mm: memcg/slab: fix racy access to page->mem_cgroup in mem_cgroup_from_obj()
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
78
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 bool cgroup_memory_noswap __read_mostly;
85 #else
86 #define cgroup_memory_noswap            1
87 #endif
88
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97 }
98
99 #define THRESHOLDS_EVENTS_TARGET 128
100 #define SOFTLIMIT_EVENTS_TARGET 1024
101
102 /*
103  * Cgroups above their limits are maintained in a RB-Tree, independent of
104  * their hierarchy representation
105  */
106
107 struct mem_cgroup_tree_per_node {
108         struct rb_root rb_root;
109         struct rb_node *rb_rightmost;
110         spinlock_t lock;
111 };
112
113 struct mem_cgroup_tree {
114         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
115 };
116
117 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
118
119 /* for OOM */
120 struct mem_cgroup_eventfd_list {
121         struct list_head list;
122         struct eventfd_ctx *eventfd;
123 };
124
125 /*
126  * cgroup_event represents events which userspace want to receive.
127  */
128 struct mem_cgroup_event {
129         /*
130          * memcg which the event belongs to.
131          */
132         struct mem_cgroup *memcg;
133         /*
134          * eventfd to signal userspace about the event.
135          */
136         struct eventfd_ctx *eventfd;
137         /*
138          * Each of these stored in a list by the cgroup.
139          */
140         struct list_head list;
141         /*
142          * register_event() callback will be used to add new userspace
143          * waiter for changes related to this event.  Use eventfd_signal()
144          * on eventfd to send notification to userspace.
145          */
146         int (*register_event)(struct mem_cgroup *memcg,
147                               struct eventfd_ctx *eventfd, const char *args);
148         /*
149          * unregister_event() callback will be called when userspace closes
150          * the eventfd or on cgroup removing.  This callback must be set,
151          * if you want provide notification functionality.
152          */
153         void (*unregister_event)(struct mem_cgroup *memcg,
154                                  struct eventfd_ctx *eventfd);
155         /*
156          * All fields below needed to unregister event when
157          * userspace closes eventfd.
158          */
159         poll_table pt;
160         wait_queue_head_t *wqh;
161         wait_queue_entry_t wait;
162         struct work_struct remove;
163 };
164
165 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
166 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167
168 /* Stuffs for move charges at task migration. */
169 /*
170  * Types of charges to be moved.
171  */
172 #define MOVE_ANON       0x1U
173 #define MOVE_FILE       0x2U
174 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
175
176 /* "mc" and its members are protected by cgroup_mutex */
177 static struct move_charge_struct {
178         spinlock_t        lock; /* for from, to */
179         struct mm_struct  *mm;
180         struct mem_cgroup *from;
181         struct mem_cgroup *to;
182         unsigned long flags;
183         unsigned long precharge;
184         unsigned long moved_charge;
185         unsigned long moved_swap;
186         struct task_struct *moving_task;        /* a task moving charges */
187         wait_queue_head_t waitq;                /* a waitq for other context */
188 } mc = {
189         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
191 };
192
193 /*
194  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
195  * limit reclaim to prevent infinite loops, if they ever occur.
196  */
197 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
198 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
199
200 enum charge_type {
201         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
202         MEM_CGROUP_CHARGE_TYPE_ANON,
203         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
204         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
205         NR_CHARGE_TYPE,
206 };
207
208 /* for encoding cft->private value on file */
209 enum res_type {
210         _MEM,
211         _MEMSWAP,
212         _OOM_TYPE,
213         _KMEM,
214         _TCP,
215 };
216
217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
220 /* Used for OOM nofiier */
221 #define OOM_CONTROL             (0)
222
223 /*
224  * Iteration constructs for visiting all cgroups (under a tree).  If
225  * loops are exited prematurely (break), mem_cgroup_iter_break() must
226  * be used for reference counting.
227  */
228 #define for_each_mem_cgroup_tree(iter, root)            \
229         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
230              iter != NULL;                              \
231              iter = mem_cgroup_iter(root, iter, NULL))
232
233 #define for_each_mem_cgroup(iter)                       \
234         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
235              iter != NULL;                              \
236              iter = mem_cgroup_iter(NULL, iter, NULL))
237
238 static inline bool should_force_charge(void)
239 {
240         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241                 (current->flags & PF_EXITING);
242 }
243
244 /* Some nice accessors for the vmpressure. */
245 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246 {
247         if (!memcg)
248                 memcg = root_mem_cgroup;
249         return &memcg->vmpressure;
250 }
251
252 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
253 {
254         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
255 }
256
257 #ifdef CONFIG_MEMCG_KMEM
258 extern spinlock_t css_set_lock;
259
260 static void obj_cgroup_release(struct percpu_ref *ref)
261 {
262         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
263         struct mem_cgroup *memcg;
264         unsigned int nr_bytes;
265         unsigned int nr_pages;
266         unsigned long flags;
267
268         /*
269          * At this point all allocated objects are freed, and
270          * objcg->nr_charged_bytes can't have an arbitrary byte value.
271          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
272          *
273          * The following sequence can lead to it:
274          * 1) CPU0: objcg == stock->cached_objcg
275          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
276          *          PAGE_SIZE bytes are charged
277          * 3) CPU1: a process from another memcg is allocating something,
278          *          the stock if flushed,
279          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
280          * 5) CPU0: we do release this object,
281          *          92 bytes are added to stock->nr_bytes
282          * 6) CPU0: stock is flushed,
283          *          92 bytes are added to objcg->nr_charged_bytes
284          *
285          * In the result, nr_charged_bytes == PAGE_SIZE.
286          * This page will be uncharged in obj_cgroup_release().
287          */
288         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
289         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
290         nr_pages = nr_bytes >> PAGE_SHIFT;
291
292         spin_lock_irqsave(&css_set_lock, flags);
293         memcg = obj_cgroup_memcg(objcg);
294         if (nr_pages)
295                 __memcg_kmem_uncharge(memcg, nr_pages);
296         list_del(&objcg->list);
297         mem_cgroup_put(memcg);
298         spin_unlock_irqrestore(&css_set_lock, flags);
299
300         percpu_ref_exit(ref);
301         kfree_rcu(objcg, rcu);
302 }
303
304 static struct obj_cgroup *obj_cgroup_alloc(void)
305 {
306         struct obj_cgroup *objcg;
307         int ret;
308
309         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310         if (!objcg)
311                 return NULL;
312
313         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314                               GFP_KERNEL);
315         if (ret) {
316                 kfree(objcg);
317                 return NULL;
318         }
319         INIT_LIST_HEAD(&objcg->list);
320         return objcg;
321 }
322
323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324                                   struct mem_cgroup *parent)
325 {
326         struct obj_cgroup *objcg, *iter;
327
328         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329
330         spin_lock_irq(&css_set_lock);
331
332         /* Move active objcg to the parent's list */
333         xchg(&objcg->memcg, parent);
334         css_get(&parent->css);
335         list_add(&objcg->list, &parent->objcg_list);
336
337         /* Move already reparented objcgs to the parent's list */
338         list_for_each_entry(iter, &memcg->objcg_list, list) {
339                 css_get(&parent->css);
340                 xchg(&iter->memcg, parent);
341                 css_put(&memcg->css);
342         }
343         list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345         spin_unlock_irq(&css_set_lock);
346
347         percpu_ref_kill(&objcg->refcnt);
348 }
349
350 /*
351  * This will be used as a shrinker list's index.
352  * The main reason for not using cgroup id for this:
353  *  this works better in sparse environments, where we have a lot of memcgs,
354  *  but only a few kmem-limited. Or also, if we have, for instance, 200
355  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
356  *  200 entry array for that.
357  *
358  * The current size of the caches array is stored in memcg_nr_cache_ids. It
359  * will double each time we have to increase it.
360  */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369         down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374         up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378  * MIN_SIZE is different than 1, because we would like to avoid going through
379  * the alloc/free process all the time. In a small machine, 4 kmem-limited
380  * cgroups is a reasonable guess. In the future, it could be a parameter or
381  * tunable, but that is strictly not necessary.
382  *
383  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384  * this constant directly from cgroup, but it is understandable that this is
385  * better kept as an internal representation in cgroup.c. In any case, the
386  * cgrp_id space is not getting any smaller, and we don't have to necessarily
387  * increase ours as well if it increases.
388  */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393  * A lot of the calls to the cache allocation functions are expected to be
394  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395  * conditional to this static branch, we'll have to allow modules that does
396  * kmem_cache_alloc and the such to see this symbol as well
397  */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401
402 static int memcg_shrinker_map_size;
403 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
404
405 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
406 {
407         kvfree(container_of(head, struct memcg_shrinker_map, rcu));
408 }
409
410 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
411                                          int size, int old_size)
412 {
413         struct memcg_shrinker_map *new, *old;
414         int nid;
415
416         lockdep_assert_held(&memcg_shrinker_map_mutex);
417
418         for_each_node(nid) {
419                 old = rcu_dereference_protected(
420                         mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
421                 /* Not yet online memcg */
422                 if (!old)
423                         return 0;
424
425                 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
426                 if (!new)
427                         return -ENOMEM;
428
429                 /* Set all old bits, clear all new bits */
430                 memset(new->map, (int)0xff, old_size);
431                 memset((void *)new->map + old_size, 0, size - old_size);
432
433                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
434                 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
435         }
436
437         return 0;
438 }
439
440 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
441 {
442         struct mem_cgroup_per_node *pn;
443         struct memcg_shrinker_map *map;
444         int nid;
445
446         if (mem_cgroup_is_root(memcg))
447                 return;
448
449         for_each_node(nid) {
450                 pn = mem_cgroup_nodeinfo(memcg, nid);
451                 map = rcu_dereference_protected(pn->shrinker_map, true);
452                 if (map)
453                         kvfree(map);
454                 rcu_assign_pointer(pn->shrinker_map, NULL);
455         }
456 }
457
458 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
459 {
460         struct memcg_shrinker_map *map;
461         int nid, size, ret = 0;
462
463         if (mem_cgroup_is_root(memcg))
464                 return 0;
465
466         mutex_lock(&memcg_shrinker_map_mutex);
467         size = memcg_shrinker_map_size;
468         for_each_node(nid) {
469                 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
470                 if (!map) {
471                         memcg_free_shrinker_maps(memcg);
472                         ret = -ENOMEM;
473                         break;
474                 }
475                 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
476         }
477         mutex_unlock(&memcg_shrinker_map_mutex);
478
479         return ret;
480 }
481
482 int memcg_expand_shrinker_maps(int new_id)
483 {
484         int size, old_size, ret = 0;
485         struct mem_cgroup *memcg;
486
487         size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
488         old_size = memcg_shrinker_map_size;
489         if (size <= old_size)
490                 return 0;
491
492         mutex_lock(&memcg_shrinker_map_mutex);
493         if (!root_mem_cgroup)
494                 goto unlock;
495
496         for_each_mem_cgroup(memcg) {
497                 if (mem_cgroup_is_root(memcg))
498                         continue;
499                 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
500                 if (ret) {
501                         mem_cgroup_iter_break(NULL, memcg);
502                         goto unlock;
503                 }
504         }
505 unlock:
506         if (!ret)
507                 memcg_shrinker_map_size = size;
508         mutex_unlock(&memcg_shrinker_map_mutex);
509         return ret;
510 }
511
512 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
513 {
514         if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
515                 struct memcg_shrinker_map *map;
516
517                 rcu_read_lock();
518                 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
519                 /* Pairs with smp mb in shrink_slab() */
520                 smp_mb__before_atomic();
521                 set_bit(shrinker_id, map->map);
522                 rcu_read_unlock();
523         }
524 }
525
526 /**
527  * mem_cgroup_css_from_page - css of the memcg associated with a page
528  * @page: page of interest
529  *
530  * If memcg is bound to the default hierarchy, css of the memcg associated
531  * with @page is returned.  The returned css remains associated with @page
532  * until it is released.
533  *
534  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
535  * is returned.
536  */
537 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
538 {
539         struct mem_cgroup *memcg;
540
541         memcg = page->mem_cgroup;
542
543         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
544                 memcg = root_mem_cgroup;
545
546         return &memcg->css;
547 }
548
549 /**
550  * page_cgroup_ino - return inode number of the memcg a page is charged to
551  * @page: the page
552  *
553  * Look up the closest online ancestor of the memory cgroup @page is charged to
554  * and return its inode number or 0 if @page is not charged to any cgroup. It
555  * is safe to call this function without holding a reference to @page.
556  *
557  * Note, this function is inherently racy, because there is nothing to prevent
558  * the cgroup inode from getting torn down and potentially reallocated a moment
559  * after page_cgroup_ino() returns, so it only should be used by callers that
560  * do not care (such as procfs interfaces).
561  */
562 ino_t page_cgroup_ino(struct page *page)
563 {
564         struct mem_cgroup *memcg;
565         unsigned long ino = 0;
566
567         rcu_read_lock();
568         memcg = page->mem_cgroup;
569
570         /*
571          * The lowest bit set means that memcg isn't a valid
572          * memcg pointer, but a obj_cgroups pointer.
573          * In this case the page is shared and doesn't belong
574          * to any specific memory cgroup.
575          */
576         if ((unsigned long) memcg & 0x1UL)
577                 memcg = NULL;
578
579         while (memcg && !(memcg->css.flags & CSS_ONLINE))
580                 memcg = parent_mem_cgroup(memcg);
581         if (memcg)
582                 ino = cgroup_ino(memcg->css.cgroup);
583         rcu_read_unlock();
584         return ino;
585 }
586
587 static struct mem_cgroup_per_node *
588 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
589 {
590         int nid = page_to_nid(page);
591
592         return memcg->nodeinfo[nid];
593 }
594
595 static struct mem_cgroup_tree_per_node *
596 soft_limit_tree_node(int nid)
597 {
598         return soft_limit_tree.rb_tree_per_node[nid];
599 }
600
601 static struct mem_cgroup_tree_per_node *
602 soft_limit_tree_from_page(struct page *page)
603 {
604         int nid = page_to_nid(page);
605
606         return soft_limit_tree.rb_tree_per_node[nid];
607 }
608
609 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
610                                          struct mem_cgroup_tree_per_node *mctz,
611                                          unsigned long new_usage_in_excess)
612 {
613         struct rb_node **p = &mctz->rb_root.rb_node;
614         struct rb_node *parent = NULL;
615         struct mem_cgroup_per_node *mz_node;
616         bool rightmost = true;
617
618         if (mz->on_tree)
619                 return;
620
621         mz->usage_in_excess = new_usage_in_excess;
622         if (!mz->usage_in_excess)
623                 return;
624         while (*p) {
625                 parent = *p;
626                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
627                                         tree_node);
628                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
629                         p = &(*p)->rb_left;
630                         rightmost = false;
631                 }
632
633                 /*
634                  * We can't avoid mem cgroups that are over their soft
635                  * limit by the same amount
636                  */
637                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
638                         p = &(*p)->rb_right;
639         }
640
641         if (rightmost)
642                 mctz->rb_rightmost = &mz->tree_node;
643
644         rb_link_node(&mz->tree_node, parent, p);
645         rb_insert_color(&mz->tree_node, &mctz->rb_root);
646         mz->on_tree = true;
647 }
648
649 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
650                                          struct mem_cgroup_tree_per_node *mctz)
651 {
652         if (!mz->on_tree)
653                 return;
654
655         if (&mz->tree_node == mctz->rb_rightmost)
656                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
657
658         rb_erase(&mz->tree_node, &mctz->rb_root);
659         mz->on_tree = false;
660 }
661
662 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
663                                        struct mem_cgroup_tree_per_node *mctz)
664 {
665         unsigned long flags;
666
667         spin_lock_irqsave(&mctz->lock, flags);
668         __mem_cgroup_remove_exceeded(mz, mctz);
669         spin_unlock_irqrestore(&mctz->lock, flags);
670 }
671
672 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
673 {
674         unsigned long nr_pages = page_counter_read(&memcg->memory);
675         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
676         unsigned long excess = 0;
677
678         if (nr_pages > soft_limit)
679                 excess = nr_pages - soft_limit;
680
681         return excess;
682 }
683
684 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
685 {
686         unsigned long excess;
687         struct mem_cgroup_per_node *mz;
688         struct mem_cgroup_tree_per_node *mctz;
689
690         mctz = soft_limit_tree_from_page(page);
691         if (!mctz)
692                 return;
693         /*
694          * Necessary to update all ancestors when hierarchy is used.
695          * because their event counter is not touched.
696          */
697         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698                 mz = mem_cgroup_page_nodeinfo(memcg, page);
699                 excess = soft_limit_excess(memcg);
700                 /*
701                  * We have to update the tree if mz is on RB-tree or
702                  * mem is over its softlimit.
703                  */
704                 if (excess || mz->on_tree) {
705                         unsigned long flags;
706
707                         spin_lock_irqsave(&mctz->lock, flags);
708                         /* if on-tree, remove it */
709                         if (mz->on_tree)
710                                 __mem_cgroup_remove_exceeded(mz, mctz);
711                         /*
712                          * Insert again. mz->usage_in_excess will be updated.
713                          * If excess is 0, no tree ops.
714                          */
715                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
716                         spin_unlock_irqrestore(&mctz->lock, flags);
717                 }
718         }
719 }
720
721 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722 {
723         struct mem_cgroup_tree_per_node *mctz;
724         struct mem_cgroup_per_node *mz;
725         int nid;
726
727         for_each_node(nid) {
728                 mz = mem_cgroup_nodeinfo(memcg, nid);
729                 mctz = soft_limit_tree_node(nid);
730                 if (mctz)
731                         mem_cgroup_remove_exceeded(mz, mctz);
732         }
733 }
734
735 static struct mem_cgroup_per_node *
736 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
737 {
738         struct mem_cgroup_per_node *mz;
739
740 retry:
741         mz = NULL;
742         if (!mctz->rb_rightmost)
743                 goto done;              /* Nothing to reclaim from */
744
745         mz = rb_entry(mctz->rb_rightmost,
746                       struct mem_cgroup_per_node, tree_node);
747         /*
748          * Remove the node now but someone else can add it back,
749          * we will to add it back at the end of reclaim to its correct
750          * position in the tree.
751          */
752         __mem_cgroup_remove_exceeded(mz, mctz);
753         if (!soft_limit_excess(mz->memcg) ||
754             !css_tryget(&mz->memcg->css))
755                 goto retry;
756 done:
757         return mz;
758 }
759
760 static struct mem_cgroup_per_node *
761 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
762 {
763         struct mem_cgroup_per_node *mz;
764
765         spin_lock_irq(&mctz->lock);
766         mz = __mem_cgroup_largest_soft_limit_node(mctz);
767         spin_unlock_irq(&mctz->lock);
768         return mz;
769 }
770
771 /**
772  * __mod_memcg_state - update cgroup memory statistics
773  * @memcg: the memory cgroup
774  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
775  * @val: delta to add to the counter, can be negative
776  */
777 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
778 {
779         long x, threshold = MEMCG_CHARGE_BATCH;
780
781         if (mem_cgroup_disabled())
782                 return;
783
784         if (memcg_stat_item_in_bytes(idx))
785                 threshold <<= PAGE_SHIFT;
786
787         x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
788         if (unlikely(abs(x) > threshold)) {
789                 struct mem_cgroup *mi;
790
791                 /*
792                  * Batch local counters to keep them in sync with
793                  * the hierarchical ones.
794                  */
795                 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
796                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
797                         atomic_long_add(x, &mi->vmstats[idx]);
798                 x = 0;
799         }
800         __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
801 }
802
803 static struct mem_cgroup_per_node *
804 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
805 {
806         struct mem_cgroup *parent;
807
808         parent = parent_mem_cgroup(pn->memcg);
809         if (!parent)
810                 return NULL;
811         return mem_cgroup_nodeinfo(parent, nid);
812 }
813
814 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
815                               int val)
816 {
817         struct mem_cgroup_per_node *pn;
818         struct mem_cgroup *memcg;
819         long x, threshold = MEMCG_CHARGE_BATCH;
820
821         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
822         memcg = pn->memcg;
823
824         /* Update memcg */
825         __mod_memcg_state(memcg, idx, val);
826
827         /* Update lruvec */
828         __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
829
830         if (vmstat_item_in_bytes(idx))
831                 threshold <<= PAGE_SHIFT;
832
833         x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
834         if (unlikely(abs(x) > threshold)) {
835                 pg_data_t *pgdat = lruvec_pgdat(lruvec);
836                 struct mem_cgroup_per_node *pi;
837
838                 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
839                         atomic_long_add(x, &pi->lruvec_stat[idx]);
840                 x = 0;
841         }
842         __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
843 }
844
845 /**
846  * __mod_lruvec_state - update lruvec memory statistics
847  * @lruvec: the lruvec
848  * @idx: the stat item
849  * @val: delta to add to the counter, can be negative
850  *
851  * The lruvec is the intersection of the NUMA node and a cgroup. This
852  * function updates the all three counters that are affected by a
853  * change of state at this level: per-node, per-cgroup, per-lruvec.
854  */
855 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
856                         int val)
857 {
858         /* Update node */
859         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
860
861         /* Update memcg and lruvec */
862         if (!mem_cgroup_disabled())
863                 __mod_memcg_lruvec_state(lruvec, idx, val);
864 }
865
866 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
867 {
868         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
869         struct mem_cgroup *memcg;
870         struct lruvec *lruvec;
871
872         rcu_read_lock();
873         memcg = mem_cgroup_from_obj(p);
874
875         /* Untracked pages have no memcg, no lruvec. Update only the node */
876         if (!memcg || memcg == root_mem_cgroup) {
877                 __mod_node_page_state(pgdat, idx, val);
878         } else {
879                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
880                 __mod_lruvec_state(lruvec, idx, val);
881         }
882         rcu_read_unlock();
883 }
884
885 void mod_memcg_obj_state(void *p, int idx, int val)
886 {
887         struct mem_cgroup *memcg;
888
889         rcu_read_lock();
890         memcg = mem_cgroup_from_obj(p);
891         if (memcg)
892                 mod_memcg_state(memcg, idx, val);
893         rcu_read_unlock();
894 }
895
896 /**
897  * __count_memcg_events - account VM events in a cgroup
898  * @memcg: the memory cgroup
899  * @idx: the event item
900  * @count: the number of events that occured
901  */
902 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903                           unsigned long count)
904 {
905         unsigned long x;
906
907         if (mem_cgroup_disabled())
908                 return;
909
910         x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911         if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912                 struct mem_cgroup *mi;
913
914                 /*
915                  * Batch local counters to keep them in sync with
916                  * the hierarchical ones.
917                  */
918                 __this_cpu_add(memcg->vmstats_local->events[idx], x);
919                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920                         atomic_long_add(x, &mi->vmevents[idx]);
921                 x = 0;
922         }
923         __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924 }
925
926 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927 {
928         return atomic_long_read(&memcg->vmevents[event]);
929 }
930
931 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932 {
933         long x = 0;
934         int cpu;
935
936         for_each_possible_cpu(cpu)
937                 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938         return x;
939 }
940
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942                                          struct page *page,
943                                          int nr_pages)
944 {
945         /* pagein of a big page is an event. So, ignore page size */
946         if (nr_pages > 0)
947                 __count_memcg_events(memcg, PGPGIN, 1);
948         else {
949                 __count_memcg_events(memcg, PGPGOUT, 1);
950                 nr_pages = -nr_pages; /* for event */
951         }
952
953         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954 }
955
956 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957                                        enum mem_cgroup_events_target target)
958 {
959         unsigned long val, next;
960
961         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963         /* from time_after() in jiffies.h */
964         if ((long)(next - val) < 0) {
965                 switch (target) {
966                 case MEM_CGROUP_TARGET_THRESH:
967                         next = val + THRESHOLDS_EVENTS_TARGET;
968                         break;
969                 case MEM_CGROUP_TARGET_SOFTLIMIT:
970                         next = val + SOFTLIMIT_EVENTS_TARGET;
971                         break;
972                 default:
973                         break;
974                 }
975                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976                 return true;
977         }
978         return false;
979 }
980
981 /*
982  * Check events in order.
983  *
984  */
985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986 {
987         /* threshold event is triggered in finer grain than soft limit */
988         if (unlikely(mem_cgroup_event_ratelimit(memcg,
989                                                 MEM_CGROUP_TARGET_THRESH))) {
990                 bool do_softlimit;
991
992                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
994                 mem_cgroup_threshold(memcg);
995                 if (unlikely(do_softlimit))
996                         mem_cgroup_update_tree(memcg, page);
997         }
998 }
999
1000 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001 {
1002         /*
1003          * mm_update_next_owner() may clear mm->owner to NULL
1004          * if it races with swapoff, page migration, etc.
1005          * So this can be called with p == NULL.
1006          */
1007         if (unlikely(!p))
1008                 return NULL;
1009
1010         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011 }
1012 EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014 /**
1015  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016  * @mm: mm from which memcg should be extracted. It can be NULL.
1017  *
1018  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020  * returned.
1021  */
1022 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023 {
1024         struct mem_cgroup *memcg;
1025
1026         if (mem_cgroup_disabled())
1027                 return NULL;
1028
1029         rcu_read_lock();
1030         do {
1031                 /*
1032                  * Page cache insertions can happen withou an
1033                  * actual mm context, e.g. during disk probing
1034                  * on boot, loopback IO, acct() writes etc.
1035                  */
1036                 if (unlikely(!mm))
1037                         memcg = root_mem_cgroup;
1038                 else {
1039                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040                         if (unlikely(!memcg))
1041                                 memcg = root_mem_cgroup;
1042                 }
1043         } while (!css_tryget(&memcg->css));
1044         rcu_read_unlock();
1045         return memcg;
1046 }
1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049 /**
1050  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051  * @page: page from which memcg should be extracted.
1052  *
1053  * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054  * root_mem_cgroup is returned.
1055  */
1056 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057 {
1058         struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060         if (mem_cgroup_disabled())
1061                 return NULL;
1062
1063         rcu_read_lock();
1064         /* Page should not get uncharged and freed memcg under us. */
1065         if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066                 memcg = root_mem_cgroup;
1067         rcu_read_unlock();
1068         return memcg;
1069 }
1070 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072 /**
1073  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1074  */
1075 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1076 {
1077         if (unlikely(current->active_memcg)) {
1078                 struct mem_cgroup *memcg;
1079
1080                 rcu_read_lock();
1081                 /* current->active_memcg must hold a ref. */
1082                 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1083                         memcg = root_mem_cgroup;
1084                 else
1085                         memcg = current->active_memcg;
1086                 rcu_read_unlock();
1087                 return memcg;
1088         }
1089         return get_mem_cgroup_from_mm(current->mm);
1090 }
1091
1092 /**
1093  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1094  * @root: hierarchy root
1095  * @prev: previously returned memcg, NULL on first invocation
1096  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1097  *
1098  * Returns references to children of the hierarchy below @root, or
1099  * @root itself, or %NULL after a full round-trip.
