 {
590         int nid = page_to_nid(page);
591
592         return memcg->nodeinfo[nid];
593 }
594
595 static struct mem_cgroup_tree_per_node *
596 soft_limit_tree_node(int nid)
597 {
598         return soft_limit_tree.rb_tree_per_node[nid];
599 }
600
601 static struct mem_cgroup_tree_per_node *
602 soft_limit_tree_from_page(struct page *page)
603 {
604         int nid = page_to_nid(page);
605
606         return soft_limit_tree.rb_tree_per_node[nid];
607 }
608
609 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
610                                          struct mem_cgroup_tree_per_node *mctz,
611                                          unsigned long new_usage_in_excess)
612 {
613         struct rb_node **p = &mctz->rb_root.rb_node;
614         struct rb_node *parent = NULL;
615         struct mem_cgroup_per_node *mz_node;
616         bool rightmost = true;
617
618         if (mz->on_tree)
619                 return;
620
621         mz->usage_in_excess = new_usage_in_excess;
622         if (!mz->usage_in_excess)
623                 return;
624         while (*p) {
625                 parent = *p;
626                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
627                                         tree_node);
628                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
629                         p = &(*p)->rb_left;
630                         rightmost = false;
631                 }
632
633                 /*
634                  * We can't avoid mem cgroups that are over their soft
635                  * limit by the same amount
636                  */
637                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
638                         p = &(*p)->rb_right;
639         }
640
641         if (rightmost)
642                 mctz->rb_rightmost = &mz->tree_node;
643
644         rb_link_node(&mz->tree_node, parent, p);
645         rb_insert_color(&mz->tree_node, &mctz->rb_root);
646         mz->on_tree = true;
647 }
648
649 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
650                                          struct mem_cgroup_tree_per_node *mctz)
651 {
652         if (!mz->on_tree)
653                 return;
654
655         if (&mz->tree_node == mctz->rb_rightmost)
656                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
657
658         rb_erase(&mz->tree_node, &mctz->rb_root);
659         mz->on_tree = false;
660 }
661
662 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
663                                        struct mem_cgroup_tree_per_node *mctz)
664 {
665         unsigned long flags;
666
667         spin_lock_irqsave(&mctz->lock, flags);
668         __mem_cgroup_remove_exceeded(mz, mctz);
669         spin_unlock_irqrestore(&mctz->lock, flags);
670 }
671
672 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
673 {
674         unsigned long nr_pages = page_counter_read(&memcg->memory);
675         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
676         unsigned long excess = 0;
677
678         if (nr_pages > soft_limit)
679                 excess = nr_pages - soft_limit;
680
681         return excess;
682 }
683
684 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
685 {
686         unsigned long excess;
687         struct mem_cgroup_per_node *mz;
688         struct mem_cgroup_tree_per_node *mctz;
689
690         mctz = soft_limit_tree_from_page(page);
691         if (!mctz)
692                 return;
693         /*
694          * Necessary to update all ancestors when hierarchy is used.
695          * because their event counter is not touched.
696          */
697         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698                 mz = mem_cgroup_page_nodeinfo(memcg, page);
699                 excess = soft_limit_excess(memcg);
700                 /*
701                  * We have to update the tree if mz is on RB-tree or
702                  * mem is over its softlimit.
703                  */
704                 if (excess || mz->on_tree) {
705                         unsigned long flags;
706
707                         spin_lock_irqsave(&mctz->lock, flags);
708                         /* if on-tree, remove it */
709                         if (mz->on_tree)
710                                 __mem_cgroup_remove_exceeded(mz, mctz);
711                         /*
712                          * Insert again. mz->usage_in_excess will be updated.
713                          * If excess is 0, no tree ops.
714                          */
715                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
716                         spin_unlock_irqrestore(&mctz->lock, flags);
717                 }
718         }
719 }
720
721 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722 {
723         struct mem_cgroup_tree_per_node *mctz;
724         struct mem_cgroup_per_node *mz;
725         int nid;
726
727         for_each_node(nid) {
728                 mz = mem_cgroup_nodeinfo(memcg, nid);
729                 mctz = soft_limit_tree_node(nid);
730                 if (mctz)
731                         mem_cgroup_remove_exceeded(mz, mctz);
732         }
733 }
734
735 static struct mem_cgroup_per_node *
736 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
737 {
738         struct mem_cgroup_per_node *mz;
739
740 retry:
741         mz = NULL;
742         if (!mctz->rb_rightmost)
743                 goto done;              /* Nothing to reclaim from */
744
745         mz = rb_entry(mctz->rb_rightmost,
746                       struct mem_cgroup_per_node, tree_node);
747         /*
748          * Remove the node now but someone else can add it back,
749          * we will to add it back at the end of reclaim to its correct
750          * position in the tree.
751          */
752         __mem_cgroup_remove_exceeded(mz, mctz);
753         if (!soft_limit_excess(mz->memcg) ||
754             !css_tryget(&mz->memcg->css))
755                 goto retry;
756 done:
757         return mz;
758 }
759
760 static struct mem_cgroup_per_node *
761 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
762 {
763         struct mem_cgroup_per_node *mz;
764
765         spin_lock_irq(&mctz->lock);
766         mz = __mem_cgroup_largest_soft_limit_node(mctz);
767         spin_unlock_irq(&mctz->lock);
768         return mz;
769 }
770
771 /**
772  * __mod_memcg_state - update cgroup memory statistics
773  * @memcg: the memory cgroup
774  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
775  * @val: delta to add to the counter, can be negative
776  */
777 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
778 {
779         long x, threshold = MEMCG_CHARGE_BATCH;
780
781         if (mem_cgroup_disabled())
782                 return;
783
784         if (vmstat_item_in_bytes(idx))
785                 threshold <<= PAGE_SHIFT;
786
787         x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
788         if (unlikely(abs(x) > threshold)) {
789                 struct mem_cgroup *mi;
790
791                 /*
792                  * Batch local counters to keep them in sync with
793                  * the hierarchical ones.
794                  */
795                 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
796                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
797                         atomic_long_add(x, &mi->vmstats[idx]);
798                 x = 0;
799         }
800         __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
801 }
802
803 static struct mem_cgroup_per_node *
804 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
805 {
806         struct mem_cgroup *parent;
807
808         parent = parent_mem_cgroup(pn->memcg);
809         if (!parent)
810                 return NULL;
811         return mem_cgroup_nodeinfo(parent, nid);
812 }
813
814 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
815                               int val)
816 {
817         struct mem_cgroup_per_node *pn;
818         struct mem_cgroup *memcg;
819         long x, threshold = MEMCG_CHARGE_BATCH;
820
821         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
822         memcg = pn->memcg;
823
824         /* Update memcg */
825         __mod_memcg_state(memcg, idx, val);
826
827         /* Update lruvec */
828         __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
829
830         if (vmstat_item_in_bytes(idx))
831                 threshold <<= PAGE_SHIFT;
832
833         x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
834         if (unlikely(abs(x) > threshold)) {
835                 pg_data_t *pgdat = lruvec_pgdat(lruvec);
836                 struct mem_cgroup_per_node *pi;
837
838                 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
839                         atomic_long_add(x, &pi->lruvec_stat[idx]);
840                 x = 0;
841         }
842         __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
843 }
844
845 /**
846  * __mod_lruvec_state - update lruvec memory statistics
847  * @lruvec: the lruvec
848  * @idx: the stat item
849  * @val: delta to add to the counter, can be negative
850  *
851  * The lruvec is the intersection of the NUMA node and a cgroup. This
852  * function updates the all three counters that are affected by a
853  * change of state at this level: per-node, per-cgroup, per-lruvec.
854  */
855 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
856                         int val)
857 {
858         /* Update node */
859         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
860
861         /* Update memcg and lruvec */
862         if (!mem_cgroup_disabled())
863                 __mod_memcg_lruvec_state(lruvec, idx, val);
864 }
865
866 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
867 {
868         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
869         struct mem_cgroup *memcg;
870         struct lruvec *lruvec;
871
872         rcu_read_lock();
873         memcg = mem_cgroup_from_obj(p);
874
875         /* Untracked pages have no memcg, no lruvec. Update only the node */
876         if (!memcg || memcg == root_mem_cgroup) {
877                 __mod_node_page_state(pgdat, idx, val);
878         } else {
879                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
880                 __mod_lruvec_state(lruvec, idx, val);
881         }
882         rcu_read_unlock();
883 }
884
885 void mod_memcg_obj_state(void *p, int idx, int val)
886 {
887         struct mem_cgroup *memcg;
888
889         rcu_read_lock();
890         memcg = mem_cgroup_from_obj(p);
891         if (memcg)
892                 mod_memcg_state(memcg, idx, val);
893         rcu_read_unlock();
894 }
895
896 /**
897  * __count_memcg_events - account VM events in a cgroup
898  * @memcg: the memory cgroup
899  * @idx: the event item
900  * @count: the number of events that occured
901  */
902 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903                           unsigned long count)
904 {
905         unsigned long x;
906
907         if (mem_cgroup_disabled())
908                 return;
909
910         x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911         if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912                 struct mem_cgroup *mi;
913
914                 /*
915                  * Batch local counters to keep them in sync with
916                  * the hierarchical ones.
917                  */
918                 __this_cpu_add(memcg->vmstats_local->events[idx], x);
919                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920                         atomic_long_add(x, &mi->vmevents[idx]);
921                 x = 0;
922         }
923         __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924 }
925
926 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927 {
928         return atomic_long_read(&memcg->vmevents[event]);
929 }
930
931 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932 {
933         long x = 0;
934         int cpu;
935
936         for_each_possible_cpu(cpu)
937                 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938         return x;
939 }
940
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942                                          struct page *page,
943                                          int nr_pages)
944 {
945         /* pagein of a big page is an event. So, ignore page size */
946         if (nr_pages > 0)
947                 __count_memcg_events(memcg, PGPGIN, 1);
948         else {
949                 __count_memcg_events(memcg, PGPGOUT, 1);
950                 nr_pages = -nr_pages; /* for event */
951         }
952
953         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954 }
955
956 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957                                        enum mem_cgroup_events_target target)
958 {
959         unsigned long val, next;
960
961         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963         /* from time_after() in jiffies.h */
964         if ((long)(next - val) < 0) {
965                 switch (target) {
966                 case MEM_CGROUP_TARGET_THRESH:
967                         next = val + THRESHOLDS_EVENTS_TARGET;
968                         break;
969                 case MEM_CGROUP_TARGET_SOFTLIMIT:
970                         next = val + SOFTLIMIT_EVENTS_TARGET;
971                         break;
972                 default:
973                         break;
974                 }
975                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976                 return true;
977         }
978         return false;
979 }
980
981 /*
982  * Check events in order.
983  *
984  */
985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986 {
987         /* threshold event is triggered in finer grain than soft limit */
988         if (unlikely(mem_cgroup_event_ratelimit(memcg,
989                                                 MEM_CGROUP_TARGET_THRESH))) {
990                 bool do_softlimit;
991
992                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
994                 mem_cgroup_threshold(memcg);
995                 if (unlikely(do_softlimit))
996                         mem_cgroup_update_tree(memcg, page);
997         }
998 }
999
1000 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001 {
1002         /*
1003          * mm_update_next_owner() may clear mm->owner to NULL
1004          * if it races with swapoff, page migration, etc.
1005          * So this can be called with p == NULL.
1006          */
1007         if (unlikely(!p))
1008                 return NULL;
1009
1010         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011 }
1012 EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014 /**
1015  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016  * @mm: mm from which memcg should be extracted. It can be NULL.
1017  *
1018  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020  * returned.
1021  */
1022 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023 {
1024         struct mem_cgroup *memcg;
1025
1026         if (mem_cgroup_disabled())
1027                 return NULL;
1028
1029         rcu_read_lock();
1030         do {
1031                 /*
1032                  * Page cache insertions can happen withou an
1033                  * actual mm context, e.g. during disk probing
1034                  * on boot, loopback IO, acct() writes etc.
1035                  */
1036                 if (unlikely(!mm))
1037                         memcg = root_mem_cgroup;
1038                 else {
1039                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040                         if (unlikely(!memcg))
1041                                 memcg = root_mem_cgroup;
1042                 }
1043         } while (!css_tryget(&memcg->css));
1044         rcu_read_unlock();
1045         return memcg;
1046 }
1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049 /**
1050  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051  * @page: page from which memcg should be extracted.
1052  *
1053  * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054  * root_mem_cgroup is returned.
1055  */
1056 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057 {
1058         struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060         if (mem_cgroup_disabled())
1061                 return NULL;
1062
1063         rcu_read_lock();
1064         /* Page should not get uncharged and freed memcg under us. */
1065         if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066                 memcg = root_mem_cgroup;
1067         rcu_read_unlock();
1068         return memcg;
1069 }
1070 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072 /**
1073  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1074  */
1075 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1076 {
1077         if (unlikely(current->active_memcg)) {
1078                 struct mem_cgroup *memcg;
1079
1080                 rcu_read_lock();
1081                 /* current->active_memcg must hold a ref. */
1082                 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1083                         memcg = root_mem_cgroup;
1084                 else
1085                         memcg = current->active_memcg;
1086                 rcu_read_unlock();
1087                 return memcg;
1088         }
1089         return get_mem_cgroup_from_mm(current->mm);
1090 }
1091
1092 /**
1093  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1094  * @root: hierarchy root
1095  * @prev: previously returned memcg, NULL on first invocation
1096  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1097  *
1098  * Returns references to children of the hierarchy below @root, or
1099  * @root itself, or %NULL after a full round-trip.
1100  *
1101  * Caller must pass the return value in @prev on subsequent
1102  * invocations for reference counting, or use mem_cgroup_iter_break()
1103  * to cancel a hierarchy walk before the round-trip is complete.
1104  *
1105  * Reclaimers can specify a node and a priority level in @reclaim to
1106  * divide up the memcgs in the hierarchy among all concurrent
1107  * reclaimers operating on the same node and priority.
1108  */
1109 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110                                    struct mem_cgroup *prev,
1111                                    struct mem_cgroup_reclaim_cookie *reclaim)
1112 {
1113         struct mem_cgroup_reclaim_iter *iter;
1114         struct cgroup_subsys_state *css = NULL;
1115         struct mem_cgroup *memcg = NULL;
1116         struct mem_cgroup *pos = NULL;
1117
1118         if (mem_cgroup_disabled())
1119                 return NULL;
1120
1121         if (!root)
1122                 root = root_mem_cgroup;
1123
1124         if (prev && !reclaim)
1125                 pos = prev;
1126
1127         if (!root->use_hierarchy && root != root_mem_cgroup) {
1128                 if (prev)
1129                         goto out;
1130                 return root;
1131         }
1132
1133         rcu_read_lock();
1134
1135         if (reclaim) {
1136                 struct mem_cgroup_per_node *mz;
1137
1138                 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139                 iter = &mz->iter;
1140
1141                 if (prev && reclaim->generation != iter->generation)
1142                         goto out_unlock;
1143
1144                 while (1) {
1145                         pos = READ_ONCE(iter->position);
1146                         if (!pos || css_tryget(&pos->css))
1147                                 break;
1148                         /*
1149                          * css reference reached zero, so iter->position will
1150                          * be cleared by ->css_released. However, we should not
1151                          * rely on this happening soon, because ->css_released
1152                          * is called from a work queue, and by busy-waiting we
1153                          * might block it. So we clear iter->position right
1154                          * away.
1155                          */
1156                         (void)cmpxchg(&iter->position, pos, NULL);
1157                 }
1158         }
1159
1160         if (pos)
1161                 css = &pos->css;
1162
1163         for (;;) {
1164                 css = css_next_descendant_pre(css, &root->css);
1165                 if (!css) {
1166                         /*
1167                          * Reclaimers share the hierarchy walk, and a
1168                          * new one might jump in right at the end of
1169                          * the hierarchy - make sure they see at least
1170                          * one group and restart from the beginning.
1171                          */
1172                         if (!prev)
1173                                 continue;
1174                         break;
1175                 }
1176
1177                 /*
1178                  * Verify the css and acquire a reference.  The root
1179                  * is provided by the caller, so we know it's alive
1180                  * and kicking, and don't take an extra reference.
1181                  */
1182                 memcg = mem_cgroup_from_css(css);
1183
1184                 if (css == &root->css)
1185                         break;
1186
1187                 if (css_tryget(css))
1188                         break;
1189
1190                 memcg = NULL;
1191         }
1192
1193         if (reclaim) {
1194                 /*
1195                  * The position could have already been updated by a competing
1196                  * thread, so check that the value hasn't changed since we read
1197                  * it to avoid reclaiming from the same cgroup twice.
1198                  */
1199                 (void)cmpxchg(&iter->position, pos, memcg);
1200
1201                 if (pos)
1202                         css_put(&pos->css);
1203
1204                 if (!memcg)
1205                         iter->generation++;
1206                 else if (!prev)
1207                         reclaim->generation = iter->generation;
1208         }
1209
1210 out_unlock:
1211         rcu_read_unlock();
1212 out:
1213         if (prev && prev != root)
1214                 css_put(&prev->css);
1215
1216         return memcg;
1217 }
1218
1219 /**
1220  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221  * @root: hierarchy root
1222  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223  */
1224 void mem_cgroup_iter_break(struct mem_cgroup *root,
1225                            struct mem_cgroup *prev)
1226 {
1227         if (!root)
1228                 root = root_mem_cgroup;
1229         if (prev && prev != root)
1230                 css_put(&prev->css);
1231 }
1232
1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234                                         struct mem_cgroup *dead_memcg)
1235 {
1236         struct mem_cgroup_reclaim_iter *iter;
1237         struct mem_cgroup_per_node *mz;
1238         int nid;
1239
1240         for_each_node(nid) {
1241                 mz = mem_cgroup_nodeinfo(from, nid);
1242                 iter = &mz->iter;
1243                 cmpxchg(&iter->position, dead_memcg, NULL);
1244         }
1245 }
1246
1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248 {
1249         struct mem_cgroup *memcg = dead_memcg;
1250         struct mem_cgroup *last;
1251
1252         do {
1253                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254                 last = memcg;
1255         } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257         /*
1258          * When cgruop1 non-hierarchy mode is used,
1259          * parent_mem_cgroup() does not walk all the way up to the
1260          * cgroup root (root_mem_cgroup). So we have to handle
1261          * dead_memcg from cgroup root separately.
1262          */
1263         if (last != root_mem_cgroup)
1264                 __invalidate_reclaim_iterators(root_mem_cgroup,
1265                                                 dead_memcg);
1266 }
1267
1268 /**
1269  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270  * @memcg: hierarchy root
1271  * @fn: function to call for each task
1272  * @arg: argument passed to @fn
1273  *
1274  * This function iterates over tasks attached to @memcg or to any of its
1275  * descendants and calls @fn for each task. If @fn returns a non-zero
1276  * value, the function breaks the iteration loop and returns the value.
1277  * Otherwise, it will iterate over all tasks and return 0.
1278  *
1279  * This function must not be called for the root memory cgroup.
1280  */
1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282                           int (*fn)(struct task_struct *, void *), void *arg)
1283 {
1284         struct mem_cgroup *iter;
1285         int ret = 0;
1286
1287         BUG_ON(memcg == root_mem_cgroup);
1288
1289         for_each_mem_cgroup_tree(iter, memcg) {
1290                 struct css_task_iter it;
1291                 struct task_struct *task;
1292
1293                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294                 while (!ret && (task = css_task_iter_next(&it)))
1295                         ret = fn(task, arg);
1296                 css_task_iter_end(&it);
1297                 if (ret) {
1298                         mem_cgroup_iter_break(memcg, iter);
1299                         break;
1300                 }
1301         }
1302         return ret;
1303 }
1304
1305 /**
1306  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307  * @page: the page
1308  * @pgdat: pgdat of the page
1309  *
1310  * This function relies on page->mem_cgroup being stable - see the
1311  * access rules in commit_charge().
1312  */
1313 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1314 {
1315         struct mem_cgroup_per_node *mz;
1316         struct mem_cgroup *memcg;
1317         struct lruvec *lruvec;
1318
1319         if (mem_cgroup_disabled()) {
1320                 lruvec = &pgdat->__lruvec;
1321                 goto out;
1322         }
1323
1324         memcg = page->mem_cgroup;
1325         /*
1326          * Swapcache readahead pages are added to the LRU - and
1327          * possibly migrated - before they are charged.
1328          */
1329         if (!memcg)
1330                 memcg = root_mem_cgroup;
1331
1332         mz = mem_cgroup_page_nodeinfo(memcg, page);
1333         lruvec = &mz->lruvec;
1334 out:
1335         /*
1336          * Since a node can be onlined after the mem_cgroup was created,
1337          * we have to be prepared to initialize lruvec->zone here;
1338          * and if offlined then reonlined, we need to reinitialize it.
1339          */
1340         if (unlikely(lruvec->pgdat != pgdat))
1341                 lruvec->pgdat = pgdat;
1342         return lruvec;
1343 }
1344
1345 /**
1346  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1347  * @lruvec: mem_cgroup per zone lru vector
1348  * @lru: index of lru list the page is sitting on
1349  * @zid: zone id of the accounted pages
1350  * @nr_pages: positive when adding or negative when removing
1351  *
1352  * This function must be called under lru_lock, just before a page is added
1353  * to or just after a page is removed from an lru list (that ordering being
1354  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355  */
1356 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357                                 int zid, int nr_pages)
1358 {
1359         struct mem_cgroup_per_node *mz;
1360         unsigned long *lru_size;
1361         long size;
1362
1363         if (mem_cgroup_disabled())
1364                 return;
1365
1366         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367         lru_size = &mz->lru_zone_size[zid][lru];
1368
1369         if (nr_pages < 0)
1370                 *lru_size += nr_pages;
1371
1372         size = *lru_size;
1373         if (WARN_ONCE(size < 0,
1374                 "%s(%p, %d, %d): lru_size %ld\n",
1375                 __func__, lruvec, lru, nr_pages, size)) {
1376                 VM_BUG_ON(1);
1377                 *lru_size = 0;
1378         }
1379
1380         if (nr_pages > 0)
1381                 *lru_size += nr_pages;
1382 }
1383
1384 /**
1385  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1386  * @memcg: the memory cgroup
1387  *
1388  * Returns the maximum amount of memory @mem can be charged with, in
1389  * pages.
1390  */
1391 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1392 {
1393         unsigned long margin = 0;
1394         unsigned long count;
1395         unsigned long limit;
1396
1397         count = page_counter_read(&memcg->memory);
1398         limit = READ_ONCE(memcg->memory.max);
1399         if (count < limit)
1400                 margin = limit - count;
1401
1402         if (do_memsw_account()) {
1403                 count = page_counter_read(&memcg->memsw);
1404                 limit = READ_ONCE(memcg->memsw.max);
1405                 if (count < limit)
1406                         margin = min(margin, limit - count);
1407                 else
1408                         margin = 0;
1409         }
1410
1411         return margin;
1412 }
1413
1414 /*
1415  * A routine for checking "mem" is under move_account() or not.
1416  *
1417  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1418  * moving cgroups. This is for waiting at high-memory pressure
1419  * caused by "move".
1420  */
1421 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1422 {
1423         struct mem_cgroup *from;
1424         struct mem_cgroup *to;
1425         bool ret = false;
1426         /*
1427          * Unlike task_move routines, we access mc.to, mc.from not under
1428          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1429          */
1430         spin_lock(&mc.lock);
1431         from = mc.from;
1432         to = mc.to;
1433         if (!from)
1434                 goto unlock;
1435
1436         ret = mem_cgroup_is_descendant(from, memcg) ||
1437                 mem_cgroup_is_descendant(to, memcg);
1438 unlock:
1439         spin_unlock(&mc.lock);
1440         return ret;
1441 }
1442
1443 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444 {
1445         if (mc.moving_task && current != mc.moving_task) {
1446                 if (mem_cgroup_under_move(memcg)) {
1447                         DEFINE_WAIT(wait);
1448                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1449                         /* moving charge context might have finished. */
1450                         if (mc.moving_task)
1451                                 schedule();
1452                         finish_wait(&mc.waitq, &wait);
1453                         return true;
1454                 }
1455         }
1456         return false;
1457 }
1458
1459 static char *memory_stat_format(struct mem_cgroup *memcg)
1460 {
1461         struct seq_buf s;
1462         int i;
1463
1464         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1465         if (!s.buffer)
1466                 return NULL;
1467
1468         /*
1469          * Provide statistics on the state of the memory subsystem as
1470          * well as cumulative event counters that show past behavior.
