Merge tag 'char-misc-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES      5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account         0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102         "cache",
103         "rss",
104         "rss_huge",
105         "mapped_file",
106         "dirty",
107         "writeback",
108         "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112         "pgpgin",
113         "pgpgout",
114         "pgfault",
115         "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119         "inactive_anon",
120         "active_anon",
121         "inactive_file",
122         "active_file",
123         "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET  1024
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_zone {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152         struct list_head list;
153         struct eventfd_ctx *eventfd;
154 };
155
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160         /*
161          * memcg which the event belongs to.
162          */
163         struct mem_cgroup *memcg;
164         /*
165          * eventfd to signal userspace about the event.
166          */
167         struct eventfd_ctx *eventfd;
168         /*
169          * Each of these stored in a list by the cgroup.
170          */
171         struct list_head list;
172         /*
173          * register_event() callback will be used to add new userspace
174          * waiter for changes related to this event.  Use eventfd_signal()
175          * on eventfd to send notification to userspace.
176          */
177         int (*register_event)(struct mem_cgroup *memcg,
178                               struct eventfd_ctx *eventfd, const char *args);
179         /*
180          * unregister_event() callback will be called when userspace closes
181          * the eventfd or on cgroup removing.  This callback must be set,
182          * if you want provide notification functionality.
183          */
184         void (*unregister_event)(struct mem_cgroup *memcg,
185                                  struct eventfd_ctx *eventfd);
186         /*
187          * All fields below needed to unregister event when
188          * userspace closes eventfd.
189          */
190         poll_table pt;
191         wait_queue_head_t *wqh;
192         wait_queue_t wait;
193         struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON       0x1U
204 #define MOVE_FILE       0x2U
205 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209         spinlock_t        lock; /* for from, to */
210         struct mm_struct  *mm;
211         struct mem_cgroup *from;
212         struct mem_cgroup *to;
213         unsigned long flags;
214         unsigned long precharge;
215         unsigned long moved_charge;
216         unsigned long moved_swap;
217         struct task_struct *moving_task;        /* a task moving charges */
218         wait_queue_head_t waitq;                /* a waitq for other context */
219 } mc = {
220         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226  * limit reclaim to prevent infinite loops, if they ever occur.
227  */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233         MEM_CGROUP_CHARGE_TYPE_ANON,
234         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
236         NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241         _MEM,
242         _MEMSWAP,
243         _OOM_TYPE,
244         _KMEM,
245         _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL             (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257         if (!memcg)
258                 memcg = root_mem_cgroup;
259         return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269         return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275  * The main reason for not using cgroup id for this:
276  *  this works better in sparse environments, where we have a lot of memcgs,
277  *  but only a few kmem-limited. Or also, if we have, for instance, 200
278  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
279  *  200 entry array for that.
280  *
281  * The current size of the caches array is stored in memcg_nr_cache_ids. It
282  * will double each time we have to increase it.
283  */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292         down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297         up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301  * MIN_SIZE is different than 1, because we would like to avoid going through
302  * the alloc/free process all the time. In a small machine, 4 kmem-limited
303  * cgroups is a reasonable guess. In the future, it could be a parameter or
304  * tunable, but that is strictly not necessary.
305  *
306  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307  * this constant directly from cgroup, but it is understandable that this is
308  * better kept as an internal representation in cgroup.c. In any case, the
309  * cgrp_id space is not getting any smaller, and we don't have to necessarily
310  * increase ours as well if it increases.
311  */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316  * A lot of the calls to the cache allocation functions are expected to be
317  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318  * conditional to this static branch, we'll have to allow modules that does
319  * kmem_cache_alloc and the such to see this symbol as well
320  */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329         int nid = zone_to_nid(zone);
330         int zid = zone_idx(zone);
331
332         return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336  * mem_cgroup_css_from_page - css of the memcg associated with a page
337  * @page: page of interest
338  *
339  * If memcg is bound to the default hierarchy, css of the memcg associated
340  * with @page is returned.  The returned css remains associated with @page
341  * until it is released.
342  *
343  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344  * is returned.
345  */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348         struct mem_cgroup *memcg;
349
350         memcg = page->mem_cgroup;
351
352         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353                 memcg = root_mem_cgroup;
354
355         return &memcg->css;
356 }
357
358 /**
359  * page_cgroup_ino - return inode number of the memcg a page is charged to
360  * @page: the page
361  *
362  * Look up the closest online ancestor of the memory cgroup @page is charged to
363  * and return its inode number or 0 if @page is not charged to any cgroup. It
364  * is safe to call this function without holding a reference to @page.
365  *
366  * Note, this function is inherently racy, because there is nothing to prevent
367  * the cgroup inode from getting torn down and potentially reallocated a moment
368  * after page_cgroup_ino() returns, so it only should be used by callers that
369  * do not care (such as procfs interfaces).
370  */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373         struct mem_cgroup *memcg;
374         unsigned long ino = 0;
375
376         rcu_read_lock();
377         memcg = READ_ONCE(page->mem_cgroup);
378         while (memcg && !(memcg->css.flags & CSS_ONLINE))
379                 memcg = parent_mem_cgroup(memcg);
380         if (memcg)
381                 ino = cgroup_ino(memcg->css.cgroup);
382         rcu_read_unlock();
383         return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389         int nid = page_to_nid(page);
390         int zid = page_zonenum(page);
391
392         return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404         int nid = page_to_nid(page);
405         int zid = page_zonenum(page);
406
407         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411                                          struct mem_cgroup_tree_per_zone *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_zone *mz_node;
417
418         if (mz->on_tree)
419                 return;
420
421         mz->usage_in_excess = new_usage_in_excess;
422         if (!mz->usage_in_excess)
423                 return;
424         while (*p) {
425                 parent = *p;
426                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427                                         tree_node);
428                 if (mz->usage_in_excess < mz_node->usage_in_excess)
429                         p = &(*p)->rb_left;
430                 /*
431                  * We can't avoid mem cgroups that are over their soft
432                  * limit by the same amount
433                  */
434                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435                         p = &(*p)->rb_right;
436         }
437         rb_link_node(&mz->tree_node, parent, p);
438         rb_insert_color(&mz->tree_node, &mctz->rb_root);
439         mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443                                          struct mem_cgroup_tree_per_zone *mctz)
444 {
445         if (!mz->on_tree)
446                 return;
447         rb_erase(&mz->tree_node, &mctz->rb_root);
448         mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452                                        struct mem_cgroup_tree_per_zone *mctz)
453 {
454         unsigned long flags;
455
456         spin_lock_irqsave(&mctz->lock, flags);
457         __mem_cgroup_remove_exceeded(mz, mctz);
458         spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463         unsigned long nr_pages = page_counter_read(&memcg->memory);
464         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465         unsigned long excess = 0;
466
467         if (nr_pages > soft_limit)
468                 excess = nr_pages - soft_limit;
469
470         return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475         unsigned long excess;
476         struct mem_cgroup_per_zone *mz;
477         struct mem_cgroup_tree_per_zone *mctz;
478
479         mctz = soft_limit_tree_from_page(page);
480         /*
481          * Necessary to update all ancestors when hierarchy is used.
482          * because their event counter is not touched.
483          */
484         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485                 mz = mem_cgroup_page_zoneinfo(memcg, page);
486                 excess = soft_limit_excess(memcg);
487                 /*
488                  * We have to update the tree if mz is on RB-tree or
489                  * mem is over its softlimit.
490                  */
491                 if (excess || mz->on_tree) {
492                         unsigned long flags;
493
494                         spin_lock_irqsave(&mctz->lock, flags);
495                         /* if on-tree, remove it */
496                         if (mz->on_tree)
497                                 __mem_cgroup_remove_exceeded(mz, mctz);
498                         /*
499                          * Insert again. mz->usage_in_excess will be updated.
500                          * If excess is 0, no tree ops.
501                          */
502                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
503                         spin_unlock_irqrestore(&mctz->lock, flags);
504                 }
505         }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510         struct mem_cgroup_tree_per_zone *mctz;
511         struct mem_cgroup_per_zone *mz;
512         int nid, zid;
513
514         for_each_node(nid) {
515                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517                         mctz = soft_limit_tree_node_zone(nid, zid);
518                         mem_cgroup_remove_exceeded(mz, mctz);
519                 }
520         }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526         struct rb_node *rightmost = NULL;
527         struct mem_cgroup_per_zone *mz;
528
529 retry:
530         mz = NULL;
531         rightmost = rb_last(&mctz->rb_root);
532         if (!rightmost)
533                 goto done;              /* Nothing to reclaim from */
534
535         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536         /*
537          * Remove the node now but someone else can add it back,
538          * we will to add it back at the end of reclaim to its correct
539          * position in the tree.
540          */
541         __mem_cgroup_remove_exceeded(mz, mctz);
542         if (!soft_limit_excess(mz->memcg) ||
543             !css_tryget_online(&mz->memcg->css))
544                 goto retry;
545 done:
546         return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552         struct mem_cgroup_per_zone *mz;
553
554         spin_lock_irq(&mctz->lock);
555         mz = __mem_cgroup_largest_soft_limit_node(mctz);
556         spin_unlock_irq(&mctz->lock);
557         return mz;
558 }
559
560 /*
561  * Return page count for single (non recursive) @memcg.
562  *
563  * Implementation Note: reading percpu statistics for memcg.
564  *
565  * Both of vmstat[] and percpu_counter has threshold and do periodic
566  * synchronization to implement "quick" read. There are trade-off between
567  * reading cost and precision of value. Then, we may have a chance to implement
568  * a periodic synchronization of counter in memcg's counter.
569  *
570  * But this _read() function is used for user interface now. The user accounts
571  * memory usage by memory cgroup and he _always_ requires exact value because
572  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573  * have to visit all online cpus and make sum. So, for now, unnecessary
574  * synchronization is not implemented. (just implemented for cpu hotplug)
575  *
576  * If there are kernel internal actions which can make use of some not-exact
577  * value, and reading all cpu value can be performance bottleneck in some
578  * common workload, threshold and synchronization as vmstat[] should be
579  * implemented.
580  */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584         long val = 0;
585         int cpu;
586
587         /* Per-cpu values can be negative, use a signed accumulator */
588         for_each_possible_cpu(cpu)
589                 val += per_cpu(memcg->stat->count[idx], cpu);
590         /*
591          * Summing races with updates, so val may be negative.  Avoid exposing
592          * transient negative values.
593          */
594         if (val < 0)
595                 val = 0;
596         return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600                                             enum mem_cgroup_events_index idx)
601 {
602         unsigned long val = 0;
603         int cpu;
604
605         for_each_possible_cpu(cpu)
606                 val += per_cpu(memcg->stat->events[idx], cpu);
607         return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611                                          struct page *page,
612                                          bool compound, int nr_pages)
613 {
614         /*
615          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616          * counted as CACHE even if it's on ANON LRU.
617          */
618         if (PageAnon(page))
619                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620                                 nr_pages);
621         else
622                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623                                 nr_pages);
624
625         if (compound) {
626                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628                                 nr_pages);
629         }
630
631         /* pagein of a big page is an event. So, ignore page size */
632         if (nr_pages > 0)
633                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634         else {
635                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636                 nr_pages = -nr_pages; /* for event */
637         }
638
639         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643                                            int nid, unsigned int lru_mask)
644 {
645         unsigned long nr = 0;
646         int zid;
647
648         VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651                 struct mem_cgroup_per_zone *mz;
652                 enum lru_list lru;
653
654                 for_each_lru(lru) {
655                         if (!(BIT(lru) & lru_mask))
656                                 continue;
657                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658                         nr += mz->lru_size[lru];
659                 }
660         }
661         return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665                         unsigned int lru_mask)
666 {
667         unsigned long nr = 0;
668         int nid;
669
670         for_each_node_state(nid, N_MEMORY)
671                 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672         return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676                                        enum mem_cgroup_events_target target)
677 {
678         unsigned long val, next;
679
680         val = __this_cpu_read(memcg->stat->nr_page_events);
681         next = __this_cpu_read(memcg->stat->targets[target]);
682         /* from time_after() in jiffies.h */
683         if ((long)next - (long)val < 0) {
684                 switch (target) {
685                 case MEM_CGROUP_TARGET_THRESH:
686                         next = val + THRESHOLDS_EVENTS_TARGET;
687                         break;
688                 case MEM_CGROUP_TARGET_SOFTLIMIT:
689                         next = val + SOFTLIMIT_EVENTS_TARGET;
690                         break;
691                 case MEM_CGROUP_TARGET_NUMAINFO:
692                         next = val + NUMAINFO_EVENTS_TARGET;
693                         break;
694                 default:
695                         break;
696                 }
697                 __this_cpu_write(memcg->stat->targets[target], next);
698                 return true;
699         }
700         return false;
701 }
702
703 /*
704  * Check events in order.
705  *
706  */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709         /* threshold event is triggered in finer grain than soft limit */
710         if (unlikely(mem_cgroup_event_ratelimit(memcg,
711                                                 MEM_CGROUP_TARGET_THRESH))) {
712                 bool do_softlimit;
713                 bool do_numainfo __maybe_unused;
714
715                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719                                                 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721                 mem_cgroup_threshold(memcg);
722                 if (unlikely(do_softlimit))
723                         mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725                 if (unlikely(do_numainfo))
726                         atomic_inc(&memcg->numainfo_events);
727 #endif
728         }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733         /*
734          * mm_update_next_owner() may clear mm->owner to NULL
735          * if it races with swapoff, page migration, etc.
736          * So this can be called with p == NULL.
737          */
738         if (unlikely(!p))
739                 return NULL;
740
741         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747         struct mem_cgroup *memcg = NULL;
748
749         rcu_read_lock();
750         do {
751                 /*
752                  * Page cache insertions can happen withou an
753                  * actual mm context, e.g. during disk probing
754                  * on boot, loopback IO, acct() writes etc.
755                  */
756                 if (unlikely(!mm))
757                         memcg = root_mem_cgroup;
758                 else {
759                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760                         if (unlikely(!memcg))
761                                 memcg = root_mem_cgroup;
762                 }
763         } while (!css_tryget_online(&memcg->css));
764         rcu_read_unlock();
765         return memcg;
766 }
767
768 /**
769  * mem_cgroup_iter - iterate over memory cgroup hierarchy
770  * @root: hierarchy root
771  * @prev: previously returned memcg, NULL on first invocation
772  * @reclaim: cookie for shared reclaim walks, NULL for full walks
773  *
774  * Returns references to children of the hierarchy below @root, or
775  * @root itself, or %NULL after a full round-trip.
776  *
777  * Caller must pass the return value in @prev on subsequent
778  * invocations for reference counting, or use mem_cgroup_iter_break()
779  * to cancel a hierarchy walk before the round-trip is complete.
780  *
781  * Reclaimers can specify a zone and a priority level in @reclaim to
782  * divide up the memcgs in the hierarchy among all concurrent
783  * reclaimers operating on the same zone and priority.
784  */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786                                    struct mem_cgroup *prev,
787                                    struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789         struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790         struct cgroup_subsys_state *css = NULL;
791         struct mem_cgroup *memcg = NULL;
792         struct mem_cgroup *pos = NULL;
793
794         if (mem_cgroup_disabled())
795                 return NULL;
796
797         if (!root)
798                 root = root_mem_cgroup;
799
800         if (prev && !reclaim)
801                 pos = prev;
802
803         if (!root->use_hierarchy && root != root_mem_cgroup) {
804                 if (prev)
805                         goto out;
806                 return root;
807         }
808
809         rcu_read_lock();
810
811         if (reclaim) {
812                 struct mem_cgroup_per_zone *mz;
813
814                 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815                 iter = &mz->iter[reclaim->priority];
816
817                 if (prev && reclaim->generation != iter->generation)
818                         goto out_unlock;
819
820                 while (1) {
821                         pos = READ_ONCE(iter->position);
822                         if (!pos || css_tryget(&pos->css))
823                                 break;
824                         /*
825                          * css reference reached zero, so iter->position will
826                          * be cleared by ->css_released. However, we should not
827                          * rely on this happening soon, because ->css_released
828                          * is called from a work queue, and by busy-waiting we
829                          * might block it. So we clear iter->position right
830                          * away.
831                          */
832                         (void)cmpxchg(&iter->position, pos, NULL);
833                 }
834         }
835
836         if (pos)
837                 css = &pos->css;
838
839         for (;;) {
840                 css = css_next_descendant_pre(css, &root->css);
841                 if (!css) {
842                         /*
843                          * Reclaimers share the hierarchy walk, and a
844                          * new one might jump in right at the end of
845                          * the hierarchy - make sure they see at least
846                          * one group and restart from the beginning.
847                          */
848                         if (!prev)
849                                 continue;
850                         break;
851                 }
852
853                 /*
854                  * Verify the css and acquire a reference.  The root
855                  * is provided by the caller, so we know it's alive
856                  * and kicking, and don't take an extra reference.
857                  */
858                 memcg = mem_cgroup_from_css(css);
859
860                 if (css == &root->css)
861                         break;
862
863                 if (css_tryget(css))
864                         break;
865
866                 memcg = NULL;
867         }
868
869         if (reclaim) {
870                 /*
871                  * The position could have already been updated by a competing
872                  * thread, so check that the value hasn't changed since we read
873                  * it to avoid reclaiming from the same cgroup twice.
874                  */
875                 (void)cmpxchg(&iter->position, pos, memcg);
876
877                 if (pos)
878                         css_put(&pos->css);
879
880                 if (!memcg)
881                         iter->generation++;
882                 else if (!prev)
883                         reclaim->generation = iter->generation;
884         }
885
886 out_unlock:
887         rcu_read_unlock();
888 out:
889         if (prev && prev != root)
890                 css_put(&prev->css);
891
892         return memcg;
893 }
894
895 /**
896  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897  * @root: hierarchy root
898  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899  */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901                            struct mem_cgroup *prev)
902 {
903         if (!root)
904                 root = root_mem_cgroup;
905         if (prev && prev != root)
906                 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911         struct mem_cgroup *memcg = dead_memcg;
912         struct mem_cgroup_reclaim_iter *iter;
913         struct mem_cgroup_per_zone *mz;
914         int nid, zid;
915         int i;
916
917         while ((memcg = parent_mem_cgroup(memcg))) {
918                 for_each_node(nid) {
919                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921                                 for (i = 0; i <= DEF_PRIORITY; i++) {
922                                         iter = &mz->iter[i];
923                                         cmpxchg(&iter->position,
924                                                 dead_memcg, NULL);
925                                 }
926                         }
927                 }
928         }
929 }
930
931 /*
932  * Iteration constructs for visiting all cgroups (under a tree).  If
933  * loops are exited prematurely (break), mem_cgroup_iter_break() must
934  * be used for reference counting.
935  */
936 #define for_each_mem_cgroup_tree(iter, root)            \
937         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
938              iter != NULL;                              \
939              iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter)                       \
942         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
943              iter != NULL;                              \
944              iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948  * @zone: zone of the wanted lruvec
949  * @memcg: memcg of the wanted lruvec
950  *
951  * Returns the lru list vector holding pages for the given @zone and
952  * @mem.  This can be the global zone lruvec, if the memory controller
953  * is disabled.
954  */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956                                       struct mem_cgroup *memcg)
957 {
958         struct mem_cgroup_per_zone *mz;
959         struct lruvec *lruvec;
960
961         if (mem_cgroup_disabled()) {
962                 lruvec = &zone->lruvec;
963                 goto out;
964         }
965
966         mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967         lruvec = &mz->lruvec;
968 out:
969         /*
970          * Since a node can be onlined after the mem_cgroup was created,
971          * we have to be prepared to initialize lruvec->zone here;
972          * and if offlined then reonlined, we need to reinitialize it.
973          */
974         if (unlikely(lruvec->zone != zone))
975                 lruvec->zone = zone;
976         return lruvec;
977 }
978
979 /**
980  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981  * @page: the page
982  * @zone: zone of the page
983  *
984  * This function is only safe when following the LRU page isolation
985  * and putback protocol: the LRU lock must be held, and the page must
986  * either be PageLRU() or the caller must have isolated/allocated it.
987  */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990         struct mem_cgroup_per_zone *mz;
991         struct mem_cgroup *memcg;
992         struct lruvec *lruvec;
993
994         if (mem_cgroup_disabled()) {
995                 lruvec = &zone->lruvec;
996                 goto out;
997         }
998
999         memcg = page->mem_cgroup;
1000         /*
1001          * Swapcache readahead pages are added to the LRU - and
1002          * possibly migrated - before they are charged.
1003          */
1004         if (!memcg)
1005                 memcg = root_mem_cgroup;
1006
1007         mz = mem_cgroup_page_zoneinfo(memcg, page);
1008         lruvec = &mz->lruvec;
1009 out:
1010         /*
1011          * Since a node can be onlined after the mem_cgroup was created,
1012          * we have to be prepared to initialize lruvec->zone here;
1013          * and if offlined then reonlined, we need to reinitialize it.