1100  *
1101  * Caller must pass the return value in @prev on subsequent
1102  * invocations for reference counting, or use mem_cgroup_iter_break()
1103  * to cancel a hierarchy walk before the round-trip is complete.
1104  *
1105  * Reclaimers can specify a node and a priority level in @reclaim to
1106  * divide up the memcgs in the hierarchy among all concurrent
1107  * reclaimers operating on the same node and priority.
1108  */
1109 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110                                    struct mem_cgroup *prev,
1111                                    struct mem_cgroup_reclaim_cookie *reclaim)
1112 {
1113         struct mem_cgroup_reclaim_iter *iter;
1114         struct cgroup_subsys_state *css = NULL;
1115         struct mem_cgroup *memcg = NULL;
1116         struct mem_cgroup *pos = NULL;
1117
1118         if (mem_cgroup_disabled())
1119                 return NULL;
1120
1121         if (!root)
1122                 root = root_mem_cgroup;
1123
1124         if (prev && !reclaim)
1125                 pos = prev;
1126
1127         if (!root->use_hierarchy && root != root_mem_cgroup) {
1128                 if (prev)
1129                         goto out;
1130                 return root;
1131         }
1132
1133         rcu_read_lock();
1134
1135         if (reclaim) {
1136                 struct mem_cgroup_per_node *mz;
1137
1138                 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139                 iter = &mz->iter;
1140
1141                 if (prev && reclaim->generation != iter->generation)
1142                         goto out_unlock;
1143
1144                 while (1) {
1145                         pos = READ_ONCE(iter->position);
1146                         if (!pos || css_tryget(&pos->css))
1147                                 break;
1148                         /*
1149                          * css reference reached zero, so iter->position will
1150                          * be cleared by ->css_released. However, we should not
1151                          * rely on this happening soon, because ->css_released
1152                          * is called from a work queue, and by busy-waiting we
1153                          * might block it. So we clear iter->position right
1154                          * away.
1155                          */
1156                         (void)cmpxchg(&iter->position, pos, NULL);
1157                 }
1158         }
1159
1160         if (pos)
1161                 css = &pos->css;
1162
1163         for (;;) {
1164                 css = css_next_descendant_pre(css, &root->css);
1165                 if (!css) {
1166                         /*
1167                          * Reclaimers share the hierarchy walk, and a
1168                          * new one might jump in right at the end of
1169                          * the hierarchy - make sure they see at least
1170                          * one group and restart from the beginning.
1171                          */
1172                         if (!prev)
1173                                 continue;
1174                         break;
1175                 }
1176
1177                 /*
1178                  * Verify the css and acquire a reference.  The root
1179                  * is provided by the caller, so we know it's alive
1180                  * and kicking, and don't take an extra reference.
1181                  */
1182                 memcg = mem_cgroup_from_css(css);
1183
1184                 if (css == &root->css)
1185                         break;
1186
1187                 if (css_tryget(css))
1188                         break;
1189
1190                 memcg = NULL;
1191         }
1192
1193         if (reclaim) {
1194                 /*
1195                  * The position could have already been updated by a competing
1196                  * thread, so check that the value hasn't changed since we read
1197                  * it to avoid reclaiming from the same cgroup twice.
1198                  */
1199                 (void)cmpxchg(&iter->position, pos, memcg);
1200
1201                 if (pos)
1202                         css_put(&pos->css);
1203
1204                 if (!memcg)
1205                         iter->generation++;
1206                 else if (!prev)
1207                         reclaim->generation = iter->generation;
1208         }
1209
1210 out_unlock:
1211         rcu_read_unlock();
1212 out:
1213         if (prev && prev != root)
1214                 css_put(&prev->css);
1215
1216         return memcg;
1217 }
1218
1219 /**
1220  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221  * @root: hierarchy root
1222  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223  */
1224 void mem_cgroup_iter_break(struct mem_cgroup *root,
1225                            struct mem_cgroup *prev)
1226 {
1227         if (!root)
1228                 root = root_mem_cgroup;
1229         if (prev && prev != root)
1230                 css_put(&prev->css);
1231 }
1232
1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234                                         struct mem_cgroup *dead_memcg)
1235 {
1236         struct mem_cgroup_reclaim_iter *iter;
1237         struct mem_cgroup_per_node *mz;
1238         int nid;
1239
1240         for_each_node(nid) {
1241                 mz = mem_cgroup_nodeinfo(from, nid);
1242                 iter = &mz->iter;
1243                 cmpxchg(&iter->position, dead_memcg, NULL);
1244         }
1245 }
1246
1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248 {
1249         struct mem_cgroup *memcg = dead_memcg;
1250         struct mem_cgroup *last;
1251
1252         do {
1253                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254                 last = memcg;
1255         } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257         /*
1258          * When cgruop1 non-hierarchy mode is used,
1259          * parent_mem_cgroup() does not walk all the way up to the
1260          * cgroup root (root_mem_cgroup). So we have to handle
1261          * dead_memcg from cgroup root separately.
1262          */
1263         if (last != root_mem_cgroup)
1264                 __invalidate_reclaim_iterators(root_mem_cgroup,
1265                                                 dead_memcg);
1266 }
1267
1268 /**
1269  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270  * @memcg: hierarchy root
1271  * @fn: function to call for each task
1272  * @arg: argument passed to @fn
1273  *
1274  * This function iterates over tasks attached to @memcg or to any of its
1275  * descendants and calls @fn for each task. If @fn returns a non-zero
1276  * value, the function breaks the iteration loop and returns the value.
1277  * Otherwise, it will iterate over all tasks and return 0.
1278  *
1279  * This function must not be called for the root memory cgroup.
1280  */
1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282                           int (*fn)(struct task_struct *, void *), void *arg)
1283 {
1284         struct mem_cgroup *iter;
1285         int ret = 0;
1286
1287         BUG_ON(memcg == root_mem_cgroup);
1288
1289         for_each_mem_cgroup_tree(iter, memcg) {
1290                 struct css_task_iter it;
1291                 struct task_struct *task;
1292
1293                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294                 while (!ret && (task = css_task_iter_next(&it)))
1295                         ret = fn(task, arg);
1296                 css_task_iter_end(&it);
1297                 if (ret) {
1298                         mem_cgroup_iter_break(memcg, iter);
1299                         break;
1300                 }
1301         }
1302         return ret;
1303 }
1304
1305 /**
1306  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307  * @page: the page
1308  * @pgdat: pgdat of the page
1309  *
1310  * This function relies on page->mem_cgroup being stable - see the
1311  * access rules in commit_charge().
1312  */
1313 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1314 {
1315         struct mem_cgroup_per_node *mz;
1316         struct mem_cgroup *memcg;
1317         struct lruvec *lruvec;
1318
1319         if (mem_cgroup_disabled()) {
1320                 lruvec = &pgdat->__lruvec;
1321                 goto out;
1322         }
1323
1324         memcg = page->mem_cgroup;
1325         /*
1326          * Swapcache readahead pages are added to the LRU - and
1327          * possibly migrated - before they are charged.
1328          */
1329         if (!memcg)
1330                 memcg = root_mem_cgroup;
1331
1332         mz = mem_cgroup_page_nodeinfo(memcg, page);
1333         lruvec = &mz->lruvec;
1334 out:
1335         /*
1336          * Since a node can be onlined after the mem_cgroup was created,
1337          * we have to be prepared to initialize lruvec->zone here;
1338          * and if offlined then reonlined, we need to reinitialize it.
1339          */
1340         if (unlikely(lruvec->pgdat != pgdat))
1341                 lruvec->pgdat = pgdat;
1342         return lruvec;
1343 }
1344
1345 /**
1346  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1347  * @lruvec: mem_cgroup per zone lru vector
1348  * @lru: index of lru list the page is sitting on
1349  * @zid: zone id of the accounted pages
1350  * @nr_pages: positive when adding or negative when removing
1351  *
1352  * This function must be called under lru_lock, just before a page is added
1353  * to or just after a page is removed from an lru list (that ordering being
1354  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355  */
1356 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357                                 int zid, int nr_pages)
1358 {
1359         struct mem_cgroup_per_node *mz;
1360         unsigned long *lru_size;
1361         long size;
1362
1363         if (mem_cgroup_disabled())
1364                 return;
1365
1366         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367         lru_size = &mz->lru_zone_size[zid][lru];
1368
1369         if (nr_pages < 0)
1370                 *lru_size += nr_pages;
1371
1372         size = *lru_size;
1373         if (WARN_ONCE(size < 0,
1374                 "%s(%p, %d, %d): lru_size %ld\n",
1375                 __func__, lruvec, lru, nr_pages, size)) {
1376                 VM_BUG_ON(1);
1377                 *lru_size = 0;
1378         }
1379
1380         if (nr_pages > 0)
1381                 *lru_size += nr_pages;
1382 }
1383
1384 /**
1385  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1386  * @memcg: the memory cgroup
1387  *
1388  * Returns the maximum amount of memory @mem can be charged with, in
1389  * pages.
1390  */
1391 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1392 {
1393         unsigned long margin = 0;
1394         unsigned long count;
1395         unsigned long limit;
1396
1397         count = page_counter_read(&memcg->memory);
1398         limit = READ_ONCE(memcg->memory.max);
1399         if (count < limit)
1400                 margin = limit - count;
1401
1402         if (do_memsw_account()) {
1403                 count = page_counter_read(&memcg->memsw);
1404                 limit = READ_ONCE(memcg->memsw.max);
1405                 if (count < limit)
1406                         margin = min(margin, limit - count);
1407                 else
1408                         margin = 0;
1409         }
1410
1411         return margin;
1412 }
1413
1414 /*
1415  * A routine for checking "mem" is under move_account() or not.
1416  *
1417  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1418  * moving cgroups. This is for waiting at high-memory pressure
1419  * caused by "move".
1420  */
1421 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1422 {
1423         struct mem_cgroup *from;
1424         struct mem_cgroup *to;
1425         bool ret = false;
1426         /*
1427          * Unlike task_move routines, we access mc.to, mc.from not under
1428          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1429          */
1430         spin_lock(&mc.lock);
1431         from = mc.from;
1432         to = mc.to;
1433         if (!from)
1434                 goto unlock;
1435
1436         ret = mem_cgroup_is_descendant(from, memcg) ||
1437                 mem_cgroup_is_descendant(to, memcg);
1438 unlock:
1439         spin_unlock(&mc.lock);
1440         return ret;
1441 }
1442
1443 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444 {
1445         if (mc.moving_task && current != mc.moving_task) {
1446                 if (mem_cgroup_under_move(memcg)) {
1447                         DEFINE_WAIT(wait);
1448                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1449                         /* moving charge context might have finished. */
1450                         if (mc.moving_task)
1451                                 schedule();
1452                         finish_wait(&mc.waitq, &wait);
1453                         return true;
1454                 }
1455         }
1456         return false;
1457 }
1458
1459 static char *memory_stat_format(struct mem_cgroup *memcg)
1460 {
1461         struct seq_buf s;
1462         int i;
1463
1464         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1465         if (!s.buffer)
1466                 return NULL;
1467
1468         /*
1469          * Provide statistics on the state of the memory subsystem as
1470          * well as cumulative event counters that show past behavior.
1471          *
1472          * This list is ordered following a combination of these gradients:
1473          * 1) generic big picture -> specifics and details
1474          * 2) reflecting userspace activity -> reflecting kernel heuristics
1475          *
1476          * Current memory state:
1477          */
1478
1479         seq_buf_printf(&s, "anon %llu\n",
1480                        (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481                        PAGE_SIZE);
1482         seq_buf_printf(&s, "file %llu\n",
1483                        (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484                        PAGE_SIZE);
1485         seq_buf_printf(&s, "kernel_stack %llu\n",
1486                        (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487                        1024);
1488         seq_buf_printf(&s, "slab %llu\n",
1489                        (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1490                              memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491         seq_buf_printf(&s, "percpu %llu\n",
1492                        (u64)memcg_page_state(memcg, MEMCG_PERCPU_B));
1493         seq_buf_printf(&s, "sock %llu\n",
1494                        (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1495                        PAGE_SIZE);
1496
1497         seq_buf_printf(&s, "shmem %llu\n",
1498                        (u64)memcg_page_state(memcg, NR_SHMEM) *
1499                        PAGE_SIZE);
1500         seq_buf_printf(&s, "file_mapped %llu\n",
1501                        (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1502                        PAGE_SIZE);
1503         seq_buf_printf(&s, "file_dirty %llu\n",
1504                        (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1505                        PAGE_SIZE);
1506         seq_buf_printf(&s, "file_writeback %llu\n",
1507                        (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1508                        PAGE_SIZE);
1509
1510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1511         seq_buf_printf(&s, "anon_thp %llu\n",
1512                        (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1513                        HPAGE_PMD_SIZE);
1514 #endif
1515
1516         for (i = 0; i < NR_LRU_LISTS; i++)
1517                 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1518                                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1519                                PAGE_SIZE);
1520
1521         seq_buf_printf(&s, "slab_reclaimable %llu\n",
1522                        (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1523         seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1524                        (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1525
1526         /* Accumulated memory events */
1527
1528         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1529                        memcg_events(memcg, PGFAULT));
1530         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1531                        memcg_events(memcg, PGMAJFAULT));
1532
1533         seq_buf_printf(&s, "workingset_refault_anon %lu\n",
1534                        memcg_page_state(memcg, WORKINGSET_REFAULT_ANON));
1535         seq_buf_printf(&s, "workingset_refault_file %lu\n",
1536                        memcg_page_state(memcg, WORKINGSET_REFAULT_FILE));
1537         seq_buf_printf(&s, "workingset_activate_anon %lu\n",
1538                        memcg_page_state(memcg, WORKINGSET_ACTIVATE_ANON));
1539         seq_buf_printf(&s, "workingset_activate_file %lu\n",
1540                        memcg_page_state(memcg, WORKINGSET_ACTIVATE_FILE));
1541         seq_buf_printf(&s, "workingset_restore_anon %lu\n",
1542                        memcg_page_state(memcg, WORKINGSET_RESTORE_ANON));
1543         seq_buf_printf(&s, "workingset_restore_file %lu\n",
1544                        memcg_page_state(memcg, WORKINGSET_RESTORE_FILE));
1545         seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1546                        memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1547
1548         seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1549                        memcg_events(memcg, PGREFILL));
1550         seq_buf_printf(&s, "pgscan %lu\n",
1551                        memcg_events(memcg, PGSCAN_KSWAPD) +
1552                        memcg_events(memcg, PGSCAN_DIRECT));
1553         seq_buf_printf(&s, "pgsteal %lu\n",
1554                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1555                        memcg_events(memcg, PGSTEAL_DIRECT));
1556         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1557                        memcg_events(memcg, PGACTIVATE));
1558         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1559                        memcg_events(memcg, PGDEACTIVATE));
1560         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1561                        memcg_events(memcg, PGLAZYFREE));
1562         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1563                        memcg_events(memcg, PGLAZYFREED));
1564
1565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1566         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1567                        memcg_events(memcg, THP_FAULT_ALLOC));
1568         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1569                        memcg_events(memcg, THP_COLLAPSE_ALLOC));
1570 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1571
1572         /* The above should easily fit into one page */
1573         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1574
1575         return s.buffer;
1576 }
1577
1578 #define K(x) ((x) << (PAGE_SHIFT-10))
1579 /**
1580  * mem_cgroup_print_oom_context: Print OOM information relevant to
1581  * memory controller.
1582  * @memcg: The memory cgroup that went over limit
1583  * @p: Task that is going to be killed
1584  *
1585  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1586  * enabled
1587  */
1588 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1589 {
1590         rcu_read_lock();
1591
1592         if (memcg) {
1593                 pr_cont(",oom_memcg=");
1594                 pr_cont_cgroup_path(memcg->css.cgroup);
1595         } else
1596                 pr_cont(",global_oom");
1597         if (p) {
1598                 pr_cont(",task_memcg=");
1599                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1600         }
1601         rcu_read_unlock();
1602 }
1603
1604 /**
1605  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1606  * memory controller.
1607  * @memcg: The memory cgroup that went over limit
1608  */
1609 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1610 {
1611         char *buf;
1612
1613         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1614                 K((u64)page_counter_read(&memcg->memory)),
1615                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1616         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1617                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1618                         K((u64)page_counter_read(&memcg->swap)),
1619                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1620         else {
1621                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1622                         K((u64)page_counter_read(&memcg->memsw)),
1623                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1624                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1625                         K((u64)page_counter_read(&memcg->kmem)),
1626                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1627         }
1628
1629         pr_info("Memory cgroup stats for ");
1630         pr_cont_cgroup_path(memcg->css.cgroup);
1631         pr_cont(":");
1632         buf = memory_stat_format(memcg);
1633         if (!buf)
1634                 return;
1635         pr_info("%s", buf);
1636         kfree(buf);
1637 }
1638
1639 /*
1640  * Return the memory (and swap, if configured) limit for a memcg.
1641  */
1642 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1643 {
1644         unsigned long max;
1645
1646         max = READ_ONCE(memcg->memory.max);
1647         if (mem_cgroup_swappiness(memcg)) {
1648                 unsigned long memsw_max;
1649                 unsigned long swap_max;
1650
1651                 memsw_max = memcg->memsw.max;
1652                 swap_max = READ_ONCE(memcg->swap.max);
1653                 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1654                 max = min(max + swap_max, memsw_max);
1655         }
1656         return max;
1657 }
1658
1659 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1660 {
1661         return page_counter_read(&memcg->memory);
1662 }
1663
1664 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1665                                      int order)
1666 {
1667         struct oom_control oc = {
1668                 .zonelist = NULL,
1669                 .nodemask = NULL,
1670                 .memcg = memcg,
1671                 .gfp_mask = gfp_mask,
1672                 .order = order,
1673         };
1674         bool ret = true;
1675
1676         if (mutex_lock_killable(&oom_lock))
1677                 return true;
1678
1679         if (mem_cgroup_margin(memcg) >= (1 << order))
1680                 goto unlock;
1681
1682         /*
1683          * A few threads which were not waiting at mutex_lock_killable() can
1684          * fail to bail out. Therefore, check again after holding oom_lock.
1685          */
1686         ret = should_force_charge() || out_of_memory(&oc);
1687
1688 unlock:
1689         mutex_unlock(&oom_lock);
1690         return ret;
1691 }
1692
1693 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1694                                    pg_data_t *pgdat,
1695                                    gfp_t gfp_mask,
1696                                    unsigned long *total_scanned)
1697 {
1698         struct mem_cgroup *victim = NULL;
1699         int total = 0;
1700         int loop = 0;
1701         unsigned long excess;
1702         unsigned long nr_scanned;
1703         struct mem_cgroup_reclaim_cookie reclaim = {
1704                 .pgdat = pgdat,
1705         };
1706
1707         excess = soft_limit_excess(root_memcg);
1708
1709         while (1) {
1710                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1711                 if (!victim) {
1712                         loop++;
1713                         if (loop >= 2) {
1714                                 /*
1715                                  * If we have not been able to reclaim
1716                                  * anything, it might because there are
1717                                  * no reclaimable pages under this hierarchy
1718                                  */
1719                                 if (!total)
1720                                         break;
1721                                 /*
1722                                  * We want to do more targeted reclaim.
1723                                  * excess >> 2 is not to excessive so as to
1724                                  * reclaim too much, nor too less that we keep
1725                                  * coming back to reclaim from this cgroup
1726                                  */
1727                                 if (total >= (excess >> 2) ||
1728                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1729                                         break;
1730                         }
1731                         continue;
1732                 }
1733                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1734                                         pgdat, &nr_scanned);
1735                 *total_scanned += nr_scanned;
1736                 if (!soft_limit_excess(root_memcg))
1737                         break;
1738         }
1739         mem_cgroup_iter_break(root_memcg, victim);
1740         return total;
1741 }
1742
1743 #ifdef CONFIG_LOCKDEP
1744 static struct lockdep_map memcg_oom_lock_dep_map = {
1745         .name = "memcg_oom_lock",
1746 };
1747 #endif
1748
1749 static DEFINE_SPINLOCK(memcg_oom_lock);
1750
1751 /*
1752  * Check OOM-Killer is already running under our hierarchy.
1753  * If someone is running, return false.
1754  */
1755 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1756 {
1757         struct mem_cgroup *iter, *failed = NULL;
1758
1759         spin_lock(&memcg_oom_lock);
1760
1761         for_each_mem_cgroup_tree(iter, memcg) {
1762                 if (iter->oom_lock) {
1763                         /*
1764                          * this subtree of our hierarchy is already locked
1765                          * so we cannot give a lock.
1766                          */
1767                         failed = iter;
1768                         mem_cgroup_iter_break(memcg, iter);
1769                         break;
1770                 } else
1771                         iter->oom_lock = true;
1772         }
1773
1774         if (failed) {
1775                 /*
1776                  * OK, we failed to lock the whole subtree so we have
1777                  * to clean up what we set up to the failing subtree
1778                  */
1779                 for_each_mem_cgroup_tree(iter, memcg) {
1780                         if (iter == failed) {
1781                                 mem_cgroup_iter_break(memcg, iter);
1782                                 break;
1783                         }
1784                         iter->oom_lock = false;
1785                 }
1786         } else
1787                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788
1789         spin_unlock(&memcg_oom_lock);
1790
1791         return !failed;
1792 }
1793
1794 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1795 {
1796         struct mem_cgroup *iter;
1797
1798         spin_lock(&memcg_oom_lock);
1799         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1800         for_each_mem_cgroup_tree(iter, memcg)
1801                 iter->oom_lock = false;
1802         spin_unlock(&memcg_oom_lock);
1803 }
1804
1805 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806 {
1807         struct mem_cgroup *iter;
1808
1809         spin_lock(&memcg_oom_lock);
1810         for_each_mem_cgroup_tree(iter, memcg)
1811                 iter->under_oom++;
1812         spin_unlock(&memcg_oom_lock);
1813 }
1814
1815 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1816 {
1817         struct mem_cgroup *iter;
1818
1819         /*
1820          * When a new child is created while the hierarchy is under oom,
1821          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1822          */
1823         spin_lock(&memcg_oom_lock);
1824         for_each_mem_cgroup_tree(iter, memcg)
1825                 if (iter->under_oom > 0)
1826                         iter->under_oom--;
1827         spin_unlock(&memcg_oom_lock);
1828 }
1829
1830 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1831
1832 struct oom_wait_info {
1833         struct mem_cgroup *memcg;
1834         wait_queue_entry_t      wait;
1835 };
1836
1837 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1838         unsigned mode, int sync, void *arg)
1839 {
1840         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1841         struct mem_cgroup *oom_wait_memcg;
1842         struct oom_wait_info *oom_wait_info;
1843
1844         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1845         oom_wait_memcg = oom_wait_info->memcg;
1846
1847         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1848             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1849                 return 0;
1850         return autoremove_wake_function(wait, mode, sync, arg);
1851 }
1852
1853 static void memcg_oom_recover(struct mem_cgroup *memcg)
1854 {
1855         /*
1856          * For the following lockless ->under_oom test, the only required
1857          * guarantee is that it must see the state asserted by an OOM when
1858          * this function is called as a result of userland actions
1859          * triggered by the notification of the OOM.  This is trivially
1860          * achieved by invoking mem_cgroup_mark_under_oom() before
1861          * triggering notification.
1862          */
1863         if (memcg && memcg->under_oom)
1864                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1865 }
1866
1867 enum oom_status {
1868         OOM_SUCCESS,
1869         OOM_FAILED,
1870         OOM_ASYNC,
1871         OOM_SKIPPED
1872 };
1873
1874 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1875 {
1876         enum oom_status ret;
1877         bool locked;
1878
1879         if (order > PAGE_ALLOC_COSTLY_ORDER)
1880                 return OOM_SKIPPED;
1881
1882         memcg_memory_event(memcg, MEMCG_OOM);
1883
1884         /*
1885          * We are in the middle of the charge context here, so we
1886          * don't want to block when potentially sitting on a callstack
1887          * that holds all kinds of filesystem and mm locks.
1888          *
1889          * cgroup1 allows disabling the OOM killer and waiting for outside
1890          * handling until the charge can succeed; remember the context and put
1891          * the task to sleep at the end of the page fault when all locks are
1892          * released.
1893          *
1894          * On the other hand, in-kernel OOM killer allows for an async victim
1895          * memory reclaim (oom_reaper) and that means that we are not solely
1896          * relying on the oom victim to make a forward progress and we can
1897          * invoke the oom killer here.
1898          *
1899          * Please note that mem_cgroup_out_of_memory might fail to find a
1900          * victim and then we have to bail out from the charge path.
1901          */
1902         if (memcg->oom_kill_disable) {
1903                 if (!current->in_user_fault)
1904                         return OOM_SKIPPED;
1905                 css_get(&memcg->css);
1906                 current->memcg_in_oom = memcg;
1907                 current->memcg_oom_gfp_mask = mask;
1908                 current->memcg_oom_order = order;
1909
1910                 return OOM_ASYNC;
1911         }
1912
1913         mem_cgroup_mark_under_oom(memcg);
1914
1915         locked = mem_cgroup_oom_trylock(memcg);
1916
1917         if (locked)
1918                 mem_cgroup_oom_notify(memcg);
1919
1920         mem_cgroup_unmark_under_oom(memcg);
1921         if (mem_cgroup_out_of_memory(memcg, mask, order))
1922                 ret = OOM_SUCCESS;
1923         else
1924                 ret = OOM_FAILED;
1925
1926         if (locked)
1927                 mem_cgroup_oom_unlock(memcg);
1928
1929         return ret;
1930 }
1931
1932 /**
1933  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1934  * @handle: actually kill/wait or just clean up the OOM state
1935  *
1936  * This has to be called at the end of a page fault if the memcg OOM
1937  * handler was enabled.
1938  *
1939  * Memcg supports userspace OOM handling where failed allocations must
1940  * sleep on a waitqueue until the userspace task resolves the
1941  * situation.  Sleeping directly in the charge context with all kinds
1942  * of locks held is not a good idea, instead we remember an OOM state
1943  * in the task and mem_cgroup_oom_synchronize() has to be called at
1944  * the end of the page fault to complete the OOM handling.
1945  *
1946  * Returns %true if an ongoing memcg OOM situation was detected and
1947  * completed, %false otherwise.