1471          *
1472          * This list is ordered following a combination of these gradients:
1473          * 1) generic big picture -> specifics and details
1474          * 2) reflecting userspace activity -> reflecting kernel heuristics
1475          *
1476          * Current memory state:
1477          */
1478
1479         seq_buf_printf(&s, "anon %llu\n",
1480                        (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481                        PAGE_SIZE);
1482         seq_buf_printf(&s, "file %llu\n",
1483                        (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484                        PAGE_SIZE);
1485         seq_buf_printf(&s, "kernel_stack %llu\n",
1486                        (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487                        1024);
1488         seq_buf_printf(&s, "slab %llu\n",
1489                        (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1490                              memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491         seq_buf_printf(&s, "sock %llu\n",
1492                        (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1493                        PAGE_SIZE);
1494
1495         seq_buf_printf(&s, "shmem %llu\n",
1496                        (u64)memcg_page_state(memcg, NR_SHMEM) *
1497                        PAGE_SIZE);
1498         seq_buf_printf(&s, "file_mapped %llu\n",
1499                        (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1500                        PAGE_SIZE);
1501         seq_buf_printf(&s, "file_dirty %llu\n",
1502                        (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1503                        PAGE_SIZE);
1504         seq_buf_printf(&s, "file_writeback %llu\n",
1505                        (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1506                        PAGE_SIZE);
1507
1508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1509         seq_buf_printf(&s, "anon_thp %llu\n",
1510                        (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1511                        HPAGE_PMD_SIZE);
1512 #endif
1513
1514         for (i = 0; i < NR_LRU_LISTS; i++)
1515                 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1516                                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1517                                PAGE_SIZE);
1518
1519         seq_buf_printf(&s, "slab_reclaimable %llu\n",
1520                        (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1521         seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1522                        (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1523
1524         /* Accumulated memory events */
1525
1526         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1527                        memcg_events(memcg, PGFAULT));
1528         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1529                        memcg_events(memcg, PGMAJFAULT));
1530
1531         seq_buf_printf(&s, "workingset_refault %lu\n",
1532                        memcg_page_state(memcg, WORKINGSET_REFAULT));
1533         seq_buf_printf(&s, "workingset_activate %lu\n",
1534                        memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1535         seq_buf_printf(&s, "workingset_restore %lu\n",
1536                        memcg_page_state(memcg, WORKINGSET_RESTORE));
1537         seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1538                        memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1539
1540         seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1541                        memcg_events(memcg, PGREFILL));
1542         seq_buf_printf(&s, "pgscan %lu\n",
1543                        memcg_events(memcg, PGSCAN_KSWAPD) +
1544                        memcg_events(memcg, PGSCAN_DIRECT));
1545         seq_buf_printf(&s, "pgsteal %lu\n",
1546                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1547                        memcg_events(memcg, PGSTEAL_DIRECT));
1548         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1549                        memcg_events(memcg, PGACTIVATE));
1550         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1551                        memcg_events(memcg, PGDEACTIVATE));
1552         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1553                        memcg_events(memcg, PGLAZYFREE));
1554         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1555                        memcg_events(memcg, PGLAZYFREED));
1556
1557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1558         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1559                        memcg_events(memcg, THP_FAULT_ALLOC));
1560         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1561                        memcg_events(memcg, THP_COLLAPSE_ALLOC));
1562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1563
1564         /* The above should easily fit into one page */
1565         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1566
1567         return s.buffer;
1568 }
1569
1570 #define K(x) ((x) << (PAGE_SHIFT-10))
1571 /**
1572  * mem_cgroup_print_oom_context: Print OOM information relevant to
1573  * memory controller.
1574  * @memcg: The memory cgroup that went over limit
1575  * @p: Task that is going to be killed
1576  *
1577  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1578  * enabled
1579  */
1580 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1581 {
1582         rcu_read_lock();
1583
1584         if (memcg) {
1585                 pr_cont(",oom_memcg=");
1586                 pr_cont_cgroup_path(memcg->css.cgroup);
1587         } else
1588                 pr_cont(",global_oom");
1589         if (p) {
1590                 pr_cont(",task_memcg=");
1591                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1592         }
1593         rcu_read_unlock();
1594 }
1595
1596 /**
1597  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1598  * memory controller.
1599  * @memcg: The memory cgroup that went over limit
1600  */
1601 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1602 {
1603         char *buf;
1604
1605         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1606                 K((u64)page_counter_read(&memcg->memory)),
1607                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1608         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1609                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1610                         K((u64)page_counter_read(&memcg->swap)),
1611                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1612         else {
1613                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1614                         K((u64)page_counter_read(&memcg->memsw)),
1615                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1616                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1617                         K((u64)page_counter_read(&memcg->kmem)),
1618                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1619         }
1620
1621         pr_info("Memory cgroup stats for ");
1622         pr_cont_cgroup_path(memcg->css.cgroup);
1623         pr_cont(":");
1624         buf = memory_stat_format(memcg);
1625         if (!buf)
1626                 return;
1627         pr_info("%s", buf);
1628         kfree(buf);
1629 }
1630
1631 /*
1632  * Return the memory (and swap, if configured) limit for a memcg.
1633  */
1634 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1635 {
1636         unsigned long max;
1637
1638         max = READ_ONCE(memcg->memory.max);
1639         if (mem_cgroup_swappiness(memcg)) {
1640                 unsigned long memsw_max;
1641                 unsigned long swap_max;
1642
1643                 memsw_max = memcg->memsw.max;
1644                 swap_max = READ_ONCE(memcg->swap.max);
1645                 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1646                 max = min(max + swap_max, memsw_max);
1647         }
1648         return max;
1649 }
1650
1651 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1652 {
1653         return page_counter_read(&memcg->memory);
1654 }
1655
1656 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1657                                      int order)
1658 {
1659         struct oom_control oc = {
1660                 .zonelist = NULL,
1661                 .nodemask = NULL,
1662                 .memcg = memcg,
1663                 .gfp_mask = gfp_mask,
1664                 .order = order,
1665         };
1666         bool ret = true;
1667
1668         if (mutex_lock_killable(&oom_lock))
1669                 return true;
1670
1671         if (mem_cgroup_margin(memcg) >= (1 << order))
1672                 goto unlock;
1673
1674         /*
1675          * A few threads which were not waiting at mutex_lock_killable() can
1676          * fail to bail out. Therefore, check again after holding oom_lock.
1677          */
1678         ret = should_force_charge() || out_of_memory(&oc);
1679
1680 unlock:
1681         mutex_unlock(&oom_lock);
1682         return ret;
1683 }
1684
1685 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1686                                    pg_data_t *pgdat,
1687                                    gfp_t gfp_mask,
1688                                    unsigned long *total_scanned)
1689 {
1690         struct mem_cgroup *victim = NULL;
1691         int total = 0;
1692         int loop = 0;
1693         unsigned long excess;
1694         unsigned long nr_scanned;
1695         struct mem_cgroup_reclaim_cookie reclaim = {
1696                 .pgdat = pgdat,
1697         };
1698
1699         excess = soft_limit_excess(root_memcg);
1700
1701         while (1) {
1702                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1703                 if (!victim) {
1704                         loop++;
1705                         if (loop >= 2) {
1706                                 /*
1707                                  * If we have not been able to reclaim
1708                                  * anything, it might because there are
1709                                  * no reclaimable pages under this hierarchy
1710                                  */
1711                                 if (!total)
1712                                         break;
1713                                 /*
1714                                  * We want to do more targeted reclaim.
1715                                  * excess >> 2 is not to excessive so as to
1716                                  * reclaim too much, nor too less that we keep
1717                                  * coming back to reclaim from this cgroup
1718                                  */
1719                                 if (total >= (excess >> 2) ||
1720                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1721                                         break;
1722                         }
1723                         continue;
1724                 }
1725                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1726                                         pgdat, &nr_scanned);
1727                 *total_scanned += nr_scanned;
1728                 if (!soft_limit_excess(root_memcg))
1729                         break;
1730         }
1731         mem_cgroup_iter_break(root_memcg, victim);
1732         return total;
1733 }
1734
1735 #ifdef CONFIG_LOCKDEP
1736 static struct lockdep_map memcg_oom_lock_dep_map = {
1737         .name = "memcg_oom_lock",
1738 };
1739 #endif
1740
1741 static DEFINE_SPINLOCK(memcg_oom_lock);
1742
1743 /*
1744  * Check OOM-Killer is already running under our hierarchy.
1745  * If someone is running, return false.
1746  */
1747 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1748 {
1749         struct mem_cgroup *iter, *failed = NULL;
1750
1751         spin_lock(&memcg_oom_lock);
1752
1753         for_each_mem_cgroup_tree(iter, memcg) {
1754                 if (iter->oom_lock) {
1755                         /*
1756                          * this subtree of our hierarchy is already locked
1757                          * so we cannot give a lock.
1758                          */
1759                         failed = iter;
1760                         mem_cgroup_iter_break(memcg, iter);
1761                         break;
1762                 } else
1763                         iter->oom_lock = true;
1764         }
1765
1766         if (failed) {
1767                 /*
1768                  * OK, we failed to lock the whole subtree so we have
1769                  * to clean up what we set up to the failing subtree
1770                  */
1771                 for_each_mem_cgroup_tree(iter, memcg) {
1772                         if (iter == failed) {
1773                                 mem_cgroup_iter_break(memcg, iter);
1774                                 break;
1775                         }
1776                         iter->oom_lock = false;
1777                 }
1778         } else
1779                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1780
1781         spin_unlock(&memcg_oom_lock);
1782
1783         return !failed;
1784 }
1785
1786 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1787 {
1788         struct mem_cgroup *iter;
1789
1790         spin_lock(&memcg_oom_lock);
1791         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1792         for_each_mem_cgroup_tree(iter, memcg)
1793                 iter->oom_lock = false;
1794         spin_unlock(&memcg_oom_lock);
1795 }
1796
1797 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1798 {
1799         struct mem_cgroup *iter;
1800
1801         spin_lock(&memcg_oom_lock);
1802         for_each_mem_cgroup_tree(iter, memcg)
1803                 iter->under_oom++;
1804         spin_unlock(&memcg_oom_lock);
1805 }
1806
1807 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1808 {
1809         struct mem_cgroup *iter;
1810
1811         /*
1812          * When a new child is created while the hierarchy is under oom,
1813          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1814          */
1815         spin_lock(&memcg_oom_lock);
1816         for_each_mem_cgroup_tree(iter, memcg)
1817                 if (iter->under_oom > 0)
1818                         iter->under_oom--;
1819         spin_unlock(&memcg_oom_lock);
1820 }
1821
1822 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1823
1824 struct oom_wait_info {
1825         struct mem_cgroup *memcg;
1826         wait_queue_entry_t      wait;
1827 };
1828
1829 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1830         unsigned mode, int sync, void *arg)
1831 {
1832         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1833         struct mem_cgroup *oom_wait_memcg;
1834         struct oom_wait_info *oom_wait_info;
1835
1836         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1837         oom_wait_memcg = oom_wait_info->memcg;
1838
1839         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1840             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1841                 return 0;
1842         return autoremove_wake_function(wait, mode, sync, arg);
1843 }
1844
1845 static void memcg_oom_recover(struct mem_cgroup *memcg)
1846 {
1847         /*
1848          * For the following lockless ->under_oom test, the only required
1849          * guarantee is that it must see the state asserted by an OOM when
1850          * this function is called as a result of userland actions
1851          * triggered by the notification of the OOM.  This is trivially
1852          * achieved by invoking mem_cgroup_mark_under_oom() before
1853          * triggering notification.
1854          */
1855         if (memcg && memcg->under_oom)
1856                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1857 }
1858
1859 enum oom_status {
1860         OOM_SUCCESS,
1861         OOM_FAILED,
1862         OOM_ASYNC,
1863         OOM_SKIPPED
1864 };
1865
1866 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1867 {
1868         enum oom_status ret;
1869         bool locked;
1870
1871         if (order > PAGE_ALLOC_COSTLY_ORDER)
1872                 return OOM_SKIPPED;
1873
1874         memcg_memory_event(memcg, MEMCG_OOM);
1875
1876         /*
1877          * We are in the middle of the charge context here, so we
1878          * don't want to block when potentially sitting on a callstack
1879          * that holds all kinds of filesystem and mm locks.
1880          *
1881          * cgroup1 allows disabling the OOM killer and waiting for outside
1882          * handling until the charge can succeed; remember the context and put
1883          * the task to sleep at the end of the page fault when all locks are
1884          * released.
1885          *
1886          * On the other hand, in-kernel OOM killer allows for an async victim
1887          * memory reclaim (oom_reaper) and that means that we are not solely
1888          * relying on the oom victim to make a forward progress and we can
1889          * invoke the oom killer here.
1890          *
1891          * Please note that mem_cgroup_out_of_memory might fail to find a
1892          * victim and then we have to bail out from the charge path.
1893          */
1894         if (memcg->oom_kill_disable) {
1895                 if (!current->in_user_fault)
1896                         return OOM_SKIPPED;
1897                 css_get(&memcg->css);
1898                 current->memcg_in_oom = memcg;
1899                 current->memcg_oom_gfp_mask = mask;
1900                 current->memcg_oom_order = order;
1901
1902                 return OOM_ASYNC;
1903         }
1904
1905         mem_cgroup_mark_under_oom(memcg);
1906
1907         locked = mem_cgroup_oom_trylock(memcg);
1908
1909         if (locked)
1910                 mem_cgroup_oom_notify(memcg);
1911
1912         mem_cgroup_unmark_under_oom(memcg);
1913         if (mem_cgroup_out_of_memory(memcg, mask, order))
1914                 ret = OOM_SUCCESS;
1915         else
1916                 ret = OOM_FAILED;
1917
1918         if (locked)
1919                 mem_cgroup_oom_unlock(memcg);
1920
1921         return ret;
1922 }
1923
1924 /**
1925  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1926  * @handle: actually kill/wait or just clean up the OOM state
1927  *
1928  * This has to be called at the end of a page fault if the memcg OOM
1929  * handler was enabled.
1930  *
1931  * Memcg supports userspace OOM handling where failed allocations must
1932  * sleep on a waitqueue until the userspace task resolves the
1933  * situation.  Sleeping directly in the charge context with all kinds
1934  * of locks held is not a good idea, instead we remember an OOM state
1935  * in the task and mem_cgroup_oom_synchronize() has to be called at
1936  * the end of the page fault to complete the OOM handling.
1937  *
1938  * Returns %true if an ongoing memcg OOM situation was detected and
1939  * completed, %false otherwise.
1940  */
1941 bool mem_cgroup_oom_synchronize(bool handle)
1942 {
1943         struct mem_cgroup *memcg = current->memcg_in_oom;
1944         struct oom_wait_info owait;
1945         bool locked;
1946
1947         /* OOM is global, do not handle */
1948         if (!memcg)
1949                 return false;
1950
1951         if (!handle)
1952                 goto cleanup;
1953
1954         owait.memcg = memcg;
1955         owait.wait.flags = 0;
1956         owait.wait.func = memcg_oom_wake_function;
1957         owait.wait.private = current;
1958         INIT_LIST_HEAD(&owait.wait.entry);
1959
1960         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1961         mem_cgroup_mark_under_oom(memcg);
1962
1963         locked = mem_cgroup_oom_trylock(memcg);
1964
1965         if (locked)
1966                 mem_cgroup_oom_notify(memcg);
1967
1968         if (locked && !memcg->oom_kill_disable) {
1969                 mem_cgroup_unmark_under_oom(memcg);
1970                 finish_wait(&memcg_oom_waitq, &owait.wait);
1971                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1972                                          current->memcg_oom_order);
1973         } else {
1974                 schedule();
1975                 mem_cgroup_unmark_under_oom(memcg);
1976                 finish_wait(&memcg_oom_waitq, &owait.wait);
1977         }
1978
1979         if (locked) {
1980                 mem_cgroup_oom_unlock(memcg);
1981                 /*
1982                  * There is no guarantee that an OOM-lock contender
1983                  * sees the wakeups triggered by the OOM kill
1984                  * uncharges.  Wake any sleepers explicitely.
1985                  */
1986                 memcg_oom_recover(memcg);
1987         }
1988 cleanup:
1989         current->memcg_in_oom = NULL;
1990         css_put(&memcg->css);
1991         return true;
1992 }
1993
1994 /**
1995  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1996  * @victim: task to be killed by the OOM killer
1997  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1998  *
1999  * Returns a pointer to a memory cgroup, which has to be cleaned up
2000  * by killing all belonging OOM-killable tasks.
2001  *
2002  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2003  */
2004 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2005                                             struct mem_cgroup *oom_domain)
2006 {
2007         struct mem_cgroup *oom_group = NULL;
2008         struct mem_cgroup *memcg;
2009
2010         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2011                 return NULL;
2012
2013         if (!oom_domain)
2014                 oom_domain = root_mem_cgroup;
2015
2016         rcu_read_lock();
2017
2018         memcg = mem_cgroup_from_task(victim);
2019         if (memcg == root_mem_cgroup)
2020                 goto out;
2021
2022         /*
2023          * If the victim task has been asynchronously moved to a different
2024          * memory cgroup, we might end up killing tasks outside oom_domain.
2025          * In this case it's better to ignore memory.group.oom.
2026          */
2027         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2028                 goto out;
2029
2030         /*
2031          * Traverse the memory cgroup hierarchy from the victim task's
2032          * cgroup up to the OOMing cgroup (or root) to find the
2033          * highest-level memory cgroup with oom.group set.
2034          */
2035         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2036                 if (memcg->oom_group)
2037                         oom_group = memcg;
2038
2039                 if (memcg == oom_domain)
2040                         break;
2041         }
2042
2043         if (oom_group)
2044                 css_get(&oom_group->css);
2045 out:
2046         rcu_read_unlock();
2047
2048         return oom_group;
2049 }
2050
2051 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2052 {
2053         pr_info("Tasks in ");
2054         pr_cont_cgroup_path(memcg->css.cgroup);
2055         pr_cont(" are going to be killed due to memory.oom.group set\n");
2056 }
2057
2058 /**
2059  * lock_page_memcg - lock a page->mem_cgroup binding
2060  * @page: the page
2061  *
2062  * This function protects unlocked LRU pages from being moved to
2063  * another cgroup.
2064  *
2065  * It ensures lifetime of the returned memcg. Caller is responsible
2066  * for the lifetime of the page; __unlock_page_memcg() is available
2067  * when @page might get freed inside the locked section.
2068  */
2069 struct mem_cgroup *lock_page_memcg(struct page *page)
2070 {
2071         struct page *head = compound_head(page); /* rmap on tail pages */
2072         struct mem_cgroup *memcg;
2073         unsigned long flags;
2074
2075         /*
2076          * The RCU lock is held throughout the transaction.  The fast
2077          * path can get away without acquiring the memcg->move_lock
2078          * because page moving starts with an RCU grace period.
2079          *
2080          * The RCU lock also protects the memcg from being freed when
2081          * the page state that is going to change is the only thing
2082          * preventing the page itself from being freed. E.g. writeback
2083          * doesn't hold a page reference and relies on PG_writeback to
2084          * keep off truncation, migration and so forth.
2085          */
2086         rcu_read_lock();
2087
2088         if (mem_cgroup_disabled())
2089                 return NULL;
2090 again:
2091         memcg = head->mem_cgroup;
2092         if (unlikely(!memcg))
2093                 return NULL;
2094
2095         if (atomic_read(&memcg->moving_account) <= 0)
2096                 return memcg;
2097
2098         spin_lock_irqsave(&memcg->move_lock, flags);
2099         if (memcg != head->mem_cgroup) {
2100                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2101                 goto again;
2102         }
2103
2104         /*
2105          * When charge migration first begins, we can have locked and
2106          * unlocked page stat updates happening concurrently.  Track
2107          * the task who has the lock for unlock_page_memcg().
2108          */
2109         memcg->move_lock_task = current;
2110         memcg->move_lock_flags = flags;
2111
2112         return memcg;
2113 }
2114 EXPORT_SYMBOL(lock_page_memcg);
2115
2116 /**
2117  * __unlock_page_memcg - unlock and unpin a memcg
2118  * @memcg: the memcg
2119  *
2120  * Unlock and unpin a memcg returned by lock_page_memcg().
2121  */
2122 void __unlock_page_memcg(struct mem_cgroup *memcg)
2123 {
2124         if (memcg && memcg->move_lock_task == current) {
2125                 unsigned long flags = memcg->move_lock_flags;
2126
2127                 memcg->move_lock_task = NULL;
2128                 memcg->move_lock_flags = 0;
2129
2130                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2131         }
2132
2133         rcu_read_unlock();
2134 }
2135
2136 /**
2137  * unlock_page_memcg - unlock a page->mem_cgroup binding
2138  * @page: the page
2139  */
2140 void unlock_page_memcg(struct page *page)
2141 {
2142         struct page *head = compound_head(page);
2143
2144         __unlock_page_memcg(head->mem_cgroup);
2145 }
2146 EXPORT_SYMBOL(unlock_page_memcg);
2147
2148 struct memcg_stock_pcp {
2149         struct mem_cgroup *cached; /* this never be root cgroup */
2150         unsigned int nr_pages;
2151
2152 #ifdef CONFIG_MEMCG_KMEM
2153         struct obj_cgroup *cached_objcg;
2154         unsigned int nr_bytes;
2155 #endif
2156
2157         struct work_struct work;
2158         unsigned long flags;
2159 #define FLUSHING_CACHED_CHARGE  0
2160 };
2161 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2162 static DEFINE_MUTEX(percpu_charge_mutex);
2163
2164 #ifdef CONFIG_MEMCG_KMEM
2165 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2166 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2167                                      struct mem_cgroup *root_memcg);
2168
2169 #else
2170 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2171 {
2172 }
2173 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2174                                      struct mem_cgroup *root_memcg)
2175 {
2176         return false;
2177 }
2178 #endif
2179
2180 /**
2181  * consume_stock: Try to consume stocked charge on this cpu.
2182  * @memcg: memcg to consume from.
2183  * @nr_pages: how many pages to charge.
2184  *
2185  * The charges will only happen if @memcg matches the current cpu's memcg
2186  * stock, and at least @nr_pages are available in that stock.  Failure to
2187  * service an allocation will refill the stock.
2188  *
2189  * returns true if successful, false otherwise.
2190  */
2191 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2192 {
2193         struct memcg_stock_pcp *stock;
2194         unsigned long flags;
2195         bool ret = false;
2196
2197         if (nr_pages > MEMCG_CHARGE_BATCH)
2198                 return ret;
2199
2200         local_irq_save(flags);
2201
2202         stock = this_cpu_ptr(&memcg_stock);
2203         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2204                 stock->nr_pages -= nr_pages;
2205                 ret = true;
2206         }
2207
2208         local_irq_restore(flags);
2209
2210         return ret;
2211 }
2212
2213 /*
2214  * Returns stocks cached in percpu and reset cached information.
2215  */
2216 static void drain_stock(struct memcg_stock_pcp *stock)
2217 {
2218         struct mem_cgroup *old = stock->cached;
2219
2220         if (!old)
2221                 return;
2222
2223         if (stock->nr_pages) {
2224                 page_counter_uncharge(&old->memory, stock->nr_pages);
2225                 if (do_memsw_account())
2226                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2227                 stock->nr_pages = 0;
2228         }
2229
2230         css_put(&old->css);
2231         stock->cached = NULL;
2232 }
2233
2234 static void drain_local_stock(struct work_struct *dummy)
2235 {
2236         struct memcg_stock_pcp *stock;
2237         unsigned long flags;
2238
2239         /*
2240          * The only protection from memory hotplug vs. drain_stock races is
2241          * that we always operate on local CPU stock here with IRQ disabled
2242          */
2243         local_irq_save(flags);
2244
2245         stock = this_cpu_ptr(&memcg_stock);
2246         drain_obj_stock(stock);
2247         drain_stock(stock);
2248         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2249
2250         local_irq_restore(flags);
2251 }
2252
2253 /*
2254  * Cache charges(val) to local per_cpu area.
2255  * This will be consumed by consume_stock() function, later.
2256  */
2257 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2258 {
2259         struct memcg_stock_pcp *stock;
2260         unsigned long flags;
2261
2262         local_irq_save(flags);
2263
2264         stock = this_cpu_ptr(&memcg_stock);
2265         if (stock->cached != memcg) { /* reset if necessary */
2266                 drain_stock(stock);
2267                 css_get(&memcg->css);
2268                 stock->cached = memcg;
2269         }
2270         stock->nr_pages += nr_pages;
2271
2272         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2273                 drain_stock(stock);
2274
2275         local_irq_restore(flags);
2276 }
2277
2278 /*
2279  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2280  * of the hierarchy under it.