1014          */
1015         if (unlikely(lruvec->zone != zone))
1016                 lruvec->zone = zone;
1017         return lruvec;
1018 }
1019
1020 /**
1021  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022  * @lruvec: mem_cgroup per zone lru vector
1023  * @lru: index of lru list the page is sitting on
1024  * @nr_pages: positive when adding or negative when removing
1025  *
1026  * This function must be called under lru_lock, just before a page is added
1027  * to or just after a page is removed from an lru list (that ordering being
1028  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029  */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031                                 int nr_pages)
1032 {
1033         struct mem_cgroup_per_zone *mz;
1034         unsigned long *lru_size;
1035         long size;
1036         bool empty;
1037
1038         __update_lru_size(lruvec, lru, nr_pages);
1039
1040         if (mem_cgroup_disabled())
1041                 return;
1042
1043         mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044         lru_size = mz->lru_size + lru;
1045         empty = list_empty(lruvec->lists + lru);
1046
1047         if (nr_pages < 0)
1048                 *lru_size += nr_pages;
1049
1050         size = *lru_size;
1051         if (WARN_ONCE(size < 0 || empty != !size,
1052                 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053                 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054                 VM_BUG_ON(1);
1055                 *lru_size = 0;
1056         }
1057
1058         if (nr_pages > 0)
1059                 *lru_size += nr_pages;
1060 }
1061
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064         struct mem_cgroup *task_memcg;
1065         struct task_struct *p;
1066         bool ret;
1067
1068         p = find_lock_task_mm(task);
1069         if (p) {
1070                 task_memcg = get_mem_cgroup_from_mm(p->mm);
1071                 task_unlock(p);
1072         } else {
1073                 /*
1074                  * All threads may have already detached their mm's, but the oom
1075                  * killer still needs to detect if they have already been oom
1076                  * killed to prevent needlessly killing additional tasks.
1077                  */
1078                 rcu_read_lock();
1079                 task_memcg = mem_cgroup_from_task(task);
1080                 css_get(&task_memcg->css);
1081                 rcu_read_unlock();
1082         }
1083         ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084         css_put(&task_memcg->css);
1085         return ret;
1086 }
1087
1088 /**
1089  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090  * @memcg: the memory cgroup
1091  *
1092  * Returns the maximum amount of memory @mem can be charged with, in
1093  * pages.
1094  */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097         unsigned long margin = 0;
1098         unsigned long count;
1099         unsigned long limit;
1100
1101         count = page_counter_read(&memcg->memory);
1102         limit = READ_ONCE(memcg->memory.limit);
1103         if (count < limit)
1104                 margin = limit - count;
1105
1106         if (do_memsw_account()) {
1107                 count = page_counter_read(&memcg->memsw);
1108                 limit = READ_ONCE(memcg->memsw.limit);
1109                 if (count <= limit)
1110                         margin = min(margin, limit - count);
1111         }
1112
1113         return margin;
1114 }
1115
1116 /*
1117  * A routine for checking "mem" is under move_account() or not.
1118  *
1119  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1120  * moving cgroups. This is for waiting at high-memory pressure
1121  * caused by "move".
1122  */
1123 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1124 {
1125         struct mem_cgroup *from;
1126         struct mem_cgroup *to;
1127         bool ret = false;
1128         /*
1129          * Unlike task_move routines, we access mc.to, mc.from not under
1130          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1131          */
1132         spin_lock(&mc.lock);
1133         from = mc.from;
1134         to = mc.to;
1135         if (!from)
1136                 goto unlock;
1137
1138         ret = mem_cgroup_is_descendant(from, memcg) ||
1139                 mem_cgroup_is_descendant(to, memcg);
1140 unlock:
1141         spin_unlock(&mc.lock);
1142         return ret;
1143 }
1144
1145 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1146 {
1147         if (mc.moving_task && current != mc.moving_task) {
1148                 if (mem_cgroup_under_move(memcg)) {
1149                         DEFINE_WAIT(wait);
1150                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1151                         /* moving charge context might have finished. */
1152                         if (mc.moving_task)
1153                                 schedule();
1154                         finish_wait(&mc.waitq, &wait);
1155                         return true;
1156                 }
1157         }
1158         return false;
1159 }
1160
1161 #define K(x) ((x) << (PAGE_SHIFT-10))
1162 /**
1163  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1164  * @memcg: The memory cgroup that went over limit
1165  * @p: Task that is going to be killed
1166  *
1167  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1168  * enabled
1169  */
1170 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1171 {
1172         struct mem_cgroup *iter;
1173         unsigned int i;
1174
1175         rcu_read_lock();
1176
1177         if (p) {
1178                 pr_info("Task in ");
1179                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1180                 pr_cont(" killed as a result of limit of ");
1181         } else {
1182                 pr_info("Memory limit reached of cgroup ");
1183         }
1184
1185         pr_cont_cgroup_path(memcg->css.cgroup);
1186         pr_cont("\n");
1187
1188         rcu_read_unlock();
1189
1190         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1191                 K((u64)page_counter_read(&memcg->memory)),
1192                 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1193         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1194                 K((u64)page_counter_read(&memcg->memsw)),
1195                 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1196         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1197                 K((u64)page_counter_read(&memcg->kmem)),
1198                 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1199
1200         for_each_mem_cgroup_tree(iter, memcg) {
1201                 pr_info("Memory cgroup stats for ");
1202                 pr_cont_cgroup_path(iter->css.cgroup);
1203                 pr_cont(":");
1204
1205                 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1206                         if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1207                                 continue;
1208                         pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1209                                 K(mem_cgroup_read_stat(iter, i)));
1210                 }
1211
1212                 for (i = 0; i < NR_LRU_LISTS; i++)
1213                         pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1214                                 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1215
1216                 pr_cont("\n");
1217         }
1218 }
1219
1220 /*
1221  * This function returns the number of memcg under hierarchy tree. Returns
1222  * 1(self count) if no children.
1223  */
1224 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1225 {
1226         int num = 0;
1227         struct mem_cgroup *iter;
1228
1229         for_each_mem_cgroup_tree(iter, memcg)
1230                 num++;
1231         return num;
1232 }
1233
1234 /*
1235  * Return the memory (and swap, if configured) limit for a memcg.
1236  */
1237 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1238 {
1239         unsigned long limit;
1240
1241         limit = memcg->memory.limit;
1242         if (mem_cgroup_swappiness(memcg)) {
1243                 unsigned long memsw_limit;
1244                 unsigned long swap_limit;
1245
1246                 memsw_limit = memcg->memsw.limit;
1247                 swap_limit = memcg->swap.limit;
1248                 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1249                 limit = min(limit + swap_limit, memsw_limit);
1250         }
1251         return limit;
1252 }
1253
1254 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1255                                      int order)
1256 {
1257         struct oom_control oc = {
1258                 .zonelist = NULL,
1259                 .nodemask = NULL,
1260                 .gfp_mask = gfp_mask,
1261                 .order = order,
1262         };
1263         struct mem_cgroup *iter;
1264         unsigned long chosen_points = 0;
1265         unsigned long totalpages;
1266         unsigned int points = 0;
1267         struct task_struct *chosen = NULL;
1268
1269         mutex_lock(&oom_lock);
1270
1271         /*
1272          * If current has a pending SIGKILL or is exiting, then automatically
1273          * select it.  The goal is to allow it to allocate so that it may
1274          * quickly exit and free its memory.
1275          */
1276         if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1277                 mark_oom_victim(current);
1278                 try_oom_reaper(current);
1279                 goto unlock;
1280         }
1281
1282         check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1283         totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1284         for_each_mem_cgroup_tree(iter, memcg) {
1285                 struct css_task_iter it;
1286                 struct task_struct *task;
1287
1288                 css_task_iter_start(&iter->css, &it);
1289                 while ((task = css_task_iter_next(&it))) {
1290                         switch (oom_scan_process_thread(&oc, task, totalpages)) {
1291                         case OOM_SCAN_SELECT:
1292                                 if (chosen)
1293                                         put_task_struct(chosen);
1294                                 chosen = task;
1295                                 chosen_points = ULONG_MAX;
1296                                 get_task_struct(chosen);
1297                                 /* fall through */
1298                         case OOM_SCAN_CONTINUE:
1299                                 continue;
1300                         case OOM_SCAN_ABORT:
1301                                 css_task_iter_end(&it);
1302                                 mem_cgroup_iter_break(memcg, iter);
1303                                 if (chosen)
1304                                         put_task_struct(chosen);
1305                                 goto unlock;
1306                         case OOM_SCAN_OK:
1307                                 break;
1308                         };
1309                         points = oom_badness(task, memcg, NULL, totalpages);
1310                         if (!points || points < chosen_points)
1311                                 continue;
1312                         /* Prefer thread group leaders for display purposes */
1313                         if (points == chosen_points &&
1314                             thread_group_leader(chosen))
1315                                 continue;
1316
1317                         if (chosen)
1318                                 put_task_struct(chosen);
1319                         chosen = task;
1320                         chosen_points = points;
1321                         get_task_struct(chosen);
1322                 }
1323                 css_task_iter_end(&it);
1324         }
1325
1326         if (chosen) {
1327                 points = chosen_points * 1000 / totalpages;
1328                 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1329                                  "Memory cgroup out of memory");
1330         }
1331 unlock:
1332         mutex_unlock(&oom_lock);
1333         return chosen;
1334 }
1335
1336 #if MAX_NUMNODES > 1
1337
1338 /**
1339  * test_mem_cgroup_node_reclaimable
1340  * @memcg: the target memcg
1341  * @nid: the node ID to be checked.
1342  * @noswap : specify true here if the user wants flle only information.
1343  *
1344  * This function returns whether the specified memcg contains any
1345  * reclaimable pages on a node. Returns true if there are any reclaimable
1346  * pages in the node.
1347  */
1348 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1349                 int nid, bool noswap)
1350 {
1351         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1352                 return true;
1353         if (noswap || !total_swap_pages)
1354                 return false;
1355         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1356                 return true;
1357         return false;
1358
1359 }
1360
1361 /*
1362  * Always updating the nodemask is not very good - even if we have an empty
1363  * list or the wrong list here, we can start from some node and traverse all
1364  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1365  *
1366  */
1367 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1368 {
1369         int nid;
1370         /*
1371          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1372          * pagein/pageout changes since the last update.
1373          */
1374         if (!atomic_read(&memcg->numainfo_events))
1375                 return;
1376         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1377                 return;
1378
1379         /* make a nodemask where this memcg uses memory from */
1380         memcg->scan_nodes = node_states[N_MEMORY];
1381
1382         for_each_node_mask(nid, node_states[N_MEMORY]) {
1383
1384                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1385                         node_clear(nid, memcg->scan_nodes);
1386         }
1387
1388         atomic_set(&memcg->numainfo_events, 0);
1389         atomic_set(&memcg->numainfo_updating, 0);
1390 }
1391
1392 /*
1393  * Selecting a node where we start reclaim from. Because what we need is just
1394  * reducing usage counter, start from anywhere is O,K. Considering
1395  * memory reclaim from current node, there are pros. and cons.
1396  *
1397  * Freeing memory from current node means freeing memory from a node which
1398  * we'll use or we've used. So, it may make LRU bad. And if several threads
1399  * hit limits, it will see a contention on a node. But freeing from remote
1400  * node means more costs for memory reclaim because of memory latency.
1401  *
1402  * Now, we use round-robin. Better algorithm is welcomed.
1403  */
1404 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1405 {
1406         int node;
1407
1408         mem_cgroup_may_update_nodemask(memcg);
1409         node = memcg->last_scanned_node;
1410
1411         node = next_node_in(node, memcg->scan_nodes);
1412         /*
1413          * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1414          * last time it really checked all the LRUs due to rate limiting.
1415          * Fallback to the current node in that case for simplicity.
1416          */
1417         if (unlikely(node == MAX_NUMNODES))
1418                 node = numa_node_id();
1419
1420         memcg->last_scanned_node = node;
1421         return node;
1422 }
1423 #else
1424 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1425 {
1426         return 0;
1427 }
1428 #endif
1429
1430 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1431                                    struct zone *zone,
1432                                    gfp_t gfp_mask,
1433                                    unsigned long *total_scanned)
1434 {
1435         struct mem_cgroup *victim = NULL;
1436         int total = 0;
1437         int loop = 0;
1438         unsigned long excess;
1439         unsigned long nr_scanned;
1440         struct mem_cgroup_reclaim_cookie reclaim = {
1441                 .zone = zone,
1442                 .priority = 0,
1443         };
1444
1445         excess = soft_limit_excess(root_memcg);
1446
1447         while (1) {
1448                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1449                 if (!victim) {
1450                         loop++;
1451                         if (loop >= 2) {
1452                                 /*
1453                                  * If we have not been able to reclaim
1454                                  * anything, it might because there are
1455                                  * no reclaimable pages under this hierarchy
1456                                  */
1457                                 if (!total)
1458                                         break;
1459                                 /*
1460                                  * We want to do more targeted reclaim.
1461                                  * excess >> 2 is not to excessive so as to
1462                                  * reclaim too much, nor too less that we keep
1463                                  * coming back to reclaim from this cgroup
1464                                  */
1465                                 if (total >= (excess >> 2) ||
1466                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1467                                         break;
1468                         }
1469                         continue;
1470                 }
1471                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1472                                                      zone, &nr_scanned);
1473                 *total_scanned += nr_scanned;
1474                 if (!soft_limit_excess(root_memcg))
1475                         break;
1476         }
1477         mem_cgroup_iter_break(root_memcg, victim);
1478         return total;
1479 }
1480
1481 #ifdef CONFIG_LOCKDEP
1482 static struct lockdep_map memcg_oom_lock_dep_map = {
1483         .name = "memcg_oom_lock",
1484 };
1485 #endif
1486
1487 static DEFINE_SPINLOCK(memcg_oom_lock);
1488
1489 /*
1490  * Check OOM-Killer is already running under our hierarchy.
1491  * If someone is running, return false.
1492  */
1493 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1494 {
1495         struct mem_cgroup *iter, *failed = NULL;
1496
1497         spin_lock(&memcg_oom_lock);
1498
1499         for_each_mem_cgroup_tree(iter, memcg) {
1500                 if (iter->oom_lock) {
1501                         /*
1502                          * this subtree of our hierarchy is already locked
1503                          * so we cannot give a lock.
1504                          */
1505                         failed = iter;
1506                         mem_cgroup_iter_break(memcg, iter);
1507                         break;
1508                 } else
1509                         iter->oom_lock = true;
1510         }
1511
1512         if (failed) {
1513                 /*
1514                  * OK, we failed to lock the whole subtree so we have
1515                  * to clean up what we set up to the failing subtree
1516                  */
1517                 for_each_mem_cgroup_tree(iter, memcg) {
1518                         if (iter == failed) {
1519                                 mem_cgroup_iter_break(memcg, iter);
1520                                 break;
1521                         }
1522                         iter->oom_lock = false;
1523                 }
1524         } else
1525                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1526
1527         spin_unlock(&memcg_oom_lock);
1528
1529         return !failed;
1530 }
1531
1532 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1533 {
1534         struct mem_cgroup *iter;
1535
1536         spin_lock(&memcg_oom_lock);
1537         mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1538         for_each_mem_cgroup_tree(iter, memcg)
1539                 iter->oom_lock = false;
1540         spin_unlock(&memcg_oom_lock);
1541 }
1542
1543 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1544 {
1545         struct mem_cgroup *iter;
1546
1547         spin_lock(&memcg_oom_lock);
1548         for_each_mem_cgroup_tree(iter, memcg)
1549                 iter->under_oom++;
1550         spin_unlock(&memcg_oom_lock);
1551 }
1552
1553 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1554 {
1555         struct mem_cgroup *iter;
1556
1557         /*
1558          * When a new child is created while the hierarchy is under oom,
1559          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1560          */
1561         spin_lock(&memcg_oom_lock);
1562         for_each_mem_cgroup_tree(iter, memcg)
1563                 if (iter->under_oom > 0)
1564                         iter->under_oom--;
1565         spin_unlock(&memcg_oom_lock);
1566 }
1567
1568 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1569
1570 struct oom_wait_info {
1571         struct mem_cgroup *memcg;
1572         wait_queue_t    wait;
1573 };
1574
1575 static int memcg_oom_wake_function(wait_queue_t *wait,
1576         unsigned mode, int sync, void *arg)
1577 {
1578         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1579         struct mem_cgroup *oom_wait_memcg;
1580         struct oom_wait_info *oom_wait_info;
1581
1582         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1583         oom_wait_memcg = oom_wait_info->memcg;
1584
1585         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1586             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1587                 return 0;
1588         return autoremove_wake_function(wait, mode, sync, arg);
1589 }
1590
1591 static void memcg_oom_recover(struct mem_cgroup *memcg)
1592 {
1593         /*
1594          * For the following lockless ->under_oom test, the only required
1595          * guarantee is that it must see the state asserted by an OOM when
1596          * this function is called as a result of userland actions
1597          * triggered by the notification of the OOM.  This is trivially
1598          * achieved by invoking mem_cgroup_mark_under_oom() before
1599          * triggering notification.
1600          */
1601         if (memcg && memcg->under_oom)
1602                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1603 }
1604
1605 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1606 {
1607         if (!current->memcg_may_oom)
1608                 return;
1609         /*
1610          * We are in the middle of the charge context here, so we
1611          * don't want to block when potentially sitting on a callstack
1612          * that holds all kinds of filesystem and mm locks.
1613          *
1614          * Also, the caller may handle a failed allocation gracefully
1615          * (like optional page cache readahead) and so an OOM killer
1616          * invocation might not even be necessary.
1617          *
1618          * That's why we don't do anything here except remember the
1619          * OOM context and then deal with it at the end of the page
1620          * fault when the stack is unwound, the locks are released,
1621          * and when we know whether the fault was overall successful.
1622          */
1623         css_get(&memcg->css);
1624         current->memcg_in_oom = memcg;
1625         current->memcg_oom_gfp_mask = mask;
1626         current->memcg_oom_order = order;
1627 }
1628
1629 /**
1630  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1631  * @handle: actually kill/wait or just clean up the OOM state
1632  *
1633  * This has to be called at the end of a page fault if the memcg OOM
1634  * handler was enabled.
1635  *
1636  * Memcg supports userspace OOM handling where failed allocations must
1637  * sleep on a waitqueue until the userspace task resolves the
1638  * situation.  Sleeping directly in the charge context with all kinds
1639  * of locks held is not a good idea, instead we remember an OOM state
1640  * in the task and mem_cgroup_oom_synchronize() has to be called at
1641  * the end of the page fault to complete the OOM handling.
1642  *
1643  * Returns %true if an ongoing memcg OOM situation was detected and
1644  * completed, %false otherwise.
1645  */
1646 bool mem_cgroup_oom_synchronize(bool handle)
1647 {
1648         struct mem_cgroup *memcg = current->memcg_in_oom;
1649         struct oom_wait_info owait;
1650         bool locked;
1651
1652         /* OOM is global, do not handle */
1653         if (!memcg)
1654                 return false;
1655
1656         if (!handle || oom_killer_disabled)
1657                 goto cleanup;
1658
1659         owait.memcg = memcg;
1660         owait.wait.flags = 0;
1661         owait.wait.func = memcg_oom_wake_function;
1662         owait.wait.private = current;
1663         INIT_LIST_HEAD(&owait.wait.task_list);
1664
1665         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1666         mem_cgroup_mark_under_oom(memcg);
1667
1668         locked = mem_cgroup_oom_trylock(memcg);
1669
1670         if (locked)
1671                 mem_cgroup_oom_notify(memcg);
1672
1673         if (locked && !memcg->oom_kill_disable) {
1674                 mem_cgroup_unmark_under_oom(memcg);
1675                 finish_wait(&memcg_oom_waitq, &owait.wait);
1676                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1677                                          current->memcg_oom_order);
1678         } else {
1679                 schedule();
1680                 mem_cgroup_unmark_under_oom(memcg);
1681                 finish_wait(&memcg_oom_waitq, &owait.wait);
1682         }
1683
1684         if (locked) {
1685                 mem_cgroup_oom_unlock(memcg);
1686                 /*
1687                  * There is no guarantee that an OOM-lock contender
1688                  * sees the wakeups triggered by the OOM kill
1689                  * uncharges.  Wake any sleepers explicitely.
1690                  */
1691                 memcg_oom_recover(memcg);
1692         }
1693 cleanup:
1694         current->memcg_in_oom = NULL;
1695         css_put(&memcg->css);
1696         return true;
1697 }
1698
1699 /**
1700  * lock_page_memcg - lock a page->mem_cgroup binding
1701  * @page: the page
1702  *
1703  * This function protects unlocked LRU pages from being moved to
1704  * another cgroup and stabilizes their page->mem_cgroup binding.
1705  */
1706 void lock_page_memcg(struct page *page)
1707 {
1708         struct mem_cgroup *memcg;
1709         unsigned long flags;
1710
1711         /*
1712          * The RCU lock is held throughout the transaction.  The fast
1713          * path can get away without acquiring the memcg->move_lock
1714          * because page moving starts with an RCU grace period.
