mm: memcg: charge memcg percpu memory to the parent cgroup
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
78
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 bool cgroup_memory_noswap __read_mostly;
85 #else
86 #define cgroup_memory_noswap            1
87 #endif
88
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97 }
98
99 #define THRESHOLDS_EVENTS_TARGET 128
100 #define SOFTLIMIT_EVENTS_TARGET 1024
101
102 /*
103  * Cgroups above their limits are maintained in a RB-Tree, independent of
104  * their hierarchy representation
105  */
106
107 struct mem_cgroup_tree_per_node {
108         struct rb_root rb_root;
109         struct rb_node *rb_rightmost;
110         spinlock_t lock;
111 };
112
113 struct mem_cgroup_tree {
114         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
115 };
116
117 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
118
119 /* for OOM */
120 struct mem_cgroup_eventfd_list {
121         struct list_head list;
122         struct eventfd_ctx *eventfd;
123 };
124
125 /*
126  * cgroup_event represents events which userspace want to receive.
127  */
128 struct mem_cgroup_event {
129         /*
130          * memcg which the event belongs to.
131          */
132         struct mem_cgroup *memcg;
133         /*
134          * eventfd to signal userspace about the event.
135          */
136         struct eventfd_ctx *eventfd;
137         /*
138          * Each of these stored in a list by the cgroup.
139          */
140         struct list_head list;
141         /*
142          * register_event() callback will be used to add new userspace
143          * waiter for changes related to this event.  Use eventfd_signal()
144          * on eventfd to send notification to userspace.
145          */
146         int (*register_event)(struct mem_cgroup *memcg,
147                               struct eventfd_ctx *eventfd, const char *args);
148         /*
149          * unregister_event() callback will be called when userspace closes
150          * the eventfd or on cgroup removing.  This callback must be set,
151          * if you want provide notification functionality.
152          */
153         void (*unregister_event)(struct mem_cgroup *memcg,
154                                  struct eventfd_ctx *eventfd);
155         /*
156          * All fields below needed to unregister event when
157          * userspace closes eventfd.
158          */
159         poll_table pt;
160         wait_queue_head_t *wqh;
161         wait_queue_entry_t wait;
162         struct work_struct remove;
163 };
164
165 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
166 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167
168 /* Stuffs for move charges at task migration. */
169 /*
170  * Types of charges to be moved.
171  */
172 #define MOVE_ANON       0x1U
173 #define MOVE_FILE       0x2U
174 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
175
176 /* "mc" and its members are protected by cgroup_mutex */
177 static struct move_charge_struct {
178         spinlock_t        lock; /* for from, to */
179         struct mm_struct  *mm;
180         struct mem_cgroup *from;
181         struct mem_cgroup *to;
182         unsigned long flags;
183         unsigned long precharge;
184         unsigned long moved_charge;
185         unsigned long moved_swap;
186         struct task_struct *moving_task;        /* a task moving charges */
187         wait_queue_head_t waitq;                /* a waitq for other context */
188 } mc = {
189         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
191 };
192
193 /*
194  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
195  * limit reclaim to prevent infinite loops, if they ever occur.
196  */
197 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
198 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
199
200 enum charge_type {
201         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
202         MEM_CGROUP_CHARGE_TYPE_ANON,
203         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
204         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
205         NR_CHARGE_TYPE,
206 };
207
208 /* for encoding cft->private value on file */
209 enum res_type {
210         _MEM,
211         _MEMSWAP,
212         _OOM_TYPE,
213         _KMEM,
214         _TCP,
215 };
216
217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
220 /* Used for OOM nofiier */
221 #define OOM_CONTROL             (0)
222
223 /*
224  * Iteration constructs for visiting all cgroups (under a tree).  If
225  * loops are exited prematurely (break), mem_cgroup_iter_break() must
226  * be used for reference counting.
227  */
228 #define for_each_mem_cgroup_tree(iter, root)            \
229         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
230              iter != NULL;                              \
231              iter = mem_cgroup_iter(root, iter, NULL))
232
233 #define for_each_mem_cgroup(iter)                       \
234         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
235              iter != NULL;                              \
236              iter = mem_cgroup_iter(NULL, iter, NULL))
237
238 static inline bool should_force_charge(void)
239 {
240         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241                 (current->flags & PF_EXITING);
242 }
243
244 /* Some nice accessors for the vmpressure. */
245 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246 {
247         if (!memcg)
248                 memcg = root_mem_cgroup;
249         return &memcg->vmpressure;
250 }
251
252 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
253 {
254         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
255 }
256
257 #ifdef CONFIG_MEMCG_KMEM
258 extern spinlock_t css_set_lock;
259
260 static void obj_cgroup_release(struct percpu_ref *ref)
261 {
262         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
263         struct mem_cgroup *memcg;
264         unsigned int nr_bytes;
265         unsigned int nr_pages;
266         unsigned long flags;
267
268         /*
269          * At this point all allocated objects are freed, and
270          * objcg->nr_charged_bytes can't have an arbitrary byte value.
271          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
272          *
273          * The following sequence can lead to it:
274          * 1) CPU0: objcg == stock->cached_objcg
275          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
276          *          PAGE_SIZE bytes are charged
277          * 3) CPU1: a process from another memcg is allocating something,
278          *          the stock if flushed,
279          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
280          * 5) CPU0: we do release this object,
281          *          92 bytes are added to stock->nr_bytes
282          * 6) CPU0: stock is flushed,
283          *          92 bytes are added to objcg->nr_charged_bytes
284          *
285          * In the result, nr_charged_bytes == PAGE_SIZE.
286          * This page will be uncharged in obj_cgroup_release().
287          */
288         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
289         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
290         nr_pages = nr_bytes >> PAGE_SHIFT;
291
292         spin_lock_irqsave(&css_set_lock, flags);
293         memcg = obj_cgroup_memcg(objcg);
294         if (nr_pages)
295                 __memcg_kmem_uncharge(memcg, nr_pages);
296         list_del(&objcg->list);
297         mem_cgroup_put(memcg);
298         spin_unlock_irqrestore(&css_set_lock, flags);
299
300         percpu_ref_exit(ref);
301         kfree_rcu(objcg, rcu);
302 }
303
304 static struct obj_cgroup *obj_cgroup_alloc(void)
305 {
306         struct obj_cgroup *objcg;
307         int ret;
308
309         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310         if (!objcg)
311                 return NULL;
312
313         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314                               GFP_KERNEL);
315         if (ret) {
316                 kfree(objcg);
317                 return NULL;
318         }
319         INIT_LIST_HEAD(&objcg->list);
320         return objcg;
321 }
322
323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324                                   struct mem_cgroup *parent)
325 {
326         struct obj_cgroup *objcg, *iter;
327
328         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329
330         spin_lock_irq(&css_set_lock);
331
332         /* Move active objcg to the parent's list */
333         xchg(&objcg->memcg, parent);
334         css_get(&parent->css);
335         list_add(&objcg->list, &parent->objcg_list);
336
337         /* Move already reparented objcgs to the parent's list */
338         list_for_each_entry(iter, &memcg->objcg_list, list) {
339                 css_get(&parent->css);
340                 xchg(&iter->memcg, parent);
341                 css_put(&memcg->css);
342         }
343         list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345         spin_unlock_irq(&css_set_lock);
346
347         percpu_ref_kill(&objcg->refcnt);
348 }
349
350 /*
351  * This will be used as a shrinker list's index.
352  * The main reason for not using cgroup id for this:
353  *  this works better in sparse environments, where we have a lot of memcgs,
354  *  but only a few kmem-limited. Or also, if we have, for instance, 200
355  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
356  *  200 entry array for that.
357  *
358  * The current size of the caches array is stored in memcg_nr_cache_ids. It
359  * will double each time we have to increase it.
360  */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369         down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374         up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378  * MIN_SIZE is different than 1, because we would like to avoid going through
379  * the alloc/free process all the time. In a small machine, 4 kmem-limited
380  * cgroups is a reasonable guess. In the future, it could be a parameter or
381  * tunable, but that is strictly not necessary.
382  *
383  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384  * this constant directly from cgroup, but it is understandable that this is
385  * better kept as an internal representation in cgroup.c. In any case, the
386  * cgrp_id space is not getting any smaller, and we don't have to necessarily
387  * increase ours as well if it increases.
388  */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393  * A lot of the calls to the cache allocation functions are expected to be
394  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395  * conditional to this static branch, we'll have to allow modules that does
396  * kmem_cache_alloc and the such to see this symbol as well
397  */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401
402 static int memcg_shrinker_map_size;
403 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
404
405 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
406 {
407         kvfree(container_of(head, struct memcg_shrinker_map, rcu));
408 }
409
410 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
411                                          int size, int old_size)
412 {
413         struct memcg_shrinker_map *new, *old;
414         int nid;
415
416         lockdep_assert_held(&memcg_shrinker_map_mutex);
417
418         for_each_node(nid) {
419                 old = rcu_dereference_protected(
420                         mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
421                 /* Not yet online memcg */
422                 if (!old)
423                         return 0;
424
425                 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
426                 if (!new)
427                         return -ENOMEM;
428
429                 /* Set all old bits, clear all new bits */
430                 memset(new->map, (int)0xff, old_size);
431                 memset((void *)new->map + old_size, 0, size - old_size);
432
433                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
434                 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
435         }
436
437         return 0;
438 }
439
440 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
441 {
442         struct mem_cgroup_per_node *pn;
443         struct memcg_shrinker_map *map;
444         int nid;
445
446         if (mem_cgroup_is_root(memcg))
447                 return;
448
449         for_each_node(nid) {
450                 pn = mem_cgroup_nodeinfo(memcg, nid);
451                 map = rcu_dereference_protected(pn->shrinker_map, true);
452                 if (map)
453                         kvfree(map);
454                 rcu_assign_pointer(pn->shrinker_map, NULL);
455         }
456 }
457
458 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
459 {
460         struct memcg_shrinker_map *map;
461         int nid, size, ret = 0;
462
463         if (mem_cgroup_is_root(memcg))
464                 return 0;
465
466         mutex_lock(&memcg_shrinker_map_mutex);
467         size = memcg_shrinker_map_size;
468         for_each_node(nid) {
469                 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
470                 if (!map) {
471                         memcg_free_shrinker_maps(memcg);
472                         ret = -ENOMEM;
473                         break;
474                 }
475                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
476         }
477         mutex_unlock(&memcg_shrinker_map_mutex);
478
479         return ret;
480 }
481
482 int memcg_expand_shrinker_maps(int new_id)
483 {
484         int size, old_size, ret = 0;
485         struct mem_cgroup *memcg;
486
487         size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
488         old_size = memcg_shrinker_map_size;
489         if (size <= old_size)
490                 return 0;
491
492         mutex_lock(&memcg_shrinker_map_mutex);
493         if (!root_mem_cgroup)
494                 goto unlock;
495
496         for_each_mem_cgroup(memcg) {
497                 if (mem_cgroup_is_root(memcg))
498                         continue;
499                 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
500                 if (ret) {
501                         mem_cgroup_iter_break(NULL, memcg);
502                         goto unlock;
503                 }
504         }
505 unlock:
506         if (!ret)
507                 memcg_shrinker_map_size = size;
508         mutex_unlock(&memcg_shrinker_map_mutex);
509         return ret;
510 }
511
512 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
513 {
514         if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
515                 struct memcg_shrinker_map *map;
516
517                 rcu_read_lock();
518                 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
519                 /* Pairs with smp mb in shrink_slab() */
520                 smp_mb__before_atomic();
521                 set_bit(shrinker_id, map->map);
522                 rcu_read_unlock();
523         }
524 }
525
526 /**
527  * mem_cgroup_css_from_page - css of the memcg associated with a page
528  * @page: page of interest
529  *
530  * If memcg is bound to the default hierarchy, css of the memcg associated
531  * with @page is returned.  The returned css remains associated with @page
532  * until it is released.
533  *
534  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
535  * is returned.
536  */
537 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
538 {
539         struct mem_cgroup *memcg;
540
541         memcg = page->mem_cgroup;
542
543         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
544                 memcg = root_mem_cgroup;
545
546         return &memcg->css;
547 }
548
549 /**
550  * page_cgroup_ino - return inode number of the memcg a page is charged to
551  * @page: the page
552  *
553  * Look up the closest online ancestor of the memory cgroup @page is charged to
554  * and return its inode number or 0 if @page is not charged to any cgroup. It
555  * is safe to call this function without holding a reference to @page.
556  *
557  * Note, this function is inherently racy, because there is nothing to prevent
558  * the cgroup inode from getting torn down and potentially reallocated a moment
559  * after page_cgroup_ino() returns, so it only should be used by callers that
560  * do not care (such as procfs interfaces).
561  */
562 ino_t page_cgroup_ino(struct page *page)
563 {
564         struct mem_cgroup *memcg;
565         unsigned long ino = 0;
566
567         rcu_read_lock();
568         memcg = page->mem_cgroup;
569
570         /*
571          * The lowest bit set means that memcg isn't a valid
572          * memcg pointer, but a obj_cgroups pointer.
573          * In this case the page is shared and doesn't belong
574          * to any specific memory cgroup.
575          */
576         if ((unsigned long) memcg & 0x1UL)
577                 memcg = NULL;
578
579         while (memcg && !(memcg->css.flags & CSS_ONLINE))
580                 memcg = parent_mem_cgroup(memcg);
581         if (memcg)
582                 ino = cgroup_ino(memcg->css.cgroup);
583         rcu_read_unlock();
584         return ino;
585 }
586
587 static struct mem_cgroup_per_node *
588 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
589 {
590         int nid = page_to_nid(page);
591
592         return memcg->nodeinfo[nid];
593 }
594
595 static struct mem_cgroup_tree_per_node *
596 soft_limit_tree_node(int nid)
597 {
598         return soft_limit_tree.rb_tree_per_node[nid];
599 }
600
601 static struct mem_cgroup_tree_per_node *
602 soft_limit_tree_from_page(struct page *page)
603 {
604         int nid = page_to_nid(page);
605
606         return soft_limit_tree.rb_tree_per_node[nid];
607 }
608
609 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
610                                          struct mem_cgroup_tree_per_node *mctz,
611                                          unsigned long new_usage_in_excess)
612 {
613         struct rb_node **p = &mctz->rb_root.rb_node;
614         struct rb_node *parent = NULL;
615         struct mem_cgroup_per_node *mz_node;
616         bool rightmost = true;
617
618         if (mz->on_tree)
619                 return;
620
621         mz->usage_in_excess = new_usage_in_excess;
622         if (!mz->usage_in_excess)
623                 return;
624         while (*p) {
625                 parent = *p;
626                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
627                                         tree_node);
628                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
629                         p = &(*p)->rb_left;
630                         rightmost = false;
631                 }
632
633                 /*
634                  * We can't avoid mem cgroups that are over their soft
635                  * limit by the same amount
636                  */
637                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
638                         p = &(*p)->rb_right;
639         }
640
641         if (rightmost)
642                 mctz->rb_rightmost = &mz->tree_node;
643
644         rb_link_node(&mz->tree_node, parent, p);
645         rb_insert_color(&mz->tree_node, &mctz->rb_root);
646         mz->on_tree = true;
647 }
648
649 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
650                                          struct mem_cgroup_tree_per_node *mctz)
651 {
652         if (!mz->on_tree)
653                 return;
654
655         if (&mz->tree_node == mctz->rb_rightmost)
656                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
657
658         rb_erase(&mz->tree_node, &mctz->rb_root);
659         mz->on_tree = false;
660 }
661
662 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
663                                        struct mem_cgroup_tree_per_node *mctz)
664 {
665         unsigned long flags;
666
667         spin_lock_irqsave(&mctz->lock, flags);
668         __mem_cgroup_remove_exceeded(mz, mctz);
669         spin_unlock_irqrestore(&mctz->lock, flags);
670 }
671
672 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
673 {
674         unsigned long nr_pages = page_counter_read(&memcg->memory);
675         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
676         unsigned long excess = 0;
677
678         if (nr_pages > soft_limit)
679                 excess = nr_pages - soft_limit;
680
681         return excess;
682 }
683
684 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
685 {
686         unsigned long excess;
687         struct mem_cgroup_per_node *mz;
688         struct mem_cgroup_tree_per_node *mctz;
689
690         mctz = soft_limit_tree_from_page(page);
691         if (!mctz)
692                 return;
693         /*
694          * Necessary to update all ancestors when hierarchy is used.
695          * because their event counter is not touched.
696          */
697         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698                 mz = mem_cgroup_page_nodeinfo(memcg, page);
699                 excess = soft_limit_excess(memcg);
700                 /*
701                  * We have to update the tree if mz is on RB-tree or
702                  * mem is over its softlimit.
703                  */
704                 if (excess || mz->on_tree) {
705                         unsigned long flags;
706
707                         spin_lock_irqsave(&mctz->lock, flags);
708                         /* if on-tree, remove it */
709                         if (mz->on_tree)
710                                 __mem_cgroup_remove_exceeded(mz, mctz);
711                         /*
712                          * Insert again. mz->usage_in_excess will be updated.
713                          * If excess is 0, no tree ops.
714                          */
715                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
716                         spin_unlock_irqrestore(&mctz->lock, flags);
717                 }
718         }
719 }
720
721 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722 {
723         struct mem_cgroup_tree_per_node *mctz;
724         struct mem_cgroup_per_node *mz;
725         int nid;
726
727         for_each_node(nid) {
728                 mz = mem_cgroup_nodeinfo(memcg, nid);
729                 mctz = soft_limit_tree_node(nid);
730                 if (mctz)
731                         mem_cgroup_remove_exceeded(mz, mctz);
732         }
733 }
734
735 static struct mem_cgroup_per_node *
736 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
737 {
738         struct mem_cgroup_per_node *mz;
739
740 retry:
741         mz = NULL;
742         if (!mctz->rb_rightmost)
743                 goto done;              /* Nothing to reclaim from */
744
745         mz = rb_entry(mctz->rb_rightmost,
746                       struct mem_cgroup_per_node, tree_node);
747         /*
748          * Remove the node now but someone else can add it back,
749          * we will to add it back at the end of reclaim to its correct
750          * position in the tree.
751          */
752         __mem_cgroup_remove_exceeded(mz, mctz);
753         if (!soft_limit_excess(mz->memcg) ||
754             !css_tryget(&mz->memcg->css))
755                 goto retry;
756 done:
757         return mz;
758 }
759
760 static struct mem_cgroup_per_node *
761 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
762 {
763         struct mem_cgroup_per_node *mz;
764
765         spin_lock_irq(&mctz->lock);
766         mz = __mem_cgroup_largest_soft_limit_node(mctz);
767         spin_unlock_irq(&mctz->lock);
768         return mz;
769 }
770
771 /**
772  * __mod_memcg_state - update cgroup memory statistics
773  * @memcg: the memory cgroup
774  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
775  * @val: delta to add to the counter, can be negative
776  */
777 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
778 {
779         long x, threshold = MEMCG_CHARGE_BATCH;
780
781         if (mem_cgroup_disabled())
782                 return;
783
784         if (memcg_stat_item_in_bytes(idx))
785                 threshold <<= PAGE_SHIFT;
786
787         x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
788         if (unlikely(abs(x) > threshold)) {
789                 struct mem_cgroup *mi;
790
791                 /*
792                  * Batch local counters to keep them in sync with
793                  * the hierarchical ones.
794                  */
795                 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
796                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
797                         atomic_long_add(x, &mi->vmstats[idx]);
798                 x = 0;
799         }
800         __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
801 }
802
803 static struct mem_cgroup_per_node *
804 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
805 {
806         struct mem_cgroup *parent;
807
808         parent = parent_mem_cgroup(pn->memcg);
809         if (!parent)
810                 return NULL;
811         return mem_cgroup_nodeinfo(parent, nid);
812 }
813
814 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
815                               int val)
816 {
817         struct mem_cgroup_per_node *pn;
818         struct mem_cgroup *memcg;
819         long x, threshold = MEMCG_CHARGE_BATCH;
820
821         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
822         memcg = pn->memcg;
823
824         /* Update memcg */
825         __mod_memcg_state(memcg, idx, val);
826
827         /* Update lruvec */
828         __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
829
830         if (vmstat_item_in_bytes(idx))
831                 threshold <<= PAGE_SHIFT;
832
833         x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
834         if (unlikely(abs(x) > threshold)) {
835                 pg_data_t *pgdat = lruvec_pgdat(lruvec);
836                 struct mem_cgroup_per_node *pi;
837
838                 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
839                         atomic_long_add(x, &pi->lruvec_stat[idx]);
840                 x = 0;
841         }
842         __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
843 }
844
845 /**
846  * __mod_lruvec_state - update lruvec memory statistics
847  * @lruvec: the lruvec
848  * @idx: the stat item
849  * @val: delta to add to the counter, can be negative
850  *
851  * The lruvec is the intersection of the NUMA node and a cgroup. This
852  * function updates the all three counters that are affected by a
853  * change of state at this level: per-node, per-cgroup, per-lruvec.
854  */
855 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
856                         int val)
857 {
858         /* Update node */
859         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
860
861         /* Update memcg and lruvec */
862         if (!mem_cgroup_disabled())
863                 __mod_memcg_lruvec_state(lruvec, idx, val);
864 }
865
866 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
867 {
868         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
869         struct mem_cgroup *memcg;
870         struct lruvec *lruvec;
871
872         rcu_read_lock();
873         memcg = mem_cgroup_from_obj(p);
874
875         /* Untracked pages have no memcg, no lruvec. Update only the node */
876         if (!memcg || memcg == root_mem_cgroup) {
877                 __mod_node_page_state(pgdat, idx, val);
878         } else {
879                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
880                 __mod_lruvec_state(lruvec, idx, val);
881         }
882         rcu_read_unlock();
883 }
884
885 void mod_memcg_obj_state(void *p, int idx, int val)
886 {
887         struct mem_cgroup *memcg;
888
889         rcu_read_lock();
890         memcg = mem_cgroup_from_obj(p);
891         if (memcg)
892                 mod_memcg_state(memcg, idx, val);
893         rcu_read_unlock();
894 }
895
896 /**
897  * __count_memcg_events - account VM events in a cgroup
898  * @memcg: the memory cgroup
899  * @idx: the event item
900  * @count: the number of events that occured
901  */
902 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903                           unsigned long count)
904 {
905         unsigned long x;
906
907         if (mem_cgroup_disabled())
908                 return;
909
910         x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911         if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912                 struct mem_cgroup *mi;
913
914                 /*
915                  * Batch local counters to keep them in sync with
916                  * the hierarchical ones.
917                  */
918                 __this_cpu_add(memcg->vmstats_local->events[idx], x);
919                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920                         atomic_long_add(x, &mi->vmevents[idx]);
921                 x = 0;
922         }
923         __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924 }
925
926 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927 {
928         return atomic_long_read(&memcg->vmevents[event]);
929 }
930
931 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932 {
933         long x = 0;
934         int cpu;
935
936         for_each_possible_cpu(cpu)
937                 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938         return x;
939 }
940
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942                                          struct page *page,
943                                          int nr_pages)
944 {
945         /* pagein of a big page is an event. So, ignore page size */
946         if (nr_pages > 0)
947                 __count_memcg_events(memcg, PGPGIN, 1);
948         else {
949                 __count_memcg_events(memcg, PGPGOUT, 1);
950                 nr_pages = -nr_pages; /* for event */
951         }
952
953         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954 }
955
956 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957                                        enum mem_cgroup_events_target target)
958 {
959         unsigned long val, next;
960
961         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963         /* from time_after() in jiffies.h */
964         if ((long)(next - val) < 0) {
965                 switch (target) {
966                 case MEM_CGROUP_TARGET_THRESH:
967                         next = val + THRESHOLDS_EVENTS_TARGET;
968                         break;
969                 case MEM_CGROUP_TARGET_SOFTLIMIT:
970                         next = val + SOFTLIMIT_EVENTS_TARGET;
971                         break;
972                 default:
973                         break;
974                 }
975                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976                 return true;
977         }
978         return false;
979 }
980
981 /*
982  * Check events in order.
983  *
984  */
985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986 {
987         /* threshold event is triggered in finer grain than soft limit */
988         if (unlikely(mem_cgroup_event_ratelimit(memcg,
989                                                 MEM_CGROUP_TARGET_THRESH))) {
990                 bool do_softlimit;
991
992                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
994                 mem_cgroup_threshold(memcg);
995                 if (unlikely(do_softlimit))
996                         mem_cgroup_update_tree(memcg, page);
997         }
998 }
999
1000 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001 {
1002         /*
1003          * mm_update_next_owner() may clear mm->owner to NULL
1004          * if it races with swapoff, page migration, etc.
1005          * So this can be called with p == NULL.
1006          */
1007         if (unlikely(!p))
1008                 return NULL;
1009
1010         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011 }
1012 EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014 /**
1015  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016  * @mm: mm from which memcg should be extracted. It can be NULL.
1017  *
1018  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020  * returned.
1021  */
1022 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023 {
1024         struct mem_cgroup *memcg;
1025
1026         if (mem_cgroup_disabled())
1027                 return NULL;
1028
1029         rcu_read_lock();
1030         do {
1031                 /*
1032                  * Page cache insertions can happen withou an
1033                  * actual mm context, e.g. during disk probing
1034                  * on boot, loopback IO, acct() writes etc.
1035                  */
1036                 if (unlikely(!mm))
1037                         memcg = root_mem_cgroup;
1038                 else {
1039                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040                         if (unlikely(!memcg))
1041                                 memcg = root_mem_cgroup;
1042                 }
1043         } while (!css_tryget(&memcg->css));
1044         rcu_read_unlock();
1045         return memcg;
1046 }
1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049 /**
1050  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051  * @page: page from which memcg should be extracted.
1052  *
1053  * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054  * root_mem_cgroup is returned.
1055  */
1056 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057 {
1058         struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060         if (mem_cgroup_disabled())
1061                 return NULL;
1062
1063         rcu_read_lock();
1064         /* Page should not get uncharged and freed memcg under us. */
1065         if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066                 memcg = root_mem_cgroup;
1067         rcu_read_unlock();
1068         return memcg;
1069 }
1070 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072 /**
1073  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1074  */
1075 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1076 {
1077         if (unlikely(current->active_memcg)) {
1078                 struct mem_cgroup *memcg;
1079
1080                 rcu_read_lock();
1081                 /* current->active_memcg must hold a ref. */
1082                 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1083                         memcg = root_mem_cgroup;
1084                 else
1085                         memcg = current->active_memcg;
1086                 rcu_read_unlock();
1087                 return memcg;
1088         }
1089         return get_mem_cgroup_from_mm(current->mm);
1090 }
1091
1092 /**
1093  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1094  * @root: hierarchy root
1095  * @prev: previously returned memcg, NULL on first invocation
1096  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1097  *
1098  * Returns references to children of the hierarchy below @root, or
1099  * @root itself, or %NULL after a full round-trip.