2281  */
2282 static void drain_all_stock(struct mem_cgroup *root_memcg)
2283 {
2284         int cpu, curcpu;
2285
2286         /* If someone's already draining, avoid adding running more workers. */
2287         if (!mutex_trylock(&percpu_charge_mutex))
2288                 return;
2289         /*
2290          * Notify other cpus that system-wide "drain" is running
2291          * We do not care about races with the cpu hotplug because cpu down
2292          * as well as workers from this path always operate on the local
2293          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2294          */
2295         curcpu = get_cpu();
2296         for_each_online_cpu(cpu) {
2297                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2298                 struct mem_cgroup *memcg;
2299                 bool flush = false;
2300
2301                 rcu_read_lock();
2302                 memcg = stock->cached;
2303                 if (memcg && stock->nr_pages &&
2304                     mem_cgroup_is_descendant(memcg, root_memcg))
2305                         flush = true;
2306                 if (obj_stock_flush_required(stock, root_memcg))
2307                         flush = true;
2308                 rcu_read_unlock();
2309
2310                 if (flush &&
2311                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2312                         if (cpu == curcpu)
2313                                 drain_local_stock(&stock->work);
2314                         else
2315                                 schedule_work_on(cpu, &stock->work);
2316                 }
2317         }
2318         put_cpu();
2319         mutex_unlock(&percpu_charge_mutex);
2320 }
2321
2322 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2323 {
2324         struct memcg_stock_pcp *stock;
2325         struct mem_cgroup *memcg, *mi;
2326
2327         stock = &per_cpu(memcg_stock, cpu);
2328         drain_stock(stock);
2329
2330         for_each_mem_cgroup(memcg) {
2331                 int i;
2332
2333                 for (i = 0; i < MEMCG_NR_STAT; i++) {
2334                         int nid;
2335                         long x;
2336
2337                         x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2338                         if (x)
2339                                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2340                                         atomic_long_add(x, &memcg->vmstats[i]);
2341
2342                         if (i >= NR_VM_NODE_STAT_ITEMS)
2343                                 continue;
2344
2345                         for_each_node(nid) {
2346                                 struct mem_cgroup_per_node *pn;
2347
2348                                 pn = mem_cgroup_nodeinfo(memcg, nid);
2349                                 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2350                                 if (x)
2351                                         do {
2352                                                 atomic_long_add(x, &pn->lruvec_stat[i]);
2353                                         } while ((pn = parent_nodeinfo(pn, nid)));
2354                         }
2355                 }
2356
2357                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2358                         long x;
2359
2360                         x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2361                         if (x)
2362                                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2363                                         atomic_long_add(x, &memcg->vmevents[i]);
2364                 }
2365         }
2366
2367         return 0;
2368 }
2369
2370 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2371                                   unsigned int nr_pages,
2372                                   gfp_t gfp_mask)
2373 {
2374         unsigned long nr_reclaimed = 0;
2375
2376         do {
2377                 if (page_counter_read(&memcg->memory) <=
2378                     READ_ONCE(memcg->memory.high))
2379                         continue;
2380                 memcg_memory_event(memcg, MEMCG_HIGH);
2381                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2382                                                              gfp_mask, true);
2383         } while ((memcg = parent_mem_cgroup(memcg)) &&
2384                  !mem_cgroup_is_root(memcg));
2385
2386         return nr_reclaimed;
2387 }
2388
2389 static void high_work_func(struct work_struct *work)
2390 {
2391         struct mem_cgroup *memcg;
2392
2393         memcg = container_of(work, struct mem_cgroup, high_work);
2394         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2395 }
2396
2397 /*
2398  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2399  * enough to still cause a significant slowdown in most cases, while still
2400  * allowing diagnostics and tracing to proceed without becoming stuck.
2401  */
2402 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2403
2404 /*
2405  * When calculating the delay, we use these either side of the exponentiation to
2406  * maintain precision and scale to a reasonable number of jiffies (see the table
2407  * below.
2408  *
2409  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2410  *   overage ratio to a delay.
2411  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2412  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2413  *   to produce a reasonable delay curve.
2414  *
2415  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2416  * reasonable delay curve compared to precision-adjusted overage, not
2417  * penalising heavily at first, but still making sure that growth beyond the
2418  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2419  * example, with a high of 100 megabytes:
2420  *
2421  *  +-------+------------------------+
2422  *  | usage | time to allocate in ms |
2423  *  +-------+------------------------+
2424  *  | 100M  |                      0 |
2425  *  | 101M  |                      6 |
2426  *  | 102M  |                     25 |
2427  *  | 103M  |                     57 |
2428  *  | 104M  |                    102 |
2429  *  | 105M  |                    159 |
2430  *  | 106M  |                    230 |
2431  *  | 107M  |                    313 |
2432  *  | 108M  |                    409 |
2433  *  | 109M  |                    518 |
2434  *  | 110M  |                    639 |
2435  *  | 111M  |                    774 |
2436  *  | 112M  |                    921 |
2437  *  | 113M  |                   1081 |
2438  *  | 114M  |                   1254 |
2439  *  | 115M  |                   1439 |
2440  *  | 116M  |                   1638 |
2441  *  | 117M  |                   1849 |
2442  *  | 118M  |                   2000 |
2443  *  | 119M  |                   2000 |
2444  *  | 120M  |                   2000 |
2445  *  +-------+------------------------+
2446  */
2447  #define MEMCG_DELAY_PRECISION_SHIFT 20
2448  #define MEMCG_DELAY_SCALING_SHIFT 14
2449
2450 static u64 calculate_overage(unsigned long usage, unsigned long high)
2451 {
2452         u64 overage;
2453
2454         if (usage <= high)
2455                 return 0;
2456
2457         /*
2458          * Prevent division by 0 in overage calculation by acting as if
2459          * it was a threshold of 1 page
2460          */
2461         high = max(high, 1UL);
2462
2463         overage = usage - high;
2464         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2465         return div64_u64(overage, high);
2466 }
2467
2468 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2469 {
2470         u64 overage, max_overage = 0;
2471
2472         do {
2473                 overage = calculate_overage(page_counter_read(&memcg->memory),
2474                                             READ_ONCE(memcg->memory.high));
2475                 max_overage = max(overage, max_overage);
2476         } while ((memcg = parent_mem_cgroup(memcg)) &&
2477                  !mem_cgroup_is_root(memcg));
2478
2479         return max_overage;
2480 }
2481
2482 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2483 {
2484         u64 overage, max_overage = 0;
2485
2486         do {
2487                 overage = calculate_overage(page_counter_read(&memcg->swap),
2488                                             READ_ONCE(memcg->swap.high));
2489                 if (overage)
2490                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2491                 max_overage = max(overage, max_overage);
2492         } while ((memcg = parent_mem_cgroup(memcg)) &&
2493                  !mem_cgroup_is_root(memcg));
2494
2495         return max_overage;
2496 }
2497
2498 /*
2499  * Get the number of jiffies that we should penalise a mischievous cgroup which
2500  * is exceeding its memory.high by checking both it and its ancestors.
2501  */
2502 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2503                                           unsigned int nr_pages,
2504                                           u64 max_overage)
2505 {
2506         unsigned long penalty_jiffies;
2507
2508         if (!max_overage)
2509                 return 0;
2510
2511         /*
2512          * We use overage compared to memory.high to calculate the number of
2513          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2514          * fairly lenient on small overages, and increasingly harsh when the
2515          * memcg in question makes it clear that it has no intention of stopping
2516          * its crazy behaviour, so we exponentially increase the delay based on
2517          * overage amount.
2518          */
2519         penalty_jiffies = max_overage * max_overage * HZ;
2520         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2521         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2522
2523         /*
2524          * Factor in the task's own contribution to the overage, such that four
2525          * N-sized allocations are throttled approximately the same as one
2526          * 4N-sized allocation.
2527          *
2528          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2529          * larger the current charge patch is than that.
2530          */
2531         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2532 }
2533
2534 /*
2535  * Scheduled by try_charge() to be executed from the userland return path
2536  * and reclaims memory over the high limit.
2537  */
2538 void mem_cgroup_handle_over_high(void)
2539 {
2540         unsigned long penalty_jiffies;
2541         unsigned long pflags;
2542         unsigned long nr_reclaimed;
2543         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2544         int nr_retries = MAX_RECLAIM_RETRIES;
2545         struct mem_cgroup *memcg;
2546         bool in_retry = false;
2547
2548         if (likely(!nr_pages))
2549                 return;
2550
2551         memcg = get_mem_cgroup_from_mm(current->mm);
2552         current->memcg_nr_pages_over_high = 0;
2553
2554 retry_reclaim:
2555         /*
2556          * The allocating task should reclaim at least the batch size, but for
2557          * subsequent retries we only want to do what's necessary to prevent oom
2558          * or breaching resource isolation.
2559          *
2560          * This is distinct from memory.max or page allocator behaviour because
2561          * memory.high is currently batched, whereas memory.max and the page
2562          * allocator run every time an allocation is made.
2563          */
2564         nr_reclaimed = reclaim_high(memcg,
2565                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2566                                     GFP_KERNEL);
2567
2568         /*
2569          * memory.high is breached and reclaim is unable to keep up. Throttle
2570          * allocators proactively to slow down excessive growth.
2571          */
2572         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2573                                                mem_find_max_overage(memcg));
2574
2575         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2576                                                 swap_find_max_overage(memcg));
2577
2578         /*
2579          * Clamp the max delay per usermode return so as to still keep the
2580          * application moving forwards and also permit diagnostics, albeit
2581          * extremely slowly.
2582          */
2583         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2584
2585         /*
2586          * Don't sleep if the amount of jiffies this memcg owes us is so low
2587          * that it's not even worth doing, in an attempt to be nice to those who
2588          * go only a small amount over their memory.high value and maybe haven't
2589          * been aggressively reclaimed enough yet.
2590          */
2591         if (penalty_jiffies <= HZ / 100)
2592                 goto out;
2593
2594         /*
2595          * If reclaim is making forward progress but we're still over
2596          * memory.high, we want to encourage that rather than doing allocator
2597          * throttling.
2598          */
2599         if (nr_reclaimed || nr_retries--) {
2600                 in_retry = true;
2601                 goto retry_reclaim;
2602         }
2603
2604         /*
2605          * If we exit early, we're guaranteed to die (since
2606          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2607          * need to account for any ill-begotten jiffies to pay them off later.
2608          */
2609         psi_memstall_enter(&pflags);
2610         schedule_timeout_killable(penalty_jiffies);
2611         psi_memstall_leave(&pflags);
2612
2613 out:
2614         css_put(&memcg->css);
2615 }
2616
2617 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2618                       unsigned int nr_pages)
2619 {
2620         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2621         int nr_retries = MAX_RECLAIM_RETRIES;
2622         struct mem_cgroup *mem_over_limit;
2623         struct page_counter *counter;
2624         unsigned long nr_reclaimed;
2625         bool may_swap = true;
2626         bool drained = false;
2627         enum oom_status oom_status;
2628
2629         if (mem_cgroup_is_root(memcg))
2630                 return 0;
2631 retry:
2632         if (consume_stock(memcg, nr_pages))
2633                 return 0;
2634
2635         if (!do_memsw_account() ||
2636             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2637                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2638                         goto done_restock;
2639                 if (do_memsw_account())
2640                         page_counter_uncharge(&memcg->memsw, batch);
2641                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2642         } else {
2643                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2644                 may_swap = false;
2645         }
2646
2647         if (batch > nr_pages) {
2648                 batch = nr_pages;
2649                 goto retry;
2650         }
2651
2652         /*
2653          * Memcg doesn't have a dedicated reserve for atomic
2654          * allocations. But like the global atomic pool, we need to
2655          * put the burden of reclaim on regular allocation requests
2656          * and let these go through as privileged allocations.
2657          */
2658         if (gfp_mask & __GFP_ATOMIC)
2659                 goto force;
2660
2661         /*
2662          * Unlike in global OOM situations, memcg is not in a physical
2663          * memory shortage.  Allow dying and OOM-killed tasks to
2664          * bypass the last charges so that they can exit quickly and
2665          * free their memory.
2666          */
2667         if (unlikely(should_force_charge()))
2668                 goto force;
2669
2670         /*
2671          * Prevent unbounded recursion when reclaim operations need to
2672          * allocate memory. This might exceed the limits temporarily,
2673          * but we prefer facilitating memory reclaim and getting back
2674          * under the limit over triggering OOM kills in these cases.
2675          */
2676         if (unlikely(current->flags & PF_MEMALLOC))
2677                 goto force;
2678
2679         if (unlikely(task_in_memcg_oom(current)))
2680                 goto nomem;
2681
2682         if (!gfpflags_allow_blocking(gfp_mask))
2683                 goto nomem;
2684
2685         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2686
2687         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2688                                                     gfp_mask, may_swap);
2689
2690         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2691                 goto retry;
2692
2693         if (!drained) {
2694                 drain_all_stock(mem_over_limit);
2695                 drained = true;
2696                 goto retry;
2697         }
2698
2699         if (gfp_mask & __GFP_NORETRY)
2700                 goto nomem;
2701         /*
2702          * Even though the limit is exceeded at this point, reclaim
2703          * may have been able to free some pages.  Retry the charge
2704          * before killing the task.
2705          *
2706          * Only for regular pages, though: huge pages are rather
2707          * unlikely to succeed so close to the limit, and we fall back
2708          * to regular pages anyway in case of failure.
2709          */
2710         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2711                 goto retry;
2712         /*
2713          * At task move, charge accounts can be doubly counted. So, it's
2714          * better to wait until the end of task_move if something is going on.
2715          */
2716         if (mem_cgroup_wait_acct_move(mem_over_limit))
2717                 goto retry;
2718
2719         if (nr_retries--)
2720                 goto retry;
2721
2722         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2723                 goto nomem;
2724
2725         if (gfp_mask & __GFP_NOFAIL)
2726                 goto force;
2727
2728         if (fatal_signal_pending(current))
2729                 goto force;
2730
2731         /*
2732          * keep retrying as long as the memcg oom killer is able to make
2733          * a forward progress or bypass the charge if the oom killer
2734          * couldn't make any progress.
2735          */
2736         oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2737                        get_order(nr_pages * PAGE_SIZE));
2738         switch (oom_status) {
2739         case OOM_SUCCESS:
2740                 nr_retries = MAX_RECLAIM_RETRIES;
2741                 goto retry;
2742         case OOM_FAILED:
2743                 goto force;
2744         default:
2745                 goto nomem;
2746         }
2747 nomem:
2748         if (!(gfp_mask & __GFP_NOFAIL))
2749                 return -ENOMEM;
2750 force:
2751         /*
2752          * The allocation either can't fail or will lead to more memory
2753          * being freed very soon.  Allow memory usage go over the limit
2754          * temporarily by force charging it.
2755          */
2756         page_counter_charge(&memcg->memory, nr_pages);
2757         if (do_memsw_account())
2758                 page_counter_charge(&memcg->memsw, nr_pages);
2759
2760         return 0;
2761
2762 done_restock:
2763         if (batch > nr_pages)
2764                 refill_stock(memcg, batch - nr_pages);
2765
2766         /*
2767          * If the hierarchy is above the normal consumption range, schedule
2768          * reclaim on returning to userland.  We can perform reclaim here
2769          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2770          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2771          * not recorded as it most likely matches current's and won't
2772          * change in the meantime.  As high limit is checked again before
2773          * reclaim, the cost of mismatch is negligible.
2774          */
2775         do {
2776                 bool mem_high, swap_high;
2777
2778                 mem_high = page_counter_read(&memcg->memory) >
2779                         READ_ONCE(memcg->memory.high);
2780                 swap_high = page_counter_read(&memcg->swap) >
2781                         READ_ONCE(memcg->swap.high);
2782
2783                 /* Don't bother a random interrupted task */
2784                 if (in_interrupt()) {
2785                         if (mem_high) {
2786                                 schedule_work(&memcg->high_work);
2787                                 break;
2788                         }
2789                         continue;
2790                 }
2791
2792                 if (mem_high || swap_high) {
2793                         /*
2794                          * The allocating tasks in this cgroup will need to do
2795                          * reclaim or be throttled to prevent further growth
2796                          * of the memory or swap footprints.
2797                          *
2798                          * Target some best-effort fairness between the tasks,
2799                          * and distribute reclaim work and delay penalties
2800                          * based on how much each task is actually allocating.
2801                          */
2802                         current->memcg_nr_pages_over_high += batch;
2803                         set_notify_resume(current);
2804                         break;
2805                 }
2806         } while ((memcg = parent_mem_cgroup(memcg)));
2807
2808         return 0;
2809 }
2810
2811 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2812 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2813 {
2814         if (mem_cgroup_is_root(memcg))
2815                 return;
2816
2817         page_counter_uncharge(&memcg->memory, nr_pages);
2818         if (do_memsw_account())
2819                 page_counter_uncharge(&memcg->memsw, nr_pages);
2820 }
2821 #endif
2822
2823 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2824 {
2825         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2826         /*
2827          * Any of the following ensures page->mem_cgroup stability:
2828          *
2829          * - the page lock
2830          * - LRU isolation
2831          * - lock_page_memcg()
2832          * - exclusive reference
2833          */
2834         page->mem_cgroup = memcg;
2835 }
2836
2837 #ifdef CONFIG_MEMCG_KMEM
2838 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2839                                  gfp_t gfp)
2840 {
2841         unsigned int objects = objs_per_slab_page(s, page);
2842         void *vec;
2843
2844         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2845                            page_to_nid(page));
2846         if (!vec)
2847                 return -ENOMEM;
2848
2849         if (cmpxchg(&page->obj_cgroups, NULL,
2850                     (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2851                 kfree(vec);
2852         else
2853                 kmemleak_not_leak(vec);
2854
2855         return 0;
2856 }
2857
2858 /*
2859  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2860  *
2861  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2862  * cgroup_mutex, etc.
2863  */
2864 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2865 {
2866         struct page *page;
2867
2868         if (mem_cgroup_disabled())
2869                 return NULL;
2870
2871         page = virt_to_head_page(p);
2872
2873         /*
2874          * Slab objects are accounted individually, not per-page.
2875          * Memcg membership data for each individual object is saved in
2876          * the page->obj_cgroups.
2877          */
2878         if (page_has_obj_cgroups(page)) {
2879                 struct obj_cgroup *objcg;
2880                 unsigned int off;
2881
2882                 off = obj_to_index(page->slab_cache, page, p);
2883                 objcg = page_obj_cgroups(page)[off];
2884                 if (objcg)
2885                         return obj_cgroup_memcg(objcg);
2886
2887                 return NULL;
2888         }
2889
2890         /* All other pages use page->mem_cgroup */
2891         return page->mem_cgroup;
2892 }
2893
2894 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2895 {
2896         struct obj_cgroup *objcg = NULL;
2897         struct mem_cgroup *memcg;
2898
2899         if (unlikely(!current->mm && !current->active_memcg))
2900                 return NULL;
2901
2902         rcu_read_lock();
2903         if (unlikely(current->active_memcg))
2904                 memcg = rcu_dereference(current->active_memcg);
2905         else
2906                 memcg = mem_cgroup_from_task(current);
2907
2908         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2909                 objcg = rcu_dereference(memcg->objcg);
2910                 if (objcg && obj_cgroup_tryget(objcg))
2911                         break;
2912         }
2913         rcu_read_unlock();
2914
2915         return objcg;
2916 }
2917
2918 static int memcg_alloc_cache_id(void)
2919 {
2920         int id, size;
2921         int err;
2922
2923         id = ida_simple_get(&memcg_cache_ida,
2924                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2925         if (id < 0)
2926                 return id;
2927
2928         if (id < memcg_nr_cache_ids)
2929                 return id;
2930
2931         /*
2932          * There's no space for the new id in memcg_caches arrays,
2933          * so we have to grow them.
2934          */
2935         down_write(&memcg_cache_ids_sem);
2936
2937         size = 2 * (id + 1);
2938         if (size < MEMCG_CACHES_MIN_SIZE)
2939                 size = MEMCG_CACHES_MIN_SIZE;
2940         else if (size > MEMCG_CACHES_MAX_SIZE)
2941                 size = MEMCG_CACHES_MAX_SIZE;
2942
2943         err = memcg_update_all_list_lrus(size);
2944         if (!err)
2945                 memcg_nr_cache_ids = size;
2946
2947         up_write(&memcg_cache_ids_sem);
2948
2949         if (err) {
2950                 ida_simple_remove(&memcg_cache_ida, id);
2951                 return err;
2952         }
2953         return id;
2954 }
2955
2956 static void memcg_free_cache_id(int id)
2957 {
2958         ida_simple_remove(&memcg_cache_ida, id);
2959 }
2960
2961 /**
2962  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2963  * @memcg: memory cgroup to charge
2964  * @gfp: reclaim mode
2965  * @nr_pages: number of pages to charge
2966  *
2967  * Returns 0 on success, an error code on failure.
2968  */
2969 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2970                         unsigned int nr_pages)
2971 {
2972         struct page_counter *counter;
2973         int ret;
2974
2975         ret = try_charge(memcg, gfp, nr_pages);
2976         if (ret)
2977                 return ret;
2978
2979         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2980             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2981
2982                 /*
2983                  * Enforce __GFP_NOFAIL allocation because callers are not
2984                  * prepared to see failures and likely do not have any failure
2985                  * handling code.
2986                  */
2987                 if (gfp & __GFP_NOFAIL) {
2988                         page_counter_charge(&memcg->kmem, nr_pages);
2989                         return 0;
2990                 }
2991                 cancel_charge(memcg, nr_pages);
2992                 return -ENOMEM;
2993         }
2994         return 0;
2995 }
2996
2997 /**
2998  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2999  * @memcg: memcg to uncharge
3000  * @nr_pages: number of pages to uncharge
3001  */
3002 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3003 {
3004         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3005                 page_counter_uncharge(&memcg->kmem, nr_pages);
3006
3007         page_counter_uncharge(&memcg->memory, nr_pages);
3008         if (do_memsw_account())
3009                 page_counter_uncharge(&memcg->memsw, nr_pages);
3010 }
3011
3012 /**
3013  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3014  * @page: page to charge
3015  * @gfp: reclaim mode
3016  * @order: allocation order
3017  *
3018  * Returns 0 on success, an error code on failure.
3019  */
3020 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3021 {
3022         struct mem_cgroup *memcg;
3023         int ret = 0;
3024
3025         if (memcg_kmem_bypass())
3026                 return 0;
3027
3028         memcg = get_mem_cgroup_from_current();
3029         if (!mem_cgroup_is_root(memcg)) {
3030                 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3031                 if (!ret) {
3032                         page->mem_cgroup = memcg;
3033                         __SetPageKmemcg(page);
3034                         return 0;
3035                 }
3036         }
3037         css_put(&memcg->css);
3038         return ret;
3039 }
3040
3041 /**
3042  * __memcg_kmem_uncharge_page: uncharge a kmem page
3043  * @page: page to uncharge
3044  * @order: allocation order
3045  */
3046 void __memcg_kmem_uncharge_page(struct page *page, int order)
3047 {
3048         struct mem_cgroup *memcg = page->mem_cgroup;
3049         unsigned int nr_pages = 1 << order;
3050
3051         if (!memcg)
3052                 return;
3053
3054         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3055         __memcg_kmem_uncharge(memcg, nr_pages);
3056         page->mem_cgroup = NULL;
3057         css_put(&memcg->css);
3058
3059         /* slab pages do not have PageKmemcg flag set */
3060         if (PageKmemcg(page))
3061                 __ClearPageKmemcg(page);
3062 }
3063
3064 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3065 {
3066         struct memcg_stock_pcp *stock;
3067         unsigned long flags;
3068         bool ret = false;
3069
3070         local_irq_save(flags);
3071
3072         stock = this_cpu_ptr(&memcg_stock);
3073         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3074                 stock->nr_bytes -= nr_bytes;
3075                 ret = true;
3076         }
3077
3078         local_irq_restore(flags);
3079
3080         return ret;
3081 }
3082
3083 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3084 {
3085         struct obj_cgroup *old = stock->cached_objcg;
3086
3087         if (!old)
3088                 return;
3089
3090         if (stock->nr_bytes) {
3091                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3092                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3093
3094                 if (nr_pages) {
3095                         rcu_read_lock();
3096                         __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3097                         rcu_read_unlock();
3098                 }
3099
3100                 /*
3101                  * The leftover is flushed to the centralized per-memcg value.
3102                  * On the next attempt to refill obj stock it will be moved
3103                  * to a per-cpu stock (probably, on an other CPU), see
3104                  * refill_obj_stock().
3105                  *
3106                  * How often it's flushed is a trade-off between the memory
3107                  * limit enforcement accuracy and potential CPU contention,
3108                  * so it might be changed in the future.
3109                  */
3110                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3111                 stock->nr_bytes = 0;
3112         }
3113
3114         obj_cgroup_put(old);
3115         stock->cached_objcg = NULL;
3116 }
3117
3118 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3119                                      struct mem_cgroup *root_memcg)
3120 {
3121         struct mem_cgroup *memcg;
3122
3123         if (stock->cached_objcg) {
3124                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3125                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3126                         return true;
3127         }
3128
3129         return false;
3130 }
3131
3132 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3133 {
3134         struct memcg_stock_pcp *stock;
3135         unsigned long flags;
3136
3137         local_irq_save(flags);
3138
3139         stock = this_cpu_ptr(&memcg_stock);
3140         if (stock->cached_objcg != objcg) { /* reset if necessary */
3141                 drain_obj_stock(stock);
3142                 obj_cgroup_get(objcg);
3143                 stock->cached_objcg = objcg;
3144                 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3145         }
3146         stock->nr_bytes += nr_bytes;
3147
3148         if (stock->nr_bytes > PAGE_SIZE)
3149                 drain_obj_stock(stock);
3150
3151         local_irq_restore(flags);
3152 }
3153
3154 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3155 {
3156         struct mem_cgroup *memcg;
3157         unsigned int nr_pages, nr_bytes;
3158         int ret;
3159
3160         if (consume_obj_stock(objcg, size))
3161                 return 0;
3162
3163         /*
3164          * In theory, memcg->nr_charged_bytes can have enough
3165          * pre-charged bytes to satisfy the allocation. However,
3166          * flushing memcg->nr_charged_bytes requires two atomic
3167          * operations, and memcg->nr_charged_bytes can't be big,
3168          * so it's better to ignore it and try grab some new pages.