1948  */
1949 bool mem_cgroup_oom_synchronize(bool handle)
1950 {
1951         struct mem_cgroup *memcg = current->memcg_in_oom;
1952         struct oom_wait_info owait;
1953         bool locked;
1954
1955         /* OOM is global, do not handle */
1956         if (!memcg)
1957                 return false;
1958
1959         if (!handle)
1960                 goto cleanup;
1961
1962         owait.memcg = memcg;
1963         owait.wait.flags = 0;
1964         owait.wait.func = memcg_oom_wake_function;
1965         owait.wait.private = current;
1966         INIT_LIST_HEAD(&owait.wait.entry);
1967
1968         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1969         mem_cgroup_mark_under_oom(memcg);
1970
1971         locked = mem_cgroup_oom_trylock(memcg);
1972
1973         if (locked)
1974                 mem_cgroup_oom_notify(memcg);
1975
1976         if (locked && !memcg->oom_kill_disable) {
1977                 mem_cgroup_unmark_under_oom(memcg);
1978                 finish_wait(&memcg_oom_waitq, &owait.wait);
1979                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1980                                          current->memcg_oom_order);
1981         } else {
1982                 schedule();
1983                 mem_cgroup_unmark_under_oom(memcg);
1984                 finish_wait(&memcg_oom_waitq, &owait.wait);
1985         }
1986
1987         if (locked) {
1988                 mem_cgroup_oom_unlock(memcg);
1989                 /*
1990                  * There is no guarantee that an OOM-lock contender
1991                  * sees the wakeups triggered by the OOM kill
1992                  * uncharges.  Wake any sleepers explicitely.
1993                  */
1994                 memcg_oom_recover(memcg);
1995         }
1996 cleanup:
1997         current->memcg_in_oom = NULL;
1998         css_put(&memcg->css);
1999         return true;
2000 }
2001
2002 /**
2003  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2004  * @victim: task to be killed by the OOM killer
2005  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2006  *
2007  * Returns a pointer to a memory cgroup, which has to be cleaned up
2008  * by killing all belonging OOM-killable tasks.
2009  *
2010  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2011  */
2012 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2013                                             struct mem_cgroup *oom_domain)
2014 {
2015         struct mem_cgroup *oom_group = NULL;
2016         struct mem_cgroup *memcg;
2017
2018         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2019                 return NULL;
2020
2021         if (!oom_domain)
2022                 oom_domain = root_mem_cgroup;
2023
2024         rcu_read_lock();
2025
2026         memcg = mem_cgroup_from_task(victim);
2027         if (memcg == root_mem_cgroup)
2028                 goto out;
2029
2030         /*
2031          * If the victim task has been asynchronously moved to a different
2032          * memory cgroup, we might end up killing tasks outside oom_domain.
2033          * In this case it's better to ignore memory.group.oom.
2034          */
2035         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2036                 goto out;
2037
2038         /*
2039          * Traverse the memory cgroup hierarchy from the victim task's
2040          * cgroup up to the OOMing cgroup (or root) to find the
2041          * highest-level memory cgroup with oom.group set.
2042          */
2043         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2044                 if (memcg->oom_group)
2045                         oom_group = memcg;
2046
2047                 if (memcg == oom_domain)
2048                         break;
2049         }
2050
2051         if (oom_group)
2052                 css_get(&oom_group->css);
2053 out:
2054         rcu_read_unlock();
2055
2056         return oom_group;
2057 }
2058
2059 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2060 {
2061         pr_info("Tasks in ");
2062         pr_cont_cgroup_path(memcg->css.cgroup);
2063         pr_cont(" are going to be killed due to memory.oom.group set\n");
2064 }
2065
2066 /**
2067  * lock_page_memcg - lock a page->mem_cgroup binding
2068  * @page: the page
2069  *
2070  * This function protects unlocked LRU pages from being moved to
2071  * another cgroup.
2072  *
2073  * It ensures lifetime of the returned memcg. Caller is responsible
2074  * for the lifetime of the page; __unlock_page_memcg() is available
2075  * when @page might get freed inside the locked section.
2076  */
2077 struct mem_cgroup *lock_page_memcg(struct page *page)
2078 {
2079         struct page *head = compound_head(page); /* rmap on tail pages */
2080         struct mem_cgroup *memcg;
2081         unsigned long flags;
2082
2083         /*
2084          * The RCU lock is held throughout the transaction.  The fast
2085          * path can get away without acquiring the memcg->move_lock
2086          * because page moving starts with an RCU grace period.
2087          *
2088          * The RCU lock also protects the memcg from being freed when
2089          * the page state that is going to change is the only thing
2090          * preventing the page itself from being freed. E.g. writeback
2091          * doesn't hold a page reference and relies on PG_writeback to
2092          * keep off truncation, migration and so forth.
2093          */
2094         rcu_read_lock();
2095
2096         if (mem_cgroup_disabled())
2097                 return NULL;
2098 again:
2099         memcg = head->mem_cgroup;
2100         if (unlikely(!memcg))
2101                 return NULL;
2102
2103         if (atomic_read(&memcg->moving_account) <= 0)
2104                 return memcg;
2105
2106         spin_lock_irqsave(&memcg->move_lock, flags);
2107         if (memcg != head->mem_cgroup) {
2108                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2109                 goto again;
2110         }
2111
2112         /*
2113          * When charge migration first begins, we can have locked and
2114          * unlocked page stat updates happening concurrently.  Track
2115          * the task who has the lock for unlock_page_memcg().
2116          */
2117         memcg->move_lock_task = current;
2118         memcg->move_lock_flags = flags;
2119
2120         return memcg;
2121 }
2122 EXPORT_SYMBOL(lock_page_memcg);
2123
2124 /**
2125  * __unlock_page_memcg - unlock and unpin a memcg
2126  * @memcg: the memcg
2127  *
2128  * Unlock and unpin a memcg returned by lock_page_memcg().
2129  */
2130 void __unlock_page_memcg(struct mem_cgroup *memcg)
2131 {
2132         if (memcg && memcg->move_lock_task == current) {
2133                 unsigned long flags = memcg->move_lock_flags;
2134
2135                 memcg->move_lock_task = NULL;
2136                 memcg->move_lock_flags = 0;
2137
2138                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2139         }
2140
2141         rcu_read_unlock();
2142 }
2143
2144 /**
2145  * unlock_page_memcg - unlock a page->mem_cgroup binding
2146  * @page: the page
2147  */
2148 void unlock_page_memcg(struct page *page)
2149 {
2150         struct page *head = compound_head(page);
2151
2152         __unlock_page_memcg(head->mem_cgroup);
2153 }
2154 EXPORT_SYMBOL(unlock_page_memcg);
2155
2156 struct memcg_stock_pcp {
2157         struct mem_cgroup *cached; /* this never be root cgroup */
2158         unsigned int nr_pages;
2159
2160 #ifdef CONFIG_MEMCG_KMEM
2161         struct obj_cgroup *cached_objcg;
2162         unsigned int nr_bytes;
2163 #endif
2164
2165         struct work_struct work;
2166         unsigned long flags;
2167 #define FLUSHING_CACHED_CHARGE  0
2168 };
2169 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2170 static DEFINE_MUTEX(percpu_charge_mutex);
2171
2172 #ifdef CONFIG_MEMCG_KMEM
2173 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2174 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2175                                      struct mem_cgroup *root_memcg);
2176
2177 #else
2178 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2179 {
2180 }
2181 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2182                                      struct mem_cgroup *root_memcg)
2183 {
2184         return false;
2185 }
2186 #endif
2187
2188 /**
2189  * consume_stock: Try to consume stocked charge on this cpu.
2190  * @memcg: memcg to consume from.
2191  * @nr_pages: how many pages to charge.
2192  *
2193  * The charges will only happen if @memcg matches the current cpu's memcg
2194  * stock, and at least @nr_pages are available in that stock.  Failure to
2195  * service an allocation will refill the stock.
2196  *
2197  * returns true if successful, false otherwise.
2198  */
2199 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2200 {
2201         struct memcg_stock_pcp *stock;
2202         unsigned long flags;
2203         bool ret = false;
2204
2205         if (nr_pages > MEMCG_CHARGE_BATCH)
2206                 return ret;
2207
2208         local_irq_save(flags);
2209
2210         stock = this_cpu_ptr(&memcg_stock);
2211         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2212                 stock->nr_pages -= nr_pages;
2213                 ret = true;
2214         }
2215
2216         local_irq_restore(flags);
2217
2218         return ret;
2219 }
2220
2221 /*
2222  * Returns stocks cached in percpu and reset cached information.
2223  */
2224 static void drain_stock(struct memcg_stock_pcp *stock)
2225 {
2226         struct mem_cgroup *old = stock->cached;
2227
2228         if (!old)
2229                 return;
2230
2231         if (stock->nr_pages) {
2232                 page_counter_uncharge(&old->memory, stock->nr_pages);
2233                 if (do_memsw_account())
2234                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2235                 stock->nr_pages = 0;
2236         }
2237
2238         css_put(&old->css);
2239         stock->cached = NULL;
2240 }
2241
2242 static void drain_local_stock(struct work_struct *dummy)
2243 {
2244         struct memcg_stock_pcp *stock;
2245         unsigned long flags;
2246
2247         /*
2248          * The only protection from memory hotplug vs. drain_stock races is
2249          * that we always operate on local CPU stock here with IRQ disabled
2250          */
2251         local_irq_save(flags);
2252
2253         stock = this_cpu_ptr(&memcg_stock);
2254         drain_obj_stock(stock);
2255         drain_stock(stock);
2256         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2257
2258         local_irq_restore(flags);
2259 }
2260
2261 /*
2262  * Cache charges(val) to local per_cpu area.
2263  * This will be consumed by consume_stock() function, later.
2264  */
2265 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2266 {
2267         struct memcg_stock_pcp *stock;
2268         unsigned long flags;
2269
2270         local_irq_save(flags);
2271
2272         stock = this_cpu_ptr(&memcg_stock);
2273         if (stock->cached != memcg) { /* reset if necessary */
2274                 drain_stock(stock);
2275                 css_get(&memcg->css);
2276                 stock->cached = memcg;
2277         }
2278         stock->nr_pages += nr_pages;
2279
2280         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2281                 drain_stock(stock);
2282
2283         local_irq_restore(flags);
2284 }
2285
2286 /*
2287  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2288  * of the hierarchy under it.
2289  */
2290 static void drain_all_stock(struct mem_cgroup *root_memcg)
2291 {
2292         int cpu, curcpu;
2293
2294         /* If someone's already draining, avoid adding running more workers. */
2295         if (!mutex_trylock(&percpu_charge_mutex))
2296                 return;
2297         /*
2298          * Notify other cpus that system-wide "drain" is running
2299          * We do not care about races with the cpu hotplug because cpu down
2300          * as well as workers from this path always operate on the local
2301          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2302          */
2303         curcpu = get_cpu();
2304         for_each_online_cpu(cpu) {
2305                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2306                 struct mem_cgroup *memcg;
2307                 bool flush = false;
2308
2309                 rcu_read_lock();
2310                 memcg = stock->cached;
2311                 if (memcg && stock->nr_pages &&
2312                     mem_cgroup_is_descendant(memcg, root_memcg))
2313                         flush = true;
2314                 if (obj_stock_flush_required(stock, root_memcg))
2315                         flush = true;
2316                 rcu_read_unlock();
2317
2318                 if (flush &&
2319                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2320                         if (cpu == curcpu)
2321                                 drain_local_stock(&stock->work);
2322                         else
2323                                 schedule_work_on(cpu, &stock->work);
2324                 }
2325         }
2326         put_cpu();
2327         mutex_unlock(&percpu_charge_mutex);
2328 }
2329
2330 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2331 {
2332         struct memcg_stock_pcp *stock;
2333         struct mem_cgroup *memcg, *mi;
2334
2335         stock = &per_cpu(memcg_stock, cpu);
2336         drain_stock(stock);
2337
2338         for_each_mem_cgroup(memcg) {
2339                 int i;
2340
2341                 for (i = 0; i < MEMCG_NR_STAT; i++) {
2342                         int nid;
2343                         long x;
2344
2345                         x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2346                         if (x)
2347                                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2348                                         atomic_long_add(x, &memcg->vmstats[i]);
2349
2350                         if (i >= NR_VM_NODE_STAT_ITEMS)
2351                                 continue;
2352
2353                         for_each_node(nid) {
2354                                 struct mem_cgroup_per_node *pn;
2355
2356                                 pn = mem_cgroup_nodeinfo(memcg, nid);
2357                                 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2358                                 if (x)
2359                                         do {
2360                                                 atomic_long_add(x, &pn->lruvec_stat[i]);
2361                                         } while ((pn = parent_nodeinfo(pn, nid)));
2362                         }
2363                 }
2364
2365                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2366                         long x;
2367
2368                         x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2369                         if (x)
2370                                 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2371                                         atomic_long_add(x, &memcg->vmevents[i]);
2372                 }
2373         }
2374
2375         return 0;
2376 }
2377
2378 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2379                                   unsigned int nr_pages,
2380                                   gfp_t gfp_mask)
2381 {
2382         unsigned long nr_reclaimed = 0;
2383
2384         do {
2385                 unsigned long pflags;
2386
2387                 if (page_counter_read(&memcg->memory) <=
2388                     READ_ONCE(memcg->memory.high))
2389                         continue;
2390
2391                 memcg_memory_event(memcg, MEMCG_HIGH);
2392
2393                 psi_memstall_enter(&pflags);
2394                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2395                                                              gfp_mask, true);
2396                 psi_memstall_leave(&pflags);
2397         } while ((memcg = parent_mem_cgroup(memcg)) &&
2398                  !mem_cgroup_is_root(memcg));
2399
2400         return nr_reclaimed;
2401 }
2402
2403 static void high_work_func(struct work_struct *work)
2404 {
2405         struct mem_cgroup *memcg;
2406
2407         memcg = container_of(work, struct mem_cgroup, high_work);
2408         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409 }
2410
2411 /*
2412  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413  * enough to still cause a significant slowdown in most cases, while still
2414  * allowing diagnostics and tracing to proceed without becoming stuck.
2415  */
2416 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417
2418 /*
2419  * When calculating the delay, we use these either side of the exponentiation to
2420  * maintain precision and scale to a reasonable number of jiffies (see the table
2421  * below.
2422  *
2423  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424  *   overage ratio to a delay.
2425  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2426  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2427  *   to produce a reasonable delay curve.
2428  *
2429  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430  * reasonable delay curve compared to precision-adjusted overage, not
2431  * penalising heavily at first, but still making sure that growth beyond the
2432  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433  * example, with a high of 100 megabytes:
2434  *
2435  *  +-------+------------------------+
2436  *  | usage | time to allocate in ms |
2437  *  +-------+------------------------+
2438  *  | 100M  |                      0 |
2439  *  | 101M  |                      6 |
2440  *  | 102M  |                     25 |
2441  *  | 103M  |                     57 |
2442  *  | 104M  |                    102 |
2443  *  | 105M  |                    159 |
2444  *  | 106M  |                    230 |
2445  *  | 107M  |                    313 |
2446  *  | 108M  |                    409 |
2447  *  | 109M  |                    518 |
2448  *  | 110M  |                    639 |
2449  *  | 111M  |                    774 |
2450  *  | 112M  |                    921 |
2451  *  | 113M  |                   1081 |
2452  *  | 114M  |                   1254 |
2453  *  | 115M  |                   1439 |
2454  *  | 116M  |                   1638 |
2455  *  | 117M  |                   1849 |
2456  *  | 118M  |                   2000 |
2457  *  | 119M  |                   2000 |
2458  *  | 120M  |                   2000 |
2459  *  +-------+------------------------+
2460  */
2461  #define MEMCG_DELAY_PRECISION_SHIFT 20
2462  #define MEMCG_DELAY_SCALING_SHIFT 14
2463
2464 static u64 calculate_overage(unsigned long usage, unsigned long high)
2465 {
2466         u64 overage;
2467
2468         if (usage <= high)
2469                 return 0;
2470
2471         /*
2472          * Prevent division by 0 in overage calculation by acting as if
2473          * it was a threshold of 1 page
2474          */
2475         high = max(high, 1UL);
2476
2477         overage = usage - high;
2478         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479         return div64_u64(overage, high);
2480 }
2481
2482 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2483 {
2484         u64 overage, max_overage = 0;
2485
2486         do {
2487                 overage = calculate_overage(page_counter_read(&memcg->memory),
2488                                             READ_ONCE(memcg->memory.high));
2489                 max_overage = max(overage, max_overage);
2490         } while ((memcg = parent_mem_cgroup(memcg)) &&
2491                  !mem_cgroup_is_root(memcg));
2492
2493         return max_overage;
2494 }
2495
2496 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497 {
2498         u64 overage, max_overage = 0;
2499
2500         do {
2501                 overage = calculate_overage(page_counter_read(&memcg->swap),
2502                                             READ_ONCE(memcg->swap.high));
2503                 if (overage)
2504                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505                 max_overage = max(overage, max_overage);
2506         } while ((memcg = parent_mem_cgroup(memcg)) &&
2507                  !mem_cgroup_is_root(memcg));
2508
2509         return max_overage;
2510 }
2511
2512 /*
2513  * Get the number of jiffies that we should penalise a mischievous cgroup which
2514  * is exceeding its memory.high by checking both it and its ancestors.
2515  */
2516 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517                                           unsigned int nr_pages,
2518                                           u64 max_overage)
2519 {
2520         unsigned long penalty_jiffies;
2521
2522         if (!max_overage)
2523                 return 0;
2524
2525         /*
2526          * We use overage compared to memory.high to calculate the number of
2527          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528          * fairly lenient on small overages, and increasingly harsh when the
2529          * memcg in question makes it clear that it has no intention of stopping
2530          * its crazy behaviour, so we exponentially increase the delay based on
2531          * overage amount.
2532          */
2533         penalty_jiffies = max_overage * max_overage * HZ;
2534         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536
2537         /*
2538          * Factor in the task's own contribution to the overage, such that four
2539          * N-sized allocations are throttled approximately the same as one
2540          * 4N-sized allocation.
2541          *
2542          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543          * larger the current charge patch is than that.
2544          */
2545         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546 }
2547
2548 /*
2549  * Scheduled by try_charge() to be executed from the userland return path
2550  * and reclaims memory over the high limit.
2551  */
2552 void mem_cgroup_handle_over_high(void)
2553 {
2554         unsigned long penalty_jiffies;
2555         unsigned long pflags;
2556         unsigned long nr_reclaimed;
2557         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558         int nr_retries = MAX_RECLAIM_RETRIES;
2559         struct mem_cgroup *memcg;
2560         bool in_retry = false;
2561
2562         if (likely(!nr_pages))
2563                 return;
2564
2565         memcg = get_mem_cgroup_from_mm(current->mm);
2566         current->memcg_nr_pages_over_high = 0;
2567
2568 retry_reclaim:
2569         /*
2570          * The allocating task should reclaim at least the batch size, but for
2571          * subsequent retries we only want to do what's necessary to prevent oom
2572          * or breaching resource isolation.
2573          *
2574          * This is distinct from memory.max or page allocator behaviour because
2575          * memory.high is currently batched, whereas memory.max and the page
2576          * allocator run every time an allocation is made.
2577          */
2578         nr_reclaimed = reclaim_high(memcg,
2579                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580                                     GFP_KERNEL);
2581
2582         /*
2583          * memory.high is breached and reclaim is unable to keep up. Throttle
2584          * allocators proactively to slow down excessive growth.
2585          */
2586         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587                                                mem_find_max_overage(memcg));
2588
2589         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590                                                 swap_find_max_overage(memcg));
2591
2592         /*
2593          * Clamp the max delay per usermode return so as to still keep the
2594          * application moving forwards and also permit diagnostics, albeit
2595          * extremely slowly.
2596          */
2597         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598
2599         /*
2600          * Don't sleep if the amount of jiffies this memcg owes us is so low
2601          * that it's not even worth doing, in an attempt to be nice to those who
2602          * go only a small amount over their memory.high value and maybe haven't
2603          * been aggressively reclaimed enough yet.
2604          */
2605         if (penalty_jiffies <= HZ / 100)
2606                 goto out;
2607
2608         /*
2609          * If reclaim is making forward progress but we're still over
2610          * memory.high, we want to encourage that rather than doing allocator
2611          * throttling.
2612          */
2613         if (nr_reclaimed || nr_retries--) {
2614                 in_retry = true;
2615                 goto retry_reclaim;
2616         }
2617
2618         /*
2619          * If we exit early, we're guaranteed to die (since
2620          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621          * need to account for any ill-begotten jiffies to pay them off later.
2622          */
2623         psi_memstall_enter(&pflags);
2624         schedule_timeout_killable(penalty_jiffies);
2625         psi_memstall_leave(&pflags);
2626
2627 out:
2628         css_put(&memcg->css);
2629 }
2630
2631 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632                       unsigned int nr_pages)
2633 {
2634         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635         int nr_retries = MAX_RECLAIM_RETRIES;
2636         struct mem_cgroup *mem_over_limit;
2637         struct page_counter *counter;
2638         enum oom_status oom_status;
2639         unsigned long nr_reclaimed;
2640         bool may_swap = true;
2641         bool drained = false;
2642         unsigned long pflags;
2643
2644         if (mem_cgroup_is_root(memcg))
2645                 return 0;
2646 retry:
2647         if (consume_stock(memcg, nr_pages))
2648                 return 0;
2649
2650         if (!do_memsw_account() ||
2651             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2652                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2653                         goto done_restock;
2654                 if (do_memsw_account())
2655                         page_counter_uncharge(&memcg->memsw, batch);
2656                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2657         } else {
2658                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2659                 may_swap = false;
2660         }
2661
2662         if (batch > nr_pages) {
2663                 batch = nr_pages;
2664                 goto retry;
2665         }
2666
2667         /*
2668          * Memcg doesn't have a dedicated reserve for atomic
2669          * allocations. But like the global atomic pool, we need to
2670          * put the burden of reclaim on regular allocation requests
2671          * and let these go through as privileged allocations.
2672          */
2673         if (gfp_mask & __GFP_ATOMIC)
2674                 goto force;
2675
2676         /*
2677          * Unlike in global OOM situations, memcg is not in a physical
2678          * memory shortage.  Allow dying and OOM-killed tasks to
2679          * bypass the last charges so that they can exit quickly and
2680          * free their memory.
2681          */
2682         if (unlikely(should_force_charge()))
2683                 goto force;
2684
2685         /*
2686          * Prevent unbounded recursion when reclaim operations need to
2687          * allocate memory. This might exceed the limits temporarily,
2688          * but we prefer facilitating memory reclaim and getting back
2689          * under the limit over triggering OOM kills in these cases.
2690          */
2691         if (unlikely(current->flags & PF_MEMALLOC))
2692                 goto force;
2693
2694         if (unlikely(task_in_memcg_oom(current)))
2695                 goto nomem;
2696
2697         if (!gfpflags_allow_blocking(gfp_mask))
2698                 goto nomem;
2699
2700         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2701
2702         psi_memstall_enter(&pflags);
2703         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2704                                                     gfp_mask, may_swap);
2705         psi_memstall_leave(&pflags);
2706
2707         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2708                 goto retry;
2709
2710         if (!drained) {
2711                 drain_all_stock(mem_over_limit);
2712                 drained = true;
2713                 goto retry;
2714         }
2715
2716         if (gfp_mask & __GFP_NORETRY)
2717                 goto nomem;
2718         /*
2719          * Even though the limit is exceeded at this point, reclaim
2720          * may have been able to free some pages.  Retry the charge
2721          * before killing the task.
2722          *
2723          * Only for regular pages, though: huge pages are rather
2724          * unlikely to succeed so close to the limit, and we fall back
2725          * to regular pages anyway in case of failure.
2726          */
2727         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2728                 goto retry;
2729         /*
2730          * At task move, charge accounts can be doubly counted. So, it's
2731          * better to wait until the end of task_move if something is going on.
2732          */
2733         if (mem_cgroup_wait_acct_move(mem_over_limit))
2734                 goto retry;
2735
2736         if (nr_retries--)
2737                 goto retry;
2738
2739         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2740                 goto nomem;
2741
2742         if (gfp_mask & __GFP_NOFAIL)
2743                 goto force;
2744
2745         if (fatal_signal_pending(current))
2746                 goto force;
2747
2748         /*
2749          * keep retrying as long as the memcg oom killer is able to make
2750          * a forward progress or bypass the charge if the oom killer
2751          * couldn't make any progress.
2752          */
2753         oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2754                        get_order(nr_pages * PAGE_SIZE));
2755         switch (oom_status) {
2756         case OOM_SUCCESS:
2757                 nr_retries = MAX_RECLAIM_RETRIES;
2758                 goto retry;
2759         case OOM_FAILED:
2760                 goto force;
2761         default:
2762                 goto nomem;
2763         }
2764 nomem:
2765         if (!(gfp_mask & __GFP_NOFAIL))
2766                 return -ENOMEM;
2767 force:
2768         /*
2769          * The allocation either can't fail or will lead to more memory
2770          * being freed very soon.  Allow memory usage go over the limit
2771          * temporarily by force charging it.
2772          */
2773         page_counter_charge(&memcg->memory, nr_pages);
2774         if (do_memsw_account())
2775                 page_counter_charge(&memcg->memsw, nr_pages);
2776
2777         return 0;
2778
2779 done_restock:
2780         if (batch > nr_pages)
2781                 refill_stock(memcg, batch - nr_pages);
2782
2783         /*
2784          * If the hierarchy is above the normal consumption range, schedule
2785          * reclaim on returning to userland.  We can perform reclaim here
2786          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2787          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2788          * not recorded as it most likely matches current's and won't
2789          * change in the meantime.  As high limit is checked again before
2790          * reclaim, the cost of mismatch is negligible.
2791          */
2792         do {
2793                 bool mem_high, swap_high;
2794
2795                 mem_high = page_counter_read(&memcg->memory) >
2796                         READ_ONCE(memcg->memory.high);
2797                 swap_high = page_counter_read(&memcg->swap) >
2798                         READ_ONCE(memcg->swap.high);
2799
2800                 /* Don't bother a random interrupted task */
2801                 if (in_interrupt()) {
2802                         if (mem_high) {
2803                                 schedule_work(&memcg->high_work);
2804                                 break;
2805                         }
2806                         continue;
2807                 }
2808
2809                 if (mem_high || swap_high) {
2810                         /*
2811                          * The allocating tasks in this cgroup will need to do
2812                          * reclaim or be throttled to prevent further growth
2813                          * of the memory or swap footprints.
2814                          *
2815                          * Target some best-effort fairness between the tasks,
2816                          * and distribute reclaim work and delay penalties
2817                          * based on how much each task is actually allocating.
