perf parse-regs: Remove PERF_REGS_{MAX|MASK} from common code
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102         return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112
113 struct mem_cgroup_tree_per_node {
114         struct rb_root rb_root;
115         struct rb_node *rb_rightmost;
116         spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127         struct list_head list;
128         struct eventfd_ctx *eventfd;
129 };
130
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135         /*
136          * memcg which the event belongs to.
137          */
138         struct mem_cgroup *memcg;
139         /*
140          * eventfd to signal userspace about the event.
141          */
142         struct eventfd_ctx *eventfd;
143         /*
144          * Each of these stored in a list by the cgroup.
145          */
146         struct list_head list;
147         /*
148          * register_event() callback will be used to add new userspace
149          * waiter for changes related to this event.  Use eventfd_signal()
150          * on eventfd to send notification to userspace.
151          */
152         int (*register_event)(struct mem_cgroup *memcg,
153                               struct eventfd_ctx *eventfd, const char *args);
154         /*
155          * unregister_event() callback will be called when userspace closes
156          * the eventfd or on cgroup removing.  This callback must be set,
157          * if you want provide notification functionality.
158          */
159         void (*unregister_event)(struct mem_cgroup *memcg,
160                                  struct eventfd_ctx *eventfd);
161         /*
162          * All fields below needed to unregister event when
163          * userspace closes eventfd.
164          */
165         poll_table pt;
166         wait_queue_head_t *wqh;
167         wait_queue_entry_t wait;
168         struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON       0x1U
179 #define MOVE_FILE       0x2U
180 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184         spinlock_t        lock; /* for from, to */
185         struct mm_struct  *mm;
186         struct mem_cgroup *from;
187         struct mem_cgroup *to;
188         unsigned long flags;
189         unsigned long precharge;
190         unsigned long moved_charge;
191         unsigned long moved_swap;
192         struct task_struct *moving_task;        /* a task moving charges */
193         wait_queue_head_t waitq;                /* a waitq for other context */
194 } mc = {
195         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208         _MEM,
209         _MEMSWAP,
210         _KMEM,
211         _TCP,
212 };
213
214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
217
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)            \
224         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
225              iter != NULL;                              \
226              iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter)                       \
229         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
230              iter != NULL;                              \
231              iter = mem_cgroup_iter(NULL, iter, NULL))
232
233 static inline bool task_is_dying(void)
234 {
235         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236                 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242         if (!memcg)
243                 memcg = root_mem_cgroup;
244         return &memcg->vmpressure;
245 }
246
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249         return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254
255 bool mem_cgroup_kmem_disabled(void)
256 {
257         return cgroup_memory_nokmem;
258 }
259
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261                                       unsigned int nr_pages);
262
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266         unsigned int nr_bytes;
267         unsigned int nr_pages;
268         unsigned long flags;
269
270         /*
271          * At this point all allocated objects are freed, and
272          * objcg->nr_charged_bytes can't have an arbitrary byte value.
273          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274          *
275          * The following sequence can lead to it:
276          * 1) CPU0: objcg == stock->cached_objcg
277          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278          *          PAGE_SIZE bytes are charged
279          * 3) CPU1: a process from another memcg is allocating something,
280          *          the stock if flushed,
281          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282          * 5) CPU0: we do release this object,
283          *          92 bytes are added to stock->nr_bytes
284          * 6) CPU0: stock is flushed,
285          *          92 bytes are added to objcg->nr_charged_bytes
286          *
287          * In the result, nr_charged_bytes == PAGE_SIZE.
288          * This page will be uncharged in obj_cgroup_release().
289          */
290         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292         nr_pages = nr_bytes >> PAGE_SHIFT;
293
294         if (nr_pages)
295                 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297         spin_lock_irqsave(&objcg_lock, flags);
298         list_del(&objcg->list);
299         spin_unlock_irqrestore(&objcg_lock, flags);
300
301         percpu_ref_exit(ref);
302         kfree_rcu(objcg, rcu);
303 }
304
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307         struct obj_cgroup *objcg;
308         int ret;
309
310         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311         if (!objcg)
312                 return NULL;
313
314         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315                               GFP_KERNEL);
316         if (ret) {
317                 kfree(objcg);
318                 return NULL;
319         }
320         INIT_LIST_HEAD(&objcg->list);
321         return objcg;
322 }
323
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325                                   struct mem_cgroup *parent)
326 {
327         struct obj_cgroup *objcg, *iter;
328
329         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331         spin_lock_irq(&objcg_lock);
332
333         /* 1) Ready to reparent active objcg. */
334         list_add(&objcg->list, &memcg->objcg_list);
335         /* 2) Reparent active objcg and already reparented objcgs to parent. */
336         list_for_each_entry(iter, &memcg->objcg_list, list)
337                 WRITE_ONCE(iter->memcg, parent);
338         /* 3) Move already reparented objcgs to the parent's list */
339         list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341         spin_unlock_irq(&objcg_lock);
342
343         percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347  * A lot of the calls to the cache allocation functions are expected to be
348  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349  * conditional to this static branch, we'll have to allow modules that does
350  * kmem_cache_alloc and the such to see this symbol as well
351  */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358
359 /**
360  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361  * @folio: folio of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @folio is returned.  The returned css remains associated with @folio
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372         struct mem_cgroup *memcg = folio_memcg(folio);
373
374         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375                 memcg = root_mem_cgroup;
376
377         return &memcg->css;
378 }
379
380 /**
381  * page_cgroup_ino - return inode number of the memcg a page is charged to
382  * @page: the page
383  *
384  * Look up the closest online ancestor of the memory cgroup @page is charged to
385  * and return its inode number or 0 if @page is not charged to any cgroup. It
386  * is safe to call this function without holding a reference to @page.
387  *
388  * Note, this function is inherently racy, because there is nothing to prevent
389  * the cgroup inode from getting torn down and potentially reallocated a moment
390  * after page_cgroup_ino() returns, so it only should be used by callers that
391  * do not care (such as procfs interfaces).
392  */
393 ino_t page_cgroup_ino(struct page *page)
394 {
395         struct mem_cgroup *memcg;
396         unsigned long ino = 0;
397
398         rcu_read_lock();
399         /* page_folio() is racy here, but the entire function is racy anyway */
400         memcg = folio_memcg_check(page_folio(page));
401
402         while (memcg && !(memcg->css.flags & CSS_ONLINE))
403                 memcg = parent_mem_cgroup(memcg);
404         if (memcg)
405                 ino = cgroup_ino(memcg->css.cgroup);
406         rcu_read_unlock();
407         return ino;
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411                                          struct mem_cgroup_tree_per_node *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_node *mz_node;
417         bool rightmost = true;
418
419         if (mz->on_tree)
420                 return;
421
422         mz->usage_in_excess = new_usage_in_excess;
423         if (!mz->usage_in_excess)
424                 return;
425         while (*p) {
426                 parent = *p;
427                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428                                         tree_node);
429                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430                         p = &(*p)->rb_left;
431                         rightmost = false;
432                 } else {
433                         p = &(*p)->rb_right;
434                 }
435         }
436
437         if (rightmost)
438                 mctz->rb_rightmost = &mz->tree_node;
439
440         rb_link_node(&mz->tree_node, parent, p);
441         rb_insert_color(&mz->tree_node, &mctz->rb_root);
442         mz->on_tree = true;
443 }
444
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446                                          struct mem_cgroup_tree_per_node *mctz)
447 {
448         if (!mz->on_tree)
449                 return;
450
451         if (&mz->tree_node == mctz->rb_rightmost)
452                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454         rb_erase(&mz->tree_node, &mctz->rb_root);
455         mz->on_tree = false;
456 }
457
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459                                        struct mem_cgroup_tree_per_node *mctz)
460 {
461         unsigned long flags;
462
463         spin_lock_irqsave(&mctz->lock, flags);
464         __mem_cgroup_remove_exceeded(mz, mctz);
465         spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470         unsigned long nr_pages = page_counter_read(&memcg->memory);
471         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472         unsigned long excess = 0;
473
474         if (nr_pages > soft_limit)
475                 excess = nr_pages - soft_limit;
476
477         return excess;
478 }
479
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482         unsigned long excess;
483         struct mem_cgroup_per_node *mz;
484         struct mem_cgroup_tree_per_node *mctz;
485
486         if (lru_gen_enabled()) {
487                 if (soft_limit_excess(memcg))
488                         lru_gen_soft_reclaim(memcg, nid);
489                 return;
490         }
491
492         mctz = soft_limit_tree.rb_tree_per_node[nid];
493         if (!mctz)
494                 return;
495         /*
496          * Necessary to update all ancestors when hierarchy is used.
497          * because their event counter is not touched.
498          */
499         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500                 mz = memcg->nodeinfo[nid];
501                 excess = soft_limit_excess(memcg);
502                 /*
503                  * We have to update the tree if mz is on RB-tree or
504                  * mem is over its softlimit.
505                  */
506                 if (excess || mz->on_tree) {
507                         unsigned long flags;
508
509                         spin_lock_irqsave(&mctz->lock, flags);
510                         /* if on-tree, remove it */
511                         if (mz->on_tree)
512                                 __mem_cgroup_remove_exceeded(mz, mctz);
513                         /*
514                          * Insert again. mz->usage_in_excess will be updated.
515                          * If excess is 0, no tree ops.
516                          */
517                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
518                         spin_unlock_irqrestore(&mctz->lock, flags);
519                 }
520         }
521 }
522
523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525         struct mem_cgroup_tree_per_node *mctz;
526         struct mem_cgroup_per_node *mz;
527         int nid;
528
529         for_each_node(nid) {
530                 mz = memcg->nodeinfo[nid];
531                 mctz = soft_limit_tree.rb_tree_per_node[nid];
532                 if (mctz)
533                         mem_cgroup_remove_exceeded(mz, mctz);
534         }
535 }
536
537 static struct mem_cgroup_per_node *
538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540         struct mem_cgroup_per_node *mz;
541
542 retry:
543         mz = NULL;
544         if (!mctz->rb_rightmost)
545                 goto done;              /* Nothing to reclaim from */
546
547         mz = rb_entry(mctz->rb_rightmost,
548                       struct mem_cgroup_per_node, tree_node);
549         /*
550          * Remove the node now but someone else can add it back,
551          * we will to add it back at the end of reclaim to its correct
552          * position in the tree.
553          */
554         __mem_cgroup_remove_exceeded(mz, mctz);
555         if (!soft_limit_excess(mz->memcg) ||
556             !css_tryget(&mz->memcg->css))
557                 goto retry;
558 done:
559         return mz;
560 }
561
562 static struct mem_cgroup_per_node *
563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565         struct mem_cgroup_per_node *mz;
566
567         spin_lock_irq(&mctz->lock);
568         mz = __mem_cgroup_largest_soft_limit_node(mctz);
569         spin_unlock_irq(&mctz->lock);
570         return mz;
571 }
572
573 /*
574  * memcg and lruvec stats flushing
575  *
576  * Many codepaths leading to stats update or read are performance sensitive and
577  * adding stats flushing in such codepaths is not desirable. So, to optimize the
578  * flushing the kernel does:
579  *
580  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581  *    rstat update tree grow unbounded.
582  *
583  * 2) Flush the stats synchronously on reader side only when there are more than
584  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586  *    only for 2 seconds due to (1).
587  */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594
595 #define FLUSH_TIME (2UL*HZ)
596
597 /*
598  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599  * not rely on this as part of an acquired spinlock_t lock. These functions are
600  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601  * is sufficient.
602  */
603 static void memcg_stats_lock(void)
604 {
605         preempt_disable_nested();
606         VM_WARN_ON_IRQS_ENABLED();
607 }
608
609 static void __memcg_stats_lock(void)
610 {
611         preempt_disable_nested();
612 }
613
614 static void memcg_stats_unlock(void)
615 {
616         preempt_enable_nested();
617 }
618
619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621         unsigned int x;
622
623         if (!val)
624                 return;
625
626         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628         x = __this_cpu_add_return(stats_updates, abs(val));
629         if (x > MEMCG_CHARGE_BATCH) {
630                 /*
631                  * If stats_flush_threshold exceeds the threshold
632                  * (>num_online_cpus()), cgroup stats update will be triggered
633                  * in __mem_cgroup_flush_stats(). Increasing this var further
634                  * is redundant and simply adds overhead in atomic update.
635                  */
636                 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637                         atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638                 __this_cpu_write(stats_updates, 0);
639         }
640 }
641
642 static void do_flush_stats(void)
643 {
644         /*
645          * We always flush the entire tree, so concurrent flushers can just
646          * skip. This avoids a thundering herd problem on the rstat global lock
647          * from memcg flushers (e.g. reclaim, refault, etc).
648          */
649         if (atomic_read(&stats_flush_ongoing) ||
650             atomic_xchg(&stats_flush_ongoing, 1))
651                 return;
652
653         WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655         cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656
657         atomic_set(&stats_flush_threshold, 0);
658         atomic_set(&stats_flush_ongoing, 0);
659 }
660
661 void mem_cgroup_flush_stats(void)
662 {
663         if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664                 do_flush_stats();
665 }
666
667 void mem_cgroup_flush_stats_ratelimited(void)
668 {
669         if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670                 mem_cgroup_flush_stats();
671 }
672
673 static void flush_memcg_stats_dwork(struct work_struct *w)
674 {
675         /*
676          * Always flush here so that flushing in latency-sensitive paths is
677          * as cheap as possible.
678          */
679         do_flush_stats();
680         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681 }
682
683 /* Subset of vm_event_item to report for memcg event stats */
684 static const unsigned int memcg_vm_event_stat[] = {
685         PGPGIN,
686         PGPGOUT,
687         PGSCAN_KSWAPD,
688         PGSCAN_DIRECT,
689         PGSCAN_KHUGEPAGED,
690         PGSTEAL_KSWAPD,
691         PGSTEAL_DIRECT,
692         PGSTEAL_KHUGEPAGED,
693         PGFAULT,
694         PGMAJFAULT,
695         PGREFILL,
696         PGACTIVATE,
697         PGDEACTIVATE,
698         PGLAZYFREE,
699         PGLAZYFREED,
700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701         ZSWPIN,
702         ZSWPOUT,
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705         THP_FAULT_ALLOC,
706         THP_COLLAPSE_ALLOC,
707 #endif
708 };
709
710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
713 static void init_memcg_events(void)
714 {
715         int i;
716
717         for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718                 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719 }
720
721 static inline int memcg_events_index(enum vm_event_item idx)
722 {
723         return mem_cgroup_events_index[idx] - 1;
724 }
725
726 struct memcg_vmstats_percpu {
727         /* Local (CPU and cgroup) page state & events */
728         long                    state[MEMCG_NR_STAT];
729         unsigned long           events[NR_MEMCG_EVENTS];
730
731         /* Delta calculation for lockless upward propagation */
732         long                    state_prev[MEMCG_NR_STAT];
733         unsigned long           events_prev[NR_MEMCG_EVENTS];
734
735         /* Cgroup1: threshold notifications & softlimit tree updates */
736         unsigned long           nr_page_events;
737         unsigned long           targets[MEM_CGROUP_NTARGETS];
738 };
739
740 struct memcg_vmstats {
741         /* Aggregated (CPU and subtree) page state & events */
742         long                    state[MEMCG_NR_STAT];
743         unsigned long           events[NR_MEMCG_EVENTS];
744
745         /* Pending child counts during tree propagation */
746         long                    state_pending[MEMCG_NR_STAT];
747         unsigned long           events_pending[NR_MEMCG_EVENTS];
748 };
749
750 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
751 {
752         long x = READ_ONCE(memcg->vmstats->state[idx]);
753 #ifdef CONFIG_SMP
754         if (x < 0)
755                 x = 0;
756 #endif
757         return x;
758 }
759
760 /**
761  * __mod_memcg_state - update cgroup memory statistics
762  * @memcg: the memory cgroup
763  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
764  * @val: delta to add to the counter, can be negative
765  */
766 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
767 {
768         if (mem_cgroup_disabled())
769                 return;
770
771         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
772         memcg_rstat_updated(memcg, val);
773 }
774
775 /* idx can be of type enum memcg_stat_item or node_stat_item. */
776 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
777 {
778         long x = 0;
779         int cpu;
780
781         for_each_possible_cpu(cpu)
782                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
783 #ifdef CONFIG_SMP
784         if (x < 0)
785                 x = 0;
786 #endif
787         return x;
788 }
789
790 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
791                               int val)
792 {
793         struct mem_cgroup_per_node *pn;
794         struct mem_cgroup *memcg;
795
796         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
797         memcg = pn->memcg;
798
799         /*
800          * The caller from rmap relay on disabled preemption becase they never
801          * update their counter from in-interrupt context. For these two
802          * counters we check that the update is never performed from an
803          * interrupt context while other caller need to have disabled interrupt.
804          */
805         __memcg_stats_lock();
806         if (IS_ENABLED(CONFIG_DEBUG_VM)) {
807                 switch (idx) {
808                 case NR_ANON_MAPPED:
809                 case NR_FILE_MAPPED:
810                 case NR_ANON_THPS:
811                 case NR_SHMEM_PMDMAPPED:
812                 case NR_FILE_PMDMAPPED:
813                         WARN_ON_ONCE(!in_task());
814                         break;
815                 default:
816                         VM_WARN_ON_IRQS_ENABLED();
817                 }
818         }
819
820         /* Update memcg */
821         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
822
823         /* Update lruvec */
824         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
825
826         memcg_rstat_updated(memcg, val);
827         memcg_stats_unlock();
828 }
829
830 /**
831  * __mod_lruvec_state - update lruvec memory statistics
832  * @lruvec: the lruvec
833  * @idx: the stat item
834  * @val: delta to add to the counter, can be negative
835  *
836  * The lruvec is the intersection of the NUMA node and a cgroup. This
837  * function updates the all three counters that are affected by a
838  * change of state at this level: per-node, per-cgroup, per-lruvec.
839  */
840 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
841                         int val)
842 {
843         /* Update node */
844         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
845
846         /* Update memcg and lruvec */
847         if (!mem_cgroup_disabled())
848                 __mod_memcg_lruvec_state(lruvec, idx, val);
849 }
850
851 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
852                              int val)
853 {
854         struct page *head = compound_head(page); /* rmap on tail pages */
855         struct mem_cgroup *memcg;
856         pg_data_t *pgdat = page_pgdat(page);
857         struct lruvec *lruvec;
858
859         rcu_read_lock();
860         memcg = page_memcg(head);
861         /* Untracked pages have no memcg, no lruvec. Update only the node */
862         if (!memcg) {
863                 rcu_read_unlock();
864                 __mod_node_page_state(pgdat, idx, val);
865                 return;
866         }
867
868         lruvec = mem_cgroup_lruvec(memcg, pgdat);
869         __mod_lruvec_state(lruvec, idx, val);
870         rcu_read_unlock();
871 }
872 EXPORT_SYMBOL(__mod_lruvec_page_state);
873
874 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
875 {
876         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
877         struct mem_cgroup *memcg;
878         struct lruvec *lruvec;
879
880         rcu_read_lock();
881         memcg = mem_cgroup_from_slab_obj(p);
882
883         /*
884          * Untracked pages have no memcg, no lruvec. Update only the
885          * node. If we reparent the slab objects to the root memcg,
886          * when we free the slab object, we need to update the per-memcg
887          * vmstats to keep it correct for the root memcg.
888          */
889         if (!memcg) {
890                 __mod_node_page_state(pgdat, idx, val);
891         } else {
892                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
893                 __mod_lruvec_state(lruvec, idx, val);
894         }
895         rcu_read_unlock();
896 }
897
898 /**
899  * __count_memcg_events - account VM events in a cgroup
900  * @memcg: the memory cgroup
901  * @idx: the event item
902  * @count: the number of events that occurred
903  */
904 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
905                           unsigned long count)
906 {
907         int index = memcg_events_index(idx);
908
909         if (mem_cgroup_disabled() || index < 0)
910                 return;
911
912         memcg_stats_lock();
913         __this_cpu_add(memcg->vmstats_percpu->events[index], count);
914         memcg_rstat_updated(memcg, count);
915         memcg_stats_unlock();
916 }
917
918 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
919 {
920         int index = memcg_events_index(event);
921
922         if (index < 0)
923                 return 0;
924         return READ_ONCE(memcg->vmstats->events[index]);
925 }
926
927 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
928 {
929         long x = 0;
930         int cpu;
931         int index = memcg_events_index(event);
932
933         if (index < 0)
934                 return 0;
935
936         for_each_possible_cpu(cpu)
937                 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
938         return x;
939 }
940
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942                                          int nr_pages)
943 {
944         /* pagein of a big page is an event. So, ignore page size */
945         if (nr_pages > 0)
946                 __count_memcg_events(memcg, PGPGIN, 1);
947         else {
948                 __count_memcg_events(memcg, PGPGOUT, 1);
949                 nr_pages = -nr_pages; /* for event */
950         }
951
952         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
953 }
954
955 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
956                                        enum mem_cgroup_events_target target)
957 {
958         unsigned long val, next;
959
960         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
961         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
962         /* from time_after() in jiffies.h */
963         if ((long)(next - val) < 0) {
964                 switch (target) {
965                 case MEM_CGROUP_TARGET_THRESH:
966                         next = val + THRESHOLDS_EVENTS_TARGET;
967                         break;
968                 case MEM_CGROUP_TARGET_SOFTLIMIT:
969                         next = val + SOFTLIMIT_EVENTS_TARGET;
970                         break;
971                 default:
972                         break;
973                 }
974                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
975                 return true;
976         }
977         return false;
978 }
979
980 /*
981  * Check events in order.
982  *
983  */
984 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
985 {
986         if (IS_ENABLED(CONFIG_PREEMPT_RT))
987                 return;
988
989         /* threshold event is triggered in finer grain than soft limit */
990         if (unlikely(mem_cgroup_event_ratelimit(memcg,
991                                                 MEM_CGROUP_TARGET_THRESH))) {
992                 bool do_softlimit;
993
994                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
996                 mem_cgroup_threshold(memcg);
997                 if (unlikely(do_softlimit))
998                         mem_cgroup_update_tree(memcg, nid);
999         }
1000 }
1001
1002 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1003 {
1004         /*
1005          * mm_update_next_owner() may clear mm->owner to NULL
1006          * if it races with swapoff, page migration, etc.
1007          * So this can be called with p == NULL.
1008          */
1009         if (unlikely(!p))
1010                 return NULL;
1011
1012         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1013 }
1014 EXPORT_SYMBOL(mem_cgroup_from_task);
1015
1016 static __always_inline struct mem_cgroup *active_memcg(void)
1017 {
1018         if (!in_task())
1019                 return this_cpu_read(int_active_memcg);
1020         else
1021                 return current->active_memcg;
1022 }
1023
1024 /**
1025  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1026  * @mm: mm from which memcg should be extracted. It can be NULL.
1027  *
1028  * Obtain a reference on mm->memcg and returns it if successful. If mm
1029  * is NULL, then the memcg is chosen as follows:
1030  * 1) The active memcg, if set.
1031  * 2) current->mm->memcg, if available
1032  * 3) root memcg
1033  * If mem_cgroup is disabled, NULL is returned.
1034  */
1035 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1036 {
1037         struct mem_cgroup *memcg;
1038
1039         if (mem_cgroup_disabled())
1040                 return NULL;
1041
1042         /*
1043          * Page cache insertions can happen without an
1044          * actual mm context, e.g. during disk probing
1045          * on boot, loopback IO, acct() writes etc.
1046          *
1047          * No need to css_get on root memcg as the reference
1048          * counting is disabled on the root level in the
1049          * cgroup core. See CSS_NO_REF.
1050          */
1051         if (unlikely(!mm)) {
1052                 memcg = active_memcg();
1053                 if (unlikely(memcg)) {
1054                         /* remote memcg must hold a ref */
1055                         css_get(&memcg->css);
1056                         return memcg;
1057                 }
1058                 mm = current->mm;
1059                 if (unlikely(!mm))
1060                         return root_mem_cgroup;
1061         }
1062
1063         rcu_read_lock();
1064         do {
1065                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1066                 if (unlikely(!memcg))
1067                         memcg = root_mem_cgroup;
1068         } while (!css_tryget(&memcg->css));
1069         rcu_read_unlock();
1070         return memcg;
1071 }
1072 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1073
1074 static __always_inline bool memcg_kmem_bypass(void)
1075 {
1076         /* Allow remote memcg charging from any context. */
1077         if (unlikely(active_memcg()))
1078                 return false;
1079
1080         /* Memcg to charge can't be determined. */
1081         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1082                 return true;
1083
1084         return false;
1085 }
1086
1087 /**
1088  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1089  * @root: hierarchy root
1090  * @prev: previously returned memcg, NULL on first invocation
1091  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1092  *
1093  * Returns references to children of the hierarchy below @root, or
1094  * @root itself, or %NULL after a full round-trip.
1095  *
1096  * Caller must pass the return value in @prev on subsequent
1097  * invocations for reference counting, or use mem_cgroup_iter_break()
1098  * to cancel a hierarchy walk before the round-trip is complete.
1099  *
1100  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1101  * in the hierarchy among all concurrent reclaimers operating on the
1102  * same node.
1103  */
1104 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1105                                    struct mem_cgroup *prev,
1106                                    struct mem_cgroup_reclaim_cookie *reclaim)
1107 {
1108         struct mem_cgroup_reclaim_iter *iter;
1109         struct cgroup_subsys_state *css = NULL;
1110         struct mem_cgroup *memcg = NULL;
1111         struct mem_cgroup *pos = NULL;
1112
1113         if (mem_cgroup_disabled())
1114                 return NULL;
1115
1116         if (!root)
1117                 root = root_mem_cgroup;
1118
1119         rcu_read_lock();
1120
1121         if (reclaim) {
1122                 struct mem_cgroup_per_node *mz;
1123
1124                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1125                 iter = &mz->iter;
1126
1127                 /*
1128                  * On start, join the current reclaim iteration cycle.
1129                  * Exit when a concurrent walker completes it.
1130                  */
1131                 if (!prev)
1132                         reclaim->generation = iter->generation;
1133                 else if (reclaim->generation != iter->generation)
1134                         goto out_unlock;
1135
1136                 while (1) {
1137                         pos = READ_ONCE(iter->position);
1138                         if (!pos || css_tryget(&pos->css))
1139                                 break;
1140                         /*
1141                          * css reference reached zero, so iter->position will
1142                          * be cleared by ->css_released. However, we should not
1143                          * rely on this happening soon, because ->css_released
1144                          * is called from a work queue, and by busy-waiting we
1145                          * might block it. So we clear iter->position right
1146                          * away.
1147                          */
1148                         (void)cmpxchg(&iter->position, pos, NULL);
1149                 }
1150         } else if (prev) {
1151                 pos = prev;
1152         }
1153
1154         if (pos)
1155                 css = &pos->css;
1156
1157         for (;;) {
1158                 css = css_next_descendant_pre(css, &root->css);
1159                 if (!css) {
1160                         /*
1161                          * Reclaimers share the hierarchy walk, and a
1162                          * new one might jump in right at the end of
1163                          * the hierarchy - make sure they see at least
1164                          * one group and restart from the beginning.
1165                          */
1166                         if (!prev)
1167                                 continue;
1168                         break;
1169                 }
1170
1171                 /*
1172                  * Verify the css and acquire a reference.  The root
1173                  * is provided by the caller, so we know it's alive
1174                  * and kicking, and don't take an extra reference.
1175                  */
1176                 if (css == &root->css || css_tryget(css)) {
1177                         memcg = mem_cgroup_from_css(css);
1178                         break;
1179                 }
1180         }
1181
1182         if (reclaim) {
1183                 /*
1184                  * The position could have already been updated by a competing
1185                  * thread, so check that the value hasn't changed since we read
1186                  * it to avoid reclaiming from the same cgroup twice.