3169          * memcg->nr_charged_bytes will be flushed in
3170          * refill_obj_stock(), called from this function or
3171          * independently later.
3172          */
3173         rcu_read_lock();
3174         memcg = obj_cgroup_memcg(objcg);
3175         css_get(&memcg->css);
3176         rcu_read_unlock();
3177
3178         nr_pages = size >> PAGE_SHIFT;
3179         nr_bytes = size & (PAGE_SIZE - 1);
3180
3181         if (nr_bytes)
3182                 nr_pages += 1;
3183
3184         ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3185         if (!ret && nr_bytes)
3186                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3187
3188         css_put(&memcg->css);
3189         return ret;
3190 }
3191
3192 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3193 {
3194         refill_obj_stock(objcg, size);
3195 }
3196
3197 #endif /* CONFIG_MEMCG_KMEM */
3198
3199 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3200
3201 /*
3202  * Because tail pages are not marked as "used", set it. We're under
3203  * pgdat->lru_lock and migration entries setup in all page mappings.
3204  */
3205 void mem_cgroup_split_huge_fixup(struct page *head)
3206 {
3207         struct mem_cgroup *memcg = head->mem_cgroup;
3208         int i;
3209
3210         if (mem_cgroup_disabled())
3211                 return;
3212
3213         for (i = 1; i < HPAGE_PMD_NR; i++) {
3214                 css_get(&memcg->css);
3215                 head[i].mem_cgroup = memcg;
3216         }
3217 }
3218 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3219
3220 #ifdef CONFIG_MEMCG_SWAP
3221 /**
3222  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3223  * @entry: swap entry to be moved
3224  * @from:  mem_cgroup which the entry is moved from
3225  * @to:  mem_cgroup which the entry is moved to
3226  *
3227  * It succeeds only when the swap_cgroup's record for this entry is the same
3228  * as the mem_cgroup's id of @from.
3229  *
3230  * Returns 0 on success, -EINVAL on failure.
3231  *
3232  * The caller must have charged to @to, IOW, called page_counter_charge() about
3233  * both res and memsw, and called css_get().
3234  */
3235 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3236                                 struct mem_cgroup *from, struct mem_cgroup *to)
3237 {
3238         unsigned short old_id, new_id;
3239
3240         old_id = mem_cgroup_id(from);
3241         new_id = mem_cgroup_id(to);
3242
3243         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3244                 mod_memcg_state(from, MEMCG_SWAP, -1);
3245                 mod_memcg_state(to, MEMCG_SWAP, 1);
3246                 return 0;
3247         }
3248         return -EINVAL;
3249 }
3250 #else
3251 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3252                                 struct mem_cgroup *from, struct mem_cgroup *to)
3253 {
3254         return -EINVAL;
3255 }
3256 #endif
3257
3258 static DEFINE_MUTEX(memcg_max_mutex);
3259
3260 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3261                                  unsigned long max, bool memsw)
3262 {
3263         bool enlarge = false;
3264         bool drained = false;
3265         int ret;
3266         bool limits_invariant;
3267         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3268
3269         do {
3270                 if (signal_pending(current)) {
3271                         ret = -EINTR;
3272                         break;
3273                 }
3274
3275                 mutex_lock(&memcg_max_mutex);
3276                 /*
3277                  * Make sure that the new limit (memsw or memory limit) doesn't
3278                  * break our basic invariant rule memory.max <= memsw.max.
3279                  */
3280                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3281                                            max <= memcg->memsw.max;
3282                 if (!limits_invariant) {
3283                         mutex_unlock(&memcg_max_mutex);
3284                         ret = -EINVAL;
3285                         break;
3286                 }
3287                 if (max > counter->max)
3288                         enlarge = true;
3289                 ret = page_counter_set_max(counter, max);
3290                 mutex_unlock(&memcg_max_mutex);
3291
3292                 if (!ret)
3293                         break;
3294
3295                 if (!drained) {
3296                         drain_all_stock(memcg);
3297                         drained = true;
3298                         continue;
3299                 }
3300
3301                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3302                                         GFP_KERNEL, !memsw)) {
3303                         ret = -EBUSY;
3304                         break;
3305                 }
3306         } while (true);
3307
3308         if (!ret && enlarge)
3309                 memcg_oom_recover(memcg);
3310
3311         return ret;
3312 }
3313
3314 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3315                                             gfp_t gfp_mask,
3316                                             unsigned long *total_scanned)
3317 {
3318         unsigned long nr_reclaimed = 0;
3319         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3320         unsigned long reclaimed;
3321         int loop = 0;
3322         struct mem_cgroup_tree_per_node *mctz;
3323         unsigned long excess;
3324         unsigned long nr_scanned;
3325
3326         if (order > 0)
3327                 return 0;
3328
3329         mctz = soft_limit_tree_node(pgdat->node_id);
3330
3331         /*
3332          * Do not even bother to check the largest node if the root
3333          * is empty. Do it lockless to prevent lock bouncing. Races
3334          * are acceptable as soft limit is best effort anyway.
3335          */
3336         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3337                 return 0;
3338
3339         /*
3340          * This loop can run a while, specially if mem_cgroup's continuously
3341          * keep exceeding their soft limit and putting the system under
3342          * pressure
3343          */
3344         do {
3345                 if (next_mz)
3346                         mz = next_mz;
3347                 else
3348                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3349                 if (!mz)
3350                         break;
3351
3352                 nr_scanned = 0;
3353                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3354                                                     gfp_mask, &nr_scanned);
3355                 nr_reclaimed += reclaimed;
3356                 *total_scanned += nr_scanned;
3357                 spin_lock_irq(&mctz->lock);
3358                 __mem_cgroup_remove_exceeded(mz, mctz);
3359
3360                 /*
3361                  * If we failed to reclaim anything from this memory cgroup
3362                  * it is time to move on to the next cgroup
3363                  */
3364                 next_mz = NULL;
3365                 if (!reclaimed)
3366                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3367
3368                 excess = soft_limit_excess(mz->memcg);
3369                 /*
3370                  * One school of thought says that we should not add
3371                  * back the node to the tree if reclaim returns 0.
3372                  * But our reclaim could return 0, simply because due
3373                  * to priority we are exposing a smaller subset of
3374                  * memory to reclaim from. Consider this as a longer
3375                  * term TODO.
3376                  */
3377                 /* If excess == 0, no tree ops */
3378                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3379                 spin_unlock_irq(&mctz->lock);
3380                 css_put(&mz->memcg->css);
3381                 loop++;
3382                 /*
3383                  * Could not reclaim anything and there are no more
3384                  * mem cgroups to try or we seem to be looping without
3385                  * reclaiming anything.
3386                  */
3387                 if (!nr_reclaimed &&
3388                         (next_mz == NULL ||
3389                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3390                         break;
3391         } while (!nr_reclaimed);
3392         if (next_mz)
3393                 css_put(&next_mz->memcg->css);
3394         return nr_reclaimed;
3395 }
3396
3397 /*
3398  * Test whether @memcg has children, dead or alive.  Note that this
3399  * function doesn't care whether @memcg has use_hierarchy enabled and
3400  * returns %true if there are child csses according to the cgroup
3401  * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3402  */
3403 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3404 {
3405         bool ret;
3406
3407         rcu_read_lock();
3408         ret = css_next_child(NULL, &memcg->css);
3409         rcu_read_unlock();
3410         return ret;
3411 }
3412
3413 /*
3414  * Reclaims as many pages from the given memcg as possible.
3415  *
3416  * Caller is responsible for holding css reference for memcg.
3417  */
3418 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3419 {
3420         int nr_retries = MAX_RECLAIM_RETRIES;
3421
3422         /* we call try-to-free pages for make this cgroup empty */
3423         lru_add_drain_all();
3424
3425         drain_all_stock(memcg);
3426
3427         /* try to free all pages in this cgroup */
3428         while (nr_retries && page_counter_read(&memcg->memory)) {
3429                 int progress;
3430
3431                 if (signal_pending(current))
3432                         return -EINTR;
3433
3434                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3435                                                         GFP_KERNEL, true);
3436                 if (!progress) {
3437                         nr_retries--;
3438                         /* maybe some writeback is necessary */
3439                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3440                 }
3441
3442         }
3443
3444         return 0;
3445 }
3446
3447 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3448                                             char *buf, size_t nbytes,
3449                                             loff_t off)
3450 {
3451         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3452
3453         if (mem_cgroup_is_root(memcg))
3454                 return -EINVAL;
3455         return mem_cgroup_force_empty(memcg) ?: nbytes;
3456 }
3457
3458 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3459                                      struct cftype *cft)
3460 {
3461         return mem_cgroup_from_css(css)->use_hierarchy;
3462 }
3463
3464 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3465                                       struct cftype *cft, u64 val)
3466 {
3467         int retval = 0;
3468         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3469         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3470
3471         if (memcg->use_hierarchy == val)
3472                 return 0;
3473
3474         /*
3475          * If parent's use_hierarchy is set, we can't make any modifications
3476          * in the child subtrees. If it is unset, then the change can
3477          * occur, provided the current cgroup has no children.
3478          *
3479          * For the root cgroup, parent_mem is NULL, we allow value to be
3480          * set if there are no children.
3481          */
3482         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3483                                 (val == 1 || val == 0)) {
3484                 if (!memcg_has_children(memcg))
3485                         memcg->use_hierarchy = val;
3486                 else
3487                         retval = -EBUSY;
3488         } else
3489                 retval = -EINVAL;
3490
3491         return retval;
3492 }
3493
3494 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3495 {
3496         unsigned long val;
3497
3498         if (mem_cgroup_is_root(memcg)) {
3499                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3500                         memcg_page_state(memcg, NR_ANON_MAPPED);
3501                 if (swap)
3502                         val += memcg_page_state(memcg, MEMCG_SWAP);
3503         } else {
3504                 if (!swap)
3505                         val = page_counter_read(&memcg->memory);
3506                 else
3507                         val = page_counter_read(&memcg->memsw);
3508         }
3509         return val;
3510 }
3511
3512 enum {
3513         RES_USAGE,
3514         RES_LIMIT,
3515         RES_MAX_USAGE,
3516         RES_FAILCNT,
3517         RES_SOFT_LIMIT,
3518 };
3519
3520 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3521                                struct cftype *cft)
3522 {
3523         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3524         struct page_counter *counter;
3525
3526         switch (MEMFILE_TYPE(cft->private)) {
3527         case _MEM:
3528                 counter = &memcg->memory;
3529                 break;
3530         case _MEMSWAP:
3531                 counter = &memcg->memsw;
3532                 break;
3533         case _KMEM:
3534                 counter = &memcg->kmem;
3535                 break;
3536         case _TCP:
3537                 counter = &memcg->tcpmem;
3538                 break;
3539         default:
3540                 BUG();
3541         }
3542
3543         switch (MEMFILE_ATTR(cft->private)) {
3544         case RES_USAGE:
3545                 if (counter == &memcg->memory)
3546                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3547                 if (counter == &memcg->memsw)
3548                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3549                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3550         case RES_LIMIT:
3551                 return (u64)counter->max * PAGE_SIZE;
3552         case RES_MAX_USAGE:
3553                 return (u64)counter->watermark * PAGE_SIZE;
3554         case RES_FAILCNT:
3555                 return counter->failcnt;
3556         case RES_SOFT_LIMIT:
3557                 return (u64)memcg->soft_limit * PAGE_SIZE;
3558         default:
3559                 BUG();
3560         }
3561 }
3562
3563 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3564 {
3565         unsigned long stat[MEMCG_NR_STAT] = {0};
3566         struct mem_cgroup *mi;
3567         int node, cpu, i;
3568
3569         for_each_online_cpu(cpu)
3570                 for (i = 0; i < MEMCG_NR_STAT; i++)
3571                         stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3572
3573         for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3574                 for (i = 0; i < MEMCG_NR_STAT; i++)
3575                         atomic_long_add(stat[i], &mi->vmstats[i]);
3576
3577         for_each_node(node) {
3578                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3579                 struct mem_cgroup_per_node *pi;
3580
3581                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3582                         stat[i] = 0;
3583
3584                 for_each_online_cpu(cpu)
3585                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3586                                 stat[i] += per_cpu(
3587                                         pn->lruvec_stat_cpu->count[i], cpu);
3588
3589                 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3590                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3591                                 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3592         }
3593 }
3594
3595 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3596 {
3597         unsigned long events[NR_VM_EVENT_ITEMS];
3598         struct mem_cgroup *mi;
3599         int cpu, i;
3600
3601         for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3602                 events[i] = 0;
3603
3604         for_each_online_cpu(cpu)
3605                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3606                         events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3607                                              cpu);
3608
3609         for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3610                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3611                         atomic_long_add(events[i], &mi->vmevents[i]);
3612 }
3613
3614 #ifdef CONFIG_MEMCG_KMEM
3615 static int memcg_online_kmem(struct mem_cgroup *memcg)
3616 {
3617         struct obj_cgroup *objcg;
3618         int memcg_id;
3619
3620         if (cgroup_memory_nokmem)
3621                 return 0;
3622
3623         BUG_ON(memcg->kmemcg_id >= 0);
3624         BUG_ON(memcg->kmem_state);
3625
3626         memcg_id = memcg_alloc_cache_id();
3627         if (memcg_id < 0)
3628                 return memcg_id;
3629
3630         objcg = obj_cgroup_alloc();
3631         if (!objcg) {
3632                 memcg_free_cache_id(memcg_id);
3633                 return -ENOMEM;
3634         }
3635         objcg->memcg = memcg;
3636         rcu_assign_pointer(memcg->objcg, objcg);
3637
3638         static_branch_enable(&memcg_kmem_enabled_key);
3639
3640         /*
3641          * A memory cgroup is considered kmem-online as soon as it gets
3642          * kmemcg_id. Setting the id after enabling static branching will
3643          * guarantee no one starts accounting before all call sites are
3644          * patched.
3645          */
3646         memcg->kmemcg_id = memcg_id;
3647         memcg->kmem_state = KMEM_ONLINE;
3648
3649         return 0;
3650 }
3651
3652 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3653 {
3654         struct cgroup_subsys_state *css;
3655         struct mem_cgroup *parent, *child;
3656         int kmemcg_id;
3657
3658         if (memcg->kmem_state != KMEM_ONLINE)
3659                 return;
3660
3661         memcg->kmem_state = KMEM_ALLOCATED;
3662
3663         parent = parent_mem_cgroup(memcg);
3664         if (!parent)
3665                 parent = root_mem_cgroup;
3666
3667         memcg_reparent_objcgs(memcg, parent);
3668
3669         kmemcg_id = memcg->kmemcg_id;
3670         BUG_ON(kmemcg_id < 0);
3671
3672         /*
3673          * Change kmemcg_id of this cgroup and all its descendants to the
3674          * parent's id, and then move all entries from this cgroup's list_lrus
3675          * to ones of the parent. After we have finished, all list_lrus
3676          * corresponding to this cgroup are guaranteed to remain empty. The
3677          * ordering is imposed by list_lru_node->lock taken by
3678          * memcg_drain_all_list_lrus().
3679          */
3680         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3681         css_for_each_descendant_pre(css, &memcg->css) {
3682                 child = mem_cgroup_from_css(css);
3683                 BUG_ON(child->kmemcg_id != kmemcg_id);
3684                 child->kmemcg_id = parent->kmemcg_id;
3685                 if (!memcg->use_hierarchy)
3686                         break;
3687         }
3688         rcu_read_unlock();
3689
3690         memcg_drain_all_list_lrus(kmemcg_id, parent);
3691
3692         memcg_free_cache_id(kmemcg_id);
3693 }
3694
3695 static void memcg_free_kmem(struct mem_cgroup *memcg)
3696 {
3697         /* css_alloc() failed, offlining didn't happen */
3698         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3699                 memcg_offline_kmem(memcg);
3700 }
3701 #else
3702 static int memcg_online_kmem(struct mem_cgroup *memcg)
3703 {
3704         return 0;
3705 }
3706 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3707 {
3708 }
3709 static void memcg_free_kmem(struct mem_cgroup *memcg)
3710 {
3711 }
3712 #endif /* CONFIG_MEMCG_KMEM */
3713
3714 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3715                                  unsigned long max)
3716 {
3717         int ret;
3718
3719         mutex_lock(&memcg_max_mutex);
3720         ret = page_counter_set_max(&memcg->kmem, max);
3721         mutex_unlock(&memcg_max_mutex);
3722         return ret;
3723 }
3724
3725 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3726 {
3727         int ret;
3728
3729         mutex_lock(&memcg_max_mutex);
3730
3731         ret = page_counter_set_max(&memcg->tcpmem, max);
3732         if (ret)
3733                 goto out;
3734
3735         if (!memcg->tcpmem_active) {
3736                 /*
3737                  * The active flag needs to be written after the static_key
3738                  * update. This is what guarantees that the socket activation
3739                  * function is the last one to run. See mem_cgroup_sk_alloc()
3740                  * for details, and note that we don't mark any socket as
3741                  * belonging to this memcg until that flag is up.
3742                  *
3743                  * We need to do this, because static_keys will span multiple
3744                  * sites, but we can't control their order. If we mark a socket
3745                  * as accounted, but the accounting functions are not patched in
3746                  * yet, we'll lose accounting.
3747                  *
3748                  * We never race with the readers in mem_cgroup_sk_alloc(),
3749                  * because when this value change, the code to process it is not
3750                  * patched in yet.
3751                  */
3752                 static_branch_inc(&memcg_sockets_enabled_key);
3753                 memcg->tcpmem_active = true;
3754         }
3755 out:
3756         mutex_unlock(&memcg_max_mutex);
3757         return ret;
3758 }
3759
3760 /*
3761  * The user of this function is...
3762  * RES_LIMIT.
3763  */
3764 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3765                                 char *buf, size_t nbytes, loff_t off)
3766 {
3767         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3768         unsigned long nr_pages;
3769         int ret;
3770
3771         buf = strstrip(buf);
3772         ret = page_counter_memparse(buf, "-1", &nr_pages);
3773         if (ret)
3774                 return ret;
3775
3776         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3777         case RES_LIMIT:
3778                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3779                         ret = -EINVAL;
3780                         break;
3781                 }
3782                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3783                 case _MEM:
3784                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3785                         break;
3786                 case _MEMSWAP:
3787                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3788                         break;
3789                 case _KMEM:
3790                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3791                                      "Please report your usecase to linux-mm@kvack.org if you "
3792                                      "depend on this functionality.\n");
3793                         ret = memcg_update_kmem_max(memcg, nr_pages);
3794                         break;
3795                 case _TCP:
3796                         ret = memcg_update_tcp_max(memcg, nr_pages);
3797                         break;
3798                 }
3799                 break;
3800         case RES_SOFT_LIMIT:
3801                 memcg->soft_limit = nr_pages;
3802                 ret = 0;
3803                 break;
3804         }
3805         return ret ?: nbytes;
3806 }
3807
3808 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3809                                 size_t nbytes, loff_t off)
3810 {
3811         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3812         struct page_counter *counter;
3813
3814         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3815         case _MEM:
3816                 counter = &memcg->memory;
3817                 break;
3818         case _MEMSWAP:
3819                 counter = &memcg->memsw;
3820                 break;
3821         case _KMEM:
3822                 counter = &memcg->kmem;
3823                 break;
3824         case _TCP:
3825                 counter = &memcg->tcpmem;
3826                 break;
3827         default:
3828                 BUG();
3829         }
3830
3831         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3832         case RES_MAX_USAGE:
3833                 page_counter_reset_watermark(counter);
3834                 break;
3835         case RES_FAILCNT:
3836                 counter->failcnt = 0;
3837                 break;
3838         default:
3839                 BUG();
3840         }
3841
3842         return nbytes;
3843 }
3844
3845 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3846                                         struct cftype *cft)
3847 {
3848         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3849 }
3850
3851 #ifdef CONFIG_MMU
3852 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3853                                         struct cftype *cft, u64 val)
3854 {
3855         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3856
3857         if (val & ~MOVE_MASK)
3858                 return -EINVAL;
3859
3860         /*
3861          * No kind of locking is needed in here, because ->can_attach() will
3862          * check this value once in the beginning of the process, and then carry
3863          * on with stale data. This means that changes to this value will only
3864          * affect task migrations starting after the change.
3865          */
3866         memcg->move_charge_at_immigrate = val;
3867         return 0;
3868 }
3869 #else
3870 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3871                                         struct cftype *cft, u64 val)
3872 {
3873         return -ENOSYS;
3874 }
3875 #endif
3876
3877 #ifdef CONFIG_NUMA
3878
3879 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3880 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3881 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3882
3883 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3884                                 int nid, unsigned int lru_mask, bool tree)
3885 {
3886         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3887         unsigned long nr = 0;
3888         enum lru_list lru;
3889
3890         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3891
3892         for_each_lru(lru) {
3893                 if (!(BIT(lru) & lru_mask))
3894                         continue;
3895                 if (tree)
3896                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3897                 else
3898                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3899         }
3900         return nr;
3901 }
3902
3903 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3904                                              unsigned int lru_mask,
3905                                              bool tree)
3906 {
3907         unsigned long nr = 0;
3908         enum lru_list lru;
3909
3910         for_each_lru(lru) {
3911                 if (!(BIT(lru) & lru_mask))
3912                         continue;
3913                 if (tree)
3914                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3915                 else
3916                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3917         }
3918         return nr;
3919 }
3920
3921 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3922 {
3923         struct numa_stat {
3924                 const char *name;
3925                 unsigned int lru_mask;
3926         };
3927
3928         static const struct numa_stat stats[] = {
3929                 { "total", LRU_ALL },
3930                 { "file", LRU_ALL_FILE },
3931                 { "anon", LRU_ALL_ANON },
3932                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3933         };
3934         const struct numa_stat *stat;
3935         int nid;
3936         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3937
3938         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3939                 seq_printf(m, "%s=%lu", stat->name,
3940                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3941                                                    false));
3942                 for_each_node_state(nid, N_MEMORY)
3943                         seq_printf(m, " N%d=%lu", nid,
3944                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3945                                                         stat->lru_mask, false));
3946                 seq_putc(m, '\n');
3947         }
3948
3949         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3950
3951                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3952                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3953                                                    true));
3954                 for_each_node_state(nid, N_MEMORY)
3955                         seq_printf(m, " N%d=%lu", nid,
3956                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3957                                                         stat->lru_mask, true));
3958                 seq_putc(m, '\n');
3959         }
3960
3961         return 0;
3962 }
3963 #endif /* CONFIG_NUMA */
3964
3965 static const unsigned int memcg1_stats[] = {
3966         NR_FILE_PAGES,
3967         NR_ANON_MAPPED,
3968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3969         NR_ANON_THPS,
3970 #endif
3971         NR_SHMEM,
3972         NR_FILE_MAPPED,
3973         NR_FILE_DIRTY,
3974         NR_WRITEBACK,
3975         MEMCG_SWAP,
3976 };
3977
3978 static const char *const memcg1_stat_names[] = {
3979         "cache",
3980         "rss",
3981 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3982         "rss_huge",
3983 #endif
3984         "shmem",
3985         "mapped_file",
3986         "dirty",
3987         "writeback",
3988         "swap",
3989 };
3990
3991 /* Universal VM events cgroup1 shows, original sort order */
3992 static const unsigned int memcg1_events[] = {
3993         PGPGIN,
3994         PGPGOUT,
3995         PGFAULT,
3996         PGMAJFAULT,
3997 };
3998
3999 static int memcg_stat_show(struct seq_file *m, void *v)
4000 {
4001         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4002         unsigned long memory, memsw;
4003         struct mem_cgroup *mi;
4004         unsigned int i;
4005
4006         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4007
4008         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4009                 unsigned long nr;
4010
4011                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4012                         continue;
4013                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4014 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4015                 if (memcg1_stats[i] == NR_ANON_THPS)
4016                         nr *= HPAGE_PMD_NR;
4017 #endif
4018                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4019         }
4020
4021         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4022                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4023                            memcg_events_local(memcg, memcg1_events[i]));
4024
4025         for (i = 0; i < NR_LRU_LISTS; i++)
4026                 seq_printf(m, "%s %lu\n", lru_list_name(i),
4027                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4028                            PAGE_SIZE);
4029
4030         /* Hierarchical information */
4031         memory = memsw = PAGE_COUNTER_MAX;
4032         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4033                 memory = min(memory, READ_ONCE(mi->memory.max));
4034                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4035         }
4036         seq_printf(m, "hierarchical_memory_limit %llu\n",
4037                    (u64)memory * PAGE_SIZE);
4038         if (do_memsw_account())
4039                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4040                            (u64)memsw * PAGE_SIZE);
4041
4042         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4043                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4044                         continue;
4045                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4046                            (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4047                            PAGE_SIZE);
4048         }
4049
4050         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4051                 seq_printf(m, "total_%s %llu\n",
4052                            vm_event_name(memcg1_events[i]),
4053                            (u64)memcg_events(memcg, memcg1_events[i]));
4054
4055         for (i = 0; i < NR_LRU_LISTS; i++)
4056                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4057                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4058                            PAGE_SIZE);
4059
4060 #ifdef CONFIG_DEBUG_VM
4061         {
4062                 pg_data_t *pgdat;
4063                 struct mem_cgroup_per_node *mz;
4064                 unsigned long anon_cost = 0;
4065                 unsigned long file_cost = 0;
4066
4067                 for_each_online_pgdat(pgdat) {
4068                         mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4069
4070                         anon_cost += mz->lruvec.anon_cost;
4071                         file_cost += mz->lruvec.file_cost;
4072                 }
4073                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4074                 seq_printf(m, "file_cost %lu\n", file_cost);
4075         }
4076 #endif
4077
4078         return 0;
4079 }
4080
4081 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4082                                       struct cftype *cft)
4083 {
4084         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4085
4086         return mem_cgroup_swappiness(memcg);
4087 }
4088
4089 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4090                                        struct cftype *cft, u64 val)
4091 {
4092         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4093
4094         if (val > 100)
4095                 return -EINVAL;
4096
4097         if (css->parent)
4098                 memcg->swappiness = val;
4099         else
4100                 vm_swappiness = val;
4101
4102         return 0;
4103 }
4104
4105 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4106 {
4107         struct mem_cgroup_threshold_ary *t;
4108         unsigned long usage;
4109         int i;
4110
4111         rcu_read_lock();
4112         if (!swap)
4113                 t = rcu_dereference(memcg->thresholds.primary);
4114         else
4115                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4116
4117         if (!t)
4118                 goto unlock;
4119
4120         usage = mem_cgroup_usage(memcg, swap);
4121
4122         /*
4123          * current_threshold points to threshold just below or equal to usage.