2818                          */
2819                         current->memcg_nr_pages_over_high += batch;
2820                         set_notify_resume(current);
2821                         break;
2822                 }
2823         } while ((memcg = parent_mem_cgroup(memcg)));
2824
2825         return 0;
2826 }
2827
2828 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2829 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2830 {
2831         if (mem_cgroup_is_root(memcg))
2832                 return;
2833
2834         page_counter_uncharge(&memcg->memory, nr_pages);
2835         if (do_memsw_account())
2836                 page_counter_uncharge(&memcg->memsw, nr_pages);
2837 }
2838 #endif
2839
2840 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2841 {
2842         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2843         /*
2844          * Any of the following ensures page->mem_cgroup stability:
2845          *
2846          * - the page lock
2847          * - LRU isolation
2848          * - lock_page_memcg()
2849          * - exclusive reference
2850          */
2851         page->mem_cgroup = memcg;
2852 }
2853
2854 #ifdef CONFIG_MEMCG_KMEM
2855 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2856                                  gfp_t gfp)
2857 {
2858         unsigned int objects = objs_per_slab_page(s, page);
2859         void *vec;
2860
2861         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2862                            page_to_nid(page));
2863         if (!vec)
2864                 return -ENOMEM;
2865
2866         if (cmpxchg(&page->obj_cgroups, NULL,
2867                     (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2868                 kfree(vec);
2869         else
2870                 kmemleak_not_leak(vec);
2871
2872         return 0;
2873 }
2874
2875 /*
2876  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2877  *
2878  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2879  * cgroup_mutex, etc.
2880  */
2881 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2882 {
2883         struct page *page;
2884
2885         if (mem_cgroup_disabled())
2886                 return NULL;
2887
2888         page = virt_to_head_page(p);
2889
2890         /*
2891          * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2892          * or a pointer to obj_cgroup vector. In the latter case the lowest
2893          * bit of the pointer is set.
2894          * The page->mem_cgroup pointer can be asynchronously changed
2895          * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2896          * from a valid memcg pointer to objcg vector or back.
2897          */
2898         if (!page->mem_cgroup)
2899                 return NULL;
2900
2901         /*
2902          * Slab objects are accounted individually, not per-page.
2903          * Memcg membership data for each individual object is saved in
2904          * the page->obj_cgroups.
2905          */
2906         if (page_has_obj_cgroups(page)) {
2907                 struct obj_cgroup *objcg;
2908                 unsigned int off;
2909
2910                 off = obj_to_index(page->slab_cache, page, p);
2911                 objcg = page_obj_cgroups(page)[off];
2912                 if (objcg)
2913                         return obj_cgroup_memcg(objcg);
2914
2915                 return NULL;
2916         }
2917
2918         /* All other pages use page->mem_cgroup */
2919         return page->mem_cgroup;
2920 }
2921
2922 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2923 {
2924         struct obj_cgroup *objcg = NULL;
2925         struct mem_cgroup *memcg;
2926
2927         if (unlikely(!current->mm && !current->active_memcg))
2928                 return NULL;
2929
2930         rcu_read_lock();
2931         if (unlikely(current->active_memcg))
2932                 memcg = rcu_dereference(current->active_memcg);
2933         else
2934                 memcg = mem_cgroup_from_task(current);
2935
2936         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2937                 objcg = rcu_dereference(memcg->objcg);
2938                 if (objcg && obj_cgroup_tryget(objcg))
2939                         break;
2940         }
2941         rcu_read_unlock();
2942
2943         return objcg;
2944 }
2945
2946 static int memcg_alloc_cache_id(void)
2947 {
2948         int id, size;
2949         int err;
2950
2951         id = ida_simple_get(&memcg_cache_ida,
2952                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2953         if (id < 0)
2954                 return id;
2955
2956         if (id < memcg_nr_cache_ids)
2957                 return id;
2958
2959         /*
2960          * There's no space for the new id in memcg_caches arrays,
2961          * so we have to grow them.
2962          */
2963         down_write(&memcg_cache_ids_sem);
2964
2965         size = 2 * (id + 1);
2966         if (size < MEMCG_CACHES_MIN_SIZE)
2967                 size = MEMCG_CACHES_MIN_SIZE;
2968         else if (size > MEMCG_CACHES_MAX_SIZE)
2969                 size = MEMCG_CACHES_MAX_SIZE;
2970
2971         err = memcg_update_all_list_lrus(size);
2972         if (!err)
2973                 memcg_nr_cache_ids = size;
2974
2975         up_write(&memcg_cache_ids_sem);
2976
2977         if (err) {
2978                 ida_simple_remove(&memcg_cache_ida, id);
2979                 return err;
2980         }
2981         return id;
2982 }
2983
2984 static void memcg_free_cache_id(int id)
2985 {
2986         ida_simple_remove(&memcg_cache_ida, id);
2987 }
2988
2989 /**
2990  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2991  * @memcg: memory cgroup to charge
2992  * @gfp: reclaim mode
2993  * @nr_pages: number of pages to charge
2994  *
2995  * Returns 0 on success, an error code on failure.
2996  */
2997 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2998                         unsigned int nr_pages)
2999 {
3000         struct page_counter *counter;
3001         int ret;
3002
3003         ret = try_charge(memcg, gfp, nr_pages);
3004         if (ret)
3005                 return ret;
3006
3007         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3008             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3009
3010                 /*
3011                  * Enforce __GFP_NOFAIL allocation because callers are not
3012                  * prepared to see failures and likely do not have any failure
3013                  * handling code.
3014                  */
3015                 if (gfp & __GFP_NOFAIL) {
3016                         page_counter_charge(&memcg->kmem, nr_pages);
3017                         return 0;
3018                 }
3019                 cancel_charge(memcg, nr_pages);
3020                 return -ENOMEM;
3021         }
3022         return 0;
3023 }
3024
3025 /**
3026  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3027  * @memcg: memcg to uncharge
3028  * @nr_pages: number of pages to uncharge
3029  */
3030 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3031 {
3032         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3033                 page_counter_uncharge(&memcg->kmem, nr_pages);
3034
3035         page_counter_uncharge(&memcg->memory, nr_pages);
3036         if (do_memsw_account())
3037                 page_counter_uncharge(&memcg->memsw, nr_pages);
3038 }
3039
3040 /**
3041  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3042  * @page: page to charge
3043  * @gfp: reclaim mode
3044  * @order: allocation order
3045  *
3046  * Returns 0 on success, an error code on failure.
3047  */
3048 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3049 {
3050         struct mem_cgroup *memcg;
3051         int ret = 0;
3052
3053         if (memcg_kmem_bypass())
3054                 return 0;
3055
3056         memcg = get_mem_cgroup_from_current();
3057         if (!mem_cgroup_is_root(memcg)) {
3058                 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3059                 if (!ret) {
3060                         page->mem_cgroup = memcg;
3061                         __SetPageKmemcg(page);
3062                         return 0;
3063                 }
3064         }
3065         css_put(&memcg->css);
3066         return ret;
3067 }
3068
3069 /**
3070  * __memcg_kmem_uncharge_page: uncharge a kmem page
3071  * @page: page to uncharge
3072  * @order: allocation order
3073  */
3074 void __memcg_kmem_uncharge_page(struct page *page, int order)
3075 {
3076         struct mem_cgroup *memcg = page->mem_cgroup;
3077         unsigned int nr_pages = 1 << order;
3078
3079         if (!memcg)
3080                 return;
3081
3082         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3083         __memcg_kmem_uncharge(memcg, nr_pages);
3084         page->mem_cgroup = NULL;
3085         css_put(&memcg->css);
3086
3087         /* slab pages do not have PageKmemcg flag set */
3088         if (PageKmemcg(page))
3089                 __ClearPageKmemcg(page);
3090 }
3091
3092 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3093 {
3094         struct memcg_stock_pcp *stock;
3095         unsigned long flags;
3096         bool ret = false;
3097
3098         local_irq_save(flags);
3099
3100         stock = this_cpu_ptr(&memcg_stock);
3101         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3102                 stock->nr_bytes -= nr_bytes;
3103                 ret = true;
3104         }
3105
3106         local_irq_restore(flags);
3107
3108         return ret;
3109 }
3110
3111 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3112 {
3113         struct obj_cgroup *old = stock->cached_objcg;
3114
3115         if (!old)
3116                 return;
3117
3118         if (stock->nr_bytes) {
3119                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3120                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3121
3122                 if (nr_pages) {
3123                         rcu_read_lock();
3124                         __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3125                         rcu_read_unlock();
3126                 }
3127
3128                 /*
3129                  * The leftover is flushed to the centralized per-memcg value.
3130                  * On the next attempt to refill obj stock it will be moved
3131                  * to a per-cpu stock (probably, on an other CPU), see
3132                  * refill_obj_stock().
3133                  *
3134                  * How often it's flushed is a trade-off between the memory
3135                  * limit enforcement accuracy and potential CPU contention,
3136                  * so it might be changed in the future.
3137                  */
3138                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3139                 stock->nr_bytes = 0;
3140         }
3141
3142         obj_cgroup_put(old);
3143         stock->cached_objcg = NULL;
3144 }
3145
3146 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3147                                      struct mem_cgroup *root_memcg)
3148 {
3149         struct mem_cgroup *memcg;
3150
3151         if (stock->cached_objcg) {
3152                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3153                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3154                         return true;
3155         }
3156
3157         return false;
3158 }
3159
3160 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3161 {
3162         struct memcg_stock_pcp *stock;
3163         unsigned long flags;
3164
3165         local_irq_save(flags);
3166
3167         stock = this_cpu_ptr(&memcg_stock);
3168         if (stock->cached_objcg != objcg) { /* reset if necessary */
3169                 drain_obj_stock(stock);
3170                 obj_cgroup_get(objcg);
3171                 stock->cached_objcg = objcg;
3172                 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3173         }
3174         stock->nr_bytes += nr_bytes;
3175
3176         if (stock->nr_bytes > PAGE_SIZE)
3177                 drain_obj_stock(stock);
3178
3179         local_irq_restore(flags);
3180 }
3181
3182 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3183 {
3184         struct mem_cgroup *memcg;
3185         unsigned int nr_pages, nr_bytes;
3186         int ret;
3187
3188         if (consume_obj_stock(objcg, size))
3189                 return 0;
3190
3191         /*
3192          * In theory, memcg->nr_charged_bytes can have enough
3193          * pre-charged bytes to satisfy the allocation. However,
3194          * flushing memcg->nr_charged_bytes requires two atomic
3195          * operations, and memcg->nr_charged_bytes can't be big,
3196          * so it's better to ignore it and try grab some new pages.
3197          * memcg->nr_charged_bytes will be flushed in
3198          * refill_obj_stock(), called from this function or
3199          * independently later.
3200          */
3201         rcu_read_lock();
3202         memcg = obj_cgroup_memcg(objcg);
3203         css_get(&memcg->css);
3204         rcu_read_unlock();
3205
3206         nr_pages = size >> PAGE_SHIFT;
3207         nr_bytes = size & (PAGE_SIZE - 1);
3208
3209         if (nr_bytes)
3210                 nr_pages += 1;
3211
3212         ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3213         if (!ret && nr_bytes)
3214                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3215
3216         css_put(&memcg->css);
3217         return ret;
3218 }
3219
3220 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3221 {
3222         refill_obj_stock(objcg, size);
3223 }
3224
3225 #endif /* CONFIG_MEMCG_KMEM */
3226
3227 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3228
3229 /*
3230  * Because tail pages are not marked as "used", set it. We're under
3231  * pgdat->lru_lock and migration entries setup in all page mappings.
3232  */
3233 void mem_cgroup_split_huge_fixup(struct page *head)
3234 {
3235         struct mem_cgroup *memcg = head->mem_cgroup;
3236         int i;
3237
3238         if (mem_cgroup_disabled())
3239                 return;
3240
3241         for (i = 1; i < HPAGE_PMD_NR; i++) {
3242                 css_get(&memcg->css);
3243                 head[i].mem_cgroup = memcg;
3244         }
3245 }
3246 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3247
3248 #ifdef CONFIG_MEMCG_SWAP
3249 /**
3250  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3251  * @entry: swap entry to be moved
3252  * @from:  mem_cgroup which the entry is moved from
3253  * @to:  mem_cgroup which the entry is moved to
3254  *
3255  * It succeeds only when the swap_cgroup's record for this entry is the same
3256  * as the mem_cgroup's id of @from.
3257  *
3258  * Returns 0 on success, -EINVAL on failure.
3259  *
3260  * The caller must have charged to @to, IOW, called page_counter_charge() about
3261  * both res and memsw, and called css_get().
3262  */
3263 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3264                                 struct mem_cgroup *from, struct mem_cgroup *to)
3265 {
3266         unsigned short old_id, new_id;
3267
3268         old_id = mem_cgroup_id(from);
3269         new_id = mem_cgroup_id(to);
3270
3271         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3272                 mod_memcg_state(from, MEMCG_SWAP, -1);
3273                 mod_memcg_state(to, MEMCG_SWAP, 1);
3274                 return 0;
3275         }
3276         return -EINVAL;
3277 }
3278 #else
3279 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3280                                 struct mem_cgroup *from, struct mem_cgroup *to)
3281 {
3282         return -EINVAL;
3283 }
3284 #endif
3285
3286 static DEFINE_MUTEX(memcg_max_mutex);
3287
3288 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3289                                  unsigned long max, bool memsw)
3290 {
3291         bool enlarge = false;
3292         bool drained = false;
3293         int ret;
3294         bool limits_invariant;
3295         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3296
3297         do {
3298                 if (signal_pending(current)) {
3299                         ret = -EINTR;
3300                         break;
3301                 }
3302
3303                 mutex_lock(&memcg_max_mutex);
3304                 /*
3305                  * Make sure that the new limit (memsw or memory limit) doesn't
3306                  * break our basic invariant rule memory.max <= memsw.max.
3307                  */
3308                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3309                                            max <= memcg->memsw.max;
3310                 if (!limits_invariant) {
3311                         mutex_unlock(&memcg_max_mutex);
3312                         ret = -EINVAL;
3313                         break;
3314                 }
3315                 if (max > counter->max)
3316                         enlarge = true;
3317                 ret = page_counter_set_max(counter, max);
3318                 mutex_unlock(&memcg_max_mutex);
3319
3320                 if (!ret)
3321                         break;
3322
3323                 if (!drained) {
3324                         drain_all_stock(memcg);
3325                         drained = true;
3326                         continue;
3327                 }
3328
3329                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3330                                         GFP_KERNEL, !memsw)) {
3331                         ret = -EBUSY;
3332                         break;
3333                 }
3334         } while (true);
3335
3336         if (!ret && enlarge)
3337                 memcg_oom_recover(memcg);
3338
3339         return ret;
3340 }
3341
3342 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3343                                             gfp_t gfp_mask,
3344                                             unsigned long *total_scanned)
3345 {
3346         unsigned long nr_reclaimed = 0;
3347         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3348         unsigned long reclaimed;
3349         int loop = 0;
3350         struct mem_cgroup_tree_per_node *mctz;
3351         unsigned long excess;
3352         unsigned long nr_scanned;
3353
3354         if (order > 0)
3355                 return 0;
3356
3357         mctz = soft_limit_tree_node(pgdat->node_id);
3358
3359         /*
3360          * Do not even bother to check the largest node if the root
3361          * is empty. Do it lockless to prevent lock bouncing. Races
3362          * are acceptable as soft limit is best effort anyway.
3363          */
3364         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3365                 return 0;
3366
3367         /*
3368          * This loop can run a while, specially if mem_cgroup's continuously
3369          * keep exceeding their soft limit and putting the system under
3370          * pressure
3371          */
3372         do {
3373                 if (next_mz)
3374                         mz = next_mz;
3375                 else
3376                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3377                 if (!mz)
3378                         break;
3379
3380                 nr_scanned = 0;
3381                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3382                                                     gfp_mask, &nr_scanned);
3383                 nr_reclaimed += reclaimed;
3384                 *total_scanned += nr_scanned;
3385                 spin_lock_irq(&mctz->lock);
3386                 __mem_cgroup_remove_exceeded(mz, mctz);
3387
3388                 /*
3389                  * If we failed to reclaim anything from this memory cgroup
3390                  * it is time to move on to the next cgroup
3391                  */
3392                 next_mz = NULL;
3393                 if (!reclaimed)
3394                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3395
3396                 excess = soft_limit_excess(mz->memcg);
3397                 /*
3398                  * One school of thought says that we should not add
3399                  * back the node to the tree if reclaim returns 0.
3400                  * But our reclaim could return 0, simply because due
3401                  * to priority we are exposing a smaller subset of
3402                  * memory to reclaim from. Consider this as a longer
3403                  * term TODO.
3404                  */
3405                 /* If excess == 0, no tree ops */
3406                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3407                 spin_unlock_irq(&mctz->lock);
3408                 css_put(&mz->memcg->css);
3409                 loop++;
3410                 /*
3411                  * Could not reclaim anything and there are no more
3412                  * mem cgroups to try or we seem to be looping without
3413                  * reclaiming anything.
3414                  */
3415                 if (!nr_reclaimed &&
3416                         (next_mz == NULL ||
3417                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3418                         break;
3419         } while (!nr_reclaimed);
3420         if (next_mz)
3421                 css_put(&next_mz->memcg->css);
3422         return nr_reclaimed;
3423 }
3424
3425 /*
3426  * Test whether @memcg has children, dead or alive.  Note that this
3427  * function doesn't care whether @memcg has use_hierarchy enabled and
3428  * returns %true if there are child csses according to the cgroup
3429  * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3430  */
3431 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3432 {
3433         bool ret;
3434
3435         rcu_read_lock();
3436         ret = css_next_child(NULL, &memcg->css);
3437         rcu_read_unlock();
3438         return ret;
3439 }
3440
3441 /*
3442  * Reclaims as many pages from the given memcg as possible.
3443  *
3444  * Caller is responsible for holding css reference for memcg.
3445  */
3446 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3447 {
3448         int nr_retries = MAX_RECLAIM_RETRIES;
3449
3450         /* we call try-to-free pages for make this cgroup empty */
3451         lru_add_drain_all();
3452
3453         drain_all_stock(memcg);
3454
3455         /* try to free all pages in this cgroup */
3456         while (nr_retries && page_counter_read(&memcg->memory)) {
3457                 int progress;
3458
3459                 if (signal_pending(current))
3460                         return -EINTR;
3461
3462                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3463                                                         GFP_KERNEL, true);
3464                 if (!progress) {
3465                         nr_retries--;
3466                         /* maybe some writeback is necessary */
3467                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3468                 }
3469
3470         }
3471
3472         return 0;
3473 }
3474
3475 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3476                                             char *buf, size_t nbytes,
3477                                             loff_t off)
3478 {
3479         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3480
3481         if (mem_cgroup_is_root(memcg))
3482                 return -EINVAL;
3483         return mem_cgroup_force_empty(memcg) ?: nbytes;
3484 }
3485
3486 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3487                                      struct cftype *cft)
3488 {
3489         return mem_cgroup_from_css(css)->use_hierarchy;
3490 }
3491
3492 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3493                                       struct cftype *cft, u64 val)
3494 {
3495         int retval = 0;
3496         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3497         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3498
3499         if (memcg->use_hierarchy == val)
3500                 return 0;
3501
3502         /*
3503          * If parent's use_hierarchy is set, we can't make any modifications
3504          * in the child subtrees. If it is unset, then the change can
3505          * occur, provided the current cgroup has no children.
3506          *
3507          * For the root cgroup, parent_mem is NULL, we allow value to be
3508          * set if there are no children.
3509          */
3510         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3511                                 (val == 1 || val == 0)) {
3512                 if (!memcg_has_children(memcg))
3513                         memcg->use_hierarchy = val;
3514                 else
3515                         retval = -EBUSY;
3516         } else
3517                 retval = -EINVAL;
3518
3519         return retval;
3520 }
3521
3522 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3523 {
3524         unsigned long val;
3525
3526         if (mem_cgroup_is_root(memcg)) {
3527                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3528                         memcg_page_state(memcg, NR_ANON_MAPPED);
3529                 if (swap)
3530                         val += memcg_page_state(memcg, MEMCG_SWAP);
3531         } else {
3532                 if (!swap)
3533                         val = page_counter_read(&memcg->memory);
3534                 else
3535                         val = page_counter_read(&memcg->memsw);
3536         }
3537         return val;
3538 }
3539
3540 enum {
3541         RES_USAGE,
3542         RES_LIMIT,
3543         RES_MAX_USAGE,
3544         RES_FAILCNT,
3545         RES_SOFT_LIMIT,
3546 };
3547
3548 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3549                                struct cftype *cft)
3550 {
3551         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3552         struct page_counter *counter;
3553
3554         switch (MEMFILE_TYPE(cft->private)) {
3555         case _MEM:
3556                 counter = &memcg->memory;
3557                 break;
3558         case _MEMSWAP:
3559                 counter = &memcg->memsw;
3560                 break;
3561         case _KMEM:
3562                 counter = &memcg->kmem;
3563                 break;
3564         case _TCP:
3565                 counter = &memcg->tcpmem;
3566                 break;
3567         default:
3568                 BUG();
3569         }
3570
3571         switch (MEMFILE_ATTR(cft->private)) {
3572         case RES_USAGE:
3573                 if (counter == &memcg->memory)
3574                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3575                 if (counter == &memcg->memsw)
3576                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3577                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3578         case RES_LIMIT:
3579                 return (u64)counter->max * PAGE_SIZE;
3580         case RES_MAX_USAGE:
3581                 return (u64)counter->watermark * PAGE_SIZE;
3582         case RES_FAILCNT:
3583                 return counter->failcnt;
3584         case RES_SOFT_LIMIT:
3585                 return (u64)memcg->soft_limit * PAGE_SIZE;
3586         default:
3587                 BUG();
3588         }
3589 }
3590
3591 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3592 {
3593         unsigned long stat[MEMCG_NR_STAT] = {0};
3594         struct mem_cgroup *mi;
3595         int node, cpu, i;
3596
3597         for_each_online_cpu(cpu)
3598                 for (i = 0; i < MEMCG_NR_STAT; i++)
3599                         stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3600
3601         for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3602                 for (i = 0; i < MEMCG_NR_STAT; i++)
3603                         atomic_long_add(stat[i], &mi->vmstats[i]);
3604
3605         for_each_node(node) {
3606                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3607                 struct mem_cgroup_per_node *pi;
3608
3609                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3610                         stat[i] = 0;
3611
3612                 for_each_online_cpu(cpu)
3613                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3614                                 stat[i] += per_cpu(
3615                                         pn->lruvec_stat_cpu->count[i], cpu);
3616
3617                 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3618                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3619                                 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3620         }
3621 }
3622
3623 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3624 {
3625         unsigned long events[NR_VM_EVENT_ITEMS];
3626         struct mem_cgroup *mi;
3627         int cpu, i;
3628
3629         for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3630                 events[i] = 0;
3631
3632         for_each_online_cpu(cpu)
3633                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3634                         events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3635                                              cpu);
3636
3637         for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3638                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3639                         atomic_long_add(events[i], &mi->vmevents[i]);
3640 }
3641
3642 #ifdef CONFIG_MEMCG_KMEM
3643 static int memcg_online_kmem(struct mem_cgroup *memcg)
3644 {
3645         struct obj_cgroup *objcg;
3646         int memcg_id;
3647
3648         if (cgroup_memory_nokmem)
3649                 return 0;
3650
3651         BUG_ON(memcg->kmemcg_id >= 0);
3652         BUG_ON(memcg->kmem_state);
3653
3654         memcg_id = memcg_alloc_cache_id();
3655         if (memcg_id < 0)
3656                 return memcg_id;
3657
3658         objcg = obj_cgroup_alloc();
3659         if (!objcg) {
3660                 memcg_free_cache_id(memcg_id);
3661                 return -ENOMEM;
3662         }
3663         objcg->memcg = memcg;
3664         rcu_assign_pointer(memcg->objcg, objcg);
3665
3666         static_branch_enable(&memcg_kmem_enabled_key);
3667
3668         /*
3669          * A memory cgroup is considered kmem-online as soon as it gets
3670          * kmemcg_id. Setting the id after enabling static branching will
3671          * guarantee no one starts accounting before all call sites are
3672          * patched.
3673          */
3674         memcg->kmemcg_id = memcg_id;
3675         memcg->kmem_state = KMEM_ONLINE;
3676
3677         return 0;
3678 }
3679
3680 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3681 {
3682         struct cgroup_subsys_state *css;
3683         struct mem_cgroup *parent, *child;
3684         int kmemcg_id;
3685
3686         if (memcg->kmem_state != KMEM_ONLINE)
3687                 return;
3688
3689         memcg->kmem_state = KMEM_ALLOCATED;
3690
3691         parent = parent_mem_cgroup(memcg);
3692         if (!parent)
3693                 parent = root_mem_cgroup;
3694
3695         memcg_reparent_objcgs(memcg, parent);
3696
3697         kmemcg_id = memcg->kmemcg_id;
3698         BUG_ON(kmemcg_id < 0);
3699
3700         /*
3701          * Change kmemcg_id of this cgroup and all its descendants to the
3702          * parent's id, and then move all entries from this cgroup's list_lrus
3703          * to ones of the parent. After we have finished, all list_lrus
3704          * corresponding to this cgroup are guaranteed to remain empty. The
3705          * ordering is imposed by list_lru_node->lock taken by
3706          * memcg_drain_all_list_lrus().
3707          */
3708         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3709         css_for_each_descendant_pre(css, &memcg->css) {
3710                 child = mem_cgroup_from_css(css);
3711                 BUG_ON(child->kmemcg_id != kmemcg_id);
3712                 child->kmemcg_id = parent->kmemcg_id;
3713                 if (!memcg->use_hierarchy)
3714                         break;
3715         }
3716         rcu_read_unlock();
3717
3718         memcg_drain_all_list_lrus(kmemcg_id, parent);
3719
3720         memcg_free_cache_id(kmemcg_id);
3721 }
3722
3723 static void memcg_free_kmem(struct mem_cgroup *memcg)
3724 {
3725         /* css_alloc() failed, offlining didn't happen */
3726         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3727                 memcg_offline_kmem(memcg);
3728 }
3729 #else
3730 static int memcg_online_kmem(struct mem_cgroup *memcg)
3731 {
3732         return 0;
3733 }
3734 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3735 {
3736 }
3737 static void memcg_free_kmem(struct mem_cgroup *memcg)
3738 {
3739 }
3740 #endif /* CONFIG_MEMCG_KMEM */
3741
3742 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3743                                  unsigned long max)
3744 {
3745         int ret;
3746
3747         mutex_lock(&memcg_max_mutex);
3748         ret = page_counter_set_max(&memcg->kmem, max);
3749         mutex_unlock(&memcg_max_mutex);
3750         return ret;
3751 }
3752
3753 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3754 {
3755         int ret;
3756
3757         mutex_lock(&memcg_max_mutex);
3758
3759         ret = page_counter_set_max(&memcg->tcpmem, max);
3760         if (ret)
3761                 goto out;
3762
3763         if (!memcg->tcpmem_active) {
3764                 /*
3765                  * The active flag needs to be written after the static_key
3766                  * update. This is what guarantees that the socket activation
3767                  * function is the last one to run. See mem_cgroup_sk_alloc()
3768                  * for details, and note that we don't mark any socket as
3769                  * belonging to this memcg until that flag is up.
