4d8c9afecf98572b1cf557896ce0346911b1c907
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap            1
94 #endif
95
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105
106 /* memcg and lruvec stats flushing */
107 static void flush_memcg_stats_dwork(struct work_struct *w);
108 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
109 static void flush_memcg_stats_work(struct work_struct *w);
110 static DECLARE_WORK(stats_flush_work, flush_memcg_stats_work);
111 static DEFINE_PER_CPU(unsigned int, stats_flush_threshold);
112 static DEFINE_SPINLOCK(stats_flush_lock);
113
114 #define THRESHOLDS_EVENTS_TARGET 128
115 #define SOFTLIMIT_EVENTS_TARGET 1024
116
117 /*
118  * Cgroups above their limits are maintained in a RB-Tree, independent of
119  * their hierarchy representation
120  */
121
122 struct mem_cgroup_tree_per_node {
123         struct rb_root rb_root;
124         struct rb_node *rb_rightmost;
125         spinlock_t lock;
126 };
127
128 struct mem_cgroup_tree {
129         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
130 };
131
132 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
133
134 /* for OOM */
135 struct mem_cgroup_eventfd_list {
136         struct list_head list;
137         struct eventfd_ctx *eventfd;
138 };
139
140 /*
141  * cgroup_event represents events which userspace want to receive.
142  */
143 struct mem_cgroup_event {
144         /*
145          * memcg which the event belongs to.
146          */
147         struct mem_cgroup *memcg;
148         /*
149          * eventfd to signal userspace about the event.
150          */
151         struct eventfd_ctx *eventfd;
152         /*
153          * Each of these stored in a list by the cgroup.
154          */
155         struct list_head list;
156         /*
157          * register_event() callback will be used to add new userspace
158          * waiter for changes related to this event.  Use eventfd_signal()
159          * on eventfd to send notification to userspace.
160          */
161         int (*register_event)(struct mem_cgroup *memcg,
162                               struct eventfd_ctx *eventfd, const char *args);
163         /*
164          * unregister_event() callback will be called when userspace closes
165          * the eventfd or on cgroup removing.  This callback must be set,
166          * if you want provide notification functionality.
167          */
168         void (*unregister_event)(struct mem_cgroup *memcg,
169                                  struct eventfd_ctx *eventfd);
170         /*
171          * All fields below needed to unregister event when
172          * userspace closes eventfd.
173          */
174         poll_table pt;
175         wait_queue_head_t *wqh;
176         wait_queue_entry_t wait;
177         struct work_struct remove;
178 };
179
180 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
181 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
182
183 /* Stuffs for move charges at task migration. */
184 /*
185  * Types of charges to be moved.
186  */
187 #define MOVE_ANON       0x1U
188 #define MOVE_FILE       0x2U
189 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
190
191 /* "mc" and its members are protected by cgroup_mutex */
192 static struct move_charge_struct {
193         spinlock_t        lock; /* for from, to */
194         struct mm_struct  *mm;
195         struct mem_cgroup *from;
196         struct mem_cgroup *to;
197         unsigned long flags;
198         unsigned long precharge;
199         unsigned long moved_charge;
200         unsigned long moved_swap;
201         struct task_struct *moving_task;        /* a task moving charges */
202         wait_queue_head_t waitq;                /* a waitq for other context */
203 } mc = {
204         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
205         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
206 };
207
208 /*
209  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
210  * limit reclaim to prevent infinite loops, if they ever occur.
211  */
212 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
213 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
214
215 /* for encoding cft->private value on file */
216 enum res_type {
217         _MEM,
218         _MEMSWAP,
219         _OOM_TYPE,
220         _KMEM,
221         _TCP,
222 };
223
224 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
225 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
226 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
227 /* Used for OOM notifier */
228 #define OOM_CONTROL             (0)
229
230 /*
231  * Iteration constructs for visiting all cgroups (under a tree).  If
232  * loops are exited prematurely (break), mem_cgroup_iter_break() must
233  * be used for reference counting.
234  */
235 #define for_each_mem_cgroup_tree(iter, root)            \
236         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
237              iter != NULL;                              \
238              iter = mem_cgroup_iter(root, iter, NULL))
239
240 #define for_each_mem_cgroup(iter)                       \
241         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
242              iter != NULL;                              \
243              iter = mem_cgroup_iter(NULL, iter, NULL))
244
245 static inline bool should_force_charge(void)
246 {
247         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
248                 (current->flags & PF_EXITING);
249 }
250
251 /* Some nice accessors for the vmpressure. */
252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253 {
254         if (!memcg)
255                 memcg = root_mem_cgroup;
256         return &memcg->vmpressure;
257 }
258
259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260 {
261         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262 }
263
264 #ifdef CONFIG_MEMCG_KMEM
265 extern spinlock_t css_set_lock;
266
267 bool mem_cgroup_kmem_disabled(void)
268 {
269         return cgroup_memory_nokmem;
270 }
271
272 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
273                                       unsigned int nr_pages);
274
275 static void obj_cgroup_release(struct percpu_ref *ref)
276 {
277         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
278         unsigned int nr_bytes;
279         unsigned int nr_pages;
280         unsigned long flags;
281
282         /*
283          * At this point all allocated objects are freed, and
284          * objcg->nr_charged_bytes can't have an arbitrary byte value.
285          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
286          *
287          * The following sequence can lead to it:
288          * 1) CPU0: objcg == stock->cached_objcg
289          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
290          *          PAGE_SIZE bytes are charged
291          * 3) CPU1: a process from another memcg is allocating something,
292          *          the stock if flushed,
293          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
294          * 5) CPU0: we do release this object,
295          *          92 bytes are added to stock->nr_bytes
296          * 6) CPU0: stock is flushed,
297          *          92 bytes are added to objcg->nr_charged_bytes
298          *
299          * In the result, nr_charged_bytes == PAGE_SIZE.
300          * This page will be uncharged in obj_cgroup_release().
301          */
302         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
303         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
304         nr_pages = nr_bytes >> PAGE_SHIFT;
305
306         if (nr_pages)
307                 obj_cgroup_uncharge_pages(objcg, nr_pages);
308
309         spin_lock_irqsave(&css_set_lock, flags);
310         list_del(&objcg->list);
311         spin_unlock_irqrestore(&css_set_lock, flags);
312
313         percpu_ref_exit(ref);
314         kfree_rcu(objcg, rcu);
315 }
316
317 static struct obj_cgroup *obj_cgroup_alloc(void)
318 {
319         struct obj_cgroup *objcg;
320         int ret;
321
322         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
323         if (!objcg)
324                 return NULL;
325
326         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
327                               GFP_KERNEL);
328         if (ret) {
329                 kfree(objcg);
330                 return NULL;
331         }
332         INIT_LIST_HEAD(&objcg->list);
333         return objcg;
334 }
335
336 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
337                                   struct mem_cgroup *parent)
338 {
339         struct obj_cgroup *objcg, *iter;
340
341         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
342
343         spin_lock_irq(&css_set_lock);
344
345         /* 1) Ready to reparent active objcg. */
346         list_add(&objcg->list, &memcg->objcg_list);
347         /* 2) Reparent active objcg and already reparented objcgs to parent. */
348         list_for_each_entry(iter, &memcg->objcg_list, list)
349                 WRITE_ONCE(iter->memcg, parent);
350         /* 3) Move already reparented objcgs to the parent's list */
351         list_splice(&memcg->objcg_list, &parent->objcg_list);
352
353         spin_unlock_irq(&css_set_lock);
354
355         percpu_ref_kill(&objcg->refcnt);
356 }
357
358 /*
359  * This will be used as a shrinker list's index.
360  * The main reason for not using cgroup id for this:
361  *  this works better in sparse environments, where we have a lot of memcgs,
362  *  but only a few kmem-limited. Or also, if we have, for instance, 200
363  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
364  *  200 entry array for that.
365  *
366  * The current size of the caches array is stored in memcg_nr_cache_ids. It
367  * will double each time we have to increase it.
368  */
369 static DEFINE_IDA(memcg_cache_ida);
370 int memcg_nr_cache_ids;
371
372 /* Protects memcg_nr_cache_ids */
373 static DECLARE_RWSEM(memcg_cache_ids_sem);
374
375 void memcg_get_cache_ids(void)
376 {
377         down_read(&memcg_cache_ids_sem);
378 }
379
380 void memcg_put_cache_ids(void)
381 {
382         up_read(&memcg_cache_ids_sem);
383 }
384
385 /*
386  * MIN_SIZE is different than 1, because we would like to avoid going through
387  * the alloc/free process all the time. In a small machine, 4 kmem-limited
388  * cgroups is a reasonable guess. In the future, it could be a parameter or
389  * tunable, but that is strictly not necessary.
390  *
391  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
392  * this constant directly from cgroup, but it is understandable that this is
393  * better kept as an internal representation in cgroup.c. In any case, the
394  * cgrp_id space is not getting any smaller, and we don't have to necessarily
395  * increase ours as well if it increases.
396  */
397 #define MEMCG_CACHES_MIN_SIZE 4
398 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
399
400 /*
401  * A lot of the calls to the cache allocation functions are expected to be
402  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
403  * conditional to this static branch, we'll have to allow modules that does
404  * kmem_cache_alloc and the such to see this symbol as well
405  */
406 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
407 EXPORT_SYMBOL(memcg_kmem_enabled_key);
408 #endif
409
410 /**
411  * mem_cgroup_css_from_page - css of the memcg associated with a page
412  * @page: page of interest
413  *
414  * If memcg is bound to the default hierarchy, css of the memcg associated
415  * with @page is returned.  The returned css remains associated with @page
416  * until it is released.
417  *
418  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
419  * is returned.
420  */
421 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
422 {
423         struct mem_cgroup *memcg;
424
425         memcg = page_memcg(page);
426
427         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
428                 memcg = root_mem_cgroup;
429
430         return &memcg->css;
431 }
432
433 /**
434  * page_cgroup_ino - return inode number of the memcg a page is charged to
435  * @page: the page
436  *
437  * Look up the closest online ancestor of the memory cgroup @page is charged to
438  * and return its inode number or 0 if @page is not charged to any cgroup. It
439  * is safe to call this function without holding a reference to @page.
440  *
441  * Note, this function is inherently racy, because there is nothing to prevent
442  * the cgroup inode from getting torn down and potentially reallocated a moment
443  * after page_cgroup_ino() returns, so it only should be used by callers that
444  * do not care (such as procfs interfaces).
445  */
446 ino_t page_cgroup_ino(struct page *page)
447 {
448         struct mem_cgroup *memcg;
449         unsigned long ino = 0;
450
451         rcu_read_lock();
452         memcg = page_memcg_check(page);
453
454         while (memcg && !(memcg->css.flags & CSS_ONLINE))
455                 memcg = parent_mem_cgroup(memcg);
456         if (memcg)
457                 ino = cgroup_ino(memcg->css.cgroup);
458         rcu_read_unlock();
459         return ino;
460 }
461
462 static struct mem_cgroup_per_node *
463 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
464 {
465         int nid = page_to_nid(page);
466
467         return memcg->nodeinfo[nid];
468 }
469
470 static struct mem_cgroup_tree_per_node *
471 soft_limit_tree_node(int nid)
472 {
473         return soft_limit_tree.rb_tree_per_node[nid];
474 }
475
476 static struct mem_cgroup_tree_per_node *
477 soft_limit_tree_from_page(struct page *page)
478 {
479         int nid = page_to_nid(page);
480
481         return soft_limit_tree.rb_tree_per_node[nid];
482 }
483
484 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
485                                          struct mem_cgroup_tree_per_node *mctz,
486                                          unsigned long new_usage_in_excess)
487 {
488         struct rb_node **p = &mctz->rb_root.rb_node;
489         struct rb_node *parent = NULL;
490         struct mem_cgroup_per_node *mz_node;
491         bool rightmost = true;
492
493         if (mz->on_tree)
494                 return;
495
496         mz->usage_in_excess = new_usage_in_excess;
497         if (!mz->usage_in_excess)
498                 return;
499         while (*p) {
500                 parent = *p;
501                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
502                                         tree_node);
503                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
504                         p = &(*p)->rb_left;
505                         rightmost = false;
506                 } else {
507                         p = &(*p)->rb_right;
508                 }
509         }
510
511         if (rightmost)
512                 mctz->rb_rightmost = &mz->tree_node;
513
514         rb_link_node(&mz->tree_node, parent, p);
515         rb_insert_color(&mz->tree_node, &mctz->rb_root);
516         mz->on_tree = true;
517 }
518
519 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
520                                          struct mem_cgroup_tree_per_node *mctz)
521 {
522         if (!mz->on_tree)
523                 return;
524
525         if (&mz->tree_node == mctz->rb_rightmost)
526                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
527
528         rb_erase(&mz->tree_node, &mctz->rb_root);
529         mz->on_tree = false;
530 }
531
532 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
533                                        struct mem_cgroup_tree_per_node *mctz)
534 {
535         unsigned long flags;
536
537         spin_lock_irqsave(&mctz->lock, flags);
538         __mem_cgroup_remove_exceeded(mz, mctz);
539         spin_unlock_irqrestore(&mctz->lock, flags);
540 }
541
542 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
543 {
544         unsigned long nr_pages = page_counter_read(&memcg->memory);
545         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
546         unsigned long excess = 0;
547
548         if (nr_pages > soft_limit)
549                 excess = nr_pages - soft_limit;
550
551         return excess;
552 }
553
554 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
555 {
556         unsigned long excess;
557         struct mem_cgroup_per_node *mz;
558         struct mem_cgroup_tree_per_node *mctz;
559
560         mctz = soft_limit_tree_from_page(page);
561         if (!mctz)
562                 return;
563         /*
564          * Necessary to update all ancestors when hierarchy is used.
565          * because their event counter is not touched.
566          */
567         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
568                 mz = mem_cgroup_page_nodeinfo(memcg, page);
569                 excess = soft_limit_excess(memcg);
570                 /*
571                  * We have to update the tree if mz is on RB-tree or
572                  * mem is over its softlimit.
573                  */
574                 if (excess || mz->on_tree) {
575                         unsigned long flags;
576
577                         spin_lock_irqsave(&mctz->lock, flags);
578                         /* if on-tree, remove it */
579                         if (mz->on_tree)
580                                 __mem_cgroup_remove_exceeded(mz, mctz);
581                         /*
582                          * Insert again. mz->usage_in_excess will be updated.
583                          * If excess is 0, no tree ops.
584                          */
585                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
586                         spin_unlock_irqrestore(&mctz->lock, flags);
587                 }
588         }
589 }
590
591 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
592 {
593         struct mem_cgroup_tree_per_node *mctz;
594         struct mem_cgroup_per_node *mz;
595         int nid;
596
597         for_each_node(nid) {
598                 mz = memcg->nodeinfo[nid];
599                 mctz = soft_limit_tree_node(nid);
600                 if (mctz)
601                         mem_cgroup_remove_exceeded(mz, mctz);
602         }
603 }
604
605 static struct mem_cgroup_per_node *
606 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
607 {
608         struct mem_cgroup_per_node *mz;
609
610 retry:
611         mz = NULL;
612         if (!mctz->rb_rightmost)
613                 goto done;              /* Nothing to reclaim from */
614
615         mz = rb_entry(mctz->rb_rightmost,
616                       struct mem_cgroup_per_node, tree_node);
617         /*
618          * Remove the node now but someone else can add it back,
619          * we will to add it back at the end of reclaim to its correct
620          * position in the tree.