1187                  */
1188                 (void)cmpxchg(&iter->position, pos, memcg);
1189
1190                 if (pos)
1191                         css_put(&pos->css);
1192
1193                 if (!memcg)
1194                         iter->generation++;
1195         }
1196
1197 out_unlock:
1198         rcu_read_unlock();
1199         if (prev && prev != root)
1200                 css_put(&prev->css);
1201
1202         return memcg;
1203 }
1204
1205 /**
1206  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1207  * @root: hierarchy root
1208  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1209  */
1210 void mem_cgroup_iter_break(struct mem_cgroup *root,
1211                            struct mem_cgroup *prev)
1212 {
1213         if (!root)
1214                 root = root_mem_cgroup;
1215         if (prev && prev != root)
1216                 css_put(&prev->css);
1217 }
1218
1219 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1220                                         struct mem_cgroup *dead_memcg)
1221 {
1222         struct mem_cgroup_reclaim_iter *iter;
1223         struct mem_cgroup_per_node *mz;
1224         int nid;
1225
1226         for_each_node(nid) {
1227                 mz = from->nodeinfo[nid];
1228                 iter = &mz->iter;
1229                 cmpxchg(&iter->position, dead_memcg, NULL);
1230         }
1231 }
1232
1233 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1234 {
1235         struct mem_cgroup *memcg = dead_memcg;
1236         struct mem_cgroup *last;
1237
1238         do {
1239                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1240                 last = memcg;
1241         } while ((memcg = parent_mem_cgroup(memcg)));
1242
1243         /*
1244          * When cgroup1 non-hierarchy mode is used,
1245          * parent_mem_cgroup() does not walk all the way up to the
1246          * cgroup root (root_mem_cgroup). So we have to handle
1247          * dead_memcg from cgroup root separately.
1248          */
1249         if (!mem_cgroup_is_root(last))
1250                 __invalidate_reclaim_iterators(root_mem_cgroup,
1251                                                 dead_memcg);
1252 }
1253
1254 /**
1255  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1256  * @memcg: hierarchy root
1257  * @fn: function to call for each task
1258  * @arg: argument passed to @fn
1259  *
1260  * This function iterates over tasks attached to @memcg or to any of its
1261  * descendants and calls @fn for each task. If @fn returns a non-zero
1262  * value, the function breaks the iteration loop. Otherwise, it will iterate
1263  * over all tasks and return 0.
1264  *
1265  * This function must not be called for the root memory cgroup.
1266  */
1267 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1268                            int (*fn)(struct task_struct *, void *), void *arg)
1269 {
1270         struct mem_cgroup *iter;
1271         int ret = 0;
1272
1273         BUG_ON(mem_cgroup_is_root(memcg));
1274
1275         for_each_mem_cgroup_tree(iter, memcg) {
1276                 struct css_task_iter it;
1277                 struct task_struct *task;
1278
1279                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1280                 while (!ret && (task = css_task_iter_next(&it)))
1281                         ret = fn(task, arg);
1282                 css_task_iter_end(&it);
1283                 if (ret) {
1284                         mem_cgroup_iter_break(memcg, iter);
1285                         break;
1286                 }
1287         }
1288 }
1289
1290 #ifdef CONFIG_DEBUG_VM
1291 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1292 {
1293         struct mem_cgroup *memcg;
1294
1295         if (mem_cgroup_disabled())
1296                 return;
1297
1298         memcg = folio_memcg(folio);
1299
1300         if (!memcg)
1301                 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1302         else
1303                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1304 }
1305 #endif
1306
1307 /**
1308  * folio_lruvec_lock - Lock the lruvec for a folio.
1309  * @folio: Pointer to the folio.
1310  *
1311  * These functions are safe to use under any of the following conditions:
1312  * - folio locked
1313  * - folio_test_lru false
1314  * - folio_memcg_lock()
1315  * - folio frozen (refcount of 0)
1316  *
1317  * Return: The lruvec this folio is on with its lock held.
1318  */
1319 struct lruvec *folio_lruvec_lock(struct folio *folio)
1320 {
1321         struct lruvec *lruvec = folio_lruvec(folio);
1322
1323         spin_lock(&lruvec->lru_lock);
1324         lruvec_memcg_debug(lruvec, folio);
1325
1326         return lruvec;
1327 }
1328
1329 /**
1330  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1331  * @folio: Pointer to the folio.
1332  *
1333  * These functions are safe to use under any of the following conditions:
1334  * - folio locked
1335  * - folio_test_lru false
1336  * - folio_memcg_lock()
1337  * - folio frozen (refcount of 0)
1338  *
1339  * Return: The lruvec this folio is on with its lock held and interrupts
1340  * disabled.
1341  */
1342 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1343 {
1344         struct lruvec *lruvec = folio_lruvec(folio);
1345
1346         spin_lock_irq(&lruvec->lru_lock);
1347         lruvec_memcg_debug(lruvec, folio);
1348
1349         return lruvec;
1350 }
1351
1352 /**
1353  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1354  * @folio: Pointer to the folio.
1355  * @flags: Pointer to irqsave flags.
1356  *
1357  * These functions are safe to use under any of the following conditions:
1358  * - folio locked
1359  * - folio_test_lru false
1360  * - folio_memcg_lock()
1361  * - folio frozen (refcount of 0)
1362  *
1363  * Return: The lruvec this folio is on with its lock held and interrupts
1364  * disabled.
1365  */
1366 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1367                 unsigned long *flags)
1368 {
1369         struct lruvec *lruvec = folio_lruvec(folio);
1370
1371         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1372         lruvec_memcg_debug(lruvec, folio);
1373
1374         return lruvec;
1375 }
1376
1377 /**
1378  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1379  * @lruvec: mem_cgroup per zone lru vector
1380  * @lru: index of lru list the page is sitting on
1381  * @zid: zone id of the accounted pages
1382  * @nr_pages: positive when adding or negative when removing
1383  *
1384  * This function must be called under lru_lock, just before a page is added
1385  * to or just after a page is removed from an lru list.
1386  */
1387 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1388                                 int zid, int nr_pages)
1389 {
1390         struct mem_cgroup_per_node *mz;
1391         unsigned long *lru_size;
1392         long size;
1393
1394         if (mem_cgroup_disabled())
1395                 return;
1396
1397         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1398         lru_size = &mz->lru_zone_size[zid][lru];
1399
1400         if (nr_pages < 0)
1401                 *lru_size += nr_pages;
1402
1403         size = *lru_size;
1404         if (WARN_ONCE(size < 0,
1405                 "%s(%p, %d, %d): lru_size %ld\n",
1406                 __func__, lruvec, lru, nr_pages, size)) {
1407                 VM_BUG_ON(1);
1408                 *lru_size = 0;
1409         }
1410
1411         if (nr_pages > 0)
1412                 *lru_size += nr_pages;
1413 }
1414
1415 /**
1416  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1417  * @memcg: the memory cgroup
1418  *
1419  * Returns the maximum amount of memory @mem can be charged with, in
1420  * pages.
1421  */
1422 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1423 {
1424         unsigned long margin = 0;
1425         unsigned long count;
1426         unsigned long limit;
1427
1428         count = page_counter_read(&memcg->memory);
1429         limit = READ_ONCE(memcg->memory.max);
1430         if (count < limit)
1431                 margin = limit - count;
1432
1433         if (do_memsw_account()) {
1434                 count = page_counter_read(&memcg->memsw);
1435                 limit = READ_ONCE(memcg->memsw.max);
1436                 if (count < limit)
1437                         margin = min(margin, limit - count);
1438                 else
1439                         margin = 0;
1440         }
1441
1442         return margin;
1443 }
1444
1445 /*
1446  * A routine for checking "mem" is under move_account() or not.
1447  *
1448  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1449  * moving cgroups. This is for waiting at high-memory pressure
1450  * caused by "move".
1451  */
1452 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1453 {
1454         struct mem_cgroup *from;
1455         struct mem_cgroup *to;
1456         bool ret = false;
1457         /*
1458          * Unlike task_move routines, we access mc.to, mc.from not under
1459          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1460          */
1461         spin_lock(&mc.lock);
1462         from = mc.from;
1463         to = mc.to;
1464         if (!from)
1465                 goto unlock;
1466
1467         ret = mem_cgroup_is_descendant(from, memcg) ||
1468                 mem_cgroup_is_descendant(to, memcg);
1469 unlock:
1470         spin_unlock(&mc.lock);
1471         return ret;
1472 }
1473
1474 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1475 {
1476         if (mc.moving_task && current != mc.moving_task) {
1477                 if (mem_cgroup_under_move(memcg)) {
1478                         DEFINE_WAIT(wait);
1479                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1480                         /* moving charge context might have finished. */
1481                         if (mc.moving_task)
1482                                 schedule();
1483                         finish_wait(&mc.waitq, &wait);
1484                         return true;
1485                 }
1486         }
1487         return false;
1488 }
1489
1490 struct memory_stat {
1491         const char *name;
1492         unsigned int idx;
1493 };
1494
1495 static const struct memory_stat memory_stats[] = {
1496         { "anon",                       NR_ANON_MAPPED                  },
1497         { "file",                       NR_FILE_PAGES                   },
1498         { "kernel",                     MEMCG_KMEM                      },
1499         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1500         { "pagetables",                 NR_PAGETABLE                    },
1501         { "sec_pagetables",             NR_SECONDARY_PAGETABLE          },
1502         { "percpu",                     MEMCG_PERCPU_B                  },
1503         { "sock",                       MEMCG_SOCK                      },
1504         { "vmalloc",                    MEMCG_VMALLOC                   },
1505         { "shmem",                      NR_SHMEM                        },
1506 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1507         { "zswap",                      MEMCG_ZSWAP_B                   },
1508         { "zswapped",                   MEMCG_ZSWAPPED                  },
1509 #endif
1510         { "file_mapped",                NR_FILE_MAPPED                  },
1511         { "file_dirty",                 NR_FILE_DIRTY                   },
1512         { "file_writeback",             NR_WRITEBACK                    },
1513 #ifdef CONFIG_SWAP
1514         { "swapcached",                 NR_SWAPCACHE                    },
1515 #endif
1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517         { "anon_thp",                   NR_ANON_THPS                    },
1518         { "file_thp",                   NR_FILE_THPS                    },
1519         { "shmem_thp",                  NR_SHMEM_THPS                   },
1520 #endif
1521         { "inactive_anon",              NR_INACTIVE_ANON                },
1522         { "active_anon",                NR_ACTIVE_ANON                  },
1523         { "inactive_file",              NR_INACTIVE_FILE                },
1524         { "active_file",                NR_ACTIVE_FILE                  },
1525         { "unevictable",                NR_UNEVICTABLE                  },
1526         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1527         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1528
1529         /* The memory events */
1530         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1531         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1532         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1533         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1534         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1535         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1536         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1537 };
1538
1539 /* Translate stat items to the correct unit for memory.stat output */
1540 static int memcg_page_state_unit(int item)
1541 {
1542         switch (item) {
1543         case MEMCG_PERCPU_B:
1544         case MEMCG_ZSWAP_B:
1545         case NR_SLAB_RECLAIMABLE_B:
1546         case NR_SLAB_UNRECLAIMABLE_B:
1547         case WORKINGSET_REFAULT_ANON:
1548         case WORKINGSET_REFAULT_FILE:
1549         case WORKINGSET_ACTIVATE_ANON:
1550         case WORKINGSET_ACTIVATE_FILE:
1551         case WORKINGSET_RESTORE_ANON:
1552         case WORKINGSET_RESTORE_FILE:
1553         case WORKINGSET_NODERECLAIM:
1554                 return 1;
1555         case NR_KERNEL_STACK_KB:
1556                 return SZ_1K;
1557         default:
1558                 return PAGE_SIZE;
1559         }
1560 }
1561
1562 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1563                                                     int item)
1564 {
1565         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1566 }
1567
1568 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1569 {
1570         int i;
1571
1572         /*
1573          * Provide statistics on the state of the memory subsystem as
1574          * well as cumulative event counters that show past behavior.
1575          *
1576          * This list is ordered following a combination of these gradients:
1577          * 1) generic big picture -> specifics and details
1578          * 2) reflecting userspace activity -> reflecting kernel heuristics
1579          *
1580          * Current memory state:
1581          */
1582         mem_cgroup_flush_stats();
1583
1584         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1585                 u64 size;
1586
1587                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1588                 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1589
1590                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1591                         size += memcg_page_state_output(memcg,
1592                                                         NR_SLAB_RECLAIMABLE_B);
1593                         seq_buf_printf(s, "slab %llu\n", size);
1594                 }
1595         }
1596
1597         /* Accumulated memory events */
1598         seq_buf_printf(s, "pgscan %lu\n",
1599                        memcg_events(memcg, PGSCAN_KSWAPD) +
1600                        memcg_events(memcg, PGSCAN_DIRECT) +
1601                        memcg_events(memcg, PGSCAN_KHUGEPAGED));
1602         seq_buf_printf(s, "pgsteal %lu\n",
1603                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1604                        memcg_events(memcg, PGSTEAL_DIRECT) +
1605                        memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1606
1607         for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1608                 if (memcg_vm_event_stat[i] == PGPGIN ||
1609                     memcg_vm_event_stat[i] == PGPGOUT)
1610                         continue;
1611
1612                 seq_buf_printf(s, "%s %lu\n",
1613                                vm_event_name(memcg_vm_event_stat[i]),
1614                                memcg_events(memcg, memcg_vm_event_stat[i]));
1615         }
1616
1617         /* The above should easily fit into one page */
1618         WARN_ON_ONCE(seq_buf_has_overflowed(s));
1619 }
1620
1621 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1622
1623 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1624 {
1625         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1626                 memcg_stat_format(memcg, s);
1627         else
1628                 memcg1_stat_format(memcg, s);
1629         WARN_ON_ONCE(seq_buf_has_overflowed(s));
1630 }
1631
1632 #define K(x) ((x) << (PAGE_SHIFT-10))
1633 /**
1634  * mem_cgroup_print_oom_context: Print OOM information relevant to
1635  * memory controller.
1636  * @memcg: The memory cgroup that went over limit
1637  * @p: Task that is going to be killed
1638  *
1639  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1640  * enabled
1641  */
1642 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1643 {
1644         rcu_read_lock();
1645
1646         if (memcg) {
1647                 pr_cont(",oom_memcg=");
1648                 pr_cont_cgroup_path(memcg->css.cgroup);
1649         } else
1650                 pr_cont(",global_oom");
1651         if (p) {
1652                 pr_cont(",task_memcg=");
1653                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1654         }
1655         rcu_read_unlock();
1656 }
1657
1658 /**
1659  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1660  * memory controller.
1661  * @memcg: The memory cgroup that went over limit
1662  */
1663 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1664 {
1665         /* Use static buffer, for the caller is holding oom_lock. */
1666         static char buf[PAGE_SIZE];
1667         struct seq_buf s;
1668
1669         lockdep_assert_held(&oom_lock);
1670
1671         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1672                 K((u64)page_counter_read(&memcg->memory)),
1673                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1674         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1675                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1676                         K((u64)page_counter_read(&memcg->swap)),
1677                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1678         else {
1679                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1680                         K((u64)page_counter_read(&memcg->memsw)),
1681                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1682                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1683                         K((u64)page_counter_read(&memcg->kmem)),
1684                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1685         }
1686
1687         pr_info("Memory cgroup stats for ");
1688         pr_cont_cgroup_path(memcg->css.cgroup);
1689         pr_cont(":");
1690         seq_buf_init(&s, buf, sizeof(buf));
1691         memory_stat_format(memcg, &s);
1692         seq_buf_do_printk(&s, KERN_INFO);
1693 }
1694
1695 /*
1696  * Return the memory (and swap, if configured) limit for a memcg.
1697  */
1698 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1699 {
1700         unsigned long max = READ_ONCE(memcg->memory.max);
1701
1702         if (do_memsw_account()) {
1703                 if (mem_cgroup_swappiness(memcg)) {
1704                         /* Calculate swap excess capacity from memsw limit */
1705                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1706
1707                         max += min(swap, (unsigned long)total_swap_pages);
1708                 }
1709         } else {
1710                 if (mem_cgroup_swappiness(memcg))
1711                         max += min(READ_ONCE(memcg->swap.max),
1712                                    (unsigned long)total_swap_pages);
1713         }
1714         return max;
1715 }
1716
1717 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1718 {
1719         return page_counter_read(&memcg->memory);
1720 }
1721
1722 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1723                                      int order)
1724 {
1725         struct oom_control oc = {
1726                 .zonelist = NULL,
1727                 .nodemask = NULL,
1728                 .memcg = memcg,
1729                 .gfp_mask = gfp_mask,
1730                 .order = order,
1731         };
1732         bool ret = true;
1733
1734         if (mutex_lock_killable(&oom_lock))
1735                 return true;
1736
1737         if (mem_cgroup_margin(memcg) >= (1 << order))
1738                 goto unlock;
1739
1740         /*
1741          * A few threads which were not waiting at mutex_lock_killable() can
1742          * fail to bail out. Therefore, check again after holding oom_lock.
1743          */
1744         ret = task_is_dying() || out_of_memory(&oc);
1745
1746 unlock:
1747         mutex_unlock(&oom_lock);
1748         return ret;
1749 }
1750
1751 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1752                                    pg_data_t *pgdat,
1753                                    gfp_t gfp_mask,
1754                                    unsigned long *total_scanned)
1755 {
1756         struct mem_cgroup *victim = NULL;
1757         int total = 0;
1758         int loop = 0;
1759         unsigned long excess;
1760         unsigned long nr_scanned;
1761         struct mem_cgroup_reclaim_cookie reclaim = {
1762                 .pgdat = pgdat,
1763         };
1764
1765         excess = soft_limit_excess(root_memcg);
1766
1767         while (1) {
1768                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1769                 if (!victim) {
1770                         loop++;
1771                         if (loop >= 2) {
1772                                 /*
1773                                  * If we have not been able to reclaim
1774                                  * anything, it might because there are
1775                                  * no reclaimable pages under this hierarchy
1776                                  */
1777                                 if (!total)
1778                                         break;
1779                                 /*
1780                                  * We want to do more targeted reclaim.
1781                                  * excess >> 2 is not to excessive so as to
1782                                  * reclaim too much, nor too less that we keep
1783                                  * coming back to reclaim from this cgroup
1784                                  */
1785                                 if (total >= (excess >> 2) ||
1786                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1787                                         break;
1788                         }
1789                         continue;
1790                 }
1791                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1792                                         pgdat, &nr_scanned);
1793                 *total_scanned += nr_scanned;
1794                 if (!soft_limit_excess(root_memcg))
1795                         break;
1796         }
1797         mem_cgroup_iter_break(root_memcg, victim);
1798         return total;
1799 }
1800
1801 #ifdef CONFIG_LOCKDEP
1802 static struct lockdep_map memcg_oom_lock_dep_map = {
1803         .name = "memcg_oom_lock",
1804 };
1805 #endif
1806
1807 static DEFINE_SPINLOCK(memcg_oom_lock);
1808
1809 /*
1810  * Check OOM-Killer is already running under our hierarchy.
1811  * If someone is running, return false.
1812  */
1813 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1814 {
1815         struct mem_cgroup *iter, *failed = NULL;
1816
1817         spin_lock(&memcg_oom_lock);
1818
1819         for_each_mem_cgroup_tree(iter, memcg) {
1820                 if (iter->oom_lock) {
1821                         /*
1822                          * this subtree of our hierarchy is already locked
1823                          * so we cannot give a lock.
1824                          */
1825                         failed = iter;
1826                         mem_cgroup_iter_break(memcg, iter);
1827                         break;
1828                 } else
1829                         iter->oom_lock = true;
1830         }
1831
1832         if (failed) {
1833                 /*
1834                  * OK, we failed to lock the whole subtree so we have
1835                  * to clean up what we set up to the failing subtree
1836                  */
1837                 for_each_mem_cgroup_tree(iter, memcg) {
1838                         if (iter == failed) {
1839                                 mem_cgroup_iter_break(memcg, iter);
1840                                 break;
1841                         }
1842                         iter->oom_lock = false;
1843                 }
1844         } else
1845                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1846
1847         spin_unlock(&memcg_oom_lock);
1848
1849         return !failed;
1850 }
1851
1852 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1853 {
1854         struct mem_cgroup *iter;
1855
1856         spin_lock(&memcg_oom_lock);
1857         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1858         for_each_mem_cgroup_tree(iter, memcg)
1859                 iter->oom_lock = false;
1860         spin_unlock(&memcg_oom_lock);
1861 }
1862
1863 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1864 {
1865         struct mem_cgroup *iter;
1866
1867         spin_lock(&memcg_oom_lock);
1868         for_each_mem_cgroup_tree(iter, memcg)
1869                 iter->under_oom++;
1870         spin_unlock(&memcg_oom_lock);
1871 }
1872
1873 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1874 {
1875         struct mem_cgroup *iter;
1876
1877         /*
1878          * Be careful about under_oom underflows because a child memcg
1879          * could have been added after mem_cgroup_mark_under_oom.
1880          */
1881         spin_lock(&memcg_oom_lock);
1882         for_each_mem_cgroup_tree(iter, memcg)
1883                 if (iter->under_oom > 0)
1884                         iter->under_oom--;
1885         spin_unlock(&memcg_oom_lock);
1886 }
1887
1888 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1889
1890 struct oom_wait_info {
1891         struct mem_cgroup *memcg;
1892         wait_queue_entry_t      wait;
1893 };
1894
1895 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1896         unsigned mode, int sync, void *arg)
1897 {
1898         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1899         struct mem_cgroup *oom_wait_memcg;
1900         struct oom_wait_info *oom_wait_info;
1901
1902         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1903         oom_wait_memcg = oom_wait_info->memcg;
1904
1905         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1906             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1907                 return 0;
1908         return autoremove_wake_function(wait, mode, sync, arg);
1909 }
1910
1911 static void memcg_oom_recover(struct mem_cgroup *memcg)
1912 {
1913         /*
1914          * For the following lockless ->under_oom test, the only required
1915          * guarantee is that it must see the state asserted by an OOM when
1916          * this function is called as a result of userland actions
1917          * triggered by the notification of the OOM.  This is trivially
1918          * achieved by invoking mem_cgroup_mark_under_oom() before
1919          * triggering notification.
1920          */
1921         if (memcg && memcg->under_oom)
1922                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1923 }
1924
1925 /*
1926  * Returns true if successfully killed one or more processes. Though in some
1927  * corner cases it can return true even without killing any process.
1928  */
1929 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1930 {
1931         bool locked, ret;
1932
1933         if (order > PAGE_ALLOC_COSTLY_ORDER)
1934                 return false;
1935
1936         memcg_memory_event(memcg, MEMCG_OOM);
1937
1938         /*
1939          * We are in the middle of the charge context here, so we
1940          * don't want to block when potentially sitting on a callstack
1941          * that holds all kinds of filesystem and mm locks.
1942          *
1943          * cgroup1 allows disabling the OOM killer and waiting for outside
1944          * handling until the charge can succeed; remember the context and put
1945          * the task to sleep at the end of the page fault when all locks are
1946          * released.
1947          *
1948          * On the other hand, in-kernel OOM killer allows for an async victim
1949          * memory reclaim (oom_reaper) and that means that we are not solely
1950          * relying on the oom victim to make a forward progress and we can
1951          * invoke the oom killer here.
1952          *
1953          * Please note that mem_cgroup_out_of_memory might fail to find a
1954          * victim and then we have to bail out from the charge path.
1955          */
1956         if (READ_ONCE(memcg->oom_kill_disable)) {
1957                 if (current->in_user_fault) {
1958                         css_get(&memcg->css);
1959                         current->memcg_in_oom = memcg;
1960                         current->memcg_oom_gfp_mask = mask;
1961                         current->memcg_oom_order = order;
1962                 }
1963                 return false;
1964         }
1965
1966         mem_cgroup_mark_under_oom(memcg);
1967
1968         locked = mem_cgroup_oom_trylock(memcg);
1969
1970         if (locked)
1971                 mem_cgroup_oom_notify(memcg);
1972
1973         mem_cgroup_unmark_under_oom(memcg);
1974         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1975
1976         if (locked)
1977                 mem_cgroup_oom_unlock(memcg);
1978
1979         return ret;
1980 }
1981
1982 /**
1983  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1984  * @handle: actually kill/wait or just clean up the OOM state
1985  *
1986  * This has to be called at the end of a page fault if the memcg OOM
1987  * handler was enabled.
1988  *
1989  * Memcg supports userspace OOM handling where failed allocations must
1990  * sleep on a waitqueue until the userspace task resolves the
1991  * situation.  Sleeping directly in the charge context with all kinds
1992  * of locks held is not a good idea, instead we remember an OOM state
1993  * in the task and mem_cgroup_oom_synchronize() has to be called at
1994  * the end of the page fault to complete the OOM handling.
1995  *
1996  * Returns %true if an ongoing memcg OOM situation was detected and
1997  * completed, %false otherwise.
1998  */
1999 bool mem_cgroup_oom_synchronize(bool handle)
2000 {
2001         struct mem_cgroup *memcg = current->memcg_in_oom;
2002         struct oom_wait_info owait;
2003         bool locked;
2004
2005         /* OOM is global, do not handle */
2006         if (!memcg)
2007                 return false;
2008
2009         if (!handle)
2010                 goto cleanup;
2011
2012         owait.memcg = memcg;
2013         owait.wait.flags = 0;
2014         owait.wait.func = memcg_oom_wake_function;
2015         owait.wait.private = current;
2016         INIT_LIST_HEAD(&owait.wait.entry);
2017
2018         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2019         mem_cgroup_mark_under_oom(memcg);
2020
2021         locked = mem_cgroup_oom_trylock(memcg);
2022
2023         if (locked)
2024                 mem_cgroup_oom_notify(memcg);
2025
2026         schedule();
2027         mem_cgroup_unmark_under_oom(memcg);
2028         finish_wait(&memcg_oom_waitq, &owait.wait);
2029
2030         if (locked)
2031                 mem_cgroup_oom_unlock(memcg);
2032 cleanup:
2033         current->memcg_in_oom = NULL;
2034         css_put(&memcg->css);
2035         return true;
2036 }
2037
2038 /**
2039  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2040  * @victim: task to be killed by the OOM killer
2041  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2042  *
2043  * Returns a pointer to a memory cgroup, which has to be cleaned up
2044  * by killing all belonging OOM-killable tasks.
2045  *
2046  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2047  */
2048 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2049                                             struct mem_cgroup *oom_domain)
2050 {
2051         struct mem_cgroup *oom_group = NULL;
2052         struct mem_cgroup *memcg;
2053
2054         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2055                 return NULL;
2056
2057         if (!oom_domain)
2058                 oom_domain = root_mem_cgroup;
2059
2060         rcu_read_lock();
2061
2062         memcg = mem_cgroup_from_task(victim);
2063         if (mem_cgroup_is_root(memcg))
2064                 goto out;
2065
2066         /*
2067          * If the victim task has been asynchronously moved to a different
2068          * memory cgroup, we might end up killing tasks outside oom_domain.
2069          * In this case it's better to ignore memory.group.oom.
2070          */
2071         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2072                 goto out;
2073
2074         /*
2075          * Traverse the memory cgroup hierarchy from the victim task's
2076          * cgroup up to the OOMing cgroup (or root) to find the
2077          * highest-level memory cgroup with oom.group set.
2078          */
2079         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2080                 if (READ_ONCE(memcg->oom_group))
2081                         oom_group = memcg;
2082
2083                 if (memcg == oom_domain)
2084                         break;
2085         }
2086
2087         if (oom_group)
2088                 css_get(&oom_group->css);
2089 out:
2090         rcu_read_unlock();
2091
2092         return oom_group;
2093 }
2094
2095 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2096 {
2097         pr_info("Tasks in ");
2098         pr_cont_cgroup_path(memcg->css.cgroup);
2099         pr_cont(" are going to be killed due to memory.oom.group set\n");
2100 }
2101
2102 /**
2103  * folio_memcg_lock - Bind a folio to its memcg.
2104  * @folio: The folio.
2105  *
2106  * This function prevents unlocked LRU folios from being moved to
2107  * another cgroup.
2108  *
2109  * It ensures lifetime of the bound memcg.  The caller is responsible
2110  * for the lifetime of the folio.
2111  */
2112 void folio_memcg_lock(struct folio *folio)
2113 {
2114         struct mem_cgroup *memcg;
2115         unsigned long flags;
2116
2117         /*
2118          * The RCU lock is held throughout the transaction.  The fast
2119          * path can get away without acquiring the memcg->move_lock
2120          * because page moving starts with an RCU grace period.