3770                  *
3771                  * We need to do this, because static_keys will span multiple
3772                  * sites, but we can't control their order. If we mark a socket
3773                  * as accounted, but the accounting functions are not patched in
3774                  * yet, we'll lose accounting.
3775                  *
3776                  * We never race with the readers in mem_cgroup_sk_alloc(),
3777                  * because when this value change, the code to process it is not
3778                  * patched in yet.
3779                  */
3780                 static_branch_inc(&memcg_sockets_enabled_key);
3781                 memcg->tcpmem_active = true;
3782         }
3783 out:
3784         mutex_unlock(&memcg_max_mutex);
3785         return ret;
3786 }
3787
3788 /*
3789  * The user of this function is...
3790  * RES_LIMIT.
3791  */
3792 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3793                                 char *buf, size_t nbytes, loff_t off)
3794 {
3795         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3796         unsigned long nr_pages;
3797         int ret;
3798
3799         buf = strstrip(buf);
3800         ret = page_counter_memparse(buf, "-1", &nr_pages);
3801         if (ret)
3802                 return ret;
3803
3804         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3805         case RES_LIMIT:
3806                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3807                         ret = -EINVAL;
3808                         break;
3809                 }
3810                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3811                 case _MEM:
3812                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3813                         break;
3814                 case _MEMSWAP:
3815                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3816                         break;
3817                 case _KMEM:
3818                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3819                                      "Please report your usecase to linux-mm@kvack.org if you "
3820                                      "depend on this functionality.\n");
3821                         ret = memcg_update_kmem_max(memcg, nr_pages);
3822                         break;
3823                 case _TCP:
3824                         ret = memcg_update_tcp_max(memcg, nr_pages);
3825                         break;
3826                 }
3827                 break;
3828         case RES_SOFT_LIMIT:
3829                 memcg->soft_limit = nr_pages;
3830                 ret = 0;
3831                 break;
3832         }
3833         return ret ?: nbytes;
3834 }
3835
3836 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3837                                 size_t nbytes, loff_t off)
3838 {
3839         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3840         struct page_counter *counter;
3841
3842         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3843         case _MEM:
3844                 counter = &memcg->memory;
3845                 break;
3846         case _MEMSWAP:
3847                 counter = &memcg->memsw;
3848                 break;
3849         case _KMEM:
3850                 counter = &memcg->kmem;
3851                 break;
3852         case _TCP:
3853                 counter = &memcg->tcpmem;
3854                 break;
3855         default:
3856                 BUG();
3857         }
3858
3859         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3860         case RES_MAX_USAGE:
3861                 page_counter_reset_watermark(counter);
3862                 break;
3863         case RES_FAILCNT:
3864                 counter->failcnt = 0;
3865                 break;
3866         default:
3867                 BUG();
3868         }
3869
3870         return nbytes;
3871 }
3872
3873 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3874                                         struct cftype *cft)
3875 {
3876         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3877 }
3878
3879 #ifdef CONFIG_MMU
3880 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3881                                         struct cftype *cft, u64 val)
3882 {
3883         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3884
3885         if (val & ~MOVE_MASK)
3886                 return -EINVAL;
3887
3888         /*
3889          * No kind of locking is needed in here, because ->can_attach() will
3890          * check this value once in the beginning of the process, and then carry
3891          * on with stale data. This means that changes to this value will only
3892          * affect task migrations starting after the change.
3893          */
3894         memcg->move_charge_at_immigrate = val;
3895         return 0;
3896 }
3897 #else
3898 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3899                                         struct cftype *cft, u64 val)
3900 {
3901         return -ENOSYS;
3902 }
3903 #endif
3904
3905 #ifdef CONFIG_NUMA
3906
3907 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3908 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3909 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3910
3911 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3912                                 int nid, unsigned int lru_mask, bool tree)
3913 {
3914         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3915         unsigned long nr = 0;
3916         enum lru_list lru;
3917
3918         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3919
3920         for_each_lru(lru) {
3921                 if (!(BIT(lru) & lru_mask))
3922                         continue;
3923                 if (tree)
3924                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3925                 else
3926                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3927         }
3928         return nr;
3929 }
3930
3931 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3932                                              unsigned int lru_mask,
3933                                              bool tree)
3934 {
3935         unsigned long nr = 0;
3936         enum lru_list lru;
3937
3938         for_each_lru(lru) {
3939                 if (!(BIT(lru) & lru_mask))
3940                         continue;
3941                 if (tree)
3942                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3943                 else
3944                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3945         }
3946         return nr;
3947 }
3948
3949 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3950 {
3951         struct numa_stat {
3952                 const char *name;
3953                 unsigned int lru_mask;
3954         };
3955
3956         static const struct numa_stat stats[] = {
3957                 { "total", LRU_ALL },
3958                 { "file", LRU_ALL_FILE },
3959                 { "anon", LRU_ALL_ANON },
3960                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3961         };
3962         const struct numa_stat *stat;
3963         int nid;
3964         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3965
3966         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3967                 seq_printf(m, "%s=%lu", stat->name,
3968                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3969                                                    false));
3970                 for_each_node_state(nid, N_MEMORY)
3971                         seq_printf(m, " N%d=%lu", nid,
3972                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3973                                                         stat->lru_mask, false));
3974                 seq_putc(m, '\n');
3975         }
3976
3977         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3978
3979                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3980                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3981                                                    true));
3982                 for_each_node_state(nid, N_MEMORY)
3983                         seq_printf(m, " N%d=%lu", nid,
3984                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3985                                                         stat->lru_mask, true));
3986                 seq_putc(m, '\n');
3987         }
3988
3989         return 0;
3990 }
3991 #endif /* CONFIG_NUMA */
3992
3993 static const unsigned int memcg1_stats[] = {
3994         NR_FILE_PAGES,
3995         NR_ANON_MAPPED,
3996 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3997         NR_ANON_THPS,
3998 #endif
3999         NR_SHMEM,
4000         NR_FILE_MAPPED,
4001         NR_FILE_DIRTY,
4002         NR_WRITEBACK,
4003         MEMCG_SWAP,
4004 };
4005
4006 static const char *const memcg1_stat_names[] = {
4007         "cache",
4008         "rss",
4009 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4010         "rss_huge",
4011 #endif
4012         "shmem",
4013         "mapped_file",
4014         "dirty",
4015         "writeback",
4016         "swap",
4017 };
4018
4019 /* Universal VM events cgroup1 shows, original sort order */
4020 static const unsigned int memcg1_events[] = {
4021         PGPGIN,
4022         PGPGOUT,
4023         PGFAULT,
4024         PGMAJFAULT,
4025 };
4026
4027 static int memcg_stat_show(struct seq_file *m, void *v)
4028 {
4029         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4030         unsigned long memory, memsw;
4031         struct mem_cgroup *mi;
4032         unsigned int i;
4033
4034         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4035
4036         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4037                 unsigned long nr;
4038
4039                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4040                         continue;
4041                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4042 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4043                 if (memcg1_stats[i] == NR_ANON_THPS)
4044                         nr *= HPAGE_PMD_NR;
4045 #endif
4046                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4047         }
4048
4049         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4050                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4051                            memcg_events_local(memcg, memcg1_events[i]));
4052
4053         for (i = 0; i < NR_LRU_LISTS; i++)
4054                 seq_printf(m, "%s %lu\n", lru_list_name(i),
4055                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4056                            PAGE_SIZE);
4057
4058         /* Hierarchical information */
4059         memory = memsw = PAGE_COUNTER_MAX;
4060         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4061                 memory = min(memory, READ_ONCE(mi->memory.max));
4062                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4063         }
4064         seq_printf(m, "hierarchical_memory_limit %llu\n",
4065                    (u64)memory * PAGE_SIZE);
4066         if (do_memsw_account())
4067                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4068                            (u64)memsw * PAGE_SIZE);
4069
4070         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4071                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4072                         continue;
4073                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4074                            (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4075                            PAGE_SIZE);
4076         }
4077
4078         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4079                 seq_printf(m, "total_%s %llu\n",
4080                            vm_event_name(memcg1_events[i]),
4081                            (u64)memcg_events(memcg, memcg1_events[i]));
4082
4083         for (i = 0; i < NR_LRU_LISTS; i++)
4084                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4085                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4086                            PAGE_SIZE);
4087
4088 #ifdef CONFIG_DEBUG_VM
4089         {
4090                 pg_data_t *pgdat;
4091                 struct mem_cgroup_per_node *mz;
4092                 unsigned long anon_cost = 0;
4093                 unsigned long file_cost = 0;
4094
4095                 for_each_online_pgdat(pgdat) {
4096                         mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4097
4098                         anon_cost += mz->lruvec.anon_cost;
4099                         file_cost += mz->lruvec.file_cost;
4100                 }
4101                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4102                 seq_printf(m, "file_cost %lu\n", file_cost);
4103         }
4104 #endif
4105
4106         return 0;
4107 }
4108
4109 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4110                                       struct cftype *cft)
4111 {
4112         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4113
4114         return mem_cgroup_swappiness(memcg);
4115 }
4116
4117 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4118                                        struct cftype *cft, u64 val)
4119 {
4120         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4121
4122         if (val > 100)
4123                 return -EINVAL;
4124
4125         if (css->parent)
4126                 memcg->swappiness = val;
4127         else
4128                 vm_swappiness = val;
4129
4130         return 0;
4131 }
4132
4133 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4134 {
4135         struct mem_cgroup_threshold_ary *t;
4136         unsigned long usage;
4137         int i;
4138
4139         rcu_read_lock();
4140         if (!swap)
4141                 t = rcu_dereference(memcg->thresholds.primary);
4142         else
4143                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4144
4145         if (!t)
4146                 goto unlock;
4147
4148         usage = mem_cgroup_usage(memcg, swap);
4149
4150         /*
4151          * current_threshold points to threshold just below or equal to usage.
4152          * If it's not true, a threshold was crossed after last
4153          * call of __mem_cgroup_threshold().
4154          */
4155         i = t->current_threshold;
4156
4157         /*
4158          * Iterate backward over array of thresholds starting from
4159          * current_threshold and check if a threshold is crossed.
4160          * If none of thresholds below usage is crossed, we read
4161          * only one element of the array here.
4162          */
4163         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4164                 eventfd_signal(t->entries[i].eventfd, 1);
4165
4166         /* i = current_threshold + 1 */
4167         i++;
4168
4169         /*
4170          * Iterate forward over array of thresholds starting from
4171          * current_threshold+1 and check if a threshold is crossed.
4172          * If none of thresholds above usage is crossed, we read
4173          * only one element of the array here.
4174          */
4175         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4176                 eventfd_signal(t->entries[i].eventfd, 1);
4177
4178         /* Update current_threshold */
4179         t->current_threshold = i - 1;
4180 unlock:
4181         rcu_read_unlock();
4182 }
4183
4184 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4185 {
4186         while (memcg) {
4187                 __mem_cgroup_threshold(memcg, false);
4188                 if (do_memsw_account())
4189                         __mem_cgroup_threshold(memcg, true);
4190
4191                 memcg = parent_mem_cgroup(memcg);
4192         }
4193 }
4194
4195 static int compare_thresholds(const void *a, const void *b)
4196 {
4197         const struct mem_cgroup_threshold *_a = a;
4198         const struct mem_cgroup_threshold *_b = b;
4199
4200         if (_a->threshold > _b->threshold)
4201                 return 1;
4202
4203         if (_a->threshold < _b->threshold)
4204                 return -1;
4205
4206         return 0;
4207 }
4208
4209 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4210 {
4211         struct mem_cgroup_eventfd_list *ev;
4212
4213         spin_lock(&memcg_oom_lock);
4214
4215         list_for_each_entry(ev, &memcg->oom_notify, list)
4216                 eventfd_signal(ev->eventfd, 1);
4217
4218         spin_unlock(&memcg_oom_lock);
4219         return 0;
4220 }
4221
4222 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4223 {
4224         struct mem_cgroup *iter;
4225
4226         for_each_mem_cgroup_tree(iter, memcg)
4227                 mem_cgroup_oom_notify_cb(iter);
4228 }
4229
4230 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4231         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4232 {
4233         struct mem_cgroup_thresholds *thresholds;
4234         struct mem_cgroup_threshold_ary *new;
4235         unsigned long threshold;
4236         unsigned long usage;
4237         int i, size, ret;
4238
4239         ret = page_counter_memparse(args, "-1", &threshold);
4240         if (ret)
4241                 return ret;
4242
4243         mutex_lock(&memcg->thresholds_lock);
4244
4245         if (type == _MEM) {
4246                 thresholds = &memcg->thresholds;
4247                 usage = mem_cgroup_usage(memcg, false);
4248         } else if (type == _MEMSWAP) {
4249                 thresholds = &memcg->memsw_thresholds;
4250                 usage = mem_cgroup_usage(memcg, true);
4251         } else
4252                 BUG();
4253
4254         /* Check if a threshold crossed before adding a new one */
4255         if (thresholds->primary)
4256                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4257
4258         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4259
4260         /* Allocate memory for new array of thresholds */
4261         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4262         if (!new) {
4263                 ret = -ENOMEM;
4264                 goto unlock;
4265         }
4266         new->size = size;
4267
4268         /* Copy thresholds (if any) to new array */
4269         if (thresholds->primary)
4270                 memcpy(new->entries, thresholds->primary->entries,
4271                        flex_array_size(new, entries, size - 1));
4272
4273         /* Add new threshold */
4274         new->entries[size - 1].eventfd = eventfd;
4275         new->entries[size - 1].threshold = threshold;
4276
4277         /* Sort thresholds. Registering of new threshold isn't time-critical */
4278         sort(new->entries, size, sizeof(*new->entries),
4279                         compare_thresholds, NULL);
4280
4281         /* Find current threshold */
4282         new->current_threshold = -1;
4283         for (i = 0; i < size; i++) {
4284                 if (new->entries[i].threshold <= usage) {
4285                         /*
4286                          * new->current_threshold will not be used until
4287                          * rcu_assign_pointer(), so it's safe to increment
4288                          * it here.
4289                          */
4290                         ++new->current_threshold;
4291                 } else
4292                         break;
4293         }
4294
4295         /* Free old spare buffer and save old primary buffer as spare */
4296         kfree(thresholds->spare);
4297         thresholds->spare = thresholds->primary;
4298
4299         rcu_assign_pointer(thresholds->primary, new);
4300
4301         /* To be sure that nobody uses thresholds */
4302         synchronize_rcu();
4303
4304 unlock:
4305         mutex_unlock(&memcg->thresholds_lock);
4306
4307         return ret;
4308 }
4309
4310 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4311         struct eventfd_ctx *eventfd, const char *args)
4312 {
4313         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4314 }
4315
4316 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4317         struct eventfd_ctx *eventfd, const char *args)
4318 {
4319         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4320 }
4321
4322 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4323         struct eventfd_ctx *eventfd, enum res_type type)
4324 {
4325         struct mem_cgroup_thresholds *thresholds;
4326         struct mem_cgroup_threshold_ary *new;
4327         unsigned long usage;
4328         int i, j, size, entries;
4329
4330         mutex_lock(&memcg->thresholds_lock);
4331
4332         if (type == _MEM) {
4333                 thresholds = &memcg->thresholds;
4334                 usage = mem_cgroup_usage(memcg, false);
4335         } else if (type == _MEMSWAP) {
4336                 thresholds = &memcg->memsw_thresholds;
4337                 usage = mem_cgroup_usage(memcg, true);
4338         } else
4339                 BUG();
4340
4341         if (!thresholds->primary)
4342                 goto unlock;
4343
4344         /* Check if a threshold crossed before removing */
4345         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4346
4347         /* Calculate new number of threshold */
4348         size = entries = 0;
4349         for (i = 0; i < thresholds->primary->size; i++) {
4350                 if (thresholds->primary->entries[i].eventfd != eventfd)
4351                         size++;
4352                 else
4353                         entries++;
4354         }
4355
4356         new = thresholds->spare;
4357
4358         /* If no items related to eventfd have been cleared, nothing to do */
4359         if (!entries)
4360                 goto unlock;
4361
4362         /* Set thresholds array to NULL if we don't have thresholds */
4363         if (!size) {
4364                 kfree(new);
4365                 new = NULL;
4366                 goto swap_buffers;
4367         }
4368
4369         new->size = size;
4370
4371         /* Copy thresholds and find current threshold */
4372         new->current_threshold = -1;
4373         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4374                 if (thresholds->primary->entries[i].eventfd == eventfd)
4375                         continue;
4376
4377                 new->entries[j] = thresholds->primary->entries[i];
4378                 if (new->entries[j].threshold <= usage) {
4379                         /*
4380                          * new->current_threshold will not be used
4381                          * until rcu_assign_pointer(), so it's safe to increment
4382                          * it here.
4383                          */
4384                         ++new->current_threshold;
4385                 }
4386                 j++;
4387         }
4388
4389 swap_buffers:
4390         /* Swap primary and spare array */
4391         thresholds->spare = thresholds->primary;
4392
4393         rcu_assign_pointer(thresholds->primary, new);
4394
4395         /* To be sure that nobody uses thresholds */
4396         synchronize_rcu();
4397
4398         /* If all events are unregistered, free the spare array */
4399         if (!new) {
4400                 kfree(thresholds->spare);
4401                 thresholds->spare = NULL;
4402         }
4403 unlock:
4404         mutex_unlock(&memcg->thresholds_lock);
4405 }
4406
4407 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4408         struct eventfd_ctx *eventfd)
4409 {
4410         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4411 }
4412
4413 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4414         struct eventfd_ctx *eventfd)
4415 {
4416         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4417 }
4418
4419 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4420         struct eventfd_ctx *eventfd, const char *args)
4421 {
4422         struct mem_cgroup_eventfd_list *event;
4423
4424         event = kmalloc(sizeof(*event), GFP_KERNEL);
4425         if (!event)
4426                 return -ENOMEM;
4427
4428         spin_lock(&memcg_oom_lock);
4429
4430         event->eventfd = eventfd;
4431         list_add(&event->list, &memcg->oom_notify);
4432
4433         /* already in OOM ? */
4434         if (memcg->under_oom)
4435                 eventfd_signal(eventfd, 1);
4436         spin_unlock(&memcg_oom_lock);
4437
4438         return 0;
4439 }
4440
4441 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4442         struct eventfd_ctx *eventfd)
4443 {
4444         struct mem_cgroup_eventfd_list *ev, *tmp;
4445
4446         spin_lock(&memcg_oom_lock);
4447
4448         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4449                 if (ev->eventfd == eventfd) {
4450                         list_del(&ev->list);
4451                         kfree(ev);
4452                 }
4453         }
4454
4455         spin_unlock(&memcg_oom_lock);
4456 }
4457
4458 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4459 {
4460         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4461
4462         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4463         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4464         seq_printf(sf, "oom_kill %lu\n",
4465                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4466         return 0;
4467 }
4468
4469 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4470         struct cftype *cft, u64 val)
4471 {
4472         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4473
4474         /* cannot set to root cgroup and only 0 and 1 are allowed */
4475         if (!css->parent || !((val == 0) || (val == 1)))
4476                 return -EINVAL;
4477
4478         memcg->oom_kill_disable = val;
4479         if (!val)
4480                 memcg_oom_recover(memcg);
4481
4482         return 0;
4483 }
4484
4485 #ifdef CONFIG_CGROUP_WRITEBACK
4486
4487 #include <trace/events/writeback.h>
4488
4489 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4490 {
4491         return wb_domain_init(&memcg->cgwb_domain, gfp);
4492 }
4493
4494 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4495 {
4496         wb_domain_exit(&memcg->cgwb_domain);
4497 }
4498
4499 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4500 {
4501         wb_domain_size_changed(&memcg->cgwb_domain);
4502 }
4503
4504 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4505 {
4506         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4507
4508         if (!memcg->css.parent)
4509                 return NULL;
4510
4511         return &memcg->cgwb_domain;
4512 }
4513
4514 /*
4515  * idx can be of type enum memcg_stat_item or node_stat_item.
4516  * Keep in sync with memcg_exact_page().
4517  */
4518 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4519 {
4520         long x = atomic_long_read(&memcg->vmstats[idx]);
4521         int cpu;
4522
4523         for_each_online_cpu(cpu)
4524                 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4525         if (x < 0)
4526                 x = 0;
4527         return x;
4528 }
4529
4530 /**
4531  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4532  * @wb: bdi_writeback in question
4533  * @pfilepages: out parameter for number of file pages
4534  * @pheadroom: out parameter for number of allocatable pages according to memcg
4535  * @pdirty: out parameter for number of dirty pages
4536  * @pwriteback: out parameter for number of pages under writeback
4537  *
4538  * Determine the numbers of file, headroom, dirty, and writeback pages in
4539  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4540  * is a bit more involved.
4541  *
4542  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4543  * headroom is calculated as the lowest headroom of itself and the
4544  * ancestors.  Note that this doesn't consider the actual amount of
4545  * available memory in the system.  The caller should further cap
4546  * *@pheadroom accordingly.
4547  */
4548 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4549                          unsigned long *pheadroom, unsigned long *pdirty,
4550                          unsigned long *pwriteback)
4551 {
4552         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4553         struct mem_cgroup *parent;
4554
4555         *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4556
4557         *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4558         *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4559                         memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4560         *pheadroom = PAGE_COUNTER_MAX;
4561
4562         while ((parent = parent_mem_cgroup(memcg))) {
4563                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4564                                             READ_ONCE(memcg->memory.high));
4565                 unsigned long used = page_counter_read(&memcg->memory);
4566
4567                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4568                 memcg = parent;
4569         }
4570 }
4571
4572 /*
4573  * Foreign dirty flushing
4574  *
4575  * There's an inherent mismatch between memcg and writeback.  The former
4576  * trackes ownership per-page while the latter per-inode.  This was a
4577  * deliberate design decision because honoring per-page ownership in the
4578  * writeback path is complicated, may lead to higher CPU and IO overheads
4579  * and deemed unnecessary given that write-sharing an inode across
4580  * different cgroups isn't a common use-case.
4581  *
4582  * Combined with inode majority-writer ownership switching, this works well
4583  * enough in most cases but there are some pathological cases.  For
4584  * example, let's say there are two cgroups A and B which keep writing to
4585  * different but confined parts of the same inode.  B owns the inode and
4586  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4587  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4588  * triggering background writeback.  A will be slowed down without a way to
4589  * make writeback of the dirty pages happen.
4590  *
4591  * Conditions like the above can lead to a cgroup getting repatedly and
4592  * severely throttled after making some progress after each
4593  * dirty_expire_interval while the underyling IO device is almost
4594  * completely idle.
4595  *
4596  * Solving this problem completely requires matching the ownership tracking
4597  * granularities between memcg and writeback in either direction.  However,
4598  * the more egregious behaviors can be avoided by simply remembering the
4599  * most recent foreign dirtying events and initiating remote flushes on
4600  * them when local writeback isn't enough to keep the memory clean enough.
4601  *
4602  * The following two functions implement such mechanism.  When a foreign
4603  * page - a page whose memcg and writeback ownerships don't match - is
4604  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4605  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4606  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4607  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4608  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4609  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4610  * limited to MEMCG_CGWB_FRN_CNT.
4611  *
4612  * The mechanism only remembers IDs and doesn't hold any object references.
4613  * As being wrong occasionally doesn't matter, updates and accesses to the
4614  * records are lockless and racy.
4615  */
4616 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4617                                              struct bdi_writeback *wb)
4618 {
4619         struct mem_cgroup *memcg = page->mem_cgroup;
4620         struct memcg_cgwb_frn *frn;
4621         u64 now = get_jiffies_64();
4622         u64 oldest_at = now;
4623         int oldest = -1;
4624         int i;
4625
4626         trace_track_foreign_dirty(page, wb);
4627
4628         /*
4629          * Pick the slot to use.  If there is already a slot for @wb, keep
4630          * using it.  If not replace the oldest one which isn't being
4631          * written out.
4632          */
4633         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4634                 frn = &memcg->cgwb_frn[i];
4635                 if (frn->bdi_id == wb->bdi->id &&
4636                     frn->memcg_id == wb->memcg_css->id)
4637                         break;
4638                 if (time_before64(frn->at, oldest_at) &&
4639                     atomic_read(&frn->done.cnt) == 1) {
4640                         oldest = i;
4641                         oldest_at = frn->at;
4642                 }
4643         }
4644
4645         if (i < MEMCG_CGWB_FRN_CNT) {
4646                 /*
4647                  * Re-using an existing one.  Update timestamp lazily to
4648                  * avoid making the cacheline hot.  We want them to be
4649                  * reasonably up-to-date and significantly shorter than
4650                  * dirty_expire_interval as that's what expires the record.
4651                  * Use the shorter of 1s and dirty_expire_interval / 8.
4652                  */
4653                 unsigned long update_intv =
4654                         min_t(unsigned long, HZ,
4655                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4656
4657                 if (time_before64(frn->at, now - update_intv))
4658                         frn->at = now;
4659         } else if (oldest >= 0) {
4660                 /* replace the oldest free one */
4661                 frn = &memcg->cgwb_frn[oldest];
4662                 frn->bdi_id = wb->bdi->id;
4663                 frn->memcg_id = wb->memcg_css->id;
4664                 frn->at = now;
4665         }
4666 }
4667
4668 /* issue foreign writeback flushes for recorded foreign dirtying events */
4669 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4670 {
4671         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4672         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4673         u64 now = jiffies_64;
4674         int i;
4675
4676         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4677                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4678
4679                 /*
4680                  * If the record is older than dirty_expire_interval,
4681                  * writeback on it has already started.  No need to kick it
4682                  * off again.  Also, don't start a new one if there's
4683                  * already one in flight.
4684                  */
4685                 if (time_after64(frn->at, now - intv) &&
4686                     atomic_read(&frn->done.cnt) == 1) {
4687                         frn->at = 0;
4688                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4689                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4690                                                WB_REASON_FOREIGN_FLUSH,
4691                                                &frn->done);
4692                 }
4693         }
4694 }
4695
4696 #else   /* CONFIG_CGROUP_WRITEBACK */
4697
4698 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4699 {
4700         return 0;
4701 }
4702
4703 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4704 {
4705 }
4706
4707 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4708 {
4709 }
4710
4711 #endif  /* CONFIG_CGROUP_WRITEBACK */
4712
4713 /*
4714  * DO NOT USE IN NEW FILES.
4715  *
4716  * "cgroup.event_control" implementation.
4717  *
4718  * This is way over-engineered.  It tries to support fully configurable
4719  * events for each user.  Such level of flexibility is completely
4720  * unnecessary especially in the light of the planned unified hierarchy.
4721  *
4722  * Please deprecate this and replace with something simpler if at all
4723  * possible.
4724  */
4725
4726 /*
4727  * Unregister event and free resources.
4728  *
4729  * Gets called from workqueue.