1715          */
1716         rcu_read_lock();
1717
1718         if (mem_cgroup_disabled())
1719                 return;
1720 again:
1721         memcg = page->mem_cgroup;
1722         if (unlikely(!memcg))
1723                 return;
1724
1725         if (atomic_read(&memcg->moving_account) <= 0)
1726                 return;
1727
1728         spin_lock_irqsave(&memcg->move_lock, flags);
1729         if (memcg != page->mem_cgroup) {
1730                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1731                 goto again;
1732         }
1733
1734         /*
1735          * When charge migration first begins, we can have locked and
1736          * unlocked page stat updates happening concurrently.  Track
1737          * the task who has the lock for unlock_page_memcg().
1738          */
1739         memcg->move_lock_task = current;
1740         memcg->move_lock_flags = flags;
1741
1742         return;
1743 }
1744 EXPORT_SYMBOL(lock_page_memcg);
1745
1746 /**
1747  * unlock_page_memcg - unlock a page->mem_cgroup binding
1748  * @page: the page
1749  */
1750 void unlock_page_memcg(struct page *page)
1751 {
1752         struct mem_cgroup *memcg = page->mem_cgroup;
1753
1754         if (memcg && memcg->move_lock_task == current) {
1755                 unsigned long flags = memcg->move_lock_flags;
1756
1757                 memcg->move_lock_task = NULL;
1758                 memcg->move_lock_flags = 0;
1759
1760                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1761         }
1762
1763         rcu_read_unlock();
1764 }
1765 EXPORT_SYMBOL(unlock_page_memcg);
1766
1767 /*
1768  * size of first charge trial. "32" comes from vmscan.c's magic value.
1769  * TODO: maybe necessary to use big numbers in big irons.
1770  */
1771 #define CHARGE_BATCH    32U
1772 struct memcg_stock_pcp {
1773         struct mem_cgroup *cached; /* this never be root cgroup */
1774         unsigned int nr_pages;
1775         struct work_struct work;
1776         unsigned long flags;
1777 #define FLUSHING_CACHED_CHARGE  0
1778 };
1779 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1780 static DEFINE_MUTEX(percpu_charge_mutex);
1781
1782 /**
1783  * consume_stock: Try to consume stocked charge on this cpu.
1784  * @memcg: memcg to consume from.
1785  * @nr_pages: how many pages to charge.
1786  *
1787  * The charges will only happen if @memcg matches the current cpu's memcg
1788  * stock, and at least @nr_pages are available in that stock.  Failure to
1789  * service an allocation will refill the stock.
1790  *
1791  * returns true if successful, false otherwise.
1792  */
1793 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1794 {
1795         struct memcg_stock_pcp *stock;
1796         bool ret = false;
1797
1798         if (nr_pages > CHARGE_BATCH)
1799                 return ret;
1800
1801         stock = &get_cpu_var(memcg_stock);
1802         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1803                 stock->nr_pages -= nr_pages;
1804                 ret = true;
1805         }
1806         put_cpu_var(memcg_stock);
1807         return ret;
1808 }
1809
1810 /*
1811  * Returns stocks cached in percpu and reset cached information.
1812  */
1813 static void drain_stock(struct memcg_stock_pcp *stock)
1814 {
1815         struct mem_cgroup *old = stock->cached;
1816
1817         if (stock->nr_pages) {
1818                 page_counter_uncharge(&old->memory, stock->nr_pages);
1819                 if (do_memsw_account())
1820                         page_counter_uncharge(&old->memsw, stock->nr_pages);
1821                 css_put_many(&old->css, stock->nr_pages);
1822                 stock->nr_pages = 0;
1823         }
1824         stock->cached = NULL;
1825 }
1826
1827 /*
1828  * This must be called under preempt disabled or must be called by
1829  * a thread which is pinned to local cpu.
1830  */
1831 static void drain_local_stock(struct work_struct *dummy)
1832 {
1833         struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1834         drain_stock(stock);
1835         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1836 }
1837
1838 /*
1839  * Cache charges(val) to local per_cpu area.
1840  * This will be consumed by consume_stock() function, later.
1841  */
1842 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1843 {
1844         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1845
1846         if (stock->cached != memcg) { /* reset if necessary */
1847                 drain_stock(stock);
1848                 stock->cached = memcg;
1849         }
1850         stock->nr_pages += nr_pages;
1851         put_cpu_var(memcg_stock);
1852 }
1853
1854 /*
1855  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1856  * of the hierarchy under it.
1857  */
1858 static void drain_all_stock(struct mem_cgroup *root_memcg)
1859 {
1860         int cpu, curcpu;
1861
1862         /* If someone's already draining, avoid adding running more workers. */
1863         if (!mutex_trylock(&percpu_charge_mutex))
1864                 return;
1865         /* Notify other cpus that system-wide "drain" is running */
1866         get_online_cpus();
1867         curcpu = get_cpu();
1868         for_each_online_cpu(cpu) {
1869                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1870                 struct mem_cgroup *memcg;
1871
1872                 memcg = stock->cached;
1873                 if (!memcg || !stock->nr_pages)
1874                         continue;
1875                 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1876                         continue;
1877                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1878                         if (cpu == curcpu)
1879                                 drain_local_stock(&stock->work);
1880                         else
1881                                 schedule_work_on(cpu, &stock->work);
1882                 }
1883         }
1884         put_cpu();
1885         put_online_cpus();
1886         mutex_unlock(&percpu_charge_mutex);
1887 }
1888
1889 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1890                                         unsigned long action,
1891                                         void *hcpu)
1892 {
1893         int cpu = (unsigned long)hcpu;
1894         struct memcg_stock_pcp *stock;
1895
1896         if (action == CPU_ONLINE)
1897                 return NOTIFY_OK;
1898
1899         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1900                 return NOTIFY_OK;
1901
1902         stock = &per_cpu(memcg_stock, cpu);
1903         drain_stock(stock);
1904         return NOTIFY_OK;
1905 }
1906
1907 static void reclaim_high(struct mem_cgroup *memcg,
1908                          unsigned int nr_pages,
1909                          gfp_t gfp_mask)
1910 {
1911         do {
1912                 if (page_counter_read(&memcg->memory) <= memcg->high)
1913                         continue;
1914                 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1915                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1916         } while ((memcg = parent_mem_cgroup(memcg)));
1917 }
1918
1919 static void high_work_func(struct work_struct *work)
1920 {
1921         struct mem_cgroup *memcg;
1922
1923         memcg = container_of(work, struct mem_cgroup, high_work);
1924         reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1925 }
1926
1927 /*
1928  * Scheduled by try_charge() to be executed from the userland return path
1929  * and reclaims memory over the high limit.
1930  */
1931 void mem_cgroup_handle_over_high(void)
1932 {
1933         unsigned int nr_pages = current->memcg_nr_pages_over_high;
1934         struct mem_cgroup *memcg;
1935
1936         if (likely(!nr_pages))
1937                 return;
1938
1939         memcg = get_mem_cgroup_from_mm(current->mm);
1940         reclaim_high(memcg, nr_pages, GFP_KERNEL);
1941         css_put(&memcg->css);
1942         current->memcg_nr_pages_over_high = 0;
1943 }
1944
1945 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1946                       unsigned int nr_pages)
1947 {
1948         unsigned int batch = max(CHARGE_BATCH, nr_pages);
1949         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1950         struct mem_cgroup *mem_over_limit;
1951         struct page_counter *counter;
1952         unsigned long nr_reclaimed;
1953         bool may_swap = true;
1954         bool drained = false;
1955
1956         if (mem_cgroup_is_root(memcg))
1957                 return 0;
1958 retry:
1959         if (consume_stock(memcg, nr_pages))
1960                 return 0;
1961
1962         if (!do_memsw_account() ||
1963             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1964                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1965                         goto done_restock;
1966                 if (do_memsw_account())
1967                         page_counter_uncharge(&memcg->memsw, batch);
1968                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1969         } else {
1970                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1971                 may_swap = false;
1972         }
1973
1974         if (batch > nr_pages) {
1975                 batch = nr_pages;
1976                 goto retry;
1977         }
1978
1979         /*
1980          * Unlike in global OOM situations, memcg is not in a physical
1981          * memory shortage.  Allow dying and OOM-killed tasks to
1982          * bypass the last charges so that they can exit quickly and
1983          * free their memory.
1984          */
1985         if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1986                      fatal_signal_pending(current) ||
1987                      current->flags & PF_EXITING))
1988                 goto force;
1989
1990         if (unlikely(task_in_memcg_oom(current)))
1991                 goto nomem;
1992
1993         if (!gfpflags_allow_blocking(gfp_mask))
1994                 goto nomem;
1995
1996         mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1997
1998         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1999                                                     gfp_mask, may_swap);
2000
2001         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2002                 goto retry;
2003
2004         if (!drained) {
2005                 drain_all_stock(mem_over_limit);
2006                 drained = true;
2007                 goto retry;
2008         }
2009
2010         if (gfp_mask & __GFP_NORETRY)
2011                 goto nomem;
2012         /*
2013          * Even though the limit is exceeded at this point, reclaim
2014          * may have been able to free some pages.  Retry the charge
2015          * before killing the task.
2016          *
2017          * Only for regular pages, though: huge pages are rather
2018          * unlikely to succeed so close to the limit, and we fall back
2019          * to regular pages anyway in case of failure.
2020          */
2021         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2022                 goto retry;
2023         /*
2024          * At task move, charge accounts can be doubly counted. So, it's
2025          * better to wait until the end of task_move if something is going on.
2026          */
2027         if (mem_cgroup_wait_acct_move(mem_over_limit))
2028                 goto retry;
2029
2030         if (nr_retries--)
2031                 goto retry;
2032
2033         if (gfp_mask & __GFP_NOFAIL)
2034                 goto force;
2035
2036         if (fatal_signal_pending(current))
2037                 goto force;
2038
2039         mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2040
2041         mem_cgroup_oom(mem_over_limit, gfp_mask,
2042                        get_order(nr_pages * PAGE_SIZE));
2043 nomem:
2044         if (!(gfp_mask & __GFP_NOFAIL))
2045                 return -ENOMEM;
2046 force:
2047         /*
2048          * The allocation either can't fail or will lead to more memory
2049          * being freed very soon.  Allow memory usage go over the limit
2050          * temporarily by force charging it.
2051          */
2052         page_counter_charge(&memcg->memory, nr_pages);
2053         if (do_memsw_account())
2054                 page_counter_charge(&memcg->memsw, nr_pages);
2055         css_get_many(&memcg->css, nr_pages);
2056
2057         return 0;
2058
2059 done_restock:
2060         css_get_many(&memcg->css, batch);
2061         if (batch > nr_pages)
2062                 refill_stock(memcg, batch - nr_pages);
2063
2064         /*
2065          * If the hierarchy is above the normal consumption range, schedule
2066          * reclaim on returning to userland.  We can perform reclaim here
2067          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2068          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2069          * not recorded as it most likely matches current's and won't
2070          * change in the meantime.  As high limit is checked again before
2071          * reclaim, the cost of mismatch is negligible.
2072          */
2073         do {
2074                 if (page_counter_read(&memcg->memory) > memcg->high) {
2075                         /* Don't bother a random interrupted task */
2076                         if (in_interrupt()) {
2077                                 schedule_work(&memcg->high_work);
2078                                 break;
2079                         }
2080                         current->memcg_nr_pages_over_high += batch;
2081                         set_notify_resume(current);
2082                         break;
2083                 }
2084         } while ((memcg = parent_mem_cgroup(memcg)));
2085
2086         return 0;
2087 }
2088
2089 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2090 {
2091         if (mem_cgroup_is_root(memcg))
2092                 return;
2093
2094         page_counter_uncharge(&memcg->memory, nr_pages);
2095         if (do_memsw_account())
2096                 page_counter_uncharge(&memcg->memsw, nr_pages);
2097
2098         css_put_many(&memcg->css, nr_pages);
2099 }
2100
2101 static void lock_page_lru(struct page *page, int *isolated)
2102 {
2103         struct zone *zone = page_zone(page);
2104
2105         spin_lock_irq(&zone->lru_lock);
2106         if (PageLRU(page)) {
2107                 struct lruvec *lruvec;
2108
2109                 lruvec = mem_cgroup_page_lruvec(page, zone);
2110                 ClearPageLRU(page);
2111                 del_page_from_lru_list(page, lruvec, page_lru(page));
2112                 *isolated = 1;
2113         } else
2114                 *isolated = 0;
2115 }
2116
2117 static void unlock_page_lru(struct page *page, int isolated)
2118 {
2119         struct zone *zone = page_zone(page);
2120
2121         if (isolated) {
2122                 struct lruvec *lruvec;
2123
2124                 lruvec = mem_cgroup_page_lruvec(page, zone);
2125                 VM_BUG_ON_PAGE(PageLRU(page), page);
2126                 SetPageLRU(page);
2127                 add_page_to_lru_list(page, lruvec, page_lru(page));
2128         }
2129         spin_unlock_irq(&zone->lru_lock);
2130 }
2131
2132 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2133                           bool lrucare)
2134 {
2135         int isolated;
2136
2137         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2138
2139         /*
2140          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2141          * may already be on some other mem_cgroup's LRU.  Take care of it.
2142          */
2143         if (lrucare)
2144                 lock_page_lru(page, &isolated);
2145
2146         /*
2147          * Nobody should be changing or seriously looking at
2148          * page->mem_cgroup at this point:
2149          *
2150          * - the page is uncharged
2151          *
2152          * - the page is off-LRU
2153          *
2154          * - an anonymous fault has exclusive page access, except for
2155          *   a locked page table
2156          *
2157          * - a page cache insertion, a swapin fault, or a migration
2158          *   have the page locked
2159          */
2160         page->mem_cgroup = memcg;
2161
2162         if (lrucare)
2163                 unlock_page_lru(page, isolated);
2164 }
2165
2166 #ifndef CONFIG_SLOB
2167 static int memcg_alloc_cache_id(void)
2168 {
2169         int id, size;
2170         int err;
2171
2172         id = ida_simple_get(&memcg_cache_ida,
2173                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2174         if (id < 0)
2175                 return id;
2176
2177         if (id < memcg_nr_cache_ids)
2178                 return id;
2179
2180         /*
2181          * There's no space for the new id in memcg_caches arrays,
2182          * so we have to grow them.
2183          */
2184         down_write(&memcg_cache_ids_sem);
2185
2186         size = 2 * (id + 1);
2187         if (size < MEMCG_CACHES_MIN_SIZE)
2188                 size = MEMCG_CACHES_MIN_SIZE;
2189         else if (size > MEMCG_CACHES_MAX_SIZE)
2190                 size = MEMCG_CACHES_MAX_SIZE;
2191
2192         err = memcg_update_all_caches(size);
2193         if (!err)
2194                 err = memcg_update_all_list_lrus(size);
2195         if (!err)
2196                 memcg_nr_cache_ids = size;
2197
2198         up_write(&memcg_cache_ids_sem);
2199
2200         if (err) {
2201                 ida_simple_remove(&memcg_cache_ida, id);
2202                 return err;
2203         }
2204         return id;
2205 }
2206
2207 static void memcg_free_cache_id(int id)
2208 {
2209         ida_simple_remove(&memcg_cache_ida, id);
2210 }
2211
2212 struct memcg_kmem_cache_create_work {
2213         struct mem_cgroup *memcg;
2214         struct kmem_cache *cachep;
2215         struct work_struct work;
2216 };
2217
2218 static void memcg_kmem_cache_create_func(struct work_struct *w)
2219 {
2220         struct memcg_kmem_cache_create_work *cw =
2221                 container_of(w, struct memcg_kmem_cache_create_work, work);
2222         struct mem_cgroup *memcg = cw->memcg;
2223         struct kmem_cache *cachep = cw->cachep;
2224
2225         memcg_create_kmem_cache(memcg, cachep);
2226
2227         css_put(&memcg->css);
2228         kfree(cw);
2229 }
2230
2231 /*
2232  * Enqueue the creation of a per-memcg kmem_cache.
2233  */
2234 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2235                                                struct kmem_cache *cachep)
2236 {
2237         struct memcg_kmem_cache_create_work *cw;
2238
2239         cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2240         if (!cw)
2241                 return;
2242
2243         css_get(&memcg->css);
2244
2245         cw->memcg = memcg;
2246         cw->cachep = cachep;
2247         INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2248
2249         schedule_work(&cw->work);
2250 }
2251
2252 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2253                                              struct kmem_cache *cachep)
2254 {
2255         /*
2256          * We need to stop accounting when we kmalloc, because if the
2257          * corresponding kmalloc cache is not yet created, the first allocation
2258          * in __memcg_schedule_kmem_cache_create will recurse.
2259          *
2260          * However, it is better to enclose the whole function. Depending on
2261          * the debugging options enabled, INIT_WORK(), for instance, can
2262          * trigger an allocation. This too, will make us recurse. Because at
2263          * this point we can't allow ourselves back into memcg_kmem_get_cache,
2264          * the safest choice is to do it like this, wrapping the whole function.
2265          */
2266         current->memcg_kmem_skip_account = 1;
2267         __memcg_schedule_kmem_cache_create(memcg, cachep);
2268         current->memcg_kmem_skip_account = 0;
2269 }
2270
2271 /*
2272  * Return the kmem_cache we're supposed to use for a slab allocation.
2273  * We try to use the current memcg's version of the cache.
2274  *
2275  * If the cache does not exist yet, if we are the first user of it,
2276  * we either create it immediately, if possible, or create it asynchronously
2277  * in a workqueue.
2278  * In the latter case, we will let the current allocation go through with
2279  * the original cache.
2280  *
2281  * Can't be called in interrupt context or from kernel threads.
2282  * This function needs to be called with rcu_read_lock() held.
2283  */
2284 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2285 {
2286         struct mem_cgroup *memcg;
2287         struct kmem_cache *memcg_cachep;
2288         int kmemcg_id;
2289
2290         VM_BUG_ON(!is_root_cache(cachep));
2291
2292         if (cachep->flags & SLAB_ACCOUNT)
2293                 gfp |= __GFP_ACCOUNT;
2294
2295         if (!(gfp & __GFP_ACCOUNT))
2296                 return cachep;
2297
2298         if (current->memcg_kmem_skip_account)
2299                 return cachep;
2300
2301         memcg = get_mem_cgroup_from_mm(current->mm);
2302         kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2303         if (kmemcg_id < 0)
2304                 goto out;
2305
2306         memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2307         if (likely(memcg_cachep))
2308                 return memcg_cachep;
2309
2310         /*
2311          * If we are in a safe context (can wait, and not in interrupt
2312          * context), we could be be predictable and return right away.
2313          * This would guarantee that the allocation being performed
2314          * already belongs in the new cache.
2315          *
2316          * However, there are some clashes that can arrive from locking.
2317          * For instance, because we acquire the slab_mutex while doing
2318          * memcg_create_kmem_cache, this means no further allocation
2319          * could happen with the slab_mutex held. So it's better to
2320          * defer everything.
2321          */
2322         memcg_schedule_kmem_cache_create(memcg, cachep);
2323 out:
2324         css_put(&memcg->css);
2325         return cachep;
2326 }
2327
2328 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2329 {
2330         if (!is_root_cache(cachep))
2331                 css_put(&cachep->memcg_params.memcg->css);
2332 }
2333
2334 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2335                               struct mem_cgroup *memcg)
2336 {
2337         unsigned int nr_pages = 1 << order;
2338         struct page_counter *counter;
2339         int ret;
2340
2341         ret = try_charge(memcg, gfp, nr_pages);
2342         if (ret)
2343                 return ret;
2344
2345         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2346             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2347                 cancel_charge(memcg, nr_pages);
2348                 return -ENOMEM;
2349         }
2350
2351         page->mem_cgroup = memcg;
2352
2353         return 0;
2354 }
2355
2356 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2357 {
2358         struct mem_cgroup *memcg;
2359         int ret = 0;
2360
2361         memcg = get_mem_cgroup_from_mm(current->mm);
2362         if (!mem_cgroup_is_root(memcg))
2363                 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2364         css_put(&memcg->css);
2365         return ret;
2366 }
2367
2368 void __memcg_kmem_uncharge(struct page *page, int order)
2369 {
2370         struct mem_cgroup *memcg = page->mem_cgroup;
2371         unsigned int nr_pages = 1 << order;
2372
2373         if (!memcg)
2374                 return;
2375
2376         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2377
2378         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2379                 page_counter_uncharge(&memcg->kmem, nr_pages);
2380
2381         page_counter_uncharge(&memcg->memory, nr_pages);
2382         if (do_memsw_account())
2383                 page_counter_uncharge(&memcg->memsw, nr_pages);
2384
2385         page->mem_cgroup = NULL;
2386         css_put_many(&memcg->css, nr_pages);
2387 }
2388 #endif /* !CONFIG_SLOB */
2389
2390 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2391
2392 /*
2393  * Because tail pages are not marked as "used", set it. We're under
2394  * zone->lru_lock and migration entries setup in all page mappings.
2395  */
2396 void mem_cgroup_split_huge_fixup(struct page *head)
2397 {
2398         int i;
2399
2400         if (mem_cgroup_disabled())
2401                 return;
2402
2403         for (i = 1; i < HPAGE_PMD_NR; i++)
2404                 head[i].mem_cgroup = head->mem_cgroup;
2405
2406         __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2407                        HPAGE_PMD_NR);
2408 }
2409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2410
2411 #ifdef CONFIG_MEMCG_SWAP
2412 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2413                                          bool charge)
2414 {
2415         int val = (charge) ? 1 : -1;
2416         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2417 }
2418
2419 /**
2420  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2421  * @entry: swap entry to be moved
2422  * @from:  mem_cgroup which the entry is moved from
2423  * @to:  mem_cgroup which the entry is moved to
2424  *
2425  * It succeeds only when the swap_cgroup's record for this entry is the same
2426  * as the mem_cgroup's id of @from.