4124          * If it's not true, a threshold was crossed after last
4125          * call of __mem_cgroup_threshold().
4126          */
4127         i = t->current_threshold;
4128
4129         /*
4130          * Iterate backward over array of thresholds starting from
4131          * current_threshold and check if a threshold is crossed.
4132          * If none of thresholds below usage is crossed, we read
4133          * only one element of the array here.
4134          */
4135         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4136                 eventfd_signal(t->entries[i].eventfd, 1);
4137
4138         /* i = current_threshold + 1 */
4139         i++;
4140
4141         /*
4142          * Iterate forward over array of thresholds starting from
4143          * current_threshold+1 and check if a threshold is crossed.
4144          * If none of thresholds above usage is crossed, we read
4145          * only one element of the array here.
4146          */
4147         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4148                 eventfd_signal(t->entries[i].eventfd, 1);
4149
4150         /* Update current_threshold */
4151         t->current_threshold = i - 1;
4152 unlock:
4153         rcu_read_unlock();
4154 }
4155
4156 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4157 {
4158         while (memcg) {
4159                 __mem_cgroup_threshold(memcg, false);
4160                 if (do_memsw_account())
4161                         __mem_cgroup_threshold(memcg, true);
4162
4163                 memcg = parent_mem_cgroup(memcg);
4164         }
4165 }
4166
4167 static int compare_thresholds(const void *a, const void *b)
4168 {
4169         const struct mem_cgroup_threshold *_a = a;
4170         const struct mem_cgroup_threshold *_b = b;
4171
4172         if (_a->threshold > _b->threshold)
4173                 return 1;
4174
4175         if (_a->threshold < _b->threshold)
4176                 return -1;
4177
4178         return 0;
4179 }
4180
4181 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4182 {
4183         struct mem_cgroup_eventfd_list *ev;
4184
4185         spin_lock(&memcg_oom_lock);
4186
4187         list_for_each_entry(ev, &memcg->oom_notify, list)
4188                 eventfd_signal(ev->eventfd, 1);
4189
4190         spin_unlock(&memcg_oom_lock);
4191         return 0;
4192 }
4193
4194 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4195 {
4196         struct mem_cgroup *iter;
4197
4198         for_each_mem_cgroup_tree(iter, memcg)
4199                 mem_cgroup_oom_notify_cb(iter);
4200 }
4201
4202 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4203         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4204 {
4205         struct mem_cgroup_thresholds *thresholds;
4206         struct mem_cgroup_threshold_ary *new;
4207         unsigned long threshold;
4208         unsigned long usage;
4209         int i, size, ret;
4210
4211         ret = page_counter_memparse(args, "-1", &threshold);
4212         if (ret)
4213                 return ret;
4214
4215         mutex_lock(&memcg->thresholds_lock);
4216
4217         if (type == _MEM) {
4218                 thresholds = &memcg->thresholds;
4219                 usage = mem_cgroup_usage(memcg, false);
4220         } else if (type == _MEMSWAP) {
4221                 thresholds = &memcg->memsw_thresholds;
4222                 usage = mem_cgroup_usage(memcg, true);
4223         } else
4224                 BUG();
4225
4226         /* Check if a threshold crossed before adding a new one */
4227         if (thresholds->primary)
4228                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4229
4230         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4231
4232         /* Allocate memory for new array of thresholds */
4233         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4234         if (!new) {
4235                 ret = -ENOMEM;
4236                 goto unlock;
4237         }
4238         new->size = size;
4239
4240         /* Copy thresholds (if any) to new array */
4241         if (thresholds->primary) {
4242                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4243                                 sizeof(struct mem_cgroup_threshold));
4244         }
4245
4246         /* Add new threshold */
4247         new->entries[size - 1].eventfd = eventfd;
4248         new->entries[size - 1].threshold = threshold;
4249
4250         /* Sort thresholds. Registering of new threshold isn't time-critical */
4251         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4252                         compare_thresholds, NULL);
4253
4254         /* Find current threshold */
4255         new->current_threshold = -1;
4256         for (i = 0; i < size; i++) {
4257                 if (new->entries[i].threshold <= usage) {
4258                         /*
4259                          * new->current_threshold will not be used until
4260                          * rcu_assign_pointer(), so it's safe to increment
4261                          * it here.
4262                          */
4263                         ++new->current_threshold;
4264                 } else
4265                         break;
4266         }
4267
4268         /* Free old spare buffer and save old primary buffer as spare */
4269         kfree(thresholds->spare);
4270         thresholds->spare = thresholds->primary;
4271
4272         rcu_assign_pointer(thresholds->primary, new);
4273
4274         /* To be sure that nobody uses thresholds */
4275         synchronize_rcu();
4276
4277 unlock:
4278         mutex_unlock(&memcg->thresholds_lock);
4279
4280         return ret;
4281 }
4282
4283 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4284         struct eventfd_ctx *eventfd, const char *args)
4285 {
4286         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4287 }
4288
4289 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4290         struct eventfd_ctx *eventfd, const char *args)
4291 {
4292         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4293 }
4294
4295 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4296         struct eventfd_ctx *eventfd, enum res_type type)
4297 {
4298         struct mem_cgroup_thresholds *thresholds;
4299         struct mem_cgroup_threshold_ary *new;
4300         unsigned long usage;
4301         int i, j, size, entries;
4302
4303         mutex_lock(&memcg->thresholds_lock);
4304
4305         if (type == _MEM) {
4306                 thresholds = &memcg->thresholds;
4307                 usage = mem_cgroup_usage(memcg, false);
4308         } else if (type == _MEMSWAP) {
4309                 thresholds = &memcg->memsw_thresholds;
4310                 usage = mem_cgroup_usage(memcg, true);
4311         } else
4312                 BUG();
4313
4314         if (!thresholds->primary)
4315                 goto unlock;
4316
4317         /* Check if a threshold crossed before removing */
4318         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4319
4320         /* Calculate new number of threshold */
4321         size = entries = 0;
4322         for (i = 0; i < thresholds->primary->size; i++) {
4323                 if (thresholds->primary->entries[i].eventfd != eventfd)
4324                         size++;
4325                 else
4326                         entries++;
4327         }
4328
4329         new = thresholds->spare;
4330
4331         /* If no items related to eventfd have been cleared, nothing to do */
4332         if (!entries)
4333                 goto unlock;
4334
4335         /* Set thresholds array to NULL if we don't have thresholds */
4336         if (!size) {
4337                 kfree(new);
4338                 new = NULL;
4339                 goto swap_buffers;
4340         }
4341
4342         new->size = size;
4343
4344         /* Copy thresholds and find current threshold */
4345         new->current_threshold = -1;
4346         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4347                 if (thresholds->primary->entries[i].eventfd == eventfd)
4348                         continue;
4349
4350                 new->entries[j] = thresholds->primary->entries[i];
4351                 if (new->entries[j].threshold <= usage) {
4352                         /*
4353                          * new->current_threshold will not be used
4354                          * until rcu_assign_pointer(), so it's safe to increment
4355                          * it here.
4356                          */
4357                         ++new->current_threshold;
4358                 }
4359                 j++;
4360         }
4361
4362 swap_buffers:
4363         /* Swap primary and spare array */
4364         thresholds->spare = thresholds->primary;
4365
4366         rcu_assign_pointer(thresholds->primary, new);
4367
4368         /* To be sure that nobody uses thresholds */
4369         synchronize_rcu();
4370
4371         /* If all events are unregistered, free the spare array */
4372         if (!new) {
4373                 kfree(thresholds->spare);
4374                 thresholds->spare = NULL;
4375         }
4376 unlock:
4377         mutex_unlock(&memcg->thresholds_lock);
4378 }
4379
4380 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4381         struct eventfd_ctx *eventfd)
4382 {
4383         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4384 }
4385
4386 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4387         struct eventfd_ctx *eventfd)
4388 {
4389         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4390 }
4391
4392 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4393         struct eventfd_ctx *eventfd, const char *args)
4394 {
4395         struct mem_cgroup_eventfd_list *event;
4396
4397         event = kmalloc(sizeof(*event), GFP_KERNEL);
4398         if (!event)
4399                 return -ENOMEM;
4400
4401         spin_lock(&memcg_oom_lock);
4402
4403         event->eventfd = eventfd;
4404         list_add(&event->list, &memcg->oom_notify);
4405
4406         /* already in OOM ? */
4407         if (memcg->under_oom)
4408                 eventfd_signal(eventfd, 1);
4409         spin_unlock(&memcg_oom_lock);
4410
4411         return 0;
4412 }
4413
4414 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4415         struct eventfd_ctx *eventfd)
4416 {
4417         struct mem_cgroup_eventfd_list *ev, *tmp;
4418
4419         spin_lock(&memcg_oom_lock);
4420
4421         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4422                 if (ev->eventfd == eventfd) {
4423                         list_del(&ev->list);
4424                         kfree(ev);
4425                 }
4426         }
4427
4428         spin_unlock(&memcg_oom_lock);
4429 }
4430
4431 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4432 {
4433         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4434
4435         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4436         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4437         seq_printf(sf, "oom_kill %lu\n",
4438                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4439         return 0;
4440 }
4441
4442 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4443         struct cftype *cft, u64 val)
4444 {
4445         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4446
4447         /* cannot set to root cgroup and only 0 and 1 are allowed */
4448         if (!css->parent || !((val == 0) || (val == 1)))
4449                 return -EINVAL;
4450
4451         memcg->oom_kill_disable = val;
4452         if (!val)
4453                 memcg_oom_recover(memcg);
4454
4455         return 0;
4456 }
4457
4458 #ifdef CONFIG_CGROUP_WRITEBACK
4459
4460 #include <trace/events/writeback.h>
4461
4462 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4463 {
4464         return wb_domain_init(&memcg->cgwb_domain, gfp);
4465 }
4466
4467 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4468 {
4469         wb_domain_exit(&memcg->cgwb_domain);
4470 }
4471
4472 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4473 {
4474         wb_domain_size_changed(&memcg->cgwb_domain);
4475 }
4476
4477 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4478 {
4479         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4480
4481         if (!memcg->css.parent)
4482                 return NULL;
4483
4484         return &memcg->cgwb_domain;
4485 }
4486
4487 /*
4488  * idx can be of type enum memcg_stat_item or node_stat_item.
4489  * Keep in sync with memcg_exact_page().
4490  */
4491 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4492 {
4493         long x = atomic_long_read(&memcg->vmstats[idx]);
4494         int cpu;
4495
4496         for_each_online_cpu(cpu)
4497                 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4498         if (x < 0)
4499                 x = 0;
4500         return x;
4501 }
4502
4503 /**
4504  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4505  * @wb: bdi_writeback in question
4506  * @pfilepages: out parameter for number of file pages
4507  * @pheadroom: out parameter for number of allocatable pages according to memcg
4508  * @pdirty: out parameter for number of dirty pages
4509  * @pwriteback: out parameter for number of pages under writeback
4510  *
4511  * Determine the numbers of file, headroom, dirty, and writeback pages in
4512  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4513  * is a bit more involved.
4514  *
4515  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4516  * headroom is calculated as the lowest headroom of itself and the
4517  * ancestors.  Note that this doesn't consider the actual amount of
4518  * available memory in the system.  The caller should further cap
4519  * *@pheadroom accordingly.
4520  */
4521 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4522                          unsigned long *pheadroom, unsigned long *pdirty,
4523                          unsigned long *pwriteback)
4524 {
4525         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4526         struct mem_cgroup *parent;
4527
4528         *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4529
4530         *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4531         *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4532                         memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4533         *pheadroom = PAGE_COUNTER_MAX;
4534
4535         while ((parent = parent_mem_cgroup(memcg))) {
4536                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4537                                             READ_ONCE(memcg->memory.high));
4538                 unsigned long used = page_counter_read(&memcg->memory);
4539
4540                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4541                 memcg = parent;
4542         }
4543 }
4544
4545 /*
4546  * Foreign dirty flushing
4547  *
4548  * There's an inherent mismatch between memcg and writeback.  The former
4549  * trackes ownership per-page while the latter per-inode.  This was a
4550  * deliberate design decision because honoring per-page ownership in the
4551  * writeback path is complicated, may lead to higher CPU and IO overheads
4552  * and deemed unnecessary given that write-sharing an inode across
4553  * different cgroups isn't a common use-case.
4554  *
4555  * Combined with inode majority-writer ownership switching, this works well
4556  * enough in most cases but there are some pathological cases.  For
4557  * example, let's say there are two cgroups A and B which keep writing to
4558  * different but confined parts of the same inode.  B owns the inode and
4559  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4560  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4561  * triggering background writeback.  A will be slowed down without a way to
4562  * make writeback of the dirty pages happen.
4563  *
4564  * Conditions like the above can lead to a cgroup getting repatedly and
4565  * severely throttled after making some progress after each
4566  * dirty_expire_interval while the underyling IO device is almost
4567  * completely idle.
4568  *
4569  * Solving this problem completely requires matching the ownership tracking
4570  * granularities between memcg and writeback in either direction.  However,
4571  * the more egregious behaviors can be avoided by simply remembering the
4572  * most recent foreign dirtying events and initiating remote flushes on
4573  * them when local writeback isn't enough to keep the memory clean enough.
4574  *
4575  * The following two functions implement such mechanism.  When a foreign
4576  * page - a page whose memcg and writeback ownerships don't match - is
4577  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4578  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4579  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4580  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4581  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4582  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4583  * limited to MEMCG_CGWB_FRN_CNT.
4584  *
4585  * The mechanism only remembers IDs and doesn't hold any object references.
4586  * As being wrong occasionally doesn't matter, updates and accesses to the
4587  * records are lockless and racy.
4588  */
4589 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4590                                              struct bdi_writeback *wb)
4591 {
4592         struct mem_cgroup *memcg = page->mem_cgroup;
4593         struct memcg_cgwb_frn *frn;
4594         u64 now = get_jiffies_64();
4595         u64 oldest_at = now;
4596         int oldest = -1;
4597         int i;
4598
4599         trace_track_foreign_dirty(page, wb);
4600
4601         /*
4602          * Pick the slot to use.  If there is already a slot for @wb, keep
4603          * using it.  If not replace the oldest one which isn't being
4604          * written out.
4605          */
4606         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4607                 frn = &memcg->cgwb_frn[i];
4608                 if (frn->bdi_id == wb->bdi->id &&
4609                     frn->memcg_id == wb->memcg_css->id)
4610                         break;
4611                 if (time_before64(frn->at, oldest_at) &&
4612                     atomic_read(&frn->done.cnt) == 1) {
4613                         oldest = i;
4614                         oldest_at = frn->at;
4615                 }
4616         }
4617
4618         if (i < MEMCG_CGWB_FRN_CNT) {
4619                 /*
4620                  * Re-using an existing one.  Update timestamp lazily to
4621                  * avoid making the cacheline hot.  We want them to be
4622                  * reasonably up-to-date and significantly shorter than
4623                  * dirty_expire_interval as that's what expires the record.
4624                  * Use the shorter of 1s and dirty_expire_interval / 8.
4625                  */
4626                 unsigned long update_intv =
4627                         min_t(unsigned long, HZ,
4628                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4629
4630                 if (time_before64(frn->at, now - update_intv))
4631                         frn->at = now;
4632         } else if (oldest >= 0) {
4633                 /* replace the oldest free one */
4634                 frn = &memcg->cgwb_frn[oldest];
4635                 frn->bdi_id = wb->bdi->id;
4636                 frn->memcg_id = wb->memcg_css->id;
4637                 frn->at = now;
4638         }
4639 }
4640
4641 /* issue foreign writeback flushes for recorded foreign dirtying events */
4642 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4643 {
4644         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4645         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4646         u64 now = jiffies_64;
4647         int i;
4648
4649         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4650                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4651
4652                 /*
4653                  * If the record is older than dirty_expire_interval,
4654                  * writeback on it has already started.  No need to kick it
4655                  * off again.  Also, don't start a new one if there's
4656                  * already one in flight.
4657                  */
4658                 if (time_after64(frn->at, now - intv) &&
4659                     atomic_read(&frn->done.cnt) == 1) {
4660                         frn->at = 0;
4661                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4662                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4663                                                WB_REASON_FOREIGN_FLUSH,
4664                                                &frn->done);
4665                 }
4666         }
4667 }
4668
4669 #else   /* CONFIG_CGROUP_WRITEBACK */
4670
4671 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4672 {
4673         return 0;
4674 }
4675
4676 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4677 {
4678 }
4679
4680 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4681 {
4682 }
4683
4684 #endif  /* CONFIG_CGROUP_WRITEBACK */
4685
4686 /*
4687  * DO NOT USE IN NEW FILES.
4688  *
4689  * "cgroup.event_control" implementation.
4690  *
4691  * This is way over-engineered.  It tries to support fully configurable
4692  * events for each user.  Such level of flexibility is completely
4693  * unnecessary especially in the light of the planned unified hierarchy.
4694  *
4695  * Please deprecate this and replace with something simpler if at all
4696  * possible.
4697  */
4698
4699 /*
4700  * Unregister event and free resources.
4701  *
4702  * Gets called from workqueue.
4703  */
4704 static void memcg_event_remove(struct work_struct *work)
4705 {
4706         struct mem_cgroup_event *event =
4707                 container_of(work, struct mem_cgroup_event, remove);
4708         struct mem_cgroup *memcg = event->memcg;
4709
4710         remove_wait_queue(event->wqh, &event->wait);
4711
4712         event->unregister_event(memcg, event->eventfd);
4713
4714         /* Notify userspace the event is going away. */
4715         eventfd_signal(event->eventfd, 1);
4716
4717         eventfd_ctx_put(event->eventfd);
4718         kfree(event);
4719         css_put(&memcg->css);
4720 }
4721
4722 /*
4723  * Gets called on EPOLLHUP on eventfd when user closes it.
4724  *
4725  * Called with wqh->lock held and interrupts disabled.
4726  */
4727 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4728                             int sync, void *key)
4729 {
4730         struct mem_cgroup_event *event =
4731                 container_of(wait, struct mem_cgroup_event, wait);
4732         struct mem_cgroup *memcg = event->memcg;
4733         __poll_t flags = key_to_poll(key);
4734
4735         if (flags & EPOLLHUP) {
4736                 /*
4737                  * If the event has been detached at cgroup removal, we
4738                  * can simply return knowing the other side will cleanup
4739                  * for us.
4740                  *
4741                  * We can't race against event freeing since the other
4742                  * side will require wqh->lock via remove_wait_queue(),
4743                  * which we hold.
4744                  */
4745                 spin_lock(&memcg->event_list_lock);
4746                 if (!list_empty(&event->list)) {
4747                         list_del_init(&event->list);
4748                         /*
4749                          * We are in atomic context, but cgroup_event_remove()
4750                          * may sleep, so we have to call it in workqueue.
4751                          */
4752                         schedule_work(&event->remove);
4753                 }
4754                 spin_unlock(&memcg->event_list_lock);
4755         }
4756
4757         return 0;
4758 }
4759
4760 static void memcg_event_ptable_queue_proc(struct file *file,
4761                 wait_queue_head_t *wqh, poll_table *pt)
4762 {
4763         struct mem_cgroup_event *event =
4764                 container_of(pt, struct mem_cgroup_event, pt);
4765
4766         event->wqh = wqh;
4767         add_wait_queue(wqh, &event->wait);
4768 }
4769
4770 /*
4771  * DO NOT USE IN NEW FILES.
4772  *
4773  * Parse input and register new cgroup event handler.
4774  *
4775  * Input must be in format '<event_fd> <control_fd> <args>'.
4776  * Interpretation of args is defined by control file implementation.
4777  */
4778 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4779                                          char *buf, size_t nbytes, loff_t off)
4780 {
4781         struct cgroup_subsys_state *css = of_css(of);
4782         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4783         struct mem_cgroup_event *event;
4784         struct cgroup_subsys_state *cfile_css;
4785         unsigned int efd, cfd;
4786         struct fd efile;
4787         struct fd cfile;
4788         const char *name;
4789         char *endp;
4790         int ret;
4791
4792         buf = strstrip(buf);
4793
4794         efd = simple_strtoul(buf, &endp, 10);
4795         if (*endp != ' ')
4796                 return -EINVAL;
4797         buf = endp + 1;
4798
4799         cfd = simple_strtoul(buf, &endp, 10);
4800         if ((*endp != ' ') && (*endp != '\0'))
4801                 return -EINVAL;
4802         buf = endp + 1;
4803
4804         event = kzalloc(sizeof(*event), GFP_KERNEL);
4805         if (!event)
4806                 return -ENOMEM;
4807
4808         event->memcg = memcg;
4809         INIT_LIST_HEAD(&event->list);
4810         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4811         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4812         INIT_WORK(&event->remove, memcg_event_remove);
4813
4814         efile = fdget(efd);
4815         if (!efile.file) {
4816                 ret = -EBADF;
4817                 goto out_kfree;
4818         }
4819
4820         event->eventfd = eventfd_ctx_fileget(efile.file);
4821         if (IS_ERR(event->eventfd)) {
4822                 ret = PTR_ERR(event->eventfd);
4823                 goto out_put_efile;
4824         }
4825
4826         cfile = fdget(cfd);
4827         if (!cfile.file) {
4828                 ret = -EBADF;
4829                 goto out_put_eventfd;
4830         }
4831
4832         /* the process need read permission on control file */
4833         /* AV: shouldn't we check that it's been opened for read instead? */
4834         ret = inode_permission(file_inode(cfile.file), MAY_READ);
4835         if (ret < 0)
4836                 goto out_put_cfile;
4837
4838         /*
4839          * Determine the event callbacks and set them in @event.  This used
4840          * to be done via struct cftype but cgroup core no longer knows
4841          * about these events.  The following is crude but the whole thing
4842          * is for compatibility anyway.
4843          *
4844          * DO NOT ADD NEW FILES.
4845          */
4846         name = cfile.file->f_path.dentry->d_name.name;
4847
4848         if (!strcmp(name, "memory.usage_in_bytes")) {
4849                 event->register_event = mem_cgroup_usage_register_event;
4850                 event->unregister_event = mem_cgroup_usage_unregister_event;
4851         } else if (!strcmp(name, "memory.oom_control")) {
4852                 event->register_event = mem_cgroup_oom_register_event;
4853                 event->unregister_event = mem_cgroup_oom_unregister_event;
4854         } else if (!strcmp(name, "memory.pressure_level")) {
4855                 event->register_event = vmpressure_register_event;
4856                 event->unregister_event = vmpressure_unregister_event;
4857         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4858                 event->register_event = memsw_cgroup_usage_register_event;
4859                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4860         } else {
4861                 ret = -EINVAL;
4862                 goto out_put_cfile;
4863         }
4864
4865         /*
4866          * Verify @cfile should belong to @css.  Also, remaining events are
4867          * automatically removed on cgroup destruction but the removal is
4868          * asynchronous, so take an extra ref on @css.