4730  */
4731 static void memcg_event_remove(struct work_struct *work)
4732 {
4733         struct mem_cgroup_event *event =
4734                 container_of(work, struct mem_cgroup_event, remove);
4735         struct mem_cgroup *memcg = event->memcg;
4736
4737         remove_wait_queue(event->wqh, &event->wait);
4738
4739         event->unregister_event(memcg, event->eventfd);
4740
4741         /* Notify userspace the event is going away. */
4742         eventfd_signal(event->eventfd, 1);
4743
4744         eventfd_ctx_put(event->eventfd);
4745         kfree(event);
4746         css_put(&memcg->css);
4747 }
4748
4749 /*
4750  * Gets called on EPOLLHUP on eventfd when user closes it.
4751  *
4752  * Called with wqh->lock held and interrupts disabled.
4753  */
4754 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4755                             int sync, void *key)
4756 {
4757         struct mem_cgroup_event *event =
4758                 container_of(wait, struct mem_cgroup_event, wait);
4759         struct mem_cgroup *memcg = event->memcg;
4760         __poll_t flags = key_to_poll(key);
4761
4762         if (flags & EPOLLHUP) {
4763                 /*
4764                  * If the event has been detached at cgroup removal, we
4765                  * can simply return knowing the other side will cleanup
4766                  * for us.
4767                  *
4768                  * We can't race against event freeing since the other
4769                  * side will require wqh->lock via remove_wait_queue(),
4770                  * which we hold.
4771                  */
4772                 spin_lock(&memcg->event_list_lock);
4773                 if (!list_empty(&event->list)) {
4774                         list_del_init(&event->list);
4775                         /*
4776                          * We are in atomic context, but cgroup_event_remove()
4777                          * may sleep, so we have to call it in workqueue.
4778                          */
4779                         schedule_work(&event->remove);
4780                 }
4781                 spin_unlock(&memcg->event_list_lock);
4782         }
4783
4784         return 0;
4785 }
4786
4787 static void memcg_event_ptable_queue_proc(struct file *file,
4788                 wait_queue_head_t *wqh, poll_table *pt)
4789 {
4790         struct mem_cgroup_event *event =
4791                 container_of(pt, struct mem_cgroup_event, pt);
4792
4793         event->wqh = wqh;
4794         add_wait_queue(wqh, &event->wait);
4795 }
4796
4797 /*
4798  * DO NOT USE IN NEW FILES.
4799  *
4800  * Parse input and register new cgroup event handler.
4801  *
4802  * Input must be in format '<event_fd> <control_fd> <args>'.
4803  * Interpretation of args is defined by control file implementation.
4804  */
4805 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4806                                          char *buf, size_t nbytes, loff_t off)
4807 {
4808         struct cgroup_subsys_state *css = of_css(of);
4809         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4810         struct mem_cgroup_event *event;
4811         struct cgroup_subsys_state *cfile_css;
4812         unsigned int efd, cfd;
4813         struct fd efile;
4814         struct fd cfile;
4815         const char *name;
4816         char *endp;
4817         int ret;
4818
4819         buf = strstrip(buf);
4820
4821         efd = simple_strtoul(buf, &endp, 10);
4822         if (*endp != ' ')
4823                 return -EINVAL;
4824         buf = endp + 1;
4825
4826         cfd = simple_strtoul(buf, &endp, 10);
4827         if ((*endp != ' ') && (*endp != '\0'))
4828                 return -EINVAL;
4829         buf = endp + 1;
4830
4831         event = kzalloc(sizeof(*event), GFP_KERNEL);
4832         if (!event)
4833                 return -ENOMEM;
4834
4835         event->memcg = memcg;
4836         INIT_LIST_HEAD(&event->list);
4837         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4838         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4839         INIT_WORK(&event->remove, memcg_event_remove);
4840
4841         efile = fdget(efd);
4842         if (!efile.file) {
4843                 ret = -EBADF;
4844                 goto out_kfree;
4845         }
4846
4847         event->eventfd = eventfd_ctx_fileget(efile.file);
4848         if (IS_ERR(event->eventfd)) {
4849                 ret = PTR_ERR(event->eventfd);
4850                 goto out_put_efile;
4851         }
4852
4853         cfile = fdget(cfd);
4854         if (!cfile.file) {
4855                 ret = -EBADF;
4856                 goto out_put_eventfd;
4857         }
4858
4859         /* the process need read permission on control file */
4860         /* AV: shouldn't we check that it's been opened for read instead? */
4861         ret = inode_permission(file_inode(cfile.file), MAY_READ);
4862         if (ret < 0)
4863                 goto out_put_cfile;
4864
4865         /*
4866          * Determine the event callbacks and set them in @event.  This used
4867          * to be done via struct cftype but cgroup core no longer knows
4868          * about these events.  The following is crude but the whole thing
4869          * is for compatibility anyway.
4870          *
4871          * DO NOT ADD NEW FILES.
4872          */
4873         name = cfile.file->f_path.dentry->d_name.name;
4874
4875         if (!strcmp(name, "memory.usage_in_bytes")) {
4876                 event->register_event = mem_cgroup_usage_register_event;
4877                 event->unregister_event = mem_cgroup_usage_unregister_event;
4878         } else if (!strcmp(name, "memory.oom_control")) {
4879                 event->register_event = mem_cgroup_oom_register_event;
4880                 event->unregister_event = mem_cgroup_oom_unregister_event;
4881         } else if (!strcmp(name, "memory.pressure_level")) {
4882                 event->register_event = vmpressure_register_event;
4883                 event->unregister_event = vmpressure_unregister_event;
4884         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4885                 event->register_event = memsw_cgroup_usage_register_event;
4886                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4887         } else {
4888                 ret = -EINVAL;
4889                 goto out_put_cfile;
4890         }
4891
4892         /*
4893          * Verify @cfile should belong to @css.  Also, remaining events are
4894          * automatically removed on cgroup destruction but the removal is
4895          * asynchronous, so take an extra ref on @css.
4896          */
4897         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4898                                                &memory_cgrp_subsys);
4899         ret = -EINVAL;
4900         if (IS_ERR(cfile_css))
4901                 goto out_put_cfile;
4902         if (cfile_css != css) {
4903                 css_put(cfile_css);
4904                 goto out_put_cfile;
4905         }
4906
4907         ret = event->register_event(memcg, event->eventfd, buf);
4908         if (ret)
4909                 goto out_put_css;
4910
4911         vfs_poll(efile.file, &event->pt);
4912
4913         spin_lock(&memcg->event_list_lock);
4914         list_add(&event->list, &memcg->event_list);
4915         spin_unlock(&memcg->event_list_lock);
4916
4917         fdput(cfile);
4918         fdput(efile);
4919
4920         return nbytes;
4921
4922 out_put_css:
4923         css_put(css);
4924 out_put_cfile:
4925         fdput(cfile);
4926 out_put_eventfd:
4927         eventfd_ctx_put(event->eventfd);
4928 out_put_efile:
4929         fdput(efile);
4930 out_kfree:
4931         kfree(event);
4932
4933         return ret;
4934 }
4935
4936 static struct cftype mem_cgroup_legacy_files[] = {
4937         {
4938                 .name = "usage_in_bytes",
4939                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4940                 .read_u64 = mem_cgroup_read_u64,
4941         },
4942         {
4943                 .name = "max_usage_in_bytes",
4944                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4945                 .write = mem_cgroup_reset,
4946                 .read_u64 = mem_cgroup_read_u64,
4947         },
4948         {
4949                 .name = "limit_in_bytes",
4950                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4951                 .write = mem_cgroup_write,
4952                 .read_u64 = mem_cgroup_read_u64,
4953         },
4954         {
4955                 .name = "soft_limit_in_bytes",
4956                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4957                 .write = mem_cgroup_write,
4958                 .read_u64 = mem_cgroup_read_u64,
4959         },
4960         {
4961                 .name = "failcnt",
4962                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4963                 .write = mem_cgroup_reset,
4964                 .read_u64 = mem_cgroup_read_u64,
4965         },
4966         {
4967                 .name = "stat",
4968                 .seq_show = memcg_stat_show,
4969         },
4970         {
4971                 .name = "force_empty",
4972                 .write = mem_cgroup_force_empty_write,
4973         },
4974         {
4975                 .name = "use_hierarchy",
4976                 .write_u64 = mem_cgroup_hierarchy_write,
4977                 .read_u64 = mem_cgroup_hierarchy_read,
4978         },
4979         {
4980                 .name = "cgroup.event_control",         /* XXX: for compat */
4981                 .write = memcg_write_event_control,
4982                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4983         },
4984         {
4985                 .name = "swappiness",
4986                 .read_u64 = mem_cgroup_swappiness_read,
4987                 .write_u64 = mem_cgroup_swappiness_write,
4988         },
4989         {
4990                 .name = "move_charge_at_immigrate",
4991                 .read_u64 = mem_cgroup_move_charge_read,
4992                 .write_u64 = mem_cgroup_move_charge_write,
4993         },
4994         {
4995                 .name = "oom_control",
4996                 .seq_show = mem_cgroup_oom_control_read,
4997                 .write_u64 = mem_cgroup_oom_control_write,
4998                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4999         },
5000         {
5001                 .name = "pressure_level",
5002         },
5003 #ifdef CONFIG_NUMA
5004         {
5005                 .name = "numa_stat",
5006                 .seq_show = memcg_numa_stat_show,
5007         },
5008 #endif
5009         {
5010                 .name = "kmem.limit_in_bytes",
5011                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5012                 .write = mem_cgroup_write,
5013                 .read_u64 = mem_cgroup_read_u64,
5014         },
5015         {
5016                 .name = "kmem.usage_in_bytes",
5017                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5018                 .read_u64 = mem_cgroup_read_u64,
5019         },
5020         {
5021                 .name = "kmem.failcnt",
5022                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5023                 .write = mem_cgroup_reset,
5024                 .read_u64 = mem_cgroup_read_u64,
5025         },
5026         {
5027                 .name = "kmem.max_usage_in_bytes",
5028                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5029                 .write = mem_cgroup_reset,
5030                 .read_u64 = mem_cgroup_read_u64,
5031         },
5032 #if defined(CONFIG_MEMCG_KMEM) && \
5033         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5034         {
5035                 .name = "kmem.slabinfo",
5036                 .seq_show = memcg_slab_show,
5037         },
5038 #endif
5039         {
5040                 .name = "kmem.tcp.limit_in_bytes",
5041                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5042                 .write = mem_cgroup_write,
5043                 .read_u64 = mem_cgroup_read_u64,
5044         },
5045         {
5046                 .name = "kmem.tcp.usage_in_bytes",
5047                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5048                 .read_u64 = mem_cgroup_read_u64,
5049         },
5050         {
5051                 .name = "kmem.tcp.failcnt",
5052                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5053                 .write = mem_cgroup_reset,
5054                 .read_u64 = mem_cgroup_read_u64,
5055         },
5056         {
5057                 .name = "kmem.tcp.max_usage_in_bytes",
5058                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5059                 .write = mem_cgroup_reset,
5060                 .read_u64 = mem_cgroup_read_u64,
5061         },
5062         { },    /* terminate */
5063 };
5064
5065 /*
5066  * Private memory cgroup IDR
5067  *
5068  * Swap-out records and page cache shadow entries need to store memcg
5069  * references in constrained space, so we maintain an ID space that is
5070  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5071  * memory-controlled cgroups to 64k.
5072  *
5073  * However, there usually are many references to the offline CSS after
5074  * the cgroup has been destroyed, such as page cache or reclaimable
5075  * slab objects, that don't need to hang on to the ID. We want to keep
5076  * those dead CSS from occupying IDs, or we might quickly exhaust the
5077  * relatively small ID space and prevent the creation of new cgroups
5078  * even when there are much fewer than 64k cgroups - possibly none.
5079  *
5080  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5081  * be freed and recycled when it's no longer needed, which is usually
5082  * when the CSS is offlined.
5083  *
5084  * The only exception to that are records of swapped out tmpfs/shmem
5085  * pages that need to be attributed to live ancestors on swapin. But
5086  * those references are manageable from userspace.
5087  */
5088
5089 static DEFINE_IDR(mem_cgroup_idr);
5090
5091 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5092 {
5093         if (memcg->id.id > 0) {
5094                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5095                 memcg->id.id = 0;
5096         }
5097 }
5098
5099 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5100                                                   unsigned int n)
5101 {
5102         refcount_add(n, &memcg->id.ref);
5103 }
5104
5105 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5106 {
5107         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5108                 mem_cgroup_id_remove(memcg);
5109
5110                 /* Memcg ID pins CSS */
5111                 css_put(&memcg->css);
5112         }
5113 }
5114
5115 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5116 {
5117         mem_cgroup_id_put_many(memcg, 1);
5118 }
5119
5120 /**
5121  * mem_cgroup_from_id - look up a memcg from a memcg id
5122  * @id: the memcg id to look up
5123  *
5124  * Caller must hold rcu_read_lock().
5125  */
5126 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5127 {
5128         WARN_ON_ONCE(!rcu_read_lock_held());
5129         return idr_find(&mem_cgroup_idr, id);
5130 }
5131
5132 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5133 {
5134         struct mem_cgroup_per_node *pn;
5135         int tmp = node;
5136         /*
5137          * This routine is called against possible nodes.
5138          * But it's BUG to call kmalloc() against offline node.
5139          *
5140          * TODO: this routine can waste much memory for nodes which will
5141          *       never be onlined. It's better to use memory hotplug callback
5142          *       function.
5143          */
5144         if (!node_state(node, N_NORMAL_MEMORY))
5145                 tmp = -1;
5146         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5147         if (!pn)
5148                 return 1;
5149
5150         pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5151                                                  GFP_KERNEL_ACCOUNT);
5152         if (!pn->lruvec_stat_local) {
5153                 kfree(pn);
5154                 return 1;
5155         }
5156
5157         pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5158                                                GFP_KERNEL_ACCOUNT);
5159         if (!pn->lruvec_stat_cpu) {
5160                 free_percpu(pn->lruvec_stat_local);
5161                 kfree(pn);
5162                 return 1;
5163         }
5164
5165         lruvec_init(&pn->lruvec);
5166         pn->usage_in_excess = 0;
5167         pn->on_tree = false;
5168         pn->memcg = memcg;
5169
5170         memcg->nodeinfo[node] = pn;
5171         return 0;
5172 }
5173
5174 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5175 {
5176         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5177
5178         if (!pn)
5179                 return;
5180
5181         free_percpu(pn->lruvec_stat_cpu);
5182         free_percpu(pn->lruvec_stat_local);
5183         kfree(pn);
5184 }
5185
5186 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5187 {
5188         int node;
5189
5190         for_each_node(node)
5191                 free_mem_cgroup_per_node_info(memcg, node);
5192         free_percpu(memcg->vmstats_percpu);
5193         free_percpu(memcg->vmstats_local);
5194         kfree(memcg);
5195 }
5196
5197 static void mem_cgroup_free(struct mem_cgroup *memcg)
5198 {
5199         memcg_wb_domain_exit(memcg);
5200         /*
5201          * Flush percpu vmstats and vmevents to guarantee the value correctness
5202          * on parent's and all ancestor levels.
5203          */
5204         memcg_flush_percpu_vmstats(memcg);
5205         memcg_flush_percpu_vmevents(memcg);
5206         __mem_cgroup_free(memcg);
5207 }
5208
5209 static struct mem_cgroup *mem_cgroup_alloc(void)
5210 {
5211         struct mem_cgroup *memcg;
5212         unsigned int size;
5213         int node;
5214         int __maybe_unused i;
5215         long error = -ENOMEM;
5216
5217         size = sizeof(struct mem_cgroup);
5218         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5219
5220         memcg = kzalloc(size, GFP_KERNEL);
5221         if (!memcg)
5222                 return ERR_PTR(error);
5223
5224         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5225                                  1, MEM_CGROUP_ID_MAX,
5226                                  GFP_KERNEL);
5227         if (memcg->id.id < 0) {
5228                 error = memcg->id.id;
5229                 goto fail;
5230         }
5231
5232         memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5233                                                 GFP_KERNEL_ACCOUNT);
5234         if (!memcg->vmstats_local)
5235                 goto fail;
5236
5237         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5238                                                  GFP_KERNEL_ACCOUNT);
5239         if (!memcg->vmstats_percpu)
5240                 goto fail;
5241
5242         for_each_node(node)
5243                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5244                         goto fail;
5245
5246         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5247                 goto fail;
5248
5249         INIT_WORK(&memcg->high_work, high_work_func);
5250         INIT_LIST_HEAD(&memcg->oom_notify);
5251         mutex_init(&memcg->thresholds_lock);
5252         spin_lock_init(&memcg->move_lock);
5253         vmpressure_init(&memcg->vmpressure);
5254         INIT_LIST_HEAD(&memcg->event_list);
5255         spin_lock_init(&memcg->event_list_lock);
5256         memcg->socket_pressure = jiffies;
5257 #ifdef CONFIG_MEMCG_KMEM
5258         memcg->kmemcg_id = -1;
5259         INIT_LIST_HEAD(&memcg->objcg_list);
5260 #endif
5261 #ifdef CONFIG_CGROUP_WRITEBACK
5262         INIT_LIST_HEAD(&memcg->cgwb_list);
5263         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5264                 memcg->cgwb_frn[i].done =
5265                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5266 #endif
5267 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5268         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5269         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5270         memcg->deferred_split_queue.split_queue_len = 0;
5271 #endif
5272         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5273         return memcg;
5274 fail:
5275         mem_cgroup_id_remove(memcg);
5276         __mem_cgroup_free(memcg);
5277         return ERR_PTR(error);
5278 }
5279
5280 static struct cgroup_subsys_state * __ref
5281 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5282 {
5283         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5284         struct mem_cgroup *memcg;
5285         long error = -ENOMEM;
5286
5287         memalloc_use_memcg(parent);
5288         memcg = mem_cgroup_alloc();
5289         memalloc_unuse_memcg();
5290         if (IS_ERR(memcg))
5291                 return ERR_CAST(memcg);
5292
5293         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5294         memcg->soft_limit = PAGE_COUNTER_MAX;
5295         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5296         if (parent) {
5297                 memcg->swappiness = mem_cgroup_swappiness(parent);
5298                 memcg->oom_kill_disable = parent->oom_kill_disable;
5299         }
5300         if (parent && parent->use_hierarchy) {
5301                 memcg->use_hierarchy = true;
5302                 page_counter_init(&memcg->memory, &parent->memory);
5303                 page_counter_init(&memcg->swap, &parent->swap);
5304                 page_counter_init(&memcg->memsw, &parent->memsw);
5305                 page_counter_init(&memcg->kmem, &parent->kmem);
5306                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5307         } else {
5308                 page_counter_init(&memcg->memory, NULL);
5309                 page_counter_init(&memcg->swap, NULL);
5310                 page_counter_init(&memcg->memsw, NULL);
5311                 page_counter_init(&memcg->kmem, NULL);
5312                 page_counter_init(&memcg->tcpmem, NULL);
5313                 /*
5314                  * Deeper hierachy with use_hierarchy == false doesn't make
5315                  * much sense so let cgroup subsystem know about this
5316                  * unfortunate state in our controller.
5317                  */
5318                 if (parent != root_mem_cgroup)
5319                         memory_cgrp_subsys.broken_hierarchy = true;
5320         }
5321
5322         /* The following stuff does not apply to the root */
5323         if (!parent) {
5324                 root_mem_cgroup = memcg;
5325                 return &memcg->css;
5326         }
5327
5328         error = memcg_online_kmem(memcg);
5329         if (error)
5330                 goto fail;
5331
5332         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5333                 static_branch_inc(&memcg_sockets_enabled_key);
5334
5335         return &memcg->css;
5336 fail:
5337         mem_cgroup_id_remove(memcg);
5338         mem_cgroup_free(memcg);
5339         return ERR_PTR(error);
5340 }
5341
5342 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5343 {
5344         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5345
5346         /*
5347          * A memcg must be visible for memcg_expand_shrinker_maps()
5348          * by the time the maps are allocated. So, we allocate maps
5349          * here, when for_each_mem_cgroup() can't skip it.
5350          */
5351         if (memcg_alloc_shrinker_maps(memcg)) {
5352                 mem_cgroup_id_remove(memcg);
5353                 return -ENOMEM;
5354         }
5355
5356         /* Online state pins memcg ID, memcg ID pins CSS */
5357         refcount_set(&memcg->id.ref, 1);
5358         css_get(css);
5359         return 0;
5360 }
5361
5362 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5363 {
5364         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5365         struct mem_cgroup_event *event, *tmp;
5366
5367         /*
5368          * Unregister events and notify userspace.
5369          * Notify userspace about cgroup removing only after rmdir of cgroup
5370          * directory to avoid race between userspace and kernelspace.
5371          */
5372         spin_lock(&memcg->event_list_lock);
5373         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5374                 list_del_init(&event->list);
5375                 schedule_work(&event->remove);
5376         }
5377         spin_unlock(&memcg->event_list_lock);
5378
5379         page_counter_set_min(&memcg->memory, 0);
5380         page_counter_set_low(&memcg->memory, 0);
5381
5382         memcg_offline_kmem(memcg);
5383         wb_memcg_offline(memcg);
5384
5385         drain_all_stock(memcg);
5386
5387         mem_cgroup_id_put(memcg);
5388 }
5389
5390 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5391 {
5392         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5393
5394         invalidate_reclaim_iterators(memcg);
5395 }
5396
5397 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5398 {
5399         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5400         int __maybe_unused i;
5401
5402 #ifdef CONFIG_CGROUP_WRITEBACK
5403         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5404                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5405 #endif
5406         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5407                 static_branch_dec(&memcg_sockets_enabled_key);
5408
5409         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5410                 static_branch_dec(&memcg_sockets_enabled_key);
5411
5412         vmpressure_cleanup(&memcg->vmpressure);
5413         cancel_work_sync(&memcg->high_work);
5414         mem_cgroup_remove_from_trees(memcg);
5415         memcg_free_shrinker_maps(memcg);
5416         memcg_free_kmem(memcg);
5417         mem_cgroup_free(memcg);
5418 }
5419
5420 /**
5421  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5422  * @css: the target css
5423  *
5424  * Reset the states of the mem_cgroup associated with @css.  This is
5425  * invoked when the userland requests disabling on the default hierarchy
5426  * but the memcg is pinned through dependency.  The memcg should stop
5427  * applying policies and should revert to the vanilla state as it may be
5428  * made visible again.
5429  *
5430  * The current implementation only resets the essential configurations.
5431  * This needs to be expanded to cover all the visible parts.
5432  */
5433 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5434 {
5435         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5436
5437         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5438         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5439         page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5440         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5441         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5442         page_counter_set_min(&memcg->memory, 0);
5443         page_counter_set_low(&memcg->memory, 0);
5444         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5445         memcg->soft_limit = PAGE_COUNTER_MAX;
5446         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5447         memcg_wb_domain_size_changed(memcg);
5448 }
5449
5450 #ifdef CONFIG_MMU
5451 /* Handlers for move charge at task migration. */
5452 static int mem_cgroup_do_precharge(unsigned long count)
5453 {
5454         int ret;
5455
5456         /* Try a single bulk charge without reclaim first, kswapd may wake */
5457         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5458         if (!ret) {
5459                 mc.precharge += count;
5460                 return ret;
5461         }
5462
5463         /* Try charges one by one with reclaim, but do not retry */
5464         while (count--) {
5465                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5466                 if (ret)
5467                         return ret;
5468                 mc.precharge++;
5469                 cond_resched();
5470         }
5471         return 0;
5472 }
5473
5474 union mc_target {
5475         struct page     *page;
5476         swp_entry_t     ent;
5477 };
5478
5479 enum mc_target_type {
5480         MC_TARGET_NONE = 0,
5481         MC_TARGET_PAGE,
5482         MC_TARGET_SWAP,
5483         MC_TARGET_DEVICE,
5484 };
5485
5486 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5487                                                 unsigned long addr, pte_t ptent)
5488 {
5489         struct page *page = vm_normal_page(vma, addr, ptent);
5490
5491         if (!page || !page_mapped(page))
5492                 return NULL;
5493         if (PageAnon(page)) {
5494                 if (!(mc.flags & MOVE_ANON))
5495                         return NULL;
5496         } else {
5497                 if (!(mc.flags & MOVE_FILE))
5498                         return NULL;
5499         }
5500         if (!get_page_unless_zero(page))
5501                 return NULL;
5502
5503         return page;
5504 }
5505
5506 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5507 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5508                         pte_t ptent, swp_entry_t *entry)
5509 {
5510         struct page *page = NULL;
5511         swp_entry_t ent = pte_to_swp_entry(ptent);
5512
5513         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5514                 return NULL;
5515
5516         /*
5517          * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5518          * a device and because they are not accessible by CPU they are store
5519          * as special swap entry in the CPU page table.
5520          */
5521         if (is_device_private_entry(ent)) {
5522                 page = device_private_entry_to_page(ent);
5523                 /*
5524                  * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5525                  * a refcount of 1 when free (unlike normal page)
5526                  */
5527                 if (!page_ref_add_unless(page, 1, 1))
5528                         return NULL;
5529                 return page;
5530         }
5531
5532         /*
5533          * Because lookup_swap_cache() updates some statistics counter,
5534          * we call find_get_page() with swapper_space directly.
5535          */
5536         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5537         entry->val = ent.val;
5538
5539         return page;
5540 }
5541 #else
5542 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5543                         pte_t ptent, swp_entry_t *entry)
5544 {
5545         return NULL;
5546 }
5547 #endif
5548
5549 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5550                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5551 {
5552         if (!vma->vm_file) /* anonymous vma */
5553                 return NULL;
5554         if (!(mc.flags & MOVE_FILE))
5555                 return NULL;
5556
5557         /* page is moved even if it's not RSS of this task(page-faulted). */
5558         /* shmem/tmpfs may report page out on swap: account for that too. */
5559         return find_get_incore_page(vma->vm_file->f_mapping,
5560                         linear_page_index(vma, addr));
5561 }
5562
5563 /**
5564  * mem_cgroup_move_account - move account of the page
5565  * @page: the page
5566  * @compound: charge the page as compound or small page
5567  * @from: mem_cgroup which the page is moved from.
5568  * @to: mem_cgroup which the page is moved to. @from != @to.
5569  *
5570  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5571  *
5572  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5573  * from old cgroup.
5574  */
5575 static int mem_cgroup_move_account(struct page *page,
5576                                    bool compound,
5577                                    struct mem_cgroup *from,
5578                                    struct mem_cgroup *to)
5579 {
5580         struct lruvec *from_vec, *to_vec;
5581         struct pglist_data *pgdat;
5582         unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5583         int ret;
5584
5585         VM_BUG_ON(from == to);
5586         VM_BUG_ON_PAGE(PageLRU(page), page);
5587         VM_BUG_ON(compound && !PageTransHuge(page));
5588
5589         /*
5590          * Prevent mem_cgroup_migrate() from looking at
5591          * page->mem_cgroup of its source page while we change it.