1100  *
1101  * Caller must pass the return value in @prev on subsequent
1102  * invocations for reference counting, or use mem_cgroup_iter_break()
1103  * to cancel a hierarchy walk before the round-trip is complete.
1104  *
1105  * Reclaimers can specify a node and a priority level in @reclaim to
1106  * divide up the memcgs in the hierarchy among all concurrent
1107  * reclaimers operating on the same node and priority.
1108  */
1109 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110                                    struct mem_cgroup *prev,
1111                                    struct mem_cgroup_reclaim_cookie *reclaim)
1112 {
1113         struct mem_cgroup_reclaim_iter *iter;
1114         struct cgroup_subsys_state *css = NULL;
1115         struct mem_cgroup *memcg = NULL;
1116         struct mem_cgroup *pos = NULL;
1117
1118         if (mem_cgroup_disabled())
1119                 return NULL;
1120
1121         if (!root)
1122                 root = root_mem_cgroup;
1123
1124         if (prev && !reclaim)
1125                 pos = prev;
1126
1127         if (!root->use_hierarchy && root != root_mem_cgroup) {
1128                 if (prev)
1129                         goto out;
1130                 return root;
1131         }
1132
1133         rcu_read_lock();
1134
1135         if (reclaim) {
1136                 struct mem_cgroup_per_node *mz;
1137
1138                 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139                 iter = &mz->iter;
1140
1141                 if (prev && reclaim->generation != iter->generation)
1142                         goto out_unlock;
1143
1144                 while (1) {
1145                         pos = READ_ONCE(iter->position);
1146                         if (!pos || css_tryget(&pos->css))
1147                                 break;
1148                         /*
1149                          * css reference reached zero, so iter->position will
1150                          * be cleared by ->css_released. However, we should not
1151                          * rely on this happening soon, because ->css_released
1152                          * is called from a work queue, and by busy-waiting we
1153                          * might block it. So we clear iter->position right
1154                          * away.
1155                          */
1156                         (void)cmpxchg(&iter->position, pos, NULL);
1157                 }
1158         }
1159
1160         if (pos)
1161                 css = &pos->css;
1162
1163         for (;;) {
1164                 css = css_next_descendant_pre(css, &root->css);
1165                 if (!css) {
1166                         /*
1167                          * Reclaimers share the hierarchy walk, and a
1168                          * new one might jump in right at the end of
1169                          * the hierarchy - make sure they see at least
1170                          * one group and restart from the beginning.
1171                          */
1172                         if (!prev)
1173                                 continue;
1174                         break;
1175                 }
1176
1177                 /*
1178                  * Verify the css and acquire a reference.  The root
1179                  * is provided by the caller, so we know it's alive
1180                  * and kicking, and don't take an extra reference.
1181                  */
1182                 memcg = mem_cgroup_from_css(css);
1183
1184                 if (css == &root->css)
1185                         break;
1186
1187                 if (css_tryget(css))
1188                         break;
1189
1190                 memcg = NULL;
1191         }
1192
1193         if (reclaim) {
1194                 /*
1195                  * The position could have already been updated by a competing
1196                  * thread, so check that the value hasn't changed since we read
1197                  * it to avoid reclaiming from the same cgroup twice.
1198                  */
1199                 (void)cmpxchg(&iter->position, pos, memcg);
1200
1201                 if (pos)
1202                         css_put(&pos->css);
1203
1204                 if (!memcg)
1205                         iter->generation++;
1206                 else if (!prev)
1207                         reclaim->generation = iter->generation;
1208         }
1209
1210 out_unlock:
1211         rcu_read_unlock();
1212 out:
1213         if (prev && prev != root)
1214                 css_put(&prev->css);
1215
1216         return memcg;
1217 }
1218
1219 /**
1220  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221  * @root: hierarchy root
1222  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223  */
1224 void mem_cgroup_iter_break(struct mem_cgroup *root,
1225                            struct mem_cgroup *prev)
1226 {
1227         if (!root)
1228                 root = root_mem_cgroup;
1229         if (prev && prev != root)
1230                 css_put(&prev->css);
1231 }
1232
1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234                                         struct mem_cgroup *dead_memcg)
1235 {
1236         struct mem_cgroup_reclaim_iter *iter;
1237         struct mem_cgroup_per_node *mz;
1238         int nid;
1239
1240         for_each_node(nid) {
1241                 mz = mem_cgroup_nodeinfo(from, nid);
1242                 iter = &mz->iter;
1243                 cmpxchg(&iter->position, dead_memcg, NULL);
1244         }
1245 }
1246
1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248 {
1249         struct mem_cgroup *memcg = dead_memcg;
1250         struct mem_cgroup *last;
1251
1252         do {
1253                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254                 last = memcg;
1255         } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257         /*
1258          * When cgruop1 non-hierarchy mode is used,
1259          * parent_mem_cgroup() does not walk all the way up to the
1260          * cgroup root (root_mem_cgroup). So we have to handle
1261          * dead_memcg from cgroup root separately.
1262          */
1263         if (last != root_mem_cgroup)
1264                 __invalidate_reclaim_iterators(root_mem_cgroup,
1265                                                 dead_memcg);
1266 }
1267
1268 /**
1269  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270  * @memcg: hierarchy root
1271  * @fn: function to call for each task
1272  * @arg: argument passed to @fn
1273  *
1274  * This function iterates over tasks attached to @memcg or to any of its
1275  * descendants and calls @fn for each task. If @fn returns a non-zero
1276  * value, the function breaks the iteration loop and returns the value.
1277  * Otherwise, it will iterate over all tasks and return 0.
1278  *
1279  * This function must not be called for the root memory cgroup.
1280  */
1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282                           int (*fn)(struct task_struct *, void *), void *arg)
1283 {
1284         struct mem_cgroup *iter;
1285         int ret = 0;
1286
1287         BUG_ON(memcg == root_mem_cgroup);
1288
1289         for_each_mem_cgroup_tree(iter, memcg) {
1290                 struct css_task_iter it;
1291                 struct task_struct *task;
1292
1293                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294                 while (!ret && (task = css_task_iter_next(&it)))
1295                         ret = fn(task, arg);
1296                 css_task_iter_end(&it);
1297                 if (ret) {
1298                         mem_cgroup_iter_break(memcg, iter);
1299                         break;
1300                 }
1301         }
1302         return ret;
1303 }
1304
1305 /**
1306  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307  * @page: the page
1308  * @pgdat: pgdat of the page
1309  *
1310  * This function relies on page->mem_cgroup being stable - see the
1311  * access rules in commit_charge().
1312  */
1313 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1314 {
1315         struct mem_cgroup_per_node *mz;
1316         struct mem_cgroup *memcg;
1317         struct lruvec *lruvec;
1318
1319         if (mem_cgroup_disabled()) {
1320                 lruvec = &pgdat->__lruvec;
1321                 goto out;
1322         }
1323
1324         memcg = page->mem_cgroup;
1325         /*
1326          * Swapcache readahead pages are added to the LRU - and
1327          * possibly migrated - before they are charged.
1328          */
1329         if (!memcg)
1330                 memcg = root_mem_cgroup;
1331
1332         mz = mem_cgroup_page_nodeinfo(memcg, page);
1333         lruvec = &mz->lruvec;
1334 out:
1335         /*
1336          * Since a node can be onlined after the mem_cgroup was created,
1337          * we have to be prepared to initialize lruvec->zone here;
1338          * and if offlined then reonlined, we need to reinitialize it.
1339          */
1340         if (unlikely(lruvec->pgdat != pgdat))
1341                 lruvec->pgdat = pgdat;
1342         return lruvec;
1343 }
1344
1345 /**
1346  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1347  * @lruvec: mem_cgroup per zone lru vector
1348  * @lru: index of lru list the page is sitting on
1349  * @zid: zone id of the accounted pages
1350  * @nr_pages: positive when adding or negative when removing
1351  *
1352  * This function must be called under lru_lock, just before a page is added
1353  * to or just after a page is removed from an lru list (that ordering being
1354  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355  */
1356 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357                                 int zid, int nr_pages)
1358 {
1359         struct mem_cgroup_per_node *mz;
1360         unsigned long *lru_size;
1361         long size;
1362
1363         if (mem_cgroup_disabled())
1364                 return;
1365
1366         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367         lru_size = &mz->lru_zone_size[zid][lru];
1368
1369         if (nr_pages < 0)
1370                 *lru_size += nr_pages;
1371
1372         size = *lru_size;
1373         if (WARN_ONCE(size < 0,
1374                 "%s(%p, %d, %d): lru_size %ld\n",
1375                 __func__, lruvec, lru, nr_pages, size)) {
1376                 VM_BUG_ON(1);
1377                 *lru_size = 0;
1378         }
1379
1380         if (nr_pages > 0)
1381                 *lru_size += nr_pages;
1382 }
1383
1384 /**
1385  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1386  * @memcg: the memory cgroup
1387  *
1388  * Returns the maximum amount of memory @mem can be charged with, in
1389  * pages.
1390  */
1391 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1392 {
1393         unsigned long margin = 0;
1394         unsigned long count;
1395         unsigned long limit;
1396
1397         count = page_counter_read(&memcg->memory);
1398         limit = READ_ONCE(memcg->memory.max);
1399         if (count < limit)
1400                 margin = limit - count;
1401
1402         if (do_memsw_account()) {
1403                 count = page_counter_read(&memcg->memsw);
1404                 limit = READ_ONCE(memcg->memsw.max);
1405                 if (count < limit)
1406                         margin = min(margin, limit - count);
1407                 else
1408                         margin = 0;
1409         }
1410
1411         return margin;
1412 }
1413
1414 /*
1415  * A routine for checking "mem" is under move_account() or not.
1416  *
1417  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1418  * moving cgroups. This is for waiting at high-memory pressure
1419  * caused by "move".
1420  */
1421 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1422 {
1423         struct mem_cgroup *from;
1424         struct mem_cgroup *to;
1425         bool ret = false;
1426         /*
1427          * Unlike task_move routines, we access mc.to, mc.from not under
1428          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1429          */
1430         spin_lock(&mc.lock);
1431         from = mc.from;
1432         to = mc.to;
1433         if (!from)
1434                 goto unlock;
1435
1436         ret = mem_cgroup_is_descendant(from, memcg) ||
1437                 mem_cgroup_is_descendant(to, memcg);
1438 unlock:
1439         spin_unlock(&mc.lock);
1440         return ret;
1441 }
1442
1443 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444 {
1445         if (mc.moving_task && current != mc.moving_task) {
1446                 if (mem_cgroup_under_move(memcg)) {
1447                         DEFINE_WAIT(wait);
1448                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1449                         /* moving charge context might have finished. */
1450                         if (mc.moving_task)
1451                                 schedule();
1452                         finish_wait(&mc.waitq, &wait);
1453                         return true;
1454                 }
1455         }
1456         return false;
1457 }
1458
1459 static char *memory_stat_format(struct mem_cgroup *memcg)
1460 {
1461         struct seq_buf s;
1462         int i;
1463
1464         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1465         if (!s.buffer)
1466                 return NULL;
1467
1468         /*
1469          * Provide statistics on the state of the memory subsystem as
1470          * well as cumulative event counters that show past behavior.
1471          *
1472          * This list is ordered following a combination of these gradients:
1473          * 1) generic big picture -> specifics and details
1474          * 2) reflecting userspace activity -> reflecting kernel heuristics
1475          *
1476          * Current memory state:
1477          */
1478
1479         seq_buf_printf(&s, "anon %llu\n",
1480                        (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481                        PAGE_SIZE);
1482         seq_buf_printf(&s, "file %llu\n",
1483                        (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484                        PAGE_SIZE);
1485         seq_buf_printf(&s, "kernel_stack %llu\n",
1486                        (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487                        1024);
1488         seq_buf_printf(&s, "slab %llu\n",
1489                        (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1490                              memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491         seq_buf_printf(&s, "percpu %llu\n",
1492                        (u64)memcg_page_state(memcg, MEMCG_PERCPU_B));
1493         seq_buf_printf(&s, "sock %llu\n",
1494                        (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1495                        PAGE_SIZE);
1496
1497         seq_buf_printf(&s, "shmem %llu\n",
1498                        (u64)memcg_page_state(memcg, NR_SHMEM) *
1499                        PAGE_SIZE);
1500         seq_buf_printf(&s, "file_mapped %llu\n",
1501                        (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1502                        PAGE_SIZE);
1503         seq_buf_printf(&s, "file_dirty %llu\n",
1504                        (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1505                        PAGE_SIZE);
1506         seq_buf_printf(&s, "file_writeback %llu\n",
1507                        (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1508                        PAGE_SIZE);
1509
1510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1511         seq_buf_printf(&s, "anon_thp %llu\n",
1512                        (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1513                        HPAGE_PMD_SIZE);
1514 #endif
1515
1516         for (i = 0; i < NR_LRU_LISTS; i++)
1517                 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1518                                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1519                                PAGE_SIZE);
1520
1521         seq_buf_printf(&s, "slab_reclaimable %llu\n",
1522                        (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1523         seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1524                        (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1525
1526         /* Accumulated memory events */
1527
1528         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1529                        memcg_events(memcg, PGFAULT));
1530         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1531                        memcg_events(memcg, PGMAJFAULT));
1532
1533         seq_buf_printf(&s, "workingset_refault %lu\n",
1534                        memcg_page_state(memcg, WORKINGSET_REFAULT));
1535         seq_buf_printf(&s, "workingset_activate %lu\n",
1536                        memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1537         seq_buf_printf(&s, "workingset_restore %lu\n",
1538                        memcg_page_state(memcg, WORKINGSET_RESTORE));
1539         seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1540                        memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1541
1542         seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1543                        memcg_events(memcg, PGREFILL));
1544         seq_buf_printf(&s, "pgscan %lu\n",
1545                        memcg_events(memcg, PGSCAN_KSWAPD) +
1546                        memcg_events(memcg, PGSCAN_DIRECT));
1547         seq_buf_printf(&s, "pgsteal %lu\n",
1548                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1549                        memcg_events(memcg, PGSTEAL_DIRECT));
1550         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1551                        memcg_events(memcg, PGACTIVATE));
1552         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1553                        memcg_events(memcg, PGDEACTIVATE));
1554         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1555                        memcg_events(memcg, PGLAZYFREE));
1556         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1557                        memcg_events(memcg, PGLAZYFREED));
1558
1559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1560         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1561                        memcg_events(memcg, THP_FAULT_ALLOC));
1562         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1563                        memcg_events(memcg, THP_COLLAPSE_ALLOC));
1564 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1565
1566         /* The above should easily fit into one page */
1567         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1568
1569         return s.buffer;
1570 }
1571
1572 #define K(x) ((x) << (PAGE_SHIFT-10))
1573 /**
1574  * mem_cgroup_print_oom_context: Print OOM information relevant to
1575  * memory controller.
1576  * @memcg: The memory cgroup that went over limit
1577  * @p: Task that is going to be killed
1578  *
1579  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1580  * enabled
1581  */
1582 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1583 {
1584         rcu_read_lock();
1585
1586         if (memcg) {
1587                 pr_cont(",oom_memcg=");
1588                 pr_cont_cgroup_path(memcg->css.cgroup);
1589         } else
1590                 pr_cont(",global_oom");
1591         if (p) {
1592                 pr_cont(",task_memcg=");
1593                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1594         }
1595         rcu_read_unlock();
1596 }
1597
1598 /**
1599  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1600  * memory controller.
1601  * @memcg: The memory cgroup that went over limit
1602  */
1603 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1604 {
1605         char *buf;
1606
1607         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1608                 K((u64)page_counter_read(&memcg->memory)),
1609                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1610         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1611                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1612                         K((u64)page_counter_read(&memcg->swap)),
1613                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1614         else {
1615                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1616                         K((u64)page_counter_read(&memcg->memsw)),
1617                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1618                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1619                         K((u64)page_counter_read(&memcg->kmem)),
1620                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1621         }
1622
1623         pr_info("Memory cgroup stats for ");
1624         pr_cont_cgroup_path(memcg->css.cgroup);
1625         pr_cont(":");
1626         buf = memory_stat_format(memcg);
1627         if (!buf)
1628                 return;
1629         pr_info("%s", buf);
1630         kfree(buf);
1631 }
1632
1633 /*
1634  * Return the memory (and swap, if configured) limit for a memcg.
1635  */
1636 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1637 {
1638         unsigned long max;
1639
1640         max = READ_ONCE(memcg->memory.max);
1641         if (mem_cgroup_swappiness(memcg)) {
1642                 unsigned long memsw_max;
1643                 unsigned long swap_max;
1644
1645                 memsw_max = memcg->memsw.max;
1646                 swap_max = READ_ONCE(memcg->swap.max);
1647                 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1648                 max = min(max + swap_max, memsw_max);
1649         }
1650         return max;
1651 }
1652
1653 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1654 {
1655         return page_counter_read(&memcg->memory);
1656 }
1657
1658 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1659                                      int order)
1660 {
1661         struct oom_control oc = {
1662                 .zonelist = NULL,
1663                 .nodemask = NULL,
1664                 .memcg = memcg,
1665                 .gfp_mask = gfp_mask,
1666                 .order = order,
1667         };
1668         bool ret = true;
1669
1670         if (mutex_lock_killable(&oom_lock))
1671                 return true;
1672
1673         if (mem_cgroup_margin(memcg) >= (1 << order))
1674                 goto unlock;
1675
1676         /*
1677          * A few threads which were not waiting at mutex_lock_killable() can
1678          * fail to bail out. Therefore, check again after holding oom_lock.
1679          */
1680         ret = should_force_charge() || out_of_memory(&oc);
1681
1682 unlock:
1683         mutex_unlock(&oom_lock);
1684         return ret;
1685 }
1686
1687 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1688                                    pg_data_t *pgdat,
1689                                    gfp_t gfp_mask,
1690                                    unsigned long *total_scanned)
1691 {
1692         struct mem_cgroup *victim = NULL;
1693         int total = 0;
1694         int loop = 0;
1695         unsigned long excess;
1696         unsigned long nr_scanned;
1697         struct mem_cgroup_reclaim_cookie reclaim = {
1698                 .pgdat = pgdat,
1699         };
1700
1701         excess = soft_limit_excess(root_memcg);
1702
1703         while (1) {
1704                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1705                 if (!victim) {
1706                         loop++;
1707                         if (loop >= 2) {
1708                                 /*
1709                                  * If we have not been able to reclaim
1710                                  * anything, it might because there are
1711                                  * no reclaimable pages under this hierarchy
1712                                  */
1713                                 if (!total)
1714                                         break;
1715                                 /*
1716                                  * We want to do more targeted reclaim.
1717                                  * excess >> 2 is not to excessive so as to
1718                                  * reclaim too much, nor too less that we keep
1719                                  * coming back to reclaim from this cgroup
1720                                  */
1721                                 if (total >= (excess >> 2) ||
1722                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1723                                         break;
1724                         }
1725                         continue;
1726                 }
1727                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1728                                         pgdat, &nr_scanned);
1729                 *total_scanned += nr_scanned;
1730                 if (!soft_limit_excess(root_memcg))
1731                         break;
1732         }
1733         mem_cgroup_iter_break(root_memcg, victim);
1734         return total;
1735 }
1736
1737 #ifdef CONFIG_LOCKDEP
1738 static struct lockdep_map memcg_oom_lock_dep_map = {
1739         .name = "memcg_oom_lock",
1740 };
1741 #endif
1742
1743 static DEFINE_SPINLOCK(memcg_oom_lock);
1744
1745 /*
1746  * Check OOM-Killer is already running under our hierarchy.
1747  * If someone is running, return false.
1748  */
1749 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1750 {
1751         struct mem_cgroup *iter, *failed = NULL;
1752
1753         spin_lock(&memcg_oom_lock);
1754
1755         for_each_mem_cgroup_tree(iter, memcg) {
1756                 if (iter->oom_lock) {
1757                         /*
1758                          * this subtree of our hierarchy is already locked
1759                          * so we cannot give a lock.
1760                          */
1761                         failed = iter;
1762                         mem_cgroup_iter_break(memcg, iter);
1763                         break;
1764                 } else
1765                         iter->oom_lock = true;
1766         }
1767
1768         if (failed) {
1769                 /*
1770                  * OK, we failed to lock the whole subtree so we have
1771                  * to clean up what we set up to the failing subtree
1772                  */
1773                 for_each_mem_cgroup_tree(iter, memcg) {
1774                         if (iter == failed) {
1775                                 mem_cgroup_iter_break(memcg, iter);
1776                                 break;
1777                         }
1778                         iter->oom_lock = false;
1779                 }
1780         } else
1781                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1782
1783         spin_unlock(&memcg_oom_lock);
1784
1785         return !failed;
1786 }
1787
1788 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1789 {
1790         struct mem_cgroup *iter;
1791
1792         spin_lock(&memcg_oom_lock);
1793         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1794         for_each_mem_cgroup_tree(iter, memcg)
1795                 iter->oom_lock = false;
1796         spin_unlock(&memcg_oom_lock);
1797 }
1798
1799 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1800 {
1801         struct mem_cgroup *iter;
1802
1803         spin_lock(&memcg_oom_lock);
1804         for_each_mem_cgroup_tree(iter, memcg)
1805                 iter->under_oom++;
1806         spin_unlock(&memcg_oom_lock);
1807 }
1808
1809 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1810 {
1811         struct mem_cgroup *iter;
1812
1813         /*
1814          * When a new child is created while the hierarchy is under oom,
1815          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1816          */
1817         spin_lock(&memcg_oom_lock);
1818         for_each_mem_cgroup_tree(iter, memcg)
1819                 if (iter->under_oom > 0)
1820                         iter->under_oom--;
1821         spin_unlock(&memcg_oom_lock);
1822 }
1823
1824 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1825
1826 struct oom_wait_info {
1827         struct mem_cgroup *memcg;
1828         wait_queue_entry_t      wait;
1829 };
1830
1831 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1832         unsigned mode, int sync, void *arg)
1833 {
1834         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1835         struct mem_cgroup *oom_wait_memcg;
1836         struct oom_wait_info *oom_wait_info;
1837
1838         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1839         oom_wait_memcg = oom_wait_info->memcg;
1840
1841         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1842             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1843                 return 0;
1844         return autoremove_wake_function(wait, mode, sync, arg);
1845 }
1846
1847 static void memcg_oom_recover(struct mem_cgroup *memcg)
1848 {
1849         /*
1850          * For the following lockless ->under_oom test, the only required
1851          * guarantee is that it must see the state asserted by an OOM when
1852          * this function is called as a result of userland actions
1853          * triggered by the notification of the OOM.  This is trivially
1854          * achieved by invoking mem_cgroup_mark_under_oom() before
1855          * triggering notification.
1856          */
1857         if (memcg && memcg->under_oom)
1858                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1859 }
1860
1861 enum oom_status {
1862         OOM_SUCCESS,
1863         OOM_FAILED,
1864         OOM_ASYNC,
1865         OOM_SKIPPED
1866 };
1867
1868 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1869 {
1870         enum oom_status ret;
1871         bool locked;
1872
1873         if (order > PAGE_ALLOC_COSTLY_ORDER)
1874                 return OOM_SKIPPED;
1875
1876         memcg_memory_event(memcg, MEMCG_OOM);
1877
1878         /*
1879          * We are in the middle of the charge context here, so we
1880          * don't want to block when potentially sitting on a callstack
1881          * that holds all kinds of filesystem and mm locks.
1882          *
1883          * cgroup1 allows disabling the OOM killer and waiting for outside
1884          * handling until the charge can succeed; remember the context and put
1885          * the task to sleep at the end of the page fault when all locks are
1886          * released.
1887          *
1888          * On the other hand, in-kernel OOM killer allows for an async victim
1889          * memory reclaim (oom_reaper) and that means that we are not solely
1890          * relying on the oom victim to make a forward progress and we can
1891          * invoke the oom killer here.
1892          *
1893          * Please note that mem_cgroup_out_of_memory might fail to find a
1894          * victim and then we have to bail out from the charge path.
1895          */
1896         if (memcg->oom_kill_disable) {
1897                 if (!current->in_user_fault)
1898                         return OOM_SKIPPED;
1899                 css_get(&memcg->css);
1900                 current->memcg_in_oom = memcg;
1901                 current->memcg_oom_gfp_mask = mask;
1902                 current->memcg_oom_order = order;
1903
1904                 return OOM_ASYNC;
1905         }
1906
1907         mem_cgroup_mark_under_oom(memcg);
1908
1909         locked = mem_cgroup_oom_trylock(memcg);
1910
1911         if (locked)
1912                 mem_cgroup_oom_notify(memcg);
1913
1914         mem_cgroup_unmark_under_oom(memcg);
1915         if (mem_cgroup_out_of_memory(memcg, mask, order))
1916                 ret = OOM_SUCCESS;
1917         else
1918                 ret = OOM_FAILED;
1919
1920         if (locked)
1921                 mem_cgroup_oom_unlock(memcg);
1922
1923         return ret;
1924 }
1925
1926 /**
1927  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1928  * @handle: actually kill/wait or just clean up the OOM state
1929  *
1930  * This has to be called at the end of a page fault if the memcg OOM
1931  * handler was enabled.
1932  *
1933  * Memcg supports userspace OOM handling where failed allocations must
1934  * sleep on a waitqueue until the userspace task resolves the
1935  * situation.  Sleeping directly in the charge context with all kinds
1936  * of locks held is not a good idea, instead we remember an OOM state
1937  * in the task and mem_cgroup_oom_synchronize() has to be called at
1938  * the end of the page fault to complete the OOM handling.
1939  *
1940  * Returns %true if an ongoing memcg OOM situation was detected and
1941  * completed, %false otherwise.
1942  */
1943 bool mem_cgroup_oom_synchronize(bool handle)
1944 {
1945         struct mem_cgroup *memcg = current->memcg_in_oom;
1946         struct oom_wait_info owait;
1947         bool locked;
1948
1949         /* OOM is global, do not handle */
1950         if (!memcg)
1951                 return false;
1952
1953         if (!handle)
1954                 goto cleanup;
1955
1956         owait.memcg = memcg;
1957         owait.wait.flags = 0;
1958         owait.wait.func = memcg_oom_wake_function;
1959         owait.wait.private = current;
1960         INIT_LIST_HEAD(&owait.wait.entry);
1961
1962         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1963         mem_cgroup_mark_under_oom(memcg);
1964
1965         locked = mem_cgroup_oom_trylock(memcg);
1966
1967         if (locked)
1968                 mem_cgroup_oom_notify(memcg);
1969
1970         if (locked && !memcg->oom_kill_disable) {
1971                 mem_cgroup_unmark_under_oom(memcg);
1972                 finish_wait(&memcg_oom_waitq, &owait.wait);
1973                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1974                                          current->memcg_oom_order);
1975         } else {
1976                 schedule();
1977                 mem_cgroup_unmark_under_oom(memcg);
1978                 finish_wait(&memcg_oom_waitq, &owait.wait);
1979         }
1980
1981         if (locked) {
1982                 mem_cgroup_oom_unlock(memcg);
1983                 /*
1984                  * There is no guarantee that an OOM-lock contender
1985                  * sees the wakeups triggered by the OOM kill
1986                  * uncharges.  Wake any sleepers explicitely.