621          */
622         __mem_cgroup_remove_exceeded(mz, mctz);
623         if (!soft_limit_excess(mz->memcg) ||
624             !css_tryget(&mz->memcg->css))
625                 goto retry;
626 done:
627         return mz;
628 }
629
630 static struct mem_cgroup_per_node *
631 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
632 {
633         struct mem_cgroup_per_node *mz;
634
635         spin_lock_irq(&mctz->lock);
636         mz = __mem_cgroup_largest_soft_limit_node(mctz);
637         spin_unlock_irq(&mctz->lock);
638         return mz;
639 }
640
641 /**
642  * __mod_memcg_state - update cgroup memory statistics
643  * @memcg: the memory cgroup
644  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
645  * @val: delta to add to the counter, can be negative
646  */
647 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
648 {
649         if (mem_cgroup_disabled())
650                 return;
651
652         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
653         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
654 }
655
656 /* idx can be of type enum memcg_stat_item or node_stat_item. */
657 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
658 {
659         long x = 0;
660         int cpu;
661
662         for_each_possible_cpu(cpu)
663                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
664 #ifdef CONFIG_SMP
665         if (x < 0)
666                 x = 0;
667 #endif
668         return x;
669 }
670
671 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
672                               int val)
673 {
674         struct mem_cgroup_per_node *pn;
675         struct mem_cgroup *memcg;
676
677         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
678         memcg = pn->memcg;
679
680         /* Update memcg */
681         __mod_memcg_state(memcg, idx, val);
682
683         /* Update lruvec */
684         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
685         if (!(__this_cpu_inc_return(stats_flush_threshold) % MEMCG_CHARGE_BATCH))
686                 queue_work(system_unbound_wq, &stats_flush_work);
687 }
688
689 /**
690  * __mod_lruvec_state - update lruvec memory statistics
691  * @lruvec: the lruvec
692  * @idx: the stat item
693  * @val: delta to add to the counter, can be negative
694  *
695  * The lruvec is the intersection of the NUMA node and a cgroup. This
696  * function updates the all three counters that are affected by a
697  * change of state at this level: per-node, per-cgroup, per-lruvec.
698  */
699 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
700                         int val)
701 {
702         /* Update node */
703         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
704
705         /* Update memcg and lruvec */
706         if (!mem_cgroup_disabled())
707                 __mod_memcg_lruvec_state(lruvec, idx, val);
708 }
709
710 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
711                              int val)
712 {
713         struct page *head = compound_head(page); /* rmap on tail pages */
714         struct mem_cgroup *memcg;
715         pg_data_t *pgdat = page_pgdat(page);
716         struct lruvec *lruvec;
717
718         rcu_read_lock();
719         memcg = page_memcg(head);
720         /* Untracked pages have no memcg, no lruvec. Update only the node */
721         if (!memcg) {
722                 rcu_read_unlock();
723                 __mod_node_page_state(pgdat, idx, val);
724                 return;
725         }
726
727         lruvec = mem_cgroup_lruvec(memcg, pgdat);
728         __mod_lruvec_state(lruvec, idx, val);
729         rcu_read_unlock();
730 }
731 EXPORT_SYMBOL(__mod_lruvec_page_state);
732
733 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
734 {
735         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
736         struct mem_cgroup *memcg;
737         struct lruvec *lruvec;
738
739         rcu_read_lock();
740         memcg = mem_cgroup_from_obj(p);
741
742         /*
743          * Untracked pages have no memcg, no lruvec. Update only the
744          * node. If we reparent the slab objects to the root memcg,
745          * when we free the slab object, we need to update the per-memcg
746          * vmstats to keep it correct for the root memcg.
747          */
748         if (!memcg) {
749                 __mod_node_page_state(pgdat, idx, val);
750         } else {
751                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
752                 __mod_lruvec_state(lruvec, idx, val);
753         }
754         rcu_read_unlock();
755 }
756
757 /*
758  * mod_objcg_mlstate() may be called with irq enabled, so
759  * mod_memcg_lruvec_state() should be used.
760  */
761 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
762                                      struct pglist_data *pgdat,
763                                      enum node_stat_item idx, int nr)
764 {
765         struct mem_cgroup *memcg;
766         struct lruvec *lruvec;
767
768         rcu_read_lock();
769         memcg = obj_cgroup_memcg(objcg);
770         lruvec = mem_cgroup_lruvec(memcg, pgdat);
771         mod_memcg_lruvec_state(lruvec, idx, nr);
772         rcu_read_unlock();
773 }
774
775 /**
776  * __count_memcg_events - account VM events in a cgroup
777  * @memcg: the memory cgroup
778  * @idx: the event item
779  * @count: the number of events that occurred
780  */
781 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
782                           unsigned long count)
783 {
784         if (mem_cgroup_disabled())
785                 return;
786
787         __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
788         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
789 }
790
791 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
792 {
793         return READ_ONCE(memcg->vmstats.events[event]);
794 }
795
796 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
797 {
798         long x = 0;
799         int cpu;
800
801         for_each_possible_cpu(cpu)
802                 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
803         return x;
804 }
805
806 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
807                                          struct page *page,
808                                          int nr_pages)
809 {
810         /* pagein of a big page is an event. So, ignore page size */
811         if (nr_pages > 0)
812                 __count_memcg_events(memcg, PGPGIN, 1);
813         else {
814                 __count_memcg_events(memcg, PGPGOUT, 1);
815                 nr_pages = -nr_pages; /* for event */
816         }
817
818         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
819 }
820
821 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
822                                        enum mem_cgroup_events_target target)
823 {
824         unsigned long val, next;
825
826         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
827         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
828         /* from time_after() in jiffies.h */
829         if ((long)(next - val) < 0) {
830                 switch (target) {
831                 case MEM_CGROUP_TARGET_THRESH:
832                         next = val + THRESHOLDS_EVENTS_TARGET;
833                         break;
834                 case MEM_CGROUP_TARGET_SOFTLIMIT:
835                         next = val + SOFTLIMIT_EVENTS_TARGET;
836                         break;
837                 default:
838                         break;
839                 }
840                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
841                 return true;
842         }
843         return false;
844 }
845
846 /*
847  * Check events in order.
848  *
849  */
850 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
851 {
852         /* threshold event is triggered in finer grain than soft limit */
853         if (unlikely(mem_cgroup_event_ratelimit(memcg,
854                                                 MEM_CGROUP_TARGET_THRESH))) {
855                 bool do_softlimit;
856
857                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
858                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
859                 mem_cgroup_threshold(memcg);
860                 if (unlikely(do_softlimit))
861                         mem_cgroup_update_tree(memcg, page);
862         }
863 }
864
865 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
866 {
867         /*
868          * mm_update_next_owner() may clear mm->owner to NULL
869          * if it races with swapoff, page migration, etc.
870          * So this can be called with p == NULL.
871          */
872         if (unlikely(!p))
873                 return NULL;
874
875         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
876 }
877 EXPORT_SYMBOL(mem_cgroup_from_task);
878
879 static __always_inline struct mem_cgroup *active_memcg(void)
880 {
881         if (in_interrupt())
882                 return this_cpu_read(int_active_memcg);
883         else
884                 return current->active_memcg;
885 }
886
887 /**
888  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
889  * @mm: mm from which memcg should be extracted. It can be NULL.
890  *
891  * Obtain a reference on mm->memcg and returns it if successful. If mm
892  * is NULL, then the memcg is chosen as follows:
893  * 1) The active memcg, if set.
894  * 2) current->mm->memcg, if available
895  * 3) root memcg
896  * If mem_cgroup is disabled, NULL is returned.
897  */
898 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
899 {
900         struct mem_cgroup *memcg;
901
902         if (mem_cgroup_disabled())
903                 return NULL;
904
905         /*
906          * Page cache insertions can happen without an
907          * actual mm context, e.g. during disk probing
908          * on boot, loopback IO, acct() writes etc.
909          *
910          * No need to css_get on root memcg as the reference
911          * counting is disabled on the root level in the
912          * cgroup core. See CSS_NO_REF.
913          */
914         if (unlikely(!mm)) {
915                 memcg = active_memcg();
916                 if (unlikely(memcg)) {
917                         /* remote memcg must hold a ref */
918                         css_get(&memcg->css);
919                         return memcg;
920                 }
921                 mm = current->mm;
922                 if (unlikely(!mm))
923                         return root_mem_cgroup;
924         }
925
926         rcu_read_lock();
927         do {
928                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
929                 if (unlikely(!memcg))
930                         memcg = root_mem_cgroup;
931         } while (!css_tryget(&memcg->css));
932         rcu_read_unlock();
933         return memcg;
934 }
935 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
936
937 static __always_inline bool memcg_kmem_bypass(void)
938 {
939         /* Allow remote memcg charging from any context. */
940         if (unlikely(active_memcg()))
941                 return false;
942
943         /* Memcg to charge can't be determined. */
944         if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
945                 return true;
946
947         return false;
948 }
949
950 /**
951  * mem_cgroup_iter - iterate over memory cgroup hierarchy
952  * @root: hierarchy root
953  * @prev: previously returned memcg, NULL on first invocation
954  * @reclaim: cookie for shared reclaim walks, NULL for full walks
955  *
956  * Returns references to children of the hierarchy below @root, or
957  * @root itself, or %NULL after a full round-trip.
958  *
959  * Caller must pass the return value in @prev on subsequent
960  * invocations for reference counting, or use mem_cgroup_iter_break()
961  * to cancel a hierarchy walk before the round-trip is complete.
962  *
963  * Reclaimers can specify a node in @reclaim to divide up the memcgs
964  * in the hierarchy among all concurrent reclaimers operating on the
965  * same node.
966  */
967 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
968                                    struct mem_cgroup *prev,
969                                    struct mem_cgroup_reclaim_cookie *reclaim)
970 {
971         struct mem_cgroup_reclaim_iter *iter;
972         struct cgroup_subsys_state *css = NULL;
973         struct mem_cgroup *memcg = NULL;
974         struct mem_cgroup *pos = NULL;
975
976         if (mem_cgroup_disabled())
977                 return NULL;
978
979         if (!root)
980                 root = root_mem_cgroup;
981
982         if (prev && !reclaim)
983                 pos = prev;
984
985         rcu_read_lock();
986
987         if (reclaim) {
988                 struct mem_cgroup_per_node *mz;
989
990                 mz = root->nodeinfo[reclaim->pgdat->node_id];
991                 iter = &mz->iter;
992
993                 if (prev && reclaim->generation != iter->generation)
994                         goto out_unlock;
995
996                 while (1) {
997                         pos = READ_ONCE(iter->position);
998                         if (!pos || css_tryget(&pos->css))
999                                 break;
1000                         /*
1001                          * css reference reached zero, so iter->position will
1002                          * be cleared by ->css_released. However, we should not
1003                          * rely on this happening soon, because ->css_released
1004                          * is called from a work queue, and by busy-waiting we
1005                          * might block it. So we clear iter->position right
1006                          * away.
1007                          */
1008                         (void)cmpxchg(&iter->position, pos, NULL);
1009                 }
1010         }
1011
1012         if (pos)
1013                 css = &pos->css;
1014
1015         for (;;) {
1016                 css = css_next_descendant_pre(css, &root->css);
1017                 if (!css) {
1018                         /*
1019                          * Reclaimers share the hierarchy walk, and a
1020                          * new one might jump in right at the end of
1021                          * the hierarchy - make sure they see at least
1022                          * one group and restart from the beginning.
1023                          */
1024                         if (!prev)
1025                                 continue;
1026                         break;
1027                 }
1028
1029                 /*
1030                  * Verify the css and acquire a reference.  The root
1031                  * is provided by the caller, so we know it's alive
1032                  * and kicking, and don't take an extra reference.
1033                  */
1034                 memcg = mem_cgroup_from_css(css);
1035
1036                 if (css == &root->css)
1037                         break;
1038
1039                 if (css_tryget(css))
1040                         break;
1041
1042                 memcg = NULL;
1043         }
1044
1045         if (reclaim) {
1046                 /*
1047                  * The position could have already been updated by a competing
1048                  * thread, so check that the value hasn't changed since we read
1049                  * it to avoid reclaiming from the same cgroup twice.
1050                  */
1051                 (void)cmpxchg(&iter->position, pos, memcg);
1052
1053                 if (pos)
1054                         css_put(&pos->css);
1055
1056                 if (!memcg)
1057                         iter->generation++;
1058                 else if (!prev)
1059                         reclaim->generation = iter->generation;
1060         }
1061
1062 out_unlock:
1063         rcu_read_unlock();
1064         if (prev && prev != root)
1065                 css_put(&prev->css);
1066
1067         return memcg;
1068 }
1069
1070 /**
1071  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1072  * @root: hierarchy root
1073  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1074  */
1075 void mem_cgroup_iter_break(struct mem_cgroup *root,
1076                            struct mem_cgroup *prev)
1077 {
1078         if (!root)
1079                 root = root_mem_cgroup;
1080         if (prev && prev != root)
1081                 css_put(&prev->css);
1082 }
1083
1084 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1085                                         struct mem_cgroup *dead_memcg)
1086 {
1087         struct mem_cgroup_reclaim_iter *iter;
1088         struct mem_cgroup_per_node *mz;
1089         int nid;
1090
1091         for_each_node(nid) {
1092                 mz = from->nodeinfo[nid];
1093                 iter = &mz->iter;
1094                 cmpxchg(&iter->position, dead_memcg, NULL);
1095         }
1096 }
1097
1098 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1099 {
1100         struct mem_cgroup *memcg = dead_memcg;
1101         struct mem_cgroup *last;
1102
1103         do {
1104                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1105                 last = memcg;
1106         } while ((memcg = parent_mem_cgroup(memcg)));
1107
1108         /*
1109          * When cgruop1 non-hierarchy mode is used,
1110          * parent_mem_cgroup() does not walk all the way up to the
1111          * cgroup root (root_mem_cgroup). So we have to handle
1112          * dead_memcg from cgroup root separately.
1113          */
1114         if (last != root_mem_cgroup)
1115                 __invalidate_reclaim_iterators(root_mem_cgroup,
1116                                                 dead_memcg);
1117 }
1118
1119 /**
1120  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1121  * @memcg: hierarchy root
1122  * @fn: function to call for each task
1123  * @arg: argument passed to @fn
1124  *
1125  * This function iterates over tasks attached to @memcg or to any of its
1126  * descendants and calls @fn for each task. If @fn returns a non-zero
1127  * value, the function breaks the iteration loop and returns the value.
1128  * Otherwise, it will iterate over all tasks and return 0.
1129  *
1130  * This function must not be called for the root memory cgroup.
1131  */
1132 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1133                           int (*fn)(struct task_struct *, void *), void *arg)
1134 {
1135         struct mem_cgroup *iter;
1136         int ret = 0;
1137
1138         BUG_ON(memcg == root_mem_cgroup);
1139
1140         for_each_mem_cgroup_tree(iter, memcg) {
1141                 struct css_task_iter it;
1142                 struct task_struct *task;
1143
1144                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1145                 while (!ret && (task = css_task_iter_next(&it)))
1146                         ret = fn(task, arg);
1147                 css_task_iter_end(&it);
1148                 if (ret) {
1149                         mem_cgroup_iter_break(memcg, iter);
1150                         break;
1151                 }
1152         }
1153         return ret;
1154 }
1155
1156 #ifdef CONFIG_DEBUG_VM
1157 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1158 {
1159         struct mem_cgroup *memcg;
1160
1161         if (mem_cgroup_disabled())
1162                 return;
1163
1164         memcg = page_memcg(page);
1165
1166         if (!memcg)
1167                 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1168         else
1169                 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1170 }
1171 #endif
1172
1173 /**
1174  * lock_page_lruvec - lock and return lruvec for a given page.