2121          */
2122         rcu_read_lock();
2123
2124         if (mem_cgroup_disabled())
2125                 return;
2126 again:
2127         memcg = folio_memcg(folio);
2128         if (unlikely(!memcg))
2129                 return;
2130
2131 #ifdef CONFIG_PROVE_LOCKING
2132         local_irq_save(flags);
2133         might_lock(&memcg->move_lock);
2134         local_irq_restore(flags);
2135 #endif
2136
2137         if (atomic_read(&memcg->moving_account) <= 0)
2138                 return;
2139
2140         spin_lock_irqsave(&memcg->move_lock, flags);
2141         if (memcg != folio_memcg(folio)) {
2142                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2143                 goto again;
2144         }
2145
2146         /*
2147          * When charge migration first begins, we can have multiple
2148          * critical sections holding the fast-path RCU lock and one
2149          * holding the slowpath move_lock. Track the task who has the
2150          * move_lock for folio_memcg_unlock().
2151          */
2152         memcg->move_lock_task = current;
2153         memcg->move_lock_flags = flags;
2154 }
2155
2156 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2157 {
2158         if (memcg && memcg->move_lock_task == current) {
2159                 unsigned long flags = memcg->move_lock_flags;
2160
2161                 memcg->move_lock_task = NULL;
2162                 memcg->move_lock_flags = 0;
2163
2164                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2165         }
2166
2167         rcu_read_unlock();
2168 }
2169
2170 /**
2171  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2172  * @folio: The folio.
2173  *
2174  * This releases the binding created by folio_memcg_lock().  This does
2175  * not change the accounting of this folio to its memcg, but it does
2176  * permit others to change it.
2177  */
2178 void folio_memcg_unlock(struct folio *folio)
2179 {
2180         __folio_memcg_unlock(folio_memcg(folio));
2181 }
2182
2183 struct memcg_stock_pcp {
2184         local_lock_t stock_lock;
2185         struct mem_cgroup *cached; /* this never be root cgroup */
2186         unsigned int nr_pages;
2187
2188 #ifdef CONFIG_MEMCG_KMEM
2189         struct obj_cgroup *cached_objcg;
2190         struct pglist_data *cached_pgdat;
2191         unsigned int nr_bytes;
2192         int nr_slab_reclaimable_b;
2193         int nr_slab_unreclaimable_b;
2194 #endif
2195
2196         struct work_struct work;
2197         unsigned long flags;
2198 #define FLUSHING_CACHED_CHARGE  0
2199 };
2200 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2201         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2202 };
2203 static DEFINE_MUTEX(percpu_charge_mutex);
2204
2205 #ifdef CONFIG_MEMCG_KMEM
2206 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2207 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2208                                      struct mem_cgroup *root_memcg);
2209 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2210
2211 #else
2212 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2213 {
2214         return NULL;
2215 }
2216 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2217                                      struct mem_cgroup *root_memcg)
2218 {
2219         return false;
2220 }
2221 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2222 {
2223 }
2224 #endif
2225
2226 /**
2227  * consume_stock: Try to consume stocked charge on this cpu.
2228  * @memcg: memcg to consume from.
2229  * @nr_pages: how many pages to charge.
2230  *
2231  * The charges will only happen if @memcg matches the current cpu's memcg
2232  * stock, and at least @nr_pages are available in that stock.  Failure to
2233  * service an allocation will refill the stock.
2234  *
2235  * returns true if successful, false otherwise.
2236  */
2237 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2238 {
2239         struct memcg_stock_pcp *stock;
2240         unsigned long flags;
2241         bool ret = false;
2242
2243         if (nr_pages > MEMCG_CHARGE_BATCH)
2244                 return ret;
2245
2246         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2247
2248         stock = this_cpu_ptr(&memcg_stock);
2249         if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2250                 stock->nr_pages -= nr_pages;
2251                 ret = true;
2252         }
2253
2254         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2255
2256         return ret;
2257 }
2258
2259 /*
2260  * Returns stocks cached in percpu and reset cached information.
2261  */
2262 static void drain_stock(struct memcg_stock_pcp *stock)
2263 {
2264         struct mem_cgroup *old = READ_ONCE(stock->cached);
2265
2266         if (!old)
2267                 return;
2268
2269         if (stock->nr_pages) {
2270                 page_counter_uncharge(&old->memory, stock->nr_pages);
2271                 if (do_memsw_account())
2272                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2273                 stock->nr_pages = 0;
2274         }
2275
2276         css_put(&old->css);
2277         WRITE_ONCE(stock->cached, NULL);
2278 }
2279
2280 static void drain_local_stock(struct work_struct *dummy)
2281 {
2282         struct memcg_stock_pcp *stock;
2283         struct obj_cgroup *old = NULL;
2284         unsigned long flags;
2285
2286         /*
2287          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2288          * drain_stock races is that we always operate on local CPU stock
2289          * here with IRQ disabled
2290          */
2291         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2292
2293         stock = this_cpu_ptr(&memcg_stock);
2294         old = drain_obj_stock(stock);
2295         drain_stock(stock);
2296         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2297
2298         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2299         if (old)
2300                 obj_cgroup_put(old);
2301 }
2302
2303 /*
2304  * Cache charges(val) to local per_cpu area.
2305  * This will be consumed by consume_stock() function, later.
2306  */
2307 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2308 {
2309         struct memcg_stock_pcp *stock;
2310
2311         stock = this_cpu_ptr(&memcg_stock);
2312         if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2313                 drain_stock(stock);
2314                 css_get(&memcg->css);
2315                 WRITE_ONCE(stock->cached, memcg);
2316         }
2317         stock->nr_pages += nr_pages;
2318
2319         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2320                 drain_stock(stock);
2321 }
2322
2323 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2324 {
2325         unsigned long flags;
2326
2327         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2328         __refill_stock(memcg, nr_pages);
2329         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2330 }
2331
2332 /*
2333  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2334  * of the hierarchy under it.
2335  */
2336 static void drain_all_stock(struct mem_cgroup *root_memcg)
2337 {
2338         int cpu, curcpu;
2339
2340         /* If someone's already draining, avoid adding running more workers. */
2341         if (!mutex_trylock(&percpu_charge_mutex))
2342                 return;
2343         /*
2344          * Notify other cpus that system-wide "drain" is running
2345          * We do not care about races with the cpu hotplug because cpu down
2346          * as well as workers from this path always operate on the local
2347          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2348          */
2349         migrate_disable();
2350         curcpu = smp_processor_id();
2351         for_each_online_cpu(cpu) {
2352                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2353                 struct mem_cgroup *memcg;
2354                 bool flush = false;
2355
2356                 rcu_read_lock();
2357                 memcg = READ_ONCE(stock->cached);
2358                 if (memcg && stock->nr_pages &&
2359                     mem_cgroup_is_descendant(memcg, root_memcg))
2360                         flush = true;
2361                 else if (obj_stock_flush_required(stock, root_memcg))
2362                         flush = true;
2363                 rcu_read_unlock();
2364
2365                 if (flush &&
2366                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2367                         if (cpu == curcpu)
2368                                 drain_local_stock(&stock->work);
2369                         else if (!cpu_is_isolated(cpu))
2370                                 schedule_work_on(cpu, &stock->work);
2371                 }
2372         }
2373         migrate_enable();
2374         mutex_unlock(&percpu_charge_mutex);
2375 }
2376
2377 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2378 {
2379         struct memcg_stock_pcp *stock;
2380
2381         stock = &per_cpu(memcg_stock, cpu);
2382         drain_stock(stock);
2383
2384         return 0;
2385 }
2386
2387 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2388                                   unsigned int nr_pages,
2389                                   gfp_t gfp_mask)
2390 {
2391         unsigned long nr_reclaimed = 0;
2392
2393         do {
2394                 unsigned long pflags;
2395
2396                 if (page_counter_read(&memcg->memory) <=
2397                     READ_ONCE(memcg->memory.high))
2398                         continue;
2399
2400                 memcg_memory_event(memcg, MEMCG_HIGH);
2401
2402                 psi_memstall_enter(&pflags);
2403                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2404                                                         gfp_mask,
2405                                                         MEMCG_RECLAIM_MAY_SWAP);
2406                 psi_memstall_leave(&pflags);
2407         } while ((memcg = parent_mem_cgroup(memcg)) &&
2408                  !mem_cgroup_is_root(memcg));
2409
2410         return nr_reclaimed;
2411 }
2412
2413 static void high_work_func(struct work_struct *work)
2414 {
2415         struct mem_cgroup *memcg;
2416
2417         memcg = container_of(work, struct mem_cgroup, high_work);
2418         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2419 }
2420
2421 /*
2422  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2423  * enough to still cause a significant slowdown in most cases, while still
2424  * allowing diagnostics and tracing to proceed without becoming stuck.
2425  */
2426 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2427
2428 /*
2429  * When calculating the delay, we use these either side of the exponentiation to
2430  * maintain precision and scale to a reasonable number of jiffies (see the table
2431  * below.
2432  *
2433  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2434  *   overage ratio to a delay.
2435  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2436  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2437  *   to produce a reasonable delay curve.
2438  *
2439  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2440  * reasonable delay curve compared to precision-adjusted overage, not
2441  * penalising heavily at first, but still making sure that growth beyond the
2442  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2443  * example, with a high of 100 megabytes:
2444  *
2445  *  +-------+------------------------+
2446  *  | usage | time to allocate in ms |
2447  *  +-------+------------------------+
2448  *  | 100M  |                      0 |
2449  *  | 101M  |                      6 |
2450  *  | 102M  |                     25 |
2451  *  | 103M  |                     57 |
2452  *  | 104M  |                    102 |
2453  *  | 105M  |                    159 |
2454  *  | 106M  |                    230 |
2455  *  | 107M  |                    313 |
2456  *  | 108M  |                    409 |
2457  *  | 109M  |                    518 |
2458  *  | 110M  |                    639 |
2459  *  | 111M  |                    774 |
2460  *  | 112M  |                    921 |
2461  *  | 113M  |                   1081 |
2462  *  | 114M  |                   1254 |
2463  *  | 115M  |                   1439 |
2464  *  | 116M  |                   1638 |
2465  *  | 117M  |                   1849 |
2466  *  | 118M  |                   2000 |
2467  *  | 119M  |                   2000 |
2468  *  | 120M  |                   2000 |
2469  *  +-------+------------------------+
2470  */
2471  #define MEMCG_DELAY_PRECISION_SHIFT 20
2472  #define MEMCG_DELAY_SCALING_SHIFT 14
2473
2474 static u64 calculate_overage(unsigned long usage, unsigned long high)
2475 {
2476         u64 overage;
2477
2478         if (usage <= high)
2479                 return 0;
2480
2481         /*
2482          * Prevent division by 0 in overage calculation by acting as if
2483          * it was a threshold of 1 page
2484          */
2485         high = max(high, 1UL);
2486
2487         overage = usage - high;
2488         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2489         return div64_u64(overage, high);
2490 }
2491
2492 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2493 {
2494         u64 overage, max_overage = 0;
2495
2496         do {
2497                 overage = calculate_overage(page_counter_read(&memcg->memory),
2498                                             READ_ONCE(memcg->memory.high));
2499                 max_overage = max(overage, max_overage);
2500         } while ((memcg = parent_mem_cgroup(memcg)) &&
2501                  !mem_cgroup_is_root(memcg));
2502
2503         return max_overage;
2504 }
2505
2506 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2507 {
2508         u64 overage, max_overage = 0;
2509
2510         do {
2511                 overage = calculate_overage(page_counter_read(&memcg->swap),
2512                                             READ_ONCE(memcg->swap.high));
2513                 if (overage)
2514                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2515                 max_overage = max(overage, max_overage);
2516         } while ((memcg = parent_mem_cgroup(memcg)) &&
2517                  !mem_cgroup_is_root(memcg));
2518
2519         return max_overage;
2520 }
2521
2522 /*
2523  * Get the number of jiffies that we should penalise a mischievous cgroup which
2524  * is exceeding its memory.high by checking both it and its ancestors.
2525  */
2526 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2527                                           unsigned int nr_pages,
2528                                           u64 max_overage)
2529 {
2530         unsigned long penalty_jiffies;
2531
2532         if (!max_overage)
2533                 return 0;
2534
2535         /*
2536          * We use overage compared to memory.high to calculate the number of
2537          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2538          * fairly lenient on small overages, and increasingly harsh when the
2539          * memcg in question makes it clear that it has no intention of stopping
2540          * its crazy behaviour, so we exponentially increase the delay based on
2541          * overage amount.
2542          */
2543         penalty_jiffies = max_overage * max_overage * HZ;
2544         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2545         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2546
2547         /*
2548          * Factor in the task's own contribution to the overage, such that four
2549          * N-sized allocations are throttled approximately the same as one
2550          * 4N-sized allocation.
2551          *
2552          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2553          * larger the current charge patch is than that.
2554          */
2555         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2556 }
2557
2558 /*
2559  * Scheduled by try_charge() to be executed from the userland return path
2560  * and reclaims memory over the high limit.
2561  */
2562 void mem_cgroup_handle_over_high(void)
2563 {
2564         unsigned long penalty_jiffies;
2565         unsigned long pflags;
2566         unsigned long nr_reclaimed;
2567         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2568         int nr_retries = MAX_RECLAIM_RETRIES;
2569         struct mem_cgroup *memcg;
2570         bool in_retry = false;
2571
2572         if (likely(!nr_pages))
2573                 return;
2574
2575         memcg = get_mem_cgroup_from_mm(current->mm);
2576         current->memcg_nr_pages_over_high = 0;
2577
2578 retry_reclaim:
2579         /*
2580          * The allocating task should reclaim at least the batch size, but for
2581          * subsequent retries we only want to do what's necessary to prevent oom
2582          * or breaching resource isolation.
2583          *
2584          * This is distinct from memory.max or page allocator behaviour because
2585          * memory.high is currently batched, whereas memory.max and the page
2586          * allocator run every time an allocation is made.
2587          */
2588         nr_reclaimed = reclaim_high(memcg,
2589                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2590                                     GFP_KERNEL);
2591
2592         /*
2593          * memory.high is breached and reclaim is unable to keep up. Throttle
2594          * allocators proactively to slow down excessive growth.
2595          */
2596         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2597                                                mem_find_max_overage(memcg));
2598
2599         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2600                                                 swap_find_max_overage(memcg));
2601
2602         /*
2603          * Clamp the max delay per usermode return so as to still keep the
2604          * application moving forwards and also permit diagnostics, albeit
2605          * extremely slowly.
2606          */
2607         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2608
2609         /*
2610          * Don't sleep if the amount of jiffies this memcg owes us is so low
2611          * that it's not even worth doing, in an attempt to be nice to those who
2612          * go only a small amount over their memory.high value and maybe haven't
2613          * been aggressively reclaimed enough yet.
2614          */
2615         if (penalty_jiffies <= HZ / 100)
2616                 goto out;
2617
2618         /*
2619          * If reclaim is making forward progress but we're still over
2620          * memory.high, we want to encourage that rather than doing allocator
2621          * throttling.
2622          */
2623         if (nr_reclaimed || nr_retries--) {
2624                 in_retry = true;
2625                 goto retry_reclaim;
2626         }
2627
2628         /*
2629          * If we exit early, we're guaranteed to die (since
2630          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2631          * need to account for any ill-begotten jiffies to pay them off later.
2632          */
2633         psi_memstall_enter(&pflags);
2634         schedule_timeout_killable(penalty_jiffies);
2635         psi_memstall_leave(&pflags);
2636
2637 out:
2638         css_put(&memcg->css);
2639 }
2640
2641 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2642                         unsigned int nr_pages)
2643 {
2644         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2645         int nr_retries = MAX_RECLAIM_RETRIES;
2646         struct mem_cgroup *mem_over_limit;
2647         struct page_counter *counter;
2648         unsigned long nr_reclaimed;
2649         bool passed_oom = false;
2650         unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2651         bool drained = false;
2652         bool raised_max_event = false;
2653         unsigned long pflags;
2654
2655 retry:
2656         if (consume_stock(memcg, nr_pages))
2657                 return 0;
2658
2659         if (!do_memsw_account() ||
2660             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2661                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2662                         goto done_restock;
2663                 if (do_memsw_account())
2664                         page_counter_uncharge(&memcg->memsw, batch);
2665                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2666         } else {
2667                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2668                 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2669         }
2670
2671         if (batch > nr_pages) {
2672                 batch = nr_pages;
2673                 goto retry;
2674         }
2675
2676         /*
2677          * Prevent unbounded recursion when reclaim operations need to
2678          * allocate memory. This might exceed the limits temporarily,
2679          * but we prefer facilitating memory reclaim and getting back
2680          * under the limit over triggering OOM kills in these cases.
2681          */
2682         if (unlikely(current->flags & PF_MEMALLOC))
2683                 goto force;
2684
2685         if (unlikely(task_in_memcg_oom(current)))
2686                 goto nomem;
2687
2688         if (!gfpflags_allow_blocking(gfp_mask))
2689                 goto nomem;
2690
2691         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2692         raised_max_event = true;
2693
2694         psi_memstall_enter(&pflags);
2695         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2696                                                     gfp_mask, reclaim_options);
2697         psi_memstall_leave(&pflags);
2698
2699         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2700                 goto retry;
2701
2702         if (!drained) {
2703                 drain_all_stock(mem_over_limit);
2704                 drained = true;
2705                 goto retry;
2706         }
2707
2708         if (gfp_mask & __GFP_NORETRY)
2709                 goto nomem;
2710         /*
2711          * Even though the limit is exceeded at this point, reclaim
2712          * may have been able to free some pages.  Retry the charge
2713          * before killing the task.
2714          *
2715          * Only for regular pages, though: huge pages are rather
2716          * unlikely to succeed so close to the limit, and we fall back
2717          * to regular pages anyway in case of failure.
2718          */
2719         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2720                 goto retry;
2721         /*
2722          * At task move, charge accounts can be doubly counted. So, it's
2723          * better to wait until the end of task_move if something is going on.
2724          */
2725         if (mem_cgroup_wait_acct_move(mem_over_limit))
2726                 goto retry;
2727
2728         if (nr_retries--)
2729                 goto retry;
2730
2731         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2732                 goto nomem;
2733
2734         /* Avoid endless loop for tasks bypassed by the oom killer */
2735         if (passed_oom && task_is_dying())
2736                 goto nomem;
2737
2738         /*
2739          * keep retrying as long as the memcg oom killer is able to make
2740          * a forward progress or bypass the charge if the oom killer
2741          * couldn't make any progress.
2742          */
2743         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2744                            get_order(nr_pages * PAGE_SIZE))) {
2745                 passed_oom = true;
2746                 nr_retries = MAX_RECLAIM_RETRIES;
2747                 goto retry;
2748         }
2749 nomem:
2750         /*
2751          * Memcg doesn't have a dedicated reserve for atomic
2752          * allocations. But like the global atomic pool, we need to
2753          * put the burden of reclaim on regular allocation requests
2754          * and let these go through as privileged allocations.
2755          */
2756         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2757                 return -ENOMEM;
2758 force:
2759         /*
2760          * If the allocation has to be enforced, don't forget to raise
2761          * a MEMCG_MAX event.
2762          */
2763         if (!raised_max_event)
2764                 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2765
2766         /*
2767          * The allocation either can't fail or will lead to more memory
2768          * being freed very soon.  Allow memory usage go over the limit
2769          * temporarily by force charging it.
2770          */
2771         page_counter_charge(&memcg->memory, nr_pages);
2772         if (do_memsw_account())
2773                 page_counter_charge(&memcg->memsw, nr_pages);
2774
2775         return 0;
2776
2777 done_restock:
2778         if (batch > nr_pages)
2779                 refill_stock(memcg, batch - nr_pages);
2780
2781         /*
2782          * If the hierarchy is above the normal consumption range, schedule
2783          * reclaim on returning to userland.  We can perform reclaim here
2784          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2785          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2786          * not recorded as it most likely matches current's and won't
2787          * change in the meantime.  As high limit is checked again before
2788          * reclaim, the cost of mismatch is negligible.
2789          */
2790         do {
2791                 bool mem_high, swap_high;
2792
2793                 mem_high = page_counter_read(&memcg->memory) >
2794                         READ_ONCE(memcg->memory.high);
2795                 swap_high = page_counter_read(&memcg->swap) >
2796                         READ_ONCE(memcg->swap.high);
2797
2798                 /* Don't bother a random interrupted task */
2799                 if (!in_task()) {
2800                         if (mem_high) {
2801                                 schedule_work(&memcg->high_work);
2802                                 break;
2803                         }
2804                         continue;
2805                 }
2806
2807                 if (mem_high || swap_high) {
2808                         /*
2809                          * The allocating tasks in this cgroup will need to do
2810                          * reclaim or be throttled to prevent further growth
2811                          * of the memory or swap footprints.
2812                          *
2813                          * Target some best-effort fairness between the tasks,
2814                          * and distribute reclaim work and delay penalties
2815                          * based on how much each task is actually allocating.
2816                          */
2817                         current->memcg_nr_pages_over_high += batch;
2818                         set_notify_resume(current);
2819                         break;
2820                 }
2821         } while ((memcg = parent_mem_cgroup(memcg)));
2822
2823         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2824             !(current->flags & PF_MEMALLOC) &&
2825             gfpflags_allow_blocking(gfp_mask)) {
2826                 mem_cgroup_handle_over_high();
2827         }
2828         return 0;
2829 }
2830
2831 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2832                              unsigned int nr_pages)
2833 {
2834         if (mem_cgroup_is_root(memcg))
2835                 return 0;
2836
2837         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2838 }
2839
2840 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2841 {
2842         if (mem_cgroup_is_root(memcg))
2843                 return;
2844
2845         page_counter_uncharge(&memcg->memory, nr_pages);
2846         if (do_memsw_account())
2847                 page_counter_uncharge(&memcg->memsw, nr_pages);
2848 }
2849
2850 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2851 {
2852         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2853         /*
2854          * Any of the following ensures page's memcg stability:
2855          *
2856          * - the page lock
2857          * - LRU isolation
2858          * - folio_memcg_lock()
2859          * - exclusive reference
2860          * - mem_cgroup_trylock_pages()
2861          */
2862         folio->memcg_data = (unsigned long)memcg;
2863 }
2864
2865 #ifdef CONFIG_MEMCG_KMEM
2866 /*
2867  * The allocated objcg pointers array is not accounted directly.
2868  * Moreover, it should not come from DMA buffer and is not readily
2869  * reclaimable. So those GFP bits should be masked off.
2870  */
2871 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2872
2873 /*
2874  * mod_objcg_mlstate() may be called with irq enabled, so
2875  * mod_memcg_lruvec_state() should be used.
2876  */
2877 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2878                                      struct pglist_data *pgdat,
2879                                      enum node_stat_item idx, int nr)
2880 {
2881         struct mem_cgroup *memcg;
2882         struct lruvec *lruvec;
2883
2884         rcu_read_lock();
2885         memcg = obj_cgroup_memcg(objcg);
2886         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2887         mod_memcg_lruvec_state(lruvec, idx, nr);
2888         rcu_read_unlock();
2889 }
2890
2891 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2892                                  gfp_t gfp, bool new_slab)
2893 {
2894         unsigned int objects = objs_per_slab(s, slab);
2895         unsigned long memcg_data;
2896         void *vec;
2897
2898         gfp &= ~OBJCGS_CLEAR_MASK;
2899         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2900                            slab_nid(slab));
2901         if (!vec)
2902                 return -ENOMEM;
2903
2904         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2905         if (new_slab) {
2906                 /*
2907                  * If the slab is brand new and nobody can yet access its
2908                  * memcg_data, no synchronization is required and memcg_data can
2909                  * be simply assigned.
2910                  */
2911                 slab->memcg_data = memcg_data;
2912         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2913                 /*
2914                  * If the slab is already in use, somebody can allocate and
2915                  * assign obj_cgroups in parallel. In this case the existing
2916                  * objcg vector should be reused.
2917                  */
2918                 kfree(vec);
2919                 return 0;
2920         }
2921
2922         kmemleak_not_leak(vec);
2923         return 0;
2924 }
2925
2926 static __always_inline
2927 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2928 {
2929         /*
2930          * Slab objects are accounted individually, not per-page.
2931          * Memcg membership data for each individual object is saved in
2932          * slab->memcg_data.
2933          */
2934         if (folio_test_slab(folio)) {
2935                 struct obj_cgroup **objcgs;
2936                 struct slab *slab;
2937                 unsigned int off;
2938
2939                 slab = folio_slab(folio);
2940                 objcgs = slab_objcgs(slab);
2941                 if (!objcgs)
2942                         return NULL;
2943
2944                 off = obj_to_index(slab->slab_cache, slab, p);
2945                 if (objcgs[off])
2946                         return obj_cgroup_memcg(objcgs[off]);
2947
2948                 return NULL;
2949         }
2950
2951         /*
2952          * folio_memcg_check() is used here, because in theory we can encounter
2953          * a folio where the slab flag has been cleared already, but
2954          * slab->memcg_data has not been freed yet
2955          * folio_memcg_check() will guarantee that a proper memory
2956          * cgroup pointer or NULL will be returned.
2957          */
2958         return folio_memcg_check(folio);
2959 }
2960
2961 /*
2962  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2963  *
2964  * A passed kernel object can be a slab object, vmalloc object or a generic
2965  * kernel page, so different mechanisms for getting the memory cgroup pointer
2966  * should be used.
2967  *
2968  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2969  * can not know for sure how the kernel object is implemented.
2970  * mem_cgroup_from_obj() can be safely used in such cases.
2971  *
2972  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2973  * cgroup_mutex, etc.
2974  */
2975 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2976 {
2977         struct folio *folio;
2978
2979         if (mem_cgroup_disabled())
2980                 return NULL;
2981
2982         if (unlikely(is_vmalloc_addr(p)))
2983                 folio = page_folio(vmalloc_to_page(p));
2984         else
2985                 folio = virt_to_folio(p);
2986
2987         return mem_cgroup_from_obj_folio(folio, p);
2988 }
2989
2990 /*
2991  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2992  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2993  * allocated using vmalloc().
2994  *
2995  * A passed kernel object must be a slab object or a generic kernel page.
2996  *
2997  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2998  * cgroup_mutex, etc.
2999  */
3000 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3001 {
3002         if (mem_cgroup_disabled())
3003                 return NULL;
3004
3005         return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3006 }
3007
3008 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3009 {
3010         struct obj_cgroup *objcg = NULL;
3011
3012         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3013                 objcg = rcu_dereference(memcg->objcg);
3014                 if (objcg && obj_cgroup_tryget(objcg))
3015                         break;
3016                 objcg = NULL;
3017         }
3018         return objcg;
3019 }
3020
3021 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3022 {
3023         struct obj_cgroup *objcg = NULL;
3024         struct mem_cgroup *memcg;
3025
3026         if (memcg_kmem_bypass())
3027                 return NULL;
3028
3029         rcu_read_lock();
3030         if (unlikely(active_memcg()))
3031                 memcg = active_memcg();
3032         else
3033                 memcg = mem_cgroup_from_task(current);
3034         objcg = __get_obj_cgroup_from_memcg(memcg);
3035         rcu_read_unlock();
3036         return objcg;
3037 }
3038
3039 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3040 {
3041         struct obj_cgroup *objcg;
3042
3043         if (!memcg_kmem_online())
3044                 return NULL;
3045
3046         if (PageMemcgKmem(page)) {
3047                 objcg = __folio_objcg(page_folio(page));
3048                 obj_cgroup_get(objcg);
3049         } else {
3050                 struct mem_cgroup *memcg;
3051
3052                 rcu_read_lock();
3053                 memcg = __folio_memcg(page_folio(page));
3054                 if (memcg)
3055                         objcg = __get_obj_cgroup_from_memcg(memcg);
3056                 else
3057                         objcg = NULL;
3058                 rcu_read_unlock();
3059         }
3060         return objcg;
3061 }
3062
3063 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3064 {
3065         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3066         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3067                 if (nr_pages > 0)
3068                         page_counter_charge(&memcg->kmem, nr_pages);
3069                 else
3070                         page_counter_uncharge(&memcg->kmem, -nr_pages);
3071         }
3072 }
3073
3074
3075 /*
3076  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3077  * @objcg: object cgroup to uncharge
3078  * @nr_pages: number of pages to uncharge
3079  */
3080 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3081                                       unsigned int nr_pages)
3082 {
3083         struct mem_cgroup *memcg;
3084
3085         memcg = get_mem_cgroup_from_objcg(objcg);
3086
3087         memcg_account_kmem(memcg, -nr_pages);
3088         refill_stock(memcg, nr_pages);
3089
3090         css_put(&memcg->css);
3091 }
3092
3093 /*
3094  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3095  * @objcg: object cgroup to charge
3096  * @gfp: reclaim mode
3097  * @nr_pages: number of pages to charge
3098  *
3099  * Returns 0 on success, an error code on failure.