1987                  */
1988                 memcg_oom_recover(memcg);
1989         }
1990 cleanup:
1991         current->memcg_in_oom = NULL;
1992         css_put(&memcg->css);
1993         return true;
1994 }
1995
1996 /**
1997  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1998  * @victim: task to be killed by the OOM killer
1999  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2000  *
2001  * Returns a pointer to a memory cgroup, which has to be cleaned up
2002  * by killing all belonging OOM-killable tasks.
2003  *
2004  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2005  */
2006 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2007                                             struct mem_cgroup *oom_domain)
2008 {
2009         struct mem_cgroup *oom_group = NULL;
2010         struct mem_cgroup *memcg;
2011
2012         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2013                 return NULL;
2014
2015         if (!oom_domain)
2016                 oom_domain = root_mem_cgroup;
2017
2018         rcu_read_lock();
2019
2020         memcg = mem_cgroup_from_task(victim);
2021         if (memcg == root_mem_cgroup)
2022                 goto out;
2023
2024         /*
2025          * If the victim task has been asynchronously moved to a different
2026          * memory cgroup, we might end up killing tasks outside oom_domain.
2027          * In this case it's better to ignore memory.group.oom.
2028          */
2029         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2030                 goto out;
2031
2032         /*
2033          * Traverse the memory cgroup hierarchy from the victim task's
2034          * cgroup up to the OOMing cgroup (or root) to find the
2035          * highest-level memory cgroup with oom.group set.
2036          */
2037         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2038                 if (memcg->oom_group)
2039                         oom_group = memcg;
2040
2041                 if (memcg == oom_domain)
2042                         break;
2043         }
2044
2045         if (oom_group)
2046                 css_get(&oom_group->css);
2047 out:
2048         rcu_read_unlock();
2049
2050         return oom_group;
2051 }
2052
2053 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2054 {
2055         pr_info("Tasks in ");
2056         pr_cont_cgroup_path(memcg->css.cgroup);
2057         pr_cont(" are going to be killed due to memory.oom.group set\n");
2058 }
2059
2060 /**
2061  * lock_page_memcg - lock a page->mem_cgroup binding
2062  * @page: the page
2063  *
2064  * This function protects unlocked LRU pages from being moved to
2065  * another cgroup.
2066  *
2067  * It ensures lifetime of the returned memcg. Caller is responsible
2068  * for the lifetime of the page; __unlock_page_memcg() is available
2069  * when @page might get freed inside the locked section.
2070  */
2071 struct mem_cgroup *lock_page_memcg(struct page *page)
2072 {
2073         struct page *head = compound_head(page); /* rmap on tail pages */
2074         struct mem_cgroup *memcg;
2075         unsigned long flags;
2076
2077         /*
2078          * The RCU lock is held throughout the transaction.  The fast
2079          * path can get away without acquiring the memcg->move_lock
2080          * because page moving starts with an RCU grace period.
2081          *
2082          * The RCU lock also protects the memcg from being freed when
2083          * the page state that is going to change is the only thing
2084          * preventing the page itself from being freed. E.g. writeback
2085          * doesn't hold a page reference and relies on PG_writeback to
2086          * keep off truncation, migration and so forth.
2087          */
2088         rcu_read_lock();
2089
2090         if (mem_cgroup_disabled())
2091                 return NULL;
2092 again:
2093         memcg = head->mem_cgroup;
2094         if (unlikely(!memcg))
2095                 return NULL;
2096
2097         if (atomic_read(&memcg->moving_account) <= 0)
2098                 return memcg;
2099
2100         spin_lock_irqsave(&memcg->move_lock, flags);
2101         if (memcg != head->mem_cgroup) {
2102                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2103                 goto again;
2104         }
2105
2106         /*
2107          * When charge migration first begins, we can have locked and
2108          * unlocked page stat updates happening concurrently.  Track
2109          * the task who has the lock for unlock_page_memcg().
2110          */
2111         memcg->move_lock_task = current;
2112         memcg->move_lock_flags = flags;
2113
2114         return memcg;
2115 }
2116 EXPORT_SYMBOL(lock_page_memcg);
2117
2118 /**
2119  * __unlock_page_memcg - unlock and unpin a memcg
2120  * @memcg: the memcg
2121  *
2122  * Unlock and unpin a memcg returned by lock_page_memcg().
2123  */
2124 void __unlock_page_memcg(struct mem_cgroup *memcg)
2125 {
2126         if (memcg && memcg->move_lock_task == current) {
2127                 unsigned long flags = memcg->move_lock_flags;
2128
2129                 memcg->move_lock_task = NULL;
2130                 memcg->move_lock_flags = 0;
2131
2132                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2133         }
2134
2135         rcu_read_unlock();
2136 }
2137
2138 /**
2139  * unlock_page_memcg - unlock a page->mem_cgroup binding
2140  * @page: the page
2141  */
2142 void unlock_page_memcg(struct page *page)
2143 {
2144         struct page *head = compound_head(page);
2145
2146         __unlock_page_memcg(head->mem_cgroup);
2147 }
2148 EXPORT_SYMBOL(unlock_page_memcg);
2149
2150 struct memcg_stock_pcp {
2151         struct mem_cgroup *cached; /* this never be root cgroup */
2152         unsigned int nr_pages;
2153
2154 #ifdef CONFIG_MEMCG_KMEM
2155         struct obj_cgroup *cached_objcg;
2156         unsigned int nr_bytes;
2157 #endif
2158
2159         struct work_struct work;
2160         unsigned long flags;
2161 #define FLUSHING_CACHED_CHARGE  0
2162 };
2163 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2164 static DEFINE_MUTEX(percpu_charge_mutex);
2165
2166 #ifdef CONFIG_MEMCG_KMEM
2167 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2168 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2169                                      struct mem_cgroup *root_memcg);
2170
2171 #else
2172 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2173 {
2174 }
2175 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2176                                      struct mem_cgroup *root_memcg)
2177 {
2178         return false;
2179 }
2180 #endif
2181
2182 /**
2183  * consume_stock: Try to consume stocked charge on this cpu.
2184  * @memcg: memcg to consume from.
2185  * @nr_pages: how many pages to charge.
2186  *
2187  * The charges will only happen if @memcg matches the current cpu's memcg
2188  * stock, and at least @nr_pages are available in that stock.  Failure to
2189  * service an allocation will refill the stock.
2190  *
2191  * returns true if successful, false otherwise.
2192  */
2193 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2194 {
2195         struct memcg_stock_pcp *stock;
2196         unsigned long flags;
2197         bool ret = false;
2198
2199         if (nr_pages > MEMCG_CHARGE_BATCH)
2200                 return ret;
2201
2202         local_irq_save(flags);
2203
2204         stock = this_cpu_ptr(&memcg_stock);
2205         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2206                 stock->nr_pages -= nr_pages;
2207                 ret = true;
2208         }
2209
2210         local_irq_restore(flags);
2211
2212         return ret;
2213 }
2214
2215 /*
2216  * Returns stocks cached in percpu and reset cached information.
2217  */
2218 static void drain_stock(struct memcg_stock_pcp *stock)
2219 {
2220         struct mem_cgroup *old = stock->cached;
2221
2222         if (!old)
2223                 return;
2224
2225         if (stock->nr_pages) {
2226                 page_counter_uncharge(&old->memory, stock->nr_pages);
2227                 if (do_memsw_account())
2228                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2229                 stock->nr_pages = 0;
2230         }
2231
2232         css_put(&old->css);
2233         stock->cached = NULL;
2234 }
2235
2236 static void drain_local_stock(struct work_struct *dummy)
2237 {
2238         struct memcg_stock_pcp *stock;
2239         unsigned long flags;
2240
2241         /*
2242          * The only protection from memory hotplug vs. drain_stock races is
2243          * that we always operate on local CPU stock here with IRQ disabled
2244          */
2245         local_irq_save(flags);
2246
2247         stock = this_cpu_ptr(&memcg_stock);
2248         drain_obj_stock(stock);
2249         drain_stock(stock);
2250         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2251
2252         local_irq_restore(flags);
2253 }
2254
2255 /*
2256  * Cache charges(val) to local per_cpu area.
2257  * This will be consumed by consume_stock() function, later.
2258  */
2259 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2260 {
2261         struct memcg_stock_pcp *stock;
2262         unsigned long flags;
2263
2264         local_irq_save(flags);
2265
2266         stock = this_cpu_ptr(&memcg_stock);
2267         if (stock->cached != memcg) { /* reset if necessary */
2268                 drain_stock(stock);
2269                 css_get(&memcg->css);
2270                 stock->cached = memcg;
2271         }
2272         stock->nr_pages += nr_pages;
2273
2274         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2275                 drain_stock(stock);
2276
2277         local_irq_restore(flags);
2278 }
2279
2280 /*
2281  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2282  * of the hierarchy under it.
2283  */
2284 static void drain_all_stock(struct mem_cgroup *root_memcg)
2285 {
2286         int cpu, curcpu;
2287
2288         /* If someone's already draining, avoid adding running more workers. */
2289         if (!mutex_trylock(&percpu_charge_mutex))
2290                 return;
2291         /*
2292          * Notify other cpus that system-wide "drain" is running
2293          * We do not care about races with the cpu hotplug because cpu down
2294          * as well as workers from this path always operate on the local
2295          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2296          */
2297         curcpu = get_cpu();
2298         for_each_online_cpu(cpu) {
2299                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2300                 struct mem_cgroup *memcg;
2301                 bool flush = false;
2302
2303                 rcu_read_lock();
2304                 memcg = stock->cached;
2305                 if (memcg && stock->nr_pages &&
2306                     mem_cgroup_is_descendant(memcg, root_memcg))
2307                         flush = true;
2308                 if (obj_stock_flush_required(stock, root_memcg))
2309                         flush = true;
2310                 rcu_read_unlock();
2311
2312                 if (flush &&
2313                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2314                         if (cpu == curcpu)
2315                                 drain_local_stock(&stock->work);
2316                         else
2317                                 schedule_work_on(cpu, &stock->work);
2318                 }
2319         }
2320         put_cpu();
2321         mutex_unlock(&percpu_charge_mutex);
2322 }
2323
2324 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2325 {
2326         struct memcg_stock_pcp *stock;
2327         struct mem_cgroup *memcg, *mi;
2328
2329         stock = &per_cpu(memcg_stock, cpu);
2330         drain_stock(stock);
2331
2332         for_each_mem_cgroup(memcg) {
2333                 int i;
2334
2335                 for (i = 0; i < MEMCG_NR_STAT; i++) {
2336                         int nid;
2337                         long x;
2338
2339                         x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2340                         if (x)
2341                                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2342                                         atomic_long_add(x, &memcg->vmstats[i]);
2343
2344                         if (i >= NR_VM_NODE_STAT_ITEMS)
2345                                 continue;
2346
2347                         for_each_node(nid) {
2348                                 struct mem_cgroup_per_node *pn;
2349
2350                                 pn = mem_cgroup_nodeinfo(memcg, nid);
2351                                 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2352                                 if (x)
2353                                         do {
2354                                                 atomic_long_add(x, &pn->lruvec_stat[i]);
2355                                         } while ((pn = parent_nodeinfo(pn, nid)));
2356                         }
2357                 }
2358
2359                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2360                         long x;
2361
2362                         x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2363                         if (x)
2364                                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2365                                         atomic_long_add(x, &memcg->vmevents[i]);
2366                 }
2367         }
2368
2369         return 0;
2370 }
2371
2372 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2373                                   unsigned int nr_pages,
2374                                   gfp_t gfp_mask)
2375 {
2376         unsigned long nr_reclaimed = 0;
2377
2378         do {
2379                 unsigned long pflags;
2380
2381                 if (page_counter_read(&memcg->memory) <=
2382                     READ_ONCE(memcg->memory.high))
2383                         continue;
2384
2385                 memcg_memory_event(memcg, MEMCG_HIGH);
2386
2387                 psi_memstall_enter(&pflags);
2388                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2389                                                              gfp_mask, true);
2390                 psi_memstall_leave(&pflags);
2391         } while ((memcg = parent_mem_cgroup(memcg)) &&
2392                  !mem_cgroup_is_root(memcg));
2393
2394         return nr_reclaimed;
2395 }
2396
2397 static void high_work_func(struct work_struct *work)
2398 {
2399         struct mem_cgroup *memcg;
2400
2401         memcg = container_of(work, struct mem_cgroup, high_work);
2402         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2403 }
2404
2405 /*
2406  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2407  * enough to still cause a significant slowdown in most cases, while still
2408  * allowing diagnostics and tracing to proceed without becoming stuck.
2409  */
2410 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2411
2412 /*
2413  * When calculating the delay, we use these either side of the exponentiation to
2414  * maintain precision and scale to a reasonable number of jiffies (see the table
2415  * below.
2416  *
2417  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2418  *   overage ratio to a delay.
2419  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2420  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2421  *   to produce a reasonable delay curve.
2422  *
2423  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2424  * reasonable delay curve compared to precision-adjusted overage, not
2425  * penalising heavily at first, but still making sure that growth beyond the
2426  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2427  * example, with a high of 100 megabytes:
2428  *
2429  *  +-------+------------------------+
2430  *  | usage | time to allocate in ms |
2431  *  +-------+------------------------+
2432  *  | 100M  |                      0 |
2433  *  | 101M  |                      6 |
2434  *  | 102M  |                     25 |
2435  *  | 103M  |                     57 |
2436  *  | 104M  |                    102 |
2437  *  | 105M  |                    159 |
2438  *  | 106M  |                    230 |
2439  *  | 107M  |                    313 |
2440  *  | 108M  |                    409 |
2441  *  | 109M  |                    518 |
2442  *  | 110M  |                    639 |
2443  *  | 111M  |                    774 |
2444  *  | 112M  |                    921 |
2445  *  | 113M  |                   1081 |
2446  *  | 114M  |                   1254 |
2447  *  | 115M  |                   1439 |
2448  *  | 116M  |                   1638 |
2449  *  | 117M  |                   1849 |
2450  *  | 118M  |                   2000 |
2451  *  | 119M  |                   2000 |
2452  *  | 120M  |                   2000 |
2453  *  +-------+------------------------+
2454  */
2455  #define MEMCG_DELAY_PRECISION_SHIFT 20
2456  #define MEMCG_DELAY_SCALING_SHIFT 14
2457
2458 static u64 calculate_overage(unsigned long usage, unsigned long high)
2459 {
2460         u64 overage;
2461
2462         if (usage <= high)
2463                 return 0;
2464
2465         /*
2466          * Prevent division by 0 in overage calculation by acting as if
2467          * it was a threshold of 1 page
2468          */
2469         high = max(high, 1UL);
2470
2471         overage = usage - high;
2472         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2473         return div64_u64(overage, high);
2474 }
2475
2476 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2477 {
2478         u64 overage, max_overage = 0;
2479
2480         do {
2481                 overage = calculate_overage(page_counter_read(&memcg->memory),
2482                                             READ_ONCE(memcg->memory.high));
2483                 max_overage = max(overage, max_overage);
2484         } while ((memcg = parent_mem_cgroup(memcg)) &&
2485                  !mem_cgroup_is_root(memcg));
2486
2487         return max_overage;
2488 }
2489
2490 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2491 {
2492         u64 overage, max_overage = 0;
2493
2494         do {
2495                 overage = calculate_overage(page_counter_read(&memcg->swap),
2496                                             READ_ONCE(memcg->swap.high));
2497                 if (overage)
2498                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2499                 max_overage = max(overage, max_overage);
2500         } while ((memcg = parent_mem_cgroup(memcg)) &&
2501                  !mem_cgroup_is_root(memcg));
2502
2503         return max_overage;
2504 }
2505
2506 /*
2507  * Get the number of jiffies that we should penalise a mischievous cgroup which
2508  * is exceeding its memory.high by checking both it and its ancestors.
2509  */
2510 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2511                                           unsigned int nr_pages,
2512                                           u64 max_overage)
2513 {
2514         unsigned long penalty_jiffies;
2515
2516         if (!max_overage)
2517                 return 0;
2518
2519         /*
2520          * We use overage compared to memory.high to calculate the number of
2521          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2522          * fairly lenient on small overages, and increasingly harsh when the
2523          * memcg in question makes it clear that it has no intention of stopping
2524          * its crazy behaviour, so we exponentially increase the delay based on
2525          * overage amount.
2526          */
2527         penalty_jiffies = max_overage * max_overage * HZ;
2528         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2529         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2530
2531         /*
2532          * Factor in the task's own contribution to the overage, such that four
2533          * N-sized allocations are throttled approximately the same as one
2534          * 4N-sized allocation.
2535          *
2536          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2537          * larger the current charge patch is than that.
2538          */
2539         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2540 }
2541
2542 /*
2543  * Scheduled by try_charge() to be executed from the userland return path
2544  * and reclaims memory over the high limit.
2545  */
2546 void mem_cgroup_handle_over_high(void)
2547 {
2548         unsigned long penalty_jiffies;
2549         unsigned long pflags;
2550         unsigned long nr_reclaimed;
2551         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2552         int nr_retries = MAX_RECLAIM_RETRIES;
2553         struct mem_cgroup *memcg;
2554         bool in_retry = false;
2555
2556         if (likely(!nr_pages))
2557                 return;
2558
2559         memcg = get_mem_cgroup_from_mm(current->mm);
2560         current->memcg_nr_pages_over_high = 0;
2561
2562 retry_reclaim:
2563         /*
2564          * The allocating task should reclaim at least the batch size, but for
2565          * subsequent retries we only want to do what's necessary to prevent oom
2566          * or breaching resource isolation.
2567          *
2568          * This is distinct from memory.max or page allocator behaviour because
2569          * memory.high is currently batched, whereas memory.max and the page
2570          * allocator run every time an allocation is made.
2571          */
2572         nr_reclaimed = reclaim_high(memcg,
2573                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2574                                     GFP_KERNEL);
2575
2576         /*
2577          * memory.high is breached and reclaim is unable to keep up. Throttle
2578          * allocators proactively to slow down excessive growth.
2579          */
2580         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2581                                                mem_find_max_overage(memcg));
2582
2583         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2584                                                 swap_find_max_overage(memcg));
2585
2586         /*
2587          * Clamp the max delay per usermode return so as to still keep the
2588          * application moving forwards and also permit diagnostics, albeit
2589          * extremely slowly.
2590          */
2591         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2592
2593         /*
2594          * Don't sleep if the amount of jiffies this memcg owes us is so low
2595          * that it's not even worth doing, in an attempt to be nice to those who
2596          * go only a small amount over their memory.high value and maybe haven't
2597          * been aggressively reclaimed enough yet.
2598          */
2599         if (penalty_jiffies <= HZ / 100)
2600                 goto out;
2601
2602         /*
2603          * If reclaim is making forward progress but we're still over
2604          * memory.high, we want to encourage that rather than doing allocator
2605          * throttling.
2606          */
2607         if (nr_reclaimed || nr_retries--) {
2608                 in_retry = true;
2609                 goto retry_reclaim;
2610         }
2611
2612         /*
2613          * If we exit early, we're guaranteed to die (since
2614          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2615          * need to account for any ill-begotten jiffies to pay them off later.
2616          */
2617         psi_memstall_enter(&pflags);
2618         schedule_timeout_killable(penalty_jiffies);
2619         psi_memstall_leave(&pflags);
2620
2621 out:
2622         css_put(&memcg->css);
2623 }
2624
2625 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2626                       unsigned int nr_pages)
2627 {
2628         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2629         int nr_retries = MAX_RECLAIM_RETRIES;
2630         struct mem_cgroup *mem_over_limit;
2631         struct page_counter *counter;
2632         enum oom_status oom_status;
2633         unsigned long nr_reclaimed;
2634         bool may_swap = true;
2635         bool drained = false;
2636         unsigned long pflags;
2637
2638         if (mem_cgroup_is_root(memcg))
2639                 return 0;
2640 retry:
2641         if (consume_stock(memcg, nr_pages))
2642                 return 0;
2643
2644         if (!do_memsw_account() ||
2645             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2646                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2647                         goto done_restock;
2648                 if (do_memsw_account())
2649                         page_counter_uncharge(&memcg->memsw, batch);
2650                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2651         } else {
2652                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2653                 may_swap = false;
2654         }
2655
2656         if (batch > nr_pages) {
2657                 batch = nr_pages;
2658                 goto retry;
2659         }
2660
2661         /*
2662          * Memcg doesn't have a dedicated reserve for atomic
2663          * allocations. But like the global atomic pool, we need to
2664          * put the burden of reclaim on regular allocation requests
2665          * and let these go through as privileged allocations.
2666          */
2667         if (gfp_mask & __GFP_ATOMIC)
2668                 goto force;
2669
2670         /*
2671          * Unlike in global OOM situations, memcg is not in a physical
2672          * memory shortage.  Allow dying and OOM-killed tasks to
2673          * bypass the last charges so that they can exit quickly and
2674          * free their memory.
2675          */
2676         if (unlikely(should_force_charge()))
2677                 goto force;
2678
2679         /*
2680          * Prevent unbounded recursion when reclaim operations need to
2681          * allocate memory. This might exceed the limits temporarily,
2682          * but we prefer facilitating memory reclaim and getting back
2683          * under the limit over triggering OOM kills in these cases.
2684          */
2685         if (unlikely(current->flags & PF_MEMALLOC))
2686                 goto force;
2687
2688         if (unlikely(task_in_memcg_oom(current)))
2689                 goto nomem;
2690
2691         if (!gfpflags_allow_blocking(gfp_mask))
2692                 goto nomem;
2693
2694         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2695
2696         psi_memstall_enter(&pflags);
2697         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2698                                                     gfp_mask, may_swap);
2699         psi_memstall_leave(&pflags);
2700
2701         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2702                 goto retry;
2703
2704         if (!drained) {
2705                 drain_all_stock(mem_over_limit);
2706                 drained = true;
2707                 goto retry;
2708         }
2709
2710         if (gfp_mask & __GFP_NORETRY)
2711                 goto nomem;
2712         /*
2713          * Even though the limit is exceeded at this point, reclaim
2714          * may have been able to free some pages.  Retry the charge
2715          * before killing the task.
2716          *
2717          * Only for regular pages, though: huge pages are rather
2718          * unlikely to succeed so close to the limit, and we fall back
2719          * to regular pages anyway in case of failure.
2720          */
2721         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2722                 goto retry;
2723         /*
2724          * At task move, charge accounts can be doubly counted. So, it's
2725          * better to wait until the end of task_move if something is going on.
2726          */
2727         if (mem_cgroup_wait_acct_move(mem_over_limit))
2728                 goto retry;
2729
2730         if (nr_retries--)
2731                 goto retry;
2732
2733         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2734                 goto nomem;
2735
2736         if (gfp_mask & __GFP_NOFAIL)
2737                 goto force;
2738
2739         if (fatal_signal_pending(current))
2740                 goto force;
2741
2742         /*
2743          * keep retrying as long as the memcg oom killer is able to make
2744          * a forward progress or bypass the charge if the oom killer
2745          * couldn't make any progress.
2746          */
2747         oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2748                        get_order(nr_pages * PAGE_SIZE));
2749         switch (oom_status) {
2750         case OOM_SUCCESS:
2751                 nr_retries = MAX_RECLAIM_RETRIES;
2752                 goto retry;
2753         case OOM_FAILED:
2754                 goto force;
2755         default:
2756                 goto nomem;
2757         }
2758 nomem:
2759         if (!(gfp_mask & __GFP_NOFAIL))
2760                 return -ENOMEM;
2761 force:
2762         /*
2763          * The allocation either can't fail or will lead to more memory
2764          * being freed very soon.  Allow memory usage go over the limit
2765          * temporarily by force charging it.
2766          */
2767         page_counter_charge(&memcg->memory, nr_pages);
2768         if (do_memsw_account())
2769                 page_counter_charge(&memcg->memsw, nr_pages);
2770
2771         return 0;
2772
2773 done_restock:
2774         if (batch > nr_pages)
2775                 refill_stock(memcg, batch - nr_pages);
2776
2777         /*
2778          * If the hierarchy is above the normal consumption range, schedule
2779          * reclaim on returning to userland.  We can perform reclaim here
2780          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2781          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2782          * not recorded as it most likely matches current's and won't
2783          * change in the meantime.  As high limit is checked again before
2784          * reclaim, the cost of mismatch is negligible.
2785          */
2786         do {
2787                 bool mem_high, swap_high;
2788
2789                 mem_high = page_counter_read(&memcg->memory) >
2790                         READ_ONCE(memcg->memory.high);
2791                 swap_high = page_counter_read(&memcg->swap) >
2792                         READ_ONCE(memcg->swap.high);
2793
2794                 /* Don't bother a random interrupted task */
2795                 if (in_interrupt()) {
2796                         if (mem_high) {
2797                                 schedule_work(&memcg->high_work);
2798                                 break;
2799                         }
2800                         continue;
2801                 }
2802
2803                 if (mem_high || swap_high) {
2804                         /*
2805                          * The allocating tasks in this cgroup will need to do
2806                          * reclaim or be throttled to prevent further growth
2807                          * of the memory or swap footprints.
2808                          *
2809                          * Target some best-effort fairness between the tasks,
2810                          * and distribute reclaim work and delay penalties
2811                          * based on how much each task is actually allocating.
2812                          */
2813                         current->memcg_nr_pages_over_high += batch;
2814                         set_notify_resume(current);
2815                         break;
2816                 }
2817         } while ((memcg = parent_mem_cgroup(memcg)));
2818
2819         return 0;
2820 }
2821
2822 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2823 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2824 {
2825         if (mem_cgroup_is_root(memcg))
2826                 return;
2827
2828         page_counter_uncharge(&memcg->memory, nr_pages);
2829         if (do_memsw_account())
2830                 page_counter_uncharge(&memcg->memsw, nr_pages);
2831 }
2832 #endif
2833
2834 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2835 {
2836         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2837         /*
2838          * Any of the following ensures page->mem_cgroup stability:
2839          *
2840          * - the page lock
2841          * - LRU isolation
2842          * - lock_page_memcg()
2843          * - exclusive reference
2844          */
2845         page->mem_cgroup = memcg;
2846 }
2847
2848 #ifdef CONFIG_MEMCG_KMEM
2849 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2850                                  gfp_t gfp)
2851 {
2852         unsigned int objects = objs_per_slab_page(s, page);
2853         void *vec;
2854
2855         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2856                            page_to_nid(page));
2857         if (!vec)
2858                 return -ENOMEM;
2859
2860         if (cmpxchg(&page->obj_cgroups, NULL,
2861                     (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2862                 kfree(vec);
2863         else
2864                 kmemleak_not_leak(vec);
2865
2866         return 0;
2867 }
2868
2869 /*
2870  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2871  *
2872  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2873  * cgroup_mutex, etc.