1175  * @page: the page
1176  *
1177  * These functions are safe to use under any of the following conditions:
1178  * - page locked
1179  * - PageLRU cleared
1180  * - lock_page_memcg()
1181  * - page->_refcount is zero
1182  */
1183 struct lruvec *lock_page_lruvec(struct page *page)
1184 {
1185         struct lruvec *lruvec;
1186
1187         lruvec = mem_cgroup_page_lruvec(page);
1188         spin_lock(&lruvec->lru_lock);
1189
1190         lruvec_memcg_debug(lruvec, page);
1191
1192         return lruvec;
1193 }
1194
1195 struct lruvec *lock_page_lruvec_irq(struct page *page)
1196 {
1197         struct lruvec *lruvec;
1198
1199         lruvec = mem_cgroup_page_lruvec(page);
1200         spin_lock_irq(&lruvec->lru_lock);
1201
1202         lruvec_memcg_debug(lruvec, page);
1203
1204         return lruvec;
1205 }
1206
1207 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1208 {
1209         struct lruvec *lruvec;
1210
1211         lruvec = mem_cgroup_page_lruvec(page);
1212         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1213
1214         lruvec_memcg_debug(lruvec, page);
1215
1216         return lruvec;
1217 }
1218
1219 /**
1220  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1221  * @lruvec: mem_cgroup per zone lru vector
1222  * @lru: index of lru list the page is sitting on
1223  * @zid: zone id of the accounted pages
1224  * @nr_pages: positive when adding or negative when removing
1225  *
1226  * This function must be called under lru_lock, just before a page is added
1227  * to or just after a page is removed from an lru list (that ordering being
1228  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1229  */
1230 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1231                                 int zid, int nr_pages)
1232 {
1233         struct mem_cgroup_per_node *mz;
1234         unsigned long *lru_size;
1235         long size;
1236
1237         if (mem_cgroup_disabled())
1238                 return;
1239
1240         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1241         lru_size = &mz->lru_zone_size[zid][lru];
1242
1243         if (nr_pages < 0)
1244                 *lru_size += nr_pages;
1245
1246         size = *lru_size;
1247         if (WARN_ONCE(size < 0,
1248                 "%s(%p, %d, %d): lru_size %ld\n",
1249                 __func__, lruvec, lru, nr_pages, size)) {
1250                 VM_BUG_ON(1);
1251                 *lru_size = 0;
1252         }
1253
1254         if (nr_pages > 0)
1255                 *lru_size += nr_pages;
1256 }
1257
1258 /**
1259  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1260  * @memcg: the memory cgroup
1261  *
1262  * Returns the maximum amount of memory @mem can be charged with, in
1263  * pages.
1264  */
1265 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1266 {
1267         unsigned long margin = 0;
1268         unsigned long count;
1269         unsigned long limit;
1270
1271         count = page_counter_read(&memcg->memory);
1272         limit = READ_ONCE(memcg->memory.max);
1273         if (count < limit)
1274                 margin = limit - count;
1275
1276         if (do_memsw_account()) {
1277                 count = page_counter_read(&memcg->memsw);
1278                 limit = READ_ONCE(memcg->memsw.max);
1279                 if (count < limit)
1280                         margin = min(margin, limit - count);
1281                 else
1282                         margin = 0;
1283         }
1284
1285         return margin;
1286 }
1287
1288 /*
1289  * A routine for checking "mem" is under move_account() or not.
1290  *
1291  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1292  * moving cgroups. This is for waiting at high-memory pressure
1293  * caused by "move".
1294  */
1295 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1296 {
1297         struct mem_cgroup *from;
1298         struct mem_cgroup *to;
1299         bool ret = false;
1300         /*
1301          * Unlike task_move routines, we access mc.to, mc.from not under
1302          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1303          */
1304         spin_lock(&mc.lock);
1305         from = mc.from;
1306         to = mc.to;
1307         if (!from)
1308                 goto unlock;
1309
1310         ret = mem_cgroup_is_descendant(from, memcg) ||
1311                 mem_cgroup_is_descendant(to, memcg);
1312 unlock:
1313         spin_unlock(&mc.lock);
1314         return ret;
1315 }
1316
1317 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1318 {
1319         if (mc.moving_task && current != mc.moving_task) {
1320                 if (mem_cgroup_under_move(memcg)) {
1321                         DEFINE_WAIT(wait);
1322                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1323                         /* moving charge context might have finished. */
1324                         if (mc.moving_task)
1325                                 schedule();
1326                         finish_wait(&mc.waitq, &wait);
1327                         return true;
1328                 }
1329         }
1330         return false;
1331 }
1332
1333 struct memory_stat {
1334         const char *name;
1335         unsigned int idx;
1336 };
1337
1338 static const struct memory_stat memory_stats[] = {
1339         { "anon",                       NR_ANON_MAPPED                  },
1340         { "file",                       NR_FILE_PAGES                   },
1341         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1342         { "pagetables",                 NR_PAGETABLE                    },
1343         { "percpu",                     MEMCG_PERCPU_B                  },
1344         { "sock",                       MEMCG_SOCK                      },
1345         { "shmem",                      NR_SHMEM                        },
1346         { "file_mapped",                NR_FILE_MAPPED                  },
1347         { "file_dirty",                 NR_FILE_DIRTY                   },
1348         { "file_writeback",             NR_WRITEBACK                    },
1349 #ifdef CONFIG_SWAP
1350         { "swapcached",                 NR_SWAPCACHE                    },
1351 #endif
1352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1353         { "anon_thp",                   NR_ANON_THPS                    },
1354         { "file_thp",                   NR_FILE_THPS                    },
1355         { "shmem_thp",                  NR_SHMEM_THPS                   },
1356 #endif
1357         { "inactive_anon",              NR_INACTIVE_ANON                },
1358         { "active_anon",                NR_ACTIVE_ANON                  },
1359         { "inactive_file",              NR_INACTIVE_FILE                },
1360         { "active_file",                NR_ACTIVE_FILE                  },
1361         { "unevictable",                NR_UNEVICTABLE                  },
1362         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1363         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1364
1365         /* The memory events */
1366         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1367         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1368         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1369         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1370         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1371         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1372         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1373 };
1374
1375 /* Translate stat items to the correct unit for memory.stat output */
1376 static int memcg_page_state_unit(int item)
1377 {
1378         switch (item) {
1379         case MEMCG_PERCPU_B:
1380         case NR_SLAB_RECLAIMABLE_B:
1381         case NR_SLAB_UNRECLAIMABLE_B:
1382         case WORKINGSET_REFAULT_ANON:
1383         case WORKINGSET_REFAULT_FILE:
1384         case WORKINGSET_ACTIVATE_ANON:
1385         case WORKINGSET_ACTIVATE_FILE:
1386         case WORKINGSET_RESTORE_ANON:
1387         case WORKINGSET_RESTORE_FILE:
1388         case WORKINGSET_NODERECLAIM:
1389                 return 1;
1390         case NR_KERNEL_STACK_KB:
1391                 return SZ_1K;
1392         default:
1393                 return PAGE_SIZE;
1394         }
1395 }
1396
1397 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1398                                                     int item)
1399 {
1400         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1401 }
1402
1403 static char *memory_stat_format(struct mem_cgroup *memcg)
1404 {
1405         struct seq_buf s;
1406         int i;
1407
1408         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1409         if (!s.buffer)
1410                 return NULL;
1411
1412         /*
1413          * Provide statistics on the state of the memory subsystem as
1414          * well as cumulative event counters that show past behavior.
1415          *
1416          * This list is ordered following a combination of these gradients:
1417          * 1) generic big picture -> specifics and details
1418          * 2) reflecting userspace activity -> reflecting kernel heuristics
1419          *
1420          * Current memory state:
1421          */
1422         cgroup_rstat_flush(memcg->css.cgroup);
1423
1424         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1425                 u64 size;
1426
1427                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1428                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1429
1430                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1431                         size += memcg_page_state_output(memcg,
1432                                                         NR_SLAB_RECLAIMABLE_B);
1433                         seq_buf_printf(&s, "slab %llu\n", size);
1434                 }
1435         }
1436
1437         /* Accumulated memory events */
1438
1439         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1440                        memcg_events(memcg, PGFAULT));
1441         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1442                        memcg_events(memcg, PGMAJFAULT));
1443         seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1444                        memcg_events(memcg, PGREFILL));
1445         seq_buf_printf(&s, "pgscan %lu\n",
1446                        memcg_events(memcg, PGSCAN_KSWAPD) +
1447                        memcg_events(memcg, PGSCAN_DIRECT));
1448         seq_buf_printf(&s, "pgsteal %lu\n",
1449                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1450                        memcg_events(memcg, PGSTEAL_DIRECT));
1451         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1452                        memcg_events(memcg, PGACTIVATE));
1453         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1454                        memcg_events(memcg, PGDEACTIVATE));
1455         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1456                        memcg_events(memcg, PGLAZYFREE));
1457         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1458                        memcg_events(memcg, PGLAZYFREED));
1459
1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1461         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1462                        memcg_events(memcg, THP_FAULT_ALLOC));
1463         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1464                        memcg_events(memcg, THP_COLLAPSE_ALLOC));
1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1466
1467         /* The above should easily fit into one page */
1468         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1469
1470         return s.buffer;
1471 }
1472
1473 #define K(x) ((x) << (PAGE_SHIFT-10))
1474 /**
1475  * mem_cgroup_print_oom_context: Print OOM information relevant to
1476  * memory controller.
1477  * @memcg: The memory cgroup that went over limit
1478  * @p: Task that is going to be killed
1479  *
1480  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1481  * enabled
1482  */
1483 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1484 {
1485         rcu_read_lock();
1486
1487         if (memcg) {
1488                 pr_cont(",oom_memcg=");
1489                 pr_cont_cgroup_path(memcg->css.cgroup);
1490         } else
1491                 pr_cont(",global_oom");
1492         if (p) {
1493                 pr_cont(",task_memcg=");
1494                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1495         }
1496         rcu_read_unlock();
1497 }
1498
1499 /**
1500  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1501  * memory controller.
1502  * @memcg: The memory cgroup that went over limit
1503  */
1504 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1505 {
1506         char *buf;
1507
1508         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1509                 K((u64)page_counter_read(&memcg->memory)),
1510                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1511         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1512                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1513                         K((u64)page_counter_read(&memcg->swap)),
1514                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1515         else {
1516                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1517                         K((u64)page_counter_read(&memcg->memsw)),
1518                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1519                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1520                         K((u64)page_counter_read(&memcg->kmem)),
1521                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1522         }
1523
1524         pr_info("Memory cgroup stats for ");
1525         pr_cont_cgroup_path(memcg->css.cgroup);
1526         pr_cont(":");
1527         buf = memory_stat_format(memcg);
1528         if (!buf)
1529                 return;
1530         pr_info("%s", buf);
1531         kfree(buf);
1532 }
1533
1534 /*
1535  * Return the memory (and swap, if configured) limit for a memcg.
1536  */
1537 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1538 {
1539         unsigned long max = READ_ONCE(memcg->memory.max);
1540
1541         if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1542                 if (mem_cgroup_swappiness(memcg))
1543                         max += min(READ_ONCE(memcg->swap.max),
1544                                    (unsigned long)total_swap_pages);
1545         } else { /* v1 */
1546                 if (mem_cgroup_swappiness(memcg)) {
1547                         /* Calculate swap excess capacity from memsw limit */
1548                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1549
1550                         max += min(swap, (unsigned long)total_swap_pages);
1551                 }
1552         }
1553         return max;
1554 }
1555
1556 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1557 {
1558         return page_counter_read(&memcg->memory);
1559 }
1560
1561 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1562                                      int order)
1563 {
1564         struct oom_control oc = {
1565                 .zonelist = NULL,
1566                 .nodemask = NULL,
1567                 .memcg = memcg,
1568                 .gfp_mask = gfp_mask,
1569                 .order = order,
1570         };
1571         bool ret = true;
1572
1573         if (mutex_lock_killable(&oom_lock))
1574                 return true;
1575
1576         if (mem_cgroup_margin(memcg) >= (1 << order))
1577                 goto unlock;
1578
1579         /*
1580          * A few threads which were not waiting at mutex_lock_killable() can
1581          * fail to bail out. Therefore, check again after holding oom_lock.
1582          */
1583         ret = should_force_charge() || out_of_memory(&oc);
1584
1585 unlock:
1586         mutex_unlock(&oom_lock);
1587         return ret;
1588 }
1589
1590 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1591                                    pg_data_t *pgdat,
1592                                    gfp_t gfp_mask,
1593                                    unsigned long *total_scanned)
1594 {
1595         struct mem_cgroup *victim = NULL;
1596         int total = 0;
1597         int loop = 0;
1598         unsigned long excess;
1599         unsigned long nr_scanned;
1600         struct mem_cgroup_reclaim_cookie reclaim = {
1601                 .pgdat = pgdat,
1602         };
1603
1604         excess = soft_limit_excess(root_memcg);
1605
1606         while (1) {
1607                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1608                 if (!victim) {
1609                         loop++;
1610                         if (loop >= 2) {
1611                                 /*
1612                                  * If we have not been able to reclaim
1613                                  * anything, it might because there are
1614                                  * no reclaimable pages under this hierarchy
1615                                  */
1616                                 if (!total)
1617                                         break;
1618                                 /*
1619                                  * We want to do more targeted reclaim.
1620                                  * excess >> 2 is not to excessive so as to
1621                                  * reclaim too much, nor too less that we keep
1622                                  * coming back to reclaim from this cgroup
1623                                  */
1624                                 if (total >= (excess >> 2) ||
1625                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1626                                         break;
1627                         }
1628                         continue;
1629                 }
1630                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1631                                         pgdat, &nr_scanned);
1632                 *total_scanned += nr_scanned;
1633                 if (!soft_limit_excess(root_memcg))
1634                         break;
1635         }
1636         mem_cgroup_iter_break(root_memcg, victim);
1637         return total;
1638 }
1639
1640 #ifdef CONFIG_LOCKDEP
1641 static struct lockdep_map memcg_oom_lock_dep_map = {
1642         .name = "memcg_oom_lock",
1643 };
1644 #endif
1645
1646 static DEFINE_SPINLOCK(memcg_oom_lock);
1647
1648 /*
1649  * Check OOM-Killer is already running under our hierarchy.
1650  * If someone is running, return false.
1651  */
1652 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1653 {
1654         struct mem_cgroup *iter, *failed = NULL;
1655
1656         spin_lock(&memcg_oom_lock);
1657
1658         for_each_mem_cgroup_tree(iter, memcg) {
1659                 if (iter->oom_lock) {
1660                         /*
1661                          * this subtree of our hierarchy is already locked
1662                          * so we cannot give a lock.
1663                          */
1664                         failed = iter;
1665                         mem_cgroup_iter_break(memcg, iter);
1666                         break;
1667                 } else
1668                         iter->oom_lock = true;
1669         }
1670
1671         if (failed) {
1672                 /*
1673                  * OK, we failed to lock the whole subtree so we have
1674                  * to clean up what we set up to the failing subtree
1675                  */
1676                 for_each_mem_cgroup_tree(iter, memcg) {
1677                         if (iter == failed) {
1678                                 mem_cgroup_iter_break(memcg, iter);
1679                                 break;
1680                         }
1681                         iter->oom_lock = false;
1682                 }
1683         } else
1684                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1685
1686         spin_unlock(&memcg_oom_lock);
1687
1688         return !failed;
1689 }
1690
1691 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1692 {
1693         struct mem_cgroup *iter;
1694
1695         spin_lock(&memcg_oom_lock);
1696         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1697         for_each_mem_cgroup_tree(iter, memcg)
1698                 iter->oom_lock = false;
1699         spin_unlock(&memcg_oom_lock);
1700 }
1701
1702 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1703 {
1704         struct mem_cgroup *iter;
1705
1706         spin_lock(&memcg_oom_lock);
1707         for_each_mem_cgroup_tree(iter, memcg)
1708                 iter->under_oom++;
1709         spin_unlock(&memcg_oom_lock);
1710 }
1711
1712 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1713 {
1714         struct mem_cgroup *iter;
1715
1716         /*
1717          * Be careful about under_oom underflows because a child memcg
1718          * could have been added after mem_cgroup_mark_under_oom.
1719          */
1720         spin_lock(&memcg_oom_lock);
1721         for_each_mem_cgroup_tree(iter, memcg)
1722                 if (iter->under_oom > 0)
1723                         iter->under_oom--;
1724         spin_unlock(&memcg_oom_lock);
1725 }
1726
1727 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1728
1729 struct oom_wait_info {
1730         struct mem_cgroup *memcg;
1731         wait_queue_entry_t      wait;
1732 };
1733
1734 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1735         unsigned mode, int sync, void *arg)
1736 {
1737         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1738         struct mem_cgroup *oom_wait_memcg;
1739         struct oom_wait_info *oom_wait_info;
1740
1741         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1742         oom_wait_memcg = oom_wait_info->memcg;
1743
1744         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1745             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1746                 return 0;
1747         return autoremove_wake_function(wait, mode, sync, arg);
1748 }
1749
1750 static void memcg_oom_recover(struct mem_cgroup *memcg)
1751 {
1752         /*
1753          * For the following lockless ->under_oom test, the only required
1754          * guarantee is that it must see the state asserted by an OOM when
1755          * this function is called as a result of userland actions
1756          * triggered by the notification of the OOM.  This is trivially
1757          * achieved by invoking mem_cgroup_mark_under_oom() before
1758          * triggering notification.