4869          */
4870         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4871                                                &memory_cgrp_subsys);
4872         ret = -EINVAL;
4873         if (IS_ERR(cfile_css))
4874                 goto out_put_cfile;
4875         if (cfile_css != css) {
4876                 css_put(cfile_css);
4877                 goto out_put_cfile;
4878         }
4879
4880         ret = event->register_event(memcg, event->eventfd, buf);
4881         if (ret)
4882                 goto out_put_css;
4883
4884         vfs_poll(efile.file, &event->pt);
4885
4886         spin_lock(&memcg->event_list_lock);
4887         list_add(&event->list, &memcg->event_list);
4888         spin_unlock(&memcg->event_list_lock);
4889
4890         fdput(cfile);
4891         fdput(efile);
4892
4893         return nbytes;
4894
4895 out_put_css:
4896         css_put(css);
4897 out_put_cfile:
4898         fdput(cfile);
4899 out_put_eventfd:
4900         eventfd_ctx_put(event->eventfd);
4901 out_put_efile:
4902         fdput(efile);
4903 out_kfree:
4904         kfree(event);
4905
4906         return ret;
4907 }
4908
4909 static struct cftype mem_cgroup_legacy_files[] = {
4910         {
4911                 .name = "usage_in_bytes",
4912                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4913                 .read_u64 = mem_cgroup_read_u64,
4914         },
4915         {
4916                 .name = "max_usage_in_bytes",
4917                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4918                 .write = mem_cgroup_reset,
4919                 .read_u64 = mem_cgroup_read_u64,
4920         },
4921         {
4922                 .name = "limit_in_bytes",
4923                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4924                 .write = mem_cgroup_write,
4925                 .read_u64 = mem_cgroup_read_u64,
4926         },
4927         {
4928                 .name = "soft_limit_in_bytes",
4929                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4930                 .write = mem_cgroup_write,
4931                 .read_u64 = mem_cgroup_read_u64,
4932         },
4933         {
4934                 .name = "failcnt",
4935                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4936                 .write = mem_cgroup_reset,
4937                 .read_u64 = mem_cgroup_read_u64,
4938         },
4939         {
4940                 .name = "stat",
4941                 .seq_show = memcg_stat_show,
4942         },
4943         {
4944                 .name = "force_empty",
4945                 .write = mem_cgroup_force_empty_write,
4946         },
4947         {
4948                 .name = "use_hierarchy",
4949                 .write_u64 = mem_cgroup_hierarchy_write,
4950                 .read_u64 = mem_cgroup_hierarchy_read,
4951         },
4952         {
4953                 .name = "cgroup.event_control",         /* XXX: for compat */
4954                 .write = memcg_write_event_control,
4955                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4956         },
4957         {
4958                 .name = "swappiness",
4959                 .read_u64 = mem_cgroup_swappiness_read,
4960                 .write_u64 = mem_cgroup_swappiness_write,
4961         },
4962         {
4963                 .name = "move_charge_at_immigrate",
4964                 .read_u64 = mem_cgroup_move_charge_read,
4965                 .write_u64 = mem_cgroup_move_charge_write,
4966         },
4967         {
4968                 .name = "oom_control",
4969                 .seq_show = mem_cgroup_oom_control_read,
4970                 .write_u64 = mem_cgroup_oom_control_write,
4971                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4972         },
4973         {
4974                 .name = "pressure_level",
4975         },
4976 #ifdef CONFIG_NUMA
4977         {
4978                 .name = "numa_stat",
4979                 .seq_show = memcg_numa_stat_show,
4980         },
4981 #endif
4982         {
4983                 .name = "kmem.limit_in_bytes",
4984                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4985                 .write = mem_cgroup_write,
4986                 .read_u64 = mem_cgroup_read_u64,
4987         },
4988         {
4989                 .name = "kmem.usage_in_bytes",
4990                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4991                 .read_u64 = mem_cgroup_read_u64,
4992         },
4993         {
4994                 .name = "kmem.failcnt",
4995                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4996                 .write = mem_cgroup_reset,
4997                 .read_u64 = mem_cgroup_read_u64,
4998         },
4999         {
5000                 .name = "kmem.max_usage_in_bytes",
5001                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5002                 .write = mem_cgroup_reset,
5003                 .read_u64 = mem_cgroup_read_u64,
5004         },
5005 #if defined(CONFIG_MEMCG_KMEM) && \
5006         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5007         {
5008                 .name = "kmem.slabinfo",
5009                 .seq_show = memcg_slab_show,
5010         },
5011 #endif
5012         {
5013                 .name = "kmem.tcp.limit_in_bytes",
5014                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5015                 .write = mem_cgroup_write,
5016                 .read_u64 = mem_cgroup_read_u64,
5017         },
5018         {
5019                 .name = "kmem.tcp.usage_in_bytes",
5020                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5021                 .read_u64 = mem_cgroup_read_u64,
5022         },
5023         {
5024                 .name = "kmem.tcp.failcnt",
5025                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5026                 .write = mem_cgroup_reset,
5027                 .read_u64 = mem_cgroup_read_u64,
5028         },
5029         {
5030                 .name = "kmem.tcp.max_usage_in_bytes",
5031                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5032                 .write = mem_cgroup_reset,
5033                 .read_u64 = mem_cgroup_read_u64,
5034         },
5035         { },    /* terminate */
5036 };
5037
5038 /*
5039  * Private memory cgroup IDR
5040  *
5041  * Swap-out records and page cache shadow entries need to store memcg
5042  * references in constrained space, so we maintain an ID space that is
5043  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5044  * memory-controlled cgroups to 64k.
5045  *
5046  * However, there usually are many references to the offline CSS after
5047  * the cgroup has been destroyed, such as page cache or reclaimable
5048  * slab objects, that don't need to hang on to the ID. We want to keep
5049  * those dead CSS from occupying IDs, or we might quickly exhaust the
5050  * relatively small ID space and prevent the creation of new cgroups
5051  * even when there are much fewer than 64k cgroups - possibly none.
5052  *
5053  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5054  * be freed and recycled when it's no longer needed, which is usually
5055  * when the CSS is offlined.
5056  *
5057  * The only exception to that are records of swapped out tmpfs/shmem
5058  * pages that need to be attributed to live ancestors on swapin. But
5059  * those references are manageable from userspace.
5060  */
5061
5062 static DEFINE_IDR(mem_cgroup_idr);
5063
5064 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5065 {
5066         if (memcg->id.id > 0) {
5067                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5068                 memcg->id.id = 0;
5069         }
5070 }
5071
5072 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5073                                                   unsigned int n)
5074 {
5075         refcount_add(n, &memcg->id.ref);
5076 }
5077
5078 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5079 {
5080         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5081                 mem_cgroup_id_remove(memcg);
5082
5083                 /* Memcg ID pins CSS */
5084                 css_put(&memcg->css);
5085         }
5086 }
5087
5088 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5089 {
5090         mem_cgroup_id_put_many(memcg, 1);
5091 }
5092
5093 /**
5094  * mem_cgroup_from_id - look up a memcg from a memcg id
5095  * @id: the memcg id to look up
5096  *
5097  * Caller must hold rcu_read_lock().
5098  */
5099 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5100 {
5101         WARN_ON_ONCE(!rcu_read_lock_held());
5102         return idr_find(&mem_cgroup_idr, id);
5103 }
5104
5105 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5106 {
5107         struct mem_cgroup_per_node *pn;
5108         int tmp = node;
5109         /*
5110          * This routine is called against possible nodes.
5111          * But it's BUG to call kmalloc() against offline node.
5112          *
5113          * TODO: this routine can waste much memory for nodes which will
5114          *       never be onlined. It's better to use memory hotplug callback
5115          *       function.
5116          */
5117         if (!node_state(node, N_NORMAL_MEMORY))
5118                 tmp = -1;
5119         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5120         if (!pn)
5121                 return 1;
5122
5123         pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
5124         if (!pn->lruvec_stat_local) {
5125                 kfree(pn);
5126                 return 1;
5127         }
5128
5129         pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
5130         if (!pn->lruvec_stat_cpu) {
5131                 free_percpu(pn->lruvec_stat_local);
5132                 kfree(pn);
5133                 return 1;
5134         }
5135
5136         lruvec_init(&pn->lruvec);
5137         pn->usage_in_excess = 0;
5138         pn->on_tree = false;
5139         pn->memcg = memcg;
5140
5141         memcg->nodeinfo[node] = pn;
5142         return 0;
5143 }
5144
5145 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5146 {
5147         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5148
5149         if (!pn)
5150                 return;
5151
5152         free_percpu(pn->lruvec_stat_cpu);
5153         free_percpu(pn->lruvec_stat_local);
5154         kfree(pn);
5155 }
5156
5157 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5158 {
5159         int node;
5160
5161         for_each_node(node)
5162                 free_mem_cgroup_per_node_info(memcg, node);
5163         free_percpu(memcg->vmstats_percpu);
5164         free_percpu(memcg->vmstats_local);
5165         kfree(memcg);
5166 }
5167
5168 static void mem_cgroup_free(struct mem_cgroup *memcg)
5169 {
5170         memcg_wb_domain_exit(memcg);
5171         /*
5172          * Flush percpu vmstats and vmevents to guarantee the value correctness
5173          * on parent's and all ancestor levels.
5174          */
5175         memcg_flush_percpu_vmstats(memcg);
5176         memcg_flush_percpu_vmevents(memcg);
5177         __mem_cgroup_free(memcg);
5178 }
5179
5180 static struct mem_cgroup *mem_cgroup_alloc(void)
5181 {
5182         struct mem_cgroup *memcg;
5183         unsigned int size;
5184         int node;
5185         int __maybe_unused i;
5186         long error = -ENOMEM;
5187
5188         size = sizeof(struct mem_cgroup);
5189         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5190
5191         memcg = kzalloc(size, GFP_KERNEL);
5192         if (!memcg)
5193                 return ERR_PTR(error);
5194
5195         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5196                                  1, MEM_CGROUP_ID_MAX,
5197                                  GFP_KERNEL);
5198         if (memcg->id.id < 0) {
5199                 error = memcg->id.id;
5200                 goto fail;
5201         }
5202
5203         memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5204         if (!memcg->vmstats_local)
5205                 goto fail;
5206
5207         memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5208         if (!memcg->vmstats_percpu)
5209                 goto fail;
5210
5211         for_each_node(node)
5212                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5213                         goto fail;
5214
5215         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5216                 goto fail;
5217
5218         INIT_WORK(&memcg->high_work, high_work_func);
5219         INIT_LIST_HEAD(&memcg->oom_notify);
5220         mutex_init(&memcg->thresholds_lock);
5221         spin_lock_init(&memcg->move_lock);
5222         vmpressure_init(&memcg->vmpressure);
5223         INIT_LIST_HEAD(&memcg->event_list);
5224         spin_lock_init(&memcg->event_list_lock);
5225         memcg->socket_pressure = jiffies;
5226 #ifdef CONFIG_MEMCG_KMEM
5227         memcg->kmemcg_id = -1;
5228         INIT_LIST_HEAD(&memcg->objcg_list);
5229 #endif
5230 #ifdef CONFIG_CGROUP_WRITEBACK
5231         INIT_LIST_HEAD(&memcg->cgwb_list);
5232         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5233                 memcg->cgwb_frn[i].done =
5234                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5235 #endif
5236 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5237         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5238         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5239         memcg->deferred_split_queue.split_queue_len = 0;
5240 #endif
5241         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5242         return memcg;
5243 fail:
5244         mem_cgroup_id_remove(memcg);
5245         __mem_cgroup_free(memcg);
5246         return ERR_PTR(error);
5247 }
5248
5249 static struct cgroup_subsys_state * __ref
5250 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5251 {
5252         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5253         struct mem_cgroup *memcg;
5254         long error = -ENOMEM;
5255
5256         memcg = mem_cgroup_alloc();
5257         if (IS_ERR(memcg))
5258                 return ERR_CAST(memcg);
5259
5260         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5261         memcg->soft_limit = PAGE_COUNTER_MAX;
5262         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5263         if (parent) {
5264                 memcg->swappiness = mem_cgroup_swappiness(parent);
5265                 memcg->oom_kill_disable = parent->oom_kill_disable;
5266         }
5267         if (parent && parent->use_hierarchy) {
5268                 memcg->use_hierarchy = true;
5269                 page_counter_init(&memcg->memory, &parent->memory);
5270                 page_counter_init(&memcg->swap, &parent->swap);
5271                 page_counter_init(&memcg->memsw, &parent->memsw);
5272                 page_counter_init(&memcg->kmem, &parent->kmem);
5273                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5274         } else {
5275                 page_counter_init(&memcg->memory, NULL);
5276                 page_counter_init(&memcg->swap, NULL);
5277                 page_counter_init(&memcg->memsw, NULL);
5278                 page_counter_init(&memcg->kmem, NULL);
5279                 page_counter_init(&memcg->tcpmem, NULL);
5280                 /*
5281                  * Deeper hierachy with use_hierarchy == false doesn't make
5282                  * much sense so let cgroup subsystem know about this
5283                  * unfortunate state in our controller.
5284                  */
5285                 if (parent != root_mem_cgroup)
5286                         memory_cgrp_subsys.broken_hierarchy = true;
5287         }
5288
5289         /* The following stuff does not apply to the root */
5290         if (!parent) {
5291                 root_mem_cgroup = memcg;
5292                 return &memcg->css;
5293         }
5294
5295         error = memcg_online_kmem(memcg);
5296         if (error)
5297                 goto fail;
5298
5299         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5300                 static_branch_inc(&memcg_sockets_enabled_key);
5301
5302         return &memcg->css;
5303 fail:
5304         mem_cgroup_id_remove(memcg);
5305         mem_cgroup_free(memcg);
5306         return ERR_PTR(error);
5307 }
5308
5309 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5310 {
5311         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5312
5313         /*
5314          * A memcg must be visible for memcg_expand_shrinker_maps()
5315          * by the time the maps are allocated. So, we allocate maps
5316          * here, when for_each_mem_cgroup() can't skip it.
5317          */
5318         if (memcg_alloc_shrinker_maps(memcg)) {
5319                 mem_cgroup_id_remove(memcg);
5320                 return -ENOMEM;
5321         }
5322
5323         /* Online state pins memcg ID, memcg ID pins CSS */
5324         refcount_set(&memcg->id.ref, 1);
5325         css_get(css);
5326         return 0;
5327 }
5328
5329 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5330 {
5331         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5332         struct mem_cgroup_event *event, *tmp;
5333
5334         /*
5335          * Unregister events and notify userspace.
5336          * Notify userspace about cgroup removing only after rmdir of cgroup
5337          * directory to avoid race between userspace and kernelspace.
5338          */
5339         spin_lock(&memcg->event_list_lock);
5340         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5341                 list_del_init(&event->list);
5342                 schedule_work(&event->remove);
5343         }
5344         spin_unlock(&memcg->event_list_lock);
5345
5346         page_counter_set_min(&memcg->memory, 0);
5347         page_counter_set_low(&memcg->memory, 0);
5348
5349         memcg_offline_kmem(memcg);
5350         wb_memcg_offline(memcg);
5351
5352         drain_all_stock(memcg);
5353
5354         mem_cgroup_id_put(memcg);
5355 }
5356
5357 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5358 {
5359         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5360
5361         invalidate_reclaim_iterators(memcg);
5362 }
5363
5364 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5365 {
5366         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5367         int __maybe_unused i;
5368
5369 #ifdef CONFIG_CGROUP_WRITEBACK
5370         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5371                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5372 #endif
5373         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5374                 static_branch_dec(&memcg_sockets_enabled_key);
5375
5376         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5377                 static_branch_dec(&memcg_sockets_enabled_key);
5378
5379         vmpressure_cleanup(&memcg->vmpressure);
5380         cancel_work_sync(&memcg->high_work);
5381         mem_cgroup_remove_from_trees(memcg);
5382         memcg_free_shrinker_maps(memcg);
5383         memcg_free_kmem(memcg);
5384         mem_cgroup_free(memcg);
5385 }
5386
5387 /**
5388  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5389  * @css: the target css
5390  *
5391  * Reset the states of the mem_cgroup associated with @css.  This is
5392  * invoked when the userland requests disabling on the default hierarchy
5393  * but the memcg is pinned through dependency.  The memcg should stop
5394  * applying policies and should revert to the vanilla state as it may be
5395  * made visible again.
5396  *
5397  * The current implementation only resets the essential configurations.
5398  * This needs to be expanded to cover all the visible parts.
5399  */
5400 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5401 {
5402         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5403
5404         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5405         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5406         page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5407         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5408         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5409         page_counter_set_min(&memcg->memory, 0);
5410         page_counter_set_low(&memcg->memory, 0);
5411         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5412         memcg->soft_limit = PAGE_COUNTER_MAX;
5413         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5414         memcg_wb_domain_size_changed(memcg);
5415 }
5416
5417 #ifdef CONFIG_MMU
5418 /* Handlers for move charge at task migration. */
5419 static int mem_cgroup_do_precharge(unsigned long count)
5420 {
5421         int ret;
5422
5423         /* Try a single bulk charge without reclaim first, kswapd may wake */
5424         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5425         if (!ret) {
5426                 mc.precharge += count;
5427                 return ret;
5428         }
5429
5430         /* Try charges one by one with reclaim, but do not retry */
5431         while (count--) {
5432                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5433                 if (ret)
5434                         return ret;
5435                 mc.precharge++;
5436                 cond_resched();
5437         }
5438         return 0;
5439 }
5440
5441 union mc_target {
5442         struct page     *page;
5443         swp_entry_t     ent;
5444 };
5445
5446 enum mc_target_type {
5447         MC_TARGET_NONE = 0,
5448         MC_TARGET_PAGE,
5449         MC_TARGET_SWAP,
5450         MC_TARGET_DEVICE,
5451 };
5452
5453 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5454                                                 unsigned long addr, pte_t ptent)
5455 {
5456         struct page *page = vm_normal_page(vma, addr, ptent);
5457
5458         if (!page || !page_mapped(page))
5459                 return NULL;
5460         if (PageAnon(page)) {
5461                 if (!(mc.flags & MOVE_ANON))
5462                         return NULL;
5463         } else {
5464                 if (!(mc.flags & MOVE_FILE))
5465                         return NULL;
5466         }
5467         if (!get_page_unless_zero(page))
5468                 return NULL;
5469
5470         return page;
5471 }
5472
5473 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5474 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5475                         pte_t ptent, swp_entry_t *entry)
5476 {
5477         struct page *page = NULL;
5478         swp_entry_t ent = pte_to_swp_entry(ptent);
5479
5480         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5481                 return NULL;
5482
5483         /*
5484          * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5485          * a device and because they are not accessible by CPU they are store
5486          * as special swap entry in the CPU page table.
5487          */
5488         if (is_device_private_entry(ent)) {
5489                 page = device_private_entry_to_page(ent);
5490                 /*
5491                  * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5492                  * a refcount of 1 when free (unlike normal page)
5493                  */
5494                 if (!page_ref_add_unless(page, 1, 1))
5495                         return NULL;
5496                 return page;
5497         }
5498
5499         /*
5500          * Because lookup_swap_cache() updates some statistics counter,
5501          * we call find_get_page() with swapper_space directly.
5502          */
5503         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5504         entry->val = ent.val;
5505
5506         return page;
5507 }
5508 #else
5509 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5510                         pte_t ptent, swp_entry_t *entry)
5511 {
5512         return NULL;
5513 }
5514 #endif
5515
5516 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5517                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5518 {
5519         struct page *page = NULL;
5520         struct address_space *mapping;
5521         pgoff_t pgoff;
5522
5523         if (!vma->vm_file) /* anonymous vma */
5524                 return NULL;
5525         if (!(mc.flags & MOVE_FILE))
5526                 return NULL;
5527
5528         mapping = vma->vm_file->f_mapping;
5529         pgoff = linear_page_index(vma, addr);
5530
5531         /* page is moved even if it's not RSS of this task(page-faulted). */
5532 #ifdef CONFIG_SWAP
5533         /* shmem/tmpfs may report page out on swap: account for that too. */
5534         if (shmem_mapping(mapping)) {
5535                 page = find_get_entry(mapping, pgoff);
5536                 if (xa_is_value(page)) {
5537                         swp_entry_t swp = radix_to_swp_entry(page);
5538                         *entry = swp;
5539                         page = find_get_page(swap_address_space(swp),
5540                                              swp_offset(swp));
5541                 }
5542         } else
5543                 page = find_get_page(mapping, pgoff);
5544 #else
5545         page = find_get_page(mapping, pgoff);
5546 #endif
5547         return page;
5548 }
5549
5550 /**
5551  * mem_cgroup_move_account - move account of the page
5552  * @page: the page
5553  * @compound: charge the page as compound or small page
5554  * @from: mem_cgroup which the page is moved from.
5555  * @to: mem_cgroup which the page is moved to. @from != @to.
5556  *
5557  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5558  *
5559  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5560  * from old cgroup.
5561  */
5562 static int mem_cgroup_move_account(struct page *page,
5563                                    bool compound,
5564                                    struct mem_cgroup *from,
5565                                    struct mem_cgroup *to)
5566 {
5567         struct lruvec *from_vec, *to_vec;
5568         struct pglist_data *pgdat;
5569         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5570         int ret;
5571
5572         VM_BUG_ON(from == to);
5573         VM_BUG_ON_PAGE(PageLRU(page), page);
5574         VM_BUG_ON(compound && !PageTransHuge(page));
5575
5576         /*
5577          * Prevent mem_cgroup_migrate() from looking at
5578          * page->mem_cgroup of its source page while we change it.
5579          */
5580         ret = -EBUSY;
5581         if (!trylock_page(page))
5582                 goto out;
5583
5584         ret = -EINVAL;
5585         if (page->mem_cgroup != from)
5586                 goto out_unlock;
5587
5588         pgdat = page_pgdat(page);
5589         from_vec = mem_cgroup_lruvec(from, pgdat);
5590         to_vec = mem_cgroup_lruvec(to, pgdat);
5591
5592         lock_page_memcg(page);
5593
5594         if (PageAnon(page)) {
5595                 if (page_mapped(page)) {
5596                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5597                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5598                         if (PageTransHuge(page)) {
5599                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5600                                                    -nr_pages);
5601                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5602                                                    nr_pages);
5603                         }
5604
5605                 }
5606         } else {
5607                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5608                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5609
5610                 if (PageSwapBacked(page)) {
5611                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5612                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5613                 }
5614
5615                 if (page_mapped(page)) {
5616                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5617                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5618                 }
5619
5620                 if (PageDirty(page)) {
5621                         struct address_space *mapping = page_mapping(page);
5622
5623                         if (mapping_cap_account_dirty(mapping)) {
5624                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5625                                                    -nr_pages);
5626                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5627                                                    nr_pages);
5628                         }
5629                 }
5630         }
5631
5632         if (PageWriteback(page)) {
5633                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5634                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5635         }
5636
5637         /*
5638          * All state has been migrated, let's switch to the new memcg.
5639          *
5640          * It is safe to change page->mem_cgroup here because the page
5641          * is referenced, charged, isolated, and locked: we can't race
5642          * with (un)charging, migration, LRU putback, or anything else
5643          * that would rely on a stable page->mem_cgroup.
5644          *
5645          * Note that lock_page_memcg is a memcg lock, not a page lock,
5646          * to save space. As soon as we switch page->mem_cgroup to a
5647          * new memcg that isn't locked, the above state can change
5648          * concurrently again. Make sure we're truly done with it.
5649          */
5650         smp_mb();
5651
5652         css_get(&to->css);
5653         css_put(&from->css);
5654
5655         page->mem_cgroup = to;
5656
5657         __unlock_page_memcg(from);
5658
5659         ret = 0;
5660
5661         local_irq_disable();
5662         mem_cgroup_charge_statistics(to, page, nr_pages);
5663         memcg_check_events(to, page);
5664         mem_cgroup_charge_statistics(from, page, -nr_pages);
5665         memcg_check_events(from, page);
5666         local_irq_enable();
5667 out_unlock:
5668         unlock_page(page);
5669 out:
5670         return ret;
5671 }
5672
5673 /**
5674  * get_mctgt_type - get target type of moving charge
5675  * @vma: the vma the pte to be checked belongs
5676  * @addr: the address corresponding to the pte to be checked
5677  * @ptent: the pte to be checked
5678  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5679  *
5680  * Returns
5681  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5682  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5683  *     move charge. if @target is not NULL, the page is stored in target->page
5684  *     with extra refcnt got(Callers should handle it).
5685  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5686  *     target for charge migration. if @target is not NULL, the entry is stored
5687  *     in target->ent.
5688  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5689  *     (so ZONE_DEVICE page and thus not on the lru).
5690  *     For now we such page is charge like a regular page would be as for all
5691  *     intent and purposes it is just special memory taking the place of a
5692  *     regular page.
5693  *
5694  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5695  *
5696  * Called with pte lock held.