2874  */
2875 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2876 {
2877         struct page *page;
2878
2879         if (mem_cgroup_disabled())
2880                 return NULL;
2881
2882         page = virt_to_head_page(p);
2883
2884         /*
2885          * Slab objects are accounted individually, not per-page.
2886          * Memcg membership data for each individual object is saved in
2887          * the page->obj_cgroups.
2888          */
2889         if (page_has_obj_cgroups(page)) {
2890                 struct obj_cgroup *objcg;
2891                 unsigned int off;
2892
2893                 off = obj_to_index(page->slab_cache, page, p);
2894                 objcg = page_obj_cgroups(page)[off];
2895                 if (objcg)
2896                         return obj_cgroup_memcg(objcg);
2897
2898                 return NULL;
2899         }
2900
2901         /* All other pages use page->mem_cgroup */
2902         return page->mem_cgroup;
2903 }
2904
2905 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2906 {
2907         struct obj_cgroup *objcg = NULL;
2908         struct mem_cgroup *memcg;
2909
2910         if (unlikely(!current->mm && !current->active_memcg))
2911                 return NULL;
2912
2913         rcu_read_lock();
2914         if (unlikely(current->active_memcg))
2915                 memcg = rcu_dereference(current->active_memcg);
2916         else
2917                 memcg = mem_cgroup_from_task(current);
2918
2919         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2920                 objcg = rcu_dereference(memcg->objcg);
2921                 if (objcg && obj_cgroup_tryget(objcg))
2922                         break;
2923         }
2924         rcu_read_unlock();
2925
2926         return objcg;
2927 }
2928
2929 static int memcg_alloc_cache_id(void)
2930 {
2931         int id, size;
2932         int err;
2933
2934         id = ida_simple_get(&memcg_cache_ida,
2935                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2936         if (id < 0)
2937                 return id;
2938
2939         if (id < memcg_nr_cache_ids)
2940                 return id;
2941
2942         /*
2943          * There's no space for the new id in memcg_caches arrays,
2944          * so we have to grow them.
2945          */
2946         down_write(&memcg_cache_ids_sem);
2947
2948         size = 2 * (id + 1);
2949         if (size < MEMCG_CACHES_MIN_SIZE)
2950                 size = MEMCG_CACHES_MIN_SIZE;
2951         else if (size > MEMCG_CACHES_MAX_SIZE)
2952                 size = MEMCG_CACHES_MAX_SIZE;
2953
2954         err = memcg_update_all_list_lrus(size);
2955         if (!err)
2956                 memcg_nr_cache_ids = size;
2957
2958         up_write(&memcg_cache_ids_sem);
2959
2960         if (err) {
2961                 ida_simple_remove(&memcg_cache_ida, id);
2962                 return err;
2963         }
2964         return id;
2965 }
2966
2967 static void memcg_free_cache_id(int id)
2968 {
2969         ida_simple_remove(&memcg_cache_ida, id);
2970 }
2971
2972 /**
2973  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2974  * @memcg: memory cgroup to charge
2975  * @gfp: reclaim mode
2976  * @nr_pages: number of pages to charge
2977  *
2978  * Returns 0 on success, an error code on failure.
2979  */
2980 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2981                         unsigned int nr_pages)
2982 {
2983         struct page_counter *counter;
2984         int ret;
2985
2986         ret = try_charge(memcg, gfp, nr_pages);
2987         if (ret)
2988                 return ret;
2989
2990         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2991             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2992
2993                 /*
2994                  * Enforce __GFP_NOFAIL allocation because callers are not
2995                  * prepared to see failures and likely do not have any failure
2996                  * handling code.
2997                  */
2998                 if (gfp & __GFP_NOFAIL) {
2999                         page_counter_charge(&memcg->kmem, nr_pages);
3000                         return 0;
3001                 }
3002                 cancel_charge(memcg, nr_pages);
3003                 return -ENOMEM;
3004         }
3005         return 0;
3006 }
3007
3008 /**
3009  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3010  * @memcg: memcg to uncharge
3011  * @nr_pages: number of pages to uncharge
3012  */
3013 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3014 {
3015         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3016                 page_counter_uncharge(&memcg->kmem, nr_pages);
3017
3018         page_counter_uncharge(&memcg->memory, nr_pages);
3019         if (do_memsw_account())
3020                 page_counter_uncharge(&memcg->memsw, nr_pages);
3021 }
3022
3023 /**
3024  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3025  * @page: page to charge
3026  * @gfp: reclaim mode
3027  * @order: allocation order
3028  *
3029  * Returns 0 on success, an error code on failure.
3030  */
3031 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3032 {
3033         struct mem_cgroup *memcg;
3034         int ret = 0;
3035
3036         if (memcg_kmem_bypass())
3037                 return 0;
3038
3039         memcg = get_mem_cgroup_from_current();
3040         if (!mem_cgroup_is_root(memcg)) {
3041                 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3042                 if (!ret) {
3043                         page->mem_cgroup = memcg;
3044                         __SetPageKmemcg(page);
3045                         return 0;
3046                 }
3047         }
3048         css_put(&memcg->css);
3049         return ret;
3050 }
3051
3052 /**
3053  * __memcg_kmem_uncharge_page: uncharge a kmem page
3054  * @page: page to uncharge
3055  * @order: allocation order
3056  */
3057 void __memcg_kmem_uncharge_page(struct page *page, int order)
3058 {
3059         struct mem_cgroup *memcg = page->mem_cgroup;
3060         unsigned int nr_pages = 1 << order;
3061
3062         if (!memcg)
3063                 return;
3064
3065         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3066         __memcg_kmem_uncharge(memcg, nr_pages);
3067         page->mem_cgroup = NULL;
3068         css_put(&memcg->css);
3069
3070         /* slab pages do not have PageKmemcg flag set */
3071         if (PageKmemcg(page))
3072                 __ClearPageKmemcg(page);
3073 }
3074
3075 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3076 {
3077         struct memcg_stock_pcp *stock;
3078         unsigned long flags;
3079         bool ret = false;
3080
3081         local_irq_save(flags);
3082
3083         stock = this_cpu_ptr(&memcg_stock);
3084         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3085                 stock->nr_bytes -= nr_bytes;
3086                 ret = true;
3087         }
3088
3089         local_irq_restore(flags);
3090
3091         return ret;
3092 }
3093
3094 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3095 {
3096         struct obj_cgroup *old = stock->cached_objcg;
3097
3098         if (!old)
3099                 return;
3100
3101         if (stock->nr_bytes) {
3102                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3103                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3104
3105                 if (nr_pages) {
3106                         rcu_read_lock();
3107                         __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3108                         rcu_read_unlock();
3109                 }
3110
3111                 /*
3112                  * The leftover is flushed to the centralized per-memcg value.
3113                  * On the next attempt to refill obj stock it will be moved
3114                  * to a per-cpu stock (probably, on an other CPU), see
3115                  * refill_obj_stock().
3116                  *
3117                  * How often it's flushed is a trade-off between the memory
3118                  * limit enforcement accuracy and potential CPU contention,
3119                  * so it might be changed in the future.
3120                  */
3121                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3122                 stock->nr_bytes = 0;
3123         }
3124
3125         obj_cgroup_put(old);
3126         stock->cached_objcg = NULL;
3127 }
3128
3129 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3130                                      struct mem_cgroup *root_memcg)
3131 {
3132         struct mem_cgroup *memcg;
3133
3134         if (stock->cached_objcg) {
3135                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3136                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3137                         return true;
3138         }
3139
3140         return false;
3141 }
3142
3143 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3144 {
3145         struct memcg_stock_pcp *stock;
3146         unsigned long flags;
3147
3148         local_irq_save(flags);
3149
3150         stock = this_cpu_ptr(&memcg_stock);
3151         if (stock->cached_objcg != objcg) { /* reset if necessary */
3152                 drain_obj_stock(stock);
3153                 obj_cgroup_get(objcg);
3154                 stock->cached_objcg = objcg;
3155                 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3156         }
3157         stock->nr_bytes += nr_bytes;
3158
3159         if (stock->nr_bytes > PAGE_SIZE)
3160                 drain_obj_stock(stock);
3161
3162         local_irq_restore(flags);
3163 }
3164
3165 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3166 {
3167         struct mem_cgroup *memcg;
3168         unsigned int nr_pages, nr_bytes;
3169         int ret;
3170
3171         if (consume_obj_stock(objcg, size))
3172                 return 0;
3173
3174         /*
3175          * In theory, memcg->nr_charged_bytes can have enough
3176          * pre-charged bytes to satisfy the allocation. However,
3177          * flushing memcg->nr_charged_bytes requires two atomic
3178          * operations, and memcg->nr_charged_bytes can't be big,
3179          * so it's better to ignore it and try grab some new pages.
3180          * memcg->nr_charged_bytes will be flushed in
3181          * refill_obj_stock(), called from this function or
3182          * independently later.
3183          */
3184         rcu_read_lock();
3185         memcg = obj_cgroup_memcg(objcg);
3186         css_get(&memcg->css);
3187         rcu_read_unlock();
3188
3189         nr_pages = size >> PAGE_SHIFT;
3190         nr_bytes = size & (PAGE_SIZE - 1);
3191
3192         if (nr_bytes)
3193                 nr_pages += 1;
3194
3195         ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3196         if (!ret && nr_bytes)
3197                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3198
3199         css_put(&memcg->css);
3200         return ret;
3201 }
3202
3203 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3204 {
3205         refill_obj_stock(objcg, size);
3206 }
3207
3208 #endif /* CONFIG_MEMCG_KMEM */
3209
3210 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3211
3212 /*
3213  * Because tail pages are not marked as "used", set it. We're under
3214  * pgdat->lru_lock and migration entries setup in all page mappings.
3215  */
3216 void mem_cgroup_split_huge_fixup(struct page *head)
3217 {
3218         struct mem_cgroup *memcg = head->mem_cgroup;
3219         int i;
3220
3221         if (mem_cgroup_disabled())
3222                 return;
3223
3224         for (i = 1; i < HPAGE_PMD_NR; i++) {
3225                 css_get(&memcg->css);
3226                 head[i].mem_cgroup = memcg;
3227         }
3228 }
3229 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3230
3231 #ifdef CONFIG_MEMCG_SWAP
3232 /**
3233  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3234  * @entry: swap entry to be moved
3235  * @from:  mem_cgroup which the entry is moved from
3236  * @to:  mem_cgroup which the entry is moved to
3237  *
3238  * It succeeds only when the swap_cgroup's record for this entry is the same
3239  * as the mem_cgroup's id of @from.
3240  *
3241  * Returns 0 on success, -EINVAL on failure.
3242  *
3243  * The caller must have charged to @to, IOW, called page_counter_charge() about
3244  * both res and memsw, and called css_get().
3245  */
3246 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3247                                 struct mem_cgroup *from, struct mem_cgroup *to)
3248 {
3249         unsigned short old_id, new_id;
3250
3251         old_id = mem_cgroup_id(from);
3252         new_id = mem_cgroup_id(to);
3253
3254         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3255                 mod_memcg_state(from, MEMCG_SWAP, -1);
3256                 mod_memcg_state(to, MEMCG_SWAP, 1);
3257                 return 0;
3258         }
3259         return -EINVAL;
3260 }
3261 #else
3262 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3263                                 struct mem_cgroup *from, struct mem_cgroup *to)
3264 {
3265         return -EINVAL;
3266 }
3267 #endif
3268
3269 static DEFINE_MUTEX(memcg_max_mutex);
3270
3271 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3272                                  unsigned long max, bool memsw)
3273 {
3274         bool enlarge = false;
3275         bool drained = false;
3276         int ret;
3277         bool limits_invariant;
3278         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3279
3280         do {
3281                 if (signal_pending(current)) {
3282                         ret = -EINTR;
3283                         break;
3284                 }
3285
3286                 mutex_lock(&memcg_max_mutex);
3287                 /*
3288                  * Make sure that the new limit (memsw or memory limit) doesn't
3289                  * break our basic invariant rule memory.max <= memsw.max.
3290                  */
3291                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3292                                            max <= memcg->memsw.max;
3293                 if (!limits_invariant) {
3294                         mutex_unlock(&memcg_max_mutex);
3295                         ret = -EINVAL;
3296                         break;
3297                 }
3298                 if (max > counter->max)
3299                         enlarge = true;
3300                 ret = page_counter_set_max(counter, max);
3301                 mutex_unlock(&memcg_max_mutex);
3302
3303                 if (!ret)
3304                         break;
3305
3306                 if (!drained) {
3307                         drain_all_stock(memcg);
3308                         drained = true;
3309                         continue;
3310                 }
3311
3312                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3313                                         GFP_KERNEL, !memsw)) {
3314                         ret = -EBUSY;
3315                         break;
3316                 }
3317         } while (true);
3318
3319         if (!ret && enlarge)
3320                 memcg_oom_recover(memcg);
3321
3322         return ret;
3323 }
3324
3325 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3326                                             gfp_t gfp_mask,
3327                                             unsigned long *total_scanned)
3328 {
3329         unsigned long nr_reclaimed = 0;
3330         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3331         unsigned long reclaimed;
3332         int loop = 0;
3333         struct mem_cgroup_tree_per_node *mctz;
3334         unsigned long excess;
3335         unsigned long nr_scanned;
3336
3337         if (order > 0)
3338                 return 0;
3339
3340         mctz = soft_limit_tree_node(pgdat->node_id);
3341
3342         /*
3343          * Do not even bother to check the largest node if the root
3344          * is empty. Do it lockless to prevent lock bouncing. Races
3345          * are acceptable as soft limit is best effort anyway.
3346          */
3347         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3348                 return 0;
3349
3350         /*
3351          * This loop can run a while, specially if mem_cgroup's continuously
3352          * keep exceeding their soft limit and putting the system under
3353          * pressure
3354          */
3355         do {
3356                 if (next_mz)
3357                         mz = next_mz;
3358                 else
3359                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3360                 if (!mz)
3361                         break;
3362
3363                 nr_scanned = 0;
3364                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3365                                                     gfp_mask, &nr_scanned);
3366                 nr_reclaimed += reclaimed;
3367                 *total_scanned += nr_scanned;
3368                 spin_lock_irq(&mctz->lock);
3369                 __mem_cgroup_remove_exceeded(mz, mctz);
3370
3371                 /*
3372                  * If we failed to reclaim anything from this memory cgroup
3373                  * it is time to move on to the next cgroup
3374                  */
3375                 next_mz = NULL;
3376                 if (!reclaimed)
3377                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3378
3379                 excess = soft_limit_excess(mz->memcg);
3380                 /*
3381                  * One school of thought says that we should not add
3382                  * back the node to the tree if reclaim returns 0.
3383                  * But our reclaim could return 0, simply because due
3384                  * to priority we are exposing a smaller subset of
3385                  * memory to reclaim from. Consider this as a longer
3386                  * term TODO.
3387                  */
3388                 /* If excess == 0, no tree ops */
3389                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3390                 spin_unlock_irq(&mctz->lock);
3391                 css_put(&mz->memcg->css);
3392                 loop++;
3393                 /*
3394                  * Could not reclaim anything and there are no more
3395                  * mem cgroups to try or we seem to be looping without
3396                  * reclaiming anything.
3397                  */
3398                 if (!nr_reclaimed &&
3399                         (next_mz == NULL ||
3400                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3401                         break;
3402         } while (!nr_reclaimed);
3403         if (next_mz)
3404                 css_put(&next_mz->memcg->css);
3405         return nr_reclaimed;
3406 }
3407
3408 /*
3409  * Test whether @memcg has children, dead or alive.  Note that this
3410  * function doesn't care whether @memcg has use_hierarchy enabled and
3411  * returns %true if there are child csses according to the cgroup
3412  * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3413  */
3414 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3415 {
3416         bool ret;
3417
3418         rcu_read_lock();
3419         ret = css_next_child(NULL, &memcg->css);
3420         rcu_read_unlock();
3421         return ret;
3422 }
3423
3424 /*
3425  * Reclaims as many pages from the given memcg as possible.
3426  *
3427  * Caller is responsible for holding css reference for memcg.
3428  */
3429 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3430 {
3431         int nr_retries = MAX_RECLAIM_RETRIES;
3432
3433         /* we call try-to-free pages for make this cgroup empty */
3434         lru_add_drain_all();
3435
3436         drain_all_stock(memcg);
3437
3438         /* try to free all pages in this cgroup */
3439         while (nr_retries && page_counter_read(&memcg->memory)) {
3440                 int progress;
3441
3442                 if (signal_pending(current))
3443                         return -EINTR;
3444
3445                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3446                                                         GFP_KERNEL, true);
3447                 if (!progress) {
3448                         nr_retries--;
3449                         /* maybe some writeback is necessary */
3450                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3451                 }
3452
3453         }
3454
3455         return 0;
3456 }
3457
3458 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3459                                             char *buf, size_t nbytes,
3460                                             loff_t off)
3461 {
3462         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3463
3464         if (mem_cgroup_is_root(memcg))
3465                 return -EINVAL;
3466         return mem_cgroup_force_empty(memcg) ?: nbytes;
3467 }
3468
3469 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3470                                      struct cftype *cft)
3471 {
3472         return mem_cgroup_from_css(css)->use_hierarchy;
3473 }
3474
3475 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3476                                       struct cftype *cft, u64 val)
3477 {
3478         int retval = 0;
3479         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3480         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3481
3482         if (memcg->use_hierarchy == val)
3483                 return 0;
3484
3485         /*
3486          * If parent's use_hierarchy is set, we can't make any modifications
3487          * in the child subtrees. If it is unset, then the change can
3488          * occur, provided the current cgroup has no children.
3489          *
3490          * For the root cgroup, parent_mem is NULL, we allow value to be
3491          * set if there are no children.
3492          */
3493         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3494                                 (val == 1 || val == 0)) {
3495                 if (!memcg_has_children(memcg))
3496                         memcg->use_hierarchy = val;
3497                 else
3498                         retval = -EBUSY;
3499         } else
3500                 retval = -EINVAL;
3501
3502         return retval;
3503 }
3504
3505 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3506 {
3507         unsigned long val;
3508
3509         if (mem_cgroup_is_root(memcg)) {
3510                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3511                         memcg_page_state(memcg, NR_ANON_MAPPED);
3512                 if (swap)
3513                         val += memcg_page_state(memcg, MEMCG_SWAP);
3514         } else {
3515                 if (!swap)
3516                         val = page_counter_read(&memcg->memory);
3517                 else
3518                         val = page_counter_read(&memcg->memsw);
3519         }
3520         return val;
3521 }
3522
3523 enum {
3524         RES_USAGE,
3525         RES_LIMIT,
3526         RES_MAX_USAGE,
3527         RES_FAILCNT,
3528         RES_SOFT_LIMIT,
3529 };
3530
3531 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3532                                struct cftype *cft)
3533 {
3534         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3535         struct page_counter *counter;
3536
3537         switch (MEMFILE_TYPE(cft->private)) {
3538         case _MEM:
3539                 counter = &memcg->memory;
3540                 break;
3541         case _MEMSWAP:
3542                 counter = &memcg->memsw;
3543                 break;
3544         case _KMEM:
3545                 counter = &memcg->kmem;
3546                 break;
3547         case _TCP:
3548                 counter = &memcg->tcpmem;
3549                 break;
3550         default:
3551                 BUG();
3552         }
3553
3554         switch (MEMFILE_ATTR(cft->private)) {
3555         case RES_USAGE:
3556                 if (counter == &memcg->memory)
3557                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3558                 if (counter == &memcg->memsw)
3559                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3560                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3561         case RES_LIMIT:
3562                 return (u64)counter->max * PAGE_SIZE;
3563         case RES_MAX_USAGE:
3564                 return (u64)counter->watermark * PAGE_SIZE;
3565         case RES_FAILCNT:
3566                 return counter->failcnt;
3567         case RES_SOFT_LIMIT:
3568                 return (u64)memcg->soft_limit * PAGE_SIZE;
3569         default:
3570                 BUG();
3571         }
3572 }
3573
3574 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3575 {
3576         unsigned long stat[MEMCG_NR_STAT] = {0};
3577         struct mem_cgroup *mi;
3578         int node, cpu, i;
3579
3580         for_each_online_cpu(cpu)
3581                 for (i = 0; i < MEMCG_NR_STAT; i++)
3582                         stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3583
3584         for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3585                 for (i = 0; i < MEMCG_NR_STAT; i++)
3586                         atomic_long_add(stat[i], &mi->vmstats[i]);
3587
3588         for_each_node(node) {
3589                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3590                 struct mem_cgroup_per_node *pi;
3591
3592                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3593                         stat[i] = 0;
3594
3595                 for_each_online_cpu(cpu)
3596                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3597                                 stat[i] += per_cpu(
3598                                         pn->lruvec_stat_cpu->count[i], cpu);
3599
3600                 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3601                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3602                                 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3603         }
3604 }
3605
3606 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3607 {
3608         unsigned long events[NR_VM_EVENT_ITEMS];
3609         struct mem_cgroup *mi;
3610         int cpu, i;
3611
3612         for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3613                 events[i] = 0;
3614
3615         for_each_online_cpu(cpu)
3616                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3617                         events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3618                                              cpu);
3619
3620         for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3621                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3622                         atomic_long_add(events[i], &mi->vmevents[i]);
3623 }
3624
3625 #ifdef CONFIG_MEMCG_KMEM
3626 static int memcg_online_kmem(struct mem_cgroup *memcg)
3627 {
3628         struct obj_cgroup *objcg;
3629         int memcg_id;
3630
3631         if (cgroup_memory_nokmem)
3632                 return 0;
3633
3634         BUG_ON(memcg->kmemcg_id >= 0);
3635         BUG_ON(memcg->kmem_state);
3636
3637         memcg_id = memcg_alloc_cache_id();
3638         if (memcg_id < 0)
3639                 return memcg_id;
3640
3641         objcg = obj_cgroup_alloc();
3642         if (!objcg) {
3643                 memcg_free_cache_id(memcg_id);
3644                 return -ENOMEM;
3645         }
3646         objcg->memcg = memcg;
3647         rcu_assign_pointer(memcg->objcg, objcg);
3648
3649         static_branch_enable(&memcg_kmem_enabled_key);
3650
3651         /*
3652          * A memory cgroup is considered kmem-online as soon as it gets
3653          * kmemcg_id. Setting the id after enabling static branching will
3654          * guarantee no one starts accounting before all call sites are
3655          * patched.
3656          */
3657         memcg->kmemcg_id = memcg_id;
3658         memcg->kmem_state = KMEM_ONLINE;
3659
3660         return 0;
3661 }
3662
3663 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3664 {
3665         struct cgroup_subsys_state *css;
3666         struct mem_cgroup *parent, *child;
3667         int kmemcg_id;
3668
3669         if (memcg->kmem_state != KMEM_ONLINE)
3670                 return;
3671
3672         memcg->kmem_state = KMEM_ALLOCATED;
3673
3674         parent = parent_mem_cgroup(memcg);
3675         if (!parent)
3676                 parent = root_mem_cgroup;
3677
3678         memcg_reparent_objcgs(memcg, parent);
3679
3680         kmemcg_id = memcg->kmemcg_id;
3681         BUG_ON(kmemcg_id < 0);
3682
3683         /*
3684          * Change kmemcg_id of this cgroup and all its descendants to the
3685          * parent's id, and then move all entries from this cgroup's list_lrus
3686          * to ones of the parent. After we have finished, all list_lrus
3687          * corresponding to this cgroup are guaranteed to remain empty. The
3688          * ordering is imposed by list_lru_node->lock taken by
3689          * memcg_drain_all_list_lrus().
3690          */
3691         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3692         css_for_each_descendant_pre(css, &memcg->css) {
3693                 child = mem_cgroup_from_css(css);
3694                 BUG_ON(child->kmemcg_id != kmemcg_id);
3695                 child->kmemcg_id = parent->kmemcg_id;
3696                 if (!memcg->use_hierarchy)
3697                         break;
3698         }
3699         rcu_read_unlock();
3700
3701         memcg_drain_all_list_lrus(kmemcg_id, parent);
3702
3703         memcg_free_cache_id(kmemcg_id);
3704 }
3705
3706 static void memcg_free_kmem(struct mem_cgroup *memcg)
3707 {
3708         /* css_alloc() failed, offlining didn't happen */
3709         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3710                 memcg_offline_kmem(memcg);
3711 }
3712 #else
3713 static int memcg_online_kmem(struct mem_cgroup *memcg)
3714 {
3715         return 0;
3716 }
3717 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3718 {
3719 }
3720 static void memcg_free_kmem(struct mem_cgroup *memcg)
3721 {
3722 }
3723 #endif /* CONFIG_MEMCG_KMEM */
3724
3725 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3726                                  unsigned long max)
3727 {
3728         int ret;
3729
3730         mutex_lock(&memcg_max_mutex);
3731         ret = page_counter_set_max(&memcg->kmem, max);
3732         mutex_unlock(&memcg_max_mutex);
3733         return ret;
3734 }
3735
3736 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3737 {
3738         int ret;
3739
3740         mutex_lock(&memcg_max_mutex);
3741
3742         ret = page_counter_set_max(&memcg->tcpmem, max);
3743         if (ret)
3744                 goto out;
3745
3746         if (!memcg->tcpmem_active) {
3747                 /*
3748                  * The active flag needs to be written after the static_key
3749                  * update. This is what guarantees that the socket activation
3750                  * function is the last one to run. See mem_cgroup_sk_alloc()
3751                  * for details, and note that we don't mark any socket as
3752                  * belonging to this memcg until that flag is up.
3753                  *
3754                  * We need to do this, because static_keys will span multiple
3755                  * sites, but we can't control their order. If we mark a socket
3756                  * as accounted, but the accounting functions are not patched in
3757                  * yet, we'll lose accounting.
3758                  *
3759                  * We never race with the readers in mem_cgroup_sk_alloc(),
3760                  * because when this value change, the code to process it is not
3761                  * patched in yet.
3762                  */
3763                 static_branch_inc(&memcg_sockets_enabled_key);
3764                 memcg->tcpmem_active = true;
3765         }
3766 out:
3767         mutex_unlock(&memcg_max_mutex);
3768         return ret;
3769 }
3770
3771 /*
3772  * The user of this function is...
3773  * RES_LIMIT.