3100  */
3101 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3102                                    unsigned int nr_pages)
3103 {
3104         struct mem_cgroup *memcg;
3105         int ret;
3106
3107         memcg = get_mem_cgroup_from_objcg(objcg);
3108
3109         ret = try_charge_memcg(memcg, gfp, nr_pages);
3110         if (ret)
3111                 goto out;
3112
3113         memcg_account_kmem(memcg, nr_pages);
3114 out:
3115         css_put(&memcg->css);
3116
3117         return ret;
3118 }
3119
3120 /**
3121  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3122  * @page: page to charge
3123  * @gfp: reclaim mode
3124  * @order: allocation order
3125  *
3126  * Returns 0 on success, an error code on failure.
3127  */
3128 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3129 {
3130         struct obj_cgroup *objcg;
3131         int ret = 0;
3132
3133         objcg = get_obj_cgroup_from_current();
3134         if (objcg) {
3135                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3136                 if (!ret) {
3137                         page->memcg_data = (unsigned long)objcg |
3138                                 MEMCG_DATA_KMEM;
3139                         return 0;
3140                 }
3141                 obj_cgroup_put(objcg);
3142         }
3143         return ret;
3144 }
3145
3146 /**
3147  * __memcg_kmem_uncharge_page: uncharge a kmem page
3148  * @page: page to uncharge
3149  * @order: allocation order
3150  */
3151 void __memcg_kmem_uncharge_page(struct page *page, int order)
3152 {
3153         struct folio *folio = page_folio(page);
3154         struct obj_cgroup *objcg;
3155         unsigned int nr_pages = 1 << order;
3156
3157         if (!folio_memcg_kmem(folio))
3158                 return;
3159
3160         objcg = __folio_objcg(folio);
3161         obj_cgroup_uncharge_pages(objcg, nr_pages);
3162         folio->memcg_data = 0;
3163         obj_cgroup_put(objcg);
3164 }
3165
3166 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3167                      enum node_stat_item idx, int nr)
3168 {
3169         struct memcg_stock_pcp *stock;
3170         struct obj_cgroup *old = NULL;
3171         unsigned long flags;
3172         int *bytes;
3173
3174         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3175         stock = this_cpu_ptr(&memcg_stock);
3176
3177         /*
3178          * Save vmstat data in stock and skip vmstat array update unless
3179          * accumulating over a page of vmstat data or when pgdat or idx
3180          * changes.
3181          */
3182         if (READ_ONCE(stock->cached_objcg) != objcg) {
3183                 old = drain_obj_stock(stock);
3184                 obj_cgroup_get(objcg);
3185                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3186                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3187                 WRITE_ONCE(stock->cached_objcg, objcg);
3188                 stock->cached_pgdat = pgdat;
3189         } else if (stock->cached_pgdat != pgdat) {
3190                 /* Flush the existing cached vmstat data */
3191                 struct pglist_data *oldpg = stock->cached_pgdat;
3192
3193                 if (stock->nr_slab_reclaimable_b) {
3194                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3195                                           stock->nr_slab_reclaimable_b);
3196                         stock->nr_slab_reclaimable_b = 0;
3197                 }
3198                 if (stock->nr_slab_unreclaimable_b) {
3199                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3200                                           stock->nr_slab_unreclaimable_b);
3201                         stock->nr_slab_unreclaimable_b = 0;
3202                 }
3203                 stock->cached_pgdat = pgdat;
3204         }
3205
3206         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3207                                                : &stock->nr_slab_unreclaimable_b;
3208         /*
3209          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3210          * cached locally at least once before pushing it out.
3211          */
3212         if (!*bytes) {
3213                 *bytes = nr;
3214                 nr = 0;
3215         } else {
3216                 *bytes += nr;
3217                 if (abs(*bytes) > PAGE_SIZE) {
3218                         nr = *bytes;
3219                         *bytes = 0;
3220                 } else {
3221                         nr = 0;
3222                 }
3223         }
3224         if (nr)
3225                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3226
3227         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3228         if (old)
3229                 obj_cgroup_put(old);
3230 }
3231
3232 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3233 {
3234         struct memcg_stock_pcp *stock;
3235         unsigned long flags;
3236         bool ret = false;
3237
3238         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3239
3240         stock = this_cpu_ptr(&memcg_stock);
3241         if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3242                 stock->nr_bytes -= nr_bytes;
3243                 ret = true;
3244         }
3245
3246         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3247
3248         return ret;
3249 }
3250
3251 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3252 {
3253         struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3254
3255         if (!old)
3256                 return NULL;
3257
3258         if (stock->nr_bytes) {
3259                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3260                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3261
3262                 if (nr_pages) {
3263                         struct mem_cgroup *memcg;
3264
3265                         memcg = get_mem_cgroup_from_objcg(old);
3266
3267                         memcg_account_kmem(memcg, -nr_pages);
3268                         __refill_stock(memcg, nr_pages);
3269
3270                         css_put(&memcg->css);
3271                 }
3272
3273                 /*
3274                  * The leftover is flushed to the centralized per-memcg value.
3275                  * On the next attempt to refill obj stock it will be moved
3276                  * to a per-cpu stock (probably, on an other CPU), see
3277                  * refill_obj_stock().
3278                  *
3279                  * How often it's flushed is a trade-off between the memory
3280                  * limit enforcement accuracy and potential CPU contention,
3281                  * so it might be changed in the future.
3282                  */
3283                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3284                 stock->nr_bytes = 0;
3285         }
3286
3287         /*
3288          * Flush the vmstat data in current stock
3289          */
3290         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3291                 if (stock->nr_slab_reclaimable_b) {
3292                         mod_objcg_mlstate(old, stock->cached_pgdat,
3293                                           NR_SLAB_RECLAIMABLE_B,
3294                                           stock->nr_slab_reclaimable_b);
3295                         stock->nr_slab_reclaimable_b = 0;
3296                 }
3297                 if (stock->nr_slab_unreclaimable_b) {
3298                         mod_objcg_mlstate(old, stock->cached_pgdat,
3299                                           NR_SLAB_UNRECLAIMABLE_B,
3300                                           stock->nr_slab_unreclaimable_b);
3301                         stock->nr_slab_unreclaimable_b = 0;
3302                 }
3303                 stock->cached_pgdat = NULL;
3304         }
3305
3306         WRITE_ONCE(stock->cached_objcg, NULL);
3307         /*
3308          * The `old' objects needs to be released by the caller via
3309          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3310          */
3311         return old;
3312 }
3313
3314 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3315                                      struct mem_cgroup *root_memcg)
3316 {
3317         struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3318         struct mem_cgroup *memcg;
3319
3320         if (objcg) {
3321                 memcg = obj_cgroup_memcg(objcg);
3322                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3323                         return true;
3324         }
3325
3326         return false;
3327 }
3328
3329 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3330                              bool allow_uncharge)
3331 {
3332         struct memcg_stock_pcp *stock;
3333         struct obj_cgroup *old = NULL;
3334         unsigned long flags;
3335         unsigned int nr_pages = 0;
3336
3337         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3338
3339         stock = this_cpu_ptr(&memcg_stock);
3340         if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3341                 old = drain_obj_stock(stock);
3342                 obj_cgroup_get(objcg);
3343                 WRITE_ONCE(stock->cached_objcg, objcg);
3344                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3345                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3346                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3347         }
3348         stock->nr_bytes += nr_bytes;
3349
3350         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3351                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3352                 stock->nr_bytes &= (PAGE_SIZE - 1);
3353         }
3354
3355         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3356         if (old)
3357                 obj_cgroup_put(old);
3358
3359         if (nr_pages)
3360                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3361 }
3362
3363 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3364 {
3365         unsigned int nr_pages, nr_bytes;
3366         int ret;
3367
3368         if (consume_obj_stock(objcg, size))
3369                 return 0;
3370
3371         /*
3372          * In theory, objcg->nr_charged_bytes can have enough
3373          * pre-charged bytes to satisfy the allocation. However,
3374          * flushing objcg->nr_charged_bytes requires two atomic
3375          * operations, and objcg->nr_charged_bytes can't be big.
3376          * The shared objcg->nr_charged_bytes can also become a
3377          * performance bottleneck if all tasks of the same memcg are
3378          * trying to update it. So it's better to ignore it and try
3379          * grab some new pages. The stock's nr_bytes will be flushed to
3380          * objcg->nr_charged_bytes later on when objcg changes.
3381          *
3382          * The stock's nr_bytes may contain enough pre-charged bytes
3383          * to allow one less page from being charged, but we can't rely
3384          * on the pre-charged bytes not being changed outside of
3385          * consume_obj_stock() or refill_obj_stock(). So ignore those
3386          * pre-charged bytes as well when charging pages. To avoid a
3387          * page uncharge right after a page charge, we set the
3388          * allow_uncharge flag to false when calling refill_obj_stock()
3389          * to temporarily allow the pre-charged bytes to exceed the page
3390          * size limit. The maximum reachable value of the pre-charged
3391          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3392          * race.
3393          */
3394         nr_pages = size >> PAGE_SHIFT;
3395         nr_bytes = size & (PAGE_SIZE - 1);
3396
3397         if (nr_bytes)
3398                 nr_pages += 1;
3399
3400         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3401         if (!ret && nr_bytes)
3402                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3403
3404         return ret;
3405 }
3406
3407 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3408 {
3409         refill_obj_stock(objcg, size, true);
3410 }
3411
3412 #endif /* CONFIG_MEMCG_KMEM */
3413
3414 /*
3415  * Because page_memcg(head) is not set on tails, set it now.
3416  */
3417 void split_page_memcg(struct page *head, unsigned int nr)
3418 {
3419         struct folio *folio = page_folio(head);
3420         struct mem_cgroup *memcg = folio_memcg(folio);
3421         int i;
3422
3423         if (mem_cgroup_disabled() || !memcg)
3424                 return;
3425
3426         for (i = 1; i < nr; i++)
3427                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3428
3429         if (folio_memcg_kmem(folio))
3430                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3431         else
3432                 css_get_many(&memcg->css, nr - 1);
3433 }
3434
3435 #ifdef CONFIG_SWAP
3436 /**
3437  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3438  * @entry: swap entry to be moved
3439  * @from:  mem_cgroup which the entry is moved from
3440  * @to:  mem_cgroup which the entry is moved to
3441  *
3442  * It succeeds only when the swap_cgroup's record for this entry is the same
3443  * as the mem_cgroup's id of @from.
3444  *
3445  * Returns 0 on success, -EINVAL on failure.
3446  *
3447  * The caller must have charged to @to, IOW, called page_counter_charge() about
3448  * both res and memsw, and called css_get().
3449  */
3450 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3451                                 struct mem_cgroup *from, struct mem_cgroup *to)
3452 {
3453         unsigned short old_id, new_id;
3454
3455         old_id = mem_cgroup_id(from);
3456         new_id = mem_cgroup_id(to);
3457
3458         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3459                 mod_memcg_state(from, MEMCG_SWAP, -1);
3460                 mod_memcg_state(to, MEMCG_SWAP, 1);
3461                 return 0;
3462         }
3463         return -EINVAL;
3464 }
3465 #else
3466 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3467                                 struct mem_cgroup *from, struct mem_cgroup *to)
3468 {
3469         return -EINVAL;
3470 }
3471 #endif
3472
3473 static DEFINE_MUTEX(memcg_max_mutex);
3474
3475 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3476                                  unsigned long max, bool memsw)
3477 {
3478         bool enlarge = false;
3479         bool drained = false;
3480         int ret;
3481         bool limits_invariant;
3482         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3483
3484         do {
3485                 if (signal_pending(current)) {
3486                         ret = -EINTR;
3487                         break;
3488                 }
3489
3490                 mutex_lock(&memcg_max_mutex);
3491                 /*
3492                  * Make sure that the new limit (memsw or memory limit) doesn't
3493                  * break our basic invariant rule memory.max <= memsw.max.
3494                  */
3495                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3496                                            max <= memcg->memsw.max;
3497                 if (!limits_invariant) {
3498                         mutex_unlock(&memcg_max_mutex);
3499                         ret = -EINVAL;
3500                         break;
3501                 }
3502                 if (max > counter->max)
3503                         enlarge = true;
3504                 ret = page_counter_set_max(counter, max);
3505                 mutex_unlock(&memcg_max_mutex);
3506
3507                 if (!ret)
3508                         break;
3509
3510                 if (!drained) {
3511                         drain_all_stock(memcg);
3512                         drained = true;
3513                         continue;
3514                 }
3515
3516                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3517                                         memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3518                         ret = -EBUSY;
3519                         break;
3520                 }
3521         } while (true);
3522
3523         if (!ret && enlarge)
3524                 memcg_oom_recover(memcg);
3525
3526         return ret;
3527 }
3528
3529 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3530                                             gfp_t gfp_mask,
3531                                             unsigned long *total_scanned)
3532 {
3533         unsigned long nr_reclaimed = 0;
3534         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3535         unsigned long reclaimed;
3536         int loop = 0;
3537         struct mem_cgroup_tree_per_node *mctz;
3538         unsigned long excess;
3539
3540         if (lru_gen_enabled())
3541                 return 0;
3542
3543         if (order > 0)
3544                 return 0;
3545
3546         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3547
3548         /*
3549          * Do not even bother to check the largest node if the root
3550          * is empty. Do it lockless to prevent lock bouncing. Races
3551          * are acceptable as soft limit is best effort anyway.
3552          */
3553         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3554                 return 0;
3555
3556         /*
3557          * This loop can run a while, specially if mem_cgroup's continuously
3558          * keep exceeding their soft limit and putting the system under
3559          * pressure
3560          */
3561         do {
3562                 if (next_mz)
3563                         mz = next_mz;
3564                 else
3565                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3566                 if (!mz)
3567                         break;
3568
3569                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3570                                                     gfp_mask, total_scanned);
3571                 nr_reclaimed += reclaimed;
3572                 spin_lock_irq(&mctz->lock);
3573
3574                 /*
3575                  * If we failed to reclaim anything from this memory cgroup
3576                  * it is time to move on to the next cgroup
3577                  */
3578                 next_mz = NULL;
3579                 if (!reclaimed)
3580                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3581
3582                 excess = soft_limit_excess(mz->memcg);
3583                 /*
3584                  * One school of thought says that we should not add
3585                  * back the node to the tree if reclaim returns 0.
3586                  * But our reclaim could return 0, simply because due
3587                  * to priority we are exposing a smaller subset of
3588                  * memory to reclaim from. Consider this as a longer
3589                  * term TODO.
3590                  */
3591                 /* If excess == 0, no tree ops */
3592                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3593                 spin_unlock_irq(&mctz->lock);
3594                 css_put(&mz->memcg->css);
3595                 loop++;
3596                 /*
3597                  * Could not reclaim anything and there are no more
3598                  * mem cgroups to try or we seem to be looping without
3599                  * reclaiming anything.
3600                  */
3601                 if (!nr_reclaimed &&
3602                         (next_mz == NULL ||
3603                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3604                         break;
3605         } while (!nr_reclaimed);
3606         if (next_mz)
3607                 css_put(&next_mz->memcg->css);
3608         return nr_reclaimed;
3609 }
3610
3611 /*
3612  * Reclaims as many pages from the given memcg as possible.
3613  *
3614  * Caller is responsible for holding css reference for memcg.
3615  */
3616 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3617 {
3618         int nr_retries = MAX_RECLAIM_RETRIES;
3619
3620         /* we call try-to-free pages for make this cgroup empty */
3621         lru_add_drain_all();
3622
3623         drain_all_stock(memcg);
3624
3625         /* try to free all pages in this cgroup */
3626         while (nr_retries && page_counter_read(&memcg->memory)) {
3627                 if (signal_pending(current))
3628                         return -EINTR;
3629
3630                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3631                                                   MEMCG_RECLAIM_MAY_SWAP))
3632                         nr_retries--;
3633         }
3634
3635         return 0;
3636 }
3637
3638 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3639                                             char *buf, size_t nbytes,
3640                                             loff_t off)
3641 {
3642         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3643
3644         if (mem_cgroup_is_root(memcg))
3645                 return -EINVAL;
3646         return mem_cgroup_force_empty(memcg) ?: nbytes;
3647 }
3648
3649 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3650                                      struct cftype *cft)
3651 {
3652         return 1;
3653 }
3654
3655 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3656                                       struct cftype *cft, u64 val)
3657 {
3658         if (val == 1)
3659                 return 0;
3660
3661         pr_warn_once("Non-hierarchical mode is deprecated. "
3662                      "Please report your usecase to linux-mm@kvack.org if you "
3663                      "depend on this functionality.\n");
3664
3665         return -EINVAL;
3666 }
3667
3668 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3669 {
3670         unsigned long val;
3671
3672         if (mem_cgroup_is_root(memcg)) {
3673                 /*
3674                  * Approximate root's usage from global state. This isn't
3675                  * perfect, but the root usage was always an approximation.
3676                  */
3677                 val = global_node_page_state(NR_FILE_PAGES) +
3678                         global_node_page_state(NR_ANON_MAPPED);
3679                 if (swap)
3680                         val += total_swap_pages - get_nr_swap_pages();
3681         } else {
3682                 if (!swap)
3683                         val = page_counter_read(&memcg->memory);
3684                 else
3685                         val = page_counter_read(&memcg->memsw);
3686         }
3687         return val;
3688 }
3689
3690 enum {
3691         RES_USAGE,
3692         RES_LIMIT,
3693         RES_MAX_USAGE,
3694         RES_FAILCNT,
3695         RES_SOFT_LIMIT,
3696 };
3697
3698 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3699                                struct cftype *cft)
3700 {
3701         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3702         struct page_counter *counter;
3703
3704         switch (MEMFILE_TYPE(cft->private)) {
3705         case _MEM:
3706                 counter = &memcg->memory;
3707                 break;
3708         case _MEMSWAP:
3709                 counter = &memcg->memsw;
3710                 break;
3711         case _KMEM:
3712                 counter = &memcg->kmem;
3713                 break;
3714         case _TCP:
3715                 counter = &memcg->tcpmem;
3716                 break;
3717         default:
3718                 BUG();
3719         }
3720
3721         switch (MEMFILE_ATTR(cft->private)) {
3722         case RES_USAGE:
3723                 if (counter == &memcg->memory)
3724                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3725                 if (counter == &memcg->memsw)
3726                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3727                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3728         case RES_LIMIT:
3729                 return (u64)counter->max * PAGE_SIZE;
3730         case RES_MAX_USAGE:
3731                 return (u64)counter->watermark * PAGE_SIZE;
3732         case RES_FAILCNT:
3733                 return counter->failcnt;
3734         case RES_SOFT_LIMIT:
3735                 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3736         default:
3737                 BUG();
3738         }
3739 }
3740
3741 /*
3742  * This function doesn't do anything useful. Its only job is to provide a read
3743  * handler for a file so that cgroup_file_mode() will add read permissions.
3744  */
3745 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3746                                      __always_unused void *v)
3747 {
3748         return -EINVAL;
3749 }
3750
3751 #ifdef CONFIG_MEMCG_KMEM
3752 static int memcg_online_kmem(struct mem_cgroup *memcg)
3753 {
3754         struct obj_cgroup *objcg;
3755
3756         if (mem_cgroup_kmem_disabled())
3757                 return 0;
3758
3759         if (unlikely(mem_cgroup_is_root(memcg)))
3760                 return 0;
3761
3762         objcg = obj_cgroup_alloc();
3763         if (!objcg)
3764                 return -ENOMEM;
3765
3766         objcg->memcg = memcg;
3767         rcu_assign_pointer(memcg->objcg, objcg);
3768
3769         static_branch_enable(&memcg_kmem_online_key);
3770
3771         memcg->kmemcg_id = memcg->id.id;
3772
3773         return 0;
3774 }
3775
3776 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3777 {
3778         struct mem_cgroup *parent;
3779
3780         if (mem_cgroup_kmem_disabled())
3781                 return;
3782
3783         if (unlikely(mem_cgroup_is_root(memcg)))
3784                 return;
3785
3786         parent = parent_mem_cgroup(memcg);
3787         if (!parent)
3788                 parent = root_mem_cgroup;
3789
3790         memcg_reparent_objcgs(memcg, parent);
3791
3792         /*
3793          * After we have finished memcg_reparent_objcgs(), all list_lrus
3794          * corresponding to this cgroup are guaranteed to remain empty.
3795          * The ordering is imposed by list_lru_node->lock taken by
3796          * memcg_reparent_list_lrus().
3797          */
3798         memcg_reparent_list_lrus(memcg, parent);
3799 }
3800 #else
3801 static int memcg_online_kmem(struct mem_cgroup *memcg)
3802 {
3803         return 0;
3804 }
3805 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3806 {
3807 }
3808 #endif /* CONFIG_MEMCG_KMEM */
3809
3810 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3811 {
3812         int ret;
3813
3814         mutex_lock(&memcg_max_mutex);
3815
3816         ret = page_counter_set_max(&memcg->tcpmem, max);
3817         if (ret)
3818                 goto out;
3819
3820         if (!memcg->tcpmem_active) {
3821                 /*
3822                  * The active flag needs to be written after the static_key
3823                  * update. This is what guarantees that the socket activation
3824                  * function is the last one to run. See mem_cgroup_sk_alloc()
3825                  * for details, and note that we don't mark any socket as
3826                  * belonging to this memcg until that flag is up.
3827                  *
3828                  * We need to do this, because static_keys will span multiple
3829                  * sites, but we can't control their order. If we mark a socket
3830                  * as accounted, but the accounting functions are not patched in
3831                  * yet, we'll lose accounting.
3832                  *
3833                  * We never race with the readers in mem_cgroup_sk_alloc(),
3834                  * because when this value change, the code to process it is not
3835                  * patched in yet.
3836                  */
3837                 static_branch_inc(&memcg_sockets_enabled_key);
3838                 memcg->tcpmem_active = true;
3839         }
3840 out:
3841         mutex_unlock(&memcg_max_mutex);
3842         return ret;
3843 }
3844
3845 /*
3846  * The user of this function is...
3847  * RES_LIMIT.
3848  */
3849 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3850                                 char *buf, size_t nbytes, loff_t off)
3851 {
3852         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3853         unsigned long nr_pages;
3854         int ret;
3855
3856         buf = strstrip(buf);
3857         ret = page_counter_memparse(buf, "-1", &nr_pages);
3858         if (ret)
3859                 return ret;
3860
3861         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3862         case RES_LIMIT:
3863                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3864                         ret = -EINVAL;
3865                         break;
3866                 }
3867                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3868                 case _MEM:
3869                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3870                         break;
3871                 case _MEMSWAP:
3872                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3873                         break;
3874                 case _KMEM:
3875                         /* kmem.limit_in_bytes is deprecated. */
3876                         ret = -EOPNOTSUPP;
3877                         break;
3878                 case _TCP:
3879                         ret = memcg_update_tcp_max(memcg, nr_pages);
3880                         break;
3881                 }
3882                 break;
3883         case RES_SOFT_LIMIT:
3884                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3885                         ret = -EOPNOTSUPP;
3886                 } else {
3887                         WRITE_ONCE(memcg->soft_limit, nr_pages);
3888                         ret = 0;
3889                 }
3890                 break;
3891         }
3892         return ret ?: nbytes;
3893 }
3894
3895 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3896                                 size_t nbytes, loff_t off)
3897 {
3898         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3899         struct page_counter *counter;
3900
3901         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3902         case _MEM:
3903                 counter = &memcg->memory;
3904                 break;
3905         case _MEMSWAP:
3906                 counter = &memcg->memsw;
3907                 break;
3908         case _KMEM:
3909                 counter = &memcg->kmem;
3910                 break;
3911         case _TCP:
3912                 counter = &memcg->tcpmem;
3913                 break;
3914         default:
3915                 BUG();
3916         }
3917
3918         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3919         case RES_MAX_USAGE:
3920                 page_counter_reset_watermark(counter);
3921                 break;
3922         case RES_FAILCNT:
3923                 counter->failcnt = 0;
3924                 break;
3925         default:
3926                 BUG();
3927         }
3928
3929         return nbytes;
3930 }
3931
3932 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3933                                         struct cftype *cft)
3934 {
3935         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3936 }
3937
3938 #ifdef CONFIG_MMU
3939 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3940                                         struct cftype *cft, u64 val)
3941 {
3942         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3943
3944         pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3945                      "Please report your usecase to linux-mm@kvack.org if you "
3946                      "depend on this functionality.\n");
3947
3948         if (val & ~MOVE_MASK)
3949                 return -EINVAL;
3950
3951         /*
3952          * No kind of locking is needed in here, because ->can_attach() will
3953          * check this value once in the beginning of the process, and then carry
3954          * on with stale data. This means that changes to this value will only
3955          * affect task migrations starting after the change.