5592          */
5593         ret = -EBUSY;
5594         if (!trylock_page(page))
5595                 goto out;
5596
5597         ret = -EINVAL;
5598         if (page->mem_cgroup != from)
5599                 goto out_unlock;
5600
5601         pgdat = page_pgdat(page);
5602         from_vec = mem_cgroup_lruvec(from, pgdat);
5603         to_vec = mem_cgroup_lruvec(to, pgdat);
5604
5605         lock_page_memcg(page);
5606
5607         if (PageAnon(page)) {
5608                 if (page_mapped(page)) {
5609                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5610                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5611                         if (PageTransHuge(page)) {
5612                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5613                                                    -nr_pages);
5614                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5615                                                    nr_pages);
5616                         }
5617
5618                 }
5619         } else {
5620                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5621                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5622
5623                 if (PageSwapBacked(page)) {
5624                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5625                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5626                 }
5627
5628                 if (page_mapped(page)) {
5629                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5630                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5631                 }
5632
5633                 if (PageDirty(page)) {
5634                         struct address_space *mapping = page_mapping(page);
5635
5636                         if (mapping_can_writeback(mapping)) {
5637                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5638                                                    -nr_pages);
5639                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5640                                                    nr_pages);
5641                         }
5642                 }
5643         }
5644
5645         if (PageWriteback(page)) {
5646                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5647                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5648         }
5649
5650         /*
5651          * All state has been migrated, let's switch to the new memcg.
5652          *
5653          * It is safe to change page->mem_cgroup here because the page
5654          * is referenced, charged, isolated, and locked: we can't race
5655          * with (un)charging, migration, LRU putback, or anything else
5656          * that would rely on a stable page->mem_cgroup.
5657          *
5658          * Note that lock_page_memcg is a memcg lock, not a page lock,
5659          * to save space. As soon as we switch page->mem_cgroup to a
5660          * new memcg that isn't locked, the above state can change
5661          * concurrently again. Make sure we're truly done with it.
5662          */
5663         smp_mb();
5664
5665         css_get(&to->css);
5666         css_put(&from->css);
5667
5668         page->mem_cgroup = to;
5669
5670         __unlock_page_memcg(from);
5671
5672         ret = 0;
5673
5674         local_irq_disable();
5675         mem_cgroup_charge_statistics(to, page, nr_pages);
5676         memcg_check_events(to, page);
5677         mem_cgroup_charge_statistics(from, page, -nr_pages);
5678         memcg_check_events(from, page);
5679         local_irq_enable();
5680 out_unlock:
5681         unlock_page(page);
5682 out:
5683         return ret;
5684 }
5685
5686 /**
5687  * get_mctgt_type - get target type of moving charge
5688  * @vma: the vma the pte to be checked belongs
5689  * @addr: the address corresponding to the pte to be checked
5690  * @ptent: the pte to be checked
5691  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5692  *
5693  * Returns
5694  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5695  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5696  *     move charge. if @target is not NULL, the page is stored in target->page
5697  *     with extra refcnt got(Callers should handle it).
5698  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5699  *     target for charge migration. if @target is not NULL, the entry is stored
5700  *     in target->ent.
5701  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5702  *     (so ZONE_DEVICE page and thus not on the lru).
5703  *     For now we such page is charge like a regular page would be as for all
5704  *     intent and purposes it is just special memory taking the place of a
5705  *     regular page.
5706  *
5707  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5708  *
5709  * Called with pte lock held.
5710  */
5711
5712 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5713                 unsigned long addr, pte_t ptent, union mc_target *target)
5714 {
5715         struct page *page = NULL;
5716         enum mc_target_type ret = MC_TARGET_NONE;
5717         swp_entry_t ent = { .val = 0 };
5718
5719         if (pte_present(ptent))
5720                 page = mc_handle_present_pte(vma, addr, ptent);
5721         else if (is_swap_pte(ptent))
5722                 page = mc_handle_swap_pte(vma, ptent, &ent);
5723         else if (pte_none(ptent))
5724                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5725
5726         if (!page && !ent.val)
5727                 return ret;
5728         if (page) {
5729                 /*
5730                  * Do only loose check w/o serialization.
5731                  * mem_cgroup_move_account() checks the page is valid or
5732                  * not under LRU exclusion.
5733                  */
5734                 if (page->mem_cgroup == mc.from) {
5735                         ret = MC_TARGET_PAGE;
5736                         if (is_device_private_page(page))
5737                                 ret = MC_TARGET_DEVICE;
5738                         if (target)
5739                                 target->page = page;
5740                 }
5741                 if (!ret || !target)
5742                         put_page(page);
5743         }
5744         /*
5745          * There is a swap entry and a page doesn't exist or isn't charged.
5746          * But we cannot move a tail-page in a THP.
5747          */
5748         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5749             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5750                 ret = MC_TARGET_SWAP;
5751                 if (target)
5752                         target->ent = ent;
5753         }
5754         return ret;
5755 }
5756
5757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5758 /*
5759  * We don't consider PMD mapped swapping or file mapped pages because THP does
5760  * not support them for now.
5761  * Caller should make sure that pmd_trans_huge(pmd) is true.
5762  */
5763 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5764                 unsigned long addr, pmd_t pmd, union mc_target *target)
5765 {
5766         struct page *page = NULL;
5767         enum mc_target_type ret = MC_TARGET_NONE;
5768
5769         if (unlikely(is_swap_pmd(pmd))) {
5770                 VM_BUG_ON(thp_migration_supported() &&
5771                                   !is_pmd_migration_entry(pmd));
5772                 return ret;
5773         }
5774         page = pmd_page(pmd);
5775         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5776         if (!(mc.flags & MOVE_ANON))
5777                 return ret;
5778         if (page->mem_cgroup == mc.from) {
5779                 ret = MC_TARGET_PAGE;
5780                 if (target) {
5781                         get_page(page);
5782                         target->page = page;
5783                 }
5784         }
5785         return ret;
5786 }
5787 #else
5788 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5789                 unsigned long addr, pmd_t pmd, union mc_target *target)
5790 {
5791         return MC_TARGET_NONE;
5792 }
5793 #endif
5794
5795 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5796                                         unsigned long addr, unsigned long end,
5797                                         struct mm_walk *walk)
5798 {
5799         struct vm_area_struct *vma = walk->vma;
5800         pte_t *pte;
5801         spinlock_t *ptl;
5802
5803         ptl = pmd_trans_huge_lock(pmd, vma);
5804         if (ptl) {
5805                 /*
5806                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5807                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5808                  * this might change.
5809                  */
5810                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5811                         mc.precharge += HPAGE_PMD_NR;
5812                 spin_unlock(ptl);
5813                 return 0;
5814         }
5815
5816         if (pmd_trans_unstable(pmd))
5817                 return 0;
5818         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5819         for (; addr != end; pte++, addr += PAGE_SIZE)
5820                 if (get_mctgt_type(vma, addr, *pte, NULL))
5821                         mc.precharge++; /* increment precharge temporarily */
5822         pte_unmap_unlock(pte - 1, ptl);
5823         cond_resched();
5824
5825         return 0;
5826 }
5827
5828 static const struct mm_walk_ops precharge_walk_ops = {
5829         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5830 };
5831
5832 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5833 {
5834         unsigned long precharge;
5835
5836         mmap_read_lock(mm);
5837         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5838         mmap_read_unlock(mm);
5839
5840         precharge = mc.precharge;
5841         mc.precharge = 0;
5842
5843         return precharge;
5844 }
5845
5846 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5847 {
5848         unsigned long precharge = mem_cgroup_count_precharge(mm);
5849
5850         VM_BUG_ON(mc.moving_task);
5851         mc.moving_task = current;
5852         return mem_cgroup_do_precharge(precharge);
5853 }
5854
5855 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5856 static void __mem_cgroup_clear_mc(void)
5857 {
5858         struct mem_cgroup *from = mc.from;
5859         struct mem_cgroup *to = mc.to;
5860
5861         /* we must uncharge all the leftover precharges from mc.to */
5862         if (mc.precharge) {
5863                 cancel_charge(mc.to, mc.precharge);
5864                 mc.precharge = 0;
5865         }
5866         /*
5867          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5868          * we must uncharge here.
5869          */
5870         if (mc.moved_charge) {
5871                 cancel_charge(mc.from, mc.moved_charge);
5872                 mc.moved_charge = 0;
5873         }
5874         /* we must fixup refcnts and charges */
5875         if (mc.moved_swap) {
5876                 /* uncharge swap account from the old cgroup */
5877                 if (!mem_cgroup_is_root(mc.from))
5878                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5879
5880                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5881
5882                 /*
5883                  * we charged both to->memory and to->memsw, so we
5884                  * should uncharge to->memory.
5885                  */
5886                 if (!mem_cgroup_is_root(mc.to))
5887                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5888
5889                 mc.moved_swap = 0;
5890         }
5891         memcg_oom_recover(from);
5892         memcg_oom_recover(to);
5893         wake_up_all(&mc.waitq);
5894 }
5895
5896 static void mem_cgroup_clear_mc(void)
5897 {
5898         struct mm_struct *mm = mc.mm;
5899
5900         /*
5901          * we must clear moving_task before waking up waiters at the end of
5902          * task migration.
5903          */
5904         mc.moving_task = NULL;
5905         __mem_cgroup_clear_mc();
5906         spin_lock(&mc.lock);
5907         mc.from = NULL;
5908         mc.to = NULL;
5909         mc.mm = NULL;
5910         spin_unlock(&mc.lock);
5911
5912         mmput(mm);
5913 }
5914
5915 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5916 {
5917         struct cgroup_subsys_state *css;
5918         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5919         struct mem_cgroup *from;
5920         struct task_struct *leader, *p;
5921         struct mm_struct *mm;
5922         unsigned long move_flags;
5923         int ret = 0;
5924
5925         /* charge immigration isn't supported on the default hierarchy */
5926         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5927                 return 0;
5928
5929         /*
5930          * Multi-process migrations only happen on the default hierarchy
5931          * where charge immigration is not used.  Perform charge
5932          * immigration if @tset contains a leader and whine if there are
5933          * multiple.
5934          */
5935         p = NULL;
5936         cgroup_taskset_for_each_leader(leader, css, tset) {
5937                 WARN_ON_ONCE(p);
5938                 p = leader;
5939                 memcg = mem_cgroup_from_css(css);
5940         }
5941         if (!p)
5942                 return 0;
5943
5944         /*
5945          * We are now commited to this value whatever it is. Changes in this
5946          * tunable will only affect upcoming migrations, not the current one.
5947          * So we need to save it, and keep it going.
5948          */
5949         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5950         if (!move_flags)
5951                 return 0;
5952
5953         from = mem_cgroup_from_task(p);
5954
5955         VM_BUG_ON(from == memcg);
5956
5957         mm = get_task_mm(p);
5958         if (!mm)
5959                 return 0;
5960         /* We move charges only when we move a owner of the mm */
5961         if (mm->owner == p) {
5962                 VM_BUG_ON(mc.from);
5963                 VM_BUG_ON(mc.to);
5964                 VM_BUG_ON(mc.precharge);
5965                 VM_BUG_ON(mc.moved_charge);
5966                 VM_BUG_ON(mc.moved_swap);
5967
5968                 spin_lock(&mc.lock);
5969                 mc.mm = mm;
5970                 mc.from = from;
5971                 mc.to = memcg;
5972                 mc.flags = move_flags;
5973                 spin_unlock(&mc.lock);
5974                 /* We set mc.moving_task later */
5975
5976                 ret = mem_cgroup_precharge_mc(mm);
5977                 if (ret)
5978                         mem_cgroup_clear_mc();
5979         } else {
5980                 mmput(mm);
5981         }
5982         return ret;
5983 }
5984
5985 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5986 {
5987         if (mc.to)
5988                 mem_cgroup_clear_mc();
5989 }
5990
5991 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5992                                 unsigned long addr, unsigned long end,
5993                                 struct mm_walk *walk)
5994 {
5995         int ret = 0;
5996         struct vm_area_struct *vma = walk->vma;
5997         pte_t *pte;
5998         spinlock_t *ptl;
5999         enum mc_target_type target_type;
6000         union mc_target target;
6001         struct page *page;
6002
6003         ptl = pmd_trans_huge_lock(pmd, vma);
6004         if (ptl) {
6005                 if (mc.precharge < HPAGE_PMD_NR) {
6006                         spin_unlock(ptl);
6007                         return 0;
6008                 }
6009                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6010                 if (target_type == MC_TARGET_PAGE) {
6011                         page = target.page;
6012                         if (!isolate_lru_page(page)) {
6013                                 if (!mem_cgroup_move_account(page, true,
6014                                                              mc.from, mc.to)) {
6015                                         mc.precharge -= HPAGE_PMD_NR;
6016                                         mc.moved_charge += HPAGE_PMD_NR;
6017                                 }
6018                                 putback_lru_page(page);
6019                         }
6020                         put_page(page);
6021                 } else if (target_type == MC_TARGET_DEVICE) {
6022                         page = target.page;
6023                         if (!mem_cgroup_move_account(page, true,
6024                                                      mc.from, mc.to)) {
6025                                 mc.precharge -= HPAGE_PMD_NR;
6026                                 mc.moved_charge += HPAGE_PMD_NR;
6027                         }
6028                         put_page(page);
6029                 }
6030                 spin_unlock(ptl);
6031                 return 0;
6032         }
6033
6034         if (pmd_trans_unstable(pmd))
6035                 return 0;
6036 retry:
6037         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6038         for (; addr != end; addr += PAGE_SIZE) {
6039                 pte_t ptent = *(pte++);
6040                 bool device = false;
6041                 swp_entry_t ent;
6042
6043                 if (!mc.precharge)
6044                         break;
6045
6046                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6047                 case MC_TARGET_DEVICE:
6048                         device = true;
6049                         fallthrough;
6050                 case MC_TARGET_PAGE:
6051                         page = target.page;
6052                         /*
6053                          * We can have a part of the split pmd here. Moving it
6054                          * can be done but it would be too convoluted so simply
6055                          * ignore such a partial THP and keep it in original
6056                          * memcg. There should be somebody mapping the head.
6057                          */
6058                         if (PageTransCompound(page))
6059                                 goto put;
6060                         if (!device && isolate_lru_page(page))
6061                                 goto put;
6062                         if (!mem_cgroup_move_account(page, false,
6063                                                 mc.from, mc.to)) {
6064                                 mc.precharge--;
6065                                 /* we uncharge from mc.from later. */
6066                                 mc.moved_charge++;
6067                         }
6068                         if (!device)
6069                                 putback_lru_page(page);
6070 put:                    /* get_mctgt_type() gets the page */
6071                         put_page(page);
6072                         break;
6073                 case MC_TARGET_SWAP:
6074                         ent = target.ent;
6075                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6076                                 mc.precharge--;
6077                                 mem_cgroup_id_get_many(mc.to, 1);
6078                                 /* we fixup other refcnts and charges later. */
6079                                 mc.moved_swap++;
6080                         }
6081                         break;
6082                 default:
6083                         break;
6084                 }
6085         }
6086         pte_unmap_unlock(pte - 1, ptl);
6087         cond_resched();
6088
6089         if (addr != end) {
6090                 /*
6091                  * We have consumed all precharges we got in can_attach().
6092                  * We try charge one by one, but don't do any additional
6093                  * charges to mc.to if we have failed in charge once in attach()
6094                  * phase.
6095                  */
6096                 ret = mem_cgroup_do_precharge(1);
6097                 if (!ret)
6098                         goto retry;
6099         }
6100
6101         return ret;
6102 }
6103
6104 static const struct mm_walk_ops charge_walk_ops = {
6105         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6106 };
6107
6108 static void mem_cgroup_move_charge(void)
6109 {
6110         lru_add_drain_all();
6111         /*
6112          * Signal lock_page_memcg() to take the memcg's move_lock
6113          * while we're moving its pages to another memcg. Then wait
6114          * for already started RCU-only updates to finish.
6115          */
6116         atomic_inc(&mc.from->moving_account);
6117         synchronize_rcu();
6118 retry:
6119         if (unlikely(!mmap_read_trylock(mc.mm))) {
6120                 /*
6121                  * Someone who are holding the mmap_lock might be waiting in
6122                  * waitq. So we cancel all extra charges, wake up all waiters,
6123                  * and retry. Because we cancel precharges, we might not be able
6124                  * to move enough charges, but moving charge is a best-effort
6125                  * feature anyway, so it wouldn't be a big problem.
6126                  */
6127                 __mem_cgroup_clear_mc();
6128                 cond_resched();
6129                 goto retry;
6130         }
6131         /*
6132          * When we have consumed all precharges and failed in doing
6133          * additional charge, the page walk just aborts.
6134          */
6135         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6136                         NULL);
6137
6138         mmap_read_unlock(mc.mm);
6139         atomic_dec(&mc.from->moving_account);
6140 }
6141
6142 static void mem_cgroup_move_task(void)
6143 {
6144         if (mc.to) {
6145                 mem_cgroup_move_charge();
6146                 mem_cgroup_clear_mc();
6147         }
6148 }
6149 #else   /* !CONFIG_MMU */
6150 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6151 {
6152         return 0;
6153 }
6154 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6155 {
6156 }
6157 static void mem_cgroup_move_task(void)
6158 {
6159 }
6160 #endif
6161
6162 /*
6163  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6164  * to verify whether we're attached to the default hierarchy on each mount
6165  * attempt.
6166  */
6167 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6168 {
6169         /*
6170          * use_hierarchy is forced on the default hierarchy.  cgroup core
6171          * guarantees that @root doesn't have any children, so turning it
6172          * on for the root memcg is enough.
6173          */
6174         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6175                 root_mem_cgroup->use_hierarchy = true;
6176         else
6177                 root_mem_cgroup->use_hierarchy = false;
6178 }
6179
6180 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6181 {
6182         if (value == PAGE_COUNTER_MAX)
6183                 seq_puts(m, "max\n");
6184         else
6185                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6186
6187         return 0;
6188 }
6189
6190 static u64 memory_current_read(struct cgroup_subsys_state *css,
6191                                struct cftype *cft)
6192 {
6193         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6194
6195         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6196 }
6197
6198 static int memory_min_show(struct seq_file *m, void *v)
6199 {
6200         return seq_puts_memcg_tunable(m,
6201                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6202 }
6203
6204 static ssize_t memory_min_write(struct kernfs_open_file *of,
6205                                 char *buf, size_t nbytes, loff_t off)
6206 {
6207         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6208         unsigned long min;
6209         int err;
6210
6211         buf = strstrip(buf);
6212         err = page_counter_memparse(buf, "max", &min);
6213         if (err)
6214                 return err;
6215
6216         page_counter_set_min(&memcg->memory, min);
6217
6218         return nbytes;
6219 }
6220
6221 static int memory_low_show(struct seq_file *m, void *v)
6222 {
6223         return seq_puts_memcg_tunable(m,
6224                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6225 }
6226
6227 static ssize_t memory_low_write(struct kernfs_open_file *of,
6228                                 char *buf, size_t nbytes, loff_t off)
6229 {
6230         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6231         unsigned long low;
6232         int err;
6233
6234         buf = strstrip(buf);
6235         err = page_counter_memparse(buf, "max", &low);
6236         if (err)
6237                 return err;
6238
6239         page_counter_set_low(&memcg->memory, low);
6240
6241         return nbytes;
6242 }
6243
6244 static int memory_high_show(struct seq_file *m, void *v)
6245 {
6246         return seq_puts_memcg_tunable(m,
6247                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6248 }
6249
6250 static ssize_t memory_high_write(struct kernfs_open_file *of,
6251                                  char *buf, size_t nbytes, loff_t off)
6252 {
6253         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6254         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6255         bool drained = false;
6256         unsigned long high;
6257         int err;
6258
6259         buf = strstrip(buf);
6260         err = page_counter_memparse(buf, "max", &high);
6261         if (err)
6262                 return err;
6263
6264         for (;;) {
6265                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6266                 unsigned long reclaimed;
6267
6268                 if (nr_pages <= high)
6269                         break;
6270
6271                 if (signal_pending(current))
6272                         break;
6273
6274                 if (!drained) {
6275                         drain_all_stock(memcg);
6276                         drained = true;
6277                         continue;
6278                 }
6279
6280                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6281                                                          GFP_KERNEL, true);
6282
6283                 if (!reclaimed && !nr_retries--)
6284                         break;
6285         }
6286
6287         page_counter_set_high(&memcg->memory, high);
6288
6289         memcg_wb_domain_size_changed(memcg);
6290
6291         return nbytes;
6292 }
6293
6294 static int memory_max_show(struct seq_file *m, void *v)
6295 {
6296         return seq_puts_memcg_tunable(m,
6297                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6298 }
6299
6300 static ssize_t memory_max_write(struct kernfs_open_file *of,
6301                                 char *buf, size_t nbytes, loff_t off)
6302 {
6303         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6304         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6305         bool drained = false;
6306         unsigned long max;
6307         int err;
6308
6309         buf = strstrip(buf);
6310         err = page_counter_memparse(buf, "max", &max);
6311         if (err)
6312                 return err;
6313
6314         xchg(&memcg->memory.max, max);
6315
6316         for (;;) {
6317                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6318
6319                 if (nr_pages <= max)
6320                         break;
6321
6322                 if (signal_pending(current))
6323                         break;
6324
6325                 if (!drained) {
6326                         drain_all_stock(memcg);
6327                         drained = true;
6328                         continue;
6329                 }
6330
6331                 if (nr_reclaims) {
6332                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6333                                                           GFP_KERNEL, true))
6334                                 nr_reclaims--;
6335                         continue;
6336                 }
6337
6338                 memcg_memory_event(memcg, MEMCG_OOM);
6339                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6340                         break;
6341         }
6342
6343         memcg_wb_domain_size_changed(memcg);
6344         return nbytes;
6345 }
6346
6347 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6348 {
6349         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6350         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6351         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6352         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6353         seq_printf(m, "oom_kill %lu\n",
6354                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6355 }
6356
6357 static int memory_events_show(struct seq_file *m, void *v)
6358 {
6359         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6360
6361         __memory_events_show(m, memcg->memory_events);
6362         return 0;
6363 }
6364
6365 static int memory_events_local_show(struct seq_file *m, void *v)
6366 {
6367         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6368
6369         __memory_events_show(m, memcg->memory_events_local);
6370         return 0;
6371 }
6372
6373 static int memory_stat_show(struct seq_file *m, void *v)
6374 {
6375         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6376         char *buf;
6377
6378         buf = memory_stat_format(memcg);
6379         if (!buf)
6380                 return -ENOMEM;
6381         seq_puts(m, buf);
6382         kfree(buf);
6383         return 0;
6384 }
6385
6386 static int memory_oom_group_show(struct seq_file *m, void *v)
6387 {
6388         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6389
6390         seq_printf(m, "%d\n", memcg->oom_group);
6391
6392         return 0;
6393 }
6394
6395 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6396                                       char *buf, size_t nbytes, loff_t off)
6397 {
6398         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6399         int ret, oom_group;
6400
6401         buf = strstrip(buf);
6402         if (!buf)
6403                 return -EINVAL;
6404
6405         ret = kstrtoint(buf, 0, &oom_group);
6406         if (ret)
6407                 return ret;
6408
6409         if (oom_group != 0 && oom_group != 1)
6410                 return -EINVAL;
6411
6412         memcg->oom_group = oom_group;
6413
6414         return nbytes;
6415 }
6416
6417 static struct cftype memory_files[] = {
6418         {
6419                 .name = "current",
6420                 .flags = CFTYPE_NOT_ON_ROOT,
6421                 .read_u64 = memory_current_read,
6422         },
6423         {
6424                 .name = "min",
6425                 .flags = CFTYPE_NOT_ON_ROOT,
6426                 .seq_show = memory_min_show,
6427                 .write = memory_min_write,
6428         },
6429         {
6430                 .name = "low",
6431                 .flags = CFTYPE_NOT_ON_ROOT,
6432                 .seq_show = memory_low_show,
6433                 .write = memory_low_write,
6434         },
6435         {
6436                 .name = "high",
6437                 .flags = CFTYPE_NOT_ON_ROOT,
6438                 .seq_show = memory_high_show,
6439                 .write = memory_high_write,
6440         },
6441         {
6442                 .name = "max",
6443                 .flags = CFTYPE_NOT_ON_ROOT,
6444                 .seq_show = memory_max_show,
6445                 .write = memory_max_write,
6446         },
6447         {
6448                 .name = "events",
6449                 .flags = CFTYPE_NOT_ON_ROOT,
6450                 .file_offset = offsetof(struct mem_cgroup, events_file),
6451                 .seq_show = memory_events_show,
6452         },
6453         {
6454                 .name = "events.local",
6455                 .flags = CFTYPE_NOT_ON_ROOT,
6456                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6457                 .seq_show = memory_events_local_show,
6458         },
6459         {
6460                 .name = "stat",
6461                 .seq_show = memory_stat_show,
6462         },
6463         {
6464                 .name = "oom.group",
6465                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6466                 .seq_show = memory_oom_group_show,
6467                 .write = memory_oom_group_write,
6468         },
6469         { }     /* terminate */
6470 };
6471
6472 struct cgroup_subsys memory_cgrp_subsys = {
6473         .css_alloc = mem_cgroup_css_alloc,
6474         .css_online = mem_cgroup_css_online,
6475         .css_offline = mem_cgroup_css_offline,
6476         .css_released = mem_cgroup_css_released,
6477         .css_free = mem_cgroup_css_free,
6478         .css_reset = mem_cgroup_css_reset,
6479         .can_attach = mem_cgroup_can_attach,
6480         .cancel_attach = mem_cgroup_cancel_attach,
6481         .post_attach = mem_cgroup_move_task,
6482         .bind = mem_cgroup_bind,
6483         .dfl_cftypes = memory_files,
6484         .legacy_cftypes = mem_cgroup_legacy_files,
6485         .early_init = 0,
6486 };
6487
6488 /*
6489  * This function calculates an individual cgroup's effective
6490  * protection which is derived from its own memory.min/low, its
6491  * parent's and siblings' settings, as well as the actual memory
6492  * distribution in the tree.
6493  *
6494  * The following rules apply to the effective protection values:
6495  *
6496  * 1. At the first level of reclaim, effective protection is equal to
6497  *    the declared protection in memory.min and memory.low.
6498  *
6499  * 2. To enable safe delegation of the protection configuration, at
6500  *    subsequent levels the effective protection is capped to the
6501  *    parent's effective protection.
6502  *
6503  * 3. To make complex and dynamic subtrees easier to configure, the
6504  *    user is allowed to overcommit the declared protection at a given
6505  *    level. If that is the case, the parent's effective protection is
6506  *    distributed to the children in proportion to how much protection
6507  *    they have declared and how much of it they are utilizing.