3774  */
3775 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3776                                 char *buf, size_t nbytes, loff_t off)
3777 {
3778         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3779         unsigned long nr_pages;
3780         int ret;
3781
3782         buf = strstrip(buf);
3783         ret = page_counter_memparse(buf, "-1", &nr_pages);
3784         if (ret)
3785                 return ret;
3786
3787         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3788         case RES_LIMIT:
3789                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3790                         ret = -EINVAL;
3791                         break;
3792                 }
3793                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3794                 case _MEM:
3795                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3796                         break;
3797                 case _MEMSWAP:
3798                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3799                         break;
3800                 case _KMEM:
3801                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3802                                      "Please report your usecase to linux-mm@kvack.org if you "
3803                                      "depend on this functionality.\n");
3804                         ret = memcg_update_kmem_max(memcg, nr_pages);
3805                         break;
3806                 case _TCP:
3807                         ret = memcg_update_tcp_max(memcg, nr_pages);
3808                         break;
3809                 }
3810                 break;
3811         case RES_SOFT_LIMIT:
3812                 memcg->soft_limit = nr_pages;
3813                 ret = 0;
3814                 break;
3815         }
3816         return ret ?: nbytes;
3817 }
3818
3819 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3820                                 size_t nbytes, loff_t off)
3821 {
3822         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3823         struct page_counter *counter;
3824
3825         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3826         case _MEM:
3827                 counter = &memcg->memory;
3828                 break;
3829         case _MEMSWAP:
3830                 counter = &memcg->memsw;
3831                 break;
3832         case _KMEM:
3833                 counter = &memcg->kmem;
3834                 break;
3835         case _TCP:
3836                 counter = &memcg->tcpmem;
3837                 break;
3838         default:
3839                 BUG();
3840         }
3841
3842         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3843         case RES_MAX_USAGE:
3844                 page_counter_reset_watermark(counter);
3845                 break;
3846         case RES_FAILCNT:
3847                 counter->failcnt = 0;
3848                 break;
3849         default:
3850                 BUG();
3851         }
3852
3853         return nbytes;
3854 }
3855
3856 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3857                                         struct cftype *cft)
3858 {
3859         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3860 }
3861
3862 #ifdef CONFIG_MMU
3863 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3864                                         struct cftype *cft, u64 val)
3865 {
3866         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3867
3868         if (val & ~MOVE_MASK)
3869                 return -EINVAL;
3870
3871         /*
3872          * No kind of locking is needed in here, because ->can_attach() will
3873          * check this value once in the beginning of the process, and then carry
3874          * on with stale data. This means that changes to this value will only
3875          * affect task migrations starting after the change.
3876          */
3877         memcg->move_charge_at_immigrate = val;
3878         return 0;
3879 }
3880 #else
3881 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3882                                         struct cftype *cft, u64 val)
3883 {
3884         return -ENOSYS;
3885 }
3886 #endif
3887
3888 #ifdef CONFIG_NUMA
3889
3890 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3891 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3892 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3893
3894 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3895                                 int nid, unsigned int lru_mask, bool tree)
3896 {
3897         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3898         unsigned long nr = 0;
3899         enum lru_list lru;
3900
3901         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3902
3903         for_each_lru(lru) {
3904                 if (!(BIT(lru) & lru_mask))
3905                         continue;
3906                 if (tree)
3907                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3908                 else
3909                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3910         }
3911         return nr;
3912 }
3913
3914 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3915                                              unsigned int lru_mask,
3916                                              bool tree)
3917 {
3918         unsigned long nr = 0;
3919         enum lru_list lru;
3920
3921         for_each_lru(lru) {
3922                 if (!(BIT(lru) & lru_mask))
3923                         continue;
3924                 if (tree)
3925                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3926                 else
3927                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3928         }
3929         return nr;
3930 }
3931
3932 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3933 {
3934         struct numa_stat {
3935                 const char *name;
3936                 unsigned int lru_mask;
3937         };
3938
3939         static const struct numa_stat stats[] = {
3940                 { "total", LRU_ALL },
3941                 { "file", LRU_ALL_FILE },
3942                 { "anon", LRU_ALL_ANON },
3943                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3944         };
3945         const struct numa_stat *stat;
3946         int nid;
3947         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3948
3949         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3950                 seq_printf(m, "%s=%lu", stat->name,
3951                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3952                                                    false));
3953                 for_each_node_state(nid, N_MEMORY)
3954                         seq_printf(m, " N%d=%lu", nid,
3955                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3956                                                         stat->lru_mask, false));
3957                 seq_putc(m, '\n');
3958         }
3959
3960         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3961
3962                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3963                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3964                                                    true));
3965                 for_each_node_state(nid, N_MEMORY)
3966                         seq_printf(m, " N%d=%lu", nid,
3967                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3968                                                         stat->lru_mask, true));
3969                 seq_putc(m, '\n');
3970         }
3971
3972         return 0;
3973 }
3974 #endif /* CONFIG_NUMA */
3975
3976 static const unsigned int memcg1_stats[] = {
3977         NR_FILE_PAGES,
3978         NR_ANON_MAPPED,
3979 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3980         NR_ANON_THPS,
3981 #endif
3982         NR_SHMEM,
3983         NR_FILE_MAPPED,
3984         NR_FILE_DIRTY,
3985         NR_WRITEBACK,
3986         MEMCG_SWAP,
3987 };
3988
3989 static const char *const memcg1_stat_names[] = {
3990         "cache",
3991         "rss",
3992 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3993         "rss_huge",
3994 #endif
3995         "shmem",
3996         "mapped_file",
3997         "dirty",
3998         "writeback",
3999         "swap",
4000 };
4001
4002 /* Universal VM events cgroup1 shows, original sort order */
4003 static const unsigned int memcg1_events[] = {
4004         PGPGIN,
4005         PGPGOUT,
4006         PGFAULT,
4007         PGMAJFAULT,
4008 };
4009
4010 static int memcg_stat_show(struct seq_file *m, void *v)
4011 {
4012         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4013         unsigned long memory, memsw;
4014         struct mem_cgroup *mi;
4015         unsigned int i;
4016
4017         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4018
4019         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4020                 unsigned long nr;
4021
4022                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4023                         continue;
4024                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4025 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4026                 if (memcg1_stats[i] == NR_ANON_THPS)
4027                         nr *= HPAGE_PMD_NR;
4028 #endif
4029                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4030         }
4031
4032         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4033                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4034                            memcg_events_local(memcg, memcg1_events[i]));
4035
4036         for (i = 0; i < NR_LRU_LISTS; i++)
4037                 seq_printf(m, "%s %lu\n", lru_list_name(i),
4038                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4039                            PAGE_SIZE);
4040
4041         /* Hierarchical information */
4042         memory = memsw = PAGE_COUNTER_MAX;
4043         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4044                 memory = min(memory, READ_ONCE(mi->memory.max));
4045                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4046         }
4047         seq_printf(m, "hierarchical_memory_limit %llu\n",
4048                    (u64)memory * PAGE_SIZE);
4049         if (do_memsw_account())
4050                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4051                            (u64)memsw * PAGE_SIZE);
4052
4053         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4054                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4055                         continue;
4056                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4057                            (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4058                            PAGE_SIZE);
4059         }
4060
4061         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4062                 seq_printf(m, "total_%s %llu\n",
4063                            vm_event_name(memcg1_events[i]),
4064                            (u64)memcg_events(memcg, memcg1_events[i]));
4065
4066         for (i = 0; i < NR_LRU_LISTS; i++)
4067                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4068                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4069                            PAGE_SIZE);
4070
4071 #ifdef CONFIG_DEBUG_VM
4072         {
4073                 pg_data_t *pgdat;
4074                 struct mem_cgroup_per_node *mz;
4075                 unsigned long anon_cost = 0;
4076                 unsigned long file_cost = 0;
4077
4078                 for_each_online_pgdat(pgdat) {
4079                         mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4080
4081                         anon_cost += mz->lruvec.anon_cost;
4082                         file_cost += mz->lruvec.file_cost;
4083                 }
4084                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4085                 seq_printf(m, "file_cost %lu\n", file_cost);
4086         }
4087 #endif
4088
4089         return 0;
4090 }
4091
4092 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4093                                       struct cftype *cft)
4094 {
4095         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4096
4097         return mem_cgroup_swappiness(memcg);
4098 }
4099
4100 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4101                                        struct cftype *cft, u64 val)
4102 {
4103         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4104
4105         if (val > 100)
4106                 return -EINVAL;
4107
4108         if (css->parent)
4109                 memcg->swappiness = val;
4110         else
4111                 vm_swappiness = val;
4112
4113         return 0;
4114 }
4115
4116 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4117 {
4118         struct mem_cgroup_threshold_ary *t;
4119         unsigned long usage;
4120         int i;
4121
4122         rcu_read_lock();
4123         if (!swap)
4124                 t = rcu_dereference(memcg->thresholds.primary);
4125         else
4126                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4127
4128         if (!t)
4129                 goto unlock;
4130
4131         usage = mem_cgroup_usage(memcg, swap);
4132
4133         /*
4134          * current_threshold points to threshold just below or equal to usage.
4135          * If it's not true, a threshold was crossed after last
4136          * call of __mem_cgroup_threshold().
4137          */
4138         i = t->current_threshold;
4139
4140         /*
4141          * Iterate backward over array of thresholds starting from
4142          * current_threshold and check if a threshold is crossed.
4143          * If none of thresholds below usage is crossed, we read
4144          * only one element of the array here.
4145          */
4146         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4147                 eventfd_signal(t->entries[i].eventfd, 1);
4148
4149         /* i = current_threshold + 1 */
4150         i++;
4151
4152         /*
4153          * Iterate forward over array of thresholds starting from
4154          * current_threshold+1 and check if a threshold is crossed.
4155          * If none of thresholds above usage is crossed, we read
4156          * only one element of the array here.
4157          */
4158         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4159                 eventfd_signal(t->entries[i].eventfd, 1);
4160
4161         /* Update current_threshold */
4162         t->current_threshold = i - 1;
4163 unlock:
4164         rcu_read_unlock();
4165 }
4166
4167 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4168 {
4169         while (memcg) {
4170                 __mem_cgroup_threshold(memcg, false);
4171                 if (do_memsw_account())
4172                         __mem_cgroup_threshold(memcg, true);
4173
4174                 memcg = parent_mem_cgroup(memcg);
4175         }
4176 }
4177
4178 static int compare_thresholds(const void *a, const void *b)
4179 {
4180         const struct mem_cgroup_threshold *_a = a;
4181         const struct mem_cgroup_threshold *_b = b;
4182
4183         if (_a->threshold > _b->threshold)
4184                 return 1;
4185
4186         if (_a->threshold < _b->threshold)
4187                 return -1;
4188
4189         return 0;
4190 }
4191
4192 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4193 {
4194         struct mem_cgroup_eventfd_list *ev;
4195
4196         spin_lock(&memcg_oom_lock);
4197
4198         list_for_each_entry(ev, &memcg->oom_notify, list)
4199                 eventfd_signal(ev->eventfd, 1);
4200
4201         spin_unlock(&memcg_oom_lock);
4202         return 0;
4203 }
4204
4205 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4206 {
4207         struct mem_cgroup *iter;
4208
4209         for_each_mem_cgroup_tree(iter, memcg)
4210                 mem_cgroup_oom_notify_cb(iter);
4211 }
4212
4213 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4214         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4215 {
4216         struct mem_cgroup_thresholds *thresholds;
4217         struct mem_cgroup_threshold_ary *new;
4218         unsigned long threshold;
4219         unsigned long usage;
4220         int i, size, ret;
4221
4222         ret = page_counter_memparse(args, "-1", &threshold);
4223         if (ret)
4224                 return ret;
4225
4226         mutex_lock(&memcg->thresholds_lock);
4227
4228         if (type == _MEM) {
4229                 thresholds = &memcg->thresholds;
4230                 usage = mem_cgroup_usage(memcg, false);
4231         } else if (type == _MEMSWAP) {
4232                 thresholds = &memcg->memsw_thresholds;
4233                 usage = mem_cgroup_usage(memcg, true);
4234         } else
4235                 BUG();
4236
4237         /* Check if a threshold crossed before adding a new one */
4238         if (thresholds->primary)
4239                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4240
4241         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4242
4243         /* Allocate memory for new array of thresholds */
4244         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4245         if (!new) {
4246                 ret = -ENOMEM;
4247                 goto unlock;
4248         }
4249         new->size = size;
4250
4251         /* Copy thresholds (if any) to new array */
4252         if (thresholds->primary) {
4253                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4254                                 sizeof(struct mem_cgroup_threshold));
4255         }
4256
4257         /* Add new threshold */
4258         new->entries[size - 1].eventfd = eventfd;
4259         new->entries[size - 1].threshold = threshold;
4260
4261         /* Sort thresholds. Registering of new threshold isn't time-critical */
4262         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4263                         compare_thresholds, NULL);
4264
4265         /* Find current threshold */
4266         new->current_threshold = -1;
4267         for (i = 0; i < size; i++) {
4268                 if (new->entries[i].threshold <= usage) {
4269                         /*
4270                          * new->current_threshold will not be used until
4271                          * rcu_assign_pointer(), so it's safe to increment
4272                          * it here.
4273                          */
4274                         ++new->current_threshold;
4275                 } else
4276                         break;
4277         }
4278
4279         /* Free old spare buffer and save old primary buffer as spare */
4280         kfree(thresholds->spare);
4281         thresholds->spare = thresholds->primary;
4282
4283         rcu_assign_pointer(thresholds->primary, new);
4284
4285         /* To be sure that nobody uses thresholds */
4286         synchronize_rcu();
4287
4288 unlock:
4289         mutex_unlock(&memcg->thresholds_lock);
4290
4291         return ret;
4292 }
4293
4294 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4295         struct eventfd_ctx *eventfd, const char *args)
4296 {
4297         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4298 }
4299
4300 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4301         struct eventfd_ctx *eventfd, const char *args)
4302 {
4303         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4304 }
4305
4306 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4307         struct eventfd_ctx *eventfd, enum res_type type)
4308 {
4309         struct mem_cgroup_thresholds *thresholds;
4310         struct mem_cgroup_threshold_ary *new;
4311         unsigned long usage;
4312         int i, j, size, entries;
4313
4314         mutex_lock(&memcg->thresholds_lock);
4315
4316         if (type == _MEM) {
4317                 thresholds = &memcg->thresholds;
4318                 usage = mem_cgroup_usage(memcg, false);
4319         } else if (type == _MEMSWAP) {
4320                 thresholds = &memcg->memsw_thresholds;
4321                 usage = mem_cgroup_usage(memcg, true);
4322         } else
4323                 BUG();
4324
4325         if (!thresholds->primary)
4326                 goto unlock;
4327
4328         /* Check if a threshold crossed before removing */
4329         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4330
4331         /* Calculate new number of threshold */
4332         size = entries = 0;
4333         for (i = 0; i < thresholds->primary->size; i++) {
4334                 if (thresholds->primary->entries[i].eventfd != eventfd)
4335                         size++;
4336                 else
4337                         entries++;
4338         }
4339
4340         new = thresholds->spare;
4341
4342         /* If no items related to eventfd have been cleared, nothing to do */
4343         if (!entries)
4344                 goto unlock;
4345
4346         /* Set thresholds array to NULL if we don't have thresholds */
4347         if (!size) {
4348                 kfree(new);
4349                 new = NULL;
4350                 goto swap_buffers;
4351         }
4352
4353         new->size = size;
4354
4355         /* Copy thresholds and find current threshold */
4356         new->current_threshold = -1;
4357         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4358                 if (thresholds->primary->entries[i].eventfd == eventfd)
4359                         continue;
4360
4361                 new->entries[j] = thresholds->primary->entries[i];
4362                 if (new->entries[j].threshold <= usage) {
4363                         /*
4364                          * new->current_threshold will not be used
4365                          * until rcu_assign_pointer(), so it's safe to increment
4366                          * it here.
4367                          */
4368                         ++new->current_threshold;
4369                 }
4370                 j++;
4371         }
4372
4373 swap_buffers:
4374         /* Swap primary and spare array */
4375         thresholds->spare = thresholds->primary;
4376
4377         rcu_assign_pointer(thresholds->primary, new);
4378
4379         /* To be sure that nobody uses thresholds */
4380         synchronize_rcu();
4381
4382         /* If all events are unregistered, free the spare array */
4383         if (!new) {
4384                 kfree(thresholds->spare);
4385                 thresholds->spare = NULL;
4386         }
4387 unlock:
4388         mutex_unlock(&memcg->thresholds_lock);
4389 }
4390
4391 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4392         struct eventfd_ctx *eventfd)
4393 {
4394         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4395 }
4396
4397 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4398         struct eventfd_ctx *eventfd)
4399 {
4400         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4401 }
4402
4403 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4404         struct eventfd_ctx *eventfd, const char *args)
4405 {
4406         struct mem_cgroup_eventfd_list *event;
4407
4408         event = kmalloc(sizeof(*event), GFP_KERNEL);
4409         if (!event)
4410                 return -ENOMEM;
4411
4412         spin_lock(&memcg_oom_lock);
4413
4414         event->eventfd = eventfd;
4415         list_add(&event->list, &memcg->oom_notify);
4416
4417         /* already in OOM ? */
4418         if (memcg->under_oom)
4419                 eventfd_signal(eventfd, 1);
4420         spin_unlock(&memcg_oom_lock);
4421
4422         return 0;
4423 }
4424
4425 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4426         struct eventfd_ctx *eventfd)
4427 {
4428         struct mem_cgroup_eventfd_list *ev, *tmp;
4429
4430         spin_lock(&memcg_oom_lock);
4431
4432         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4433                 if (ev->eventfd == eventfd) {
4434                         list_del(&ev->list);
4435                         kfree(ev);
4436                 }
4437         }
4438
4439         spin_unlock(&memcg_oom_lock);
4440 }
4441
4442 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4443 {
4444         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4445
4446         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4447         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4448         seq_printf(sf, "oom_kill %lu\n",
4449                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4450         return 0;
4451 }
4452
4453 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4454         struct cftype *cft, u64 val)
4455 {
4456         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4457
4458         /* cannot set to root cgroup and only 0 and 1 are allowed */
4459         if (!css->parent || !((val == 0) || (val == 1)))
4460                 return -EINVAL;
4461
4462         memcg->oom_kill_disable = val;
4463         if (!val)
4464                 memcg_oom_recover(memcg);
4465
4466         return 0;
4467 }
4468
4469 #ifdef CONFIG_CGROUP_WRITEBACK
4470
4471 #include <trace/events/writeback.h>
4472
4473 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4474 {
4475         return wb_domain_init(&memcg->cgwb_domain, gfp);
4476 }
4477
4478 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4479 {
4480         wb_domain_exit(&memcg->cgwb_domain);
4481 }
4482
4483 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4484 {
4485         wb_domain_size_changed(&memcg->cgwb_domain);
4486 }
4487
4488 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4489 {
4490         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4491
4492         if (!memcg->css.parent)
4493                 return NULL;
4494
4495         return &memcg->cgwb_domain;
4496 }
4497
4498 /*
4499  * idx can be of type enum memcg_stat_item or node_stat_item.
4500  * Keep in sync with memcg_exact_page().
4501  */
4502 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4503 {
4504         long x = atomic_long_read(&memcg->vmstats[idx]);
4505         int cpu;
4506
4507         for_each_online_cpu(cpu)
4508                 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4509         if (x < 0)
4510                 x = 0;
4511         return x;
4512 }
4513
4514 /**
4515  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4516  * @wb: bdi_writeback in question
4517  * @pfilepages: out parameter for number of file pages
4518  * @pheadroom: out parameter for number of allocatable pages according to memcg
4519  * @pdirty: out parameter for number of dirty pages
4520  * @pwriteback: out parameter for number of pages under writeback
4521  *
4522  * Determine the numbers of file, headroom, dirty, and writeback pages in
4523  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4524  * is a bit more involved.
4525  *
4526  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4527  * headroom is calculated as the lowest headroom of itself and the
4528  * ancestors.  Note that this doesn't consider the actual amount of
4529  * available memory in the system.  The caller should further cap
4530  * *@pheadroom accordingly.
4531  */
4532 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4533                          unsigned long *pheadroom, unsigned long *pdirty,
4534                          unsigned long *pwriteback)
4535 {
4536         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4537         struct mem_cgroup *parent;
4538
4539         *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4540
4541         *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4542         *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4543                         memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4544         *pheadroom = PAGE_COUNTER_MAX;
4545
4546         while ((parent = parent_mem_cgroup(memcg))) {
4547                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4548                                             READ_ONCE(memcg->memory.high));
4549                 unsigned long used = page_counter_read(&memcg->memory);
4550
4551                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4552                 memcg = parent;
4553         }
4554 }
4555
4556 /*
4557  * Foreign dirty flushing
4558  *
4559  * There's an inherent mismatch between memcg and writeback.  The former
4560  * trackes ownership per-page while the latter per-inode.  This was a
4561  * deliberate design decision because honoring per-page ownership in the
4562  * writeback path is complicated, may lead to higher CPU and IO overheads
4563  * and deemed unnecessary given that write-sharing an inode across
4564  * different cgroups isn't a common use-case.
4565  *
4566  * Combined with inode majority-writer ownership switching, this works well
4567  * enough in most cases but there are some pathological cases.  For
4568  * example, let's say there are two cgroups A and B which keep writing to
4569  * different but confined parts of the same inode.  B owns the inode and
4570  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4571  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4572  * triggering background writeback.  A will be slowed down without a way to
4573  * make writeback of the dirty pages happen.
4574  *
4575  * Conditions like the above can lead to a cgroup getting repatedly and
4576  * severely throttled after making some progress after each
4577  * dirty_expire_interval while the underyling IO device is almost
4578  * completely idle.
4579  *
4580  * Solving this problem completely requires matching the ownership tracking
4581  * granularities between memcg and writeback in either direction.  However,
4582  * the more egregious behaviors can be avoided by simply remembering the
4583  * most recent foreign dirtying events and initiating remote flushes on
4584  * them when local writeback isn't enough to keep the memory clean enough.
4585  *
4586  * The following two functions implement such mechanism.  When a foreign
4587  * page - a page whose memcg and writeback ownerships don't match - is
4588  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4589  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4590  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4591  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4592  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4593  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4594  * limited to MEMCG_CGWB_FRN_CNT.
4595  *
4596  * The mechanism only remembers IDs and doesn't hold any object references.
4597  * As being wrong occasionally doesn't matter, updates and accesses to the
4598  * records are lockless and racy.
4599  */
4600 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4601                                              struct bdi_writeback *wb)
4602 {
4603         struct mem_cgroup *memcg = page->mem_cgroup;
4604         struct memcg_cgwb_frn *frn;
4605         u64 now = get_jiffies_64();
4606         u64 oldest_at = now;
4607         int oldest = -1;
4608         int i;
4609
4610         trace_track_foreign_dirty(page, wb);
4611
4612         /*
4613          * Pick the slot to use.  If there is already a slot for @wb, keep
4614          * using it.  If not replace the oldest one which isn't being
4615          * written out.
4616          */
4617         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4618                 frn = &memcg->cgwb_frn[i];
4619                 if (frn->bdi_id == wb->bdi->id &&
4620                     frn->memcg_id == wb->memcg_css->id)
4621                         break;
4622                 if (time_before64(frn->at, oldest_at) &&
4623                     atomic_read(&frn->done.cnt) == 1) {
4624                         oldest = i;
4625                         oldest_at = frn->at;
4626                 }
4627         }
4628
4629         if (i < MEMCG_CGWB_FRN_CNT) {
4630                 /*
4631                  * Re-using an existing one.  Update timestamp lazily to
4632                  * avoid making the cacheline hot.  We want them to be
4633                  * reasonably up-to-date and significantly shorter than
4634                  * dirty_expire_interval as that's what expires the record.
4635                  * Use the shorter of 1s and dirty_expire_interval / 8.
4636                  */
4637                 unsigned long update_intv =
4638                         min_t(unsigned long, HZ,
4639                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4640
4641                 if (time_before64(frn->at, now - update_intv))
4642                         frn->at = now;
4643         } else if (oldest >= 0) {
4644                 /* replace the oldest free one */
4645                 frn = &memcg->cgwb_frn[oldest];
4646                 frn->bdi_id = wb->bdi->id;
4647                 frn->memcg_id = wb->memcg_css->id;
4648                 frn->at = now;
4649         }
4650 }
4651
4652 /* issue foreign writeback flushes for recorded foreign dirtying events */
4653 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4654 {
4655         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4656         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4657         u64 now = jiffies_64;
4658         int i;
4659
4660         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4661                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4662
4663                 /*
4664                  * If the record is older than dirty_expire_interval,
4665                  * writeback on it has already started.  No need to kick it
4666                  * off again.  Also, don't start a new one if there's
4667                  * already one in flight.
4668                  */
4669                 if (time_after64(frn->at, now - intv) &&
4670                     atomic_read(&frn->done.cnt) == 1) {
4671                         frn->at = 0;
4672                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4673                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4674                                                WB_REASON_FOREIGN_FLUSH,
4675                                                &frn->done);
4676                 }
4677         }
4678 }
4679
4680 #else   /* CONFIG_CGROUP_WRITEBACK */
4681
4682 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4683 {
4684         return 0;
4685 }
4686
4687 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4688 {
4689 }
4690
4691 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4692 {
4693 }
4694
4695 #endif  /* CONFIG_CGROUP_WRITEBACK */
4696
4697 /*
4698  * DO NOT USE IN NEW FILES.
4699  *
4700  * "cgroup.event_control" implementation.
4701  *
4702  * This is way over-engineered.  It tries to support fully configurable
4703  * events for each user.  Such level of flexibility is completely
4704  * unnecessary especially in the light of the planned unified hierarchy.
4705  *
4706  * Please deprecate this and replace with something simpler if at all
4707  * possible.
4708  */
4709
4710 /*
4711  * Unregister event and free resources.
4712  *
4713  * Gets called from workqueue.
4714  */
4715 static void memcg_event_remove(struct work_struct *work)
4716 {
4717         struct mem_cgroup_event *event =
4718                 container_of(work, struct mem_cgroup_event, remove);
4719         struct mem_cgroup *memcg = event->memcg;
4720
4721         remove_wait_queue(event->wqh, &event->wait);
4722
4723         event->unregister_event(memcg, event->eventfd);
4724
4725         /* Notify userspace the event is going away. */
4726         eventfd_signal(event->eventfd, 1);
4727
4728         eventfd_ctx_put(event->eventfd);
4729         kfree(event);
4730         css_put(&memcg->css);
4731 }
4732
4733 /*
4734  * Gets called on EPOLLHUP on eventfd when user closes it.
4735  *
4736  * Called with wqh->lock held and interrupts disabled.