3956          */
3957         memcg->move_charge_at_immigrate = val;
3958         return 0;
3959 }
3960 #else
3961 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3962                                         struct cftype *cft, u64 val)
3963 {
3964         return -ENOSYS;
3965 }
3966 #endif
3967
3968 #ifdef CONFIG_NUMA
3969
3970 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3971 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3972 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3973
3974 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3975                                 int nid, unsigned int lru_mask, bool tree)
3976 {
3977         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3978         unsigned long nr = 0;
3979         enum lru_list lru;
3980
3981         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3982
3983         for_each_lru(lru) {
3984                 if (!(BIT(lru) & lru_mask))
3985                         continue;
3986                 if (tree)
3987                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3988                 else
3989                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3990         }
3991         return nr;
3992 }
3993
3994 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3995                                              unsigned int lru_mask,
3996                                              bool tree)
3997 {
3998         unsigned long nr = 0;
3999         enum lru_list lru;
4000
4001         for_each_lru(lru) {
4002                 if (!(BIT(lru) & lru_mask))
4003                         continue;
4004                 if (tree)
4005                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4006                 else
4007                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4008         }
4009         return nr;
4010 }
4011
4012 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4013 {
4014         struct numa_stat {
4015                 const char *name;
4016                 unsigned int lru_mask;
4017         };
4018
4019         static const struct numa_stat stats[] = {
4020                 { "total", LRU_ALL },
4021                 { "file", LRU_ALL_FILE },
4022                 { "anon", LRU_ALL_ANON },
4023                 { "unevictable", BIT(LRU_UNEVICTABLE) },
4024         };
4025         const struct numa_stat *stat;
4026         int nid;
4027         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4028
4029         mem_cgroup_flush_stats();
4030
4031         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4032                 seq_printf(m, "%s=%lu", stat->name,
4033                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4034                                                    false));
4035                 for_each_node_state(nid, N_MEMORY)
4036                         seq_printf(m, " N%d=%lu", nid,
4037                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4038                                                         stat->lru_mask, false));
4039                 seq_putc(m, '\n');
4040         }
4041
4042         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4043
4044                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4045                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4046                                                    true));
4047                 for_each_node_state(nid, N_MEMORY)
4048                         seq_printf(m, " N%d=%lu", nid,
4049                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
4050                                                         stat->lru_mask, true));
4051                 seq_putc(m, '\n');
4052         }
4053
4054         return 0;
4055 }
4056 #endif /* CONFIG_NUMA */
4057
4058 static const unsigned int memcg1_stats[] = {
4059         NR_FILE_PAGES,
4060         NR_ANON_MAPPED,
4061 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4062         NR_ANON_THPS,
4063 #endif
4064         NR_SHMEM,
4065         NR_FILE_MAPPED,
4066         NR_FILE_DIRTY,
4067         NR_WRITEBACK,
4068         WORKINGSET_REFAULT_ANON,
4069         WORKINGSET_REFAULT_FILE,
4070         MEMCG_SWAP,
4071 };
4072
4073 static const char *const memcg1_stat_names[] = {
4074         "cache",
4075         "rss",
4076 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4077         "rss_huge",
4078 #endif
4079         "shmem",
4080         "mapped_file",
4081         "dirty",
4082         "writeback",
4083         "workingset_refault_anon",
4084         "workingset_refault_file",
4085         "swap",
4086 };
4087
4088 /* Universal VM events cgroup1 shows, original sort order */
4089 static const unsigned int memcg1_events[] = {
4090         PGPGIN,
4091         PGPGOUT,
4092         PGFAULT,
4093         PGMAJFAULT,
4094 };
4095
4096 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4097 {
4098         unsigned long memory, memsw;
4099         struct mem_cgroup *mi;
4100         unsigned int i;
4101
4102         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4103
4104         mem_cgroup_flush_stats();
4105
4106         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4107                 unsigned long nr;
4108
4109                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4110                         continue;
4111                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4112                 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4113                            nr * memcg_page_state_unit(memcg1_stats[i]));
4114         }
4115
4116         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4117                 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4118                                memcg_events_local(memcg, memcg1_events[i]));
4119
4120         for (i = 0; i < NR_LRU_LISTS; i++)
4121                 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4122                                memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4123                                PAGE_SIZE);
4124
4125         /* Hierarchical information */
4126         memory = memsw = PAGE_COUNTER_MAX;
4127         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4128                 memory = min(memory, READ_ONCE(mi->memory.max));
4129                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4130         }
4131         seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4132                        (u64)memory * PAGE_SIZE);
4133         if (do_memsw_account())
4134                 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4135                                (u64)memsw * PAGE_SIZE);
4136
4137         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4138                 unsigned long nr;
4139
4140                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4141                         continue;
4142                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4143                 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4144                            (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4145         }
4146
4147         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4148                 seq_buf_printf(s, "total_%s %llu\n",
4149                                vm_event_name(memcg1_events[i]),
4150                                (u64)memcg_events(memcg, memcg1_events[i]));
4151
4152         for (i = 0; i < NR_LRU_LISTS; i++)
4153                 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4154                                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4155                                PAGE_SIZE);
4156
4157 #ifdef CONFIG_DEBUG_VM
4158         {
4159                 pg_data_t *pgdat;
4160                 struct mem_cgroup_per_node *mz;
4161                 unsigned long anon_cost = 0;
4162                 unsigned long file_cost = 0;
4163
4164                 for_each_online_pgdat(pgdat) {
4165                         mz = memcg->nodeinfo[pgdat->node_id];
4166
4167                         anon_cost += mz->lruvec.anon_cost;
4168                         file_cost += mz->lruvec.file_cost;
4169                 }
4170                 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4171                 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4172         }
4173 #endif
4174 }
4175
4176 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4177                                       struct cftype *cft)
4178 {
4179         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4180
4181         return mem_cgroup_swappiness(memcg);
4182 }
4183
4184 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4185                                        struct cftype *cft, u64 val)
4186 {
4187         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4188
4189         if (val > 200)
4190                 return -EINVAL;
4191
4192         if (!mem_cgroup_is_root(memcg))
4193                 WRITE_ONCE(memcg->swappiness, val);
4194         else
4195                 WRITE_ONCE(vm_swappiness, val);
4196
4197         return 0;
4198 }
4199
4200 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4201 {
4202         struct mem_cgroup_threshold_ary *t;
4203         unsigned long usage;
4204         int i;
4205
4206         rcu_read_lock();
4207         if (!swap)
4208                 t = rcu_dereference(memcg->thresholds.primary);
4209         else
4210                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4211
4212         if (!t)
4213                 goto unlock;
4214
4215         usage = mem_cgroup_usage(memcg, swap);
4216
4217         /*
4218          * current_threshold points to threshold just below or equal to usage.
4219          * If it's not true, a threshold was crossed after last
4220          * call of __mem_cgroup_threshold().
4221          */
4222         i = t->current_threshold;
4223
4224         /*
4225          * Iterate backward over array of thresholds starting from
4226          * current_threshold and check if a threshold is crossed.
4227          * If none of thresholds below usage is crossed, we read
4228          * only one element of the array here.
4229          */
4230         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4231                 eventfd_signal(t->entries[i].eventfd, 1);
4232
4233         /* i = current_threshold + 1 */
4234         i++;
4235
4236         /*
4237          * Iterate forward over array of thresholds starting from
4238          * current_threshold+1 and check if a threshold is crossed.
4239          * If none of thresholds above usage is crossed, we read
4240          * only one element of the array here.
4241          */
4242         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4243                 eventfd_signal(t->entries[i].eventfd, 1);
4244
4245         /* Update current_threshold */
4246         t->current_threshold = i - 1;
4247 unlock:
4248         rcu_read_unlock();
4249 }
4250
4251 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4252 {
4253         while (memcg) {
4254                 __mem_cgroup_threshold(memcg, false);
4255                 if (do_memsw_account())
4256                         __mem_cgroup_threshold(memcg, true);
4257
4258                 memcg = parent_mem_cgroup(memcg);
4259         }
4260 }
4261
4262 static int compare_thresholds(const void *a, const void *b)
4263 {
4264         const struct mem_cgroup_threshold *_a = a;
4265         const struct mem_cgroup_threshold *_b = b;
4266
4267         if (_a->threshold > _b->threshold)
4268                 return 1;
4269
4270         if (_a->threshold < _b->threshold)
4271                 return -1;
4272
4273         return 0;
4274 }
4275
4276 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4277 {
4278         struct mem_cgroup_eventfd_list *ev;
4279
4280         spin_lock(&memcg_oom_lock);
4281
4282         list_for_each_entry(ev, &memcg->oom_notify, list)
4283                 eventfd_signal(ev->eventfd, 1);
4284
4285         spin_unlock(&memcg_oom_lock);
4286         return 0;
4287 }
4288
4289 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4290 {
4291         struct mem_cgroup *iter;
4292
4293         for_each_mem_cgroup_tree(iter, memcg)
4294                 mem_cgroup_oom_notify_cb(iter);
4295 }
4296
4297 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4298         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4299 {
4300         struct mem_cgroup_thresholds *thresholds;
4301         struct mem_cgroup_threshold_ary *new;
4302         unsigned long threshold;
4303         unsigned long usage;
4304         int i, size, ret;
4305
4306         ret = page_counter_memparse(args, "-1", &threshold);
4307         if (ret)
4308                 return ret;
4309
4310         mutex_lock(&memcg->thresholds_lock);
4311
4312         if (type == _MEM) {
4313                 thresholds = &memcg->thresholds;
4314                 usage = mem_cgroup_usage(memcg, false);
4315         } else if (type == _MEMSWAP) {
4316                 thresholds = &memcg->memsw_thresholds;
4317                 usage = mem_cgroup_usage(memcg, true);
4318         } else
4319                 BUG();
4320
4321         /* Check if a threshold crossed before adding a new one */
4322         if (thresholds->primary)
4323                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4324
4325         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4326
4327         /* Allocate memory for new array of thresholds */
4328         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4329         if (!new) {
4330                 ret = -ENOMEM;
4331                 goto unlock;
4332         }
4333         new->size = size;
4334
4335         /* Copy thresholds (if any) to new array */
4336         if (thresholds->primary)
4337                 memcpy(new->entries, thresholds->primary->entries,
4338                        flex_array_size(new, entries, size - 1));
4339
4340         /* Add new threshold */
4341         new->entries[size - 1].eventfd = eventfd;
4342         new->entries[size - 1].threshold = threshold;
4343
4344         /* Sort thresholds. Registering of new threshold isn't time-critical */
4345         sort(new->entries, size, sizeof(*new->entries),
4346                         compare_thresholds, NULL);
4347
4348         /* Find current threshold */
4349         new->current_threshold = -1;
4350         for (i = 0; i < size; i++) {
4351                 if (new->entries[i].threshold <= usage) {
4352                         /*
4353                          * new->current_threshold will not be used until
4354                          * rcu_assign_pointer(), so it's safe to increment
4355                          * it here.
4356                          */
4357                         ++new->current_threshold;
4358                 } else
4359                         break;
4360         }
4361
4362         /* Free old spare buffer and save old primary buffer as spare */
4363         kfree(thresholds->spare);
4364         thresholds->spare = thresholds->primary;
4365
4366         rcu_assign_pointer(thresholds->primary, new);
4367
4368         /* To be sure that nobody uses thresholds */
4369         synchronize_rcu();
4370
4371 unlock:
4372         mutex_unlock(&memcg->thresholds_lock);
4373
4374         return ret;
4375 }
4376
4377 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4378         struct eventfd_ctx *eventfd, const char *args)
4379 {
4380         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4381 }
4382
4383 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4384         struct eventfd_ctx *eventfd, const char *args)
4385 {
4386         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4387 }
4388
4389 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4390         struct eventfd_ctx *eventfd, enum res_type type)
4391 {
4392         struct mem_cgroup_thresholds *thresholds;
4393         struct mem_cgroup_threshold_ary *new;
4394         unsigned long usage;
4395         int i, j, size, entries;
4396
4397         mutex_lock(&memcg->thresholds_lock);
4398
4399         if (type == _MEM) {
4400                 thresholds = &memcg->thresholds;
4401                 usage = mem_cgroup_usage(memcg, false);
4402         } else if (type == _MEMSWAP) {
4403                 thresholds = &memcg->memsw_thresholds;
4404                 usage = mem_cgroup_usage(memcg, true);
4405         } else
4406                 BUG();
4407
4408         if (!thresholds->primary)
4409                 goto unlock;
4410
4411         /* Check if a threshold crossed before removing */
4412         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4413
4414         /* Calculate new number of threshold */
4415         size = entries = 0;
4416         for (i = 0; i < thresholds->primary->size; i++) {
4417                 if (thresholds->primary->entries[i].eventfd != eventfd)
4418                         size++;
4419                 else
4420                         entries++;
4421         }
4422
4423         new = thresholds->spare;
4424
4425         /* If no items related to eventfd have been cleared, nothing to do */
4426         if (!entries)
4427                 goto unlock;
4428
4429         /* Set thresholds array to NULL if we don't have thresholds */
4430         if (!size) {
4431                 kfree(new);
4432                 new = NULL;
4433                 goto swap_buffers;
4434         }
4435
4436         new->size = size;
4437
4438         /* Copy thresholds and find current threshold */
4439         new->current_threshold = -1;
4440         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4441                 if (thresholds->primary->entries[i].eventfd == eventfd)
4442                         continue;
4443
4444                 new->entries[j] = thresholds->primary->entries[i];
4445                 if (new->entries[j].threshold <= usage) {
4446                         /*
4447                          * new->current_threshold will not be used
4448                          * until rcu_assign_pointer(), so it's safe to increment
4449                          * it here.
4450                          */
4451                         ++new->current_threshold;
4452                 }
4453                 j++;
4454         }
4455
4456 swap_buffers:
4457         /* Swap primary and spare array */
4458         thresholds->spare = thresholds->primary;
4459
4460         rcu_assign_pointer(thresholds->primary, new);
4461
4462         /* To be sure that nobody uses thresholds */
4463         synchronize_rcu();
4464
4465         /* If all events are unregistered, free the spare array */
4466         if (!new) {
4467                 kfree(thresholds->spare);
4468                 thresholds->spare = NULL;
4469         }
4470 unlock:
4471         mutex_unlock(&memcg->thresholds_lock);
4472 }
4473
4474 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4475         struct eventfd_ctx *eventfd)
4476 {
4477         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4478 }
4479
4480 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4481         struct eventfd_ctx *eventfd)
4482 {
4483         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4484 }
4485
4486 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4487         struct eventfd_ctx *eventfd, const char *args)
4488 {
4489         struct mem_cgroup_eventfd_list *event;
4490
4491         event = kmalloc(sizeof(*event), GFP_KERNEL);
4492         if (!event)
4493                 return -ENOMEM;
4494
4495         spin_lock(&memcg_oom_lock);
4496
4497         event->eventfd = eventfd;
4498         list_add(&event->list, &memcg->oom_notify);
4499
4500         /* already in OOM ? */
4501         if (memcg->under_oom)
4502                 eventfd_signal(eventfd, 1);
4503         spin_unlock(&memcg_oom_lock);
4504
4505         return 0;
4506 }
4507
4508 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4509         struct eventfd_ctx *eventfd)
4510 {
4511         struct mem_cgroup_eventfd_list *ev, *tmp;
4512
4513         spin_lock(&memcg_oom_lock);
4514
4515         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4516                 if (ev->eventfd == eventfd) {
4517                         list_del(&ev->list);
4518                         kfree(ev);
4519                 }
4520         }
4521
4522         spin_unlock(&memcg_oom_lock);
4523 }
4524
4525 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4526 {
4527         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4528
4529         seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4530         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4531         seq_printf(sf, "oom_kill %lu\n",
4532                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4533         return 0;
4534 }
4535
4536 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4537         struct cftype *cft, u64 val)
4538 {
4539         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4540
4541         /* cannot set to root cgroup and only 0 and 1 are allowed */
4542         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4543                 return -EINVAL;
4544
4545         WRITE_ONCE(memcg->oom_kill_disable, val);
4546         if (!val)
4547                 memcg_oom_recover(memcg);
4548
4549         return 0;
4550 }
4551
4552 #ifdef CONFIG_CGROUP_WRITEBACK
4553
4554 #include <trace/events/writeback.h>
4555
4556 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4557 {
4558         return wb_domain_init(&memcg->cgwb_domain, gfp);
4559 }
4560
4561 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4562 {
4563         wb_domain_exit(&memcg->cgwb_domain);
4564 }
4565
4566 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4567 {
4568         wb_domain_size_changed(&memcg->cgwb_domain);
4569 }
4570
4571 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4572 {
4573         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4574
4575         if (!memcg->css.parent)
4576                 return NULL;
4577
4578         return &memcg->cgwb_domain;
4579 }
4580
4581 /**
4582  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4583  * @wb: bdi_writeback in question
4584  * @pfilepages: out parameter for number of file pages
4585  * @pheadroom: out parameter for number of allocatable pages according to memcg
4586  * @pdirty: out parameter for number of dirty pages
4587  * @pwriteback: out parameter for number of pages under writeback
4588  *
4589  * Determine the numbers of file, headroom, dirty, and writeback pages in
4590  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4591  * is a bit more involved.
4592  *
4593  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4594  * headroom is calculated as the lowest headroom of itself and the
4595  * ancestors.  Note that this doesn't consider the actual amount of
4596  * available memory in the system.  The caller should further cap
4597  * *@pheadroom accordingly.
4598  */
4599 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4600                          unsigned long *pheadroom, unsigned long *pdirty,
4601                          unsigned long *pwriteback)
4602 {
4603         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4604         struct mem_cgroup *parent;
4605
4606         mem_cgroup_flush_stats();
4607
4608         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4609         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4610         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4611                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4612
4613         *pheadroom = PAGE_COUNTER_MAX;
4614         while ((parent = parent_mem_cgroup(memcg))) {
4615                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4616                                             READ_ONCE(memcg->memory.high));
4617                 unsigned long used = page_counter_read(&memcg->memory);
4618
4619                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4620                 memcg = parent;
4621         }
4622 }
4623
4624 /*
4625  * Foreign dirty flushing
4626  *
4627  * There's an inherent mismatch between memcg and writeback.  The former
4628  * tracks ownership per-page while the latter per-inode.  This was a
4629  * deliberate design decision because honoring per-page ownership in the
4630  * writeback path is complicated, may lead to higher CPU and IO overheads
4631  * and deemed unnecessary given that write-sharing an inode across
4632  * different cgroups isn't a common use-case.
4633  *
4634  * Combined with inode majority-writer ownership switching, this works well
4635  * enough in most cases but there are some pathological cases.  For
4636  * example, let's say there are two cgroups A and B which keep writing to
4637  * different but confined parts of the same inode.  B owns the inode and
4638  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4639  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4640  * triggering background writeback.  A will be slowed down without a way to
4641  * make writeback of the dirty pages happen.
4642  *
4643  * Conditions like the above can lead to a cgroup getting repeatedly and
4644  * severely throttled after making some progress after each
4645  * dirty_expire_interval while the underlying IO device is almost
4646  * completely idle.
4647  *
4648  * Solving this problem completely requires matching the ownership tracking
4649  * granularities between memcg and writeback in either direction.  However,
4650  * the more egregious behaviors can be avoided by simply remembering the
4651  * most recent foreign dirtying events and initiating remote flushes on
4652  * them when local writeback isn't enough to keep the memory clean enough.
4653  *
4654  * The following two functions implement such mechanism.  When a foreign
4655  * page - a page whose memcg and writeback ownerships don't match - is
4656  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4657  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4658  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4659  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4660  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4661  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4662  * limited to MEMCG_CGWB_FRN_CNT.
4663  *
4664  * The mechanism only remembers IDs and doesn't hold any object references.
4665  * As being wrong occasionally doesn't matter, updates and accesses to the
4666  * records are lockless and racy.
4667  */
4668 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4669                                              struct bdi_writeback *wb)
4670 {
4671         struct mem_cgroup *memcg = folio_memcg(folio);
4672         struct memcg_cgwb_frn *frn;
4673         u64 now = get_jiffies_64();
4674         u64 oldest_at = now;
4675         int oldest = -1;
4676         int i;
4677
4678         trace_track_foreign_dirty(folio, wb);
4679
4680         /*
4681          * Pick the slot to use.  If there is already a slot for @wb, keep
4682          * using it.  If not replace the oldest one which isn't being
4683          * written out.
4684          */
4685         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4686                 frn = &memcg->cgwb_frn[i];
4687                 if (frn->bdi_id == wb->bdi->id &&
4688                     frn->memcg_id == wb->memcg_css->id)
4689                         break;
4690                 if (time_before64(frn->at, oldest_at) &&
4691                     atomic_read(&frn->done.cnt) == 1) {
4692                         oldest = i;
4693                         oldest_at = frn->at;
4694                 }
4695         }
4696
4697         if (i < MEMCG_CGWB_FRN_CNT) {
4698                 /*
4699                  * Re-using an existing one.  Update timestamp lazily to
4700                  * avoid making the cacheline hot.  We want them to be
4701                  * reasonably up-to-date and significantly shorter than
4702                  * dirty_expire_interval as that's what expires the record.
4703                  * Use the shorter of 1s and dirty_expire_interval / 8.
4704                  */
4705                 unsigned long update_intv =
4706                         min_t(unsigned long, HZ,
4707                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4708
4709                 if (time_before64(frn->at, now - update_intv))
4710                         frn->at = now;
4711         } else if (oldest >= 0) {
4712                 /* replace the oldest free one */
4713                 frn = &memcg->cgwb_frn[oldest];
4714                 frn->bdi_id = wb->bdi->id;
4715                 frn->memcg_id = wb->memcg_css->id;
4716                 frn->at = now;
4717         }
4718 }
4719
4720 /* issue foreign writeback flushes for recorded foreign dirtying events */
4721 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4722 {
4723         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4724         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4725         u64 now = jiffies_64;
4726         int i;
4727
4728         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4729                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4730
4731                 /*
4732                  * If the record is older than dirty_expire_interval,
4733                  * writeback on it has already started.  No need to kick it
4734                  * off again.  Also, don't start a new one if there's
4735                  * already one in flight.
4736                  */
4737                 if (time_after64(frn->at, now - intv) &&
4738                     atomic_read(&frn->done.cnt) == 1) {
4739                         frn->at = 0;
4740                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4741                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4742                                                WB_REASON_FOREIGN_FLUSH,
4743                                                &frn->done);
4744                 }
4745         }
4746 }
4747
4748 #else   /* CONFIG_CGROUP_WRITEBACK */
4749
4750 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4751 {
4752         return 0;
4753 }
4754
4755 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4756 {
4757 }
4758
4759 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4760 {
4761 }
4762
4763 #endif  /* CONFIG_CGROUP_WRITEBACK */
4764
4765 /*
4766  * DO NOT USE IN NEW FILES.
4767  *
4768  * "cgroup.event_control" implementation.
4769  *
4770  * This is way over-engineered.  It tries to support fully configurable
4771  * events for each user.  Such level of flexibility is completely
4772  * unnecessary especially in the light of the planned unified hierarchy.
4773  *
4774  * Please deprecate this and replace with something simpler if at all
4775  * possible.
4776  */
4777
4778 /*
4779  * Unregister event and free resources.
4780  *
4781  * Gets called from workqueue.
4782  */
4783 static void memcg_event_remove(struct work_struct *work)
4784 {
4785         struct mem_cgroup_event *event =
4786                 container_of(work, struct mem_cgroup_event, remove);
4787         struct mem_cgroup *memcg = event->memcg;
4788
4789         remove_wait_queue(event->wqh, &event->wait);
4790
4791         event->unregister_event(memcg, event->eventfd);
4792
4793         /* Notify userspace the event is going away. */
4794         eventfd_signal(event->eventfd, 1);
4795
4796         eventfd_ctx_put(event->eventfd);
4797         kfree(event);
4798         css_put(&memcg->css);
4799 }
4800
4801 /*
4802  * Gets called on EPOLLHUP on eventfd when user closes it.
4803  *
4804  * Called with wqh->lock held and interrupts disabled.
4805  */
4806 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4807                             int sync, void *key)
4808 {
4809         struct mem_cgroup_event *event =
4810                 container_of(wait, struct mem_cgroup_event, wait);
4811         struct mem_cgroup *memcg = event->memcg;
4812         __poll_t flags = key_to_poll(key);
4813
4814         if (flags & EPOLLHUP) {
4815                 /*
4816                  * If the event has been detached at cgroup removal, we
4817                  * can simply return knowing the other side will cleanup
4818                  * for us.
4819                  *
4820                  * We can't race against event freeing since the other
4821                  * side will require wqh->lock via remove_wait_queue(),
4822                  * which we hold.
4823                  */
4824                 spin_lock(&memcg->event_list_lock);
4825                 if (!list_empty(&event->list)) {
4826                         list_del_init(&event->list);
4827                         /*
4828                          * We are in atomic context, but cgroup_event_remove()
4829                          * may sleep, so we have to call it in workqueue.
4830                          */
4831                         schedule_work(&event->remove);
4832                 }
4833                 spin_unlock(&memcg->event_list_lock);
4834         }
4835
4836         return 0;
4837 }
4838
4839 static void memcg_event_ptable_queue_proc(struct file *file,
4840                 wait_queue_head_t *wqh, poll_table *pt)
4841 {
4842         struct mem_cgroup_event *event =
4843                 container_of(pt, struct mem_cgroup_event, pt);
4844
4845         event->wqh = wqh;
4846         add_wait_queue(wqh, &event->wait);
4847 }
4848
4849 /*
4850  * DO NOT USE IN NEW FILES.
4851  *
4852  * Parse input and register new cgroup event handler.
4853  *
4854  * Input must be in format '<event_fd> <control_fd> <args>'.
4855  * Interpretation of args is defined by control file implementation.
4856  */
4857 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4858                                          char *buf, size_t nbytes, loff_t off)
4859 {
4860         struct cgroup_subsys_state *css = of_css(of);
4861         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4862         struct mem_cgroup_event *event;
4863         struct cgroup_subsys_state *cfile_css;
4864         unsigned int efd, cfd;
4865         struct fd efile;
4866         struct fd cfile;
4867         struct dentry *cdentry;
4868         const char *name;
4869         char *endp;
4870         int ret;
4871
4872         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4873                 return -EOPNOTSUPP;
4874
4875         buf = strstrip(buf);
4876
4877         efd = simple_strtoul(buf, &endp, 10);
4878         if (*endp != ' ')
4879                 return -EINVAL;
4880         buf = endp + 1;
4881
4882         cfd = simple_strtoul(buf, &endp, 10);
4883         if ((*endp != ' ') && (*endp != '\0'))
4884                 return -EINVAL;
4885         buf = endp + 1;
4886
4887         event = kzalloc(sizeof(*event), GFP_KERNEL);
4888         if (!event)
4889                 return -ENOMEM;
4890
4891         event->memcg = memcg;
4892         INIT_LIST_HEAD(&event->list);
4893         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4894         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4895         INIT_WORK(&event->remove, memcg_event_remove);
4896
4897         efile = fdget(efd);
4898         if (!efile.file) {
4899                 ret = -EBADF;
4900                 goto out_kfree;
4901         }
4902
4903         event->eventfd = eventfd_ctx_fileget(efile.file);
4904         if (IS_ERR(event->eventfd)) {
4905                 ret = PTR_ERR(event->eventfd);
4906                 goto out_put_efile;
4907         }
4908
4909         cfile = fdget(cfd);
4910         if (!cfile.file) {
4911                 ret = -EBADF;
4912                 goto out_put_eventfd;
4913         }
4914
4915         /* the process need read permission on control file */
4916         /* AV: shouldn't we check that it's been opened for read instead? */
4917         ret = file_permission(cfile.file, MAY_READ);
4918         if (ret < 0)
4919                 goto out_put_cfile;
4920
4921         /*
4922          * The control file must be a regular cgroup1 file. As a regular cgroup
4923          * file can't be renamed, it's safe to access its name afterwards.
4924          */
4925         cdentry = cfile.file->f_path.dentry;
4926         if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4927                 ret = -EINVAL;
4928                 goto out_put_cfile;
4929         }
4930
4931         /*
4932          * Determine the event callbacks and set them in @event.  This used
4933          * to be done via struct cftype but cgroup core no longer knows
4934          * about these events.  The following is crude but the whole thing
4935          * is for compatibility anyway.
4936          *
4937          * DO NOT ADD NEW FILES.
4938          */
4939         name = cdentry->d_name.name;
4940
4941         if (!strcmp(name, "memory.usage_in_bytes")) {
4942                 event->register_event = mem_cgroup_usage_register_event;
4943                 event->unregister_event = mem_cgroup_usage_unregister_event;
4944         } else if (!strcmp(name, "memory.oom_control")) {
4945                 event->register_event = mem_cgroup_oom_register_event;
4946                 event->unregister_event = mem_cgroup_oom_unregister_event;
4947         } else if (!strcmp(name, "memory.pressure_level")) {
4948                 event->register_event = vmpressure_register_event;
4949                 event->unregister_event = vmpressure_unregister_event;
4950         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4951                 event->register_event = memsw_cgroup_usage_register_event;
4952                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4953         } else {
4954                 ret = -EINVAL;
4955                 goto out_put_cfile;
4956         }
4957
4958         /*
4959          * Verify @cfile should belong to @css.  Also, remaining events are
4960          * automatically removed on cgroup destruction but the removal is
4961          * asynchronous, so take an extra ref on @css.
4962          */
4963         cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4964                                                &memory_cgrp_subsys);
4965         ret = -EINVAL;
4966         if (IS_ERR(cfile_css))
4967                 goto out_put_cfile;
4968         if (cfile_css != css) {
4969                 css_put(cfile_css);
4970                 goto out_put_cfile;
4971         }
4972
4973         ret = event->register_event(memcg, event->eventfd, buf);
4974         if (ret)
4975                 goto out_put_css;
4976
4977         vfs_poll(efile.file, &event->pt);
4978
4979         spin_lock_irq(&memcg->event_list_lock);
4980         list_add(&event->list, &memcg->event_list);
4981         spin_unlock_irq(&memcg->event_list_lock);
4982
4983         fdput(cfile);
4984         fdput(efile);
4985
4986         return nbytes;
4987
4988 out_put_css:
4989         css_put(css);
4990 out_put_cfile:
4991         fdput(cfile);
4992 out_put_eventfd:
4993         eventfd_ctx_put(event->eventfd);
4994 out_put_efile:
4995         fdput(efile);
4996 out_kfree:
4997         kfree(event);
4998
4999         return ret;
5000 }
5001
5002 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5003 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5004 {
5005         /*
5006          * Deprecated.