1759          */
1760         if (memcg && memcg->under_oom)
1761                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1762 }
1763
1764 enum oom_status {
1765         OOM_SUCCESS,
1766         OOM_FAILED,
1767         OOM_ASYNC,
1768         OOM_SKIPPED
1769 };
1770
1771 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1772 {
1773         enum oom_status ret;
1774         bool locked;
1775
1776         if (order > PAGE_ALLOC_COSTLY_ORDER)
1777                 return OOM_SKIPPED;
1778
1779         memcg_memory_event(memcg, MEMCG_OOM);
1780
1781         /*
1782          * We are in the middle of the charge context here, so we
1783          * don't want to block when potentially sitting on a callstack
1784          * that holds all kinds of filesystem and mm locks.
1785          *
1786          * cgroup1 allows disabling the OOM killer and waiting for outside
1787          * handling until the charge can succeed; remember the context and put
1788          * the task to sleep at the end of the page fault when all locks are
1789          * released.
1790          *
1791          * On the other hand, in-kernel OOM killer allows for an async victim
1792          * memory reclaim (oom_reaper) and that means that we are not solely
1793          * relying on the oom victim to make a forward progress and we can
1794          * invoke the oom killer here.
1795          *
1796          * Please note that mem_cgroup_out_of_memory might fail to find a
1797          * victim and then we have to bail out from the charge path.
1798          */
1799         if (memcg->oom_kill_disable) {
1800                 if (!current->in_user_fault)
1801                         return OOM_SKIPPED;
1802                 css_get(&memcg->css);
1803                 current->memcg_in_oom = memcg;
1804                 current->memcg_oom_gfp_mask = mask;
1805                 current->memcg_oom_order = order;
1806
1807                 return OOM_ASYNC;
1808         }
1809
1810         mem_cgroup_mark_under_oom(memcg);
1811
1812         locked = mem_cgroup_oom_trylock(memcg);
1813
1814         if (locked)
1815                 mem_cgroup_oom_notify(memcg);
1816
1817         mem_cgroup_unmark_under_oom(memcg);
1818         if (mem_cgroup_out_of_memory(memcg, mask, order))
1819                 ret = OOM_SUCCESS;
1820         else
1821                 ret = OOM_FAILED;
1822
1823         if (locked)
1824                 mem_cgroup_oom_unlock(memcg);
1825
1826         return ret;
1827 }
1828
1829 /**
1830  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1831  * @handle: actually kill/wait or just clean up the OOM state
1832  *
1833  * This has to be called at the end of a page fault if the memcg OOM
1834  * handler was enabled.
1835  *
1836  * Memcg supports userspace OOM handling where failed allocations must
1837  * sleep on a waitqueue until the userspace task resolves the
1838  * situation.  Sleeping directly in the charge context with all kinds
1839  * of locks held is not a good idea, instead we remember an OOM state
1840  * in the task and mem_cgroup_oom_synchronize() has to be called at
1841  * the end of the page fault to complete the OOM handling.
1842  *
1843  * Returns %true if an ongoing memcg OOM situation was detected and
1844  * completed, %false otherwise.
1845  */
1846 bool mem_cgroup_oom_synchronize(bool handle)
1847 {
1848         struct mem_cgroup *memcg = current->memcg_in_oom;
1849         struct oom_wait_info owait;
1850         bool locked;
1851
1852         /* OOM is global, do not handle */
1853         if (!memcg)
1854                 return false;
1855
1856         if (!handle)
1857                 goto cleanup;
1858
1859         owait.memcg = memcg;
1860         owait.wait.flags = 0;
1861         owait.wait.func = memcg_oom_wake_function;
1862         owait.wait.private = current;
1863         INIT_LIST_HEAD(&owait.wait.entry);
1864
1865         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1866         mem_cgroup_mark_under_oom(memcg);
1867
1868         locked = mem_cgroup_oom_trylock(memcg);
1869
1870         if (locked)
1871                 mem_cgroup_oom_notify(memcg);
1872
1873         if (locked && !memcg->oom_kill_disable) {
1874                 mem_cgroup_unmark_under_oom(memcg);
1875                 finish_wait(&memcg_oom_waitq, &owait.wait);
1876                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1877                                          current->memcg_oom_order);
1878         } else {
1879                 schedule();
1880                 mem_cgroup_unmark_under_oom(memcg);
1881                 finish_wait(&memcg_oom_waitq, &owait.wait);
1882         }
1883
1884         if (locked) {
1885                 mem_cgroup_oom_unlock(memcg);
1886                 /*
1887                  * There is no guarantee that an OOM-lock contender
1888                  * sees the wakeups triggered by the OOM kill
1889                  * uncharges.  Wake any sleepers explicitly.
1890                  */
1891                 memcg_oom_recover(memcg);
1892         }
1893 cleanup:
1894         current->memcg_in_oom = NULL;
1895         css_put(&memcg->css);
1896         return true;
1897 }
1898
1899 /**
1900  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1901  * @victim: task to be killed by the OOM killer
1902  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1903  *
1904  * Returns a pointer to a memory cgroup, which has to be cleaned up
1905  * by killing all belonging OOM-killable tasks.
1906  *
1907  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1908  */
1909 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1910                                             struct mem_cgroup *oom_domain)
1911 {
1912         struct mem_cgroup *oom_group = NULL;
1913         struct mem_cgroup *memcg;
1914
1915         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1916                 return NULL;
1917
1918         if (!oom_domain)
1919                 oom_domain = root_mem_cgroup;
1920
1921         rcu_read_lock();
1922
1923         memcg = mem_cgroup_from_task(victim);
1924         if (memcg == root_mem_cgroup)
1925                 goto out;
1926
1927         /*
1928          * If the victim task has been asynchronously moved to a different
1929          * memory cgroup, we might end up killing tasks outside oom_domain.
1930          * In this case it's better to ignore memory.group.oom.
1931          */
1932         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1933                 goto out;
1934
1935         /*
1936          * Traverse the memory cgroup hierarchy from the victim task's
1937          * cgroup up to the OOMing cgroup (or root) to find the
1938          * highest-level memory cgroup with oom.group set.
1939          */
1940         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1941                 if (memcg->oom_group)
1942                         oom_group = memcg;
1943
1944                 if (memcg == oom_domain)
1945                         break;
1946         }
1947
1948         if (oom_group)
1949                 css_get(&oom_group->css);
1950 out:
1951         rcu_read_unlock();
1952
1953         return oom_group;
1954 }
1955
1956 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1957 {
1958         pr_info("Tasks in ");
1959         pr_cont_cgroup_path(memcg->css.cgroup);
1960         pr_cont(" are going to be killed due to memory.oom.group set\n");
1961 }
1962
1963 /**
1964  * lock_page_memcg - lock a page and memcg binding
1965  * @page: the page
1966  *
1967  * This function protects unlocked LRU pages from being moved to
1968  * another cgroup.
1969  *
1970  * It ensures lifetime of the locked memcg. Caller is responsible
1971  * for the lifetime of the page.
1972  */
1973 void lock_page_memcg(struct page *page)
1974 {
1975         struct page *head = compound_head(page); /* rmap on tail pages */
1976         struct mem_cgroup *memcg;
1977         unsigned long flags;
1978
1979         /*
1980          * The RCU lock is held throughout the transaction.  The fast
1981          * path can get away without acquiring the memcg->move_lock
1982          * because page moving starts with an RCU grace period.
1983          */
1984         rcu_read_lock();
1985
1986         if (mem_cgroup_disabled())
1987                 return;
1988 again:
1989         memcg = page_memcg(head);
1990         if (unlikely(!memcg))
1991                 return;
1992
1993 #ifdef CONFIG_PROVE_LOCKING
1994         local_irq_save(flags);
1995         might_lock(&memcg->move_lock);
1996         local_irq_restore(flags);
1997 #endif
1998
1999         if (atomic_read(&memcg->moving_account) <= 0)
2000                 return;
2001
2002         spin_lock_irqsave(&memcg->move_lock, flags);
2003         if (memcg != page_memcg(head)) {
2004                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2005                 goto again;
2006         }
2007
2008         /*
2009          * When charge migration first begins, we can have multiple
2010          * critical sections holding the fast-path RCU lock and one
2011          * holding the slowpath move_lock. Track the task who has the
2012          * move_lock for unlock_page_memcg().
2013          */
2014         memcg->move_lock_task = current;
2015         memcg->move_lock_flags = flags;
2016 }
2017 EXPORT_SYMBOL(lock_page_memcg);
2018
2019 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2020 {
2021         if (memcg && memcg->move_lock_task == current) {
2022                 unsigned long flags = memcg->move_lock_flags;
2023
2024                 memcg->move_lock_task = NULL;
2025                 memcg->move_lock_flags = 0;
2026
2027                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2028         }
2029
2030         rcu_read_unlock();
2031 }
2032
2033 /**
2034  * unlock_page_memcg - unlock a page and memcg binding
2035  * @page: the page
2036  */
2037 void unlock_page_memcg(struct page *page)
2038 {
2039         struct page *head = compound_head(page);
2040
2041         __unlock_page_memcg(page_memcg(head));
2042 }
2043 EXPORT_SYMBOL(unlock_page_memcg);
2044
2045 struct obj_stock {
2046 #ifdef CONFIG_MEMCG_KMEM
2047         struct obj_cgroup *cached_objcg;
2048         struct pglist_data *cached_pgdat;
2049         unsigned int nr_bytes;
2050         int nr_slab_reclaimable_b;
2051         int nr_slab_unreclaimable_b;
2052 #else
2053         int dummy[0];
2054 #endif
2055 };
2056
2057 struct memcg_stock_pcp {
2058         struct mem_cgroup *cached; /* this never be root cgroup */
2059         unsigned int nr_pages;
2060         struct obj_stock task_obj;
2061         struct obj_stock irq_obj;
2062
2063         struct work_struct work;
2064         unsigned long flags;
2065 #define FLUSHING_CACHED_CHARGE  0
2066 };
2067 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2068 static DEFINE_MUTEX(percpu_charge_mutex);
2069
2070 #ifdef CONFIG_MEMCG_KMEM
2071 static void drain_obj_stock(struct obj_stock *stock);
2072 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2073                                      struct mem_cgroup *root_memcg);
2074
2075 #else
2076 static inline void drain_obj_stock(struct obj_stock *stock)
2077 {
2078 }
2079 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2080                                      struct mem_cgroup *root_memcg)
2081 {
2082         return false;
2083 }
2084 #endif
2085
2086 /*
2087  * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2088  * sequence used in this case to access content from object stock is slow.
2089  * To optimize for user context access, there are now two object stocks for
2090  * task context and interrupt context access respectively.
2091  *
2092  * The task context object stock can be accessed by disabling preemption only
2093  * which is cheap in non-preempt kernel. The interrupt context object stock
2094  * can only be accessed after disabling interrupt. User context code can
2095  * access interrupt object stock, but not vice versa.
2096  */
2097 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2098 {
2099         struct memcg_stock_pcp *stock;
2100
2101         if (likely(in_task())) {
2102                 *pflags = 0UL;
2103                 preempt_disable();
2104                 stock = this_cpu_ptr(&memcg_stock);
2105                 return &stock->task_obj;
2106         }
2107
2108         local_irq_save(*pflags);
2109         stock = this_cpu_ptr(&memcg_stock);
2110         return &stock->irq_obj;
2111 }
2112
2113 static inline void put_obj_stock(unsigned long flags)
2114 {
2115         if (likely(in_task()))
2116                 preempt_enable();
2117         else
2118                 local_irq_restore(flags);
2119 }
2120
2121 /**
2122  * consume_stock: Try to consume stocked charge on this cpu.
2123  * @memcg: memcg to consume from.
2124  * @nr_pages: how many pages to charge.
2125  *
2126  * The charges will only happen if @memcg matches the current cpu's memcg
2127  * stock, and at least @nr_pages are available in that stock.  Failure to
2128  * service an allocation will refill the stock.
2129  *
2130  * returns true if successful, false otherwise.
2131  */
2132 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2133 {
2134         struct memcg_stock_pcp *stock;
2135         unsigned long flags;
2136         bool ret = false;
2137
2138         if (nr_pages > MEMCG_CHARGE_BATCH)
2139                 return ret;
2140
2141         local_irq_save(flags);
2142
2143         stock = this_cpu_ptr(&memcg_stock);
2144         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2145                 stock->nr_pages -= nr_pages;
2146                 ret = true;
2147         }
2148
2149         local_irq_restore(flags);
2150
2151         return ret;
2152 }
2153
2154 /*
2155  * Returns stocks cached in percpu and reset cached information.
2156  */
2157 static void drain_stock(struct memcg_stock_pcp *stock)
2158 {
2159         struct mem_cgroup *old = stock->cached;
2160
2161         if (!old)
2162                 return;
2163
2164         if (stock->nr_pages) {
2165                 page_counter_uncharge(&old->memory, stock->nr_pages);
2166                 if (do_memsw_account())
2167                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2168                 stock->nr_pages = 0;
2169         }
2170
2171         css_put(&old->css);
2172         stock->cached = NULL;
2173 }
2174
2175 static void drain_local_stock(struct work_struct *dummy)
2176 {
2177         struct memcg_stock_pcp *stock;
2178         unsigned long flags;
2179
2180         /*
2181          * The only protection from memory hotplug vs. drain_stock races is
2182          * that we always operate on local CPU stock here with IRQ disabled
2183          */
2184         local_irq_save(flags);
2185
2186         stock = this_cpu_ptr(&memcg_stock);
2187         drain_obj_stock(&stock->irq_obj);
2188         if (in_task())
2189                 drain_obj_stock(&stock->task_obj);
2190         drain_stock(stock);
2191         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2192
2193         local_irq_restore(flags);
2194 }
2195
2196 /*
2197  * Cache charges(val) to local per_cpu area.
2198  * This will be consumed by consume_stock() function, later.
2199  */
2200 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2201 {
2202         struct memcg_stock_pcp *stock;
2203         unsigned long flags;
2204
2205         local_irq_save(flags);
2206
2207         stock = this_cpu_ptr(&memcg_stock);
2208         if (stock->cached != memcg) { /* reset if necessary */
2209                 drain_stock(stock);
2210                 css_get(&memcg->css);
2211                 stock->cached = memcg;
2212         }
2213         stock->nr_pages += nr_pages;
2214
2215         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2216                 drain_stock(stock);
2217
2218         local_irq_restore(flags);
2219 }
2220
2221 /*
2222  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2223  * of the hierarchy under it.