2427  *
2428  * Returns 0 on success, -EINVAL on failure.
2429  *
2430  * The caller must have charged to @to, IOW, called page_counter_charge() about
2431  * both res and memsw, and called css_get().
2432  */
2433 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2434                                 struct mem_cgroup *from, struct mem_cgroup *to)
2435 {
2436         unsigned short old_id, new_id;
2437
2438         old_id = mem_cgroup_id(from);
2439         new_id = mem_cgroup_id(to);
2440
2441         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2442                 mem_cgroup_swap_statistics(from, false);
2443                 mem_cgroup_swap_statistics(to, true);
2444                 return 0;
2445         }
2446         return -EINVAL;
2447 }
2448 #else
2449 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2450                                 struct mem_cgroup *from, struct mem_cgroup *to)
2451 {
2452         return -EINVAL;
2453 }
2454 #endif
2455
2456 static DEFINE_MUTEX(memcg_limit_mutex);
2457
2458 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2459                                    unsigned long limit)
2460 {
2461         unsigned long curusage;
2462         unsigned long oldusage;
2463         bool enlarge = false;
2464         int retry_count;
2465         int ret;
2466
2467         /*
2468          * For keeping hierarchical_reclaim simple, how long we should retry
2469          * is depends on callers. We set our retry-count to be function
2470          * of # of children which we should visit in this loop.
2471          */
2472         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2473                       mem_cgroup_count_children(memcg);
2474
2475         oldusage = page_counter_read(&memcg->memory);
2476
2477         do {
2478                 if (signal_pending(current)) {
2479                         ret = -EINTR;
2480                         break;
2481                 }
2482
2483                 mutex_lock(&memcg_limit_mutex);
2484                 if (limit > memcg->memsw.limit) {
2485                         mutex_unlock(&memcg_limit_mutex);
2486                         ret = -EINVAL;
2487                         break;
2488                 }
2489                 if (limit > memcg->memory.limit)
2490                         enlarge = true;
2491                 ret = page_counter_limit(&memcg->memory, limit);
2492                 mutex_unlock(&memcg_limit_mutex);
2493
2494                 if (!ret)
2495                         break;
2496
2497                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2498
2499                 curusage = page_counter_read(&memcg->memory);
2500                 /* Usage is reduced ? */
2501                 if (curusage >= oldusage)
2502                         retry_count--;
2503                 else
2504                         oldusage = curusage;
2505         } while (retry_count);
2506
2507         if (!ret && enlarge)
2508                 memcg_oom_recover(memcg);
2509
2510         return ret;
2511 }
2512
2513 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2514                                          unsigned long limit)
2515 {
2516         unsigned long curusage;
2517         unsigned long oldusage;
2518         bool enlarge = false;
2519         int retry_count;
2520         int ret;
2521
2522         /* see mem_cgroup_resize_res_limit */
2523         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2524                       mem_cgroup_count_children(memcg);
2525
2526         oldusage = page_counter_read(&memcg->memsw);
2527
2528         do {
2529                 if (signal_pending(current)) {
2530                         ret = -EINTR;
2531                         break;
2532                 }
2533
2534                 mutex_lock(&memcg_limit_mutex);
2535                 if (limit < memcg->memory.limit) {
2536                         mutex_unlock(&memcg_limit_mutex);
2537                         ret = -EINVAL;
2538                         break;
2539                 }
2540                 if (limit > memcg->memsw.limit)
2541                         enlarge = true;
2542                 ret = page_counter_limit(&memcg->memsw, limit);
2543                 mutex_unlock(&memcg_limit_mutex);
2544
2545                 if (!ret)
2546                         break;
2547
2548                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2549
2550                 curusage = page_counter_read(&memcg->memsw);
2551                 /* Usage is reduced ? */
2552                 if (curusage >= oldusage)
2553                         retry_count--;
2554                 else
2555                         oldusage = curusage;
2556         } while (retry_count);
2557
2558         if (!ret && enlarge)
2559                 memcg_oom_recover(memcg);
2560
2561         return ret;
2562 }
2563
2564 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2565                                             gfp_t gfp_mask,
2566                                             unsigned long *total_scanned)
2567 {
2568         unsigned long nr_reclaimed = 0;
2569         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2570         unsigned long reclaimed;
2571         int loop = 0;
2572         struct mem_cgroup_tree_per_zone *mctz;
2573         unsigned long excess;
2574         unsigned long nr_scanned;
2575
2576         if (order > 0)
2577                 return 0;
2578
2579         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2580         /*
2581          * This loop can run a while, specially if mem_cgroup's continuously
2582          * keep exceeding their soft limit and putting the system under
2583          * pressure
2584          */
2585         do {
2586                 if (next_mz)
2587                         mz = next_mz;
2588                 else
2589                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2590                 if (!mz)
2591                         break;
2592
2593                 nr_scanned = 0;
2594                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2595                                                     gfp_mask, &nr_scanned);
2596                 nr_reclaimed += reclaimed;
2597                 *total_scanned += nr_scanned;
2598                 spin_lock_irq(&mctz->lock);
2599                 __mem_cgroup_remove_exceeded(mz, mctz);
2600
2601                 /*
2602                  * If we failed to reclaim anything from this memory cgroup
2603                  * it is time to move on to the next cgroup
2604                  */
2605                 next_mz = NULL;
2606                 if (!reclaimed)
2607                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2608
2609                 excess = soft_limit_excess(mz->memcg);
2610                 /*
2611                  * One school of thought says that we should not add
2612                  * back the node to the tree if reclaim returns 0.
2613                  * But our reclaim could return 0, simply because due
2614                  * to priority we are exposing a smaller subset of
2615                  * memory to reclaim from. Consider this as a longer
2616                  * term TODO.
2617                  */
2618                 /* If excess == 0, no tree ops */
2619                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2620                 spin_unlock_irq(&mctz->lock);
2621                 css_put(&mz->memcg->css);
2622                 loop++;
2623                 /*
2624                  * Could not reclaim anything and there are no more
2625                  * mem cgroups to try or we seem to be looping without
2626                  * reclaiming anything.
2627                  */
2628                 if (!nr_reclaimed &&
2629                         (next_mz == NULL ||
2630                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2631                         break;
2632         } while (!nr_reclaimed);
2633         if (next_mz)
2634                 css_put(&next_mz->memcg->css);
2635         return nr_reclaimed;
2636 }
2637
2638 /*
2639  * Test whether @memcg has children, dead or alive.  Note that this
2640  * function doesn't care whether @memcg has use_hierarchy enabled and
2641  * returns %true if there are child csses according to the cgroup
2642  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2643  */
2644 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2645 {
2646         bool ret;
2647
2648         rcu_read_lock();
2649         ret = css_next_child(NULL, &memcg->css);
2650         rcu_read_unlock();
2651         return ret;
2652 }
2653
2654 /*
2655  * Reclaims as many pages from the given memcg as possible and moves
2656  * the rest to the parent.
2657  *
2658  * Caller is responsible for holding css reference for memcg.
2659  */
2660 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2661 {
2662         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2663
2664         /* we call try-to-free pages for make this cgroup empty */
2665         lru_add_drain_all();
2666         /* try to free all pages in this cgroup */
2667         while (nr_retries && page_counter_read(&memcg->memory)) {
2668                 int progress;
2669
2670                 if (signal_pending(current))
2671                         return -EINTR;
2672
2673                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2674                                                         GFP_KERNEL, true);
2675                 if (!progress) {
2676                         nr_retries--;
2677                         /* maybe some writeback is necessary */
2678                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2679                 }
2680
2681         }
2682
2683         return 0;
2684 }
2685
2686 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2687                                             char *buf, size_t nbytes,
2688                                             loff_t off)
2689 {
2690         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2691
2692         if (mem_cgroup_is_root(memcg))
2693                 return -EINVAL;
2694         return mem_cgroup_force_empty(memcg) ?: nbytes;
2695 }
2696
2697 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2698                                      struct cftype *cft)
2699 {
2700         return mem_cgroup_from_css(css)->use_hierarchy;
2701 }
2702
2703 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2704                                       struct cftype *cft, u64 val)
2705 {
2706         int retval = 0;
2707         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2708         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2709
2710         if (memcg->use_hierarchy == val)
2711                 return 0;
2712
2713         /*
2714          * If parent's use_hierarchy is set, we can't make any modifications
2715          * in the child subtrees. If it is unset, then the change can
2716          * occur, provided the current cgroup has no children.
2717          *
2718          * For the root cgroup, parent_mem is NULL, we allow value to be
2719          * set if there are no children.
2720          */
2721         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2722                                 (val == 1 || val == 0)) {
2723                 if (!memcg_has_children(memcg))
2724                         memcg->use_hierarchy = val;
2725                 else
2726                         retval = -EBUSY;
2727         } else
2728                 retval = -EINVAL;
2729
2730         return retval;
2731 }
2732
2733 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2734 {
2735         struct mem_cgroup *iter;
2736         int i;
2737
2738         memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2739
2740         for_each_mem_cgroup_tree(iter, memcg) {
2741                 for (i = 0; i < MEMCG_NR_STAT; i++)
2742                         stat[i] += mem_cgroup_read_stat(iter, i);
2743         }
2744 }
2745
2746 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2747 {
2748         struct mem_cgroup *iter;
2749         int i;
2750
2751         memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2752
2753         for_each_mem_cgroup_tree(iter, memcg) {
2754                 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2755                         events[i] += mem_cgroup_read_events(iter, i);
2756         }
2757 }
2758
2759 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2760 {
2761         unsigned long val = 0;
2762
2763         if (mem_cgroup_is_root(memcg)) {
2764                 struct mem_cgroup *iter;
2765
2766                 for_each_mem_cgroup_tree(iter, memcg) {
2767                         val += mem_cgroup_read_stat(iter,
2768                                         MEM_CGROUP_STAT_CACHE);
2769                         val += mem_cgroup_read_stat(iter,
2770                                         MEM_CGROUP_STAT_RSS);
2771                         if (swap)
2772                                 val += mem_cgroup_read_stat(iter,
2773                                                 MEM_CGROUP_STAT_SWAP);
2774                 }
2775         } else {
2776                 if (!swap)
2777                         val = page_counter_read(&memcg->memory);
2778                 else
2779                         val = page_counter_read(&memcg->memsw);
2780         }
2781         return val;
2782 }
2783
2784 enum {
2785         RES_USAGE,
2786         RES_LIMIT,
2787         RES_MAX_USAGE,
2788         RES_FAILCNT,
2789         RES_SOFT_LIMIT,
2790 };
2791
2792 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2793                                struct cftype *cft)
2794 {
2795         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2796         struct page_counter *counter;
2797
2798         switch (MEMFILE_TYPE(cft->private)) {
2799         case _MEM:
2800                 counter = &memcg->memory;
2801                 break;
2802         case _MEMSWAP:
2803                 counter = &memcg->memsw;
2804                 break;
2805         case _KMEM:
2806                 counter = &memcg->kmem;
2807                 break;
2808         case _TCP:
2809                 counter = &memcg->tcpmem;
2810                 break;
2811         default:
2812                 BUG();
2813         }
2814
2815         switch (MEMFILE_ATTR(cft->private)) {
2816         case RES_USAGE:
2817                 if (counter == &memcg->memory)
2818                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2819                 if (counter == &memcg->memsw)
2820                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2821                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2822         case RES_LIMIT:
2823                 return (u64)counter->limit * PAGE_SIZE;
2824         case RES_MAX_USAGE:
2825                 return (u64)counter->watermark * PAGE_SIZE;
2826         case RES_FAILCNT:
2827                 return counter->failcnt;
2828         case RES_SOFT_LIMIT:
2829                 return (u64)memcg->soft_limit * PAGE_SIZE;
2830         default:
2831                 BUG();
2832         }
2833 }
2834
2835 #ifndef CONFIG_SLOB
2836 static int memcg_online_kmem(struct mem_cgroup *memcg)
2837 {
2838         int memcg_id;
2839
2840         if (cgroup_memory_nokmem)
2841                 return 0;
2842
2843         BUG_ON(memcg->kmemcg_id >= 0);
2844         BUG_ON(memcg->kmem_state);
2845
2846         memcg_id = memcg_alloc_cache_id();
2847         if (memcg_id < 0)
2848                 return memcg_id;
2849
2850         static_branch_inc(&memcg_kmem_enabled_key);
2851         /*
2852          * A memory cgroup is considered kmem-online as soon as it gets
2853          * kmemcg_id. Setting the id after enabling static branching will
2854          * guarantee no one starts accounting before all call sites are
2855          * patched.
2856          */
2857         memcg->kmemcg_id = memcg_id;
2858         memcg->kmem_state = KMEM_ONLINE;
2859
2860         return 0;
2861 }
2862
2863 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2864 {
2865         struct cgroup_subsys_state *css;
2866         struct mem_cgroup *parent, *child;
2867         int kmemcg_id;
2868
2869         if (memcg->kmem_state != KMEM_ONLINE)
2870                 return;
2871         /*
2872          * Clear the online state before clearing memcg_caches array
2873          * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2874          * guarantees that no cache will be created for this cgroup
2875          * after we are done (see memcg_create_kmem_cache()).
2876          */
2877         memcg->kmem_state = KMEM_ALLOCATED;
2878
2879         memcg_deactivate_kmem_caches(memcg);
2880
2881         kmemcg_id = memcg->kmemcg_id;
2882         BUG_ON(kmemcg_id < 0);
2883
2884         parent = parent_mem_cgroup(memcg);
2885         if (!parent)
2886                 parent = root_mem_cgroup;
2887
2888         /*
2889          * Change kmemcg_id of this cgroup and all its descendants to the
2890          * parent's id, and then move all entries from this cgroup's list_lrus
2891          * to ones of the parent. After we have finished, all list_lrus
2892          * corresponding to this cgroup are guaranteed to remain empty. The
2893          * ordering is imposed by list_lru_node->lock taken by
2894          * memcg_drain_all_list_lrus().
2895          */
2896         css_for_each_descendant_pre(css, &memcg->css) {
2897                 child = mem_cgroup_from_css(css);
2898                 BUG_ON(child->kmemcg_id != kmemcg_id);
2899                 child->kmemcg_id = parent->kmemcg_id;
2900                 if (!memcg->use_hierarchy)
2901                         break;
2902         }
2903         memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2904
2905         memcg_free_cache_id(kmemcg_id);
2906 }
2907
2908 static void memcg_free_kmem(struct mem_cgroup *memcg)
2909 {
2910         /* css_alloc() failed, offlining didn't happen */
2911         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2912                 memcg_offline_kmem(memcg);
2913
2914         if (memcg->kmem_state == KMEM_ALLOCATED) {
2915                 memcg_destroy_kmem_caches(memcg);
2916                 static_branch_dec(&memcg_kmem_enabled_key);
2917                 WARN_ON(page_counter_read(&memcg->kmem));
2918         }
2919 }
2920 #else
2921 static int memcg_online_kmem(struct mem_cgroup *memcg)
2922 {
2923         return 0;
2924 }
2925 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2926 {
2927 }
2928 static void memcg_free_kmem(struct mem_cgroup *memcg)
2929 {
2930 }
2931 #endif /* !CONFIG_SLOB */
2932
2933 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2934                                    unsigned long limit)
2935 {
2936         int ret;
2937
2938         mutex_lock(&memcg_limit_mutex);
2939         ret = page_counter_limit(&memcg->kmem, limit);
2940         mutex_unlock(&memcg_limit_mutex);
2941         return ret;
2942 }
2943
2944 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2945 {
2946         int ret;
2947
2948         mutex_lock(&memcg_limit_mutex);
2949
2950         ret = page_counter_limit(&memcg->tcpmem, limit);
2951         if (ret)
2952                 goto out;
2953
2954         if (!memcg->tcpmem_active) {
2955                 /*
2956                  * The active flag needs to be written after the static_key
2957                  * update. This is what guarantees that the socket activation
2958                  * function is the last one to run. See sock_update_memcg() for
2959                  * details, and note that we don't mark any socket as belonging
2960                  * to this memcg until that flag is up.
2961                  *
2962                  * We need to do this, because static_keys will span multiple
2963                  * sites, but we can't control their order. If we mark a socket
2964                  * as accounted, but the accounting functions are not patched in
2965                  * yet, we'll lose accounting.
2966                  *
2967                  * We never race with the readers in sock_update_memcg(),
2968                  * because when this value change, the code to process it is not
2969                  * patched in yet.
2970                  */
2971                 static_branch_inc(&memcg_sockets_enabled_key);
2972                 memcg->tcpmem_active = true;
2973         }
2974 out:
2975         mutex_unlock(&memcg_limit_mutex);
2976         return ret;
2977 }
2978
2979 /*
2980  * The user of this function is...
2981  * RES_LIMIT.
2982  */
2983 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2984                                 char *buf, size_t nbytes, loff_t off)
2985 {
2986         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2987         unsigned long nr_pages;
2988         int ret;
2989
2990         buf = strstrip(buf);
2991         ret = page_counter_memparse(buf, "-1", &nr_pages);
2992         if (ret)
2993                 return ret;
2994
2995         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2996         case RES_LIMIT:
2997                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2998                         ret = -EINVAL;
2999                         break;
3000                 }
3001                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3002                 case _MEM:
3003                         ret = mem_cgroup_resize_limit(memcg, nr_pages);
3004                         break;
3005                 case _MEMSWAP:
3006                         ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3007                         break;
3008                 case _KMEM:
3009                         ret = memcg_update_kmem_limit(memcg, nr_pages);
3010                         break;
3011                 case _TCP:
3012                         ret = memcg_update_tcp_limit(memcg, nr_pages);
3013                         break;
3014                 }
3015                 break;
3016         case RES_SOFT_LIMIT:
3017                 memcg->soft_limit = nr_pages;
3018                 ret = 0;
3019                 break;
3020         }
3021         return ret ?: nbytes;
3022 }
3023
3024 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3025                                 size_t nbytes, loff_t off)
3026 {
3027         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3028         struct page_counter *counter;
3029
3030         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3031         case _MEM:
3032                 counter = &memcg->memory;
3033                 break;
3034         case _MEMSWAP:
3035                 counter = &memcg->memsw;
3036                 break;
3037         case _KMEM:
3038                 counter = &memcg->kmem;
3039                 break;
3040         case _TCP:
3041                 counter = &memcg->tcpmem;
3042                 break;
3043         default:
3044                 BUG();
3045         }
3046
3047         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3048         case RES_MAX_USAGE:
3049                 page_counter_reset_watermark(counter);
3050                 break;
3051         case RES_FAILCNT:
3052                 counter->failcnt = 0;
3053                 break;
3054         default:
3055                 BUG();
3056         }
3057
3058         return nbytes;
3059 }
3060
3061 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3062                                         struct cftype *cft)
3063 {
3064         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3065 }
3066
3067 #ifdef CONFIG_MMU
3068 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3069                                         struct cftype *cft, u64 val)
3070 {
3071         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3072
3073         if (val & ~MOVE_MASK)
3074                 return -EINVAL;
3075
3076         /*
3077          * No kind of locking is needed in here, because ->can_attach() will
3078          * check this value once in the beginning of the process, and then carry
3079          * on with stale data. This means that changes to this value will only
3080          * affect task migrations starting after the change.