4737  */
4738 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4739                             int sync, void *key)
4740 {
4741         struct mem_cgroup_event *event =
4742                 container_of(wait, struct mem_cgroup_event, wait);
4743         struct mem_cgroup *memcg = event->memcg;
4744         __poll_t flags = key_to_poll(key);
4745
4746         if (flags & EPOLLHUP) {
4747                 /*
4748                  * If the event has been detached at cgroup removal, we
4749                  * can simply return knowing the other side will cleanup
4750                  * for us.
4751                  *
4752                  * We can't race against event freeing since the other
4753                  * side will require wqh->lock via remove_wait_queue(),
4754                  * which we hold.
4755                  */
4756                 spin_lock(&memcg->event_list_lock);
4757                 if (!list_empty(&event->list)) {
4758                         list_del_init(&event->list);
4759                         /*
4760                          * We are in atomic context, but cgroup_event_remove()
4761                          * may sleep, so we have to call it in workqueue.
4762                          */
4763                         schedule_work(&event->remove);
4764                 }
4765                 spin_unlock(&memcg->event_list_lock);
4766         }
4767
4768         return 0;
4769 }
4770
4771 static void memcg_event_ptable_queue_proc(struct file *file,
4772                 wait_queue_head_t *wqh, poll_table *pt)
4773 {
4774         struct mem_cgroup_event *event =
4775                 container_of(pt, struct mem_cgroup_event, pt);
4776
4777         event->wqh = wqh;
4778         add_wait_queue(wqh, &event->wait);
4779 }
4780
4781 /*
4782  * DO NOT USE IN NEW FILES.
4783  *
4784  * Parse input and register new cgroup event handler.
4785  *
4786  * Input must be in format '<event_fd> <control_fd> <args>'.
4787  * Interpretation of args is defined by control file implementation.
4788  */
4789 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4790                                          char *buf, size_t nbytes, loff_t off)
4791 {
4792         struct cgroup_subsys_state *css = of_css(of);
4793         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4794         struct mem_cgroup_event *event;
4795         struct cgroup_subsys_state *cfile_css;
4796         unsigned int efd, cfd;
4797         struct fd efile;
4798         struct fd cfile;
4799         const char *name;
4800         char *endp;
4801         int ret;
4802
4803         buf = strstrip(buf);
4804
4805         efd = simple_strtoul(buf, &endp, 10);
4806         if (*endp != ' ')
4807                 return -EINVAL;
4808         buf = endp + 1;
4809
4810         cfd = simple_strtoul(buf, &endp, 10);
4811         if ((*endp != ' ') && (*endp != '\0'))
4812                 return -EINVAL;
4813         buf = endp + 1;
4814
4815         event = kzalloc(sizeof(*event), GFP_KERNEL);
4816         if (!event)
4817                 return -ENOMEM;
4818
4819         event->memcg = memcg;
4820         INIT_LIST_HEAD(&event->list);
4821         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4822         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4823         INIT_WORK(&event->remove, memcg_event_remove);
4824
4825         efile = fdget(efd);
4826         if (!efile.file) {
4827                 ret = -EBADF;
4828                 goto out_kfree;
4829         }
4830
4831         event->eventfd = eventfd_ctx_fileget(efile.file);
4832         if (IS_ERR(event->eventfd)) {
4833                 ret = PTR_ERR(event->eventfd);
4834                 goto out_put_efile;
4835         }
4836
4837         cfile = fdget(cfd);
4838         if (!cfile.file) {
4839                 ret = -EBADF;
4840                 goto out_put_eventfd;
4841         }
4842
4843         /* the process need read permission on control file */
4844         /* AV: shouldn't we check that it's been opened for read instead? */
4845         ret = inode_permission(file_inode(cfile.file), MAY_READ);
4846         if (ret < 0)
4847                 goto out_put_cfile;
4848
4849         /*
4850          * Determine the event callbacks and set them in @event.  This used
4851          * to be done via struct cftype but cgroup core no longer knows
4852          * about these events.  The following is crude but the whole thing
4853          * is for compatibility anyway.
4854          *
4855          * DO NOT ADD NEW FILES.
4856          */
4857         name = cfile.file->f_path.dentry->d_name.name;
4858
4859         if (!strcmp(name, "memory.usage_in_bytes")) {
4860                 event->register_event = mem_cgroup_usage_register_event;
4861                 event->unregister_event = mem_cgroup_usage_unregister_event;
4862         } else if (!strcmp(name, "memory.oom_control")) {
4863                 event->register_event = mem_cgroup_oom_register_event;
4864                 event->unregister_event = mem_cgroup_oom_unregister_event;
4865         } else if (!strcmp(name, "memory.pressure_level")) {
4866                 event->register_event = vmpressure_register_event;
4867                 event->unregister_event = vmpressure_unregister_event;
4868         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4869                 event->register_event = memsw_cgroup_usage_register_event;
4870                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4871         } else {
4872                 ret = -EINVAL;
4873                 goto out_put_cfile;
4874         }
4875
4876         /*
4877          * Verify @cfile should belong to @css.  Also, remaining events are
4878          * automatically removed on cgroup destruction but the removal is
4879          * asynchronous, so take an extra ref on @css.
4880          */
4881         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4882                                                &memory_cgrp_subsys);
4883         ret = -EINVAL;
4884         if (IS_ERR(cfile_css))
4885                 goto out_put_cfile;
4886         if (cfile_css != css) {
4887                 css_put(cfile_css);
4888                 goto out_put_cfile;
4889         }
4890
4891         ret = event->register_event(memcg, event->eventfd, buf);
4892         if (ret)
4893                 goto out_put_css;
4894
4895         vfs_poll(efile.file, &event->pt);
4896
4897         spin_lock(&memcg->event_list_lock);
4898         list_add(&event->list, &memcg->event_list);
4899         spin_unlock(&memcg->event_list_lock);
4900
4901         fdput(cfile);
4902         fdput(efile);
4903
4904         return nbytes;
4905
4906 out_put_css:
4907         css_put(css);
4908 out_put_cfile:
4909         fdput(cfile);
4910 out_put_eventfd:
4911         eventfd_ctx_put(event->eventfd);
4912 out_put_efile:
4913         fdput(efile);
4914 out_kfree:
4915         kfree(event);
4916
4917         return ret;
4918 }
4919
4920 static struct cftype mem_cgroup_legacy_files[] = {
4921         {
4922                 .name = "usage_in_bytes",
4923                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4924                 .read_u64 = mem_cgroup_read_u64,
4925         },
4926         {
4927                 .name = "max_usage_in_bytes",
4928                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4929                 .write = mem_cgroup_reset,
4930                 .read_u64 = mem_cgroup_read_u64,
4931         },
4932         {
4933                 .name = "limit_in_bytes",
4934                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4935                 .write = mem_cgroup_write,
4936                 .read_u64 = mem_cgroup_read_u64,
4937         },
4938         {
4939                 .name = "soft_limit_in_bytes",
4940                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4941                 .write = mem_cgroup_write,
4942                 .read_u64 = mem_cgroup_read_u64,
4943         },
4944         {
4945                 .name = "failcnt",
4946                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4947                 .write = mem_cgroup_reset,
4948                 .read_u64 = mem_cgroup_read_u64,
4949         },
4950         {
4951                 .name = "stat",
4952                 .seq_show = memcg_stat_show,
4953         },
4954         {
4955                 .name = "force_empty",
4956                 .write = mem_cgroup_force_empty_write,
4957         },
4958         {
4959                 .name = "use_hierarchy",
4960                 .write_u64 = mem_cgroup_hierarchy_write,
4961                 .read_u64 = mem_cgroup_hierarchy_read,
4962         },
4963         {
4964                 .name = "cgroup.event_control",         /* XXX: for compat */
4965                 .write = memcg_write_event_control,
4966                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4967         },
4968         {
4969                 .name = "swappiness",
4970                 .read_u64 = mem_cgroup_swappiness_read,
4971                 .write_u64 = mem_cgroup_swappiness_write,
4972         },
4973         {
4974                 .name = "move_charge_at_immigrate",
4975                 .read_u64 = mem_cgroup_move_charge_read,
4976                 .write_u64 = mem_cgroup_move_charge_write,
4977         },
4978         {
4979                 .name = "oom_control",
4980                 .seq_show = mem_cgroup_oom_control_read,
4981                 .write_u64 = mem_cgroup_oom_control_write,
4982                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4983         },
4984         {
4985                 .name = "pressure_level",
4986         },
4987 #ifdef CONFIG_NUMA
4988         {
4989                 .name = "numa_stat",
4990                 .seq_show = memcg_numa_stat_show,
4991         },
4992 #endif
4993         {
4994                 .name = "kmem.limit_in_bytes",
4995                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4996                 .write = mem_cgroup_write,
4997                 .read_u64 = mem_cgroup_read_u64,
4998         },
4999         {
5000                 .name = "kmem.usage_in_bytes",
5001                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5002                 .read_u64 = mem_cgroup_read_u64,
5003         },
5004         {
5005                 .name = "kmem.failcnt",
5006                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5007                 .write = mem_cgroup_reset,
5008                 .read_u64 = mem_cgroup_read_u64,
5009         },
5010         {
5011                 .name = "kmem.max_usage_in_bytes",
5012                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5013                 .write = mem_cgroup_reset,
5014                 .read_u64 = mem_cgroup_read_u64,
5015         },
5016 #if defined(CONFIG_MEMCG_KMEM) && \
5017         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5018         {
5019                 .name = "kmem.slabinfo",
5020                 .seq_show = memcg_slab_show,
5021         },
5022 #endif
5023         {
5024                 .name = "kmem.tcp.limit_in_bytes",
5025                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5026                 .write = mem_cgroup_write,
5027                 .read_u64 = mem_cgroup_read_u64,
5028         },
5029         {
5030                 .name = "kmem.tcp.usage_in_bytes",
5031                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5032                 .read_u64 = mem_cgroup_read_u64,
5033         },
5034         {
5035                 .name = "kmem.tcp.failcnt",
5036                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5037                 .write = mem_cgroup_reset,
5038                 .read_u64 = mem_cgroup_read_u64,
5039         },
5040         {
5041                 .name = "kmem.tcp.max_usage_in_bytes",
5042                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5043                 .write = mem_cgroup_reset,
5044                 .read_u64 = mem_cgroup_read_u64,
5045         },
5046         { },    /* terminate */
5047 };
5048
5049 /*
5050  * Private memory cgroup IDR
5051  *
5052  * Swap-out records and page cache shadow entries need to store memcg
5053  * references in constrained space, so we maintain an ID space that is
5054  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5055  * memory-controlled cgroups to 64k.
5056  *
5057  * However, there usually are many references to the offline CSS after
5058  * the cgroup has been destroyed, such as page cache or reclaimable
5059  * slab objects, that don't need to hang on to the ID. We want to keep
5060  * those dead CSS from occupying IDs, or we might quickly exhaust the
5061  * relatively small ID space and prevent the creation of new cgroups
5062  * even when there are much fewer than 64k cgroups - possibly none.
5063  *
5064  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5065  * be freed and recycled when it's no longer needed, which is usually
5066  * when the CSS is offlined.
5067  *
5068  * The only exception to that are records of swapped out tmpfs/shmem
5069  * pages that need to be attributed to live ancestors on swapin. But
5070  * those references are manageable from userspace.
5071  */
5072
5073 static DEFINE_IDR(mem_cgroup_idr);
5074
5075 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5076 {
5077         if (memcg->id.id > 0) {
5078                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5079                 memcg->id.id = 0;
5080         }
5081 }
5082
5083 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5084                                                   unsigned int n)
5085 {
5086         refcount_add(n, &memcg->id.ref);
5087 }
5088
5089 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5090 {
5091         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5092                 mem_cgroup_id_remove(memcg);
5093
5094                 /* Memcg ID pins CSS */
5095                 css_put(&memcg->css);
5096         }
5097 }
5098
5099 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5100 {
5101         mem_cgroup_id_put_many(memcg, 1);
5102 }
5103
5104 /**
5105  * mem_cgroup_from_id - look up a memcg from a memcg id
5106  * @id: the memcg id to look up
5107  *
5108  * Caller must hold rcu_read_lock().
5109  */
5110 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5111 {
5112         WARN_ON_ONCE(!rcu_read_lock_held());
5113         return idr_find(&mem_cgroup_idr, id);
5114 }
5115
5116 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5117 {
5118         struct mem_cgroup_per_node *pn;
5119         int tmp = node;
5120         /*
5121          * This routine is called against possible nodes.
5122          * But it's BUG to call kmalloc() against offline node.
5123          *
5124          * TODO: this routine can waste much memory for nodes which will
5125          *       never be onlined. It's better to use memory hotplug callback
5126          *       function.
5127          */
5128         if (!node_state(node, N_NORMAL_MEMORY))
5129                 tmp = -1;
5130         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5131         if (!pn)
5132                 return 1;
5133
5134         /* We charge the parent cgroup, never the current task */
5135         WARN_ON_ONCE(!current->active_memcg);
5136
5137         pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5138                                                  GFP_KERNEL_ACCOUNT);
5139         if (!pn->lruvec_stat_local) {
5140                 kfree(pn);
5141                 return 1;
5142         }
5143
5144         pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5145                                                GFP_KERNEL_ACCOUNT);
5146         if (!pn->lruvec_stat_cpu) {
5147                 free_percpu(pn->lruvec_stat_local);
5148                 kfree(pn);
5149                 return 1;
5150         }
5151
5152         lruvec_init(&pn->lruvec);
5153         pn->usage_in_excess = 0;
5154         pn->on_tree = false;
5155         pn->memcg = memcg;
5156
5157         memcg->nodeinfo[node] = pn;
5158         return 0;
5159 }
5160
5161 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5162 {
5163         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5164
5165         if (!pn)
5166                 return;
5167
5168         free_percpu(pn->lruvec_stat_cpu);
5169         free_percpu(pn->lruvec_stat_local);
5170         kfree(pn);
5171 }
5172
5173 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5174 {
5175         int node;
5176
5177         for_each_node(node)
5178                 free_mem_cgroup_per_node_info(memcg, node);
5179         free_percpu(memcg->vmstats_percpu);
5180         free_percpu(memcg->vmstats_local);
5181         kfree(memcg);
5182 }
5183
5184 static void mem_cgroup_free(struct mem_cgroup *memcg)
5185 {
5186         memcg_wb_domain_exit(memcg);
5187         /*
5188          * Flush percpu vmstats and vmevents to guarantee the value correctness
5189          * on parent's and all ancestor levels.
5190          */
5191         memcg_flush_percpu_vmstats(memcg);
5192         memcg_flush_percpu_vmevents(memcg);
5193         __mem_cgroup_free(memcg);
5194 }
5195
5196 static struct mem_cgroup *mem_cgroup_alloc(void)
5197 {
5198         struct mem_cgroup *memcg;
5199         unsigned int size;
5200         int node;
5201         int __maybe_unused i;
5202         long error = -ENOMEM;
5203
5204         size = sizeof(struct mem_cgroup);
5205         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5206
5207         memcg = kzalloc(size, GFP_KERNEL);
5208         if (!memcg)
5209                 return ERR_PTR(error);
5210
5211         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5212                                  1, MEM_CGROUP_ID_MAX,
5213                                  GFP_KERNEL);
5214         if (memcg->id.id < 0) {
5215                 error = memcg->id.id;
5216                 goto fail;
5217         }
5218
5219         /* We charge the parent cgroup, never the current task */
5220         WARN_ON_ONCE(!current->active_memcg);
5221
5222         memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5223                                                 GFP_KERNEL_ACCOUNT);
5224         if (!memcg->vmstats_local)
5225                 goto fail;
5226
5227         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5228                                                  GFP_KERNEL_ACCOUNT);
5229         if (!memcg->vmstats_percpu)
5230                 goto fail;
5231
5232         for_each_node(node)
5233                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5234                         goto fail;
5235
5236         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5237                 goto fail;
5238
5239         INIT_WORK(&memcg->high_work, high_work_func);
5240         INIT_LIST_HEAD(&memcg->oom_notify);
5241         mutex_init(&memcg->thresholds_lock);
5242         spin_lock_init(&memcg->move_lock);
5243         vmpressure_init(&memcg->vmpressure);
5244         INIT_LIST_HEAD(&memcg->event_list);
5245         spin_lock_init(&memcg->event_list_lock);
5246         memcg->socket_pressure = jiffies;
5247 #ifdef CONFIG_MEMCG_KMEM
5248         memcg->kmemcg_id = -1;
5249         INIT_LIST_HEAD(&memcg->objcg_list);
5250 #endif
5251 #ifdef CONFIG_CGROUP_WRITEBACK
5252         INIT_LIST_HEAD(&memcg->cgwb_list);
5253         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5254                 memcg->cgwb_frn[i].done =
5255                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5256 #endif
5257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5258         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5259         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5260         memcg->deferred_split_queue.split_queue_len = 0;
5261 #endif
5262         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5263         return memcg;
5264 fail:
5265         mem_cgroup_id_remove(memcg);
5266         __mem_cgroup_free(memcg);
5267         return ERR_PTR(error);
5268 }
5269
5270 static struct cgroup_subsys_state * __ref
5271 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5272 {
5273         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5274         struct mem_cgroup *memcg;
5275         long error = -ENOMEM;
5276
5277         memalloc_use_memcg(parent);
5278         memcg = mem_cgroup_alloc();
5279         memalloc_unuse_memcg();
5280         if (IS_ERR(memcg))
5281                 return ERR_CAST(memcg);
5282
5283         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5284         memcg->soft_limit = PAGE_COUNTER_MAX;
5285         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5286         if (parent) {
5287                 memcg->swappiness = mem_cgroup_swappiness(parent);
5288                 memcg->oom_kill_disable = parent->oom_kill_disable;
5289         }
5290         if (parent && parent->use_hierarchy) {
5291                 memcg->use_hierarchy = true;
5292                 page_counter_init(&memcg->memory, &parent->memory);
5293                 page_counter_init(&memcg->swap, &parent->swap);
5294                 page_counter_init(&memcg->memsw, &parent->memsw);
5295                 page_counter_init(&memcg->kmem, &parent->kmem);
5296                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5297         } else {
5298                 page_counter_init(&memcg->memory, NULL);
5299                 page_counter_init(&memcg->swap, NULL);
5300                 page_counter_init(&memcg->memsw, NULL);
5301                 page_counter_init(&memcg->kmem, NULL);
5302                 page_counter_init(&memcg->tcpmem, NULL);
5303                 /*
5304                  * Deeper hierachy with use_hierarchy == false doesn't make
5305                  * much sense so let cgroup subsystem know about this
5306                  * unfortunate state in our controller.
5307                  */
5308                 if (parent != root_mem_cgroup)
5309                         memory_cgrp_subsys.broken_hierarchy = true;
5310         }
5311
5312         /* The following stuff does not apply to the root */
5313         if (!parent) {
5314                 root_mem_cgroup = memcg;
5315                 return &memcg->css;
5316         }
5317
5318         error = memcg_online_kmem(memcg);
5319         if (error)
5320                 goto fail;
5321
5322         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5323                 static_branch_inc(&memcg_sockets_enabled_key);
5324
5325         return &memcg->css;
5326 fail:
5327         mem_cgroup_id_remove(memcg);
5328         mem_cgroup_free(memcg);
5329         return ERR_PTR(error);
5330 }
5331
5332 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5333 {
5334         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5335
5336         /*
5337          * A memcg must be visible for memcg_expand_shrinker_maps()
5338          * by the time the maps are allocated. So, we allocate maps
5339          * here, when for_each_mem_cgroup() can't skip it.
5340          */
5341         if (memcg_alloc_shrinker_maps(memcg)) {
5342                 mem_cgroup_id_remove(memcg);
5343                 return -ENOMEM;
5344         }
5345
5346         /* Online state pins memcg ID, memcg ID pins CSS */
5347         refcount_set(&memcg->id.ref, 1);
5348         css_get(css);
5349         return 0;
5350 }
5351
5352 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5353 {
5354         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5355         struct mem_cgroup_event *event, *tmp;
5356
5357         /*
5358          * Unregister events and notify userspace.
5359          * Notify userspace about cgroup removing only after rmdir of cgroup
5360          * directory to avoid race between userspace and kernelspace.
5361          */
5362         spin_lock(&memcg->event_list_lock);
5363         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5364                 list_del_init(&event->list);
5365                 schedule_work(&event->remove);
5366         }
5367         spin_unlock(&memcg->event_list_lock);
5368
5369         page_counter_set_min(&memcg->memory, 0);
5370         page_counter_set_low(&memcg->memory, 0);
5371
5372         memcg_offline_kmem(memcg);
5373         wb_memcg_offline(memcg);
5374
5375         drain_all_stock(memcg);
5376
5377         mem_cgroup_id_put(memcg);
5378 }
5379
5380 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5381 {
5382         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5383
5384         invalidate_reclaim_iterators(memcg);
5385 }
5386
5387 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5388 {
5389         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5390         int __maybe_unused i;
5391
5392 #ifdef CONFIG_CGROUP_WRITEBACK
5393         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5394                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5395 #endif
5396         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5397                 static_branch_dec(&memcg_sockets_enabled_key);
5398
5399         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5400                 static_branch_dec(&memcg_sockets_enabled_key);
5401
5402         vmpressure_cleanup(&memcg->vmpressure);
5403         cancel_work_sync(&memcg->high_work);
5404         mem_cgroup_remove_from_trees(memcg);
5405         memcg_free_shrinker_maps(memcg);
5406         memcg_free_kmem(memcg);
5407         mem_cgroup_free(memcg);
5408 }
5409
5410 /**
5411  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5412  * @css: the target css
5413  *
5414  * Reset the states of the mem_cgroup associated with @css.  This is
5415  * invoked when the userland requests disabling on the default hierarchy
5416  * but the memcg is pinned through dependency.  The memcg should stop
5417  * applying policies and should revert to the vanilla state as it may be
5418  * made visible again.
5419  *
5420  * The current implementation only resets the essential configurations.
5421  * This needs to be expanded to cover all the visible parts.
5422  */
5423 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5424 {
5425         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5426
5427         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5428         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5429         page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5430         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5431         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5432         page_counter_set_min(&memcg->memory, 0);
5433         page_counter_set_low(&memcg->memory, 0);
5434         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5435         memcg->soft_limit = PAGE_COUNTER_MAX;
5436         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5437         memcg_wb_domain_size_changed(memcg);
5438 }
5439
5440 #ifdef CONFIG_MMU
5441 /* Handlers for move charge at task migration. */
5442 static int mem_cgroup_do_precharge(unsigned long count)
5443 {
5444         int ret;
5445
5446         /* Try a single bulk charge without reclaim first, kswapd may wake */
5447         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5448         if (!ret) {
5449                 mc.precharge += count;
5450                 return ret;
5451         }
5452
5453         /* Try charges one by one with reclaim, but do not retry */
5454         while (count--) {
5455                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5456                 if (ret)
5457                         return ret;
5458                 mc.precharge++;
5459                 cond_resched();
5460         }
5461         return 0;
5462 }
5463
5464 union mc_target {
5465         struct page     *page;
5466         swp_entry_t     ent;
5467 };
5468
5469 enum mc_target_type {
5470         MC_TARGET_NONE = 0,
5471         MC_TARGET_PAGE,
5472         MC_TARGET_SWAP,
5473         MC_TARGET_DEVICE,
5474 };
5475
5476 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5477                                                 unsigned long addr, pte_t ptent)
5478 {
5479         struct page *page = vm_normal_page(vma, addr, ptent);
5480
5481         if (!page || !page_mapped(page))
5482                 return NULL;
5483         if (PageAnon(page)) {
5484                 if (!(mc.flags & MOVE_ANON))
5485                         return NULL;
5486         } else {
5487                 if (!(mc.flags & MOVE_FILE))
5488                         return NULL;
5489         }
5490         if (!get_page_unless_zero(page))
5491                 return NULL;
5492
5493         return page;
5494 }
5495
5496 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5497 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5498                         pte_t ptent, swp_entry_t *entry)
5499 {
5500         struct page *page = NULL;
5501         swp_entry_t ent = pte_to_swp_entry(ptent);
5502
5503         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5504                 return NULL;
5505
5506         /*
5507          * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5508          * a device and because they are not accessible by CPU they are store
5509          * as special swap entry in the CPU page table.
5510          */
5511         if (is_device_private_entry(ent)) {
5512                 page = device_private_entry_to_page(ent);
5513                 /*
5514                  * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5515                  * a refcount of 1 when free (unlike normal page)
5516                  */
5517                 if (!page_ref_add_unless(page, 1, 1))
5518                         return NULL;
5519                 return page;
5520         }
5521
5522         /*
5523          * Because lookup_swap_cache() updates some statistics counter,
5524          * we call find_get_page() with swapper_space directly.
5525          */
5526         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5527         entry->val = ent.val;
5528
5529         return page;
5530 }
5531 #else
5532 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5533                         pte_t ptent, swp_entry_t *entry)
5534 {
5535         return NULL;
5536 }
5537 #endif
5538
5539 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5540                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5541 {
5542         struct page *page = NULL;
5543         struct address_space *mapping;
5544         pgoff_t pgoff;
5545
5546         if (!vma->vm_file) /* anonymous vma */
5547                 return NULL;
5548         if (!(mc.flags & MOVE_FILE))
5549                 return NULL;
5550
5551         mapping = vma->vm_file->f_mapping;
5552         pgoff = linear_page_index(vma, addr);
5553
5554         /* page is moved even if it's not RSS of this task(page-faulted). */
5555 #ifdef CONFIG_SWAP
5556         /* shmem/tmpfs may report page out on swap: account for that too. */
5557         if (shmem_mapping(mapping)) {
5558                 page = find_get_entry(mapping, pgoff);
5559                 if (xa_is_value(page)) {
5560                         swp_entry_t swp = radix_to_swp_entry(page);
5561                         *entry = swp;
5562                         page = find_get_page(swap_address_space(swp),
5563                                              swp_offset(swp));
5564                 }
5565         } else
5566                 page = find_get_page(mapping, pgoff);
5567 #else
5568         page = find_get_page(mapping, pgoff);
5569 #endif
5570         return page;
5571 }
5572
5573 /**
5574  * mem_cgroup_move_account - move account of the page
5575  * @page: the page
5576  * @compound: charge the page as compound or small page
5577  * @from: mem_cgroup which the page is moved from.
5578  * @to: mem_cgroup which the page is moved to. @from != @to.
5579  *
5580  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5581  *
5582  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5583  * from old cgroup.
5584  */
5585 static int mem_cgroup_move_account(struct page *page,
5586                                    bool compound,
5587                                    struct mem_cgroup *from,
5588                                    struct mem_cgroup *to)
5589 {
5590         struct lruvec *from_vec, *to_vec;
5591         struct pglist_data *pgdat;
5592         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5593         int ret;
5594
5595         VM_BUG_ON(from == to);
5596         VM_BUG_ON_PAGE(PageLRU(page), page);
5597         VM_BUG_ON(compound && !PageTransHuge(page));
5598
5599         /*
5600          * Prevent mem_cgroup_migrate() from looking at
5601          * page->mem_cgroup of its source page while we change it.