5007          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5008          */
5009         return 0;
5010 }
5011 #endif
5012
5013 static int memory_stat_show(struct seq_file *m, void *v);
5014
5015 static struct cftype mem_cgroup_legacy_files[] = {
5016         {
5017                 .name = "usage_in_bytes",
5018                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5019                 .read_u64 = mem_cgroup_read_u64,
5020         },
5021         {
5022                 .name = "max_usage_in_bytes",
5023                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5024                 .write = mem_cgroup_reset,
5025                 .read_u64 = mem_cgroup_read_u64,
5026         },
5027         {
5028                 .name = "limit_in_bytes",
5029                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5030                 .write = mem_cgroup_write,
5031                 .read_u64 = mem_cgroup_read_u64,
5032         },
5033         {
5034                 .name = "soft_limit_in_bytes",
5035                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5036                 .write = mem_cgroup_write,
5037                 .read_u64 = mem_cgroup_read_u64,
5038         },
5039         {
5040                 .name = "failcnt",
5041                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5042                 .write = mem_cgroup_reset,
5043                 .read_u64 = mem_cgroup_read_u64,
5044         },
5045         {
5046                 .name = "stat",
5047                 .seq_show = memory_stat_show,
5048         },
5049         {
5050                 .name = "force_empty",
5051                 .write = mem_cgroup_force_empty_write,
5052         },
5053         {
5054                 .name = "use_hierarchy",
5055                 .write_u64 = mem_cgroup_hierarchy_write,
5056                 .read_u64 = mem_cgroup_hierarchy_read,
5057         },
5058         {
5059                 .name = "cgroup.event_control",         /* XXX: for compat */
5060                 .write = memcg_write_event_control,
5061                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5062         },
5063         {
5064                 .name = "swappiness",
5065                 .read_u64 = mem_cgroup_swappiness_read,
5066                 .write_u64 = mem_cgroup_swappiness_write,
5067         },
5068         {
5069                 .name = "move_charge_at_immigrate",
5070                 .read_u64 = mem_cgroup_move_charge_read,
5071                 .write_u64 = mem_cgroup_move_charge_write,
5072         },
5073         {
5074                 .name = "oom_control",
5075                 .seq_show = mem_cgroup_oom_control_read,
5076                 .write_u64 = mem_cgroup_oom_control_write,
5077         },
5078         {
5079                 .name = "pressure_level",
5080                 .seq_show = mem_cgroup_dummy_seq_show,
5081         },
5082 #ifdef CONFIG_NUMA
5083         {
5084                 .name = "numa_stat",
5085                 .seq_show = memcg_numa_stat_show,
5086         },
5087 #endif
5088         {
5089                 .name = "kmem.limit_in_bytes",
5090                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5091                 .write = mem_cgroup_write,
5092                 .read_u64 = mem_cgroup_read_u64,
5093         },
5094         {
5095                 .name = "kmem.usage_in_bytes",
5096                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5097                 .read_u64 = mem_cgroup_read_u64,
5098         },
5099         {
5100                 .name = "kmem.failcnt",
5101                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5102                 .write = mem_cgroup_reset,
5103                 .read_u64 = mem_cgroup_read_u64,
5104         },
5105         {
5106                 .name = "kmem.max_usage_in_bytes",
5107                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5108                 .write = mem_cgroup_reset,
5109                 .read_u64 = mem_cgroup_read_u64,
5110         },
5111 #if defined(CONFIG_MEMCG_KMEM) && \
5112         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5113         {
5114                 .name = "kmem.slabinfo",
5115                 .seq_show = mem_cgroup_slab_show,
5116         },
5117 #endif
5118         {
5119                 .name = "kmem.tcp.limit_in_bytes",
5120                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5121                 .write = mem_cgroup_write,
5122                 .read_u64 = mem_cgroup_read_u64,
5123         },
5124         {
5125                 .name = "kmem.tcp.usage_in_bytes",
5126                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5127                 .read_u64 = mem_cgroup_read_u64,
5128         },
5129         {
5130                 .name = "kmem.tcp.failcnt",
5131                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5132                 .write = mem_cgroup_reset,
5133                 .read_u64 = mem_cgroup_read_u64,
5134         },
5135         {
5136                 .name = "kmem.tcp.max_usage_in_bytes",
5137                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5138                 .write = mem_cgroup_reset,
5139                 .read_u64 = mem_cgroup_read_u64,
5140         },
5141         { },    /* terminate */
5142 };
5143
5144 /*
5145  * Private memory cgroup IDR
5146  *
5147  * Swap-out records and page cache shadow entries need to store memcg
5148  * references in constrained space, so we maintain an ID space that is
5149  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5150  * memory-controlled cgroups to 64k.
5151  *
5152  * However, there usually are many references to the offline CSS after
5153  * the cgroup has been destroyed, such as page cache or reclaimable
5154  * slab objects, that don't need to hang on to the ID. We want to keep
5155  * those dead CSS from occupying IDs, or we might quickly exhaust the
5156  * relatively small ID space and prevent the creation of new cgroups
5157  * even when there are much fewer than 64k cgroups - possibly none.
5158  *
5159  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5160  * be freed and recycled when it's no longer needed, which is usually
5161  * when the CSS is offlined.
5162  *
5163  * The only exception to that are records of swapped out tmpfs/shmem
5164  * pages that need to be attributed to live ancestors on swapin. But
5165  * those references are manageable from userspace.
5166  */
5167
5168 static DEFINE_IDR(mem_cgroup_idr);
5169
5170 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5171 {
5172         if (memcg->id.id > 0) {
5173                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5174                 memcg->id.id = 0;
5175         }
5176 }
5177
5178 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5179                                                   unsigned int n)
5180 {
5181         refcount_add(n, &memcg->id.ref);
5182 }
5183
5184 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5185 {
5186         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5187                 mem_cgroup_id_remove(memcg);
5188
5189                 /* Memcg ID pins CSS */
5190                 css_put(&memcg->css);
5191         }
5192 }
5193
5194 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5195 {
5196         mem_cgroup_id_put_many(memcg, 1);
5197 }
5198
5199 /**
5200  * mem_cgroup_from_id - look up a memcg from a memcg id
5201  * @id: the memcg id to look up
5202  *
5203  * Caller must hold rcu_read_lock().
5204  */
5205 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5206 {
5207         WARN_ON_ONCE(!rcu_read_lock_held());
5208         return idr_find(&mem_cgroup_idr, id);
5209 }
5210
5211 #ifdef CONFIG_SHRINKER_DEBUG
5212 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5213 {
5214         struct cgroup *cgrp;
5215         struct cgroup_subsys_state *css;
5216         struct mem_cgroup *memcg;
5217
5218         cgrp = cgroup_get_from_id(ino);
5219         if (IS_ERR(cgrp))
5220                 return ERR_CAST(cgrp);
5221
5222         css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5223         if (css)
5224                 memcg = container_of(css, struct mem_cgroup, css);
5225         else
5226                 memcg = ERR_PTR(-ENOENT);
5227
5228         cgroup_put(cgrp);
5229
5230         return memcg;
5231 }
5232 #endif
5233
5234 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5235 {
5236         struct mem_cgroup_per_node *pn;
5237
5238         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5239         if (!pn)
5240                 return 1;
5241
5242         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5243                                                    GFP_KERNEL_ACCOUNT);
5244         if (!pn->lruvec_stats_percpu) {
5245                 kfree(pn);
5246                 return 1;
5247         }
5248
5249         lruvec_init(&pn->lruvec);
5250         pn->memcg = memcg;
5251
5252         memcg->nodeinfo[node] = pn;
5253         return 0;
5254 }
5255
5256 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5257 {
5258         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5259
5260         if (!pn)
5261                 return;
5262
5263         free_percpu(pn->lruvec_stats_percpu);
5264         kfree(pn);
5265 }
5266
5267 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5268 {
5269         int node;
5270
5271         for_each_node(node)
5272                 free_mem_cgroup_per_node_info(memcg, node);
5273         kfree(memcg->vmstats);
5274         free_percpu(memcg->vmstats_percpu);
5275         kfree(memcg);
5276 }
5277
5278 static void mem_cgroup_free(struct mem_cgroup *memcg)
5279 {
5280         lru_gen_exit_memcg(memcg);
5281         memcg_wb_domain_exit(memcg);
5282         __mem_cgroup_free(memcg);
5283 }
5284
5285 static struct mem_cgroup *mem_cgroup_alloc(void)
5286 {
5287         struct mem_cgroup *memcg;
5288         int node;
5289         int __maybe_unused i;
5290         long error = -ENOMEM;
5291
5292         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5293         if (!memcg)
5294                 return ERR_PTR(error);
5295
5296         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5297                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5298         if (memcg->id.id < 0) {
5299                 error = memcg->id.id;
5300                 goto fail;
5301         }
5302
5303         memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5304         if (!memcg->vmstats)
5305                 goto fail;
5306
5307         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5308                                                  GFP_KERNEL_ACCOUNT);
5309         if (!memcg->vmstats_percpu)
5310                 goto fail;
5311
5312         for_each_node(node)
5313                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5314                         goto fail;
5315
5316         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5317                 goto fail;
5318
5319         INIT_WORK(&memcg->high_work, high_work_func);
5320         INIT_LIST_HEAD(&memcg->oom_notify);
5321         mutex_init(&memcg->thresholds_lock);
5322         spin_lock_init(&memcg->move_lock);
5323         vmpressure_init(&memcg->vmpressure);
5324         INIT_LIST_HEAD(&memcg->event_list);
5325         spin_lock_init(&memcg->event_list_lock);
5326         memcg->socket_pressure = jiffies;
5327 #ifdef CONFIG_MEMCG_KMEM
5328         memcg->kmemcg_id = -1;
5329         INIT_LIST_HEAD(&memcg->objcg_list);
5330 #endif
5331 #ifdef CONFIG_CGROUP_WRITEBACK
5332         INIT_LIST_HEAD(&memcg->cgwb_list);
5333         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5334                 memcg->cgwb_frn[i].done =
5335                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5336 #endif
5337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5338         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5339         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5340         memcg->deferred_split_queue.split_queue_len = 0;
5341 #endif
5342         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5343         lru_gen_init_memcg(memcg);
5344         return memcg;
5345 fail:
5346         mem_cgroup_id_remove(memcg);
5347         __mem_cgroup_free(memcg);
5348         return ERR_PTR(error);
5349 }
5350
5351 static struct cgroup_subsys_state * __ref
5352 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5353 {
5354         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5355         struct mem_cgroup *memcg, *old_memcg;
5356
5357         old_memcg = set_active_memcg(parent);
5358         memcg = mem_cgroup_alloc();
5359         set_active_memcg(old_memcg);
5360         if (IS_ERR(memcg))
5361                 return ERR_CAST(memcg);
5362
5363         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5364         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5365 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5366         memcg->zswap_max = PAGE_COUNTER_MAX;
5367 #endif
5368         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5369         if (parent) {
5370                 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5371                 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5372
5373                 page_counter_init(&memcg->memory, &parent->memory);
5374                 page_counter_init(&memcg->swap, &parent->swap);
5375                 page_counter_init(&memcg->kmem, &parent->kmem);
5376                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5377         } else {
5378                 init_memcg_events();
5379                 page_counter_init(&memcg->memory, NULL);
5380                 page_counter_init(&memcg->swap, NULL);
5381                 page_counter_init(&memcg->kmem, NULL);
5382                 page_counter_init(&memcg->tcpmem, NULL);
5383
5384                 root_mem_cgroup = memcg;
5385                 return &memcg->css;
5386         }
5387
5388         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5389                 static_branch_inc(&memcg_sockets_enabled_key);
5390
5391 #if defined(CONFIG_MEMCG_KMEM)
5392         if (!cgroup_memory_nobpf)
5393                 static_branch_inc(&memcg_bpf_enabled_key);
5394 #endif
5395
5396         return &memcg->css;
5397 }
5398
5399 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5400 {
5401         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403         if (memcg_online_kmem(memcg))
5404                 goto remove_id;
5405
5406         /*
5407          * A memcg must be visible for expand_shrinker_info()
5408          * by the time the maps are allocated. So, we allocate maps
5409          * here, when for_each_mem_cgroup() can't skip it.
5410          */
5411         if (alloc_shrinker_info(memcg))
5412                 goto offline_kmem;
5413
5414         /* Online state pins memcg ID, memcg ID pins CSS */
5415         refcount_set(&memcg->id.ref, 1);
5416         css_get(css);
5417
5418         if (unlikely(mem_cgroup_is_root(memcg)))
5419                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5420                                    FLUSH_TIME);
5421         lru_gen_online_memcg(memcg);
5422         return 0;
5423 offline_kmem:
5424         memcg_offline_kmem(memcg);
5425 remove_id:
5426         mem_cgroup_id_remove(memcg);
5427         return -ENOMEM;
5428 }
5429
5430 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5431 {
5432         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5433         struct mem_cgroup_event *event, *tmp;
5434
5435         /*
5436          * Unregister events and notify userspace.
5437          * Notify userspace about cgroup removing only after rmdir of cgroup
5438          * directory to avoid race between userspace and kernelspace.
5439          */
5440         spin_lock_irq(&memcg->event_list_lock);
5441         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5442                 list_del_init(&event->list);
5443                 schedule_work(&event->remove);
5444         }
5445         spin_unlock_irq(&memcg->event_list_lock);
5446
5447         page_counter_set_min(&memcg->memory, 0);
5448         page_counter_set_low(&memcg->memory, 0);
5449
5450         memcg_offline_kmem(memcg);
5451         reparent_shrinker_deferred(memcg);
5452         wb_memcg_offline(memcg);
5453         lru_gen_offline_memcg(memcg);
5454
5455         drain_all_stock(memcg);
5456
5457         mem_cgroup_id_put(memcg);
5458 }
5459
5460 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5461 {
5462         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5463
5464         invalidate_reclaim_iterators(memcg);
5465         lru_gen_release_memcg(memcg);
5466 }
5467
5468 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5469 {
5470         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5471         int __maybe_unused i;
5472
5473 #ifdef CONFIG_CGROUP_WRITEBACK
5474         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5475                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5476 #endif
5477         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5478                 static_branch_dec(&memcg_sockets_enabled_key);
5479
5480         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5481                 static_branch_dec(&memcg_sockets_enabled_key);
5482
5483 #if defined(CONFIG_MEMCG_KMEM)
5484         if (!cgroup_memory_nobpf)
5485                 static_branch_dec(&memcg_bpf_enabled_key);
5486 #endif
5487
5488         vmpressure_cleanup(&memcg->vmpressure);
5489         cancel_work_sync(&memcg->high_work);
5490         mem_cgroup_remove_from_trees(memcg);
5491         free_shrinker_info(memcg);
5492         mem_cgroup_free(memcg);
5493 }
5494
5495 /**
5496  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5497  * @css: the target css
5498  *
5499  * Reset the states of the mem_cgroup associated with @css.  This is
5500  * invoked when the userland requests disabling on the default hierarchy
5501  * but the memcg is pinned through dependency.  The memcg should stop
5502  * applying policies and should revert to the vanilla state as it may be
5503  * made visible again.
5504  *
5505  * The current implementation only resets the essential configurations.
5506  * This needs to be expanded to cover all the visible parts.
5507  */
5508 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5509 {
5510         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5511
5512         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5513         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5514         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5515         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5516         page_counter_set_min(&memcg->memory, 0);
5517         page_counter_set_low(&memcg->memory, 0);
5518         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5519         WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5520         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5521         memcg_wb_domain_size_changed(memcg);
5522 }
5523
5524 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5525 {
5526         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5527         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5528         struct memcg_vmstats_percpu *statc;
5529         long delta, v;
5530         int i, nid;
5531
5532         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5533
5534         for (i = 0; i < MEMCG_NR_STAT; i++) {
5535                 /*
5536                  * Collect the aggregated propagation counts of groups
5537                  * below us. We're in a per-cpu loop here and this is
5538                  * a global counter, so the first cycle will get them.
5539                  */
5540                 delta = memcg->vmstats->state_pending[i];
5541                 if (delta)
5542                         memcg->vmstats->state_pending[i] = 0;
5543
5544                 /* Add CPU changes on this level since the last flush */
5545                 v = READ_ONCE(statc->state[i]);
5546                 if (v != statc->state_prev[i]) {
5547                         delta += v - statc->state_prev[i];
5548                         statc->state_prev[i] = v;
5549                 }
5550
5551                 if (!delta)
5552                         continue;
5553
5554                 /* Aggregate counts on this level and propagate upwards */
5555                 memcg->vmstats->state[i] += delta;
5556                 if (parent)
5557                         parent->vmstats->state_pending[i] += delta;
5558         }
5559
5560         for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5561                 delta = memcg->vmstats->events_pending[i];
5562                 if (delta)
5563                         memcg->vmstats->events_pending[i] = 0;
5564
5565                 v = READ_ONCE(statc->events[i]);
5566                 if (v != statc->events_prev[i]) {
5567                         delta += v - statc->events_prev[i];
5568                         statc->events_prev[i] = v;
5569                 }
5570
5571                 if (!delta)
5572                         continue;
5573
5574                 memcg->vmstats->events[i] += delta;
5575                 if (parent)
5576                         parent->vmstats->events_pending[i] += delta;
5577         }
5578
5579         for_each_node_state(nid, N_MEMORY) {
5580                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5581                 struct mem_cgroup_per_node *ppn = NULL;
5582                 struct lruvec_stats_percpu *lstatc;
5583
5584                 if (parent)
5585                         ppn = parent->nodeinfo[nid];
5586
5587                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5588
5589                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5590                         delta = pn->lruvec_stats.state_pending[i];
5591                         if (delta)
5592                                 pn->lruvec_stats.state_pending[i] = 0;
5593
5594                         v = READ_ONCE(lstatc->state[i]);
5595                         if (v != lstatc->state_prev[i]) {
5596                                 delta += v - lstatc->state_prev[i];
5597                                 lstatc->state_prev[i] = v;
5598                         }
5599
5600                         if (!delta)
5601                                 continue;
5602
5603                         pn->lruvec_stats.state[i] += delta;
5604                         if (ppn)
5605                                 ppn->lruvec_stats.state_pending[i] += delta;
5606                 }
5607         }
5608 }
5609
5610 #ifdef CONFIG_MMU
5611 /* Handlers for move charge at task migration. */
5612 static int mem_cgroup_do_precharge(unsigned long count)
5613 {
5614         int ret;
5615
5616         /* Try a single bulk charge without reclaim first, kswapd may wake */
5617         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5618         if (!ret) {
5619                 mc.precharge += count;
5620                 return ret;
5621         }
5622
5623         /* Try charges one by one with reclaim, but do not retry */
5624         while (count--) {
5625                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5626                 if (ret)
5627                         return ret;
5628                 mc.precharge++;
5629                 cond_resched();
5630         }
5631         return 0;
5632 }
5633
5634 union mc_target {
5635         struct page     *page;
5636         swp_entry_t     ent;
5637 };
5638
5639 enum mc_target_type {
5640         MC_TARGET_NONE = 0,
5641         MC_TARGET_PAGE,
5642         MC_TARGET_SWAP,
5643         MC_TARGET_DEVICE,
5644 };
5645
5646 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5647                                                 unsigned long addr, pte_t ptent)
5648 {
5649         struct page *page = vm_normal_page(vma, addr, ptent);
5650
5651         if (!page || !page_mapped(page))
5652                 return NULL;
5653         if (PageAnon(page)) {
5654                 if (!(mc.flags & MOVE_ANON))
5655                         return NULL;
5656         } else {
5657                 if (!(mc.flags & MOVE_FILE))
5658                         return NULL;
5659         }
5660         if (!get_page_unless_zero(page))
5661                 return NULL;
5662
5663         return page;
5664 }
5665
5666 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5667 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5668                         pte_t ptent, swp_entry_t *entry)
5669 {
5670         struct page *page = NULL;
5671         swp_entry_t ent = pte_to_swp_entry(ptent);
5672
5673         if (!(mc.flags & MOVE_ANON))
5674                 return NULL;
5675
5676         /*
5677          * Handle device private pages that are not accessible by the CPU, but
5678          * stored as special swap entries in the page table.
5679          */
5680         if (is_device_private_entry(ent)) {
5681                 page = pfn_swap_entry_to_page(ent);
5682                 if (!get_page_unless_zero(page))
5683                         return NULL;
5684                 return page;
5685         }
5686
5687         if (non_swap_entry(ent))
5688                 return NULL;
5689
5690         /*
5691          * Because swap_cache_get_folio() updates some statistics counter,
5692          * we call find_get_page() with swapper_space directly.
5693          */
5694         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5695         entry->val = ent.val;
5696
5697         return page;
5698 }
5699 #else
5700 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5701                         pte_t ptent, swp_entry_t *entry)
5702 {
5703         return NULL;
5704 }
5705 #endif
5706
5707 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5708                         unsigned long addr, pte_t ptent)
5709 {
5710         unsigned long index;
5711         struct folio *folio;
5712
5713         if (!vma->vm_file) /* anonymous vma */
5714                 return NULL;
5715         if (!(mc.flags & MOVE_FILE))
5716                 return NULL;
5717
5718         /* folio is moved even if it's not RSS of this task(page-faulted). */
5719         /* shmem/tmpfs may report page out on swap: account for that too. */
5720         index = linear_page_index(vma, addr);
5721         folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5722         if (IS_ERR(folio))
5723                 return NULL;
5724         return folio_file_page(folio, index);
5725 }
5726
5727 /**
5728  * mem_cgroup_move_account - move account of the page
5729  * @page: the page
5730  * @compound: charge the page as compound or small page
5731  * @from: mem_cgroup which the page is moved from.
5732  * @to: mem_cgroup which the page is moved to. @from != @to.
5733  *
5734  * The page must be locked and not on the LRU.
5735  *
5736  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5737  * from old cgroup.
5738  */
5739 static int mem_cgroup_move_account(struct page *page,
5740                                    bool compound,
5741                                    struct mem_cgroup *from,
5742                                    struct mem_cgroup *to)
5743 {
5744         struct folio *folio = page_folio(page);
5745         struct lruvec *from_vec, *to_vec;
5746         struct pglist_data *pgdat;
5747         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5748         int nid, ret;
5749
5750         VM_BUG_ON(from == to);
5751         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5752         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5753         VM_BUG_ON(compound && !folio_test_large(folio));
5754
5755         ret = -EINVAL;
5756         if (folio_memcg(folio) != from)
5757                 goto out;
5758
5759         pgdat = folio_pgdat(folio);
5760         from_vec = mem_cgroup_lruvec(from, pgdat);
5761         to_vec = mem_cgroup_lruvec(to, pgdat);
5762
5763         folio_memcg_lock(folio);
5764
5765         if (folio_test_anon(folio)) {
5766                 if (folio_mapped(folio)) {
5767                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5768                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5769                         if (folio_test_transhuge(folio)) {
5770                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5771                                                    -nr_pages);
5772                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5773                                                    nr_pages);
5774                         }
5775                 }
5776         } else {
5777                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5778                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5779
5780                 if (folio_test_swapbacked(folio)) {
5781                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5782                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5783                 }
5784
5785                 if (folio_mapped(folio)) {
5786                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5787                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5788                 }
5789
5790                 if (folio_test_dirty(folio)) {
5791                         struct address_space *mapping = folio_mapping(folio);
5792
5793                         if (mapping_can_writeback(mapping)) {
5794                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5795                                                    -nr_pages);
5796                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5797                                                    nr_pages);
5798                         }
5799                 }
5800         }
5801
5802 #ifdef CONFIG_SWAP
5803         if (folio_test_swapcache(folio)) {
5804                 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5805                 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5806         }
5807 #endif
5808         if (folio_test_writeback(folio)) {
5809                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5810                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5811         }
5812
5813         /*
5814          * All state has been migrated, let's switch to the new memcg.
5815          *
5816          * It is safe to change page's memcg here because the page
5817          * is referenced, charged, isolated, and locked: we can't race
5818          * with (un)charging, migration, LRU putback, or anything else
5819          * that would rely on a stable page's memory cgroup.
5820          *
5821          * Note that folio_memcg_lock is a memcg lock, not a page lock,
5822          * to save space. As soon as we switch page's memory cgroup to a
5823          * new memcg that isn't locked, the above state can change
5824          * concurrently again. Make sure we're truly done with it.
5825          */
5826         smp_mb();
5827
5828         css_get(&to->css);
5829         css_put(&from->css);
5830
5831         folio->memcg_data = (unsigned long)to;
5832
5833         __folio_memcg_unlock(from);
5834
5835         ret = 0;
5836         nid = folio_nid(folio);
5837
5838         local_irq_disable();
5839         mem_cgroup_charge_statistics(to, nr_pages);
5840         memcg_check_events(to, nid);
5841         mem_cgroup_charge_statistics(from, -nr_pages);
5842         memcg_check_events(from, nid);
5843         local_irq_enable();
5844 out:
5845         return ret;
5846 }
5847
5848 /**
5849  * get_mctgt_type - get target type of moving charge
5850  * @vma: the vma the pte to be checked belongs
5851  * @addr: the address corresponding to the pte to be checked
5852  * @ptent: the pte to be checked
5853  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5854  *
5855  * Returns
5856  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5857  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5858  *     move charge. if @target is not NULL, the page is stored in target->page
5859  *     with extra refcnt got(Callers should handle it).
5860  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5861  *     target for charge migration. if @target is not NULL, the entry is stored
5862  *     in target->ent.
5863  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5864  *   thus not on the lru.
5865  *     For now we such page is charge like a regular page would be as for all
5866  *     intent and purposes it is just special memory taking the place of a
5867  *     regular page.
5868  *
5869  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5870  *
5871  * Called with pte lock held.
5872  */
5873
5874 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5875                 unsigned long addr, pte_t ptent, union mc_target *target)
5876 {
5877         struct page *page = NULL;
5878         enum mc_target_type ret = MC_TARGET_NONE;
5879         swp_entry_t ent = { .val = 0 };
5880
5881         if (pte_present(ptent))
5882                 page = mc_handle_present_pte(vma, addr, ptent);
5883         else if (pte_none_mostly(ptent))
5884                 /*
5885                  * PTE markers should be treated as a none pte here, separated
5886                  * from other swap handling below.
5887                  */
5888                 page = mc_handle_file_pte(vma, addr, ptent);
5889         else if (is_swap_pte(ptent))
5890                 page = mc_handle_swap_pte(vma, ptent, &ent);
5891
5892         if (target && page) {
5893                 if (!trylock_page(page)) {
5894                         put_page(page);
5895                         return ret;
5896                 }
5897                 /*
5898                  * page_mapped() must be stable during the move. This
5899                  * pte is locked, so if it's present, the page cannot
5900                  * become unmapped. If it isn't, we have only partial
5901                  * control over the mapped state: the page lock will
5902                  * prevent new faults against pagecache and swapcache,
5903                  * so an unmapped page cannot become mapped. However,
5904                  * if the page is already mapped elsewhere, it can
5905                  * unmap, and there is nothing we can do about it.
5906                  * Alas, skip moving the page in this case.
5907                  */
5908                 if (!pte_present(ptent) && page_mapped(page)) {
5909                         unlock_page(page);
5910                         put_page(page);
5911                         return ret;
5912                 }
5913         }
5914
5915         if (!page && !ent.val)
5916                 return ret;
5917         if (page) {
5918                 /*
5919                  * Do only loose check w/o serialization.
5920                  * mem_cgroup_move_account() checks the page is valid or
5921                  * not under LRU exclusion.
5922                  */
5923                 if (page_memcg(page) == mc.from) {
5924                         ret = MC_TARGET_PAGE;
5925                         if (is_device_private_page(page) ||
5926                             is_device_coherent_page(page))
5927                                 ret = MC_TARGET_DEVICE;
5928                         if (target)
5929                                 target->page = page;
5930                 }
5931                 if (!ret || !target) {
5932                         if (target)
5933                                 unlock_page(page);
5934                         put_page(page);
5935                 }
5936         }
5937         /*
5938          * There is a swap entry and a page doesn't exist or isn't charged.
5939          * But we cannot move a tail-page in a THP.
5940          */
5941         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5942             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5943                 ret = MC_TARGET_SWAP;
5944                 if (target)
5945                         target->ent = ent;
5946         }
5947         return ret;
5948 }
5949
5950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5951 /*
5952  * We don't consider PMD mapped swapping or file mapped pages because THP does
5953  * not support them for now.