3081          */
3082         memcg->move_charge_at_immigrate = val;
3083         return 0;
3084 }
3085 #else
3086 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3087                                         struct cftype *cft, u64 val)
3088 {
3089         return -ENOSYS;
3090 }
3091 #endif
3092
3093 #ifdef CONFIG_NUMA
3094 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3095 {
3096         struct numa_stat {
3097                 const char *name;
3098                 unsigned int lru_mask;
3099         };
3100
3101         static const struct numa_stat stats[] = {
3102                 { "total", LRU_ALL },
3103                 { "file", LRU_ALL_FILE },
3104                 { "anon", LRU_ALL_ANON },
3105                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3106         };
3107         const struct numa_stat *stat;
3108         int nid;
3109         unsigned long nr;
3110         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3111
3112         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3113                 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3114                 seq_printf(m, "%s=%lu", stat->name, nr);
3115                 for_each_node_state(nid, N_MEMORY) {
3116                         nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3117                                                           stat->lru_mask);
3118                         seq_printf(m, " N%d=%lu", nid, nr);
3119                 }
3120                 seq_putc(m, '\n');
3121         }
3122
3123         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3124                 struct mem_cgroup *iter;
3125
3126                 nr = 0;
3127                 for_each_mem_cgroup_tree(iter, memcg)
3128                         nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3129                 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3130                 for_each_node_state(nid, N_MEMORY) {
3131                         nr = 0;
3132                         for_each_mem_cgroup_tree(iter, memcg)
3133                                 nr += mem_cgroup_node_nr_lru_pages(
3134                                         iter, nid, stat->lru_mask);
3135                         seq_printf(m, " N%d=%lu", nid, nr);
3136                 }
3137                 seq_putc(m, '\n');
3138         }
3139
3140         return 0;
3141 }
3142 #endif /* CONFIG_NUMA */
3143
3144 static int memcg_stat_show(struct seq_file *m, void *v)
3145 {
3146         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3147         unsigned long memory, memsw;
3148         struct mem_cgroup *mi;
3149         unsigned int i;
3150
3151         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3152                      MEM_CGROUP_STAT_NSTATS);
3153         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3154                      MEM_CGROUP_EVENTS_NSTATS);
3155         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3156
3157         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3158                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3159                         continue;
3160                 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3161                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3162         }
3163
3164         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3165                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3166                            mem_cgroup_read_events(memcg, i));
3167
3168         for (i = 0; i < NR_LRU_LISTS; i++)
3169                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3170                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3171
3172         /* Hierarchical information */
3173         memory = memsw = PAGE_COUNTER_MAX;
3174         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3175                 memory = min(memory, mi->memory.limit);
3176                 memsw = min(memsw, mi->memsw.limit);
3177         }
3178         seq_printf(m, "hierarchical_memory_limit %llu\n",
3179                    (u64)memory * PAGE_SIZE);
3180         if (do_memsw_account())
3181                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3182                            (u64)memsw * PAGE_SIZE);
3183
3184         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3185                 unsigned long long val = 0;
3186
3187                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3188                         continue;
3189                 for_each_mem_cgroup_tree(mi, memcg)
3190                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3191                 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3192         }
3193
3194         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3195                 unsigned long long val = 0;
3196
3197                 for_each_mem_cgroup_tree(mi, memcg)
3198                         val += mem_cgroup_read_events(mi, i);
3199                 seq_printf(m, "total_%s %llu\n",
3200                            mem_cgroup_events_names[i], val);
3201         }
3202
3203         for (i = 0; i < NR_LRU_LISTS; i++) {
3204                 unsigned long long val = 0;
3205
3206                 for_each_mem_cgroup_tree(mi, memcg)
3207                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3208                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3209         }
3210
3211 #ifdef CONFIG_DEBUG_VM
3212         {
3213                 int nid, zid;
3214                 struct mem_cgroup_per_zone *mz;
3215                 struct zone_reclaim_stat *rstat;
3216                 unsigned long recent_rotated[2] = {0, 0};
3217                 unsigned long recent_scanned[2] = {0, 0};
3218
3219                 for_each_online_node(nid)
3220                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3221                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3222                                 rstat = &mz->lruvec.reclaim_stat;
3223
3224                                 recent_rotated[0] += rstat->recent_rotated[0];
3225                                 recent_rotated[1] += rstat->recent_rotated[1];
3226                                 recent_scanned[0] += rstat->recent_scanned[0];
3227                                 recent_scanned[1] += rstat->recent_scanned[1];
3228                         }
3229                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3230                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3231                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3232                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3233         }
3234 #endif
3235
3236         return 0;
3237 }
3238
3239 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3240                                       struct cftype *cft)
3241 {
3242         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3243
3244         return mem_cgroup_swappiness(memcg);
3245 }
3246
3247 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3248                                        struct cftype *cft, u64 val)
3249 {
3250         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3251
3252         if (val > 100)
3253                 return -EINVAL;
3254
3255         if (css->parent)
3256                 memcg->swappiness = val;
3257         else
3258                 vm_swappiness = val;
3259
3260         return 0;
3261 }
3262
3263 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3264 {
3265         struct mem_cgroup_threshold_ary *t;
3266         unsigned long usage;
3267         int i;
3268
3269         rcu_read_lock();
3270         if (!swap)
3271                 t = rcu_dereference(memcg->thresholds.primary);
3272         else
3273                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3274
3275         if (!t)
3276                 goto unlock;
3277
3278         usage = mem_cgroup_usage(memcg, swap);
3279
3280         /*
3281          * current_threshold points to threshold just below or equal to usage.
3282          * If it's not true, a threshold was crossed after last
3283          * call of __mem_cgroup_threshold().
3284          */
3285         i = t->current_threshold;
3286
3287         /*
3288          * Iterate backward over array of thresholds starting from
3289          * current_threshold and check if a threshold is crossed.
3290          * If none of thresholds below usage is crossed, we read
3291          * only one element of the array here.
3292          */
3293         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3294                 eventfd_signal(t->entries[i].eventfd, 1);
3295
3296         /* i = current_threshold + 1 */
3297         i++;
3298
3299         /*
3300          * Iterate forward over array of thresholds starting from
3301          * current_threshold+1 and check if a threshold is crossed.
3302          * If none of thresholds above usage is crossed, we read
3303          * only one element of the array here.
3304          */
3305         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3306                 eventfd_signal(t->entries[i].eventfd, 1);
3307
3308         /* Update current_threshold */
3309         t->current_threshold = i - 1;
3310 unlock:
3311         rcu_read_unlock();
3312 }
3313
3314 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3315 {
3316         while (memcg) {
3317                 __mem_cgroup_threshold(memcg, false);
3318                 if (do_memsw_account())
3319                         __mem_cgroup_threshold(memcg, true);
3320
3321                 memcg = parent_mem_cgroup(memcg);
3322         }
3323 }
3324
3325 static int compare_thresholds(const void *a, const void *b)
3326 {
3327         const struct mem_cgroup_threshold *_a = a;
3328         const struct mem_cgroup_threshold *_b = b;
3329
3330         if (_a->threshold > _b->threshold)
3331                 return 1;
3332
3333         if (_a->threshold < _b->threshold)
3334                 return -1;
3335
3336         return 0;
3337 }
3338
3339 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3340 {
3341         struct mem_cgroup_eventfd_list *ev;
3342
3343         spin_lock(&memcg_oom_lock);
3344
3345         list_for_each_entry(ev, &memcg->oom_notify, list)
3346                 eventfd_signal(ev->eventfd, 1);
3347
3348         spin_unlock(&memcg_oom_lock);
3349         return 0;
3350 }
3351
3352 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3353 {
3354         struct mem_cgroup *iter;
3355
3356         for_each_mem_cgroup_tree(iter, memcg)
3357                 mem_cgroup_oom_notify_cb(iter);
3358 }
3359
3360 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3361         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3362 {
3363         struct mem_cgroup_thresholds *thresholds;
3364         struct mem_cgroup_threshold_ary *new;
3365         unsigned long threshold;
3366         unsigned long usage;
3367         int i, size, ret;
3368
3369         ret = page_counter_memparse(args, "-1", &threshold);
3370         if (ret)
3371                 return ret;
3372
3373         mutex_lock(&memcg->thresholds_lock);
3374
3375         if (type == _MEM) {
3376                 thresholds = &memcg->thresholds;
3377                 usage = mem_cgroup_usage(memcg, false);
3378         } else if (type == _MEMSWAP) {
3379                 thresholds = &memcg->memsw_thresholds;
3380                 usage = mem_cgroup_usage(memcg, true);
3381         } else
3382                 BUG();
3383
3384         /* Check if a threshold crossed before adding a new one */
3385         if (thresholds->primary)
3386                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3387
3388         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3389
3390         /* Allocate memory for new array of thresholds */
3391         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3392                         GFP_KERNEL);
3393         if (!new) {
3394                 ret = -ENOMEM;
3395                 goto unlock;
3396         }
3397         new->size = size;
3398
3399         /* Copy thresholds (if any) to new array */
3400         if (thresholds->primary) {
3401                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3402                                 sizeof(struct mem_cgroup_threshold));
3403         }
3404
3405         /* Add new threshold */
3406         new->entries[size - 1].eventfd = eventfd;
3407         new->entries[size - 1].threshold = threshold;
3408
3409         /* Sort thresholds. Registering of new threshold isn't time-critical */
3410         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3411                         compare_thresholds, NULL);
3412
3413         /* Find current threshold */
3414         new->current_threshold = -1;
3415         for (i = 0; i < size; i++) {
3416                 if (new->entries[i].threshold <= usage) {
3417                         /*
3418                          * new->current_threshold will not be used until
3419                          * rcu_assign_pointer(), so it's safe to increment
3420                          * it here.
3421                          */
3422                         ++new->current_threshold;
3423                 } else
3424                         break;
3425         }
3426
3427         /* Free old spare buffer and save old primary buffer as spare */
3428         kfree(thresholds->spare);
3429         thresholds->spare = thresholds->primary;
3430
3431         rcu_assign_pointer(thresholds->primary, new);
3432
3433         /* To be sure that nobody uses thresholds */
3434         synchronize_rcu();
3435
3436 unlock:
3437         mutex_unlock(&memcg->thresholds_lock);
3438
3439         return ret;
3440 }
3441
3442 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3443         struct eventfd_ctx *eventfd, const char *args)
3444 {
3445         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3446 }
3447
3448 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3449         struct eventfd_ctx *eventfd, const char *args)
3450 {
3451         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3452 }
3453
3454 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3455         struct eventfd_ctx *eventfd, enum res_type type)
3456 {
3457         struct mem_cgroup_thresholds *thresholds;
3458         struct mem_cgroup_threshold_ary *new;
3459         unsigned long usage;
3460         int i, j, size;
3461
3462         mutex_lock(&memcg->thresholds_lock);
3463
3464         if (type == _MEM) {
3465                 thresholds = &memcg->thresholds;
3466                 usage = mem_cgroup_usage(memcg, false);
3467         } else if (type == _MEMSWAP) {
3468                 thresholds = &memcg->memsw_thresholds;
3469                 usage = mem_cgroup_usage(memcg, true);
3470         } else
3471                 BUG();
3472
3473         if (!thresholds->primary)
3474                 goto unlock;
3475
3476         /* Check if a threshold crossed before removing */
3477         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3478
3479         /* Calculate new number of threshold */
3480         size = 0;
3481         for (i = 0; i < thresholds->primary->size; i++) {
3482                 if (thresholds->primary->entries[i].eventfd != eventfd)
3483                         size++;
3484         }
3485
3486         new = thresholds->spare;
3487
3488         /* Set thresholds array to NULL if we don't have thresholds */
3489         if (!size) {
3490                 kfree(new);
3491                 new = NULL;
3492                 goto swap_buffers;
3493         }
3494
3495         new->size = size;
3496
3497         /* Copy thresholds and find current threshold */
3498         new->current_threshold = -1;
3499         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3500                 if (thresholds->primary->entries[i].eventfd == eventfd)
3501                         continue;
3502
3503                 new->entries[j] = thresholds->primary->entries[i];
3504                 if (new->entries[j].threshold <= usage) {
3505                         /*
3506                          * new->current_threshold will not be used
3507                          * until rcu_assign_pointer(), so it's safe to increment
3508                          * it here.
3509                          */
3510                         ++new->current_threshold;
3511                 }
3512                 j++;
3513         }
3514
3515 swap_buffers:
3516         /* Swap primary and spare array */
3517         thresholds->spare = thresholds->primary;
3518
3519         rcu_assign_pointer(thresholds->primary, new);
3520
3521         /* To be sure that nobody uses thresholds */
3522         synchronize_rcu();
3523
3524         /* If all events are unregistered, free the spare array */
3525         if (!new) {
3526                 kfree(thresholds->spare);
3527                 thresholds->spare = NULL;
3528         }
3529 unlock:
3530         mutex_unlock(&memcg->thresholds_lock);
3531 }
3532
3533 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3534         struct eventfd_ctx *eventfd)
3535 {
3536         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3537 }
3538
3539 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3540         struct eventfd_ctx *eventfd)
3541 {
3542         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3543 }
3544
3545 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3546         struct eventfd_ctx *eventfd, const char *args)
3547 {
3548         struct mem_cgroup_eventfd_list *event;
3549
3550         event = kmalloc(sizeof(*event), GFP_KERNEL);
3551         if (!event)
3552                 return -ENOMEM;
3553
3554         spin_lock(&memcg_oom_lock);
3555
3556         event->eventfd = eventfd;
3557         list_add(&event->list, &memcg->oom_notify);
3558
3559         /* already in OOM ? */
3560         if (memcg->under_oom)
3561                 eventfd_signal(eventfd, 1);
3562         spin_unlock(&memcg_oom_lock);
3563
3564         return 0;
3565 }
3566
3567 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3568         struct eventfd_ctx *eventfd)
3569 {
3570         struct mem_cgroup_eventfd_list *ev, *tmp;
3571
3572         spin_lock(&memcg_oom_lock);
3573
3574         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3575                 if (ev->eventfd == eventfd) {
3576                         list_del(&ev->list);
3577                         kfree(ev);
3578                 }
3579         }
3580
3581         spin_unlock(&memcg_oom_lock);
3582 }
3583
3584 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3585 {
3586         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3587
3588         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3589         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3590         return 0;
3591 }
3592
3593 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3594         struct cftype *cft, u64 val)
3595 {
3596         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3597
3598         /* cannot set to root cgroup and only 0 and 1 are allowed */
3599         if (!css->parent || !((val == 0) || (val == 1)))
3600                 return -EINVAL;
3601
3602         memcg->oom_kill_disable = val;
3603         if (!val)
3604                 memcg_oom_recover(memcg);
3605
3606         return 0;
3607 }
3608
3609 #ifdef CONFIG_CGROUP_WRITEBACK
3610
3611 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3612 {
3613         return &memcg->cgwb_list;
3614 }
3615
3616 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3617 {
3618         return wb_domain_init(&memcg->cgwb_domain, gfp);
3619 }
3620
3621 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3622 {
3623         wb_domain_exit(&memcg->cgwb_domain);
3624 }
3625
3626 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3627 {
3628         wb_domain_size_changed(&memcg->cgwb_domain);
3629 }
3630
3631 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3632 {
3633         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3634
3635         if (!memcg->css.parent)
3636                 return NULL;
3637
3638         return &memcg->cgwb_domain;
3639 }
3640
3641 /**
3642  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3643  * @wb: bdi_writeback in question
3644  * @pfilepages: out parameter for number of file pages
3645  * @pheadroom: out parameter for number of allocatable pages according to memcg
3646  * @pdirty: out parameter for number of dirty pages
3647  * @pwriteback: out parameter for number of pages under writeback
3648  *
3649  * Determine the numbers of file, headroom, dirty, and writeback pages in
3650  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3651  * is a bit more involved.
3652  *
3653  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3654  * headroom is calculated as the lowest headroom of itself and the
3655  * ancestors.  Note that this doesn't consider the actual amount of
3656  * available memory in the system.  The caller should further cap
3657  * *@pheadroom accordingly.
3658  */
3659 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3660                          unsigned long *pheadroom, unsigned long *pdirty,
3661                          unsigned long *pwriteback)
3662 {
3663         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3664         struct mem_cgroup *parent;
3665
3666         *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3667
3668         /* this should eventually include NR_UNSTABLE_NFS */
3669         *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3670         *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3671                                                      (1 << LRU_ACTIVE_FILE));
3672         *pheadroom = PAGE_COUNTER_MAX;
3673
3674         while ((parent = parent_mem_cgroup(memcg))) {
3675                 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3676                 unsigned long used = page_counter_read(&memcg->memory);
3677
3678                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3679                 memcg = parent;
3680         }
3681 }
3682
3683 #else   /* CONFIG_CGROUP_WRITEBACK */
3684
3685 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3686 {
3687         return 0;
3688 }
3689
3690 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3691 {
3692 }
3693
3694 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3695 {
3696 }
3697
3698 #endif  /* CONFIG_CGROUP_WRITEBACK */
3699
3700 /*
3701  * DO NOT USE IN NEW FILES.
3702  *
3703  * "cgroup.event_control" implementation.
3704  *
3705  * This is way over-engineered.  It tries to support fully configurable
3706  * events for each user.  Such level of flexibility is completely
3707  * unnecessary especially in the light of the planned unified hierarchy.
3708  *
3709  * Please deprecate this and replace with something simpler if at all
3710  * possible.
3711  */
3712
3713 /*
3714  * Unregister event and free resources.
3715  *
3716  * Gets called from workqueue.
3717  */
3718 static void memcg_event_remove(struct work_struct *work)
3719 {
3720         struct mem_cgroup_event *event =
3721                 container_of(work, struct mem_cgroup_event, remove);
3722         struct mem_cgroup *memcg = event->memcg;
3723
3724         remove_wait_queue(event->wqh, &event->wait);
3725
3726         event->unregister_event(memcg, event->eventfd);
3727
3728         /* Notify userspace the event is going away. */
3729         eventfd_signal(event->eventfd, 1);
3730
3731         eventfd_ctx_put(event->eventfd);
3732         kfree(event);
3733         css_put(&memcg->css);
3734 }
3735
3736 /*
3737  * Gets called on POLLHUP on eventfd when user closes it.
3738  *
3739  * Called with wqh->lock held and interrupts disabled.
3740  */
3741 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3742                             int sync, void *key)
3743 {
3744         struct mem_cgroup_event *event =
3745                 container_of(wait, struct mem_cgroup_event, wait);
3746         struct mem_cgroup *memcg = event->memcg;
3747         unsigned long flags = (unsigned long)key;
3748
3749         if (flags & POLLHUP) {
3750                 /*
3751                  * If the event has been detached at cgroup removal, we
3752                  * can simply return knowing the other side will cleanup
3753                  * for us.
3754                  *
3755                  * We can't race against event freeing since the other
3756                  * side will require wqh->lock via remove_wait_queue(),
3757                  * which we hold.
3758                  */
3759                 spin_lock(&memcg->event_list_lock);
3760                 if (!list_empty(&event->list)) {
3761                         list_del_init(&event->list);
3762                         /*
3763                          * We are in atomic context, but cgroup_event_remove()
3764                          * may sleep, so we have to call it in workqueue.
3765                          */
3766                         schedule_work(&event->remove);
3767                 }
3768                 spin_unlock(&memcg->event_list_lock);
3769         }
3770
3771         return 0;
3772 }
3773
3774 static void memcg_event_ptable_queue_proc(struct file *file,
3775                 wait_queue_head_t *wqh, poll_table *pt)
3776 {
3777         struct mem_cgroup_event *event =
3778                 container_of(pt, struct mem_cgroup_event, pt);
3779
3780         event->wqh = wqh;
3781         add_wait_queue(wqh, &event->wait);
3782 }
3783
3784 /*
3785  * DO NOT USE IN NEW FILES.
3786  *
3787  * Parse input and register new cgroup event handler.
3788  *
3789  * Input must be in format '<event_fd> <control_fd> <args>'.
3790  * Interpretation of args is defined by control file implementation.
3791  */
3792 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3793                                          char *buf, size_t nbytes, loff_t off)
3794 {
3795         struct cgroup_subsys_state *css = of_css(of);
3796         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3797         struct mem_cgroup_event *event;
3798         struct cgroup_subsys_state *cfile_css;
3799         unsigned int efd, cfd;
3800         struct fd efile;
3801         struct fd cfile;
3802         const char *name;
3803         char *endp;
3804         int ret;
3805
3806         buf = strstrip(buf);
3807
3808         efd = simple_strtoul(buf, &endp, 10);
3809         if (*endp != ' ')
3810                 return -EINVAL;
3811         buf = endp + 1;
3812
3813         cfd = simple_strtoul(buf, &endp, 10);
3814         if ((*endp != ' ') && (*endp != '\0'))
3815                 return -EINVAL;
3816         buf = endp + 1;
3817
3818         event = kzalloc(sizeof(*event), GFP_KERNEL);
3819         if (!event)
3820                 return -ENOMEM;
3821
3822         event->memcg = memcg;
3823         INIT_LIST_HEAD(&event->list);
3824         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3825         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3826         INIT_WORK(&event->remove, memcg_event_remove);
3827
3828         efile = fdget(efd);
3829         if (!efile.file) {
3830                 ret = -EBADF;
3831                 goto out_kfree;
3832         }
3833
3834         event->eventfd = eventfd_ctx_fileget(efile.file);
3835         if (IS_ERR(event->eventfd)) {
3836                 ret = PTR_ERR(event->eventfd);
3837                 goto out_put_efile;
3838         }
3839
3840         cfile = fdget(cfd);
3841         if (!cfile.file) {
3842                 ret = -EBADF;
3843                 goto out_put_eventfd;
3844         }
3845
3846         /* the process need read permission on control file */
3847         /* AV: shouldn't we check that it's been opened for read instead? */
3848         ret = inode_permission(file_inode(cfile.file), MAY_READ);
3849         if (ret < 0)
3850                 goto out_put_cfile;
3851
3852         /*
3853          * Determine the event callbacks and set them in @event.  This used
3854          * to be done via struct cftype but cgroup core no longer knows
3855          * about these events.  The following is crude but the whole thing
3856          * is for compatibility anyway.
3857          *
3858          * DO NOT ADD NEW FILES.