5602          */
5603         ret = -EBUSY;
5604         if (!trylock_page(page))
5605                 goto out;
5606
5607         ret = -EINVAL;
5608         if (page->mem_cgroup != from)
5609                 goto out_unlock;
5610
5611         pgdat = page_pgdat(page);
5612         from_vec = mem_cgroup_lruvec(from, pgdat);
5613         to_vec = mem_cgroup_lruvec(to, pgdat);
5614
5615         lock_page_memcg(page);
5616
5617         if (PageAnon(page)) {
5618                 if (page_mapped(page)) {
5619                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5620                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5621                         if (PageTransHuge(page)) {
5622                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5623                                                    -nr_pages);
5624                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5625                                                    nr_pages);
5626                         }
5627
5628                 }
5629         } else {
5630                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5631                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5632
5633                 if (PageSwapBacked(page)) {
5634                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5635                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5636                 }
5637
5638                 if (page_mapped(page)) {
5639                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5640                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5641                 }
5642
5643                 if (PageDirty(page)) {
5644                         struct address_space *mapping = page_mapping(page);
5645
5646                         if (mapping_cap_account_dirty(mapping)) {
5647                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5648                                                    -nr_pages);
5649                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5650                                                    nr_pages);
5651                         }
5652                 }
5653         }
5654
5655         if (PageWriteback(page)) {
5656                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5657                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5658         }
5659
5660         /*
5661          * All state has been migrated, let's switch to the new memcg.
5662          *
5663          * It is safe to change page->mem_cgroup here because the page
5664          * is referenced, charged, isolated, and locked: we can't race
5665          * with (un)charging, migration, LRU putback, or anything else
5666          * that would rely on a stable page->mem_cgroup.
5667          *
5668          * Note that lock_page_memcg is a memcg lock, not a page lock,
5669          * to save space. As soon as we switch page->mem_cgroup to a
5670          * new memcg that isn't locked, the above state can change
5671          * concurrently again. Make sure we're truly done with it.
5672          */
5673         smp_mb();
5674
5675         css_get(&to->css);
5676         css_put(&from->css);
5677
5678         page->mem_cgroup = to;
5679
5680         __unlock_page_memcg(from);
5681
5682         ret = 0;
5683
5684         local_irq_disable();
5685         mem_cgroup_charge_statistics(to, page, nr_pages);
5686         memcg_check_events(to, page);
5687         mem_cgroup_charge_statistics(from, page, -nr_pages);
5688         memcg_check_events(from, page);
5689         local_irq_enable();
5690 out_unlock:
5691         unlock_page(page);
5692 out:
5693         return ret;
5694 }
5695
5696 /**
5697  * get_mctgt_type - get target type of moving charge
5698  * @vma: the vma the pte to be checked belongs
5699  * @addr: the address corresponding to the pte to be checked
5700  * @ptent: the pte to be checked
5701  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5702  *
5703  * Returns
5704  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5705  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5706  *     move charge. if @target is not NULL, the page is stored in target->page
5707  *     with extra refcnt got(Callers should handle it).
5708  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5709  *     target for charge migration. if @target is not NULL, the entry is stored
5710  *     in target->ent.
5711  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5712  *     (so ZONE_DEVICE page and thus not on the lru).
5713  *     For now we such page is charge like a regular page would be as for all
5714  *     intent and purposes it is just special memory taking the place of a
5715  *     regular page.
5716  *
5717  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5718  *
5719  * Called with pte lock held.
5720  */
5721
5722 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5723                 unsigned long addr, pte_t ptent, union mc_target *target)
5724 {
5725         struct page *page = NULL;
5726         enum mc_target_type ret = MC_TARGET_NONE;
5727         swp_entry_t ent = { .val = 0 };
5728
5729         if (pte_present(ptent))
5730                 page = mc_handle_present_pte(vma, addr, ptent);
5731         else if (is_swap_pte(ptent))
5732                 page = mc_handle_swap_pte(vma, ptent, &ent);
5733         else if (pte_none(ptent))
5734                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5735
5736         if (!page && !ent.val)
5737                 return ret;
5738         if (page) {
5739                 /*
5740                  * Do only loose check w/o serialization.
5741                  * mem_cgroup_move_account() checks the page is valid or
5742                  * not under LRU exclusion.
5743                  */
5744                 if (page->mem_cgroup == mc.from) {
5745                         ret = MC_TARGET_PAGE;
5746                         if (is_device_private_page(page))
5747                                 ret = MC_TARGET_DEVICE;
5748                         if (target)
5749                                 target->page = page;
5750                 }
5751                 if (!ret || !target)
5752                         put_page(page);
5753         }
5754         /*
5755          * There is a swap entry and a page doesn't exist or isn't charged.
5756          * But we cannot move a tail-page in a THP.
5757          */
5758         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5759             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5760                 ret = MC_TARGET_SWAP;
5761                 if (target)
5762                         target->ent = ent;
5763         }
5764         return ret;
5765 }
5766
5767 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5768 /*
5769  * We don't consider PMD mapped swapping or file mapped pages because THP does
5770  * not support them for now.
5771  * Caller should make sure that pmd_trans_huge(pmd) is true.
5772  */
5773 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5774                 unsigned long addr, pmd_t pmd, union mc_target *target)
5775 {
5776         struct page *page = NULL;
5777         enum mc_target_type ret = MC_TARGET_NONE;
5778
5779         if (unlikely(is_swap_pmd(pmd))) {
5780                 VM_BUG_ON(thp_migration_supported() &&
5781                                   !is_pmd_migration_entry(pmd));
5782                 return ret;
5783         }
5784         page = pmd_page(pmd);
5785         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5786         if (!(mc.flags & MOVE_ANON))
5787                 return ret;
5788         if (page->mem_cgroup == mc.from) {
5789                 ret = MC_TARGET_PAGE;
5790                 if (target) {
5791                         get_page(page);
5792                         target->page = page;
5793                 }
5794         }
5795         return ret;
5796 }
5797 #else
5798 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5799                 unsigned long addr, pmd_t pmd, union mc_target *target)
5800 {
5801         return MC_TARGET_NONE;
5802 }
5803 #endif
5804
5805 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5806                                         unsigned long addr, unsigned long end,
5807                                         struct mm_walk *walk)
5808 {
5809         struct vm_area_struct *vma = walk->vma;
5810         pte_t *pte;
5811         spinlock_t *ptl;
5812
5813         ptl = pmd_trans_huge_lock(pmd, vma);
5814         if (ptl) {
5815                 /*
5816                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5817                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5818                  * this might change.
5819                  */
5820                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5821                         mc.precharge += HPAGE_PMD_NR;
5822                 spin_unlock(ptl);
5823                 return 0;
5824         }
5825
5826         if (pmd_trans_unstable(pmd))
5827                 return 0;
5828         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5829         for (; addr != end; pte++, addr += PAGE_SIZE)
5830                 if (get_mctgt_type(vma, addr, *pte, NULL))
5831                         mc.precharge++; /* increment precharge temporarily */
5832         pte_unmap_unlock(pte - 1, ptl);
5833         cond_resched();
5834
5835         return 0;
5836 }
5837
5838 static const struct mm_walk_ops precharge_walk_ops = {
5839         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5840 };
5841
5842 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5843 {
5844         unsigned long precharge;
5845
5846         mmap_read_lock(mm);
5847         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5848         mmap_read_unlock(mm);
5849
5850         precharge = mc.precharge;
5851         mc.precharge = 0;
5852
5853         return precharge;
5854 }
5855
5856 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5857 {
5858         unsigned long precharge = mem_cgroup_count_precharge(mm);
5859
5860         VM_BUG_ON(mc.moving_task);
5861         mc.moving_task = current;
5862         return mem_cgroup_do_precharge(precharge);
5863 }
5864
5865 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5866 static void __mem_cgroup_clear_mc(void)
5867 {
5868         struct mem_cgroup *from = mc.from;
5869         struct mem_cgroup *to = mc.to;
5870
5871         /* we must uncharge all the leftover precharges from mc.to */
5872         if (mc.precharge) {
5873                 cancel_charge(mc.to, mc.precharge);
5874                 mc.precharge = 0;
5875         }
5876         /*
5877          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5878          * we must uncharge here.
5879          */
5880         if (mc.moved_charge) {
5881                 cancel_charge(mc.from, mc.moved_charge);
5882                 mc.moved_charge = 0;
5883         }
5884         /* we must fixup refcnts and charges */
5885         if (mc.moved_swap) {
5886                 /* uncharge swap account from the old cgroup */
5887                 if (!mem_cgroup_is_root(mc.from))
5888                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5889
5890                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5891
5892                 /*
5893                  * we charged both to->memory and to->memsw, so we
5894                  * should uncharge to->memory.
5895                  */
5896                 if (!mem_cgroup_is_root(mc.to))
5897                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5898
5899                 mc.moved_swap = 0;
5900         }
5901         memcg_oom_recover(from);
5902         memcg_oom_recover(to);
5903         wake_up_all(&mc.waitq);
5904 }
5905
5906 static void mem_cgroup_clear_mc(void)
5907 {
5908         struct mm_struct *mm = mc.mm;
5909
5910         /*
5911          * we must clear moving_task before waking up waiters at the end of
5912          * task migration.
5913          */
5914         mc.moving_task = NULL;
5915         __mem_cgroup_clear_mc();
5916         spin_lock(&mc.lock);
5917         mc.from = NULL;
5918         mc.to = NULL;
5919         mc.mm = NULL;
5920         spin_unlock(&mc.lock);
5921
5922         mmput(mm);
5923 }
5924
5925 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5926 {
5927         struct cgroup_subsys_state *css;
5928         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5929         struct mem_cgroup *from;
5930         struct task_struct *leader, *p;
5931         struct mm_struct *mm;
5932         unsigned long move_flags;
5933         int ret = 0;
5934
5935         /* charge immigration isn't supported on the default hierarchy */
5936         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5937                 return 0;
5938
5939         /*
5940          * Multi-process migrations only happen on the default hierarchy
5941          * where charge immigration is not used.  Perform charge
5942          * immigration if @tset contains a leader and whine if there are
5943          * multiple.
5944          */
5945         p = NULL;
5946         cgroup_taskset_for_each_leader(leader, css, tset) {
5947                 WARN_ON_ONCE(p);
5948                 p = leader;
5949                 memcg = mem_cgroup_from_css(css);
5950         }
5951         if (!p)
5952                 return 0;
5953
5954         /*
5955          * We are now commited to this value whatever it is. Changes in this
5956          * tunable will only affect upcoming migrations, not the current one.
5957          * So we need to save it, and keep it going.
5958          */
5959         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5960         if (!move_flags)
5961                 return 0;
5962
5963         from = mem_cgroup_from_task(p);
5964
5965         VM_BUG_ON(from == memcg);
5966
5967         mm = get_task_mm(p);
5968         if (!mm)
5969                 return 0;
5970         /* We move charges only when we move a owner of the mm */
5971         if (mm->owner == p) {
5972                 VM_BUG_ON(mc.from);
5973                 VM_BUG_ON(mc.to);
5974                 VM_BUG_ON(mc.precharge);
5975                 VM_BUG_ON(mc.moved_charge);
5976                 VM_BUG_ON(mc.moved_swap);
5977
5978                 spin_lock(&mc.lock);
5979                 mc.mm = mm;
5980                 mc.from = from;
5981                 mc.to = memcg;
5982                 mc.flags = move_flags;
5983                 spin_unlock(&mc.lock);
5984                 /* We set mc.moving_task later */
5985
5986                 ret = mem_cgroup_precharge_mc(mm);
5987                 if (ret)
5988                         mem_cgroup_clear_mc();
5989         } else {
5990                 mmput(mm);
5991         }
5992         return ret;
5993 }
5994
5995 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5996 {
5997         if (mc.to)
5998                 mem_cgroup_clear_mc();
5999 }
6000
6001 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6002                                 unsigned long addr, unsigned long end,
6003                                 struct mm_walk *walk)
6004 {
6005         int ret = 0;
6006         struct vm_area_struct *vma = walk->vma;
6007         pte_t *pte;
6008         spinlock_t *ptl;
6009         enum mc_target_type target_type;
6010         union mc_target target;
6011         struct page *page;
6012
6013         ptl = pmd_trans_huge_lock(pmd, vma);
6014         if (ptl) {
6015                 if (mc.precharge < HPAGE_PMD_NR) {
6016                         spin_unlock(ptl);
6017                         return 0;
6018                 }
6019                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6020                 if (target_type == MC_TARGET_PAGE) {
6021                         page = target.page;
6022                         if (!isolate_lru_page(page)) {
6023                                 if (!mem_cgroup_move_account(page, true,
6024                                                              mc.from, mc.to)) {
6025                                         mc.precharge -= HPAGE_PMD_NR;
6026                                         mc.moved_charge += HPAGE_PMD_NR;
6027                                 }
6028                                 putback_lru_page(page);
6029                         }
6030                         put_page(page);
6031                 } else if (target_type == MC_TARGET_DEVICE) {
6032                         page = target.page;
6033                         if (!mem_cgroup_move_account(page, true,
6034                                                      mc.from, mc.to)) {
6035                                 mc.precharge -= HPAGE_PMD_NR;
6036                                 mc.moved_charge += HPAGE_PMD_NR;
6037                         }
6038                         put_page(page);
6039                 }
6040                 spin_unlock(ptl);
6041                 return 0;
6042         }
6043
6044         if (pmd_trans_unstable(pmd))
6045                 return 0;
6046 retry:
6047         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6048         for (; addr != end; addr += PAGE_SIZE) {
6049                 pte_t ptent = *(pte++);
6050                 bool device = false;
6051                 swp_entry_t ent;
6052
6053                 if (!mc.precharge)
6054                         break;
6055
6056                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6057                 case MC_TARGET_DEVICE:
6058                         device = true;
6059                         fallthrough;
6060                 case MC_TARGET_PAGE:
6061                         page = target.page;
6062                         /*
6063                          * We can have a part of the split pmd here. Moving it
6064                          * can be done but it would be too convoluted so simply
6065                          * ignore such a partial THP and keep it in original
6066                          * memcg. There should be somebody mapping the head.
6067                          */
6068                         if (PageTransCompound(page))
6069                                 goto put;
6070                         if (!device && isolate_lru_page(page))
6071                                 goto put;
6072                         if (!mem_cgroup_move_account(page, false,
6073                                                 mc.from, mc.to)) {
6074                                 mc.precharge--;
6075                                 /* we uncharge from mc.from later. */
6076                                 mc.moved_charge++;
6077                         }
6078                         if (!device)
6079                                 putback_lru_page(page);
6080 put:                    /* get_mctgt_type() gets the page */
6081                         put_page(page);
6082                         break;
6083                 case MC_TARGET_SWAP:
6084                         ent = target.ent;
6085                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6086                                 mc.precharge--;
6087                                 mem_cgroup_id_get_many(mc.to, 1);
6088                                 /* we fixup other refcnts and charges later. */
6089                                 mc.moved_swap++;
6090                         }
6091                         break;
6092                 default:
6093                         break;
6094                 }
6095         }
6096         pte_unmap_unlock(pte - 1, ptl);
6097         cond_resched();
6098
6099         if (addr != end) {
6100                 /*
6101                  * We have consumed all precharges we got in can_attach().
6102                  * We try charge one by one, but don't do any additional
6103                  * charges to mc.to if we have failed in charge once in attach()
6104                  * phase.
6105                  */
6106                 ret = mem_cgroup_do_precharge(1);
6107                 if (!ret)
6108                         goto retry;
6109         }
6110
6111         return ret;
6112 }
6113
6114 static const struct mm_walk_ops charge_walk_ops = {
6115         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6116 };
6117
6118 static void mem_cgroup_move_charge(void)
6119 {
6120         lru_add_drain_all();
6121         /*
6122          * Signal lock_page_memcg() to take the memcg's move_lock
6123          * while we're moving its pages to another memcg. Then wait
6124          * for already started RCU-only updates to finish.
6125          */
6126         atomic_inc(&mc.from->moving_account);
6127         synchronize_rcu();
6128 retry:
6129         if (unlikely(!mmap_read_trylock(mc.mm))) {
6130                 /*
6131                  * Someone who are holding the mmap_lock might be waiting in
6132                  * waitq. So we cancel all extra charges, wake up all waiters,
6133                  * and retry. Because we cancel precharges, we might not be able
6134                  * to move enough charges, but moving charge is a best-effort
6135                  * feature anyway, so it wouldn't be a big problem.
6136                  */
6137                 __mem_cgroup_clear_mc();
6138                 cond_resched();
6139                 goto retry;
6140         }
6141         /*
6142          * When we have consumed all precharges and failed in doing
6143          * additional charge, the page walk just aborts.
6144          */
6145         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6146                         NULL);
6147
6148         mmap_read_unlock(mc.mm);
6149         atomic_dec(&mc.from->moving_account);
6150 }
6151
6152 static void mem_cgroup_move_task(void)
6153 {
6154         if (mc.to) {
6155                 mem_cgroup_move_charge();
6156                 mem_cgroup_clear_mc();
6157         }
6158 }
6159 #else   /* !CONFIG_MMU */
6160 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6161 {
6162         return 0;
6163 }
6164 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6165 {
6166 }
6167 static void mem_cgroup_move_task(void)
6168 {
6169 }
6170 #endif
6171
6172 /*
6173  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6174  * to verify whether we're attached to the default hierarchy on each mount
6175  * attempt.
6176  */
6177 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6178 {
6179         /*
6180          * use_hierarchy is forced on the default hierarchy.  cgroup core
6181          * guarantees that @root doesn't have any children, so turning it
6182          * on for the root memcg is enough.
6183          */
6184         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6185                 root_mem_cgroup->use_hierarchy = true;
6186         else
6187                 root_mem_cgroup->use_hierarchy = false;
6188 }
6189
6190 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6191 {
6192         if (value == PAGE_COUNTER_MAX)
6193                 seq_puts(m, "max\n");
6194         else
6195                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6196
6197         return 0;
6198 }
6199
6200 static u64 memory_current_read(struct cgroup_subsys_state *css,
6201                                struct cftype *cft)
6202 {
6203         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6204
6205         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6206 }
6207
6208 static int memory_min_show(struct seq_file *m, void *v)
6209 {
6210         return seq_puts_memcg_tunable(m,
6211                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6212 }
6213
6214 static ssize_t memory_min_write(struct kernfs_open_file *of,
6215                                 char *buf, size_t nbytes, loff_t off)
6216 {
6217         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6218         unsigned long min;
6219         int err;
6220
6221         buf = strstrip(buf);
6222         err = page_counter_memparse(buf, "max", &min);
6223         if (err)
6224                 return err;
6225
6226         page_counter_set_min(&memcg->memory, min);
6227
6228         return nbytes;
6229 }
6230
6231 static int memory_low_show(struct seq_file *m, void *v)
6232 {
6233         return seq_puts_memcg_tunable(m,
6234                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6235 }
6236
6237 static ssize_t memory_low_write(struct kernfs_open_file *of,
6238                                 char *buf, size_t nbytes, loff_t off)
6239 {
6240         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6241         unsigned long low;
6242         int err;
6243
6244         buf = strstrip(buf);
6245         err = page_counter_memparse(buf, "max", &low);
6246         if (err)
6247                 return err;
6248
6249         page_counter_set_low(&memcg->memory, low);
6250
6251         return nbytes;
6252 }
6253
6254 static int memory_high_show(struct seq_file *m, void *v)
6255 {
6256         return seq_puts_memcg_tunable(m,
6257                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6258 }
6259
6260 static ssize_t memory_high_write(struct kernfs_open_file *of,
6261                                  char *buf, size_t nbytes, loff_t off)
6262 {
6263         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6264         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6265         bool drained = false;
6266         unsigned long high;
6267         int err;
6268
6269         buf = strstrip(buf);
6270         err = page_counter_memparse(buf, "max", &high);
6271         if (err)
6272                 return err;
6273
6274         for (;;) {
6275                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6276                 unsigned long reclaimed;
6277
6278                 if (nr_pages <= high)
6279                         break;
6280
6281                 if (signal_pending(current))
6282                         break;
6283
6284                 if (!drained) {
6285                         drain_all_stock(memcg);
6286                         drained = true;
6287                         continue;
6288                 }
6289
6290                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6291                                                          GFP_KERNEL, true);
6292
6293                 if (!reclaimed && !nr_retries--)
6294                         break;
6295         }
6296
6297         page_counter_set_high(&memcg->memory, high);
6298
6299         memcg_wb_domain_size_changed(memcg);
6300
6301         return nbytes;
6302 }
6303
6304 static int memory_max_show(struct seq_file *m, void *v)
6305 {
6306         return seq_puts_memcg_tunable(m,
6307                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6308 }
6309
6310 static ssize_t memory_max_write(struct kernfs_open_file *of,
6311                                 char *buf, size_t nbytes, loff_t off)
6312 {
6313         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6314         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6315         bool drained = false;
6316         unsigned long max;
6317         int err;
6318
6319         buf = strstrip(buf);
6320         err = page_counter_memparse(buf, "max", &max);
6321         if (err)
6322                 return err;
6323
6324         xchg(&memcg->memory.max, max);
6325
6326         for (;;) {
6327                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6328
6329                 if (nr_pages <= max)
6330                         break;
6331
6332                 if (signal_pending(current))
6333                         break;
6334
6335                 if (!drained) {
6336                         drain_all_stock(memcg);
6337                         drained = true;
6338                         continue;
6339                 }
6340
6341                 if (nr_reclaims) {
6342                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6343                                                           GFP_KERNEL, true))
6344                                 nr_reclaims--;
6345                         continue;
6346                 }
6347
6348                 memcg_memory_event(memcg, MEMCG_OOM);
6349                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6350                         break;
6351         }
6352
6353         memcg_wb_domain_size_changed(memcg);
6354         return nbytes;
6355 }
6356
6357 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6358 {
6359         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6360         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6361         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6362         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6363         seq_printf(m, "oom_kill %lu\n",
6364                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6365 }
6366
6367 static int memory_events_show(struct seq_file *m, void *v)
6368 {
6369         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6370
6371         __memory_events_show(m, memcg->memory_events);
6372         return 0;
6373 }
6374
6375 static int memory_events_local_show(struct seq_file *m, void *v)
6376 {
6377         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6378
6379         __memory_events_show(m, memcg->memory_events_local);
6380         return 0;
6381 }
6382
6383 static int memory_stat_show(struct seq_file *m, void *v)
6384 {
6385         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6386         char *buf;
6387
6388         buf = memory_stat_format(memcg);
6389         if (!buf)
6390                 return -ENOMEM;
6391         seq_puts(m, buf);
6392         kfree(buf);
6393         return 0;
6394 }
6395
6396 static int memory_oom_group_show(struct seq_file *m, void *v)
6397 {
6398         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6399
6400         seq_printf(m, "%d\n", memcg->oom_group);
6401
6402         return 0;
6403 }
6404
6405 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6406                                       char *buf, size_t nbytes, loff_t off)
6407 {
6408         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6409         int ret, oom_group;
6410
6411         buf = strstrip(buf);
6412         if (!buf)
6413                 return -EINVAL;
6414
6415         ret = kstrtoint(buf, 0, &oom_group);
6416         if (ret)
6417                 return ret;
6418
6419         if (oom_group != 0 && oom_group != 1)
6420                 return -EINVAL;
6421
6422         memcg->oom_group = oom_group;
6423
6424         return nbytes;
6425 }
6426
6427 static struct cftype memory_files[] = {
6428         {
6429                 .name = "current",
6430                 .flags = CFTYPE_NOT_ON_ROOT,
6431                 .read_u64 = memory_current_read,
6432         },
6433         {
6434                 .name = "min",
6435                 .flags = CFTYPE_NOT_ON_ROOT,
6436                 .seq_show = memory_min_show,
6437                 .write = memory_min_write,
6438         },
6439         {
6440                 .name = "low",
6441                 .flags = CFTYPE_NOT_ON_ROOT,
6442                 .seq_show = memory_low_show,
6443                 .write = memory_low_write,
6444         },
6445         {
6446                 .name = "high",
6447                 .flags = CFTYPE_NOT_ON_ROOT,
6448                 .seq_show = memory_high_show,
6449                 .write = memory_high_write,
6450         },
6451         {
6452                 .name = "max",
6453                 .flags = CFTYPE_NOT_ON_ROOT,
6454                 .seq_show = memory_max_show,
6455                 .write = memory_max_write,
6456         },
6457         {
6458                 .name = "events",
6459                 .flags = CFTYPE_NOT_ON_ROOT,
6460                 .file_offset = offsetof(struct mem_cgroup, events_file),
6461                 .seq_show = memory_events_show,
6462         },
6463         {
6464                 .name = "events.local",
6465                 .flags = CFTYPE_NOT_ON_ROOT,
6466                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6467                 .seq_show = memory_events_local_show,
6468         },
6469         {
6470                 .name = "stat",
6471                 .seq_show = memory_stat_show,
6472         },
6473         {
6474                 .name = "oom.group",
6475                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6476                 .seq_show = memory_oom_group_show,
6477                 .write = memory_oom_group_write,
6478         },
6479         { }     /* terminate */
6480 };
6481
6482 struct cgroup_subsys memory_cgrp_subsys = {
6483         .css_alloc = mem_cgroup_css_alloc,
6484         .css_online = mem_cgroup_css_online,
6485         .css_offline = mem_cgroup_css_offline,
6486         .css_released = mem_cgroup_css_released,
6487         .css_free = mem_cgroup_css_free,
6488         .css_reset = mem_cgroup_css_reset,
6489         .can_attach = mem_cgroup_can_attach,
6490         .cancel_attach = mem_cgroup_cancel_attach,
6491         .post_attach = mem_cgroup_move_task,
6492         .bind = mem_cgroup_bind,
6493         .dfl_cftypes = memory_files,
6494         .legacy_cftypes = mem_cgroup_legacy_files,
6495         .early_init = 0,
6496 };
6497
6498 /*
6499  * This function calculates an individual cgroup's effective
6500  * protection which is derived from its own memory.min/low, its
6501  * parent's and siblings' settings, as well as the actual memory
6502  * distribution in the tree.
6503  *
6504  * The following rules apply to the effective protection values:
6505  *
6506  * 1. At the first level of reclaim, effective protection is equal to
6507  *    the declared protection in memory.min and memory.low.
6508  *
6509  * 2. To enable safe delegation of the protection configuration, at
6510  *    subsequent levels the effective protection is capped to the
6511  *    parent's effective protection.