2224  */
2225 static void drain_all_stock(struct mem_cgroup *root_memcg)
2226 {
2227         int cpu, curcpu;
2228
2229         /* If someone's already draining, avoid adding running more workers. */
2230         if (!mutex_trylock(&percpu_charge_mutex))
2231                 return;
2232         /*
2233          * Notify other cpus that system-wide "drain" is running
2234          * We do not care about races with the cpu hotplug because cpu down
2235          * as well as workers from this path always operate on the local
2236          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2237          */
2238         curcpu = get_cpu();
2239         for_each_online_cpu(cpu) {
2240                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2241                 struct mem_cgroup *memcg;
2242                 bool flush = false;
2243
2244                 rcu_read_lock();
2245                 memcg = stock->cached;
2246                 if (memcg && stock->nr_pages &&
2247                     mem_cgroup_is_descendant(memcg, root_memcg))
2248                         flush = true;
2249                 if (obj_stock_flush_required(stock, root_memcg))
2250                         flush = true;
2251                 rcu_read_unlock();
2252
2253                 if (flush &&
2254                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2255                         if (cpu == curcpu)
2256                                 drain_local_stock(&stock->work);
2257                         else
2258                                 schedule_work_on(cpu, &stock->work);
2259                 }
2260         }
2261         put_cpu();
2262         mutex_unlock(&percpu_charge_mutex);
2263 }
2264
2265 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2266 {
2267         struct memcg_stock_pcp *stock;
2268
2269         stock = &per_cpu(memcg_stock, cpu);
2270         drain_stock(stock);
2271
2272         return 0;
2273 }
2274
2275 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2276                                   unsigned int nr_pages,
2277                                   gfp_t gfp_mask)
2278 {
2279         unsigned long nr_reclaimed = 0;
2280
2281         do {
2282                 unsigned long pflags;
2283
2284                 if (page_counter_read(&memcg->memory) <=
2285                     READ_ONCE(memcg->memory.high))
2286                         continue;
2287
2288                 memcg_memory_event(memcg, MEMCG_HIGH);
2289
2290                 psi_memstall_enter(&pflags);
2291                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2292                                                              gfp_mask, true);
2293                 psi_memstall_leave(&pflags);
2294         } while ((memcg = parent_mem_cgroup(memcg)) &&
2295                  !mem_cgroup_is_root(memcg));
2296
2297         return nr_reclaimed;
2298 }
2299
2300 static void high_work_func(struct work_struct *work)
2301 {
2302         struct mem_cgroup *memcg;
2303
2304         memcg = container_of(work, struct mem_cgroup, high_work);
2305         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2306 }
2307
2308 /*
2309  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2310  * enough to still cause a significant slowdown in most cases, while still
2311  * allowing diagnostics and tracing to proceed without becoming stuck.
2312  */
2313 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2314
2315 /*
2316  * When calculating the delay, we use these either side of the exponentiation to
2317  * maintain precision and scale to a reasonable number of jiffies (see the table
2318  * below.
2319  *
2320  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2321  *   overage ratio to a delay.
2322  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2323  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2324  *   to produce a reasonable delay curve.
2325  *
2326  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2327  * reasonable delay curve compared to precision-adjusted overage, not
2328  * penalising heavily at first, but still making sure that growth beyond the
2329  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2330  * example, with a high of 100 megabytes:
2331  *
2332  *  +-------+------------------------+
2333  *  | usage | time to allocate in ms |
2334  *  +-------+------------------------+
2335  *  | 100M  |                      0 |
2336  *  | 101M  |                      6 |
2337  *  | 102M  |                     25 |
2338  *  | 103M  |                     57 |
2339  *  | 104M  |                    102 |
2340  *  | 105M  |                    159 |
2341  *  | 106M  |                    230 |
2342  *  | 107M  |                    313 |
2343  *  | 108M  |                    409 |
2344  *  | 109M  |                    518 |
2345  *  | 110M  |                    639 |
2346  *  | 111M  |                    774 |
2347  *  | 112M  |                    921 |
2348  *  | 113M  |                   1081 |
2349  *  | 114M  |                   1254 |
2350  *  | 115M  |                   1439 |
2351  *  | 116M  |                   1638 |
2352  *  | 117M  |                   1849 |
2353  *  | 118M  |                   2000 |
2354  *  | 119M  |                   2000 |
2355  *  | 120M  |                   2000 |
2356  *  +-------+------------------------+
2357  */
2358  #define MEMCG_DELAY_PRECISION_SHIFT 20
2359  #define MEMCG_DELAY_SCALING_SHIFT 14
2360
2361 static u64 calculate_overage(unsigned long usage, unsigned long high)
2362 {
2363         u64 overage;
2364
2365         if (usage <= high)
2366                 return 0;
2367
2368         /*
2369          * Prevent division by 0 in overage calculation by acting as if
2370          * it was a threshold of 1 page
2371          */
2372         high = max(high, 1UL);
2373
2374         overage = usage - high;
2375         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2376         return div64_u64(overage, high);
2377 }
2378
2379 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2380 {
2381         u64 overage, max_overage = 0;
2382
2383         do {
2384                 overage = calculate_overage(page_counter_read(&memcg->memory),
2385                                             READ_ONCE(memcg->memory.high));
2386                 max_overage = max(overage, max_overage);
2387         } while ((memcg = parent_mem_cgroup(memcg)) &&
2388                  !mem_cgroup_is_root(memcg));
2389
2390         return max_overage;
2391 }
2392
2393 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2394 {
2395         u64 overage, max_overage = 0;
2396
2397         do {
2398                 overage = calculate_overage(page_counter_read(&memcg->swap),
2399                                             READ_ONCE(memcg->swap.high));
2400                 if (overage)
2401                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2402                 max_overage = max(overage, max_overage);
2403         } while ((memcg = parent_mem_cgroup(memcg)) &&
2404                  !mem_cgroup_is_root(memcg));
2405
2406         return max_overage;
2407 }
2408
2409 /*
2410  * Get the number of jiffies that we should penalise a mischievous cgroup which
2411  * is exceeding its memory.high by checking both it and its ancestors.
2412  */
2413 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2414                                           unsigned int nr_pages,
2415                                           u64 max_overage)
2416 {
2417         unsigned long penalty_jiffies;
2418
2419         if (!max_overage)
2420                 return 0;
2421
2422         /*
2423          * We use overage compared to memory.high to calculate the number of
2424          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2425          * fairly lenient on small overages, and increasingly harsh when the
2426          * memcg in question makes it clear that it has no intention of stopping
2427          * its crazy behaviour, so we exponentially increase the delay based on
2428          * overage amount.
2429          */
2430         penalty_jiffies = max_overage * max_overage * HZ;
2431         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2432         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2433
2434         /*
2435          * Factor in the task's own contribution to the overage, such that four
2436          * N-sized allocations are throttled approximately the same as one
2437          * 4N-sized allocation.
2438          *
2439          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2440          * larger the current charge patch is than that.
2441          */
2442         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2443 }
2444
2445 /*
2446  * Scheduled by try_charge() to be executed from the userland return path
2447  * and reclaims memory over the high limit.
2448  */
2449 void mem_cgroup_handle_over_high(void)
2450 {
2451         unsigned long penalty_jiffies;
2452         unsigned long pflags;
2453         unsigned long nr_reclaimed;
2454         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2455         int nr_retries = MAX_RECLAIM_RETRIES;
2456         struct mem_cgroup *memcg;
2457         bool in_retry = false;
2458
2459         if (likely(!nr_pages))
2460                 return;
2461
2462         memcg = get_mem_cgroup_from_mm(current->mm);
2463         current->memcg_nr_pages_over_high = 0;
2464
2465 retry_reclaim:
2466         /*
2467          * The allocating task should reclaim at least the batch size, but for
2468          * subsequent retries we only want to do what's necessary to prevent oom
2469          * or breaching resource isolation.
2470          *
2471          * This is distinct from memory.max or page allocator behaviour because
2472          * memory.high is currently batched, whereas memory.max and the page
2473          * allocator run every time an allocation is made.
2474          */
2475         nr_reclaimed = reclaim_high(memcg,
2476                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2477                                     GFP_KERNEL);
2478
2479         /*
2480          * memory.high is breached and reclaim is unable to keep up. Throttle
2481          * allocators proactively to slow down excessive growth.
2482          */
2483         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2484                                                mem_find_max_overage(memcg));
2485
2486         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2487                                                 swap_find_max_overage(memcg));
2488
2489         /*
2490          * Clamp the max delay per usermode return so as to still keep the
2491          * application moving forwards and also permit diagnostics, albeit
2492          * extremely slowly.
2493          */
2494         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2495
2496         /*
2497          * Don't sleep if the amount of jiffies this memcg owes us is so low
2498          * that it's not even worth doing, in an attempt to be nice to those who
2499          * go only a small amount over their memory.high value and maybe haven't
2500          * been aggressively reclaimed enough yet.
2501          */
2502         if (penalty_jiffies <= HZ / 100)
2503                 goto out;
2504
2505         /*
2506          * If reclaim is making forward progress but we're still over
2507          * memory.high, we want to encourage that rather than doing allocator
2508          * throttling.
2509          */
2510         if (nr_reclaimed || nr_retries--) {
2511                 in_retry = true;
2512                 goto retry_reclaim;
2513         }
2514
2515         /*
2516          * If we exit early, we're guaranteed to die (since
2517          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2518          * need to account for any ill-begotten jiffies to pay them off later.
2519          */
2520         psi_memstall_enter(&pflags);
2521         schedule_timeout_killable(penalty_jiffies);
2522         psi_memstall_leave(&pflags);
2523
2524 out:
2525         css_put(&memcg->css);
2526 }
2527
2528 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2529                         unsigned int nr_pages)
2530 {
2531         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2532         int nr_retries = MAX_RECLAIM_RETRIES;
2533         struct mem_cgroup *mem_over_limit;
2534         struct page_counter *counter;
2535         enum oom_status oom_status;
2536         unsigned long nr_reclaimed;
2537         bool may_swap = true;
2538         bool drained = false;
2539         unsigned long pflags;
2540
2541 retry:
2542         if (consume_stock(memcg, nr_pages))
2543                 return 0;
2544
2545         if (!do_memsw_account() ||
2546             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2547                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2548                         goto done_restock;
2549                 if (do_memsw_account())
2550                         page_counter_uncharge(&memcg->memsw, batch);
2551                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2552         } else {
2553                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2554                 may_swap = false;
2555         }
2556
2557         if (batch > nr_pages) {
2558                 batch = nr_pages;
2559                 goto retry;
2560         }
2561
2562         /*
2563          * Memcg doesn't have a dedicated reserve for atomic
2564          * allocations. But like the global atomic pool, we need to
2565          * put the burden of reclaim on regular allocation requests
2566          * and let these go through as privileged allocations.
2567          */
2568         if (gfp_mask & __GFP_ATOMIC)
2569                 goto force;
2570
2571         /*
2572          * Unlike in global OOM situations, memcg is not in a physical
2573          * memory shortage.  Allow dying and OOM-killed tasks to
2574          * bypass the last charges so that they can exit quickly and
2575          * free their memory.
2576          */
2577         if (unlikely(should_force_charge()))
2578                 goto force;
2579
2580         /*
2581          * Prevent unbounded recursion when reclaim operations need to
2582          * allocate memory. This might exceed the limits temporarily,
2583          * but we prefer facilitating memory reclaim and getting back
2584          * under the limit over triggering OOM kills in these cases.
2585          */
2586         if (unlikely(current->flags & PF_MEMALLOC))
2587                 goto force;
2588
2589         if (unlikely(task_in_memcg_oom(current)))
2590                 goto nomem;
2591
2592         if (!gfpflags_allow_blocking(gfp_mask))
2593                 goto nomem;
2594
2595         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2596
2597         psi_memstall_enter(&pflags);
2598         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2599                                                     gfp_mask, may_swap);
2600         psi_memstall_leave(&pflags);
2601
2602         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2603                 goto retry;
2604
2605         if (!drained) {
2606                 drain_all_stock(mem_over_limit);
2607                 drained = true;
2608                 goto retry;
2609         }
2610
2611         if (gfp_mask & __GFP_NORETRY)
2612                 goto nomem;
2613         /*
2614          * Even though the limit is exceeded at this point, reclaim
2615          * may have been able to free some pages.  Retry the charge
2616          * before killing the task.
2617          *
2618          * Only for regular pages, though: huge pages are rather
2619          * unlikely to succeed so close to the limit, and we fall back
2620          * to regular pages anyway in case of failure.
2621          */
2622         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2623                 goto retry;
2624         /*
2625          * At task move, charge accounts can be doubly counted. So, it's
2626          * better to wait until the end of task_move if something is going on.
2627          */
2628         if (mem_cgroup_wait_acct_move(mem_over_limit))
2629                 goto retry;
2630
2631         if (nr_retries--)
2632                 goto retry;
2633
2634         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2635                 goto nomem;
2636
2637         if (fatal_signal_pending(current))
2638                 goto force;
2639
2640         /*
2641          * keep retrying as long as the memcg oom killer is able to make
2642          * a forward progress or bypass the charge if the oom killer
2643          * couldn't make any progress.
2644          */
2645         oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2646                        get_order(nr_pages * PAGE_SIZE));
2647         switch (oom_status) {
2648         case OOM_SUCCESS:
2649                 nr_retries = MAX_RECLAIM_RETRIES;
2650                 goto retry;
2651         case OOM_FAILED:
2652                 goto force;
2653         default:
2654                 goto nomem;
2655         }
2656 nomem:
2657         if (!(gfp_mask & __GFP_NOFAIL))
2658                 return -ENOMEM;
2659 force:
2660         /*
2661          * The allocation either can't fail or will lead to more memory
2662          * being freed very soon.  Allow memory usage go over the limit
2663          * temporarily by force charging it.
2664          */
2665         page_counter_charge(&memcg->memory, nr_pages);
2666         if (do_memsw_account())
2667                 page_counter_charge(&memcg->memsw, nr_pages);
2668
2669         return 0;
2670
2671 done_restock:
2672         if (batch > nr_pages)
2673                 refill_stock(memcg, batch - nr_pages);
2674
2675         /*
2676          * If the hierarchy is above the normal consumption range, schedule
2677          * reclaim on returning to userland.  We can perform reclaim here
2678          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2679          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2680          * not recorded as it most likely matches current's and won't
2681          * change in the meantime.  As high limit is checked again before
2682          * reclaim, the cost of mismatch is negligible.
2683          */
2684         do {
2685                 bool mem_high, swap_high;
2686
2687                 mem_high = page_counter_read(&memcg->memory) >
2688                         READ_ONCE(memcg->memory.high);
2689                 swap_high = page_counter_read(&memcg->swap) >
2690                         READ_ONCE(memcg->swap.high);
2691
2692                 /* Don't bother a random interrupted task */
2693                 if (in_interrupt()) {
2694                         if (mem_high) {
2695                                 schedule_work(&memcg->high_work);
2696                                 break;
2697                         }
2698                         continue;
2699                 }
2700
2701                 if (mem_high || swap_high) {
2702                         /*
2703                          * The allocating tasks in this cgroup will need to do
2704                          * reclaim or be throttled to prevent further growth
2705                          * of the memory or swap footprints.
2706                          *
2707                          * Target some best-effort fairness between the tasks,
2708                          * and distribute reclaim work and delay penalties
2709                          * based on how much each task is actually allocating.
2710                          */
2711                         current->memcg_nr_pages_over_high += batch;
2712                         set_notify_resume(current);
2713                         break;
2714                 }
2715         } while ((memcg = parent_mem_cgroup(memcg)));
2716
2717         return 0;
2718 }
2719
2720 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2721                              unsigned int nr_pages)
2722 {
2723         if (mem_cgroup_is_root(memcg))
2724                 return 0;
2725
2726         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2727 }
2728
2729 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2730 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2731 {
2732         if (mem_cgroup_is_root(memcg))
2733                 return;
2734
2735         page_counter_uncharge(&memcg->memory, nr_pages);
2736         if (do_memsw_account())
2737                 page_counter_uncharge(&memcg->memsw, nr_pages);
2738 }
2739 #endif
2740
2741 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2742 {
2743         VM_BUG_ON_PAGE(page_memcg(page), page);
2744         /*
2745          * Any of the following ensures page's memcg stability:
2746          *
2747          * - the page lock
2748          * - LRU isolation
2749          * - lock_page_memcg()
2750          * - exclusive reference
2751          */
2752         page->memcg_data = (unsigned long)memcg;
2753 }
2754
2755 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2756 {
2757         struct mem_cgroup *memcg;
2758
2759         rcu_read_lock();
2760 retry:
2761         memcg = obj_cgroup_memcg(objcg);
2762         if (unlikely(!css_tryget(&memcg->css)))
2763                 goto retry;
2764         rcu_read_unlock();
2765
2766         return memcg;
2767 }
2768
2769 #ifdef CONFIG_MEMCG_KMEM
2770 /*
2771  * The allocated objcg pointers array is not accounted directly.
2772  * Moreover, it should not come from DMA buffer and is not readily
2773  * reclaimable. So those GFP bits should be masked off.