5697  */
5698
5699 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5700                 unsigned long addr, pte_t ptent, union mc_target *target)
5701 {
5702         struct page *page = NULL;
5703         enum mc_target_type ret = MC_TARGET_NONE;
5704         swp_entry_t ent = { .val = 0 };
5705
5706         if (pte_present(ptent))
5707                 page = mc_handle_present_pte(vma, addr, ptent);
5708         else if (is_swap_pte(ptent))
5709                 page = mc_handle_swap_pte(vma, ptent, &ent);
5710         else if (pte_none(ptent))
5711                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5712
5713         if (!page && !ent.val)
5714                 return ret;
5715         if (page) {
5716                 /*
5717                  * Do only loose check w/o serialization.
5718                  * mem_cgroup_move_account() checks the page is valid or
5719                  * not under LRU exclusion.
5720                  */
5721                 if (page->mem_cgroup == mc.from) {
5722                         ret = MC_TARGET_PAGE;
5723                         if (is_device_private_page(page))
5724                                 ret = MC_TARGET_DEVICE;
5725                         if (target)
5726                                 target->page = page;
5727                 }
5728                 if (!ret || !target)
5729                         put_page(page);
5730         }
5731         /*
5732          * There is a swap entry and a page doesn't exist or isn't charged.
5733          * But we cannot move a tail-page in a THP.
5734          */
5735         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5736             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5737                 ret = MC_TARGET_SWAP;
5738                 if (target)
5739                         target->ent = ent;
5740         }
5741         return ret;
5742 }
5743
5744 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5745 /*
5746  * We don't consider PMD mapped swapping or file mapped pages because THP does
5747  * not support them for now.
5748  * Caller should make sure that pmd_trans_huge(pmd) is true.
5749  */
5750 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5751                 unsigned long addr, pmd_t pmd, union mc_target *target)
5752 {
5753         struct page *page = NULL;
5754         enum mc_target_type ret = MC_TARGET_NONE;
5755
5756         if (unlikely(is_swap_pmd(pmd))) {
5757                 VM_BUG_ON(thp_migration_supported() &&
5758                                   !is_pmd_migration_entry(pmd));
5759                 return ret;
5760         }
5761         page = pmd_page(pmd);
5762         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5763         if (!(mc.flags & MOVE_ANON))
5764                 return ret;
5765         if (page->mem_cgroup == mc.from) {
5766                 ret = MC_TARGET_PAGE;
5767                 if (target) {
5768                         get_page(page);
5769                         target->page = page;
5770                 }
5771         }
5772         return ret;
5773 }
5774 #else
5775 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5776                 unsigned long addr, pmd_t pmd, union mc_target *target)
5777 {
5778         return MC_TARGET_NONE;
5779 }
5780 #endif
5781
5782 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5783                                         unsigned long addr, unsigned long end,
5784                                         struct mm_walk *walk)
5785 {
5786         struct vm_area_struct *vma = walk->vma;
5787         pte_t *pte;
5788         spinlock_t *ptl;
5789
5790         ptl = pmd_trans_huge_lock(pmd, vma);
5791         if (ptl) {
5792                 /*
5793                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5794                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5795                  * this might change.
5796                  */
5797                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5798                         mc.precharge += HPAGE_PMD_NR;
5799                 spin_unlock(ptl);
5800                 return 0;
5801         }
5802
5803         if (pmd_trans_unstable(pmd))
5804                 return 0;
5805         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5806         for (; addr != end; pte++, addr += PAGE_SIZE)
5807                 if (get_mctgt_type(vma, addr, *pte, NULL))
5808                         mc.precharge++; /* increment precharge temporarily */
5809         pte_unmap_unlock(pte - 1, ptl);
5810         cond_resched();
5811
5812         return 0;
5813 }
5814
5815 static const struct mm_walk_ops precharge_walk_ops = {
5816         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5817 };
5818
5819 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5820 {
5821         unsigned long precharge;
5822
5823         mmap_read_lock(mm);
5824         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5825         mmap_read_unlock(mm);
5826
5827         precharge = mc.precharge;
5828         mc.precharge = 0;
5829
5830         return precharge;
5831 }
5832
5833 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5834 {
5835         unsigned long precharge = mem_cgroup_count_precharge(mm);
5836
5837         VM_BUG_ON(mc.moving_task);
5838         mc.moving_task = current;
5839         return mem_cgroup_do_precharge(precharge);
5840 }
5841
5842 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5843 static void __mem_cgroup_clear_mc(void)
5844 {
5845         struct mem_cgroup *from = mc.from;
5846         struct mem_cgroup *to = mc.to;
5847
5848         /* we must uncharge all the leftover precharges from mc.to */
5849         if (mc.precharge) {
5850                 cancel_charge(mc.to, mc.precharge);
5851                 mc.precharge = 0;
5852         }
5853         /*
5854          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5855          * we must uncharge here.
5856          */
5857         if (mc.moved_charge) {
5858                 cancel_charge(mc.from, mc.moved_charge);
5859                 mc.moved_charge = 0;
5860         }
5861         /* we must fixup refcnts and charges */
5862         if (mc.moved_swap) {
5863                 /* uncharge swap account from the old cgroup */
5864                 if (!mem_cgroup_is_root(mc.from))
5865                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5866
5867                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5868
5869                 /*
5870                  * we charged both to->memory and to->memsw, so we
5871                  * should uncharge to->memory.
5872                  */
5873                 if (!mem_cgroup_is_root(mc.to))
5874                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5875
5876                 mc.moved_swap = 0;
5877         }
5878         memcg_oom_recover(from);
5879         memcg_oom_recover(to);
5880         wake_up_all(&mc.waitq);
5881 }
5882
5883 static void mem_cgroup_clear_mc(void)
5884 {
5885         struct mm_struct *mm = mc.mm;
5886
5887         /*
5888          * we must clear moving_task before waking up waiters at the end of
5889          * task migration.
5890          */
5891         mc.moving_task = NULL;
5892         __mem_cgroup_clear_mc();
5893         spin_lock(&mc.lock);
5894         mc.from = NULL;
5895         mc.to = NULL;
5896         mc.mm = NULL;
5897         spin_unlock(&mc.lock);
5898
5899         mmput(mm);
5900 }
5901
5902 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5903 {
5904         struct cgroup_subsys_state *css;
5905         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5906         struct mem_cgroup *from;
5907         struct task_struct *leader, *p;
5908         struct mm_struct *mm;
5909         unsigned long move_flags;
5910         int ret = 0;
5911
5912         /* charge immigration isn't supported on the default hierarchy */
5913         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5914                 return 0;
5915
5916         /*
5917          * Multi-process migrations only happen on the default hierarchy
5918          * where charge immigration is not used.  Perform charge
5919          * immigration if @tset contains a leader and whine if there are
5920          * multiple.
5921          */
5922         p = NULL;
5923         cgroup_taskset_for_each_leader(leader, css, tset) {
5924                 WARN_ON_ONCE(p);
5925                 p = leader;
5926                 memcg = mem_cgroup_from_css(css);
5927         }
5928         if (!p)
5929                 return 0;
5930
5931         /*
5932          * We are now commited to this value whatever it is. Changes in this
5933          * tunable will only affect upcoming migrations, not the current one.
5934          * So we need to save it, and keep it going.
5935          */
5936         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5937         if (!move_flags)
5938                 return 0;
5939
5940         from = mem_cgroup_from_task(p);
5941
5942         VM_BUG_ON(from == memcg);
5943
5944         mm = get_task_mm(p);
5945         if (!mm)
5946                 return 0;
5947         /* We move charges only when we move a owner of the mm */
5948         if (mm->owner == p) {
5949                 VM_BUG_ON(mc.from);
5950                 VM_BUG_ON(mc.to);
5951                 VM_BUG_ON(mc.precharge);
5952                 VM_BUG_ON(mc.moved_charge);
5953                 VM_BUG_ON(mc.moved_swap);
5954
5955                 spin_lock(&mc.lock);
5956                 mc.mm = mm;
5957                 mc.from = from;
5958                 mc.to = memcg;
5959                 mc.flags = move_flags;
5960                 spin_unlock(&mc.lock);
5961                 /* We set mc.moving_task later */
5962
5963                 ret = mem_cgroup_precharge_mc(mm);
5964                 if (ret)
5965                         mem_cgroup_clear_mc();
5966         } else {
5967                 mmput(mm);
5968         }
5969         return ret;
5970 }
5971
5972 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5973 {
5974         if (mc.to)
5975                 mem_cgroup_clear_mc();
5976 }
5977
5978 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5979                                 unsigned long addr, unsigned long end,
5980                                 struct mm_walk *walk)
5981 {
5982         int ret = 0;
5983         struct vm_area_struct *vma = walk->vma;
5984         pte_t *pte;
5985         spinlock_t *ptl;
5986         enum mc_target_type target_type;
5987         union mc_target target;
5988         struct page *page;
5989
5990         ptl = pmd_trans_huge_lock(pmd, vma);
5991         if (ptl) {
5992                 if (mc.precharge < HPAGE_PMD_NR) {
5993                         spin_unlock(ptl);
5994                         return 0;
5995                 }
5996                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5997                 if (target_type == MC_TARGET_PAGE) {
5998                         page = target.page;
5999                         if (!isolate_lru_page(page)) {
6000                                 if (!mem_cgroup_move_account(page, true,
6001                                                              mc.from, mc.to)) {
6002                                         mc.precharge -= HPAGE_PMD_NR;
6003                                         mc.moved_charge += HPAGE_PMD_NR;
6004                                 }
6005                                 putback_lru_page(page);
6006                         }
6007                         put_page(page);
6008                 } else if (target_type == MC_TARGET_DEVICE) {
6009                         page = target.page;
6010                         if (!mem_cgroup_move_account(page, true,
6011                                                      mc.from, mc.to)) {
6012                                 mc.precharge -= HPAGE_PMD_NR;
6013                                 mc.moved_charge += HPAGE_PMD_NR;
6014                         }
6015                         put_page(page);
6016                 }
6017                 spin_unlock(ptl);
6018                 return 0;
6019         }
6020
6021         if (pmd_trans_unstable(pmd))
6022                 return 0;
6023 retry:
6024         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6025         for (; addr != end; addr += PAGE_SIZE) {
6026                 pte_t ptent = *(pte++);
6027                 bool device = false;
6028                 swp_entry_t ent;
6029
6030                 if (!mc.precharge)
6031                         break;
6032
6033                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6034                 case MC_TARGET_DEVICE:
6035                         device = true;
6036                         fallthrough;
6037                 case MC_TARGET_PAGE:
6038                         page = target.page;
6039                         /*
6040                          * We can have a part of the split pmd here. Moving it
6041                          * can be done but it would be too convoluted so simply
6042                          * ignore such a partial THP and keep it in original
6043                          * memcg. There should be somebody mapping the head.
6044                          */
6045                         if (PageTransCompound(page))
6046                                 goto put;
6047                         if (!device && isolate_lru_page(page))
6048                                 goto put;
6049                         if (!mem_cgroup_move_account(page, false,
6050                                                 mc.from, mc.to)) {
6051                                 mc.precharge--;
6052                                 /* we uncharge from mc.from later. */
6053                                 mc.moved_charge++;
6054                         }
6055                         if (!device)
6056                                 putback_lru_page(page);
6057 put:                    /* get_mctgt_type() gets the page */
6058                         put_page(page);
6059                         break;
6060                 case MC_TARGET_SWAP:
6061                         ent = target.ent;
6062                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6063                                 mc.precharge--;
6064                                 mem_cgroup_id_get_many(mc.to, 1);
6065                                 /* we fixup other refcnts and charges later. */
6066                                 mc.moved_swap++;
6067                         }
6068                         break;
6069                 default:
6070                         break;
6071                 }
6072         }
6073         pte_unmap_unlock(pte - 1, ptl);
6074         cond_resched();
6075
6076         if (addr != end) {
6077                 /*
6078                  * We have consumed all precharges we got in can_attach().
6079                  * We try charge one by one, but don't do any additional
6080                  * charges to mc.to if we have failed in charge once in attach()
6081                  * phase.
6082                  */
6083                 ret = mem_cgroup_do_precharge(1);
6084                 if (!ret)
6085                         goto retry;
6086         }
6087
6088         return ret;
6089 }
6090
6091 static const struct mm_walk_ops charge_walk_ops = {
6092         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6093 };
6094
6095 static void mem_cgroup_move_charge(void)
6096 {
6097         lru_add_drain_all();
6098         /*
6099          * Signal lock_page_memcg() to take the memcg's move_lock
6100          * while we're moving its pages to another memcg. Then wait
6101          * for already started RCU-only updates to finish.
6102          */
6103         atomic_inc(&mc.from->moving_account);
6104         synchronize_rcu();
6105 retry:
6106         if (unlikely(!mmap_read_trylock(mc.mm))) {
6107                 /*
6108                  * Someone who are holding the mmap_lock might be waiting in
6109                  * waitq. So we cancel all extra charges, wake up all waiters,
6110                  * and retry. Because we cancel precharges, we might not be able
6111                  * to move enough charges, but moving charge is a best-effort
6112                  * feature anyway, so it wouldn't be a big problem.
6113                  */
6114                 __mem_cgroup_clear_mc();
6115                 cond_resched();
6116                 goto retry;
6117         }
6118         /*
6119          * When we have consumed all precharges and failed in doing
6120          * additional charge, the page walk just aborts.
6121          */
6122         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6123                         NULL);
6124
6125         mmap_read_unlock(mc.mm);
6126         atomic_dec(&mc.from->moving_account);
6127 }
6128
6129 static void mem_cgroup_move_task(void)
6130 {
6131         if (mc.to) {
6132                 mem_cgroup_move_charge();
6133                 mem_cgroup_clear_mc();
6134         }
6135 }
6136 #else   /* !CONFIG_MMU */
6137 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6138 {
6139         return 0;
6140 }
6141 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6142 {
6143 }
6144 static void mem_cgroup_move_task(void)
6145 {
6146 }
6147 #endif
6148
6149 /*
6150  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6151  * to verify whether we're attached to the default hierarchy on each mount
6152  * attempt.
6153  */
6154 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6155 {
6156         /*
6157          * use_hierarchy is forced on the default hierarchy.  cgroup core
6158          * guarantees that @root doesn't have any children, so turning it
6159          * on for the root memcg is enough.
6160          */
6161         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6162                 root_mem_cgroup->use_hierarchy = true;
6163         else
6164                 root_mem_cgroup->use_hierarchy = false;
6165 }
6166
6167 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6168 {
6169         if (value == PAGE_COUNTER_MAX)
6170                 seq_puts(m, "max\n");
6171         else
6172                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6173
6174         return 0;
6175 }
6176
6177 static u64 memory_current_read(struct cgroup_subsys_state *css,
6178                                struct cftype *cft)
6179 {
6180         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6181
6182         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6183 }
6184
6185 static int memory_min_show(struct seq_file *m, void *v)
6186 {
6187         return seq_puts_memcg_tunable(m,
6188                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6189 }
6190
6191 static ssize_t memory_min_write(struct kernfs_open_file *of,
6192                                 char *buf, size_t nbytes, loff_t off)
6193 {
6194         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6195         unsigned long min;
6196         int err;
6197
6198         buf = strstrip(buf);
6199         err = page_counter_memparse(buf, "max", &min);
6200         if (err)
6201                 return err;
6202
6203         page_counter_set_min(&memcg->memory, min);
6204
6205         return nbytes;
6206 }
6207
6208 static int memory_low_show(struct seq_file *m, void *v)
6209 {
6210         return seq_puts_memcg_tunable(m,
6211                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6212 }
6213
6214 static ssize_t memory_low_write(struct kernfs_open_file *of,
6215                                 char *buf, size_t nbytes, loff_t off)
6216 {
6217         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6218         unsigned long low;
6219         int err;
6220
6221         buf = strstrip(buf);
6222         err = page_counter_memparse(buf, "max", &low);
6223         if (err)
6224                 return err;
6225
6226         page_counter_set_low(&memcg->memory, low);
6227
6228         return nbytes;
6229 }
6230
6231 static int memory_high_show(struct seq_file *m, void *v)
6232 {
6233         return seq_puts_memcg_tunable(m,
6234                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6235 }
6236
6237 static ssize_t memory_high_write(struct kernfs_open_file *of,
6238                                  char *buf, size_t nbytes, loff_t off)
6239 {
6240         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6241         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6242         bool drained = false;
6243         unsigned long high;
6244         int err;
6245
6246         buf = strstrip(buf);
6247         err = page_counter_memparse(buf, "max", &high);
6248         if (err)
6249                 return err;
6250
6251         for (;;) {
6252                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6253                 unsigned long reclaimed;
6254
6255                 if (nr_pages <= high)
6256                         break;
6257
6258                 if (signal_pending(current))
6259                         break;
6260
6261                 if (!drained) {
6262                         drain_all_stock(memcg);
6263                         drained = true;
6264                         continue;
6265                 }
6266
6267                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6268                                                          GFP_KERNEL, true);
6269
6270                 if (!reclaimed && !nr_retries--)
6271                         break;
6272         }
6273
6274         page_counter_set_high(&memcg->memory, high);
6275
6276         memcg_wb_domain_size_changed(memcg);
6277
6278         return nbytes;
6279 }
6280
6281 static int memory_max_show(struct seq_file *m, void *v)
6282 {
6283         return seq_puts_memcg_tunable(m,
6284                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6285 }
6286
6287 static ssize_t memory_max_write(struct kernfs_open_file *of,
6288                                 char *buf, size_t nbytes, loff_t off)
6289 {
6290         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6291         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6292         bool drained = false;
6293         unsigned long max;
6294         int err;
6295
6296         buf = strstrip(buf);
6297         err = page_counter_memparse(buf, "max", &max);
6298         if (err)
6299                 return err;
6300
6301         xchg(&memcg->memory.max, max);
6302
6303         for (;;) {
6304                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6305
6306                 if (nr_pages <= max)
6307                         break;
6308
6309                 if (signal_pending(current))
6310                         break;
6311
6312                 if (!drained) {
6313                         drain_all_stock(memcg);
6314                         drained = true;
6315                         continue;
6316                 }
6317
6318                 if (nr_reclaims) {
6319                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6320                                                           GFP_KERNEL, true))
6321                                 nr_reclaims--;
6322                         continue;
6323                 }
6324
6325                 memcg_memory_event(memcg, MEMCG_OOM);
6326                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6327                         break;
6328         }
6329
6330         memcg_wb_domain_size_changed(memcg);
6331         return nbytes;
6332 }
6333
6334 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6335 {
6336         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6337         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6338         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6339         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6340         seq_printf(m, "oom_kill %lu\n",
6341                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6342 }
6343
6344 static int memory_events_show(struct seq_file *m, void *v)
6345 {
6346         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6347
6348         __memory_events_show(m, memcg->memory_events);
6349         return 0;
6350 }
6351
6352 static int memory_events_local_show(struct seq_file *m, void *v)
6353 {
6354         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6355
6356         __memory_events_show(m, memcg->memory_events_local);
6357         return 0;
6358 }
6359
6360 static int memory_stat_show(struct seq_file *m, void *v)
6361 {
6362         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6363         char *buf;
6364
6365         buf = memory_stat_format(memcg);
6366         if (!buf)
6367                 return -ENOMEM;
6368         seq_puts(m, buf);
6369         kfree(buf);
6370         return 0;
6371 }
6372
6373 static int memory_oom_group_show(struct seq_file *m, void *v)
6374 {
6375         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6376
6377         seq_printf(m, "%d\n", memcg->oom_group);
6378
6379         return 0;
6380 }
6381
6382 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6383                                       char *buf, size_t nbytes, loff_t off)
6384 {
6385         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6386         int ret, oom_group;
6387
6388         buf = strstrip(buf);
6389         if (!buf)
6390                 return -EINVAL;
6391
6392         ret = kstrtoint(buf, 0, &oom_group);
6393         if (ret)
6394                 return ret;
6395
6396         if (oom_group != 0 && oom_group != 1)
6397                 return -EINVAL;
6398
6399         memcg->oom_group = oom_group;
6400
6401         return nbytes;
6402 }
6403
6404 static struct cftype memory_files[] = {
6405         {
6406                 .name = "current",
6407                 .flags = CFTYPE_NOT_ON_ROOT,
6408                 .read_u64 = memory_current_read,
6409         },
6410         {
6411                 .name = "min",
6412                 .flags = CFTYPE_NOT_ON_ROOT,
6413                 .seq_show = memory_min_show,
6414                 .write = memory_min_write,
6415         },
6416         {
6417                 .name = "low",
6418                 .flags = CFTYPE_NOT_ON_ROOT,
6419                 .seq_show = memory_low_show,
6420                 .write = memory_low_write,
6421         },
6422         {
6423                 .name = "high",
6424                 .flags = CFTYPE_NOT_ON_ROOT,
6425                 .seq_show = memory_high_show,
6426                 .write = memory_high_write,
6427         },
6428         {
6429                 .name = "max",
6430                 .flags = CFTYPE_NOT_ON_ROOT,
6431                 .seq_show = memory_max_show,
6432                 .write = memory_max_write,
6433         },
6434         {
6435                 .name = "events",
6436                 .flags = CFTYPE_NOT_ON_ROOT,
6437                 .file_offset = offsetof(struct mem_cgroup, events_file),
6438                 .seq_show = memory_events_show,
6439         },
6440         {
6441                 .name = "events.local",
6442                 .flags = CFTYPE_NOT_ON_ROOT,
6443                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6444                 .seq_show = memory_events_local_show,
6445         },
6446         {
6447                 .name = "stat",
6448                 .seq_show = memory_stat_show,
6449         },
6450         {
6451                 .name = "oom.group",
6452                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6453                 .seq_show = memory_oom_group_show,
6454                 .write = memory_oom_group_write,
6455         },
6456         { }     /* terminate */
6457 };
6458
6459 struct cgroup_subsys memory_cgrp_subsys = {
6460         .css_alloc = mem_cgroup_css_alloc,
6461         .css_online = mem_cgroup_css_online,
6462         .css_offline = mem_cgroup_css_offline,
6463         .css_released = mem_cgroup_css_released,
6464         .css_free = mem_cgroup_css_free,
6465         .css_reset = mem_cgroup_css_reset,
6466         .can_attach = mem_cgroup_can_attach,
6467         .cancel_attach = mem_cgroup_cancel_attach,
6468         .post_attach = mem_cgroup_move_task,
6469         .bind = mem_cgroup_bind,
6470         .dfl_cftypes = memory_files,
6471         .legacy_cftypes = mem_cgroup_legacy_files,
6472         .early_init = 0,
6473 };
6474
6475 /*
6476  * This function calculates an individual cgroup's effective
6477  * protection which is derived from its own memory.min/low, its
6478  * parent's and siblings' settings, as well as the actual memory
6479  * distribution in the tree.
6480  *
6481  * The following rules apply to the effective protection values:
6482  *
6483  * 1. At the first level of reclaim, effective protection is equal to
6484  *    the declared protection in memory.min and memory.low.
6485  *
6486  * 2. To enable safe delegation of the protection configuration, at
6487  *    subsequent levels the effective protection is capped to the
6488  *    parent's effective protection.
6489  *
6490  * 3. To make complex and dynamic subtrees easier to configure, the
6491  *    user is allowed to overcommit the declared protection at a given
6492  *    level. If that is the case, the parent's effective protection is
6493  *    distributed to the children in proportion to how much protection
6494  *    they have declared and how much of it they are utilizing.
6495  *
6496  *    This makes distribution proportional, but also work-conserving:
6497  *    if one cgroup claims much more protection than it uses memory,
6498  *    the unused remainder is available to its siblings.
6499  *
6500  * 4. Conversely, when the declared protection is undercommitted at a
6501  *    given level, the distribution of the larger parental protection
6502  *    budget is NOT proportional. A cgroup's protection from a sibling
6503  *    is capped to its own memory.min/low setting.
6504  *
6505  * 5. However, to allow protecting recursive subtrees from each other
6506  *    without having to declare each individual cgroup's fixed share
6507  *    of the ancestor's claim to protection, any unutilized -
6508  *    "floating" - protection from up the tree is distributed in
6509  *    proportion to each cgroup's *usage*. This makes the protection
6510  *    neutral wrt sibling cgroups and lets them compete freely over
6511  *    the shared parental protection budget, but it protects the
6512  *    subtree as a whole from neighboring subtrees.
6513  *
6514  * Note that 4. and 5. are not in conflict: 4. is about protecting
6515  * against immediate siblings whereas 5. is about protecting against
6516  * neighboring subtrees.
6517  */
6518 static unsigned long effective_protection(unsigned long usage,
6519                                           unsigned long parent_usage,
6520                                           unsigned long setting,
6521                                           unsigned long parent_effective,
6522                                           unsigned long siblings_protected)
6523 {
6524         unsigned long protected;
6525         unsigned long ep;
6526
6527         protected = min(usage, setting);
6528         /*
6529          * If all cgroups at this level combined claim and use more
6530          * protection then what the parent affords them, distribute
6531          * shares in proportion to utilization.