3859          */
3860         name = cfile.file->f_path.dentry->d_name.name;
3861
3862         if (!strcmp(name, "memory.usage_in_bytes")) {
3863                 event->register_event = mem_cgroup_usage_register_event;
3864                 event->unregister_event = mem_cgroup_usage_unregister_event;
3865         } else if (!strcmp(name, "memory.oom_control")) {
3866                 event->register_event = mem_cgroup_oom_register_event;
3867                 event->unregister_event = mem_cgroup_oom_unregister_event;
3868         } else if (!strcmp(name, "memory.pressure_level")) {
3869                 event->register_event = vmpressure_register_event;
3870                 event->unregister_event = vmpressure_unregister_event;
3871         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3872                 event->register_event = memsw_cgroup_usage_register_event;
3873                 event->unregister_event = memsw_cgroup_usage_unregister_event;
3874         } else {
3875                 ret = -EINVAL;
3876                 goto out_put_cfile;
3877         }
3878
3879         /*
3880          * Verify @cfile should belong to @css.  Also, remaining events are
3881          * automatically removed on cgroup destruction but the removal is
3882          * asynchronous, so take an extra ref on @css.
3883          */
3884         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3885                                                &memory_cgrp_subsys);
3886         ret = -EINVAL;
3887         if (IS_ERR(cfile_css))
3888                 goto out_put_cfile;
3889         if (cfile_css != css) {
3890                 css_put(cfile_css);
3891                 goto out_put_cfile;
3892         }
3893
3894         ret = event->register_event(memcg, event->eventfd, buf);
3895         if (ret)
3896                 goto out_put_css;
3897
3898         efile.file->f_op->poll(efile.file, &event->pt);
3899
3900         spin_lock(&memcg->event_list_lock);
3901         list_add(&event->list, &memcg->event_list);
3902         spin_unlock(&memcg->event_list_lock);
3903
3904         fdput(cfile);
3905         fdput(efile);
3906
3907         return nbytes;
3908
3909 out_put_css:
3910         css_put(css);
3911 out_put_cfile:
3912         fdput(cfile);
3913 out_put_eventfd:
3914         eventfd_ctx_put(event->eventfd);
3915 out_put_efile:
3916         fdput(efile);
3917 out_kfree:
3918         kfree(event);
3919
3920         return ret;
3921 }
3922
3923 static struct cftype mem_cgroup_legacy_files[] = {
3924         {
3925                 .name = "usage_in_bytes",
3926                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3927                 .read_u64 = mem_cgroup_read_u64,
3928         },
3929         {
3930                 .name = "max_usage_in_bytes",
3931                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3932                 .write = mem_cgroup_reset,
3933                 .read_u64 = mem_cgroup_read_u64,
3934         },
3935         {
3936                 .name = "limit_in_bytes",
3937                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3938                 .write = mem_cgroup_write,
3939                 .read_u64 = mem_cgroup_read_u64,
3940         },
3941         {
3942                 .name = "soft_limit_in_bytes",
3943                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3944                 .write = mem_cgroup_write,
3945                 .read_u64 = mem_cgroup_read_u64,
3946         },
3947         {
3948                 .name = "failcnt",
3949                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3950                 .write = mem_cgroup_reset,
3951                 .read_u64 = mem_cgroup_read_u64,
3952         },
3953         {
3954                 .name = "stat",
3955                 .seq_show = memcg_stat_show,
3956         },
3957         {
3958                 .name = "force_empty",
3959                 .write = mem_cgroup_force_empty_write,
3960         },
3961         {
3962                 .name = "use_hierarchy",
3963                 .write_u64 = mem_cgroup_hierarchy_write,
3964                 .read_u64 = mem_cgroup_hierarchy_read,
3965         },
3966         {
3967                 .name = "cgroup.event_control",         /* XXX: for compat */
3968                 .write = memcg_write_event_control,
3969                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3970         },
3971         {
3972                 .name = "swappiness",
3973                 .read_u64 = mem_cgroup_swappiness_read,
3974                 .write_u64 = mem_cgroup_swappiness_write,
3975         },
3976         {
3977                 .name = "move_charge_at_immigrate",
3978                 .read_u64 = mem_cgroup_move_charge_read,
3979                 .write_u64 = mem_cgroup_move_charge_write,
3980         },
3981         {
3982                 .name = "oom_control",
3983                 .seq_show = mem_cgroup_oom_control_read,
3984                 .write_u64 = mem_cgroup_oom_control_write,
3985                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3986         },
3987         {
3988                 .name = "pressure_level",
3989         },
3990 #ifdef CONFIG_NUMA
3991         {
3992                 .name = "numa_stat",
3993                 .seq_show = memcg_numa_stat_show,
3994         },
3995 #endif
3996         {
3997                 .name = "kmem.limit_in_bytes",
3998                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3999                 .write = mem_cgroup_write,
4000                 .read_u64 = mem_cgroup_read_u64,
4001         },
4002         {
4003                 .name = "kmem.usage_in_bytes",
4004                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4005                 .read_u64 = mem_cgroup_read_u64,
4006         },
4007         {
4008                 .name = "kmem.failcnt",
4009                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4010                 .write = mem_cgroup_reset,
4011                 .read_u64 = mem_cgroup_read_u64,
4012         },
4013         {
4014                 .name = "kmem.max_usage_in_bytes",
4015                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4016                 .write = mem_cgroup_reset,
4017                 .read_u64 = mem_cgroup_read_u64,
4018         },
4019 #ifdef CONFIG_SLABINFO
4020         {
4021                 .name = "kmem.slabinfo",
4022                 .seq_start = slab_start,
4023                 .seq_next = slab_next,
4024                 .seq_stop = slab_stop,
4025                 .seq_show = memcg_slab_show,
4026         },
4027 #endif
4028         {
4029                 .name = "kmem.tcp.limit_in_bytes",
4030                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4031                 .write = mem_cgroup_write,
4032                 .read_u64 = mem_cgroup_read_u64,
4033         },
4034         {
4035                 .name = "kmem.tcp.usage_in_bytes",
4036                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4037                 .read_u64 = mem_cgroup_read_u64,
4038         },
4039         {
4040                 .name = "kmem.tcp.failcnt",
4041                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4042                 .write = mem_cgroup_reset,
4043                 .read_u64 = mem_cgroup_read_u64,
4044         },
4045         {
4046                 .name = "kmem.tcp.max_usage_in_bytes",
4047                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4048                 .write = mem_cgroup_reset,
4049                 .read_u64 = mem_cgroup_read_u64,
4050         },
4051         { },    /* terminate */
4052 };
4053
4054 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4055 {
4056         struct mem_cgroup_per_node *pn;
4057         struct mem_cgroup_per_zone *mz;
4058         int zone, tmp = node;
4059         /*
4060          * This routine is called against possible nodes.
4061          * But it's BUG to call kmalloc() against offline node.
4062          *
4063          * TODO: this routine can waste much memory for nodes which will
4064          *       never be onlined. It's better to use memory hotplug callback
4065          *       function.
4066          */
4067         if (!node_state(node, N_NORMAL_MEMORY))
4068                 tmp = -1;
4069         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4070         if (!pn)
4071                 return 1;
4072
4073         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4074                 mz = &pn->zoneinfo[zone];
4075                 lruvec_init(&mz->lruvec);
4076                 mz->usage_in_excess = 0;
4077                 mz->on_tree = false;
4078                 mz->memcg = memcg;
4079         }
4080         memcg->nodeinfo[node] = pn;
4081         return 0;
4082 }
4083
4084 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4085 {
4086         kfree(memcg->nodeinfo[node]);
4087 }
4088
4089 static void mem_cgroup_free(struct mem_cgroup *memcg)
4090 {
4091         int node;
4092
4093         memcg_wb_domain_exit(memcg);
4094         for_each_node(node)
4095                 free_mem_cgroup_per_zone_info(memcg, node);
4096         free_percpu(memcg->stat);
4097         kfree(memcg);
4098 }
4099
4100 static struct mem_cgroup *mem_cgroup_alloc(void)
4101 {
4102         struct mem_cgroup *memcg;
4103         size_t size;
4104         int node;
4105
4106         size = sizeof(struct mem_cgroup);
4107         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4108
4109         memcg = kzalloc(size, GFP_KERNEL);
4110         if (!memcg)
4111                 return NULL;
4112
4113         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4114         if (!memcg->stat)
4115                 goto fail;
4116
4117         for_each_node(node)
4118                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4119                         goto fail;
4120
4121         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4122                 goto fail;
4123
4124         INIT_WORK(&memcg->high_work, high_work_func);
4125         memcg->last_scanned_node = MAX_NUMNODES;
4126         INIT_LIST_HEAD(&memcg->oom_notify);
4127         mutex_init(&memcg->thresholds_lock);
4128         spin_lock_init(&memcg->move_lock);
4129         vmpressure_init(&memcg->vmpressure);
4130         INIT_LIST_HEAD(&memcg->event_list);
4131         spin_lock_init(&memcg->event_list_lock);
4132         memcg->socket_pressure = jiffies;
4133 #ifndef CONFIG_SLOB
4134         memcg->kmemcg_id = -1;
4135 #endif
4136 #ifdef CONFIG_CGROUP_WRITEBACK
4137         INIT_LIST_HEAD(&memcg->cgwb_list);
4138 #endif
4139         return memcg;
4140 fail:
4141         mem_cgroup_free(memcg);
4142         return NULL;
4143 }
4144
4145 static struct cgroup_subsys_state * __ref
4146 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4147 {
4148         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4149         struct mem_cgroup *memcg;
4150         long error = -ENOMEM;
4151
4152         memcg = mem_cgroup_alloc();
4153         if (!memcg)
4154                 return ERR_PTR(error);
4155
4156         memcg->high = PAGE_COUNTER_MAX;
4157         memcg->soft_limit = PAGE_COUNTER_MAX;
4158         if (parent) {
4159                 memcg->swappiness = mem_cgroup_swappiness(parent);
4160                 memcg->oom_kill_disable = parent->oom_kill_disable;
4161         }
4162         if (parent && parent->use_hierarchy) {
4163                 memcg->use_hierarchy = true;
4164                 page_counter_init(&memcg->memory, &parent->memory);
4165                 page_counter_init(&memcg->swap, &parent->swap);
4166                 page_counter_init(&memcg->memsw, &parent->memsw);
4167                 page_counter_init(&memcg->kmem, &parent->kmem);
4168                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4169         } else {
4170                 page_counter_init(&memcg->memory, NULL);
4171                 page_counter_init(&memcg->swap, NULL);
4172                 page_counter_init(&memcg->memsw, NULL);
4173                 page_counter_init(&memcg->kmem, NULL);
4174                 page_counter_init(&memcg->tcpmem, NULL);
4175                 /*
4176                  * Deeper hierachy with use_hierarchy == false doesn't make
4177                  * much sense so let cgroup subsystem know about this
4178                  * unfortunate state in our controller.
4179                  */
4180                 if (parent != root_mem_cgroup)
4181                         memory_cgrp_subsys.broken_hierarchy = true;
4182         }
4183
4184         /* The following stuff does not apply to the root */
4185         if (!parent) {
4186                 root_mem_cgroup = memcg;
4187                 return &memcg->css;
4188         }
4189
4190         error = memcg_online_kmem(memcg);
4191         if (error)
4192                 goto fail;
4193
4194         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4195                 static_branch_inc(&memcg_sockets_enabled_key);
4196
4197         return &memcg->css;
4198 fail:
4199         mem_cgroup_free(memcg);
4200         return NULL;
4201 }
4202
4203 static int
4204 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4205 {
4206         if (css->id > MEM_CGROUP_ID_MAX)
4207                 return -ENOSPC;
4208
4209         return 0;
4210 }
4211
4212 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4213 {
4214         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4215         struct mem_cgroup_event *event, *tmp;
4216
4217         /*
4218          * Unregister events and notify userspace.
4219          * Notify userspace about cgroup removing only after rmdir of cgroup
4220          * directory to avoid race between userspace and kernelspace.
4221          */
4222         spin_lock(&memcg->event_list_lock);
4223         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4224                 list_del_init(&event->list);
4225                 schedule_work(&event->remove);
4226         }
4227         spin_unlock(&memcg->event_list_lock);
4228
4229         memcg_offline_kmem(memcg);
4230         wb_memcg_offline(memcg);
4231 }
4232
4233 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4234 {
4235         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4236
4237         invalidate_reclaim_iterators(memcg);
4238 }
4239
4240 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4241 {
4242         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4243
4244         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4245                 static_branch_dec(&memcg_sockets_enabled_key);
4246
4247         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4248                 static_branch_dec(&memcg_sockets_enabled_key);
4249
4250         vmpressure_cleanup(&memcg->vmpressure);
4251         cancel_work_sync(&memcg->high_work);
4252         mem_cgroup_remove_from_trees(memcg);
4253         memcg_free_kmem(memcg);
4254         mem_cgroup_free(memcg);
4255 }
4256
4257 /**
4258  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4259  * @css: the target css
4260  *
4261  * Reset the states of the mem_cgroup associated with @css.  This is
4262  * invoked when the userland requests disabling on the default hierarchy
4263  * but the memcg is pinned through dependency.  The memcg should stop
4264  * applying policies and should revert to the vanilla state as it may be
4265  * made visible again.
4266  *
4267  * The current implementation only resets the essential configurations.
4268  * This needs to be expanded to cover all the visible parts.
4269  */
4270 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4271 {
4272         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4273
4274         page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4275         page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4276         page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4277         page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4278         page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4279         memcg->low = 0;
4280         memcg->high = PAGE_COUNTER_MAX;
4281         memcg->soft_limit = PAGE_COUNTER_MAX;
4282         memcg_wb_domain_size_changed(memcg);
4283 }
4284
4285 #ifdef CONFIG_MMU
4286 /* Handlers for move charge at task migration. */
4287 static int mem_cgroup_do_precharge(unsigned long count)
4288 {
4289         int ret;
4290
4291         /* Try a single bulk charge without reclaim first, kswapd may wake */
4292         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4293         if (!ret) {
4294                 mc.precharge += count;
4295                 return ret;
4296         }
4297
4298         /* Try charges one by one with reclaim */
4299         while (count--) {
4300                 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4301                 if (ret)
4302                         return ret;
4303                 mc.precharge++;
4304                 cond_resched();
4305         }
4306         return 0;
4307 }
4308
4309 /**
4310  * get_mctgt_type - get target type of moving charge
4311  * @vma: the vma the pte to be checked belongs
4312  * @addr: the address corresponding to the pte to be checked
4313  * @ptent: the pte to be checked
4314  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4315  *
4316  * Returns
4317  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4318  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4319  *     move charge. if @target is not NULL, the page is stored in target->page
4320  *     with extra refcnt got(Callers should handle it).
4321  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4322  *     target for charge migration. if @target is not NULL, the entry is stored
4323  *     in target->ent.
4324  *
4325  * Called with pte lock held.
4326  */
4327 union mc_target {
4328         struct page     *page;
4329         swp_entry_t     ent;
4330 };
4331
4332 enum mc_target_type {
4333         MC_TARGET_NONE = 0,
4334         MC_TARGET_PAGE,
4335         MC_TARGET_SWAP,
4336 };
4337
4338 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4339                                                 unsigned long addr, pte_t ptent)
4340 {
4341         struct page *page = vm_normal_page(vma, addr, ptent);
4342
4343         if (!page || !page_mapped(page))
4344                 return NULL;
4345         if (PageAnon(page)) {
4346                 if (!(mc.flags & MOVE_ANON))
4347                         return NULL;
4348         } else {
4349                 if (!(mc.flags & MOVE_FILE))
4350                         return NULL;
4351         }
4352         if (!get_page_unless_zero(page))
4353                 return NULL;
4354
4355         return page;
4356 }
4357
4358 #ifdef CONFIG_SWAP
4359 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4360                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4361 {
4362         struct page *page = NULL;
4363         swp_entry_t ent = pte_to_swp_entry(ptent);
4364
4365         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4366                 return NULL;
4367         /*
4368          * Because lookup_swap_cache() updates some statistics counter,
4369          * we call find_get_page() with swapper_space directly.
4370          */
4371         page = find_get_page(swap_address_space(ent), ent.val);
4372         if (do_memsw_account())
4373                 entry->val = ent.val;
4374
4375         return page;
4376 }
4377 #else
4378 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4379                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4380 {
4381         return NULL;
4382 }
4383 #endif
4384
4385 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4386                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4387 {
4388         struct page *page = NULL;
4389         struct address_space *mapping;
4390         pgoff_t pgoff;
4391
4392         if (!vma->vm_file) /* anonymous vma */
4393                 return NULL;
4394         if (!(mc.flags & MOVE_FILE))
4395                 return NULL;
4396
4397         mapping = vma->vm_file->f_mapping;
4398         pgoff = linear_page_index(vma, addr);
4399
4400         /* page is moved even if it's not RSS of this task(page-faulted). */
4401 #ifdef CONFIG_SWAP
4402         /* shmem/tmpfs may report page out on swap: account for that too. */
4403         if (shmem_mapping(mapping)) {
4404                 page = find_get_entry(mapping, pgoff);
4405                 if (radix_tree_exceptional_entry(page)) {
4406                         swp_entry_t swp = radix_to_swp_entry(page);
4407                         if (do_memsw_account())
4408                                 *entry = swp;
4409                         page = find_get_page(swap_address_space(swp), swp.val);
4410                 }
4411         } else
4412                 page = find_get_page(mapping, pgoff);
4413 #else
4414         page = find_get_page(mapping, pgoff);
4415 #endif
4416         return page;
4417 }
4418
4419 /**
4420  * mem_cgroup_move_account - move account of the page
4421  * @page: the page
4422  * @nr_pages: number of regular pages (>1 for huge pages)
4423  * @from: mem_cgroup which the page is moved from.
4424  * @to: mem_cgroup which the page is moved to. @from != @to.
4425  *
4426  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4427  *
4428  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4429  * from old cgroup.
4430  */
4431 static int mem_cgroup_move_account(struct page *page,
4432                                    bool compound,
4433                                    struct mem_cgroup *from,
4434                                    struct mem_cgroup *to)
4435 {
4436         unsigned long flags;
4437         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4438         int ret;
4439         bool anon;
4440
4441         VM_BUG_ON(from == to);
4442         VM_BUG_ON_PAGE(PageLRU(page), page);
4443         VM_BUG_ON(compound && !PageTransHuge(page));
4444
4445         /*
4446          * Prevent mem_cgroup_migrate() from looking at
4447          * page->mem_cgroup of its source page while we change it.
4448          */
4449         ret = -EBUSY;
4450         if (!trylock_page(page))
4451                 goto out;
4452
4453         ret = -EINVAL;
4454         if (page->mem_cgroup != from)
4455                 goto out_unlock;
4456
4457         anon = PageAnon(page);
4458
4459         spin_lock_irqsave(&from->move_lock, flags);
4460
4461         if (!anon && page_mapped(page)) {
4462                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4463                                nr_pages);
4464                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4465                                nr_pages);
4466         }
4467
4468         /*
4469          * move_lock grabbed above and caller set from->moving_account, so
4470          * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4471          * So mapping should be stable for dirty pages.
4472          */
4473         if (!anon && PageDirty(page)) {
4474                 struct address_space *mapping = page_mapping(page);
4475
4476                 if (mapping_cap_account_dirty(mapping)) {
4477                         __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4478                                        nr_pages);
4479                         __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4480                                        nr_pages);
4481                 }
4482         }
4483
4484         if (PageWriteback(page)) {
4485                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4486                                nr_pages);
4487                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4488                                nr_pages);
4489         }
4490
4491         /*
4492          * It is safe to change page->mem_cgroup here because the page
4493          * is referenced, charged, and isolated - we can't race with
4494          * uncharging, charging, migration, or LRU putback.
4495          */
4496
4497         /* caller should have done css_get */
4498         page->mem_cgroup = to;
4499         spin_unlock_irqrestore(&from->move_lock, flags);
4500
4501         ret = 0;
4502
4503         local_irq_disable();
4504         mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4505         memcg_check_events(to, page);
4506         mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4507         memcg_check_events(from, page);
4508         local_irq_enable();
4509 out_unlock:
4510         unlock_page(page);
4511 out:
4512         return ret;
4513 }
4514
4515 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4516                 unsigned long addr, pte_t ptent, union mc_target *target)
4517 {
4518         struct page *page = NULL;
4519         enum mc_target_type ret = MC_TARGET_NONE;
4520         swp_entry_t ent = { .val = 0 };
4521
4522         if (pte_present(ptent))
4523                 page = mc_handle_present_pte(vma, addr, ptent);
4524         else if (is_swap_pte(ptent))
4525                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4526         else if (pte_none(ptent))
4527                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4528
4529         if (!page && !ent.val)
4530                 return ret;
4531         if (page) {
4532                 /*
4533                  * Do only loose check w/o serialization.
4534                  * mem_cgroup_move_account() checks the page is valid or
4535                  * not under LRU exclusion.
4536                  */
4537                 if (page->mem_cgroup == mc.from) {
4538                         ret = MC_TARGET_PAGE;
4539                         if (target)
4540                                 target->page = page;
4541                 }
4542                 if (!ret || !target)
4543                         put_page(page);
4544         }
4545         /* There is a swap entry and a page doesn't exist or isn't charged */
4546         if (ent.val && !ret &&
4547             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4548                 ret = MC_TARGET_SWAP;
4549                 if (target)
4550                         target->ent = ent;
4551         }
4552         return ret;
4553 }
4554
4555 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4556 /*
4557  * We don't consider swapping or file mapped pages because THP does not
4558  * support them for now.
4559  * Caller should make sure that pmd_trans_huge(pmd) is true.