2774  */
2775 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2776
2777 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2778                                  gfp_t gfp, bool new_page)
2779 {
2780         unsigned int objects = objs_per_slab_page(s, page);
2781         unsigned long memcg_data;
2782         void *vec;
2783
2784         gfp &= ~OBJCGS_CLEAR_MASK;
2785         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2786                            page_to_nid(page));
2787         if (!vec)
2788                 return -ENOMEM;
2789
2790         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2791         if (new_page) {
2792                 /*
2793                  * If the slab page is brand new and nobody can yet access
2794                  * it's memcg_data, no synchronization is required and
2795                  * memcg_data can be simply assigned.
2796                  */
2797                 page->memcg_data = memcg_data;
2798         } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2799                 /*
2800                  * If the slab page is already in use, somebody can allocate
2801                  * and assign obj_cgroups in parallel. In this case the existing
2802                  * objcg vector should be reused.
2803                  */
2804                 kfree(vec);
2805                 return 0;
2806         }
2807
2808         kmemleak_not_leak(vec);
2809         return 0;
2810 }
2811
2812 /*
2813  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2814  *
2815  * A passed kernel object can be a slab object or a generic kernel page, so
2816  * different mechanisms for getting the memory cgroup pointer should be used.
2817  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2818  * can not know for sure how the kernel object is implemented.
2819  * mem_cgroup_from_obj() can be safely used in such cases.
2820  *
2821  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2822  * cgroup_mutex, etc.
2823  */
2824 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2825 {
2826         struct page *page;
2827
2828         if (mem_cgroup_disabled())
2829                 return NULL;
2830
2831         page = virt_to_head_page(p);
2832
2833         /*
2834          * Slab objects are accounted individually, not per-page.
2835          * Memcg membership data for each individual object is saved in
2836          * the page->obj_cgroups.
2837          */
2838         if (page_objcgs_check(page)) {
2839                 struct obj_cgroup *objcg;
2840                 unsigned int off;
2841
2842                 off = obj_to_index(page->slab_cache, page, p);
2843                 objcg = page_objcgs(page)[off];
2844                 if (objcg)
2845                         return obj_cgroup_memcg(objcg);
2846
2847                 return NULL;
2848         }
2849
2850         /*
2851          * page_memcg_check() is used here, because page_has_obj_cgroups()
2852          * check above could fail because the object cgroups vector wasn't set
2853          * at that moment, but it can be set concurrently.
2854          * page_memcg_check(page) will guarantee that a proper memory
2855          * cgroup pointer or NULL will be returned.
2856          */
2857         return page_memcg_check(page);
2858 }
2859
2860 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2861 {
2862         struct obj_cgroup *objcg = NULL;
2863         struct mem_cgroup *memcg;
2864
2865         if (memcg_kmem_bypass())
2866                 return NULL;
2867
2868         rcu_read_lock();
2869         if (unlikely(active_memcg()))
2870                 memcg = active_memcg();
2871         else
2872                 memcg = mem_cgroup_from_task(current);
2873
2874         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2875                 objcg = rcu_dereference(memcg->objcg);
2876                 if (objcg && obj_cgroup_tryget(objcg))
2877                         break;
2878                 objcg = NULL;
2879         }
2880         rcu_read_unlock();
2881
2882         return objcg;
2883 }
2884
2885 static int memcg_alloc_cache_id(void)
2886 {
2887         int id, size;
2888         int err;
2889
2890         id = ida_simple_get(&memcg_cache_ida,
2891                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2892         if (id < 0)
2893                 return id;
2894
2895         if (id < memcg_nr_cache_ids)
2896                 return id;
2897
2898         /*
2899          * There's no space for the new id in memcg_caches arrays,
2900          * so we have to grow them.
2901          */
2902         down_write(&memcg_cache_ids_sem);
2903
2904         size = 2 * (id + 1);
2905         if (size < MEMCG_CACHES_MIN_SIZE)
2906                 size = MEMCG_CACHES_MIN_SIZE;
2907         else if (size > MEMCG_CACHES_MAX_SIZE)
2908                 size = MEMCG_CACHES_MAX_SIZE;
2909
2910         err = memcg_update_all_list_lrus(size);
2911         if (!err)
2912                 memcg_nr_cache_ids = size;
2913
2914         up_write(&memcg_cache_ids_sem);
2915
2916         if (err) {
2917                 ida_simple_remove(&memcg_cache_ida, id);
2918                 return err;
2919         }
2920         return id;
2921 }
2922
2923 static void memcg_free_cache_id(int id)
2924 {
2925         ida_simple_remove(&memcg_cache_ida, id);
2926 }
2927
2928 /*
2929  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2930  * @objcg: object cgroup to uncharge
2931  * @nr_pages: number of pages to uncharge
2932  */
2933 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2934                                       unsigned int nr_pages)
2935 {
2936         struct mem_cgroup *memcg;
2937
2938         memcg = get_mem_cgroup_from_objcg(objcg);
2939
2940         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2941                 page_counter_uncharge(&memcg->kmem, nr_pages);
2942         refill_stock(memcg, nr_pages);
2943
2944         css_put(&memcg->css);
2945 }
2946
2947 /*
2948  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2949  * @objcg: object cgroup to charge
2950  * @gfp: reclaim mode
2951  * @nr_pages: number of pages to charge
2952  *
2953  * Returns 0 on success, an error code on failure.
2954  */
2955 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2956                                    unsigned int nr_pages)
2957 {
2958         struct page_counter *counter;
2959         struct mem_cgroup *memcg;
2960         int ret;
2961
2962         memcg = get_mem_cgroup_from_objcg(objcg);
2963
2964         ret = try_charge_memcg(memcg, gfp, nr_pages);
2965         if (ret)
2966                 goto out;
2967
2968         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2969             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2970
2971                 /*
2972                  * Enforce __GFP_NOFAIL allocation because callers are not
2973                  * prepared to see failures and likely do not have any failure
2974                  * handling code.
2975                  */
2976                 if (gfp & __GFP_NOFAIL) {
2977                         page_counter_charge(&memcg->kmem, nr_pages);
2978                         goto out;
2979                 }
2980                 cancel_charge(memcg, nr_pages);
2981                 ret = -ENOMEM;
2982         }
2983 out:
2984         css_put(&memcg->css);
2985
2986         return ret;
2987 }
2988
2989 /**
2990  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2991  * @page: page to charge
2992  * @gfp: reclaim mode
2993  * @order: allocation order
2994  *
2995  * Returns 0 on success, an error code on failure.
2996  */
2997 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2998 {
2999         struct obj_cgroup *objcg;
3000         int ret = 0;
3001
3002         objcg = get_obj_cgroup_from_current();
3003         if (objcg) {
3004                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3005                 if (!ret) {
3006                         page->memcg_data = (unsigned long)objcg |
3007                                 MEMCG_DATA_KMEM;
3008                         return 0;
3009                 }
3010                 obj_cgroup_put(objcg);
3011         }
3012         return ret;
3013 }
3014
3015 /**
3016  * __memcg_kmem_uncharge_page: uncharge a kmem page
3017  * @page: page to uncharge
3018  * @order: allocation order
3019  */
3020 void __memcg_kmem_uncharge_page(struct page *page, int order)
3021 {
3022         struct obj_cgroup *objcg;
3023         unsigned int nr_pages = 1 << order;
3024
3025         if (!PageMemcgKmem(page))
3026                 return;
3027
3028         objcg = __page_objcg(page);
3029         obj_cgroup_uncharge_pages(objcg, nr_pages);
3030         page->memcg_data = 0;
3031         obj_cgroup_put(objcg);
3032 }
3033
3034 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3035                      enum node_stat_item idx, int nr)
3036 {
3037         unsigned long flags;
3038         struct obj_stock *stock = get_obj_stock(&flags);
3039         int *bytes;
3040
3041         /*
3042          * Save vmstat data in stock and skip vmstat array update unless
3043          * accumulating over a page of vmstat data or when pgdat or idx
3044          * changes.
3045          */
3046         if (stock->cached_objcg != objcg) {
3047                 drain_obj_stock(stock);
3048                 obj_cgroup_get(objcg);
3049                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3050                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3051                 stock->cached_objcg = objcg;
3052                 stock->cached_pgdat = pgdat;
3053         } else if (stock->cached_pgdat != pgdat) {
3054                 /* Flush the existing cached vmstat data */
3055                 struct pglist_data *oldpg = stock->cached_pgdat;
3056
3057                 if (stock->nr_slab_reclaimable_b) {
3058                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3059                                           stock->nr_slab_reclaimable_b);
3060                         stock->nr_slab_reclaimable_b = 0;
3061                 }
3062                 if (stock->nr_slab_unreclaimable_b) {
3063                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3064                                           stock->nr_slab_unreclaimable_b);
3065                         stock->nr_slab_unreclaimable_b = 0;
3066                 }
3067                 stock->cached_pgdat = pgdat;
3068         }
3069
3070         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3071                                                : &stock->nr_slab_unreclaimable_b;
3072         /*
3073          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3074          * cached locally at least once before pushing it out.
3075          */
3076         if (!*bytes) {
3077                 *bytes = nr;
3078                 nr = 0;
3079         } else {
3080                 *bytes += nr;
3081                 if (abs(*bytes) > PAGE_SIZE) {
3082                         nr = *bytes;
3083                         *bytes = 0;
3084                 } else {
3085                         nr = 0;
3086                 }
3087         }
3088         if (nr)
3089                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3090
3091         put_obj_stock(flags);
3092 }
3093
3094 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3095 {
3096         unsigned long flags;
3097         struct obj_stock *stock = get_obj_stock(&flags);
3098         bool ret = false;
3099
3100         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3101                 stock->nr_bytes -= nr_bytes;
3102                 ret = true;
3103         }
3104
3105         put_obj_stock(flags);
3106
3107         return ret;
3108 }
3109
3110 static void drain_obj_stock(struct obj_stock *stock)
3111 {
3112         struct obj_cgroup *old = stock->cached_objcg;
3113
3114         if (!old)
3115                 return;
3116
3117         if (stock->nr_bytes) {
3118                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3119                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3120
3121                 if (nr_pages)
3122                         obj_cgroup_uncharge_pages(old, nr_pages);
3123
3124                 /*
3125                  * The leftover is flushed to the centralized per-memcg value.
3126                  * On the next attempt to refill obj stock it will be moved
3127                  * to a per-cpu stock (probably, on an other CPU), see
3128                  * refill_obj_stock().
3129                  *
3130                  * How often it's flushed is a trade-off between the memory
3131                  * limit enforcement accuracy and potential CPU contention,
3132                  * so it might be changed in the future.
3133                  */
3134                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3135                 stock->nr_bytes = 0;
3136         }
3137
3138         /*
3139          * Flush the vmstat data in current stock
3140          */
3141         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3142                 if (stock->nr_slab_reclaimable_b) {
3143                         mod_objcg_mlstate(old, stock->cached_pgdat,
3144                                           NR_SLAB_RECLAIMABLE_B,
3145                                           stock->nr_slab_reclaimable_b);
3146                         stock->nr_slab_reclaimable_b = 0;
3147                 }
3148                 if (stock->nr_slab_unreclaimable_b) {
3149                         mod_objcg_mlstate(old, stock->cached_pgdat,
3150                                           NR_SLAB_UNRECLAIMABLE_B,
3151                                           stock->nr_slab_unreclaimable_b);
3152                         stock->nr_slab_unreclaimable_b = 0;
3153                 }
3154                 stock->cached_pgdat = NULL;
3155         }
3156
3157         obj_cgroup_put(old);
3158         stock->cached_objcg = NULL;
3159 }
3160
3161 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3162                                      struct mem_cgroup *root_memcg)
3163 {
3164         struct mem_cgroup *memcg;
3165
3166         if (in_task() && stock->task_obj.cached_objcg) {
3167                 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3168                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3169                         return true;
3170         }
3171         if (stock->irq_obj.cached_objcg) {
3172                 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3173                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3174                         return true;
3175         }
3176
3177         return false;
3178 }
3179
3180 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3181                              bool allow_uncharge)
3182 {
3183         unsigned long flags;
3184         struct obj_stock *stock = get_obj_stock(&flags);
3185         unsigned int nr_pages = 0;
3186
3187         if (stock->cached_objcg != objcg) { /* reset if necessary */
3188                 drain_obj_stock(stock);
3189                 obj_cgroup_get(objcg);
3190                 stock->cached_objcg = objcg;
3191                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3192                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3193                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3194         }
3195         stock->nr_bytes += nr_bytes;
3196
3197         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3198                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3199                 stock->nr_bytes &= (PAGE_SIZE - 1);
3200         }
3201
3202         put_obj_stock(flags);
3203
3204         if (nr_pages)
3205                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3206 }
3207
3208 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3209 {
3210         unsigned int nr_pages, nr_bytes;
3211         int ret;
3212
3213         if (consume_obj_stock(objcg, size))
3214                 return 0;
3215
3216         /*
3217          * In theory, objcg->nr_charged_bytes can have enough
3218          * pre-charged bytes to satisfy the allocation. However,
3219          * flushing objcg->nr_charged_bytes requires two atomic
3220          * operations, and objcg->nr_charged_bytes can't be big.
3221          * The shared objcg->nr_charged_bytes can also become a
3222          * performance bottleneck if all tasks of the same memcg are
3223          * trying to update it. So it's better to ignore it and try
3224          * grab some new pages. The stock's nr_bytes will be flushed to
3225          * objcg->nr_charged_bytes later on when objcg changes.
3226          *
3227          * The stock's nr_bytes may contain enough pre-charged bytes
3228          * to allow one less page from being charged, but we can't rely
3229          * on the pre-charged bytes not being changed outside of
3230          * consume_obj_stock() or refill_obj_stock(). So ignore those
3231          * pre-charged bytes as well when charging pages. To avoid a
3232          * page uncharge right after a page charge, we set the
3233          * allow_uncharge flag to false when calling refill_obj_stock()
3234          * to temporarily allow the pre-charged bytes to exceed the page
3235          * size limit. The maximum reachable value of the pre-charged
3236          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3237          * race.
3238          */
3239         nr_pages = size >> PAGE_SHIFT;
3240         nr_bytes = size & (PAGE_SIZE - 1);
3241
3242         if (nr_bytes)
3243                 nr_pages += 1;
3244
3245         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3246         if (!ret && nr_bytes)
3247                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3248
3249         return ret;
3250 }
3251
3252 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3253 {
3254         refill_obj_stock(objcg, size, true);
3255 }
3256
3257 #endif /* CONFIG_MEMCG_KMEM */
3258
3259 /*
3260  * Because page_memcg(head) is not set on tails, set it now.
3261  */
3262 void split_page_memcg(struct page *head, unsigned int nr)
3263 {
3264         struct mem_cgroup *memcg = page_memcg(head);
3265         int i;
3266
3267         if (mem_cgroup_disabled() || !memcg)
3268                 return;
3269
3270         for (i = 1; i < nr; i++)
3271                 head[i].memcg_data = head->memcg_data;
3272
3273         if (PageMemcgKmem(head))
3274                 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3275         else
3276                 css_get_many(&memcg->css, nr - 1);
3277 }
3278
3279 #ifdef CONFIG_MEMCG_SWAP
3280 /**
3281  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3282  * @entry: swap entry to be moved
3283  * @from:  mem_cgroup which the entry is moved from
3284  * @to:  mem_cgroup which the entry is moved to
3285  *
3286  * It succeeds only when the swap_cgroup's record for this entry is the same
3287  * as the mem_cgroup's id of @from.
3288  *
3289  * Returns 0 on success, -EINVAL on failure.
3290  *
3291  * The caller must have charged to @to, IOW, called page_counter_charge() about
3292  * both res and memsw, and called css_get().