6532          *
6533          * We are using actual utilization rather than the statically
6534          * claimed protection in order to be work-conserving: claimed
6535          * but unused protection is available to siblings that would
6536          * otherwise get a smaller chunk than what they claimed.
6537          */
6538         if (siblings_protected > parent_effective)
6539                 return protected * parent_effective / siblings_protected;
6540
6541         /*
6542          * Ok, utilized protection of all children is within what the
6543          * parent affords them, so we know whatever this child claims
6544          * and utilizes is effectively protected.
6545          *
6546          * If there is unprotected usage beyond this value, reclaim
6547          * will apply pressure in proportion to that amount.
6548          *
6549          * If there is unutilized protection, the cgroup will be fully
6550          * shielded from reclaim, but we do return a smaller value for
6551          * protection than what the group could enjoy in theory. This
6552          * is okay. With the overcommit distribution above, effective
6553          * protection is always dependent on how memory is actually
6554          * consumed among the siblings anyway.
6555          */
6556         ep = protected;
6557
6558         /*
6559          * If the children aren't claiming (all of) the protection
6560          * afforded to them by the parent, distribute the remainder in
6561          * proportion to the (unprotected) memory of each cgroup. That
6562          * way, cgroups that aren't explicitly prioritized wrt each
6563          * other compete freely over the allowance, but they are
6564          * collectively protected from neighboring trees.
6565          *
6566          * We're using unprotected memory for the weight so that if
6567          * some cgroups DO claim explicit protection, we don't protect
6568          * the same bytes twice.
6569          *
6570          * Check both usage and parent_usage against the respective
6571          * protected values. One should imply the other, but they
6572          * aren't read atomically - make sure the division is sane.
6573          */
6574         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6575                 return ep;
6576         if (parent_effective > siblings_protected &&
6577             parent_usage > siblings_protected &&
6578             usage > protected) {
6579                 unsigned long unclaimed;
6580
6581                 unclaimed = parent_effective - siblings_protected;
6582                 unclaimed *= usage - protected;
6583                 unclaimed /= parent_usage - siblings_protected;
6584
6585                 ep += unclaimed;
6586         }
6587
6588         return ep;
6589 }
6590
6591 /**
6592  * mem_cgroup_protected - check if memory consumption is in the normal range
6593  * @root: the top ancestor of the sub-tree being checked
6594  * @memcg: the memory cgroup to check
6595  *
6596  * WARNING: This function is not stateless! It can only be used as part
6597  *          of a top-down tree iteration, not for isolated queries.
6598  */
6599 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6600                                      struct mem_cgroup *memcg)
6601 {
6602         unsigned long usage, parent_usage;
6603         struct mem_cgroup *parent;
6604
6605         if (mem_cgroup_disabled())
6606                 return;
6607
6608         if (!root)
6609                 root = root_mem_cgroup;
6610
6611         /*
6612          * Effective values of the reclaim targets are ignored so they
6613          * can be stale. Have a look at mem_cgroup_protection for more
6614          * details.
6615          * TODO: calculation should be more robust so that we do not need
6616          * that special casing.
6617          */
6618         if (memcg == root)
6619                 return;
6620
6621         usage = page_counter_read(&memcg->memory);
6622         if (!usage)
6623                 return;
6624
6625         parent = parent_mem_cgroup(memcg);
6626         /* No parent means a non-hierarchical mode on v1 memcg */
6627         if (!parent)
6628                 return;
6629
6630         if (parent == root) {
6631                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6632                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6633                 return;
6634         }
6635
6636         parent_usage = page_counter_read(&parent->memory);
6637
6638         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6639                         READ_ONCE(memcg->memory.min),
6640                         READ_ONCE(parent->memory.emin),
6641                         atomic_long_read(&parent->memory.children_min_usage)));
6642
6643         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6644                         READ_ONCE(memcg->memory.low),
6645                         READ_ONCE(parent->memory.elow),
6646                         atomic_long_read(&parent->memory.children_low_usage)));
6647 }
6648
6649 /**
6650  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6651  * @page: page to charge
6652  * @mm: mm context of the victim
6653  * @gfp_mask: reclaim mode
6654  *
6655  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6656  * pages according to @gfp_mask if necessary.
6657  *
6658  * Returns 0 on success. Otherwise, an error code is returned.
6659  */
6660 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6661 {
6662         unsigned int nr_pages = hpage_nr_pages(page);
6663         struct mem_cgroup *memcg = NULL;
6664         int ret = 0;
6665
6666         if (mem_cgroup_disabled())
6667                 goto out;
6668
6669         if (PageSwapCache(page)) {
6670                 swp_entry_t ent = { .val = page_private(page), };
6671                 unsigned short id;
6672
6673                 /*
6674                  * Every swap fault against a single page tries to charge the
6675                  * page, bail as early as possible.  shmem_unuse() encounters
6676                  * already charged pages, too.  page->mem_cgroup is protected
6677                  * by the page lock, which serializes swap cache removal, which
6678                  * in turn serializes uncharging.
6679                  */
6680                 VM_BUG_ON_PAGE(!PageLocked(page), page);
6681                 if (compound_head(page)->mem_cgroup)
6682                         goto out;
6683
6684                 id = lookup_swap_cgroup_id(ent);
6685                 rcu_read_lock();
6686                 memcg = mem_cgroup_from_id(id);
6687                 if (memcg && !css_tryget_online(&memcg->css))
6688                         memcg = NULL;
6689                 rcu_read_unlock();
6690         }
6691
6692         if (!memcg)
6693                 memcg = get_mem_cgroup_from_mm(mm);
6694
6695         ret = try_charge(memcg, gfp_mask, nr_pages);
6696         if (ret)
6697                 goto out_put;
6698
6699         css_get(&memcg->css);
6700         commit_charge(page, memcg);
6701
6702         local_irq_disable();
6703         mem_cgroup_charge_statistics(memcg, page, nr_pages);
6704         memcg_check_events(memcg, page);
6705         local_irq_enable();
6706
6707         if (PageSwapCache(page)) {
6708                 swp_entry_t entry = { .val = page_private(page) };
6709                 /*
6710                  * The swap entry might not get freed for a long time,
6711                  * let's not wait for it.  The page already received a
6712                  * memory+swap charge, drop the swap entry duplicate.
6713                  */
6714                 mem_cgroup_uncharge_swap(entry, nr_pages);
6715         }
6716
6717 out_put:
6718         css_put(&memcg->css);
6719 out:
6720         return ret;
6721 }
6722
6723 struct uncharge_gather {
6724         struct mem_cgroup *memcg;
6725         unsigned long nr_pages;
6726         unsigned long pgpgout;
6727         unsigned long nr_kmem;
6728         struct page *dummy_page;
6729 };
6730
6731 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6732 {
6733         memset(ug, 0, sizeof(*ug));
6734 }
6735
6736 static void uncharge_batch(const struct uncharge_gather *ug)
6737 {
6738         unsigned long flags;
6739
6740         if (!mem_cgroup_is_root(ug->memcg)) {
6741                 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6742                 if (do_memsw_account())
6743                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6744                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6745                         page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6746                 memcg_oom_recover(ug->memcg);
6747         }
6748
6749         local_irq_save(flags);
6750         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6751         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6752         memcg_check_events(ug->memcg, ug->dummy_page);
6753         local_irq_restore(flags);
6754 }
6755
6756 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6757 {
6758         unsigned long nr_pages;
6759
6760         VM_BUG_ON_PAGE(PageLRU(page), page);
6761
6762         if (!page->mem_cgroup)
6763                 return;
6764
6765         /*
6766          * Nobody should be changing or seriously looking at
6767          * page->mem_cgroup at this point, we have fully
6768          * exclusive access to the page.
6769          */
6770
6771         if (ug->memcg != page->mem_cgroup) {
6772                 if (ug->memcg) {
6773                         uncharge_batch(ug);
6774                         uncharge_gather_clear(ug);
6775                 }
6776                 ug->memcg = page->mem_cgroup;
6777         }
6778
6779         nr_pages = compound_nr(page);
6780         ug->nr_pages += nr_pages;
6781
6782         if (!PageKmemcg(page)) {
6783                 ug->pgpgout++;
6784         } else {
6785                 ug->nr_kmem += nr_pages;
6786                 __ClearPageKmemcg(page);
6787         }
6788
6789         ug->dummy_page = page;
6790         page->mem_cgroup = NULL;
6791         css_put(&ug->memcg->css);
6792 }
6793
6794 static void uncharge_list(struct list_head *page_list)
6795 {
6796         struct uncharge_gather ug;
6797         struct list_head *next;
6798
6799         uncharge_gather_clear(&ug);
6800
6801         /*
6802          * Note that the list can be a single page->lru; hence the
6803          * do-while loop instead of a simple list_for_each_entry().
6804          */
6805         next = page_list->next;
6806         do {
6807                 struct page *page;
6808
6809                 page = list_entry(next, struct page, lru);
6810                 next = page->lru.next;
6811
6812                 uncharge_page(page, &ug);
6813         } while (next != page_list);
6814
6815         if (ug.memcg)
6816                 uncharge_batch(&ug);
6817 }
6818
6819 /**
6820  * mem_cgroup_uncharge - uncharge a page
6821  * @page: page to uncharge
6822  *
6823  * Uncharge a page previously charged with mem_cgroup_charge().
6824  */
6825 void mem_cgroup_uncharge(struct page *page)
6826 {
6827         struct uncharge_gather ug;
6828
6829         if (mem_cgroup_disabled())
6830                 return;
6831
6832         /* Don't touch page->lru of any random page, pre-check: */
6833         if (!page->mem_cgroup)
6834                 return;
6835
6836         uncharge_gather_clear(&ug);
6837         uncharge_page(page, &ug);
6838         uncharge_batch(&ug);
6839 }
6840
6841 /**
6842  * mem_cgroup_uncharge_list - uncharge a list of page
6843  * @page_list: list of pages to uncharge
6844  *
6845  * Uncharge a list of pages previously charged with
6846  * mem_cgroup_charge().
6847  */
6848 void mem_cgroup_uncharge_list(struct list_head *page_list)
6849 {
6850         if (mem_cgroup_disabled())
6851                 return;
6852
6853         if (!list_empty(page_list))
6854                 uncharge_list(page_list);
6855 }
6856
6857 /**
6858  * mem_cgroup_migrate - charge a page's replacement
6859  * @oldpage: currently circulating page
6860  * @newpage: replacement page
6861  *
6862  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6863  * be uncharged upon free.
6864  *
6865  * Both pages must be locked, @newpage->mapping must be set up.
6866  */
6867 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6868 {
6869         struct mem_cgroup *memcg;
6870         unsigned int nr_pages;
6871         unsigned long flags;
6872
6873         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6874         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6875         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6876         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6877                        newpage);
6878
6879         if (mem_cgroup_disabled())
6880                 return;
6881
6882         /* Page cache replacement: new page already charged? */
6883         if (newpage->mem_cgroup)
6884                 return;
6885
6886         /* Swapcache readahead pages can get replaced before being charged */
6887         memcg = oldpage->mem_cgroup;
6888         if (!memcg)
6889                 return;
6890
6891         /* Force-charge the new page. The old one will be freed soon */
6892         nr_pages = hpage_nr_pages(newpage);
6893
6894         page_counter_charge(&memcg->memory, nr_pages);
6895         if (do_memsw_account())
6896                 page_counter_charge(&memcg->memsw, nr_pages);
6897
6898         css_get(&memcg->css);
6899         commit_charge(newpage, memcg);
6900
6901         local_irq_save(flags);
6902         mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6903         memcg_check_events(memcg, newpage);
6904         local_irq_restore(flags);
6905 }
6906
6907 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6908 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6909
6910 void mem_cgroup_sk_alloc(struct sock *sk)
6911 {
6912         struct mem_cgroup *memcg;
6913
6914         if (!mem_cgroup_sockets_enabled)
6915                 return;
6916
6917         /* Do not associate the sock with unrelated interrupted task's memcg. */
6918         if (in_interrupt())
6919                 return;
6920
6921         rcu_read_lock();
6922         memcg = mem_cgroup_from_task(current);
6923         if (memcg == root_mem_cgroup)
6924                 goto out;
6925         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6926                 goto out;
6927         if (css_tryget(&memcg->css))
6928                 sk->sk_memcg = memcg;
6929 out:
6930         rcu_read_unlock();
6931 }
6932
6933 void mem_cgroup_sk_free(struct sock *sk)
6934 {
6935         if (sk->sk_memcg)
6936                 css_put(&sk->sk_memcg->css);
6937 }
6938
6939 /**
6940  * mem_cgroup_charge_skmem - charge socket memory
6941  * @memcg: memcg to charge
6942  * @nr_pages: number of pages to charge
6943  *
6944  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6945  * @memcg's configured limit, %false if the charge had to be forced.
6946  */
6947 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6948 {
6949         gfp_t gfp_mask = GFP_KERNEL;
6950
6951         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6952                 struct page_counter *fail;
6953
6954                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6955                         memcg->tcpmem_pressure = 0;
6956                         return true;
6957                 }
6958                 page_counter_charge(&memcg->tcpmem, nr_pages);
6959                 memcg->tcpmem_pressure = 1;
6960                 return false;
6961         }
6962
6963         /* Don't block in the packet receive path */
6964         if (in_softirq())
6965                 gfp_mask = GFP_NOWAIT;
6966
6967         mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6968
6969         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6970                 return true;
6971
6972         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6973         return false;
6974 }
6975
6976 /**
6977  * mem_cgroup_uncharge_skmem - uncharge socket memory
6978  * @memcg: memcg to uncharge
6979  * @nr_pages: number of pages to uncharge
6980  */
6981 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6982 {
6983         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6984                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6985                 return;
6986         }
6987
6988         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6989
6990         refill_stock(memcg, nr_pages);
6991 }
6992
6993 static int __init cgroup_memory(char *s)
6994 {
6995         char *token;
6996
6997         while ((token = strsep(&s, ",")) != NULL) {
6998                 if (!*token)
6999                         continue;
7000                 if (!strcmp(token, "nosocket"))
7001                         cgroup_memory_nosocket = true;
7002                 if (!strcmp(token, "nokmem"))
7003                         cgroup_memory_nokmem = true;
7004         }
7005         return 0;
7006 }
7007 __setup("cgroup.memory=", cgroup_memory);
7008
7009 /*
7010  * subsys_initcall() for memory controller.
7011  *
7012  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7013  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7014  * basically everything that doesn't depend on a specific mem_cgroup structure
7015  * should be initialized from here.
7016  */
7017 static int __init mem_cgroup_init(void)
7018 {
7019         int cpu, node;
7020
7021         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7022                                   memcg_hotplug_cpu_dead);
7023
7024         for_each_possible_cpu(cpu)
7025                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7026                           drain_local_stock);
7027
7028         for_each_node(node) {
7029                 struct mem_cgroup_tree_per_node *rtpn;
7030
7031                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7032                                     node_online(node) ? node : NUMA_NO_NODE);
7033
7034                 rtpn->rb_root = RB_ROOT;
7035                 rtpn->rb_rightmost = NULL;
7036                 spin_lock_init(&rtpn->lock);
7037                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7038         }
7039
7040         return 0;
7041 }
7042 subsys_initcall(mem_cgroup_init);
7043
7044 #ifdef CONFIG_MEMCG_SWAP
7045 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7046 {
7047         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7048                 /*
7049                  * The root cgroup cannot be destroyed, so it's refcount must
7050                  * always be >= 1.
7051                  */
7052                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7053                         VM_BUG_ON(1);
7054                         break;
7055                 }
7056                 memcg = parent_mem_cgroup(memcg);
7057                 if (!memcg)
7058                         memcg = root_mem_cgroup;
7059         }
7060         return memcg;
7061 }
7062
7063 /**
7064  * mem_cgroup_swapout - transfer a memsw charge to swap
7065  * @page: page whose memsw charge to transfer
7066  * @entry: swap entry to move the charge to
7067  *
7068  * Transfer the memsw charge of @page to @entry.
7069  */
7070 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7071 {
7072         struct mem_cgroup *memcg, *swap_memcg;
7073         unsigned int nr_entries;
7074         unsigned short oldid;
7075
7076         VM_BUG_ON_PAGE(PageLRU(page), page);
7077         VM_BUG_ON_PAGE(page_count(page), page);
7078
7079         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7080                 return;
7081
7082         memcg = page->mem_cgroup;
7083
7084         /* Readahead page, never charged */
7085         if (!memcg)
7086                 return;
7087
7088         /*
7089          * In case the memcg owning these pages has been offlined and doesn't
7090          * have an ID allocated to it anymore, charge the closest online
7091          * ancestor for the swap instead and transfer the memory+swap charge.
7092          */
7093         swap_memcg = mem_cgroup_id_get_online(memcg);
7094         nr_entries = hpage_nr_pages(page);
7095         /* Get references for the tail pages, too */
7096         if (nr_entries > 1)
7097                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7098         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7099                                    nr_entries);
7100         VM_BUG_ON_PAGE(oldid, page);
7101         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7102
7103         page->mem_cgroup = NULL;
7104
7105         if (!mem_cgroup_is_root(memcg))
7106                 page_counter_uncharge(&memcg->memory, nr_entries);
7107
7108         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7109                 if (!mem_cgroup_is_root(swap_memcg))
7110                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7111                 page_counter_uncharge(&memcg->memsw, nr_entries);
7112         }
7113
7114         /*
7115          * Interrupts should be disabled here because the caller holds the
7116          * i_pages lock which is taken with interrupts-off. It is
7117          * important here to have the interrupts disabled because it is the
7118          * only synchronisation we have for updating the per-CPU variables.
7119          */
7120         VM_BUG_ON(!irqs_disabled());
7121         mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7122         memcg_check_events(memcg, page);
7123
7124         css_put(&memcg->css);
7125 }
7126
7127 /**
7128  * mem_cgroup_try_charge_swap - try charging swap space for a page
7129  * @page: page being added to swap
7130  * @entry: swap entry to charge
7131  *
7132  * Try to charge @page's memcg for the swap space at @entry.
7133  *
7134  * Returns 0 on success, -ENOMEM on failure.
7135  */
7136 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7137 {
7138         unsigned int nr_pages = hpage_nr_pages(page);
7139         struct page_counter *counter;
7140         struct mem_cgroup *memcg;
7141         unsigned short oldid;
7142
7143         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7144                 return 0;
7145
7146         memcg = page->mem_cgroup;
7147
7148         /* Readahead page, never charged */
7149         if (!memcg)
7150                 return 0;
7151
7152         if (!entry.val) {
7153                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7154                 return 0;
7155         }
7156
7157         memcg = mem_cgroup_id_get_online(memcg);
7158
7159         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7160             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7161                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7162                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7163                 mem_cgroup_id_put(memcg);
7164                 return -ENOMEM;
7165         }
7166
7167         /* Get references for the tail pages, too */
7168         if (nr_pages > 1)
7169                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7170         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7171         VM_BUG_ON_PAGE(oldid, page);
7172         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7173
7174         return 0;
7175 }
7176
7177 /**
7178  * mem_cgroup_uncharge_swap - uncharge swap space
7179  * @entry: swap entry to uncharge
7180  * @nr_pages: the amount of swap space to uncharge
7181  */
7182 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7183 {
7184         struct mem_cgroup *memcg;
7185         unsigned short id;
7186
7187         id = swap_cgroup_record(entry, 0, nr_pages);
7188         rcu_read_lock();
7189         memcg = mem_cgroup_from_id(id);
7190         if (memcg) {
7191                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7192                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7193                                 page_counter_uncharge(&memcg->swap, nr_pages);
7194                         else
7195                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7196                 }
7197                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7198                 mem_cgroup_id_put_many(memcg, nr_pages);
7199         }
7200         rcu_read_unlock();
7201 }
7202
7203 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7204 {
7205         long nr_swap_pages = get_nr_swap_pages();
7206
7207         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7208                 return nr_swap_pages;
7209         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7210                 nr_swap_pages = min_t(long, nr_swap_pages,
7211                                       READ_ONCE(memcg->swap.max) -
7212                                       page_counter_read(&memcg->swap));
7213         return nr_swap_pages;
7214 }
7215
7216 bool mem_cgroup_swap_full(struct page *page)
7217 {
7218         struct mem_cgroup *memcg;
7219
7220         VM_BUG_ON_PAGE(!PageLocked(page), page);
7221
7222         if (vm_swap_full())
7223                 return true;
7224         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7225                 return false;
7226
7227         memcg = page->mem_cgroup;
7228         if (!memcg)
7229                 return false;
7230
7231         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7232                 unsigned long usage = page_counter_read(&memcg->swap);
7233
7234                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7235                     usage * 2 >= READ_ONCE(memcg->swap.max))
7236                         return true;
7237         }
7238
7239         return false;
7240 }
7241
7242 static int __init setup_swap_account(char *s)
7243 {
7244         if (!strcmp(s, "1"))
7245                 cgroup_memory_noswap = 0;
7246         else if (!strcmp(s, "0"))
7247                 cgroup_memory_noswap = 1;
7248         return 1;
7249 }
7250 __setup("swapaccount=", setup_swap_account);
7251
7252 static u64 swap_current_read(struct cgroup_subsys_state *css,
7253                              struct cftype *cft)
7254 {
7255         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7256
7257         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7258 }
7259
7260 static int swap_high_show(struct seq_file *m, void *v)
7261 {
7262         return seq_puts_memcg_tunable(m,
7263                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7264 }
7265
7266 static ssize_t swap_high_write(struct kernfs_open_file *of,
7267                                char *buf, size_t nbytes, loff_t off)
7268 {
7269         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7270         unsigned long high;
7271         int err;
7272
7273         buf = strstrip(buf);
7274         err = page_counter_memparse(buf, "max", &high);
7275         if (err)
7276                 return err;
7277
7278         page_counter_set_high(&memcg->swap, high);
7279
7280         return nbytes;
7281 }
7282
7283 static int swap_max_show(struct seq_file *m, void *v)
7284 {
7285         return seq_puts_memcg_tunable(m,
7286                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7287 }
7288
7289 static ssize_t swap_max_write(struct kernfs_open_file *of,
7290                               char *buf, size_t nbytes, loff_t off)
7291 {
7292         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7293         unsigned long max;
7294         int err;
7295
7296         buf = strstrip(buf);
7297         err = page_counter_memparse(buf, "max", &max);
7298         if (err)
7299                 return err;
7300
7301         xchg(&memcg->swap.max, max);
7302
7303         return nbytes;
7304 }
7305
7306 static int swap_events_show(struct seq_file *m, void *v)
7307 {
7308         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7309
7310         seq_printf(m, "high %lu\n",
7311                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7312         seq_printf(m, "max %lu\n",
7313                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7314         seq_printf(m, "fail %lu\n",
7315                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7316
7317         return 0;
7318 }
7319
7320 static struct cftype swap_files[] = {
7321         {
7322                 .name = "swap.current",
7323                 .flags = CFTYPE_NOT_ON_ROOT,
7324                 .read_u64 = swap_current_read,
7325         },
7326         {
7327                 .name = "swap.high",
7328                 .flags = CFTYPE_NOT_ON_ROOT,
7329                 .seq_show = swap_high_show,
7330                 .write = swap_high_write,
7331         },
7332         {
7333                 .name = "swap.max",
7334                 .flags = CFTYPE_NOT_ON_ROOT,
7335                 .seq_show = swap_max_show,
7336                 .write = swap_max_write,
7337         },
7338         {
7339                 .name = "swap.events",
7340                 .flags = CFTYPE_NOT_ON_ROOT,
7341                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7342                 .seq_show = swap_events_show,
7343         },
7344         { }     /* terminate */
7345 };
7346
7347 static struct cftype memsw_files[] = {
7348         {
7349                 .name = "memsw.usage_in_bytes",
7350                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7351                 .read_u64 = mem_cgroup_read_u64,
7352         },
7353         {
7354                 .name = "memsw.max_usage_in_bytes",
7355                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7356                 .write = mem_cgroup_reset,
7357                 .read_u64 = mem_cgroup_read_u64,
7358         },
7359         {
7360                 .name = "memsw.limit_in_bytes",
7361                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7362                 .write = mem_cgroup_write,
7363                 .read_u64 = mem_cgroup_read_u64,
7364         },
7365         {
7366                 .name = "memsw.failcnt",
7367                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7368                 .write = mem_cgroup_reset,
7369                 .read_u64 = mem_cgroup_read_u64,
7370         },
7371         { },    /* terminate */
7372 };
7373
7374 /*
7375  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7376  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7377  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7378  * boot parameter. This may result in premature OOPS inside
7379  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7380  */
7381 static int __init mem_cgroup_swap_init(void)
7382 {
7383         /* No memory control -> no swap control */
7384         if (mem_cgroup_disabled())
7385                 cgroup_memory_noswap = true;
7386
7387         if (cgroup_memory_noswap)
7388                 return 0;
7389
7390         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7391         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7392
7393         return 0;
7394 }
7395 core_initcall(mem_cgroup_swap_init);
7396
7397 #endif /* CONFIG_MEMCG_SWAP */