5954  * Caller should make sure that pmd_trans_huge(pmd) is true.
5955  */
5956 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5957                 unsigned long addr, pmd_t pmd, union mc_target *target)
5958 {
5959         struct page *page = NULL;
5960         enum mc_target_type ret = MC_TARGET_NONE;
5961
5962         if (unlikely(is_swap_pmd(pmd))) {
5963                 VM_BUG_ON(thp_migration_supported() &&
5964                                   !is_pmd_migration_entry(pmd));
5965                 return ret;
5966         }
5967         page = pmd_page(pmd);
5968         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5969         if (!(mc.flags & MOVE_ANON))
5970                 return ret;
5971         if (page_memcg(page) == mc.from) {
5972                 ret = MC_TARGET_PAGE;
5973                 if (target) {
5974                         get_page(page);
5975                         if (!trylock_page(page)) {
5976                                 put_page(page);
5977                                 return MC_TARGET_NONE;
5978                         }
5979                         target->page = page;
5980                 }
5981         }
5982         return ret;
5983 }
5984 #else
5985 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5986                 unsigned long addr, pmd_t pmd, union mc_target *target)
5987 {
5988         return MC_TARGET_NONE;
5989 }
5990 #endif
5991
5992 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5993                                         unsigned long addr, unsigned long end,
5994                                         struct mm_walk *walk)
5995 {
5996         struct vm_area_struct *vma = walk->vma;
5997         pte_t *pte;
5998         spinlock_t *ptl;
5999
6000         ptl = pmd_trans_huge_lock(pmd, vma);
6001         if (ptl) {
6002                 /*
6003                  * Note their can not be MC_TARGET_DEVICE for now as we do not
6004                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6005                  * this might change.
6006                  */
6007                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6008                         mc.precharge += HPAGE_PMD_NR;
6009                 spin_unlock(ptl);
6010                 return 0;
6011         }
6012
6013         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6014         if (!pte)
6015                 return 0;
6016         for (; addr != end; pte++, addr += PAGE_SIZE)
6017                 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6018                         mc.precharge++; /* increment precharge temporarily */
6019         pte_unmap_unlock(pte - 1, ptl);
6020         cond_resched();
6021
6022         return 0;
6023 }
6024
6025 static const struct mm_walk_ops precharge_walk_ops = {
6026         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
6027 };
6028
6029 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6030 {
6031         unsigned long precharge;
6032
6033         mmap_read_lock(mm);
6034         walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6035         mmap_read_unlock(mm);
6036
6037         precharge = mc.precharge;
6038         mc.precharge = 0;
6039
6040         return precharge;
6041 }
6042
6043 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6044 {
6045         unsigned long precharge = mem_cgroup_count_precharge(mm);
6046
6047         VM_BUG_ON(mc.moving_task);
6048         mc.moving_task = current;
6049         return mem_cgroup_do_precharge(precharge);
6050 }
6051
6052 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6053 static void __mem_cgroup_clear_mc(void)
6054 {
6055         struct mem_cgroup *from = mc.from;
6056         struct mem_cgroup *to = mc.to;
6057
6058         /* we must uncharge all the leftover precharges from mc.to */
6059         if (mc.precharge) {
6060                 cancel_charge(mc.to, mc.precharge);
6061                 mc.precharge = 0;
6062         }
6063         /*
6064          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6065          * we must uncharge here.
6066          */
6067         if (mc.moved_charge) {
6068                 cancel_charge(mc.from, mc.moved_charge);
6069                 mc.moved_charge = 0;
6070         }
6071         /* we must fixup refcnts and charges */
6072         if (mc.moved_swap) {
6073                 /* uncharge swap account from the old cgroup */
6074                 if (!mem_cgroup_is_root(mc.from))
6075                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6076
6077                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6078
6079                 /*
6080                  * we charged both to->memory and to->memsw, so we
6081                  * should uncharge to->memory.
6082                  */
6083                 if (!mem_cgroup_is_root(mc.to))
6084                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6085
6086                 mc.moved_swap = 0;
6087         }
6088         memcg_oom_recover(from);
6089         memcg_oom_recover(to);
6090         wake_up_all(&mc.waitq);
6091 }
6092
6093 static void mem_cgroup_clear_mc(void)
6094 {
6095         struct mm_struct *mm = mc.mm;
6096
6097         /*
6098          * we must clear moving_task before waking up waiters at the end of
6099          * task migration.
6100          */
6101         mc.moving_task = NULL;
6102         __mem_cgroup_clear_mc();
6103         spin_lock(&mc.lock);
6104         mc.from = NULL;
6105         mc.to = NULL;
6106         mc.mm = NULL;
6107         spin_unlock(&mc.lock);
6108
6109         mmput(mm);
6110 }
6111
6112 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6113 {
6114         struct cgroup_subsys_state *css;
6115         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6116         struct mem_cgroup *from;
6117         struct task_struct *leader, *p;
6118         struct mm_struct *mm;
6119         unsigned long move_flags;
6120         int ret = 0;
6121
6122         /* charge immigration isn't supported on the default hierarchy */
6123         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6124                 return 0;
6125
6126         /*
6127          * Multi-process migrations only happen on the default hierarchy
6128          * where charge immigration is not used.  Perform charge
6129          * immigration if @tset contains a leader and whine if there are
6130          * multiple.
6131          */
6132         p = NULL;
6133         cgroup_taskset_for_each_leader(leader, css, tset) {
6134                 WARN_ON_ONCE(p);
6135                 p = leader;
6136                 memcg = mem_cgroup_from_css(css);
6137         }
6138         if (!p)
6139                 return 0;
6140
6141         /*
6142          * We are now committed to this value whatever it is. Changes in this
6143          * tunable will only affect upcoming migrations, not the current one.
6144          * So we need to save it, and keep it going.
6145          */
6146         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6147         if (!move_flags)
6148                 return 0;
6149
6150         from = mem_cgroup_from_task(p);
6151
6152         VM_BUG_ON(from == memcg);
6153
6154         mm = get_task_mm(p);
6155         if (!mm)
6156                 return 0;
6157         /* We move charges only when we move a owner of the mm */
6158         if (mm->owner == p) {
6159                 VM_BUG_ON(mc.from);
6160                 VM_BUG_ON(mc.to);
6161                 VM_BUG_ON(mc.precharge);
6162                 VM_BUG_ON(mc.moved_charge);
6163                 VM_BUG_ON(mc.moved_swap);
6164
6165                 spin_lock(&mc.lock);
6166                 mc.mm = mm;
6167                 mc.from = from;
6168                 mc.to = memcg;
6169                 mc.flags = move_flags;
6170                 spin_unlock(&mc.lock);
6171                 /* We set mc.moving_task later */
6172
6173                 ret = mem_cgroup_precharge_mc(mm);
6174                 if (ret)
6175                         mem_cgroup_clear_mc();
6176         } else {
6177                 mmput(mm);
6178         }
6179         return ret;
6180 }
6181
6182 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6183 {
6184         if (mc.to)
6185                 mem_cgroup_clear_mc();
6186 }
6187
6188 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6189                                 unsigned long addr, unsigned long end,
6190                                 struct mm_walk *walk)
6191 {
6192         int ret = 0;
6193         struct vm_area_struct *vma = walk->vma;
6194         pte_t *pte;
6195         spinlock_t *ptl;
6196         enum mc_target_type target_type;
6197         union mc_target target;
6198         struct page *page;
6199
6200         ptl = pmd_trans_huge_lock(pmd, vma);
6201         if (ptl) {
6202                 if (mc.precharge < HPAGE_PMD_NR) {
6203                         spin_unlock(ptl);
6204                         return 0;
6205                 }
6206                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6207                 if (target_type == MC_TARGET_PAGE) {
6208                         page = target.page;
6209                         if (isolate_lru_page(page)) {
6210                                 if (!mem_cgroup_move_account(page, true,
6211                                                              mc.from, mc.to)) {
6212                                         mc.precharge -= HPAGE_PMD_NR;
6213                                         mc.moved_charge += HPAGE_PMD_NR;
6214                                 }
6215                                 putback_lru_page(page);
6216                         }
6217                         unlock_page(page);
6218                         put_page(page);
6219                 } else if (target_type == MC_TARGET_DEVICE) {
6220                         page = target.page;
6221                         if (!mem_cgroup_move_account(page, true,
6222                                                      mc.from, mc.to)) {
6223                                 mc.precharge -= HPAGE_PMD_NR;
6224                                 mc.moved_charge += HPAGE_PMD_NR;
6225                         }
6226                         unlock_page(page);
6227                         put_page(page);
6228                 }
6229                 spin_unlock(ptl);
6230                 return 0;
6231         }
6232
6233 retry:
6234         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6235         if (!pte)
6236                 return 0;
6237         for (; addr != end; addr += PAGE_SIZE) {
6238                 pte_t ptent = ptep_get(pte++);
6239                 bool device = false;
6240                 swp_entry_t ent;
6241
6242                 if (!mc.precharge)
6243                         break;
6244
6245                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6246                 case MC_TARGET_DEVICE:
6247                         device = true;
6248                         fallthrough;
6249                 case MC_TARGET_PAGE:
6250                         page = target.page;
6251                         /*
6252                          * We can have a part of the split pmd here. Moving it
6253                          * can be done but it would be too convoluted so simply
6254                          * ignore such a partial THP and keep it in original
6255                          * memcg. There should be somebody mapping the head.
6256                          */
6257                         if (PageTransCompound(page))
6258                                 goto put;
6259                         if (!device && !isolate_lru_page(page))
6260                                 goto put;
6261                         if (!mem_cgroup_move_account(page, false,
6262                                                 mc.from, mc.to)) {
6263                                 mc.precharge--;
6264                                 /* we uncharge from mc.from later. */
6265                                 mc.moved_charge++;
6266                         }
6267                         if (!device)
6268                                 putback_lru_page(page);
6269 put:                    /* get_mctgt_type() gets & locks the page */
6270                         unlock_page(page);
6271                         put_page(page);
6272                         break;
6273                 case MC_TARGET_SWAP:
6274                         ent = target.ent;
6275                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6276                                 mc.precharge--;
6277                                 mem_cgroup_id_get_many(mc.to, 1);
6278                                 /* we fixup other refcnts and charges later. */
6279                                 mc.moved_swap++;
6280                         }
6281                         break;
6282                 default:
6283                         break;
6284                 }
6285         }
6286         pte_unmap_unlock(pte - 1, ptl);
6287         cond_resched();
6288
6289         if (addr != end) {
6290                 /*
6291                  * We have consumed all precharges we got in can_attach().
6292                  * We try charge one by one, but don't do any additional
6293                  * charges to mc.to if we have failed in charge once in attach()
6294                  * phase.
6295                  */
6296                 ret = mem_cgroup_do_precharge(1);
6297                 if (!ret)
6298                         goto retry;
6299         }
6300
6301         return ret;
6302 }
6303
6304 static const struct mm_walk_ops charge_walk_ops = {
6305         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6306 };
6307
6308 static void mem_cgroup_move_charge(void)
6309 {
6310         lru_add_drain_all();
6311         /*
6312          * Signal folio_memcg_lock() to take the memcg's move_lock
6313          * while we're moving its pages to another memcg. Then wait
6314          * for already started RCU-only updates to finish.
6315          */
6316         atomic_inc(&mc.from->moving_account);
6317         synchronize_rcu();
6318 retry:
6319         if (unlikely(!mmap_read_trylock(mc.mm))) {
6320                 /*
6321                  * Someone who are holding the mmap_lock might be waiting in
6322                  * waitq. So we cancel all extra charges, wake up all waiters,
6323                  * and retry. Because we cancel precharges, we might not be able
6324                  * to move enough charges, but moving charge is a best-effort
6325                  * feature anyway, so it wouldn't be a big problem.
6326                  */
6327                 __mem_cgroup_clear_mc();
6328                 cond_resched();
6329                 goto retry;
6330         }
6331         /*
6332          * When we have consumed all precharges and failed in doing
6333          * additional charge, the page walk just aborts.
6334          */
6335         walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6336         mmap_read_unlock(mc.mm);
6337         atomic_dec(&mc.from->moving_account);
6338 }
6339
6340 static void mem_cgroup_move_task(void)
6341 {
6342         if (mc.to) {
6343                 mem_cgroup_move_charge();
6344                 mem_cgroup_clear_mc();
6345         }
6346 }
6347 #else   /* !CONFIG_MMU */
6348 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6349 {
6350         return 0;
6351 }
6352 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6353 {
6354 }
6355 static void mem_cgroup_move_task(void)
6356 {
6357 }
6358 #endif
6359
6360 #ifdef CONFIG_LRU_GEN
6361 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6362 {
6363         struct task_struct *task;
6364         struct cgroup_subsys_state *css;
6365
6366         /* find the first leader if there is any */
6367         cgroup_taskset_for_each_leader(task, css, tset)
6368                 break;
6369
6370         if (!task)
6371                 return;
6372
6373         task_lock(task);
6374         if (task->mm && READ_ONCE(task->mm->owner) == task)
6375                 lru_gen_migrate_mm(task->mm);
6376         task_unlock(task);
6377 }
6378 #else
6379 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6380 {
6381 }
6382 #endif /* CONFIG_LRU_GEN */
6383
6384 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6385 {
6386         if (value == PAGE_COUNTER_MAX)
6387                 seq_puts(m, "max\n");
6388         else
6389                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6390
6391         return 0;
6392 }
6393
6394 static u64 memory_current_read(struct cgroup_subsys_state *css,
6395                                struct cftype *cft)
6396 {
6397         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6398
6399         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6400 }
6401
6402 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6403                             struct cftype *cft)
6404 {
6405         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6406
6407         return (u64)memcg->memory.watermark * PAGE_SIZE;
6408 }
6409
6410 static int memory_min_show(struct seq_file *m, void *v)
6411 {
6412         return seq_puts_memcg_tunable(m,
6413                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6414 }
6415
6416 static ssize_t memory_min_write(struct kernfs_open_file *of,
6417                                 char *buf, size_t nbytes, loff_t off)
6418 {
6419         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6420         unsigned long min;
6421         int err;
6422
6423         buf = strstrip(buf);
6424         err = page_counter_memparse(buf, "max", &min);
6425         if (err)
6426                 return err;
6427
6428         page_counter_set_min(&memcg->memory, min);
6429
6430         return nbytes;
6431 }
6432
6433 static int memory_low_show(struct seq_file *m, void *v)
6434 {
6435         return seq_puts_memcg_tunable(m,
6436                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6437 }
6438
6439 static ssize_t memory_low_write(struct kernfs_open_file *of,
6440                                 char *buf, size_t nbytes, loff_t off)
6441 {
6442         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6443         unsigned long low;
6444         int err;
6445
6446         buf = strstrip(buf);
6447         err = page_counter_memparse(buf, "max", &low);
6448         if (err)
6449                 return err;
6450
6451         page_counter_set_low(&memcg->memory, low);
6452
6453         return nbytes;
6454 }
6455
6456 static int memory_high_show(struct seq_file *m, void *v)
6457 {
6458         return seq_puts_memcg_tunable(m,
6459                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6460 }
6461
6462 static ssize_t memory_high_write(struct kernfs_open_file *of,
6463                                  char *buf, size_t nbytes, loff_t off)
6464 {
6465         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6466         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6467         bool drained = false;
6468         unsigned long high;
6469         int err;
6470
6471         buf = strstrip(buf);
6472         err = page_counter_memparse(buf, "max", &high);
6473         if (err)
6474                 return err;
6475
6476         page_counter_set_high(&memcg->memory, high);
6477
6478         for (;;) {
6479                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6480                 unsigned long reclaimed;
6481
6482                 if (nr_pages <= high)
6483                         break;
6484
6485                 if (signal_pending(current))
6486                         break;
6487
6488                 if (!drained) {
6489                         drain_all_stock(memcg);
6490                         drained = true;
6491                         continue;
6492                 }
6493
6494                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6495                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6496
6497                 if (!reclaimed && !nr_retries--)
6498                         break;
6499         }
6500
6501         memcg_wb_domain_size_changed(memcg);
6502         return nbytes;
6503 }
6504
6505 static int memory_max_show(struct seq_file *m, void *v)
6506 {
6507         return seq_puts_memcg_tunable(m,
6508                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6509 }
6510
6511 static ssize_t memory_max_write(struct kernfs_open_file *of,
6512                                 char *buf, size_t nbytes, loff_t off)
6513 {
6514         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6515         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6516         bool drained = false;
6517         unsigned long max;
6518         int err;
6519
6520         buf = strstrip(buf);
6521         err = page_counter_memparse(buf, "max", &max);
6522         if (err)
6523                 return err;
6524
6525         xchg(&memcg->memory.max, max);
6526
6527         for (;;) {
6528                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6529
6530                 if (nr_pages <= max)
6531                         break;
6532
6533                 if (signal_pending(current))
6534                         break;
6535
6536                 if (!drained) {
6537                         drain_all_stock(memcg);
6538                         drained = true;
6539                         continue;
6540                 }
6541
6542                 if (nr_reclaims) {
6543                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6544                                         GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6545                                 nr_reclaims--;
6546                         continue;
6547                 }
6548
6549                 memcg_memory_event(memcg, MEMCG_OOM);
6550                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6551                         break;
6552         }
6553
6554         memcg_wb_domain_size_changed(memcg);
6555         return nbytes;
6556 }
6557
6558 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6559 {
6560         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6561         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6562         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6563         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6564         seq_printf(m, "oom_kill %lu\n",
6565                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6566         seq_printf(m, "oom_group_kill %lu\n",
6567                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6568 }
6569
6570 static int memory_events_show(struct seq_file *m, void *v)
6571 {
6572         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6573
6574         __memory_events_show(m, memcg->memory_events);
6575         return 0;
6576 }
6577
6578 static int memory_events_local_show(struct seq_file *m, void *v)
6579 {
6580         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6581
6582         __memory_events_show(m, memcg->memory_events_local);
6583         return 0;
6584 }
6585
6586 static int memory_stat_show(struct seq_file *m, void *v)
6587 {
6588         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6589         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6590         struct seq_buf s;
6591
6592         if (!buf)
6593                 return -ENOMEM;
6594         seq_buf_init(&s, buf, PAGE_SIZE);
6595         memory_stat_format(memcg, &s);
6596         seq_puts(m, buf);
6597         kfree(buf);
6598         return 0;
6599 }
6600
6601 #ifdef CONFIG_NUMA
6602 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6603                                                      int item)
6604 {
6605         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6606 }
6607
6608 static int memory_numa_stat_show(struct seq_file *m, void *v)
6609 {
6610         int i;
6611         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6612
6613         mem_cgroup_flush_stats();
6614
6615         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6616                 int nid;
6617
6618                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6619                         continue;
6620
6621                 seq_printf(m, "%s", memory_stats[i].name);
6622                 for_each_node_state(nid, N_MEMORY) {
6623                         u64 size;
6624                         struct lruvec *lruvec;
6625
6626                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6627                         size = lruvec_page_state_output(lruvec,
6628                                                         memory_stats[i].idx);
6629                         seq_printf(m, " N%d=%llu", nid, size);
6630                 }
6631                 seq_putc(m, '\n');
6632         }
6633
6634         return 0;
6635 }
6636 #endif
6637
6638 static int memory_oom_group_show(struct seq_file *m, void *v)
6639 {
6640         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6641
6642         seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6643
6644         return 0;
6645 }
6646
6647 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6648                                       char *buf, size_t nbytes, loff_t off)
6649 {
6650         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6651         int ret, oom_group;
6652
6653         buf = strstrip(buf);
6654         if (!buf)
6655                 return -EINVAL;
6656
6657         ret = kstrtoint(buf, 0, &oom_group);
6658         if (ret)
6659                 return ret;
6660
6661         if (oom_group != 0 && oom_group != 1)
6662                 return -EINVAL;
6663
6664         WRITE_ONCE(memcg->oom_group, oom_group);
6665
6666         return nbytes;
6667 }
6668
6669 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6670                               size_t nbytes, loff_t off)
6671 {
6672         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6673         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6674         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6675         unsigned int reclaim_options;
6676         int err;
6677
6678         buf = strstrip(buf);
6679         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6680         if (err)
6681                 return err;
6682
6683         reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6684         while (nr_reclaimed < nr_to_reclaim) {
6685                 unsigned long reclaimed;
6686
6687                 if (signal_pending(current))
6688                         return -EINTR;
6689
6690                 /*
6691                  * This is the final attempt, drain percpu lru caches in the
6692                  * hope of introducing more evictable pages for
6693                  * try_to_free_mem_cgroup_pages().
6694                  */
6695                 if (!nr_retries)
6696                         lru_add_drain_all();
6697
6698                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6699                                                 nr_to_reclaim - nr_reclaimed,
6700                                                 GFP_KERNEL, reclaim_options);
6701
6702                 if (!reclaimed && !nr_retries--)
6703                         return -EAGAIN;
6704
6705                 nr_reclaimed += reclaimed;
6706         }
6707
6708         return nbytes;
6709 }
6710
6711 static struct cftype memory_files[] = {
6712         {
6713                 .name = "current",
6714                 .flags = CFTYPE_NOT_ON_ROOT,
6715                 .read_u64 = memory_current_read,
6716         },
6717         {
6718                 .name = "peak",
6719                 .flags = CFTYPE_NOT_ON_ROOT,
6720                 .read_u64 = memory_peak_read,
6721         },
6722         {
6723                 .name = "min",
6724                 .flags = CFTYPE_NOT_ON_ROOT,
6725                 .seq_show = memory_min_show,
6726                 .write = memory_min_write,
6727         },
6728         {
6729                 .name = "low",
6730                 .flags = CFTYPE_NOT_ON_ROOT,
6731                 .seq_show = memory_low_show,
6732                 .write = memory_low_write,
6733         },
6734         {
6735                 .name = "high",
6736                 .flags = CFTYPE_NOT_ON_ROOT,
6737                 .seq_show = memory_high_show,
6738                 .write = memory_high_write,
6739         },
6740         {
6741                 .name = "max",
6742                 .flags = CFTYPE_NOT_ON_ROOT,
6743                 .seq_show = memory_max_show,
6744                 .write = memory_max_write,
6745         },
6746         {
6747                 .name = "events",
6748                 .flags = CFTYPE_NOT_ON_ROOT,
6749                 .file_offset = offsetof(struct mem_cgroup, events_file),
6750                 .seq_show = memory_events_show,
6751         },
6752         {
6753                 .name = "events.local",
6754                 .flags = CFTYPE_NOT_ON_ROOT,
6755                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6756                 .seq_show = memory_events_local_show,
6757         },
6758         {
6759                 .name = "stat",
6760                 .seq_show = memory_stat_show,
6761         },
6762 #ifdef CONFIG_NUMA
6763         {
6764                 .name = "numa_stat",
6765                 .seq_show = memory_numa_stat_show,
6766         },
6767 #endif
6768         {
6769                 .name = "oom.group",
6770                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6771                 .seq_show = memory_oom_group_show,
6772                 .write = memory_oom_group_write,
6773         },
6774         {
6775                 .name = "reclaim",
6776                 .flags = CFTYPE_NS_DELEGATABLE,
6777                 .write = memory_reclaim,
6778         },
6779         { }     /* terminate */
6780 };
6781
6782 struct cgroup_subsys memory_cgrp_subsys = {
6783         .css_alloc = mem_cgroup_css_alloc,
6784         .css_online = mem_cgroup_css_online,
6785         .css_offline = mem_cgroup_css_offline,
6786         .css_released = mem_cgroup_css_released,
6787         .css_free = mem_cgroup_css_free,
6788         .css_reset = mem_cgroup_css_reset,
6789         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6790         .can_attach = mem_cgroup_can_attach,
6791         .attach = mem_cgroup_attach,
6792         .cancel_attach = mem_cgroup_cancel_attach,
6793         .post_attach = mem_cgroup_move_task,
6794         .dfl_cftypes = memory_files,
6795         .legacy_cftypes = mem_cgroup_legacy_files,
6796         .early_init = 0,
6797 };
6798
6799 /*
6800  * This function calculates an individual cgroup's effective
6801  * protection which is derived from its own memory.min/low, its
6802  * parent's and siblings' settings, as well as the actual memory
6803  * distribution in the tree.
6804  *
6805  * The following rules apply to the effective protection values:
6806  *
6807  * 1. At the first level of reclaim, effective protection is equal to
6808  *    the declared protection in memory.min and memory.low.
6809  *
6810  * 2. To enable safe delegation of the protection configuration, at
6811  *    subsequent levels the effective protection is capped to the
6812  *    parent's effective protection.
6813  *
6814  * 3. To make complex and dynamic subtrees easier to configure, the
6815  *    user is allowed to overcommit the declared protection at a given
6816  *    level. If that is the case, the parent's effective protection is
6817  *    distributed to the children in proportion to how much protection
6818  *    they have declared and how much of it they are utilizing.
6819  *
6820  *    This makes distribution proportional, but also work-conserving:
6821  *    if one cgroup claims much more protection than it uses memory,
6822  *    the unused remainder is available to its siblings.
6823  *
6824  * 4. Conversely, when the declared protection is undercommitted at a
6825  *    given level, the distribution of the larger parental protection
6826  *    budget is NOT proportional. A cgroup's protection from a sibling
6827  *    is capped to its own memory.min/low setting.
6828  *
6829  * 5. However, to allow protecting recursive subtrees from each other
6830  *    without having to declare each individual cgroup's fixed share
6831  *    of the ancestor's claim to protection, any unutilized -
6832  *    "floating" - protection from up the tree is distributed in
6833  *    proportion to each cgroup's *usage*. This makes the protection
6834  *    neutral wrt sibling cgroups and lets them compete freely over
6835  *    the shared parental protection budget, but it protects the
6836  *    subtree as a whole from neighboring subtrees.
6837  *
6838  * Note that 4. and 5. are not in conflict: 4. is about protecting
6839  * against immediate siblings whereas 5. is about protecting against
6840  * neighboring subtrees.
6841  */
6842 static unsigned long effective_protection(unsigned long usage,
6843                                           unsigned long parent_usage,
6844                                           unsigned long setting,
6845                                           unsigned long parent_effective,
6846                                           unsigned long siblings_protected)
6847 {
6848         unsigned long protected;
6849         unsigned long ep;
6850
6851         protected = min(usage, setting);
6852         /*
6853          * If all cgroups at this level combined claim and use more
6854          * protection than what the parent affords them, distribute
6855          * shares in proportion to utilization.
6856          *
6857          * We are using actual utilization rather than the statically
6858          * claimed protection in order to be work-conserving: claimed
6859          * but unused protection is available to siblings that would
6860          * otherwise get a smaller chunk than what they claimed.
6861          */
6862         if (siblings_protected > parent_effective)
6863                 return protected * parent_effective / siblings_protected;
6864
6865         /*
6866          * Ok, utilized protection of all children is within what the
6867          * parent affords them, so we know whatever this child claims
6868          * and utilizes is effectively protected.
6869          *
6870          * If there is unprotected usage beyond this value, reclaim
6871          * will apply pressure in proportion to that amount.
6872          *
6873          * If there is unutilized protection, the cgroup will be fully
6874          * shielded from reclaim, but we do return a smaller value for
6875          * protection than what the group could enjoy in theory. This
6876          * is okay. With the overcommit distribution above, effective
6877          * protection is always dependent on how memory is actually
6878          * consumed among the siblings anyway.
6879          */
6880         ep = protected;
6881
6882         /*
6883          * If the children aren't claiming (all of) the protection
6884          * afforded to them by the parent, distribute the remainder in
6885          * proportion to the (unprotected) memory of each cgroup. That
6886          * way, cgroups that aren't explicitly prioritized wrt each
6887          * other compete freely over the allowance, but they are
6888          * collectively protected from neighboring trees.
6889          *
6890          * We're using unprotected memory for the weight so that if
6891          * some cgroups DO claim explicit protection, we don't protect
6892          * the same bytes twice.
6893          *
6894          * Check both usage and parent_usage against the respective
6895          * protected values. One should imply the other, but they
6896          * aren't read atomically - make sure the division is sane.