6512  *
6513  * 3. To make complex and dynamic subtrees easier to configure, the
6514  *    user is allowed to overcommit the declared protection at a given
6515  *    level. If that is the case, the parent's effective protection is
6516  *    distributed to the children in proportion to how much protection
6517  *    they have declared and how much of it they are utilizing.
6518  *
6519  *    This makes distribution proportional, but also work-conserving:
6520  *    if one cgroup claims much more protection than it uses memory,
6521  *    the unused remainder is available to its siblings.
6522  *
6523  * 4. Conversely, when the declared protection is undercommitted at a
6524  *    given level, the distribution of the larger parental protection
6525  *    budget is NOT proportional. A cgroup's protection from a sibling
6526  *    is capped to its own memory.min/low setting.
6527  *
6528  * 5. However, to allow protecting recursive subtrees from each other
6529  *    without having to declare each individual cgroup's fixed share
6530  *    of the ancestor's claim to protection, any unutilized -
6531  *    "floating" - protection from up the tree is distributed in
6532  *    proportion to each cgroup's *usage*. This makes the protection
6533  *    neutral wrt sibling cgroups and lets them compete freely over
6534  *    the shared parental protection budget, but it protects the
6535  *    subtree as a whole from neighboring subtrees.
6536  *
6537  * Note that 4. and 5. are not in conflict: 4. is about protecting
6538  * against immediate siblings whereas 5. is about protecting against
6539  * neighboring subtrees.
6540  */
6541 static unsigned long effective_protection(unsigned long usage,
6542                                           unsigned long parent_usage,
6543                                           unsigned long setting,
6544                                           unsigned long parent_effective,
6545                                           unsigned long siblings_protected)
6546 {
6547         unsigned long protected;
6548         unsigned long ep;
6549
6550         protected = min(usage, setting);
6551         /*
6552          * If all cgroups at this level combined claim and use more
6553          * protection then what the parent affords them, distribute
6554          * shares in proportion to utilization.
6555          *
6556          * We are using actual utilization rather than the statically
6557          * claimed protection in order to be work-conserving: claimed
6558          * but unused protection is available to siblings that would
6559          * otherwise get a smaller chunk than what they claimed.
6560          */
6561         if (siblings_protected > parent_effective)
6562                 return protected * parent_effective / siblings_protected;
6563
6564         /*
6565          * Ok, utilized protection of all children is within what the
6566          * parent affords them, so we know whatever this child claims
6567          * and utilizes is effectively protected.
6568          *
6569          * If there is unprotected usage beyond this value, reclaim
6570          * will apply pressure in proportion to that amount.
6571          *
6572          * If there is unutilized protection, the cgroup will be fully
6573          * shielded from reclaim, but we do return a smaller value for
6574          * protection than what the group could enjoy in theory. This
6575          * is okay. With the overcommit distribution above, effective
6576          * protection is always dependent on how memory is actually
6577          * consumed among the siblings anyway.
6578          */
6579         ep = protected;
6580
6581         /*
6582          * If the children aren't claiming (all of) the protection
6583          * afforded to them by the parent, distribute the remainder in
6584          * proportion to the (unprotected) memory of each cgroup. That
6585          * way, cgroups that aren't explicitly prioritized wrt each
6586          * other compete freely over the allowance, but they are
6587          * collectively protected from neighboring trees.
6588          *
6589          * We're using unprotected memory for the weight so that if
6590          * some cgroups DO claim explicit protection, we don't protect
6591          * the same bytes twice.
6592          *
6593          * Check both usage and parent_usage against the respective
6594          * protected values. One should imply the other, but they
6595          * aren't read atomically - make sure the division is sane.
6596          */
6597         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6598                 return ep;
6599         if (parent_effective > siblings_protected &&
6600             parent_usage > siblings_protected &&
6601             usage > protected) {
6602                 unsigned long unclaimed;
6603
6604                 unclaimed = parent_effective - siblings_protected;
6605                 unclaimed *= usage - protected;
6606                 unclaimed /= parent_usage - siblings_protected;
6607
6608                 ep += unclaimed;
6609         }
6610
6611         return ep;
6612 }
6613
6614 /**
6615  * mem_cgroup_protected - check if memory consumption is in the normal range
6616  * @root: the top ancestor of the sub-tree being checked
6617  * @memcg: the memory cgroup to check
6618  *
6619  * WARNING: This function is not stateless! It can only be used as part
6620  *          of a top-down tree iteration, not for isolated queries.
6621  */
6622 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6623                                      struct mem_cgroup *memcg)
6624 {
6625         unsigned long usage, parent_usage;
6626         struct mem_cgroup *parent;
6627
6628         if (mem_cgroup_disabled())
6629                 return;
6630
6631         if (!root)
6632                 root = root_mem_cgroup;
6633
6634         /*
6635          * Effective values of the reclaim targets are ignored so they
6636          * can be stale. Have a look at mem_cgroup_protection for more
6637          * details.
6638          * TODO: calculation should be more robust so that we do not need
6639          * that special casing.
6640          */
6641         if (memcg == root)
6642                 return;
6643
6644         usage = page_counter_read(&memcg->memory);
6645         if (!usage)
6646                 return;
6647
6648         parent = parent_mem_cgroup(memcg);
6649         /* No parent means a non-hierarchical mode on v1 memcg */
6650         if (!parent)
6651                 return;
6652
6653         if (parent == root) {
6654                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6655                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6656                 return;
6657         }
6658
6659         parent_usage = page_counter_read(&parent->memory);
6660
6661         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6662                         READ_ONCE(memcg->memory.min),
6663                         READ_ONCE(parent->memory.emin),
6664                         atomic_long_read(&parent->memory.children_min_usage)));
6665
6666         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6667                         READ_ONCE(memcg->memory.low),
6668                         READ_ONCE(parent->memory.elow),
6669                         atomic_long_read(&parent->memory.children_low_usage)));
6670 }
6671
6672 /**
6673  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6674  * @page: page to charge
6675  * @mm: mm context of the victim
6676  * @gfp_mask: reclaim mode
6677  *
6678  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6679  * pages according to @gfp_mask if necessary.
6680  *
6681  * Returns 0 on success. Otherwise, an error code is returned.
6682  */
6683 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6684 {
6685         unsigned int nr_pages = hpage_nr_pages(page);
6686         struct mem_cgroup *memcg = NULL;
6687         int ret = 0;
6688
6689         if (mem_cgroup_disabled())
6690                 goto out;
6691
6692         if (PageSwapCache(page)) {
6693                 swp_entry_t ent = { .val = page_private(page), };
6694                 unsigned short id;
6695
6696                 /*
6697                  * Every swap fault against a single page tries to charge the
6698                  * page, bail as early as possible.  shmem_unuse() encounters
6699                  * already charged pages, too.  page->mem_cgroup is protected
6700                  * by the page lock, which serializes swap cache removal, which
6701                  * in turn serializes uncharging.
6702                  */
6703                 VM_BUG_ON_PAGE(!PageLocked(page), page);
6704                 if (compound_head(page)->mem_cgroup)
6705                         goto out;
6706
6707                 id = lookup_swap_cgroup_id(ent);
6708                 rcu_read_lock();
6709                 memcg = mem_cgroup_from_id(id);
6710                 if (memcg && !css_tryget_online(&memcg->css))
6711                         memcg = NULL;
6712                 rcu_read_unlock();
6713         }
6714
6715         if (!memcg)
6716                 memcg = get_mem_cgroup_from_mm(mm);
6717
6718         ret = try_charge(memcg, gfp_mask, nr_pages);
6719         if (ret)
6720                 goto out_put;
6721
6722         css_get(&memcg->css);
6723         commit_charge(page, memcg);
6724
6725         local_irq_disable();
6726         mem_cgroup_charge_statistics(memcg, page, nr_pages);
6727         memcg_check_events(memcg, page);
6728         local_irq_enable();
6729
6730         if (PageSwapCache(page)) {
6731                 swp_entry_t entry = { .val = page_private(page) };
6732                 /*
6733                  * The swap entry might not get freed for a long time,
6734                  * let's not wait for it.  The page already received a
6735                  * memory+swap charge, drop the swap entry duplicate.
6736                  */
6737                 mem_cgroup_uncharge_swap(entry, nr_pages);
6738         }
6739
6740 out_put:
6741         css_put(&memcg->css);
6742 out:
6743         return ret;
6744 }
6745
6746 struct uncharge_gather {
6747         struct mem_cgroup *memcg;
6748         unsigned long nr_pages;
6749         unsigned long pgpgout;
6750         unsigned long nr_kmem;
6751         struct page *dummy_page;
6752 };
6753
6754 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6755 {
6756         memset(ug, 0, sizeof(*ug));
6757 }
6758
6759 static void uncharge_batch(const struct uncharge_gather *ug)
6760 {
6761         unsigned long flags;
6762
6763         if (!mem_cgroup_is_root(ug->memcg)) {
6764                 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6765                 if (do_memsw_account())
6766                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6767                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6768                         page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6769                 memcg_oom_recover(ug->memcg);
6770         }
6771
6772         local_irq_save(flags);
6773         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6774         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6775         memcg_check_events(ug->memcg, ug->dummy_page);
6776         local_irq_restore(flags);
6777 }
6778
6779 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6780 {
6781         unsigned long nr_pages;
6782
6783         VM_BUG_ON_PAGE(PageLRU(page), page);
6784
6785         if (!page->mem_cgroup)
6786                 return;
6787
6788         /*
6789          * Nobody should be changing or seriously looking at
6790          * page->mem_cgroup at this point, we have fully
6791          * exclusive access to the page.
6792          */
6793
6794         if (ug->memcg != page->mem_cgroup) {
6795                 if (ug->memcg) {
6796                         uncharge_batch(ug);
6797                         uncharge_gather_clear(ug);
6798                 }
6799                 ug->memcg = page->mem_cgroup;
6800         }
6801
6802         nr_pages = compound_nr(page);
6803         ug->nr_pages += nr_pages;
6804
6805         if (!PageKmemcg(page)) {
6806                 ug->pgpgout++;
6807         } else {
6808                 ug->nr_kmem += nr_pages;
6809                 __ClearPageKmemcg(page);
6810         }
6811
6812         ug->dummy_page = page;
6813         page->mem_cgroup = NULL;
6814         css_put(&ug->memcg->css);
6815 }
6816
6817 static void uncharge_list(struct list_head *page_list)
6818 {
6819         struct uncharge_gather ug;
6820         struct list_head *next;
6821
6822         uncharge_gather_clear(&ug);
6823
6824         /*
6825          * Note that the list can be a single page->lru; hence the
6826          * do-while loop instead of a simple list_for_each_entry().
6827          */
6828         next = page_list->next;
6829         do {
6830                 struct page *page;
6831
6832                 page = list_entry(next, struct page, lru);
6833                 next = page->lru.next;
6834
6835                 uncharge_page(page, &ug);
6836         } while (next != page_list);
6837
6838         if (ug.memcg)
6839                 uncharge_batch(&ug);
6840 }
6841
6842 /**
6843  * mem_cgroup_uncharge - uncharge a page
6844  * @page: page to uncharge
6845  *
6846  * Uncharge a page previously charged with mem_cgroup_charge().
6847  */
6848 void mem_cgroup_uncharge(struct page *page)
6849 {
6850         struct uncharge_gather ug;
6851
6852         if (mem_cgroup_disabled())
6853                 return;
6854
6855         /* Don't touch page->lru of any random page, pre-check: */
6856         if (!page->mem_cgroup)
6857                 return;
6858
6859         uncharge_gather_clear(&ug);
6860         uncharge_page(page, &ug);
6861         uncharge_batch(&ug);
6862 }
6863
6864 /**
6865  * mem_cgroup_uncharge_list - uncharge a list of page
6866  * @page_list: list of pages to uncharge
6867  *
6868  * Uncharge a list of pages previously charged with
6869  * mem_cgroup_charge().
6870  */
6871 void mem_cgroup_uncharge_list(struct list_head *page_list)
6872 {
6873         if (mem_cgroup_disabled())
6874                 return;
6875
6876         if (!list_empty(page_list))
6877                 uncharge_list(page_list);
6878 }
6879
6880 /**
6881  * mem_cgroup_migrate - charge a page's replacement
6882  * @oldpage: currently circulating page
6883  * @newpage: replacement page
6884  *
6885  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6886  * be uncharged upon free.
6887  *
6888  * Both pages must be locked, @newpage->mapping must be set up.
6889  */
6890 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6891 {
6892         struct mem_cgroup *memcg;
6893         unsigned int nr_pages;
6894         unsigned long flags;
6895
6896         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6897         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6898         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6899         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6900                        newpage);
6901
6902         if (mem_cgroup_disabled())
6903                 return;
6904
6905         /* Page cache replacement: new page already charged? */
6906         if (newpage->mem_cgroup)
6907                 return;
6908
6909         /* Swapcache readahead pages can get replaced before being charged */
6910         memcg = oldpage->mem_cgroup;
6911         if (!memcg)
6912                 return;
6913
6914         /* Force-charge the new page. The old one will be freed soon */
6915         nr_pages = hpage_nr_pages(newpage);
6916
6917         page_counter_charge(&memcg->memory, nr_pages);
6918         if (do_memsw_account())
6919                 page_counter_charge(&memcg->memsw, nr_pages);
6920
6921         css_get(&memcg->css);
6922         commit_charge(newpage, memcg);
6923
6924         local_irq_save(flags);
6925         mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6926         memcg_check_events(memcg, newpage);
6927         local_irq_restore(flags);
6928 }
6929
6930 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6931 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6932
6933 void mem_cgroup_sk_alloc(struct sock *sk)
6934 {
6935         struct mem_cgroup *memcg;
6936
6937         if (!mem_cgroup_sockets_enabled)
6938                 return;
6939
6940         /* Do not associate the sock with unrelated interrupted task's memcg. */
6941         if (in_interrupt())
6942                 return;
6943
6944         rcu_read_lock();
6945         memcg = mem_cgroup_from_task(current);
6946         if (memcg == root_mem_cgroup)
6947                 goto out;
6948         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6949                 goto out;
6950         if (css_tryget(&memcg->css))
6951                 sk->sk_memcg = memcg;
6952 out:
6953         rcu_read_unlock();
6954 }
6955
6956 void mem_cgroup_sk_free(struct sock *sk)
6957 {
6958         if (sk->sk_memcg)
6959                 css_put(&sk->sk_memcg->css);
6960 }
6961
6962 /**
6963  * mem_cgroup_charge_skmem - charge socket memory
6964  * @memcg: memcg to charge
6965  * @nr_pages: number of pages to charge
6966  *
6967  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6968  * @memcg's configured limit, %false if the charge had to be forced.
6969  */
6970 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6971 {
6972         gfp_t gfp_mask = GFP_KERNEL;
6973
6974         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6975                 struct page_counter *fail;
6976
6977                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6978                         memcg->tcpmem_pressure = 0;
6979                         return true;
6980                 }
6981                 page_counter_charge(&memcg->tcpmem, nr_pages);
6982                 memcg->tcpmem_pressure = 1;
6983                 return false;
6984         }
6985
6986         /* Don't block in the packet receive path */
6987         if (in_softirq())
6988                 gfp_mask = GFP_NOWAIT;
6989
6990         mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6991
6992         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6993                 return true;
6994
6995         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6996         return false;
6997 }
6998
6999 /**
7000  * mem_cgroup_uncharge_skmem - uncharge socket memory
7001  * @memcg: memcg to uncharge
7002  * @nr_pages: number of pages to uncharge
7003  */
7004 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7005 {
7006         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7007                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7008                 return;
7009         }
7010
7011         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7012
7013         refill_stock(memcg, nr_pages);
7014 }
7015
7016 static int __init cgroup_memory(char *s)
7017 {
7018         char *token;
7019
7020         while ((token = strsep(&s, ",")) != NULL) {
7021                 if (!*token)
7022                         continue;
7023                 if (!strcmp(token, "nosocket"))
7024                         cgroup_memory_nosocket = true;
7025                 if (!strcmp(token, "nokmem"))
7026                         cgroup_memory_nokmem = true;
7027         }
7028         return 0;
7029 }
7030 __setup("cgroup.memory=", cgroup_memory);
7031
7032 /*
7033  * subsys_initcall() for memory controller.
7034  *
7035  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7036  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7037  * basically everything that doesn't depend on a specific mem_cgroup structure
7038  * should be initialized from here.
7039  */
7040 static int __init mem_cgroup_init(void)
7041 {
7042         int cpu, node;
7043
7044         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7045                                   memcg_hotplug_cpu_dead);
7046
7047         for_each_possible_cpu(cpu)
7048                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7049                           drain_local_stock);
7050
7051         for_each_node(node) {
7052                 struct mem_cgroup_tree_per_node *rtpn;
7053
7054                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7055                                     node_online(node) ? node : NUMA_NO_NODE);
7056
7057                 rtpn->rb_root = RB_ROOT;
7058                 rtpn->rb_rightmost = NULL;
7059                 spin_lock_init(&rtpn->lock);
7060                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7061         }
7062
7063         return 0;
7064 }
7065 subsys_initcall(mem_cgroup_init);
7066
7067 #ifdef CONFIG_MEMCG_SWAP
7068 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7069 {
7070         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7071                 /*
7072                  * The root cgroup cannot be destroyed, so it's refcount must
7073                  * always be >= 1.
7074                  */
7075                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7076                         VM_BUG_ON(1);
7077                         break;
7078                 }
7079                 memcg = parent_mem_cgroup(memcg);
7080                 if (!memcg)
7081                         memcg = root_mem_cgroup;
7082         }
7083         return memcg;
7084 }
7085
7086 /**
7087  * mem_cgroup_swapout - transfer a memsw charge to swap
7088  * @page: page whose memsw charge to transfer
7089  * @entry: swap entry to move the charge to
7090  *
7091  * Transfer the memsw charge of @page to @entry.
7092  */
7093 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7094 {
7095         struct mem_cgroup *memcg, *swap_memcg;
7096         unsigned int nr_entries;
7097         unsigned short oldid;
7098
7099         VM_BUG_ON_PAGE(PageLRU(page), page);
7100         VM_BUG_ON_PAGE(page_count(page), page);
7101
7102         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7103                 return;
7104
7105         memcg = page->mem_cgroup;
7106
7107         /* Readahead page, never charged */
7108         if (!memcg)
7109                 return;
7110
7111         /*
7112          * In case the memcg owning these pages has been offlined and doesn't
7113          * have an ID allocated to it anymore, charge the closest online
7114          * ancestor for the swap instead and transfer the memory+swap charge.
7115          */
7116         swap_memcg = mem_cgroup_id_get_online(memcg);
7117         nr_entries = hpage_nr_pages(page);
7118         /* Get references for the tail pages, too */
7119         if (nr_entries > 1)
7120                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7121         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7122                                    nr_entries);
7123         VM_BUG_ON_PAGE(oldid, page);
7124         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7125
7126         page->mem_cgroup = NULL;
7127
7128         if (!mem_cgroup_is_root(memcg))
7129                 page_counter_uncharge(&memcg->memory, nr_entries);
7130
7131         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7132                 if (!mem_cgroup_is_root(swap_memcg))
7133                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7134                 page_counter_uncharge(&memcg->memsw, nr_entries);
7135         }
7136
7137         /*
7138          * Interrupts should be disabled here because the caller holds the
7139          * i_pages lock which is taken with interrupts-off. It is
7140          * important here to have the interrupts disabled because it is the
7141          * only synchronisation we have for updating the per-CPU variables.
7142          */
7143         VM_BUG_ON(!irqs_disabled());
7144         mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7145         memcg_check_events(memcg, page);
7146
7147         css_put(&memcg->css);
7148 }
7149
7150 /**
7151  * mem_cgroup_try_charge_swap - try charging swap space for a page
7152  * @page: page being added to swap
7153  * @entry: swap entry to charge
7154  *
7155  * Try to charge @page's memcg for the swap space at @entry.
7156  *
7157  * Returns 0 on success, -ENOMEM on failure.
7158  */
7159 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7160 {
7161         unsigned int nr_pages = hpage_nr_pages(page);
7162         struct page_counter *counter;
7163         struct mem_cgroup *memcg;
7164         unsigned short oldid;
7165
7166         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7167                 return 0;
7168
7169         memcg = page->mem_cgroup;
7170
7171         /* Readahead page, never charged */
7172         if (!memcg)
7173                 return 0;
7174
7175         if (!entry.val) {
7176                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7177                 return 0;
7178         }
7179
7180         memcg = mem_cgroup_id_get_online(memcg);
7181
7182         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7183             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7184                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7185                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7186                 mem_cgroup_id_put(memcg);
7187                 return -ENOMEM;
7188         }
7189
7190         /* Get references for the tail pages, too */
7191         if (nr_pages > 1)
7192                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7193         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7194         VM_BUG_ON_PAGE(oldid, page);
7195         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7196
7197         return 0;
7198 }
7199
7200 /**
7201  * mem_cgroup_uncharge_swap - uncharge swap space
7202  * @entry: swap entry to uncharge
7203  * @nr_pages: the amount of swap space to uncharge
7204  */
7205 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7206 {
7207         struct mem_cgroup *memcg;
7208         unsigned short id;
7209
7210         id = swap_cgroup_record(entry, 0, nr_pages);
7211         rcu_read_lock();
7212         memcg = mem_cgroup_from_id(id);
7213         if (memcg) {
7214                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7215                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7216                                 page_counter_uncharge(&memcg->swap, nr_pages);
7217                         else
7218                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7219                 }
7220                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7221                 mem_cgroup_id_put_many(memcg, nr_pages);
7222         }
7223         rcu_read_unlock();
7224 }
7225
7226 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7227 {
7228         long nr_swap_pages = get_nr_swap_pages();
7229
7230         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7231                 return nr_swap_pages;
7232         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7233                 nr_swap_pages = min_t(long, nr_swap_pages,
7234                                       READ_ONCE(memcg->swap.max) -
7235                                       page_counter_read(&memcg->swap));
7236         return nr_swap_pages;
7237 }
7238
7239 bool mem_cgroup_swap_full(struct page *page)
7240 {
7241         struct mem_cgroup *memcg;
7242
7243         VM_BUG_ON_PAGE(!PageLocked(page), page);
7244
7245         if (vm_swap_full())
7246                 return true;
7247         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7248                 return false;
7249
7250         memcg = page->mem_cgroup;
7251         if (!memcg)
7252                 return false;
7253
7254         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7255                 unsigned long usage = page_counter_read(&memcg->swap);
7256
7257                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7258                     usage * 2 >= READ_ONCE(memcg->swap.max))
7259                         return true;
7260         }
7261
7262         return false;
7263 }
7264
7265 static int __init setup_swap_account(char *s)
7266 {
7267         if (!strcmp(s, "1"))
7268                 cgroup_memory_noswap = 0;
7269         else if (!strcmp(s, "0"))
7270                 cgroup_memory_noswap = 1;
7271         return 1;
7272 }
7273 __setup("swapaccount=", setup_swap_account);
7274
7275 static u64 swap_current_read(struct cgroup_subsys_state *css,
7276                              struct cftype *cft)
7277 {
7278         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7279
7280         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7281 }
7282
7283 static int swap_high_show(struct seq_file *m, void *v)
7284 {
7285         return seq_puts_memcg_tunable(m,
7286                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7287 }
7288
7289 static ssize_t swap_high_write(struct kernfs_open_file *of,
7290                                char *buf, size_t nbytes, loff_t off)
7291 {
7292         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7293         unsigned long high;
7294         int err;
7295
7296         buf = strstrip(buf);
7297         err = page_counter_memparse(buf, "max", &high);
7298         if (err)
7299                 return err;
7300
7301         page_counter_set_high(&memcg->swap, high);
7302
7303         return nbytes;
7304 }
7305
7306 static int swap_max_show(struct seq_file *m, void *v)
7307 {
7308         return seq_puts_memcg_tunable(m,
7309                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7310 }
7311
7312 static ssize_t swap_max_write(struct kernfs_open_file *of,
7313                               char *buf, size_t nbytes, loff_t off)
7314 {
7315         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7316         unsigned long max;
7317         int err;
7318
7319         buf = strstrip(buf);
7320         err = page_counter_memparse(buf, "max", &max);
7321         if (err)
7322                 return err;
7323
7324         xchg(&memcg->swap.max, max);
7325
7326         return nbytes;
7327 }
7328
7329 static int swap_events_show(struct seq_file *m, void *v)
7330 {
7331         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7332
7333         seq_printf(m, "high %lu\n",
7334                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7335         seq_printf(m, "max %lu\n",
7336                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7337         seq_printf(m, "fail %lu\n",
7338                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7339
7340         return 0;
7341 }
7342
7343 static struct cftype swap_files[] = {
7344         {
7345                 .name = "swap.current",
7346                 .flags = CFTYPE_NOT_ON_ROOT,
7347                 .read_u64 = swap_current_read,
7348         },
7349         {
7350                 .name = "swap.high",
7351                 .flags = CFTYPE_NOT_ON_ROOT,
7352                 .seq_show = swap_high_show,
7353                 .write = swap_high_write,
7354         },
7355         {
7356                 .name = "swap.max",
7357                 .flags = CFTYPE_NOT_ON_ROOT,
7358                 .seq_show = swap_max_show,
7359                 .write = swap_max_write,
7360         },
7361         {
7362                 .name = "swap.events",
7363                 .flags = CFTYPE_NOT_ON_ROOT,
7364                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7365                 .seq_show = swap_events_show,
7366         },
7367         { }     /* terminate */
7368 };
7369
7370 static struct cftype memsw_files[] = {
7371         {
7372                 .name = "memsw.usage_in_bytes",
7373                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7374                 .read_u64 = mem_cgroup_read_u64,
7375         },
7376         {
7377                 .name = "memsw.max_usage_in_bytes",
7378                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7379                 .write = mem_cgroup_reset,
7380                 .read_u64 = mem_cgroup_read_u64,
7381         },
7382         {
7383                 .name = "memsw.limit_in_bytes",
7384                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7385                 .write = mem_cgroup_write,
7386                 .read_u64 = mem_cgroup_read_u64,
7387         },
7388         {
7389                 .name = "memsw.failcnt",
7390                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7391                 .write = mem_cgroup_reset,
7392                 .read_u64 = mem_cgroup_read_u64,
7393         },
7394         { },    /* terminate */
7395 };
7396
7397 /*
7398  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7399  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7400  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7401  * boot parameter. This may result in premature OOPS inside
7402  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7403  */
7404 static int __init mem_cgroup_swap_init(void)
7405 {
7406         /* No memory control -> no swap control */
7407         if (mem_cgroup_disabled())
7408                 cgroup_memory_noswap = true;
7409
7410         if (cgroup_memory_noswap)
7411                 return 0;
7412
7413         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7414         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7415
7416         return 0;
7417 }
7418 core_initcall(mem_cgroup_swap_init);
7419
7420 #endif /* CONFIG_MEMCG_SWAP */