6508  *
6509  *    This makes distribution proportional, but also work-conserving:
6510  *    if one cgroup claims much more protection than it uses memory,
6511  *    the unused remainder is available to its siblings.
6512  *
6513  * 4. Conversely, when the declared protection is undercommitted at a
6514  *    given level, the distribution of the larger parental protection
6515  *    budget is NOT proportional. A cgroup's protection from a sibling
6516  *    is capped to its own memory.min/low setting.
6517  *
6518  * 5. However, to allow protecting recursive subtrees from each other
6519  *    without having to declare each individual cgroup's fixed share
6520  *    of the ancestor's claim to protection, any unutilized -
6521  *    "floating" - protection from up the tree is distributed in
6522  *    proportion to each cgroup's *usage*. This makes the protection
6523  *    neutral wrt sibling cgroups and lets them compete freely over
6524  *    the shared parental protection budget, but it protects the
6525  *    subtree as a whole from neighboring subtrees.
6526  *
6527  * Note that 4. and 5. are not in conflict: 4. is about protecting
6528  * against immediate siblings whereas 5. is about protecting against
6529  * neighboring subtrees.
6530  */
6531 static unsigned long effective_protection(unsigned long usage,
6532                                           unsigned long parent_usage,
6533                                           unsigned long setting,
6534                                           unsigned long parent_effective,
6535                                           unsigned long siblings_protected)
6536 {
6537         unsigned long protected;
6538         unsigned long ep;
6539
6540         protected = min(usage, setting);
6541         /*
6542          * If all cgroups at this level combined claim and use more
6543          * protection then what the parent affords them, distribute
6544          * shares in proportion to utilization.
6545          *
6546          * We are using actual utilization rather than the statically
6547          * claimed protection in order to be work-conserving: claimed
6548          * but unused protection is available to siblings that would
6549          * otherwise get a smaller chunk than what they claimed.
6550          */
6551         if (siblings_protected > parent_effective)
6552                 return protected * parent_effective / siblings_protected;
6553
6554         /*
6555          * Ok, utilized protection of all children is within what the
6556          * parent affords them, so we know whatever this child claims
6557          * and utilizes is effectively protected.
6558          *
6559          * If there is unprotected usage beyond this value, reclaim
6560          * will apply pressure in proportion to that amount.
6561          *
6562          * If there is unutilized protection, the cgroup will be fully
6563          * shielded from reclaim, but we do return a smaller value for
6564          * protection than what the group could enjoy in theory. This
6565          * is okay. With the overcommit distribution above, effective
6566          * protection is always dependent on how memory is actually
6567          * consumed among the siblings anyway.
6568          */
6569         ep = protected;
6570
6571         /*
6572          * If the children aren't claiming (all of) the protection
6573          * afforded to them by the parent, distribute the remainder in
6574          * proportion to the (unprotected) memory of each cgroup. That
6575          * way, cgroups that aren't explicitly prioritized wrt each
6576          * other compete freely over the allowance, but they are
6577          * collectively protected from neighboring trees.
6578          *
6579          * We're using unprotected memory for the weight so that if
6580          * some cgroups DO claim explicit protection, we don't protect
6581          * the same bytes twice.
6582          *
6583          * Check both usage and parent_usage against the respective
6584          * protected values. One should imply the other, but they
6585          * aren't read atomically - make sure the division is sane.
6586          */
6587         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6588                 return ep;
6589         if (parent_effective > siblings_protected &&
6590             parent_usage > siblings_protected &&
6591             usage > protected) {
6592                 unsigned long unclaimed;
6593
6594                 unclaimed = parent_effective - siblings_protected;
6595                 unclaimed *= usage - protected;
6596                 unclaimed /= parent_usage - siblings_protected;
6597
6598                 ep += unclaimed;
6599         }
6600
6601         return ep;
6602 }
6603
6604 /**
6605  * mem_cgroup_protected - check if memory consumption is in the normal range
6606  * @root: the top ancestor of the sub-tree being checked
6607  * @memcg: the memory cgroup to check
6608  *
6609  * WARNING: This function is not stateless! It can only be used as part
6610  *          of a top-down tree iteration, not for isolated queries.
6611  */
6612 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6613                                      struct mem_cgroup *memcg)
6614 {
6615         unsigned long usage, parent_usage;
6616         struct mem_cgroup *parent;
6617
6618         if (mem_cgroup_disabled())
6619                 return;
6620
6621         if (!root)
6622                 root = root_mem_cgroup;
6623
6624         /*
6625          * Effective values of the reclaim targets are ignored so they
6626          * can be stale. Have a look at mem_cgroup_protection for more
6627          * details.
6628          * TODO: calculation should be more robust so that we do not need
6629          * that special casing.
6630          */
6631         if (memcg == root)
6632                 return;
6633
6634         usage = page_counter_read(&memcg->memory);
6635         if (!usage)
6636                 return;
6637
6638         parent = parent_mem_cgroup(memcg);
6639         /* No parent means a non-hierarchical mode on v1 memcg */
6640         if (!parent)
6641                 return;
6642
6643         if (parent == root) {
6644                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6645                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6646                 return;
6647         }
6648
6649         parent_usage = page_counter_read(&parent->memory);
6650
6651         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6652                         READ_ONCE(memcg->memory.min),
6653                         READ_ONCE(parent->memory.emin),
6654                         atomic_long_read(&parent->memory.children_min_usage)));
6655
6656         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6657                         READ_ONCE(memcg->memory.low),
6658                         READ_ONCE(parent->memory.elow),
6659                         atomic_long_read(&parent->memory.children_low_usage)));
6660 }
6661
6662 /**
6663  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6664  * @page: page to charge
6665  * @mm: mm context of the victim
6666  * @gfp_mask: reclaim mode
6667  *
6668  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6669  * pages according to @gfp_mask if necessary.
6670  *
6671  * Returns 0 on success. Otherwise, an error code is returned.
6672  */
6673 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6674 {
6675         unsigned int nr_pages = thp_nr_pages(page);
6676         struct mem_cgroup *memcg = NULL;
6677         int ret = 0;
6678
6679         if (mem_cgroup_disabled())
6680                 goto out;
6681
6682         if (PageSwapCache(page)) {
6683                 swp_entry_t ent = { .val = page_private(page), };
6684                 unsigned short id;
6685
6686                 /*
6687                  * Every swap fault against a single page tries to charge the
6688                  * page, bail as early as possible.  shmem_unuse() encounters
6689                  * already charged pages, too.  page->mem_cgroup is protected
6690                  * by the page lock, which serializes swap cache removal, which
6691                  * in turn serializes uncharging.
6692                  */
6693                 VM_BUG_ON_PAGE(!PageLocked(page), page);
6694                 if (compound_head(page)->mem_cgroup)
6695                         goto out;
6696
6697                 id = lookup_swap_cgroup_id(ent);
6698                 rcu_read_lock();
6699                 memcg = mem_cgroup_from_id(id);
6700                 if (memcg && !css_tryget_online(&memcg->css))
6701                         memcg = NULL;
6702                 rcu_read_unlock();
6703         }
6704
6705         if (!memcg)
6706                 memcg = get_mem_cgroup_from_mm(mm);
6707
6708         ret = try_charge(memcg, gfp_mask, nr_pages);
6709         if (ret)
6710                 goto out_put;
6711
6712         css_get(&memcg->css);
6713         commit_charge(page, memcg);
6714
6715         local_irq_disable();
6716         mem_cgroup_charge_statistics(memcg, page, nr_pages);
6717         memcg_check_events(memcg, page);
6718         local_irq_enable();
6719
6720         if (PageSwapCache(page)) {
6721                 swp_entry_t entry = { .val = page_private(page) };
6722                 /*
6723                  * The swap entry might not get freed for a long time,
6724                  * let's not wait for it.  The page already received a
6725                  * memory+swap charge, drop the swap entry duplicate.
6726                  */
6727                 mem_cgroup_uncharge_swap(entry, nr_pages);
6728         }
6729
6730 out_put:
6731         css_put(&memcg->css);
6732 out:
6733         return ret;
6734 }
6735
6736 struct uncharge_gather {
6737         struct mem_cgroup *memcg;
6738         unsigned long nr_pages;
6739         unsigned long pgpgout;
6740         unsigned long nr_kmem;
6741         struct page *dummy_page;
6742 };
6743
6744 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6745 {
6746         memset(ug, 0, sizeof(*ug));
6747 }
6748
6749 static void uncharge_batch(const struct uncharge_gather *ug)
6750 {
6751         unsigned long flags;
6752
6753         if (!mem_cgroup_is_root(ug->memcg)) {
6754                 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6755                 if (do_memsw_account())
6756                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6757                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6758                         page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6759                 memcg_oom_recover(ug->memcg);
6760         }
6761
6762         local_irq_save(flags);
6763         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6764         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6765         memcg_check_events(ug->memcg, ug->dummy_page);
6766         local_irq_restore(flags);
6767
6768         /* drop reference from uncharge_page */
6769         css_put(&ug->memcg->css);
6770 }
6771
6772 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6773 {
6774         unsigned long nr_pages;
6775
6776         VM_BUG_ON_PAGE(PageLRU(page), page);
6777
6778         if (!page->mem_cgroup)
6779                 return;
6780
6781         /*
6782          * Nobody should be changing or seriously looking at
6783          * page->mem_cgroup at this point, we have fully
6784          * exclusive access to the page.
6785          */
6786
6787         if (ug->memcg != page->mem_cgroup) {
6788                 if (ug->memcg) {
6789                         uncharge_batch(ug);
6790                         uncharge_gather_clear(ug);
6791                 }
6792                 ug->memcg = page->mem_cgroup;
6793
6794                 /* pairs with css_put in uncharge_batch */
6795                 css_get(&ug->memcg->css);
6796         }
6797
6798         nr_pages = compound_nr(page);
6799         ug->nr_pages += nr_pages;
6800
6801         if (!PageKmemcg(page)) {
6802                 ug->pgpgout++;
6803         } else {
6804                 ug->nr_kmem += nr_pages;
6805                 __ClearPageKmemcg(page);
6806         }
6807
6808         ug->dummy_page = page;
6809         page->mem_cgroup = NULL;
6810         css_put(&ug->memcg->css);
6811 }
6812
6813 static void uncharge_list(struct list_head *page_list)
6814 {
6815         struct uncharge_gather ug;
6816         struct list_head *next;
6817
6818         uncharge_gather_clear(&ug);
6819
6820         /*
6821          * Note that the list can be a single page->lru; hence the
6822          * do-while loop instead of a simple list_for_each_entry().
6823          */
6824         next = page_list->next;
6825         do {
6826                 struct page *page;
6827
6828                 page = list_entry(next, struct page, lru);
6829                 next = page->lru.next;
6830
6831                 uncharge_page(page, &ug);
6832         } while (next != page_list);
6833
6834         if (ug.memcg)
6835                 uncharge_batch(&ug);
6836 }
6837
6838 /**
6839  * mem_cgroup_uncharge - uncharge a page
6840  * @page: page to uncharge
6841  *
6842  * Uncharge a page previously charged with mem_cgroup_charge().
6843  */
6844 void mem_cgroup_uncharge(struct page *page)
6845 {
6846         struct uncharge_gather ug;
6847
6848         if (mem_cgroup_disabled())
6849                 return;
6850
6851         /* Don't touch page->lru of any random page, pre-check: */
6852         if (!page->mem_cgroup)
6853                 return;
6854
6855         uncharge_gather_clear(&ug);
6856         uncharge_page(page, &ug);
6857         uncharge_batch(&ug);
6858 }
6859
6860 /**
6861  * mem_cgroup_uncharge_list - uncharge a list of page
6862  * @page_list: list of pages to uncharge
6863  *
6864  * Uncharge a list of pages previously charged with
6865  * mem_cgroup_charge().
6866  */
6867 void mem_cgroup_uncharge_list(struct list_head *page_list)
6868 {
6869         if (mem_cgroup_disabled())
6870                 return;
6871
6872         if (!list_empty(page_list))
6873                 uncharge_list(page_list);
6874 }
6875
6876 /**
6877  * mem_cgroup_migrate - charge a page's replacement
6878  * @oldpage: currently circulating page
6879  * @newpage: replacement page
6880  *
6881  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6882  * be uncharged upon free.
6883  *
6884  * Both pages must be locked, @newpage->mapping must be set up.
6885  */
6886 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6887 {
6888         struct mem_cgroup *memcg;
6889         unsigned int nr_pages;
6890         unsigned long flags;
6891
6892         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6893         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6894         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6895         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6896                        newpage);
6897
6898         if (mem_cgroup_disabled())
6899                 return;
6900
6901         /* Page cache replacement: new page already charged? */
6902         if (newpage->mem_cgroup)
6903                 return;
6904
6905         /* Swapcache readahead pages can get replaced before being charged */
6906         memcg = oldpage->mem_cgroup;
6907         if (!memcg)
6908                 return;
6909
6910         /* Force-charge the new page. The old one will be freed soon */
6911         nr_pages = thp_nr_pages(newpage);
6912
6913         page_counter_charge(&memcg->memory, nr_pages);
6914         if (do_memsw_account())
6915                 page_counter_charge(&memcg->memsw, nr_pages);
6916
6917         css_get(&memcg->css);
6918         commit_charge(newpage, memcg);
6919
6920         local_irq_save(flags);
6921         mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6922         memcg_check_events(memcg, newpage);
6923         local_irq_restore(flags);
6924 }
6925
6926 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6927 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6928
6929 void mem_cgroup_sk_alloc(struct sock *sk)
6930 {
6931         struct mem_cgroup *memcg;
6932
6933         if (!mem_cgroup_sockets_enabled)
6934                 return;
6935
6936         /* Do not associate the sock with unrelated interrupted task's memcg. */
6937         if (in_interrupt())
6938                 return;
6939
6940         rcu_read_lock();
6941         memcg = mem_cgroup_from_task(current);
6942         if (memcg == root_mem_cgroup)
6943                 goto out;
6944         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6945                 goto out;
6946         if (css_tryget(&memcg->css))
6947                 sk->sk_memcg = memcg;
6948 out:
6949         rcu_read_unlock();
6950 }
6951
6952 void mem_cgroup_sk_free(struct sock *sk)
6953 {
6954         if (sk->sk_memcg)
6955                 css_put(&sk->sk_memcg->css);
6956 }
6957
6958 /**
6959  * mem_cgroup_charge_skmem - charge socket memory
6960  * @memcg: memcg to charge
6961  * @nr_pages: number of pages to charge
6962  *
6963  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6964  * @memcg's configured limit, %false if the charge had to be forced.
6965  */
6966 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6967 {
6968         gfp_t gfp_mask = GFP_KERNEL;
6969
6970         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6971                 struct page_counter *fail;
6972
6973                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6974                         memcg->tcpmem_pressure = 0;
6975                         return true;
6976                 }
6977                 page_counter_charge(&memcg->tcpmem, nr_pages);
6978                 memcg->tcpmem_pressure = 1;
6979                 return false;
6980         }
6981
6982         /* Don't block in the packet receive path */
6983         if (in_softirq())
6984                 gfp_mask = GFP_NOWAIT;
6985
6986         mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6987
6988         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6989                 return true;
6990
6991         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6992         return false;
6993 }
6994
6995 /**
6996  * mem_cgroup_uncharge_skmem - uncharge socket memory
6997  * @memcg: memcg to uncharge
6998  * @nr_pages: number of pages to uncharge
6999  */
7000 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7001 {
7002         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7003                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7004                 return;
7005         }
7006
7007         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7008
7009         refill_stock(memcg, nr_pages);
7010 }
7011
7012 static int __init cgroup_memory(char *s)
7013 {
7014         char *token;
7015
7016         while ((token = strsep(&s, ",")) != NULL) {
7017                 if (!*token)
7018                         continue;
7019                 if (!strcmp(token, "nosocket"))
7020                         cgroup_memory_nosocket = true;
7021                 if (!strcmp(token, "nokmem"))
7022                         cgroup_memory_nokmem = true;
7023         }
7024         return 0;
7025 }
7026 __setup("cgroup.memory=", cgroup_memory);
7027
7028 /*
7029  * subsys_initcall() for memory controller.
7030  *
7031  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7032  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7033  * basically everything that doesn't depend on a specific mem_cgroup structure
7034  * should be initialized from here.
7035  */
7036 static int __init mem_cgroup_init(void)
7037 {
7038         int cpu, node;
7039
7040         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7041                                   memcg_hotplug_cpu_dead);
7042
7043         for_each_possible_cpu(cpu)
7044                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7045                           drain_local_stock);
7046
7047         for_each_node(node) {
7048                 struct mem_cgroup_tree_per_node *rtpn;
7049
7050                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7051                                     node_online(node) ? node : NUMA_NO_NODE);
7052
7053                 rtpn->rb_root = RB_ROOT;
7054                 rtpn->rb_rightmost = NULL;
7055                 spin_lock_init(&rtpn->lock);
7056                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7057         }
7058
7059         return 0;
7060 }
7061 subsys_initcall(mem_cgroup_init);
7062
7063 #ifdef CONFIG_MEMCG_SWAP
7064 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7065 {
7066         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7067                 /*
7068                  * The root cgroup cannot be destroyed, so it's refcount must
7069                  * always be >= 1.
7070                  */
7071                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7072                         VM_BUG_ON(1);
7073                         break;
7074                 }
7075                 memcg = parent_mem_cgroup(memcg);
7076                 if (!memcg)
7077                         memcg = root_mem_cgroup;
7078         }
7079         return memcg;
7080 }
7081
7082 /**
7083  * mem_cgroup_swapout - transfer a memsw charge to swap
7084  * @page: page whose memsw charge to transfer
7085  * @entry: swap entry to move the charge to
7086  *
7087  * Transfer the memsw charge of @page to @entry.
7088  */
7089 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7090 {
7091         struct mem_cgroup *memcg, *swap_memcg;
7092         unsigned int nr_entries;
7093         unsigned short oldid;
7094
7095         VM_BUG_ON_PAGE(PageLRU(page), page);
7096         VM_BUG_ON_PAGE(page_count(page), page);
7097
7098         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7099                 return;
7100
7101         memcg = page->mem_cgroup;
7102
7103         /* Readahead page, never charged */
7104         if (!memcg)
7105                 return;
7106
7107         /*
7108          * In case the memcg owning these pages has been offlined and doesn't
7109          * have an ID allocated to it anymore, charge the closest online
7110          * ancestor for the swap instead and transfer the memory+swap charge.
7111          */
7112         swap_memcg = mem_cgroup_id_get_online(memcg);
7113         nr_entries = thp_nr_pages(page);
7114         /* Get references for the tail pages, too */
7115         if (nr_entries > 1)
7116                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7117         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7118                                    nr_entries);
7119         VM_BUG_ON_PAGE(oldid, page);
7120         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7121
7122         page->mem_cgroup = NULL;
7123
7124         if (!mem_cgroup_is_root(memcg))
7125                 page_counter_uncharge(&memcg->memory, nr_entries);
7126
7127         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7128                 if (!mem_cgroup_is_root(swap_memcg))
7129                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7130                 page_counter_uncharge(&memcg->memsw, nr_entries);
7131         }
7132
7133         /*
7134          * Interrupts should be disabled here because the caller holds the
7135          * i_pages lock which is taken with interrupts-off. It is
7136          * important here to have the interrupts disabled because it is the
7137          * only synchronisation we have for updating the per-CPU variables.
7138          */
7139         VM_BUG_ON(!irqs_disabled());
7140         mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7141         memcg_check_events(memcg, page);
7142
7143         css_put(&memcg->css);
7144 }
7145
7146 /**
7147  * mem_cgroup_try_charge_swap - try charging swap space for a page
7148  * @page: page being added to swap
7149  * @entry: swap entry to charge
7150  *
7151  * Try to charge @page's memcg for the swap space at @entry.
7152  *
7153  * Returns 0 on success, -ENOMEM on failure.
7154  */
7155 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7156 {
7157         unsigned int nr_pages = thp_nr_pages(page);
7158         struct page_counter *counter;
7159         struct mem_cgroup *memcg;
7160         unsigned short oldid;
7161
7162         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7163                 return 0;
7164
7165         memcg = page->mem_cgroup;
7166
7167         /* Readahead page, never charged */
7168         if (!memcg)
7169                 return 0;
7170
7171         if (!entry.val) {
7172                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7173                 return 0;
7174         }
7175
7176         memcg = mem_cgroup_id_get_online(memcg);
7177
7178         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7179             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7180                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7181                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7182                 mem_cgroup_id_put(memcg);
7183                 return -ENOMEM;
7184         }
7185
7186         /* Get references for the tail pages, too */
7187         if (nr_pages > 1)
7188                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7189         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7190         VM_BUG_ON_PAGE(oldid, page);
7191         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7192
7193         return 0;
7194 }
7195
7196 /**
7197  * mem_cgroup_uncharge_swap - uncharge swap space
7198  * @entry: swap entry to uncharge
7199  * @nr_pages: the amount of swap space to uncharge
7200  */
7201 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7202 {
7203         struct mem_cgroup *memcg;
7204         unsigned short id;
7205
7206         id = swap_cgroup_record(entry, 0, nr_pages);
7207         rcu_read_lock();
7208         memcg = mem_cgroup_from_id(id);
7209         if (memcg) {
7210                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7211                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7212                                 page_counter_uncharge(&memcg->swap, nr_pages);
7213                         else
7214                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7215                 }
7216                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7217                 mem_cgroup_id_put_many(memcg, nr_pages);
7218         }
7219         rcu_read_unlock();
7220 }
7221
7222 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7223 {
7224         long nr_swap_pages = get_nr_swap_pages();
7225
7226         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7227                 return nr_swap_pages;
7228         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7229                 nr_swap_pages = min_t(long, nr_swap_pages,
7230                                       READ_ONCE(memcg->swap.max) -
7231                                       page_counter_read(&memcg->swap));
7232         return nr_swap_pages;
7233 }
7234
7235 bool mem_cgroup_swap_full(struct page *page)
7236 {
7237         struct mem_cgroup *memcg;
7238
7239         VM_BUG_ON_PAGE(!PageLocked(page), page);
7240
7241         if (vm_swap_full())
7242                 return true;
7243         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7244                 return false;
7245
7246         memcg = page->mem_cgroup;
7247         if (!memcg)
7248                 return false;
7249
7250         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7251                 unsigned long usage = page_counter_read(&memcg->swap);
7252
7253                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7254                     usage * 2 >= READ_ONCE(memcg->swap.max))
7255                         return true;
7256         }
7257
7258         return false;
7259 }
7260
7261 static int __init setup_swap_account(char *s)
7262 {
7263         if (!strcmp(s, "1"))
7264                 cgroup_memory_noswap = 0;
7265         else if (!strcmp(s, "0"))
7266                 cgroup_memory_noswap = 1;
7267         return 1;
7268 }
7269 __setup("swapaccount=", setup_swap_account);
7270
7271 static u64 swap_current_read(struct cgroup_subsys_state *css,
7272                              struct cftype *cft)
7273 {
7274         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7275
7276         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7277 }
7278
7279 static int swap_high_show(struct seq_file *m, void *v)
7280 {
7281         return seq_puts_memcg_tunable(m,
7282                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7283 }
7284
7285 static ssize_t swap_high_write(struct kernfs_open_file *of,
7286                                char *buf, size_t nbytes, loff_t off)
7287 {
7288         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7289         unsigned long high;
7290         int err;
7291
7292         buf = strstrip(buf);
7293         err = page_counter_memparse(buf, "max", &high);
7294         if (err)
7295                 return err;
7296
7297         page_counter_set_high(&memcg->swap, high);
7298
7299         return nbytes;
7300 }
7301
7302 static int swap_max_show(struct seq_file *m, void *v)
7303 {
7304         return seq_puts_memcg_tunable(m,
7305                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7306 }
7307
7308 static ssize_t swap_max_write(struct kernfs_open_file *of,
7309                               char *buf, size_t nbytes, loff_t off)
7310 {
7311         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7312         unsigned long max;
7313         int err;
7314
7315         buf = strstrip(buf);
7316         err = page_counter_memparse(buf, "max", &max);
7317         if (err)
7318                 return err;
7319
7320         xchg(&memcg->swap.max, max);
7321
7322         return nbytes;
7323 }
7324
7325 static int swap_events_show(struct seq_file *m, void *v)
7326 {
7327         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7328
7329         seq_printf(m, "high %lu\n",
7330                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7331         seq_printf(m, "max %lu\n",
7332                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7333         seq_printf(m, "fail %lu\n",
7334                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7335
7336         return 0;
7337 }
7338
7339 static struct cftype swap_files[] = {
7340         {
7341                 .name = "swap.current",
7342                 .flags = CFTYPE_NOT_ON_ROOT,
7343                 .read_u64 = swap_current_read,
7344         },
7345         {
7346                 .name = "swap.high",
7347                 .flags = CFTYPE_NOT_ON_ROOT,
7348                 .seq_show = swap_high_show,
7349                 .write = swap_high_write,
7350         },
7351         {
7352                 .name = "swap.max",
7353                 .flags = CFTYPE_NOT_ON_ROOT,
7354                 .seq_show = swap_max_show,
7355                 .write = swap_max_write,
7356         },
7357         {
7358                 .name = "swap.events",
7359                 .flags = CFTYPE_NOT_ON_ROOT,
7360                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7361                 .seq_show = swap_events_show,
7362         },
7363         { }     /* terminate */
7364 };
7365
7366 static struct cftype memsw_files[] = {
7367         {
7368                 .name = "memsw.usage_in_bytes",
7369                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7370                 .read_u64 = mem_cgroup_read_u64,
7371         },
7372         {
7373                 .name = "memsw.max_usage_in_bytes",
7374                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7375                 .write = mem_cgroup_reset,
7376                 .read_u64 = mem_cgroup_read_u64,
7377         },
7378         {
7379                 .name = "memsw.limit_in_bytes",
7380                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7381                 .write = mem_cgroup_write,
7382                 .read_u64 = mem_cgroup_read_u64,
7383         },
7384         {
7385                 .name = "memsw.failcnt",
7386                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7387                 .write = mem_cgroup_reset,
7388                 .read_u64 = mem_cgroup_read_u64,
7389         },
7390         { },    /* terminate */
7391 };
7392
7393 /*
7394  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7395  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7396  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7397  * boot parameter. This may result in premature OOPS inside
7398  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7399  */
7400 static int __init mem_cgroup_swap_init(void)
7401 {
7402         /* No memory control -> no swap control */
7403         if (mem_cgroup_disabled())
7404                 cgroup_memory_noswap = true;
7405
7406         if (cgroup_memory_noswap)
7407                 return 0;
7408
7409         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7410         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7411
7412         return 0;
7413 }
7414 core_initcall(mem_cgroup_swap_init);
7415
7416 #endif /* CONFIG_MEMCG_SWAP */