6897          */
6898         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6899                 return ep;
6900         if (parent_effective > siblings_protected &&
6901             parent_usage > siblings_protected &&
6902             usage > protected) {
6903                 unsigned long unclaimed;
6904
6905                 unclaimed = parent_effective - siblings_protected;
6906                 unclaimed *= usage - protected;
6907                 unclaimed /= parent_usage - siblings_protected;
6908
6909                 ep += unclaimed;
6910         }
6911
6912         return ep;
6913 }
6914
6915 /**
6916  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6917  * @root: the top ancestor of the sub-tree being checked
6918  * @memcg: the memory cgroup to check
6919  *
6920  * WARNING: This function is not stateless! It can only be used as part
6921  *          of a top-down tree iteration, not for isolated queries.
6922  */
6923 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6924                                      struct mem_cgroup *memcg)
6925 {
6926         unsigned long usage, parent_usage;
6927         struct mem_cgroup *parent;
6928
6929         if (mem_cgroup_disabled())
6930                 return;
6931
6932         if (!root)
6933                 root = root_mem_cgroup;
6934
6935         /*
6936          * Effective values of the reclaim targets are ignored so they
6937          * can be stale. Have a look at mem_cgroup_protection for more
6938          * details.
6939          * TODO: calculation should be more robust so that we do not need
6940          * that special casing.
6941          */
6942         if (memcg == root)
6943                 return;
6944
6945         usage = page_counter_read(&memcg->memory);
6946         if (!usage)
6947                 return;
6948
6949         parent = parent_mem_cgroup(memcg);
6950
6951         if (parent == root) {
6952                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6953                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6954                 return;
6955         }
6956
6957         parent_usage = page_counter_read(&parent->memory);
6958
6959         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6960                         READ_ONCE(memcg->memory.min),
6961                         READ_ONCE(parent->memory.emin),
6962                         atomic_long_read(&parent->memory.children_min_usage)));
6963
6964         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6965                         READ_ONCE(memcg->memory.low),
6966                         READ_ONCE(parent->memory.elow),
6967                         atomic_long_read(&parent->memory.children_low_usage)));
6968 }
6969
6970 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6971                         gfp_t gfp)
6972 {
6973         long nr_pages = folio_nr_pages(folio);
6974         int ret;
6975
6976         ret = try_charge(memcg, gfp, nr_pages);
6977         if (ret)
6978                 goto out;
6979
6980         css_get(&memcg->css);
6981         commit_charge(folio, memcg);
6982
6983         local_irq_disable();
6984         mem_cgroup_charge_statistics(memcg, nr_pages);
6985         memcg_check_events(memcg, folio_nid(folio));
6986         local_irq_enable();
6987 out:
6988         return ret;
6989 }
6990
6991 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6992 {
6993         struct mem_cgroup *memcg;
6994         int ret;
6995
6996         memcg = get_mem_cgroup_from_mm(mm);
6997         ret = charge_memcg(folio, memcg, gfp);
6998         css_put(&memcg->css);
6999
7000         return ret;
7001 }
7002
7003 /**
7004  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7005  * @folio: folio to charge.
7006  * @mm: mm context of the victim
7007  * @gfp: reclaim mode
7008  * @entry: swap entry for which the folio is allocated
7009  *
7010  * This function charges a folio allocated for swapin. Please call this before
7011  * adding the folio to the swapcache.
7012  *
7013  * Returns 0 on success. Otherwise, an error code is returned.
7014  */
7015 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7016                                   gfp_t gfp, swp_entry_t entry)
7017 {
7018         struct mem_cgroup *memcg;
7019         unsigned short id;
7020         int ret;
7021
7022         if (mem_cgroup_disabled())
7023                 return 0;
7024
7025         id = lookup_swap_cgroup_id(entry);
7026         rcu_read_lock();
7027         memcg = mem_cgroup_from_id(id);
7028         if (!memcg || !css_tryget_online(&memcg->css))
7029                 memcg = get_mem_cgroup_from_mm(mm);
7030         rcu_read_unlock();
7031
7032         ret = charge_memcg(folio, memcg, gfp);
7033
7034         css_put(&memcg->css);
7035         return ret;
7036 }
7037
7038 /*
7039  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7040  * @entry: swap entry for which the page is charged
7041  *
7042  * Call this function after successfully adding the charged page to swapcache.
7043  *
7044  * Note: This function assumes the page for which swap slot is being uncharged
7045  * is order 0 page.
7046  */
7047 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7048 {
7049         /*
7050          * Cgroup1's unified memory+swap counter has been charged with the
7051          * new swapcache page, finish the transfer by uncharging the swap
7052          * slot. The swap slot would also get uncharged when it dies, but
7053          * it can stick around indefinitely and we'd count the page twice
7054          * the entire time.
7055          *
7056          * Cgroup2 has separate resource counters for memory and swap,
7057          * so this is a non-issue here. Memory and swap charge lifetimes
7058          * correspond 1:1 to page and swap slot lifetimes: we charge the
7059          * page to memory here, and uncharge swap when the slot is freed.
7060          */
7061         if (!mem_cgroup_disabled() && do_memsw_account()) {
7062                 /*
7063                  * The swap entry might not get freed for a long time,
7064                  * let's not wait for it.  The page already received a
7065                  * memory+swap charge, drop the swap entry duplicate.
7066                  */
7067                 mem_cgroup_uncharge_swap(entry, 1);
7068         }
7069 }
7070
7071 struct uncharge_gather {
7072         struct mem_cgroup *memcg;
7073         unsigned long nr_memory;
7074         unsigned long pgpgout;
7075         unsigned long nr_kmem;
7076         int nid;
7077 };
7078
7079 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7080 {
7081         memset(ug, 0, sizeof(*ug));
7082 }
7083
7084 static void uncharge_batch(const struct uncharge_gather *ug)
7085 {
7086         unsigned long flags;
7087
7088         if (ug->nr_memory) {
7089                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7090                 if (do_memsw_account())
7091                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7092                 if (ug->nr_kmem)
7093                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7094                 memcg_oom_recover(ug->memcg);
7095         }
7096
7097         local_irq_save(flags);
7098         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7099         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7100         memcg_check_events(ug->memcg, ug->nid);
7101         local_irq_restore(flags);
7102
7103         /* drop reference from uncharge_folio */
7104         css_put(&ug->memcg->css);
7105 }
7106
7107 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7108 {
7109         long nr_pages;
7110         struct mem_cgroup *memcg;
7111         struct obj_cgroup *objcg;
7112
7113         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7114
7115         /*
7116          * Nobody should be changing or seriously looking at
7117          * folio memcg or objcg at this point, we have fully
7118          * exclusive access to the folio.
7119          */
7120         if (folio_memcg_kmem(folio)) {
7121                 objcg = __folio_objcg(folio);
7122                 /*
7123                  * This get matches the put at the end of the function and
7124                  * kmem pages do not hold memcg references anymore.
7125                  */
7126                 memcg = get_mem_cgroup_from_objcg(objcg);
7127         } else {
7128                 memcg = __folio_memcg(folio);
7129         }
7130
7131         if (!memcg)
7132                 return;
7133
7134         if (ug->memcg != memcg) {
7135                 if (ug->memcg) {
7136                         uncharge_batch(ug);
7137                         uncharge_gather_clear(ug);
7138                 }
7139                 ug->memcg = memcg;
7140                 ug->nid = folio_nid(folio);
7141
7142                 /* pairs with css_put in uncharge_batch */
7143                 css_get(&memcg->css);
7144         }
7145
7146         nr_pages = folio_nr_pages(folio);
7147
7148         if (folio_memcg_kmem(folio)) {
7149                 ug->nr_memory += nr_pages;
7150                 ug->nr_kmem += nr_pages;
7151
7152                 folio->memcg_data = 0;
7153                 obj_cgroup_put(objcg);
7154         } else {
7155                 /* LRU pages aren't accounted at the root level */
7156                 if (!mem_cgroup_is_root(memcg))
7157                         ug->nr_memory += nr_pages;
7158                 ug->pgpgout++;
7159
7160                 folio->memcg_data = 0;
7161         }
7162
7163         css_put(&memcg->css);
7164 }
7165
7166 void __mem_cgroup_uncharge(struct folio *folio)
7167 {
7168         struct uncharge_gather ug;
7169
7170         /* Don't touch folio->lru of any random page, pre-check: */
7171         if (!folio_memcg(folio))
7172                 return;
7173
7174         uncharge_gather_clear(&ug);
7175         uncharge_folio(folio, &ug);
7176         uncharge_batch(&ug);
7177 }
7178
7179 /**
7180  * __mem_cgroup_uncharge_list - uncharge a list of page
7181  * @page_list: list of pages to uncharge
7182  *
7183  * Uncharge a list of pages previously charged with
7184  * __mem_cgroup_charge().
7185  */
7186 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7187 {
7188         struct uncharge_gather ug;
7189         struct folio *folio;
7190
7191         uncharge_gather_clear(&ug);
7192         list_for_each_entry(folio, page_list, lru)
7193                 uncharge_folio(folio, &ug);
7194         if (ug.memcg)
7195                 uncharge_batch(&ug);
7196 }
7197
7198 /**
7199  * mem_cgroup_migrate - Charge a folio's replacement.
7200  * @old: Currently circulating folio.
7201  * @new: Replacement folio.
7202  *
7203  * Charge @new as a replacement folio for @old. @old will
7204  * be uncharged upon free.
7205  *
7206  * Both folios must be locked, @new->mapping must be set up.
7207  */
7208 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7209 {
7210         struct mem_cgroup *memcg;
7211         long nr_pages = folio_nr_pages(new);
7212         unsigned long flags;
7213
7214         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7215         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7216         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7217         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7218
7219         if (mem_cgroup_disabled())
7220                 return;
7221
7222         /* Page cache replacement: new folio already charged? */
7223         if (folio_memcg(new))
7224                 return;
7225
7226         memcg = folio_memcg(old);
7227         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7228         if (!memcg)
7229                 return;
7230
7231         /* Force-charge the new page. The old one will be freed soon */
7232         if (!mem_cgroup_is_root(memcg)) {
7233                 page_counter_charge(&memcg->memory, nr_pages);
7234                 if (do_memsw_account())
7235                         page_counter_charge(&memcg->memsw, nr_pages);
7236         }
7237
7238         css_get(&memcg->css);
7239         commit_charge(new, memcg);
7240
7241         local_irq_save(flags);
7242         mem_cgroup_charge_statistics(memcg, nr_pages);
7243         memcg_check_events(memcg, folio_nid(new));
7244         local_irq_restore(flags);
7245 }
7246
7247 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7248 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7249
7250 void mem_cgroup_sk_alloc(struct sock *sk)
7251 {
7252         struct mem_cgroup *memcg;
7253
7254         if (!mem_cgroup_sockets_enabled)
7255                 return;
7256
7257         /* Do not associate the sock with unrelated interrupted task's memcg. */
7258         if (!in_task())
7259                 return;
7260
7261         rcu_read_lock();
7262         memcg = mem_cgroup_from_task(current);
7263         if (mem_cgroup_is_root(memcg))
7264                 goto out;
7265         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7266                 goto out;
7267         if (css_tryget(&memcg->css))
7268                 sk->sk_memcg = memcg;
7269 out:
7270         rcu_read_unlock();
7271 }
7272
7273 void mem_cgroup_sk_free(struct sock *sk)
7274 {
7275         if (sk->sk_memcg)
7276                 css_put(&sk->sk_memcg->css);
7277 }
7278
7279 /**
7280  * mem_cgroup_charge_skmem - charge socket memory
7281  * @memcg: memcg to charge
7282  * @nr_pages: number of pages to charge
7283  * @gfp_mask: reclaim mode
7284  *
7285  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7286  * @memcg's configured limit, %false if it doesn't.
7287  */
7288 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7289                              gfp_t gfp_mask)
7290 {
7291         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7292                 struct page_counter *fail;
7293
7294                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7295                         memcg->tcpmem_pressure = 0;
7296                         return true;
7297                 }
7298                 memcg->tcpmem_pressure = 1;
7299                 if (gfp_mask & __GFP_NOFAIL) {
7300                         page_counter_charge(&memcg->tcpmem, nr_pages);
7301                         return true;
7302                 }
7303                 return false;
7304         }
7305
7306         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7307                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7308                 return true;
7309         }
7310
7311         return false;
7312 }
7313
7314 /**
7315  * mem_cgroup_uncharge_skmem - uncharge socket memory
7316  * @memcg: memcg to uncharge
7317  * @nr_pages: number of pages to uncharge
7318  */
7319 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7320 {
7321         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7322                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7323                 return;
7324         }
7325
7326         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7327
7328         refill_stock(memcg, nr_pages);
7329 }
7330
7331 static int __init cgroup_memory(char *s)
7332 {
7333         char *token;
7334
7335         while ((token = strsep(&s, ",")) != NULL) {
7336                 if (!*token)
7337                         continue;
7338                 if (!strcmp(token, "nosocket"))
7339                         cgroup_memory_nosocket = true;
7340                 if (!strcmp(token, "nokmem"))
7341                         cgroup_memory_nokmem = true;
7342                 if (!strcmp(token, "nobpf"))
7343                         cgroup_memory_nobpf = true;
7344         }
7345         return 1;
7346 }
7347 __setup("cgroup.memory=", cgroup_memory);
7348
7349 /*
7350  * subsys_initcall() for memory controller.
7351  *
7352  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7353  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7354  * basically everything that doesn't depend on a specific mem_cgroup structure
7355  * should be initialized from here.
7356  */
7357 static int __init mem_cgroup_init(void)
7358 {
7359         int cpu, node;
7360
7361         /*
7362          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7363          * used for per-memcg-per-cpu caching of per-node statistics. In order
7364          * to work fine, we should make sure that the overfill threshold can't
7365          * exceed S32_MAX / PAGE_SIZE.
7366          */
7367         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7368
7369         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7370                                   memcg_hotplug_cpu_dead);
7371
7372         for_each_possible_cpu(cpu)
7373                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7374                           drain_local_stock);
7375
7376         for_each_node(node) {
7377                 struct mem_cgroup_tree_per_node *rtpn;
7378
7379                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7380
7381                 rtpn->rb_root = RB_ROOT;
7382                 rtpn->rb_rightmost = NULL;
7383                 spin_lock_init(&rtpn->lock);
7384                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7385         }
7386
7387         return 0;
7388 }
7389 subsys_initcall(mem_cgroup_init);
7390
7391 #ifdef CONFIG_SWAP
7392 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7393 {
7394         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7395                 /*
7396                  * The root cgroup cannot be destroyed, so it's refcount must
7397                  * always be >= 1.
7398                  */
7399                 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7400                         VM_BUG_ON(1);
7401                         break;
7402                 }
7403                 memcg = parent_mem_cgroup(memcg);
7404                 if (!memcg)
7405                         memcg = root_mem_cgroup;
7406         }
7407         return memcg;
7408 }
7409
7410 /**
7411  * mem_cgroup_swapout - transfer a memsw charge to swap
7412  * @folio: folio whose memsw charge to transfer
7413  * @entry: swap entry to move the charge to
7414  *
7415  * Transfer the memsw charge of @folio to @entry.
7416  */
7417 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7418 {
7419         struct mem_cgroup *memcg, *swap_memcg;
7420         unsigned int nr_entries;
7421         unsigned short oldid;
7422
7423         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7424         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7425
7426         if (mem_cgroup_disabled())
7427                 return;
7428
7429         if (!do_memsw_account())
7430                 return;
7431
7432         memcg = folio_memcg(folio);
7433
7434         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7435         if (!memcg)
7436                 return;
7437
7438         /*
7439          * In case the memcg owning these pages has been offlined and doesn't
7440          * have an ID allocated to it anymore, charge the closest online
7441          * ancestor for the swap instead and transfer the memory+swap charge.
7442          */
7443         swap_memcg = mem_cgroup_id_get_online(memcg);
7444         nr_entries = folio_nr_pages(folio);
7445         /* Get references for the tail pages, too */
7446         if (nr_entries > 1)
7447                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7448         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7449                                    nr_entries);
7450         VM_BUG_ON_FOLIO(oldid, folio);
7451         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7452
7453         folio->memcg_data = 0;
7454
7455         if (!mem_cgroup_is_root(memcg))
7456                 page_counter_uncharge(&memcg->memory, nr_entries);
7457
7458         if (memcg != swap_memcg) {
7459                 if (!mem_cgroup_is_root(swap_memcg))
7460                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7461                 page_counter_uncharge(&memcg->memsw, nr_entries);
7462         }
7463
7464         /*
7465          * Interrupts should be disabled here because the caller holds the
7466          * i_pages lock which is taken with interrupts-off. It is
7467          * important here to have the interrupts disabled because it is the
7468          * only synchronisation we have for updating the per-CPU variables.
7469          */
7470         memcg_stats_lock();
7471         mem_cgroup_charge_statistics(memcg, -nr_entries);
7472         memcg_stats_unlock();
7473         memcg_check_events(memcg, folio_nid(folio));
7474
7475         css_put(&memcg->css);
7476 }
7477
7478 /**
7479  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7480  * @folio: folio being added to swap
7481  * @entry: swap entry to charge
7482  *
7483  * Try to charge @folio's memcg for the swap space at @entry.
7484  *
7485  * Returns 0 on success, -ENOMEM on failure.
7486  */
7487 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7488 {
7489         unsigned int nr_pages = folio_nr_pages(folio);
7490         struct page_counter *counter;
7491         struct mem_cgroup *memcg;
7492         unsigned short oldid;
7493
7494         if (do_memsw_account())
7495                 return 0;
7496
7497         memcg = folio_memcg(folio);
7498
7499         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7500         if (!memcg)
7501                 return 0;
7502
7503         if (!entry.val) {
7504                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7505                 return 0;
7506         }
7507
7508         memcg = mem_cgroup_id_get_online(memcg);
7509
7510         if (!mem_cgroup_is_root(memcg) &&
7511             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7512                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7513                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7514                 mem_cgroup_id_put(memcg);
7515                 return -ENOMEM;
7516         }
7517
7518         /* Get references for the tail pages, too */
7519         if (nr_pages > 1)
7520                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7521         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7522         VM_BUG_ON_FOLIO(oldid, folio);
7523         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7524
7525         return 0;
7526 }
7527
7528 /**
7529  * __mem_cgroup_uncharge_swap - uncharge swap space
7530  * @entry: swap entry to uncharge
7531  * @nr_pages: the amount of swap space to uncharge
7532  */
7533 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7534 {
7535         struct mem_cgroup *memcg;
7536         unsigned short id;
7537
7538         if (mem_cgroup_disabled())
7539                 return;
7540
7541         id = swap_cgroup_record(entry, 0, nr_pages);
7542         rcu_read_lock();
7543         memcg = mem_cgroup_from_id(id);
7544         if (memcg) {
7545                 if (!mem_cgroup_is_root(memcg)) {
7546                         if (do_memsw_account())
7547                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7548                         else
7549                                 page_counter_uncharge(&memcg->swap, nr_pages);
7550                 }
7551                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7552                 mem_cgroup_id_put_many(memcg, nr_pages);
7553         }
7554         rcu_read_unlock();
7555 }
7556
7557 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7558 {
7559         long nr_swap_pages = get_nr_swap_pages();
7560
7561         if (mem_cgroup_disabled() || do_memsw_account())
7562                 return nr_swap_pages;
7563         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7564                 nr_swap_pages = min_t(long, nr_swap_pages,
7565                                       READ_ONCE(memcg->swap.max) -
7566                                       page_counter_read(&memcg->swap));
7567         return nr_swap_pages;
7568 }
7569
7570 bool mem_cgroup_swap_full(struct folio *folio)
7571 {
7572         struct mem_cgroup *memcg;
7573
7574         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7575
7576         if (vm_swap_full())
7577                 return true;
7578         if (do_memsw_account())
7579                 return false;
7580
7581         memcg = folio_memcg(folio);
7582         if (!memcg)
7583                 return false;
7584
7585         for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7586                 unsigned long usage = page_counter_read(&memcg->swap);
7587
7588                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7589                     usage * 2 >= READ_ONCE(memcg->swap.max))
7590                         return true;
7591         }
7592
7593         return false;
7594 }
7595
7596 static int __init setup_swap_account(char *s)
7597 {
7598         pr_warn_once("The swapaccount= commandline option is deprecated. "
7599                      "Please report your usecase to linux-mm@kvack.org if you "
7600                      "depend on this functionality.\n");
7601         return 1;
7602 }
7603 __setup("swapaccount=", setup_swap_account);
7604
7605 static u64 swap_current_read(struct cgroup_subsys_state *css,
7606                              struct cftype *cft)
7607 {
7608         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7609
7610         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7611 }
7612
7613 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7614                           struct cftype *cft)
7615 {
7616         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7617
7618         return (u64)memcg->swap.watermark * PAGE_SIZE;
7619 }
7620
7621 static int swap_high_show(struct seq_file *m, void *v)
7622 {
7623         return seq_puts_memcg_tunable(m,
7624                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7625 }
7626
7627 static ssize_t swap_high_write(struct kernfs_open_file *of,
7628                                char *buf, size_t nbytes, loff_t off)
7629 {
7630         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7631         unsigned long high;
7632         int err;
7633
7634         buf = strstrip(buf);
7635         err = page_counter_memparse(buf, "max", &high);
7636         if (err)
7637                 return err;
7638
7639         page_counter_set_high(&memcg->swap, high);
7640
7641         return nbytes;
7642 }
7643
7644 static int swap_max_show(struct seq_file *m, void *v)
7645 {
7646         return seq_puts_memcg_tunable(m,
7647                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7648 }
7649
7650 static ssize_t swap_max_write(struct kernfs_open_file *of,
7651                               char *buf, size_t nbytes, loff_t off)
7652 {
7653         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7654         unsigned long max;
7655         int err;
7656
7657         buf = strstrip(buf);
7658         err = page_counter_memparse(buf, "max", &max);
7659         if (err)
7660                 return err;
7661
7662         xchg(&memcg->swap.max, max);
7663
7664         return nbytes;
7665 }
7666
7667 static int swap_events_show(struct seq_file *m, void *v)
7668 {
7669         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7670
7671         seq_printf(m, "high %lu\n",
7672                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7673         seq_printf(m, "max %lu\n",
7674                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7675         seq_printf(m, "fail %lu\n",
7676                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7677
7678         return 0;
7679 }
7680
7681 static struct cftype swap_files[] = {
7682         {
7683                 .name = "swap.current",
7684                 .flags = CFTYPE_NOT_ON_ROOT,
7685                 .read_u64 = swap_current_read,
7686         },
7687         {
7688                 .name = "swap.high",
7689                 .flags = CFTYPE_NOT_ON_ROOT,
7690                 .seq_show = swap_high_show,
7691                 .write = swap_high_write,
7692         },
7693         {
7694                 .name = "swap.max",
7695                 .flags = CFTYPE_NOT_ON_ROOT,
7696                 .seq_show = swap_max_show,
7697                 .write = swap_max_write,
7698         },
7699         {
7700                 .name = "swap.peak",
7701                 .flags = CFTYPE_NOT_ON_ROOT,
7702                 .read_u64 = swap_peak_read,
7703         },
7704         {
7705                 .name = "swap.events",
7706                 .flags = CFTYPE_NOT_ON_ROOT,
7707                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7708                 .seq_show = swap_events_show,
7709         },
7710         { }     /* terminate */
7711 };
7712
7713 static struct cftype memsw_files[] = {
7714         {
7715                 .name = "memsw.usage_in_bytes",
7716                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7717                 .read_u64 = mem_cgroup_read_u64,
7718         },
7719         {
7720                 .name = "memsw.max_usage_in_bytes",
7721                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7722                 .write = mem_cgroup_reset,
7723                 .read_u64 = mem_cgroup_read_u64,
7724         },
7725         {
7726                 .name = "memsw.limit_in_bytes",
7727                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7728                 .write = mem_cgroup_write,
7729                 .read_u64 = mem_cgroup_read_u64,
7730         },
7731         {
7732                 .name = "memsw.failcnt",
7733                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7734                 .write = mem_cgroup_reset,
7735                 .read_u64 = mem_cgroup_read_u64,
7736         },
7737         { },    /* terminate */
7738 };
7739
7740 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7741 /**
7742  * obj_cgroup_may_zswap - check if this cgroup can zswap
7743  * @objcg: the object cgroup
7744  *
7745  * Check if the hierarchical zswap limit has been reached.
7746  *
7747  * This doesn't check for specific headroom, and it is not atomic
7748  * either. But with zswap, the size of the allocation is only known
7749  * once compression has occured, and this optimistic pre-check avoids
7750  * spending cycles on compression when there is already no room left
7751  * or zswap is disabled altogether somewhere in the hierarchy.
7752  */
7753 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7754 {
7755         struct mem_cgroup *memcg, *original_memcg;
7756         bool ret = true;
7757
7758         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7759                 return true;
7760
7761         original_memcg = get_mem_cgroup_from_objcg(objcg);
7762         for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7763              memcg = parent_mem_cgroup(memcg)) {
7764                 unsigned long max = READ_ONCE(memcg->zswap_max);
7765                 unsigned long pages;
7766
7767                 if (max == PAGE_COUNTER_MAX)
7768                         continue;
7769                 if (max == 0) {
7770                         ret = false;
7771                         break;
7772                 }
7773
7774                 cgroup_rstat_flush(memcg->css.cgroup);
7775                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7776                 if (pages < max)
7777                         continue;
7778                 ret = false;
7779                 break;
7780         }
7781         mem_cgroup_put(original_memcg);
7782         return ret;
7783 }
7784
7785 /**
7786  * obj_cgroup_charge_zswap - charge compression backend memory
7787  * @objcg: the object cgroup
7788  * @size: size of compressed object
7789  *
7790  * This forces the charge after obj_cgroup_may_swap() allowed
7791  * compression and storage in zwap for this cgroup to go ahead.
7792  */
7793 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7794 {
7795         struct mem_cgroup *memcg;
7796
7797         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7798                 return;
7799
7800         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7801
7802         /* PF_MEMALLOC context, charging must succeed */
7803         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7804                 VM_WARN_ON_ONCE(1);
7805
7806         rcu_read_lock();
7807         memcg = obj_cgroup_memcg(objcg);
7808         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7809         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7810         rcu_read_unlock();
7811 }
7812
7813 /**
7814  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7815  * @objcg: the object cgroup
7816  * @size: size of compressed object
7817  *
7818  * Uncharges zswap memory on page in.
7819  */
7820 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7821 {
7822         struct mem_cgroup *memcg;
7823
7824         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7825                 return;
7826
7827         obj_cgroup_uncharge(objcg, size);
7828
7829         rcu_read_lock();
7830         memcg = obj_cgroup_memcg(objcg);
7831         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7832         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7833         rcu_read_unlock();
7834 }
7835
7836 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7837                               struct cftype *cft)
7838 {
7839         cgroup_rstat_flush(css->cgroup);
7840         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7841 }
7842
7843 static int zswap_max_show(struct seq_file *m, void *v)
7844 {
7845         return seq_puts_memcg_tunable(m,
7846                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7847 }
7848
7849 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7850                                char *buf, size_t nbytes, loff_t off)
7851 {
7852         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7853         unsigned long max;
7854         int err;
7855
7856         buf = strstrip(buf);
7857         err = page_counter_memparse(buf, "max", &max);
7858         if (err)
7859                 return err;
7860
7861         xchg(&memcg->zswap_max, max);
7862
7863         return nbytes;
7864 }
7865
7866 static struct cftype zswap_files[] = {
7867         {
7868                 .name = "zswap.current",
7869                 .flags = CFTYPE_NOT_ON_ROOT,
7870                 .read_u64 = zswap_current_read,
7871         },
7872         {
7873                 .name = "zswap.max",
7874                 .flags = CFTYPE_NOT_ON_ROOT,
7875                 .seq_show = zswap_max_show,
7876                 .write = zswap_max_write,
7877         },
7878         { }     /* terminate */
7879 };
7880 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7881
7882 static int __init mem_cgroup_swap_init(void)
7883 {
7884         if (mem_cgroup_disabled())
7885                 return 0;
7886
7887         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7888         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7889 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7890         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7891 #endif
7892         return 0;
7893 }
7894 subsys_initcall(mem_cgroup_swap_init);
7895
7896 #endif /* CONFIG_SWAP */