3293  */
3294 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3295                                 struct mem_cgroup *from, struct mem_cgroup *to)
3296 {
3297         unsigned short old_id, new_id;
3298
3299         old_id = mem_cgroup_id(from);
3300         new_id = mem_cgroup_id(to);
3301
3302         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3303                 mod_memcg_state(from, MEMCG_SWAP, -1);
3304                 mod_memcg_state(to, MEMCG_SWAP, 1);
3305                 return 0;
3306         }
3307         return -EINVAL;
3308 }
3309 #else
3310 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3311                                 struct mem_cgroup *from, struct mem_cgroup *to)
3312 {
3313         return -EINVAL;
3314 }
3315 #endif
3316
3317 static DEFINE_MUTEX(memcg_max_mutex);
3318
3319 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3320                                  unsigned long max, bool memsw)
3321 {
3322         bool enlarge = false;
3323         bool drained = false;
3324         int ret;
3325         bool limits_invariant;
3326         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3327
3328         do {
3329                 if (signal_pending(current)) {
3330                         ret = -EINTR;
3331                         break;
3332                 }
3333
3334                 mutex_lock(&memcg_max_mutex);
3335                 /*
3336                  * Make sure that the new limit (memsw or memory limit) doesn't
3337                  * break our basic invariant rule memory.max <= memsw.max.
3338                  */
3339                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3340                                            max <= memcg->memsw.max;
3341                 if (!limits_invariant) {
3342                         mutex_unlock(&memcg_max_mutex);
3343                         ret = -EINVAL;
3344                         break;
3345                 }
3346                 if (max > counter->max)
3347                         enlarge = true;
3348                 ret = page_counter_set_max(counter, max);
3349                 mutex_unlock(&memcg_max_mutex);
3350
3351                 if (!ret)
3352                         break;
3353
3354                 if (!drained) {
3355                         drain_all_stock(memcg);
3356                         drained = true;
3357                         continue;
3358                 }
3359
3360                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3361                                         GFP_KERNEL, !memsw)) {
3362                         ret = -EBUSY;
3363                         break;
3364                 }
3365         } while (true);
3366
3367         if (!ret && enlarge)
3368                 memcg_oom_recover(memcg);
3369
3370         return ret;
3371 }
3372
3373 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3374                                             gfp_t gfp_mask,
3375                                             unsigned long *total_scanned)
3376 {
3377         unsigned long nr_reclaimed = 0;
3378         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3379         unsigned long reclaimed;
3380         int loop = 0;
3381         struct mem_cgroup_tree_per_node *mctz;
3382         unsigned long excess;
3383         unsigned long nr_scanned;
3384
3385         if (order > 0)
3386                 return 0;
3387
3388         mctz = soft_limit_tree_node(pgdat->node_id);
3389
3390         /*
3391          * Do not even bother to check the largest node if the root
3392          * is empty. Do it lockless to prevent lock bouncing. Races
3393          * are acceptable as soft limit is best effort anyway.
3394          */
3395         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3396                 return 0;
3397
3398         /*
3399          * This loop can run a while, specially if mem_cgroup's continuously
3400          * keep exceeding their soft limit and putting the system under
3401          * pressure
3402          */
3403         do {
3404                 if (next_mz)
3405                         mz = next_mz;
3406                 else
3407                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3408                 if (!mz)
3409                         break;
3410
3411                 nr_scanned = 0;
3412                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3413                                                     gfp_mask, &nr_scanned);
3414                 nr_reclaimed += reclaimed;
3415                 *total_scanned += nr_scanned;
3416                 spin_lock_irq(&mctz->lock);
3417                 __mem_cgroup_remove_exceeded(mz, mctz);
3418
3419                 /*
3420                  * If we failed to reclaim anything from this memory cgroup
3421                  * it is time to move on to the next cgroup
3422                  */
3423                 next_mz = NULL;
3424                 if (!reclaimed)
3425                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3426
3427                 excess = soft_limit_excess(mz->memcg);
3428                 /*
3429                  * One school of thought says that we should not add
3430                  * back the node to the tree if reclaim returns 0.
3431                  * But our reclaim could return 0, simply because due
3432                  * to priority we are exposing a smaller subset of
3433                  * memory to reclaim from. Consider this as a longer
3434                  * term TODO.
3435                  */
3436                 /* If excess == 0, no tree ops */
3437                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3438                 spin_unlock_irq(&mctz->lock);
3439                 css_put(&mz->memcg->css);
3440                 loop++;
3441                 /*
3442                  * Could not reclaim anything and there are no more
3443                  * mem cgroups to try or we seem to be looping without
3444                  * reclaiming anything.
3445                  */
3446                 if (!nr_reclaimed &&
3447                         (next_mz == NULL ||
3448                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3449                         break;
3450         } while (!nr_reclaimed);
3451         if (next_mz)
3452                 css_put(&next_mz->memcg->css);
3453         return nr_reclaimed;
3454 }
3455
3456 /*
3457  * Reclaims as many pages from the given memcg as possible.
3458  *
3459  * Caller is responsible for holding css reference for memcg.
3460  */
3461 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3462 {
3463         int nr_retries = MAX_RECLAIM_RETRIES;
3464
3465         /* we call try-to-free pages for make this cgroup empty */
3466         lru_add_drain_all();
3467
3468         drain_all_stock(memcg);
3469
3470         /* try to free all pages in this cgroup */
3471         while (nr_retries && page_counter_read(&memcg->memory)) {
3472                 int progress;
3473
3474                 if (signal_pending(current))
3475                         return -EINTR;
3476
3477                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3478                                                         GFP_KERNEL, true);
3479                 if (!progress) {
3480                         nr_retries--;
3481                         /* maybe some writeback is necessary */
3482                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3483                 }
3484
3485         }
3486
3487         return 0;
3488 }
3489
3490 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3491                                             char *buf, size_t nbytes,
3492                                             loff_t off)
3493 {
3494         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3495
3496         if (mem_cgroup_is_root(memcg))
3497                 return -EINVAL;
3498         return mem_cgroup_force_empty(memcg) ?: nbytes;
3499 }
3500
3501 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3502                                      struct cftype *cft)
3503 {
3504         return 1;
3505 }
3506
3507 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3508                                       struct cftype *cft, u64 val)
3509 {
3510         if (val == 1)
3511                 return 0;
3512
3513         pr_warn_once("Non-hierarchical mode is deprecated. "
3514                      "Please report your usecase to linux-mm@kvack.org if you "
3515                      "depend on this functionality.\n");
3516
3517         return -EINVAL;
3518 }
3519
3520 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3521 {
3522         unsigned long val;
3523
3524         if (mem_cgroup_is_root(memcg)) {
3525                 /* mem_cgroup_threshold() calls here from irqsafe context */
3526                 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3527                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3528                         memcg_page_state(memcg, NR_ANON_MAPPED);
3529                 if (swap)
3530                         val += memcg_page_state(memcg, MEMCG_SWAP);
3531         } else {
3532                 if (!swap)
3533                         val = page_counter_read(&memcg->memory);
3534                 else
3535                         val = page_counter_read(&memcg->memsw);
3536         }
3537         return val;
3538 }
3539
3540 enum {
3541         RES_USAGE,
3542         RES_LIMIT,
3543         RES_MAX_USAGE,
3544         RES_FAILCNT,
3545         RES_SOFT_LIMIT,
3546 };
3547
3548 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3549                                struct cftype *cft)
3550 {
3551         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3552         struct page_counter *counter;
3553
3554         switch (MEMFILE_TYPE(cft->private)) {
3555         case _MEM:
3556                 counter = &memcg->memory;
3557                 break;
3558         case _MEMSWAP:
3559                 counter = &memcg->memsw;
3560                 break;
3561         case _KMEM:
3562                 counter = &memcg->kmem;
3563                 break;
3564         case _TCP:
3565                 counter = &memcg->tcpmem;
3566                 break;
3567         default:
3568                 BUG();
3569         }
3570
3571         switch (MEMFILE_ATTR(cft->private)) {
3572         case RES_USAGE:
3573                 if (counter == &memcg->memory)
3574                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3575                 if (counter == &memcg->memsw)
3576                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3577                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3578         case RES_LIMIT:
3579                 return (u64)counter->max * PAGE_SIZE;
3580         case RES_MAX_USAGE:
3581                 return (u64)counter->watermark * PAGE_SIZE;
3582         case RES_FAILCNT:
3583                 return counter->failcnt;
3584         case RES_SOFT_LIMIT:
3585                 return (u64)memcg->soft_limit * PAGE_SIZE;
3586         default:
3587                 BUG();
3588         }
3589 }
3590
3591 #ifdef CONFIG_MEMCG_KMEM
3592 static int memcg_online_kmem(struct mem_cgroup *memcg)
3593 {
3594         struct obj_cgroup *objcg;
3595         int memcg_id;
3596
3597         if (cgroup_memory_nokmem)
3598                 return 0;
3599
3600         BUG_ON(memcg->kmemcg_id >= 0);
3601         BUG_ON(memcg->kmem_state);
3602
3603         memcg_id = memcg_alloc_cache_id();
3604         if (memcg_id < 0)
3605                 return memcg_id;
3606
3607         objcg = obj_cgroup_alloc();
3608         if (!objcg) {
3609                 memcg_free_cache_id(memcg_id);
3610                 return -ENOMEM;
3611         }
3612         objcg->memcg = memcg;
3613         rcu_assign_pointer(memcg->objcg, objcg);
3614
3615         static_branch_enable(&memcg_kmem_enabled_key);
3616
3617         memcg->kmemcg_id = memcg_id;
3618         memcg->kmem_state = KMEM_ONLINE;
3619
3620         return 0;
3621 }
3622
3623 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3624 {
3625         struct cgroup_subsys_state *css;
3626         struct mem_cgroup *parent, *child;
3627         int kmemcg_id;
3628
3629         if (memcg->kmem_state != KMEM_ONLINE)
3630                 return;
3631
3632         memcg->kmem_state = KMEM_ALLOCATED;
3633
3634         parent = parent_mem_cgroup(memcg);
3635         if (!parent)
3636                 parent = root_mem_cgroup;
3637
3638         memcg_reparent_objcgs(memcg, parent);
3639
3640         kmemcg_id = memcg->kmemcg_id;
3641         BUG_ON(kmemcg_id < 0);
3642
3643         /*
3644          * Change kmemcg_id of this cgroup and all its descendants to the
3645          * parent's id, and then move all entries from this cgroup's list_lrus
3646          * to ones of the parent. After we have finished, all list_lrus
3647          * corresponding to this cgroup are guaranteed to remain empty. The
3648          * ordering is imposed by list_lru_node->lock taken by
3649          * memcg_drain_all_list_lrus().
3650          */
3651         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3652         css_for_each_descendant_pre(css, &memcg->css) {
3653                 child = mem_cgroup_from_css(css);
3654                 BUG_ON(child->kmemcg_id != kmemcg_id);
3655                 child->kmemcg_id = parent->kmemcg_id;
3656         }
3657         rcu_read_unlock();
3658
3659         memcg_drain_all_list_lrus(kmemcg_id, parent);
3660
3661         memcg_free_cache_id(kmemcg_id);
3662 }
3663
3664 static void memcg_free_kmem(struct mem_cgroup *memcg)
3665 {
3666         /* css_alloc() failed, offlining didn't happen */
3667         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3668                 memcg_offline_kmem(memcg);
3669 }
3670 #else
3671 static int memcg_online_kmem(struct mem_cgroup *memcg)
3672 {
3673         return 0;
3674 }
3675 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3676 {
3677 }
3678 static void memcg_free_kmem(struct mem_cgroup *memcg)
3679 {
3680 }
3681 #endif /* CONFIG_MEMCG_KMEM */
3682
3683 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3684                                  unsigned long max)
3685 {
3686         int ret;
3687
3688         mutex_lock(&memcg_max_mutex);
3689         ret = page_counter_set_max(&memcg->kmem, max);
3690         mutex_unlock(&memcg_max_mutex);
3691         return ret;
3692 }
3693
3694 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3695 {
3696         int ret;
3697
3698         mutex_lock(&memcg_max_mutex);
3699
3700         ret = page_counter_set_max(&memcg->tcpmem, max);
3701         if (ret)
3702                 goto out;
3703
3704         if (!memcg->tcpmem_active) {
3705                 /*
3706                  * The active flag needs to be written after the static_key
3707                  * update. This is what guarantees that the socket activation
3708                  * function is the last one to run. See mem_cgroup_sk_alloc()
3709                  * for details, and note that we don't mark any socket as
3710                  * belonging to this memcg until that flag is up.
3711                  *
3712                  * We need to do this, because static_keys will span multiple
3713                  * sites, but we can't control their order. If we mark a socket
3714                  * as accounted, but the accounting functions are not patched in
3715                  * yet, we'll lose accounting.
3716                  *
3717                  * We never race with the readers in mem_cgroup_sk_alloc(),
3718                  * because when this value change, the code to process it is not
3719                  * patched in yet.
3720                  */
3721                 static_branch_inc(&memcg_sockets_enabled_key);
3722                 memcg->tcpmem_active = true;
3723         }
3724 out:
3725         mutex_unlock(&memcg_max_mutex);
3726         return ret;
3727 }
3728
3729 /*
3730  * The user of this function is...
3731  * RES_LIMIT.
3732  */
3733 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3734                                 char *buf, size_t nbytes, loff_t off)
3735 {
3736         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3737         unsigned long nr_pages;
3738         int ret;
3739
3740         buf = strstrip(buf);
3741         ret = page_counter_memparse(buf, "-1", &nr_pages);
3742         if (ret)
3743                 return ret;
3744
3745         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3746         case RES_LIMIT:
3747                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3748                         ret = -EINVAL;
3749                         break;
3750                 }
3751                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3752                 case _MEM:
3753                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3754                         break;
3755                 case _MEMSWAP:
3756                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3757                         break;
3758                 case _KMEM:
3759                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3760                                      "Please report your usecase to linux-mm@kvack.org if you "
3761                                      "depend on this functionality.\n");
3762                         ret = memcg_update_kmem_max(memcg, nr_pages);
3763                         break;
3764                 case _TCP:
3765                         ret = memcg_update_tcp_max(memcg, nr_pages);
3766                         break;
3767                 }
3768                 break;
3769         case RES_SOFT_LIMIT:
3770                 memcg->soft_limit = nr_pages;
3771                 ret = 0;
3772                 break;
3773         }
3774         return ret ?: nbytes;
3775 }
3776
3777 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3778                                 size_t nbytes, loff_t off)
3779 {
3780         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3781         struct page_counter *counter;
3782
3783         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3784         case _MEM:
3785                 counter = &memcg->memory;
3786                 break;
3787         case _MEMSWAP:
3788                 counter = &memcg->memsw;
3789                 break;
3790         case _KMEM:
3791                 counter = &memcg->kmem;
3792                 break;
3793         case _TCP:
3794                 counter = &memcg->tcpmem;
3795                 break;
3796         default:
3797                 BUG();
3798         }
3799
3800         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3801         case RES_MAX_USAGE:
3802                 page_counter_reset_watermark(counter);
3803                 break;
3804         case RES_FAILCNT:
3805                 counter->failcnt = 0;
3806                 break;
3807         default:
3808                 BUG();
3809         }
3810
3811         return nbytes;
3812 }
3813
3814 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3815                                         struct cftype *cft)
3816 {
3817         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3818 }
3819
3820 #ifdef CONFIG_MMU
3821 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3822                                         struct cftype *cft, u64 val)
3823 {
3824         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3825
3826         if (val & ~MOVE_MASK)
3827                 return -EINVAL;
3828
3829         /*
3830          * No kind of locking is needed in here, because ->can_attach() will
3831          * check this value once in the beginning of the process, and then carry
3832          * on with stale data. This means that changes to this value will only
3833          * affect task migrations starting after the change.