4560  */
4561 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4562                 unsigned long addr, pmd_t pmd, union mc_target *target)
4563 {
4564         struct page *page = NULL;
4565         enum mc_target_type ret = MC_TARGET_NONE;
4566
4567         page = pmd_page(pmd);
4568         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4569         if (!(mc.flags & MOVE_ANON))
4570                 return ret;
4571         if (page->mem_cgroup == mc.from) {
4572                 ret = MC_TARGET_PAGE;
4573                 if (target) {
4574                         get_page(page);
4575                         target->page = page;
4576                 }
4577         }
4578         return ret;
4579 }
4580 #else
4581 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4582                 unsigned long addr, pmd_t pmd, union mc_target *target)
4583 {
4584         return MC_TARGET_NONE;
4585 }
4586 #endif
4587
4588 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4589                                         unsigned long addr, unsigned long end,
4590                                         struct mm_walk *walk)
4591 {
4592         struct vm_area_struct *vma = walk->vma;
4593         pte_t *pte;
4594         spinlock_t *ptl;
4595
4596         ptl = pmd_trans_huge_lock(pmd, vma);
4597         if (ptl) {
4598                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4599                         mc.precharge += HPAGE_PMD_NR;
4600                 spin_unlock(ptl);
4601                 return 0;
4602         }
4603
4604         if (pmd_trans_unstable(pmd))
4605                 return 0;
4606         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4607         for (; addr != end; pte++, addr += PAGE_SIZE)
4608                 if (get_mctgt_type(vma, addr, *pte, NULL))
4609                         mc.precharge++; /* increment precharge temporarily */
4610         pte_unmap_unlock(pte - 1, ptl);
4611         cond_resched();
4612
4613         return 0;
4614 }
4615
4616 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4617 {
4618         unsigned long precharge;
4619
4620         struct mm_walk mem_cgroup_count_precharge_walk = {
4621                 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4622                 .mm = mm,
4623         };
4624         down_read(&mm->mmap_sem);
4625         walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4626         up_read(&mm->mmap_sem);
4627
4628         precharge = mc.precharge;
4629         mc.precharge = 0;
4630
4631         return precharge;
4632 }
4633
4634 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4635 {
4636         unsigned long precharge = mem_cgroup_count_precharge(mm);
4637
4638         VM_BUG_ON(mc.moving_task);
4639         mc.moving_task = current;
4640         return mem_cgroup_do_precharge(precharge);
4641 }
4642
4643 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4644 static void __mem_cgroup_clear_mc(void)
4645 {
4646         struct mem_cgroup *from = mc.from;
4647         struct mem_cgroup *to = mc.to;
4648
4649         /* we must uncharge all the leftover precharges from mc.to */
4650         if (mc.precharge) {
4651                 cancel_charge(mc.to, mc.precharge);
4652                 mc.precharge = 0;
4653         }
4654         /*
4655          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4656          * we must uncharge here.
4657          */
4658         if (mc.moved_charge) {
4659                 cancel_charge(mc.from, mc.moved_charge);
4660                 mc.moved_charge = 0;
4661         }
4662         /* we must fixup refcnts and charges */
4663         if (mc.moved_swap) {
4664                 /* uncharge swap account from the old cgroup */
4665                 if (!mem_cgroup_is_root(mc.from))
4666                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4667
4668                 /*
4669                  * we charged both to->memory and to->memsw, so we
4670                  * should uncharge to->memory.
4671                  */
4672                 if (!mem_cgroup_is_root(mc.to))
4673                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4674
4675                 css_put_many(&mc.from->css, mc.moved_swap);
4676
4677                 /* we've already done css_get(mc.to) */
4678                 mc.moved_swap = 0;
4679         }
4680         memcg_oom_recover(from);
4681         memcg_oom_recover(to);
4682         wake_up_all(&mc.waitq);
4683 }
4684
4685 static void mem_cgroup_clear_mc(void)
4686 {
4687         struct mm_struct *mm = mc.mm;
4688
4689         /*
4690          * we must clear moving_task before waking up waiters at the end of
4691          * task migration.
4692          */
4693         mc.moving_task = NULL;
4694         __mem_cgroup_clear_mc();
4695         spin_lock(&mc.lock);
4696         mc.from = NULL;
4697         mc.to = NULL;
4698         mc.mm = NULL;
4699         spin_unlock(&mc.lock);
4700
4701         mmput(mm);
4702 }
4703
4704 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4705 {
4706         struct cgroup_subsys_state *css;
4707         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4708         struct mem_cgroup *from;
4709         struct task_struct *leader, *p;
4710         struct mm_struct *mm;
4711         unsigned long move_flags;
4712         int ret = 0;
4713
4714         /* charge immigration isn't supported on the default hierarchy */
4715         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4716                 return 0;
4717
4718         /*
4719          * Multi-process migrations only happen on the default hierarchy
4720          * where charge immigration is not used.  Perform charge
4721          * immigration if @tset contains a leader and whine if there are
4722          * multiple.
4723          */
4724         p = NULL;
4725         cgroup_taskset_for_each_leader(leader, css, tset) {
4726                 WARN_ON_ONCE(p);
4727                 p = leader;
4728                 memcg = mem_cgroup_from_css(css);
4729         }
4730         if (!p)
4731                 return 0;
4732
4733         /*
4734          * We are now commited to this value whatever it is. Changes in this
4735          * tunable will only affect upcoming migrations, not the current one.
4736          * So we need to save it, and keep it going.
4737          */
4738         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4739         if (!move_flags)
4740                 return 0;
4741
4742         from = mem_cgroup_from_task(p);
4743
4744         VM_BUG_ON(from == memcg);
4745
4746         mm = get_task_mm(p);
4747         if (!mm)
4748                 return 0;
4749         /* We move charges only when we move a owner of the mm */
4750         if (mm->owner == p) {
4751                 VM_BUG_ON(mc.from);
4752                 VM_BUG_ON(mc.to);
4753                 VM_BUG_ON(mc.precharge);
4754                 VM_BUG_ON(mc.moved_charge);
4755                 VM_BUG_ON(mc.moved_swap);
4756
4757                 spin_lock(&mc.lock);
4758                 mc.mm = mm;
4759                 mc.from = from;
4760                 mc.to = memcg;
4761                 mc.flags = move_flags;
4762                 spin_unlock(&mc.lock);
4763                 /* We set mc.moving_task later */
4764
4765                 ret = mem_cgroup_precharge_mc(mm);
4766                 if (ret)
4767                         mem_cgroup_clear_mc();
4768         } else {
4769                 mmput(mm);
4770         }
4771         return ret;
4772 }
4773
4774 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4775 {
4776         if (mc.to)
4777                 mem_cgroup_clear_mc();
4778 }
4779
4780 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4781                                 unsigned long addr, unsigned long end,
4782                                 struct mm_walk *walk)
4783 {
4784         int ret = 0;
4785         struct vm_area_struct *vma = walk->vma;
4786         pte_t *pte;
4787         spinlock_t *ptl;
4788         enum mc_target_type target_type;
4789         union mc_target target;
4790         struct page *page;
4791
4792         ptl = pmd_trans_huge_lock(pmd, vma);
4793         if (ptl) {
4794                 if (mc.precharge < HPAGE_PMD_NR) {
4795                         spin_unlock(ptl);
4796                         return 0;
4797                 }
4798                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4799                 if (target_type == MC_TARGET_PAGE) {
4800                         page = target.page;
4801                         if (!isolate_lru_page(page)) {
4802                                 if (!mem_cgroup_move_account(page, true,
4803                                                              mc.from, mc.to)) {
4804                                         mc.precharge -= HPAGE_PMD_NR;
4805                                         mc.moved_charge += HPAGE_PMD_NR;
4806                                 }
4807                                 putback_lru_page(page);
4808                         }
4809                         put_page(page);
4810                 }
4811                 spin_unlock(ptl);
4812                 return 0;
4813         }
4814
4815         if (pmd_trans_unstable(pmd))
4816                 return 0;
4817 retry:
4818         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4819         for (; addr != end; addr += PAGE_SIZE) {
4820                 pte_t ptent = *(pte++);
4821                 swp_entry_t ent;
4822
4823                 if (!mc.precharge)
4824                         break;
4825
4826                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4827                 case MC_TARGET_PAGE:
4828                         page = target.page;
4829                         /*
4830                          * We can have a part of the split pmd here. Moving it
4831                          * can be done but it would be too convoluted so simply
4832                          * ignore such a partial THP and keep it in original
4833                          * memcg. There should be somebody mapping the head.
4834                          */
4835                         if (PageTransCompound(page))
4836                                 goto put;
4837                         if (isolate_lru_page(page))
4838                                 goto put;
4839                         if (!mem_cgroup_move_account(page, false,
4840                                                 mc.from, mc.to)) {
4841                                 mc.precharge--;
4842                                 /* we uncharge from mc.from later. */
4843                                 mc.moved_charge++;
4844                         }
4845                         putback_lru_page(page);
4846 put:                    /* get_mctgt_type() gets the page */
4847                         put_page(page);
4848                         break;
4849                 case MC_TARGET_SWAP:
4850                         ent = target.ent;
4851                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4852                                 mc.precharge--;
4853                                 /* we fixup refcnts and charges later. */
4854                                 mc.moved_swap++;
4855                         }
4856                         break;
4857                 default:
4858                         break;
4859                 }
4860         }
4861         pte_unmap_unlock(pte - 1, ptl);
4862         cond_resched();
4863
4864         if (addr != end) {
4865                 /*
4866                  * We have consumed all precharges we got in can_attach().
4867                  * We try charge one by one, but don't do any additional
4868                  * charges to mc.to if we have failed in charge once in attach()
4869                  * phase.
4870                  */
4871                 ret = mem_cgroup_do_precharge(1);
4872                 if (!ret)
4873                         goto retry;
4874         }
4875
4876         return ret;
4877 }
4878
4879 static void mem_cgroup_move_charge(void)
4880 {
4881         struct mm_walk mem_cgroup_move_charge_walk = {
4882                 .pmd_entry = mem_cgroup_move_charge_pte_range,
4883                 .mm = mc.mm,
4884         };
4885
4886         lru_add_drain_all();
4887         /*
4888          * Signal lock_page_memcg() to take the memcg's move_lock
4889          * while we're moving its pages to another memcg. Then wait
4890          * for already started RCU-only updates to finish.
4891          */
4892         atomic_inc(&mc.from->moving_account);
4893         synchronize_rcu();
4894 retry:
4895         if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4896                 /*
4897                  * Someone who are holding the mmap_sem might be waiting in
4898                  * waitq. So we cancel all extra charges, wake up all waiters,
4899                  * and retry. Because we cancel precharges, we might not be able
4900                  * to move enough charges, but moving charge is a best-effort
4901                  * feature anyway, so it wouldn't be a big problem.
4902                  */
4903                 __mem_cgroup_clear_mc();
4904                 cond_resched();
4905                 goto retry;
4906         }
4907         /*
4908          * When we have consumed all precharges and failed in doing
4909          * additional charge, the page walk just aborts.
4910          */
4911         walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4912         up_read(&mc.mm->mmap_sem);
4913         atomic_dec(&mc.from->moving_account);
4914 }
4915
4916 static void mem_cgroup_move_task(void)
4917 {
4918         if (mc.to) {
4919                 mem_cgroup_move_charge();
4920                 mem_cgroup_clear_mc();
4921         }
4922 }
4923 #else   /* !CONFIG_MMU */
4924 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4925 {
4926         return 0;
4927 }
4928 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4929 {
4930 }
4931 static void mem_cgroup_move_task(void)
4932 {
4933 }
4934 #endif
4935
4936 /*
4937  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4938  * to verify whether we're attached to the default hierarchy on each mount
4939  * attempt.
4940  */
4941 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4942 {
4943         /*
4944          * use_hierarchy is forced on the default hierarchy.  cgroup core
4945          * guarantees that @root doesn't have any children, so turning it
4946          * on for the root memcg is enough.
4947          */
4948         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4949                 root_mem_cgroup->use_hierarchy = true;
4950         else
4951                 root_mem_cgroup->use_hierarchy = false;
4952 }
4953
4954 static u64 memory_current_read(struct cgroup_subsys_state *css,
4955                                struct cftype *cft)
4956 {
4957         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4958
4959         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4960 }
4961
4962 static int memory_low_show(struct seq_file *m, void *v)
4963 {
4964         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4965         unsigned long low = READ_ONCE(memcg->low);
4966
4967         if (low == PAGE_COUNTER_MAX)
4968                 seq_puts(m, "max\n");
4969         else
4970                 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4971
4972         return 0;
4973 }
4974
4975 static ssize_t memory_low_write(struct kernfs_open_file *of,
4976                                 char *buf, size_t nbytes, loff_t off)
4977 {
4978         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4979         unsigned long low;
4980         int err;
4981
4982         buf = strstrip(buf);
4983         err = page_counter_memparse(buf, "max", &low);
4984         if (err)
4985                 return err;
4986
4987         memcg->low = low;
4988
4989         return nbytes;
4990 }
4991
4992 static int memory_high_show(struct seq_file *m, void *v)
4993 {
4994         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4995         unsigned long high = READ_ONCE(memcg->high);
4996
4997         if (high == PAGE_COUNTER_MAX)
4998                 seq_puts(m, "max\n");
4999         else
5000                 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5001
5002         return 0;
5003 }
5004
5005 static ssize_t memory_high_write(struct kernfs_open_file *of,
5006                                  char *buf, size_t nbytes, loff_t off)
5007 {
5008         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5009         unsigned long nr_pages;
5010         unsigned long high;
5011         int err;
5012
5013         buf = strstrip(buf);
5014         err = page_counter_memparse(buf, "max", &high);
5015         if (err)
5016                 return err;
5017
5018         memcg->high = high;
5019
5020         nr_pages = page_counter_read(&memcg->memory);
5021         if (nr_pages > high)
5022                 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5023                                              GFP_KERNEL, true);
5024
5025         memcg_wb_domain_size_changed(memcg);
5026         return nbytes;
5027 }
5028
5029 static int memory_max_show(struct seq_file *m, void *v)
5030 {
5031         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5032         unsigned long max = READ_ONCE(memcg->memory.limit);
5033
5034         if (max == PAGE_COUNTER_MAX)
5035                 seq_puts(m, "max\n");
5036         else
5037                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5038
5039         return 0;
5040 }
5041
5042 static ssize_t memory_max_write(struct kernfs_open_file *of,
5043                                 char *buf, size_t nbytes, loff_t off)
5044 {
5045         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5046         unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5047         bool drained = false;
5048         unsigned long max;
5049         int err;
5050
5051         buf = strstrip(buf);
5052         err = page_counter_memparse(buf, "max", &max);
5053         if (err)
5054                 return err;
5055
5056         xchg(&memcg->memory.limit, max);
5057
5058         for (;;) {
5059                 unsigned long nr_pages = page_counter_read(&memcg->memory);
5060
5061                 if (nr_pages <= max)
5062                         break;
5063
5064                 if (signal_pending(current)) {
5065                         err = -EINTR;
5066                         break;
5067                 }
5068
5069                 if (!drained) {
5070                         drain_all_stock(memcg);
5071                         drained = true;
5072                         continue;
5073                 }
5074
5075                 if (nr_reclaims) {
5076                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5077                                                           GFP_KERNEL, true))
5078                                 nr_reclaims--;
5079                         continue;
5080                 }
5081
5082                 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5083                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5084                         break;
5085         }
5086
5087         memcg_wb_domain_size_changed(memcg);
5088         return nbytes;
5089 }
5090
5091 static int memory_events_show(struct seq_file *m, void *v)
5092 {
5093         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5094
5095         seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5096         seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5097         seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5098         seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5099
5100         return 0;
5101 }
5102
5103 static int memory_stat_show(struct seq_file *m, void *v)
5104 {
5105         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5106         unsigned long stat[MEMCG_NR_STAT];
5107         unsigned long events[MEMCG_NR_EVENTS];
5108         int i;
5109
5110         /*
5111          * Provide statistics on the state of the memory subsystem as
5112          * well as cumulative event counters that show past behavior.
5113          *
5114          * This list is ordered following a combination of these gradients:
5115          * 1) generic big picture -> specifics and details
5116          * 2) reflecting userspace activity -> reflecting kernel heuristics
5117          *
5118          * Current memory state:
5119          */
5120
5121         tree_stat(memcg, stat);
5122         tree_events(memcg, events);
5123
5124         seq_printf(m, "anon %llu\n",
5125                    (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5126         seq_printf(m, "file %llu\n",
5127                    (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5128         seq_printf(m, "kernel_stack %llu\n",
5129                    (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5130         seq_printf(m, "slab %llu\n",
5131                    (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5132                          stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5133         seq_printf(m, "sock %llu\n",
5134                    (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5135
5136         seq_printf(m, "file_mapped %llu\n",
5137                    (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5138         seq_printf(m, "file_dirty %llu\n",
5139                    (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5140         seq_printf(m, "file_writeback %llu\n",
5141                    (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5142
5143         for (i = 0; i < NR_LRU_LISTS; i++) {
5144                 struct mem_cgroup *mi;
5145                 unsigned long val = 0;
5146
5147                 for_each_mem_cgroup_tree(mi, memcg)
5148                         val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5149                 seq_printf(m, "%s %llu\n",
5150                            mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5151         }
5152
5153         seq_printf(m, "slab_reclaimable %llu\n",
5154                    (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5155         seq_printf(m, "slab_unreclaimable %llu\n",
5156                    (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5157
5158         /* Accumulated memory events */
5159
5160         seq_printf(m, "pgfault %lu\n",
5161                    events[MEM_CGROUP_EVENTS_PGFAULT]);
5162         seq_printf(m, "pgmajfault %lu\n",
5163                    events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5164
5165         return 0;
5166 }
5167
5168 static struct cftype memory_files[] = {
5169         {
5170                 .name = "current",
5171                 .flags = CFTYPE_NOT_ON_ROOT,
5172                 .read_u64 = memory_current_read,
5173         },
5174         {
5175                 .name = "low",
5176                 .flags = CFTYPE_NOT_ON_ROOT,
5177                 .seq_show = memory_low_show,
5178                 .write = memory_low_write,
5179         },
5180         {
5181                 .name = "high",
5182                 .flags = CFTYPE_NOT_ON_ROOT,
5183                 .seq_show = memory_high_show,
5184                 .write = memory_high_write,
5185         },
5186         {
5187                 .name = "max",
5188                 .flags = CFTYPE_NOT_ON_ROOT,
5189                 .seq_show = memory_max_show,
5190                 .write = memory_max_write,
5191         },
5192         {
5193                 .name = "events",
5194                 .flags = CFTYPE_NOT_ON_ROOT,
5195                 .file_offset = offsetof(struct mem_cgroup, events_file),
5196                 .seq_show = memory_events_show,
5197         },
5198         {
5199                 .name = "stat",
5200                 .flags = CFTYPE_NOT_ON_ROOT,
5201                 .seq_show = memory_stat_show,
5202         },
5203         { }     /* terminate */
5204 };
5205
5206 struct cgroup_subsys memory_cgrp_subsys = {
5207         .css_alloc = mem_cgroup_css_alloc,
5208         .css_online = mem_cgroup_css_online,
5209         .css_offline = mem_cgroup_css_offline,
5210         .css_released = mem_cgroup_css_released,
5211         .css_free = mem_cgroup_css_free,
5212         .css_reset = mem_cgroup_css_reset,
5213         .can_attach = mem_cgroup_can_attach,
5214         .cancel_attach = mem_cgroup_cancel_attach,
5215         .post_attach = mem_cgroup_move_task,
5216         .bind = mem_cgroup_bind,
5217         .dfl_cftypes = memory_files,
5218         .legacy_cftypes = mem_cgroup_legacy_files,
5219         .early_init = 0,
5220 };
5221
5222 /**
5223  * mem_cgroup_low - check if memory consumption is below the normal range
5224  * @root: the highest ancestor to consider
5225  * @memcg: the memory cgroup to check
5226  *
5227  * Returns %true if memory consumption of @memcg, and that of all
5228  * configurable ancestors up to @root, is below the normal range.
5229  */
5230 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5231 {
5232         if (mem_cgroup_disabled())
5233                 return false;
5234
5235         /*
5236          * The toplevel group doesn't have a configurable range, so
5237          * it's never low when looked at directly, and it is not
5238          * considered an ancestor when assessing the hierarchy.
5239          */
5240
5241         if (memcg == root_mem_cgroup)
5242                 return false;
5243
5244         if (page_counter_read(&memcg->memory) >= memcg->low)
5245                 return false;
5246
5247         while (memcg != root) {
5248                 memcg = parent_mem_cgroup(memcg);
5249
5250                 if (memcg == root_mem_cgroup)
5251                         break;
5252
5253                 if (page_counter_read(&memcg->memory) >= memcg->low)
5254                         return false;
5255         }
5256         return true;
5257 }
5258
5259 /**
5260  * mem_cgroup_try_charge - try charging a page
5261  * @page: page to charge
5262  * @mm: mm context of the victim
5263  * @gfp_mask: reclaim mode
5264  * @memcgp: charged memcg return
5265  *
5266  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5267  * pages according to @gfp_mask if necessary.
5268  *
5269  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5270  * Otherwise, an error code is returned.
5271  *
5272  * After page->mapping has been set up, the caller must finalize the
5273  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5274  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5275  */
5276 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5277                           gfp_t gfp_mask, struct mem_cgroup **memcgp,
5278                           bool compound)
5279 {
5280         struct mem_cgroup *memcg = NULL;
5281         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5282         int ret = 0;
5283
5284         if (mem_cgroup_disabled())
5285                 goto out;
5286
5287         if (PageSwapCache(page)) {
5288                 /*
5289                  * Every swap fault against a single page tries to charge the
5290                  * page, bail as early as possible.  shmem_unuse() encounters
5291                  * already charged pages, too.  The USED bit is protected by
5292                  * the page lock, which serializes swap cache removal, which
5293                  * in turn serializes uncharging.
5294                  */
5295                 VM_BUG_ON_PAGE(!PageLocked(page), page);
5296                 if (page->mem_cgroup)
5297                         goto out;
5298
5299                 if (do_swap_account) {
5300                         swp_entry_t ent = { .val = page_private(page), };
5301                         unsigned short id = lookup_swap_cgroup_id(ent);
5302
5303                         rcu_read_lock();
5304                         memcg = mem_cgroup_from_id(id);
5305                         if (memcg && !css_tryget_online(&memcg->css))
5306                                 memcg = NULL;
5307                         rcu_read_unlock();
5308                 }
5309         }
5310
5311         if (!memcg)
5312                 memcg = get_mem_cgroup_from_mm(mm);
5313
5314         ret = try_charge(memcg, gfp_mask, nr_pages);
5315
5316         css_put(&memcg->css);
5317 out:
5318         *memcgp = memcg;
5319         return ret;
5320 }
5321
5322 /**
5323  * mem_cgroup_commit_charge - commit a page charge
5324  * @page: page to charge
5325  * @memcg: memcg to charge the page to
5326  * @lrucare: page might be on LRU already
5327  *
5328  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5329  * after page->mapping has been set up.  This must happen atomically
5330  * as part of the page instantiation, i.e. under the page table lock
5331  * for anonymous pages, under the page lock for page and swap cache.
5332  *
5333  * In addition, the page must not be on the LRU during the commit, to
5334  * prevent racing with task migration.  If it might be, use @lrucare.
5335  *
5336  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5337  */
5338 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5339                               bool lrucare, bool compound)
5340 {
5341         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5342
5343         VM_BUG_ON_PAGE(!page->mapping, page);
5344         VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5345
5346         if (mem_cgroup_disabled())
5347                 return;
5348         /*
5349          * Swap faults will attempt to charge the same page multiple
5350          * times.  But reuse_swap_page() might have removed the page
5351          * from swapcache already, so we can't check PageSwapCache().
5352          */
5353         if (!memcg)
5354                 return;
5355
5356         commit_charge(page, memcg, lrucare);
5357
5358         local_irq_disable();
5359         mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5360         memcg_check_events(memcg, page);
5361         local_irq_enable();
5362
5363         if (do_memsw_account() && PageSwapCache(page)) {
5364                 swp_entry_t entry = { .val = page_private(page) };
5365                 /*
5366                  * The swap entry might not get freed for a long time,
5367                  * let's not wait for it.  The page already received a
5368                  * memory+swap charge, drop the swap entry duplicate.
5369                  */
5370                 mem_cgroup_uncharge_swap(entry);
5371         }
5372 }
5373
5374 /**
5375  * mem_cgroup_cancel_charge - cancel a page charge
5376  * @page: page to charge
5377  * @memcg: memcg to charge the page to
5378  *
5379  * Cancel a charge transaction started by mem_cgroup_try_charge().
5380  */
5381 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5382                 bool compound)
5383 {
5384         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5385
5386         if (mem_cgroup_disabled())
5387                 return;
5388         /*
5389          * Swap faults will attempt to charge the same page multiple
5390          * times.  But reuse_swap_page() might have removed the page
5391          * from swapcache already, so we can't check PageSwapCache().
5392          */
5393         if (!memcg)
5394                 return;
5395
5396         cancel_charge(memcg, nr_pages);
5397 }
5398
5399 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5400                            unsigned long nr_anon, unsigned long nr_file,
5401                            unsigned long nr_huge, struct page *dummy_page)
5402 {
5403         unsigned long nr_pages = nr_anon + nr_file;
5404         unsigned long flags;
5405
5406         if (!mem_cgroup_is_root(memcg)) {
5407                 page_counter_uncharge(&memcg->memory, nr_pages);
5408                 if (do_memsw_account())
5409                         page_counter_uncharge(&memcg->memsw, nr_pages);
5410                 memcg_oom_recover(memcg);
5411         }
5412
5413         local_irq_save(flags);
5414         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5415         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5416         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5417         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5418         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5419         memcg_check_events(memcg, dummy_page);
5420         local_irq_restore(flags);
5421
5422         if (!mem_cgroup_is_root(memcg))
5423                 css_put_many(&memcg->css, nr_pages);
5424 }
5425
5426 static void uncharge_list(struct list_head *page_list)
5427 {
5428         struct mem_cgroup *memcg = NULL;
5429         unsigned long nr_anon = 0;
5430         unsigned long nr_file = 0;
5431         unsigned long nr_huge = 0;
5432         unsigned long pgpgout = 0;
5433         struct list_head *next;
5434         struct page *page;
5435
5436         /*
5437          * Note that the list can be a single page->lru; hence the
5438          * do-while loop instead of a simple list_for_each_entry().
5439          */
5440         next = page_list->next;
5441         do {
5442                 unsigned int nr_pages = 1;
5443
5444                 page = list_entry(next, struct page, lru);
5445                 next = page->lru.next;
5446
5447                 VM_BUG_ON_PAGE(PageLRU(page), page);
5448                 VM_BUG_ON_PAGE(page_count(page), page);
5449
5450                 if (!page->mem_cgroup)
5451                         continue;
5452
5453                 /*
5454                  * Nobody should be changing or seriously looking at
5455                  * page->mem_cgroup at this point, we have fully
5456                  * exclusive access to the page.
5457                  */
5458
5459                 if (memcg != page->mem_cgroup) {
5460                         if (memcg) {
5461                                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5462                                                nr_huge, page);
5463                                 pgpgout = nr_anon = nr_file = nr_huge = 0;
5464                         }
5465                         memcg = page->mem_cgroup;
5466                 }
5467
5468                 if (PageTransHuge(page)) {
5469                         nr_pages <<= compound_order(page);
5470                         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5471                         nr_huge += nr_pages;
5472                 }
5473
5474                 if (PageAnon(page))
5475                         nr_anon += nr_pages;
5476                 else
5477                         nr_file += nr_pages;
5478
5479                 page->mem_cgroup = NULL;
5480
5481                 pgpgout++;
5482         } while (next != page_list);
5483
5484         if (memcg)
5485                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5486                                nr_huge, page);
5487 }
5488
5489 /**
5490  * mem_cgroup_uncharge - uncharge a page
5491  * @page: page to uncharge
5492  *
5493  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5494  * mem_cgroup_commit_charge().
5495  */
5496 void mem_cgroup_uncharge(struct page *page)
5497 {
5498         if (mem_cgroup_disabled())
5499                 return;
5500
5501         /* Don't touch page->lru of any random page, pre-check: */
5502         if (!page->mem_cgroup)
5503                 return;
5504
5505         INIT_LIST_HEAD(&page->lru);
5506         uncharge_list(&page->lru);
5507 }
5508
5509 /**
5510  * mem_cgroup_uncharge_list - uncharge a list of page
5511  * @page_list: list of pages to uncharge
5512  *
5513  * Uncharge a list of pages previously charged with
5514  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5515  */
5516 void mem_cgroup_uncharge_list(struct list_head *page_list)
5517 {
5518         if (mem_cgroup_disabled())
5519                 return;
5520
5521         if (!list_empty(page_list))
5522                 uncharge_list(page_list);
5523 }
5524
5525 /**
5526  * mem_cgroup_migrate - charge a page's replacement
5527  * @oldpage: currently circulating page
5528  * @newpage: replacement page
5529  *
5530  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5531  * be uncharged upon free.
5532  *
5533  * Both pages must be locked, @newpage->mapping must be set up.
5534  */
5535 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5536 {
5537         struct mem_cgroup *memcg;
5538         unsigned int nr_pages;
5539         bool compound;
5540
5541         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5542         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5543         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5544         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5545                        newpage);
5546
5547         if (mem_cgroup_disabled())
5548                 return;
5549
5550         /* Page cache replacement: new page already charged? */
5551         if (newpage->mem_cgroup)
5552                 return;
5553
5554         /* Swapcache readahead pages can get replaced before being charged */
5555         memcg = oldpage->mem_cgroup;
5556         if (!memcg)
5557                 return;
5558
5559         /* Force-charge the new page. The old one will be freed soon */
5560         compound = PageTransHuge(newpage);
5561         nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5562
5563         page_counter_charge(&memcg->memory, nr_pages);
5564         if (do_memsw_account())
5565                 page_counter_charge(&memcg->memsw, nr_pages);
5566         css_get_many(&memcg->css, nr_pages);
5567
5568         commit_charge(newpage, memcg, false);
5569
5570         local_irq_disable();
5571         mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5572         memcg_check_events(memcg, newpage);
5573         local_irq_enable();
5574 }
5575
5576 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5577 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5578
5579 void sock_update_memcg(struct sock *sk)
5580 {
5581         struct mem_cgroup *memcg;
5582
5583         /* Socket cloning can throw us here with sk_cgrp already
5584          * filled. It won't however, necessarily happen from
5585          * process context. So the test for root memcg given
5586          * the current task's memcg won't help us in this case.
5587          *
5588          * Respecting the original socket's memcg is a better
5589          * decision in this case.
5590          */
5591         if (sk->sk_memcg) {
5592                 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5593                 css_get(&sk->sk_memcg->css);
5594                 return;
5595         }
5596
5597         rcu_read_lock();
5598         memcg = mem_cgroup_from_task(current);
5599         if (memcg == root_mem_cgroup)
5600                 goto out;
5601         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5602                 goto out;
5603         if (css_tryget_online(&memcg->css))
5604                 sk->sk_memcg = memcg;
5605 out:
5606         rcu_read_unlock();
5607 }
5608 EXPORT_SYMBOL(sock_update_memcg);
5609
5610 void sock_release_memcg(struct sock *sk)
5611 {
5612         WARN_ON(!sk->sk_memcg);
5613         css_put(&sk->sk_memcg->css);
5614 }
5615
5616 /**
5617  * mem_cgroup_charge_skmem - charge socket memory
5618  * @memcg: memcg to charge
5619  * @nr_pages: number of pages to charge
5620  *
5621  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5622  * @memcg's configured limit, %false if the charge had to be forced.
5623  */
5624 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5625 {
5626         gfp_t gfp_mask = GFP_KERNEL;
5627
5628         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5629                 struct page_counter *fail;
5630
5631                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5632                         memcg->tcpmem_pressure = 0;
5633                         return true;
5634                 }
5635                 page_counter_charge(&memcg->tcpmem, nr_pages);
5636                 memcg->tcpmem_pressure = 1;
5637                 return false;
5638         }
5639
5640         /* Don't block in the packet receive path */
5641         if (in_softirq())
5642                 gfp_mask = GFP_NOWAIT;
5643
5644         this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5645
5646         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5647                 return true;
5648
5649         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5650         return false;
5651 }
5652
5653 /**
5654  * mem_cgroup_uncharge_skmem - uncharge socket memory
5655  * @memcg - memcg to uncharge
5656  * @nr_pages - number of pages to uncharge
5657  */
5658 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5659 {
5660         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5661                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5662                 return;
5663         }
5664
5665         this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5666
5667         page_counter_uncharge(&memcg->memory, nr_pages);
5668         css_put_many(&memcg->css, nr_pages);
5669 }
5670
5671 static int __init cgroup_memory(char *s)
5672 {
5673         char *token;
5674
5675         while ((token = strsep(&s, ",")) != NULL) {
5676                 if (!*token)
5677                         continue;
5678                 if (!strcmp(token, "nosocket"))
5679                         cgroup_memory_nosocket = true;
5680                 if (!strcmp(token, "nokmem"))
5681                         cgroup_memory_nokmem = true;
5682         }
5683         return 0;
5684 }
5685 __setup("cgroup.memory=", cgroup_memory);
5686
5687 /*
5688  * subsys_initcall() for memory controller.
5689  *
5690  * Some parts like hotcpu_notifier() have to be initialized from this context
5691  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5692  * everything that doesn't depend on a specific mem_cgroup structure should
5693  * be initialized from here.
5694  */
5695 static int __init mem_cgroup_init(void)
5696 {
5697         int cpu, node;
5698
5699         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5700
5701         for_each_possible_cpu(cpu)
5702                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5703                           drain_local_stock);
5704
5705         for_each_node(node) {
5706                 struct mem_cgroup_tree_per_node *rtpn;
5707                 int zone;
5708
5709                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5710                                     node_online(node) ? node : NUMA_NO_NODE);
5711
5712                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5713                         struct mem_cgroup_tree_per_zone *rtpz;
5714
5715                         rtpz = &rtpn->rb_tree_per_zone[zone];
5716                         rtpz->rb_root = RB_ROOT;
5717                         spin_lock_init(&rtpz->lock);
5718                 }
5719                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5720         }
5721
5722         return 0;
5723 }
5724 subsys_initcall(mem_cgroup_init);
5725
5726 #ifdef CONFIG_MEMCG_SWAP
5727 /**
5728  * mem_cgroup_swapout - transfer a memsw charge to swap
5729  * @page: page whose memsw charge to transfer
5730  * @entry: swap entry to move the charge to
5731  *
5732  * Transfer the memsw charge of @page to @entry.
5733  */
5734 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5735 {
5736         struct mem_cgroup *memcg;
5737         unsigned short oldid;
5738
5739         VM_BUG_ON_PAGE(PageLRU(page), page);
5740         VM_BUG_ON_PAGE(page_count(page), page);
5741
5742         if (!do_memsw_account())
5743                 return;
5744
5745         memcg = page->mem_cgroup;
5746
5747         /* Readahead page, never charged */
5748         if (!memcg)
5749                 return;
5750
5751         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5752         VM_BUG_ON_PAGE(oldid, page);
5753         mem_cgroup_swap_statistics(memcg, true);
5754
5755         page->mem_cgroup = NULL;
5756
5757         if (!mem_cgroup_is_root(memcg))
5758                 page_counter_uncharge(&memcg->memory, 1);
5759
5760         /*
5761          * Interrupts should be disabled here because the caller holds the
5762          * mapping->tree_lock lock which is taken with interrupts-off. It is
5763          * important here to have the interrupts disabled because it is the
5764          * only synchronisation we have for udpating the per-CPU variables.
5765          */
5766         VM_BUG_ON(!irqs_disabled());
5767         mem_cgroup_charge_statistics(memcg, page, false, -1);
5768         memcg_check_events(memcg, page);
5769 }
5770
5771 /*
5772  * mem_cgroup_try_charge_swap - try charging a swap entry
5773  * @page: page being added to swap
5774  * @entry: swap entry to charge
5775  *
5776  * Try to charge @entry to the memcg that @page belongs to.
5777  *
5778  * Returns 0 on success, -ENOMEM on failure.
5779  */
5780 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5781 {
5782         struct mem_cgroup *memcg;
5783         struct page_counter *counter;
5784         unsigned short oldid;
5785
5786         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5787                 return 0;
5788
5789         memcg = page->mem_cgroup;
5790
5791         /* Readahead page, never charged */
5792         if (!memcg)
5793                 return 0;
5794
5795         if (!mem_cgroup_is_root(memcg) &&
5796             !page_counter_try_charge(&memcg->swap, 1, &counter))
5797                 return -ENOMEM;
5798
5799         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5800         VM_BUG_ON_PAGE(oldid, page);
5801         mem_cgroup_swap_statistics(memcg, true);
5802
5803         css_get(&memcg->css);
5804         return 0;
5805 }
5806
5807 /**
5808  * mem_cgroup_uncharge_swap - uncharge a swap entry
5809  * @entry: swap entry to uncharge
5810  *
5811  * Drop the swap charge associated with @entry.
5812  */
5813 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5814 {
5815         struct mem_cgroup *memcg;
5816         unsigned short id;
5817
5818         if (!do_swap_account)
5819                 return;
5820
5821         id = swap_cgroup_record(entry, 0);
5822         rcu_read_lock();
5823         memcg = mem_cgroup_from_id(id);
5824         if (memcg) {
5825                 if (!mem_cgroup_is_root(memcg)) {
5826                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5827                                 page_counter_uncharge(&memcg->swap, 1);
5828                         else
5829                                 page_counter_uncharge(&memcg->memsw, 1);
5830                 }
5831                 mem_cgroup_swap_statistics(memcg, false);
5832                 css_put(&memcg->css);
5833         }
5834         rcu_read_unlock();
5835 }
5836
5837 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5838 {
5839         long nr_swap_pages = get_nr_swap_pages();
5840
5841         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5842                 return nr_swap_pages;
5843         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5844                 nr_swap_pages = min_t(long, nr_swap_pages,
5845                                       READ_ONCE(memcg->swap.limit) -
5846                                       page_counter_read(&memcg->swap));
5847         return nr_swap_pages;
5848 }
5849
5850 bool mem_cgroup_swap_full(struct page *page)
5851 {
5852         struct mem_cgroup *memcg;
5853
5854         VM_BUG_ON_PAGE(!PageLocked(page), page);
5855
5856         if (vm_swap_full())
5857                 return true;
5858         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5859                 return false;
5860
5861         memcg = page->mem_cgroup;
5862         if (!memcg)
5863                 return false;
5864
5865         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5866                 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5867                         return true;
5868
5869         return false;
5870 }
5871
5872 /* for remember boot option*/
5873 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5874 static int really_do_swap_account __initdata = 1;
5875 #else
5876 static int really_do_swap_account __initdata;
5877 #endif
5878
5879 static int __init enable_swap_account(char *s)
5880 {
5881         if (!strcmp(s, "1"))
5882                 really_do_swap_account = 1;
5883         else if (!strcmp(s, "0"))
5884                 really_do_swap_account = 0;
5885         return 1;
5886 }
5887 __setup("swapaccount=", enable_swap_account);
5888
5889 static u64 swap_current_read(struct cgroup_subsys_state *css,
5890                              struct cftype *cft)
5891 {
5892         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5893
5894         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5895 }
5896
5897 static int swap_max_show(struct seq_file *m, void *v)
5898 {
5899         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5900         unsigned long max = READ_ONCE(memcg->swap.limit);
5901
5902         if (max == PAGE_COUNTER_MAX)
5903                 seq_puts(m, "max\n");
5904         else
5905                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5906
5907         return 0;
5908 }
5909
5910 static ssize_t swap_max_write(struct kernfs_open_file *of,
5911                               char *buf, size_t nbytes, loff_t off)
5912 {
5913         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5914         unsigned long max;
5915         int err;
5916
5917         buf = strstrip(buf);
5918         err = page_counter_memparse(buf, "max", &max);
5919         if (err)
5920                 return err;
5921
5922         mutex_lock(&memcg_limit_mutex);
5923         err = page_counter_limit(&memcg->swap, max);
5924         mutex_unlock(&memcg_limit_mutex);
5925         if (err)
5926                 return err;
5927
5928         return nbytes;
5929 }
5930
5931 static struct cftype swap_files[] = {
5932         {
5933                 .name = "swap.current",
5934                 .flags = CFTYPE_NOT_ON_ROOT,
5935                 .read_u64 = swap_current_read,
5936         },
5937         {
5938                 .name = "swap.max",
5939                 .flags = CFTYPE_NOT_ON_ROOT,
5940                 .seq_show = swap_max_show,
5941                 .write = swap_max_write,
5942         },
5943         { }     /* terminate */
5944 };
5945
5946 static struct cftype memsw_cgroup_files[] = {
5947         {
5948                 .name = "memsw.usage_in_bytes",
5949                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5950                 .read_u64 = mem_cgroup_read_u64,
5951         },
5952         {
5953                 .name = "memsw.max_usage_in_bytes",
5954                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5955                 .write = mem_cgroup_reset,
5956                 .read_u64 = mem_cgroup_read_u64,
5957         },
5958         {
5959                 .name = "memsw.limit_in_bytes",
5960                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5961                 .write = mem_cgroup_write,
5962                 .read_u64 = mem_cgroup_read_u64,
5963         },
5964         {
5965                 .name = "memsw.failcnt",
5966                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5967                 .write = mem_cgroup_reset,
5968                 .read_u64 = mem_cgroup_read_u64,
5969         },
5970         { },    /* terminate */
5971 };
5972
5973 static int __init mem_cgroup_swap_init(void)
5974 {
5975         if (!mem_cgroup_disabled() && really_do_swap_account) {
5976                 do_swap_account = 1;
5977                 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5978                                                swap_files));
5979                 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5980                                                   memsw_cgroup_files));
5981         }
5982         return 0;
5983 }
5984 subsys_initcall(mem_cgroup_swap_init);
5985
5986 #endif /* CONFIG_MEMCG_SWAP */