3834          */
3835         memcg->move_charge_at_immigrate = val;
3836         return 0;
3837 }
3838 #else
3839 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3840                                         struct cftype *cft, u64 val)
3841 {
3842         return -ENOSYS;
3843 }
3844 #endif
3845
3846 #ifdef CONFIG_NUMA
3847
3848 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3849 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3850 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3851
3852 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3853                                 int nid, unsigned int lru_mask, bool tree)
3854 {
3855         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3856         unsigned long nr = 0;
3857         enum lru_list lru;
3858
3859         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3860
3861         for_each_lru(lru) {
3862                 if (!(BIT(lru) & lru_mask))
3863                         continue;
3864                 if (tree)
3865                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3866                 else
3867                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3868         }
3869         return nr;
3870 }
3871
3872 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3873                                              unsigned int lru_mask,
3874                                              bool tree)
3875 {
3876         unsigned long nr = 0;
3877         enum lru_list lru;
3878
3879         for_each_lru(lru) {
3880                 if (!(BIT(lru) & lru_mask))
3881                         continue;
3882                 if (tree)
3883                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3884                 else
3885                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3886         }
3887         return nr;
3888 }
3889
3890 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3891 {
3892         struct numa_stat {
3893                 const char *name;
3894                 unsigned int lru_mask;
3895         };
3896
3897         static const struct numa_stat stats[] = {
3898                 { "total", LRU_ALL },
3899                 { "file", LRU_ALL_FILE },
3900                 { "anon", LRU_ALL_ANON },
3901                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3902         };
3903         const struct numa_stat *stat;
3904         int nid;
3905         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3906
3907         cgroup_rstat_flush(memcg->css.cgroup);
3908
3909         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3910                 seq_printf(m, "%s=%lu", stat->name,
3911                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3912                                                    false));
3913                 for_each_node_state(nid, N_MEMORY)
3914                         seq_printf(m, " N%d=%lu", nid,
3915                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3916                                                         stat->lru_mask, false));
3917                 seq_putc(m, '\n');
3918         }
3919
3920         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3921
3922                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3923                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3924                                                    true));
3925                 for_each_node_state(nid, N_MEMORY)
3926                         seq_printf(m, " N%d=%lu", nid,
3927                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3928                                                         stat->lru_mask, true));
3929                 seq_putc(m, '\n');
3930         }
3931
3932         return 0;
3933 }
3934 #endif /* CONFIG_NUMA */
3935
3936 static const unsigned int memcg1_stats[] = {
3937         NR_FILE_PAGES,
3938         NR_ANON_MAPPED,
3939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3940         NR_ANON_THPS,
3941 #endif
3942         NR_SHMEM,
3943         NR_FILE_MAPPED,
3944         NR_FILE_DIRTY,
3945         NR_WRITEBACK,
3946         MEMCG_SWAP,
3947 };
3948
3949 static const char *const memcg1_stat_names[] = {
3950         "cache",
3951         "rss",
3952 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3953         "rss_huge",
3954 #endif
3955         "shmem",
3956         "mapped_file",
3957         "dirty",
3958         "writeback",
3959         "swap",
3960 };
3961
3962 /* Universal VM events cgroup1 shows, original sort order */
3963 static const unsigned int memcg1_events[] = {
3964         PGPGIN,
3965         PGPGOUT,
3966         PGFAULT,
3967         PGMAJFAULT,
3968 };
3969
3970 static int memcg_stat_show(struct seq_file *m, void *v)
3971 {
3972         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3973         unsigned long memory, memsw;
3974         struct mem_cgroup *mi;
3975         unsigned int i;
3976
3977         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3978
3979         cgroup_rstat_flush(memcg->css.cgroup);
3980
3981         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3982                 unsigned long nr;
3983
3984                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3985                         continue;
3986                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3987                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3988         }
3989
3990         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3991                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3992                            memcg_events_local(memcg, memcg1_events[i]));
3993
3994         for (i = 0; i < NR_LRU_LISTS; i++)
3995                 seq_printf(m, "%s %lu\n", lru_list_name(i),
3996                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3997                            PAGE_SIZE);
3998
3999         /* Hierarchical information */
4000         memory = memsw = PAGE_COUNTER_MAX;
4001         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4002                 memory = min(memory, READ_ONCE(mi->memory.max));
4003                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4004         }
4005         seq_printf(m, "hierarchical_memory_limit %llu\n",
4006                    (u64)memory * PAGE_SIZE);
4007         if (do_memsw_account())
4008                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4009                            (u64)memsw * PAGE_SIZE);
4010
4011         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4012                 unsigned long nr;
4013
4014                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4015                         continue;
4016                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4017                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4018                                                 (u64)nr * PAGE_SIZE);
4019         }
4020
4021         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4022                 seq_printf(m, "total_%s %llu\n",
4023                            vm_event_name(memcg1_events[i]),
4024                            (u64)memcg_events(memcg, memcg1_events[i]));
4025
4026         for (i = 0; i < NR_LRU_LISTS; i++)
4027                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4028                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4029                            PAGE_SIZE);
4030
4031 #ifdef CONFIG_DEBUG_VM
4032         {
4033                 pg_data_t *pgdat;
4034                 struct mem_cgroup_per_node *mz;
4035                 unsigned long anon_cost = 0;
4036                 unsigned long file_cost = 0;
4037
4038                 for_each_online_pgdat(pgdat) {
4039                         mz = memcg->nodeinfo[pgdat->node_id];
4040
4041                         anon_cost += mz->lruvec.anon_cost;
4042                         file_cost += mz->lruvec.file_cost;
4043                 }
4044                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4045                 seq_printf(m, "file_cost %lu\n", file_cost);
4046         }
4047 #endif
4048
4049         return 0;
4050 }
4051
4052 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4053                                       struct cftype *cft)
4054 {
4055         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4056
4057         return mem_cgroup_swappiness(memcg);
4058 }
4059
4060 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4061                                        struct cftype *cft, u64 val)
4062 {
4063         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4064
4065         if (val > 100)
4066                 return -EINVAL;
4067
4068         if (!mem_cgroup_is_root(memcg))
4069                 memcg->swappiness = val;
4070         else
4071                 vm_swappiness = val;
4072
4073         return 0;
4074 }
4075
4076 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4077 {
4078         struct mem_cgroup_threshold_ary *t;
4079         unsigned long usage;
4080         int i;
4081
4082         rcu_read_lock();
4083         if (!swap)
4084                 t = rcu_dereference(memcg->thresholds.primary);
4085         else
4086                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4087
4088         if (!t)
4089                 goto unlock;
4090
4091         usage = mem_cgroup_usage(memcg, swap);
4092
4093         /*
4094          * current_threshold points to threshold just below or equal to usage.
4095          * If it's not true, a threshold was crossed after last
4096          * call of __mem_cgroup_threshold().
4097          */
4098         i = t->current_threshold;
4099
4100         /*
4101          * Iterate backward over array of thresholds starting from
4102          * current_threshold and check if a threshold is crossed.
4103          * If none of thresholds below usage is crossed, we read
4104          * only one element of the array here.
4105          */
4106         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4107                 eventfd_signal(t->entries[i].eventfd, 1);
4108
4109         /* i = current_threshold + 1 */
4110         i++;
4111
4112         /*
4113          * Iterate forward over array of thresholds starting from
4114          * current_threshold+1 and check if a threshold is crossed.
4115          * If none of thresholds above usage is crossed, we read
4116          * only one element of the array here.
4117          */
4118         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4119                 eventfd_signal(t->entries[i].eventfd, 1);
4120
4121         /* Update current_threshold */
4122         t->current_threshold = i - 1;
4123 unlock:
4124         rcu_read_unlock();
4125 }
4126
4127 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4128 {
4129         while (memcg) {
4130                 __mem_cgroup_threshold(memcg, false);
4131                 if (do_memsw_account())
4132                         __mem_cgroup_threshold(memcg, true);
4133
4134                 memcg = parent_mem_cgroup(memcg);
4135         }
4136 }
4137
4138 static int compare_thresholds(const void *a, const void *b)
4139 {
4140         const struct mem_cgroup_threshold *_a = a;
4141         const struct mem_cgroup_threshold *_b = b;
4142
4143         if (_a->threshold > _b->threshold)
4144                 return 1;
4145
4146         if (_a->threshold < _b->threshold)
4147                 return -1;
4148
4149         return 0;
4150 }
4151
4152 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4153 {
4154         struct mem_cgroup_eventfd_list *ev;
4155
4156         spin_lock(&memcg_oom_lock);
4157
4158         list_for_each_entry(ev, &memcg->oom_notify, list)
4159                 eventfd_signal(ev->eventfd, 1);
4160
4161         spin_unlock(&memcg_oom_lock);
4162         return 0;
4163 }
4164
4165 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4166 {
4167         struct mem_cgroup *iter;
4168
4169         for_each_mem_cgroup_tree(iter, memcg)
4170                 mem_cgroup_oom_notify_cb(iter);
4171 }
4172
4173 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4174         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4175 {
4176         struct mem_cgroup_thresholds *thresholds;
4177         struct mem_cgroup_threshold_ary *new;
4178         unsigned long threshold;
4179         unsigned long usage;
4180         int i, size, ret;
4181
4182         ret = page_counter_memparse(args, "-1", &threshold);
4183         if (ret)
4184                 return ret;
4185
4186         mutex_lock(&memcg->thresholds_lock);
4187
4188         if (type == _MEM) {
4189                 thresholds = &memcg->thresholds;
4190                 usage = mem_cgroup_usage(memcg, false);
4191         } else if (type == _MEMSWAP) {
4192                 thresholds = &memcg->memsw_thresholds;
4193                 usage = mem_cgroup_usage(memcg, true);
4194         } else
4195                 BUG();
4196
4197         /* Check if a threshold crossed before adding a new one */
4198         if (thresholds->primary)
4199                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4200
4201         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4202
4203         /* Allocate memory for new array of thresholds */
4204         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4205         if (!new) {
4206                 ret = -ENOMEM;
4207                 goto unlock;
4208         }
4209         new->size = size;
4210
4211         /* Copy thresholds (if any) to new array */
4212         if (thresholds->primary)
4213                 memcpy(new->entries, thresholds->primary->entries,
4214                        flex_array_size(new, entries, size - 1));
4215
4216         /* Add new threshold */
4217         new->entries[size - 1].eventfd = eventfd;
4218         new->entries[size - 1].threshold = threshold;
4219
4220         /* Sort thresholds. Registering of new threshold isn't time-critical */
4221         sort(new->entries, size, sizeof(*new->entries),
4222                         compare_thresholds, NULL);
4223
4224         /* Find current threshold */
4225         new->current_threshold = -1;
4226         for (i = 0; i < size; i++) {
4227                 if (new->entries[i].threshold <= usage) {
4228                         /*
4229                          * new->current_threshold will not be used until
4230                          * rcu_assign_pointer(), so it's safe to increment
4231                          * it here.
4232                          */
4233                         ++new->current_threshold;
4234                 } else
4235                         break;
4236         }
4237
4238         /* Free old spare buffer and save old primary buffer as spare */
4239         kfree(thresholds->spare);
4240         thresholds->spare = thresholds->primary;
4241
4242         rcu_assign_pointer(thresholds->primary, new);
4243
4244         /* To be sure that nobody uses thresholds */
4245         synchronize_rcu();
4246
4247 unlock:
4248         mutex_unlock(&memcg->thresholds_lock);
4249
4250         return ret;
4251 }
4252
4253 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4254         struct eventfd_ctx *eventfd, const char *args)
4255 {
4256         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4257 }
4258
4259 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4260         struct eventfd_ctx *eventfd, const char *args)
4261 {
4262         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4263 }
4264
4265 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4266         struct eventfd_ctx *eventfd, enum res_type type)
4267 {
4268         struct mem_cgroup_thresholds *thresholds;
4269         struct mem_cgroup_threshold_ary *new;
4270         unsigned long usage;
4271         int i, j, size, entries;
4272
4273         mutex_lock(&memcg->thresholds_lock);
4274
4275         if (type == _MEM) {
4276                 thresholds = &memcg->thresholds;
4277                 usage = mem_cgroup_usage(memcg, false);
4278         } else if (type == _MEMSWAP) {
4279                 thresholds = &memcg->memsw_thresholds;
4280                 usage = mem_cgroup_usage(memcg, true);
4281         } else
4282                 BUG();
4283
4284         if (!thresholds->primary)
4285                 goto unlock;
4286
4287         /* Check if a threshold crossed before removing */
4288         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4289
4290         /* Calculate new number of threshold */
4291         size = entries = 0;
4292         for (i = 0; i < thresholds->primary->size; i++) {
4293                 if (thresholds->primary->entries[i].eventfd != eventfd)
4294                         size++;
4295                 else
4296                         entries++;
4297         }
4298
4299         new = thresholds->spare;
4300
4301         /* If no items related to eventfd have been cleared, nothing to do */
4302         if (!entries)
4303                 goto unlock;
4304
4305         /* Set thresholds array to NULL if we don't have thresholds */
4306         if (!size) {
4307                 kfree(new);
4308                 new = NULL;
4309                 goto swap_buffers;
4310         }
4311
4312         new->size = size;
4313
4314         /* Copy thresholds and find current threshold */
4315         new->current_threshold = -1;
4316         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4317                 if (thresholds->primary->entries[i].eventfd == eventfd)
4318                         continue;
4319
4320                 new->entries[j] = thresholds->primary->entries[i];
4321                 if (new->entries[j].threshold <= usage) {
4322                         /*
4323                          * new->current_threshold will not be used
4324                          * until rcu_assign_pointer(), so it's safe to increment
4325                          * it here.
4326                          */
4327                         ++new->current_threshold;
4328                 }
4329                 j++;
4330         }
4331
4332 swap_buffers:
4333         /* Swap primary and spare array */
4334         thresholds->spare = thresholds->primary;
4335
4336         rcu_assign_pointer(thresholds->primary, new);
4337
4338         /* To be sure that nobody uses thresholds */
4339         synchronize_rcu();
4340
4341         /* If all events are unregistered, free the spare array */
4342         if (!new) {
4343                 kfree(thresholds->spare);
4344                 thresholds->spare = NULL;
4345         }
4346 unlock:
4347         mutex_unlock(&memcg->thresholds_lock);
4348 }
4349
4350 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4351         struct eventfd_ctx *eventfd)
4352 {
4353         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4354 }
4355
4356 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4357         struct eventfd_ctx *eventfd)
4358 {
4359         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4360 }
4361
4362 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4363         struct eventfd_ctx *eventfd, const char *args)
4364 {
4365         struct mem_cgroup_eventfd_list *event;
4366
4367         event = kmalloc(sizeof(*event), GFP_KERNEL);
4368         if (!event)
4369                 return -ENOMEM;
4370
4371         spin_lock(&memcg_oom_lock);
4372
4373         event->eventfd = eventfd;
4374         list_add(&event->list, &memcg->oom_notify);
4375
4376         /* already in OOM ? */
4377         if (memcg->under_oom)
4378                 eventfd_signal(eventfd, 1);
4379         spin_unlock(&memcg_oom_lock);
4380
4381         return 0;
4382 }
4383
4384 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4385         struct eventfd_ctx *eventfd)
4386 {
4387         struct mem_cgroup_eventfd_list *ev, *tmp;
4388
4389         spin_lock(&memcg_oom_lock);
4390
4391         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4392                 if (ev->eventfd == eventfd) {
4393                         list_del(&ev->list);
4394                         kfree(ev);
4395                 }
4396         }
4397
4398         spin_unlock(&memcg_oom_lock);
4399 }
4400
4401 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4402 {
4403         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4404
4405         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4406         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4407         seq_printf(sf, "oom_kill %lu\n",
4408                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4409         return 0;
4410 }
4411
4412 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4413         struct cftype *cft, u64 val)
4414 {
4415         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4416
4417         /* cannot set to root cgroup and only 0 and 1 are allowed */
4418         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4419                 return -EINVAL;
4420
4421         memcg->oom_kill_disable = val;
4422         if (!val)
4423                 memcg_oom_recover(memcg);
4424
4425         return 0;
4426 }
4427
4428 #ifdef CONFIG_CGROUP_WRITEBACK
4429
4430 #include <trace/events/writeback.h>
4431
4432 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4433 {
4434         return wb_domain_init(&memcg->cgwb_domain, gfp);
4435 }
4436
4437 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4438 {
4439         wb_domain_exit(&memcg->cgwb_domain);
4440 }
4441
4442 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4443 {
4444         wb_domain_size_changed(&memcg->cgwb_domain);
4445 }
4446
4447 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4448 {
4449         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4450
4451         if (!memcg->css.parent)
4452                 return NULL;
4453
4454         return &memcg->cgwb_domain;
4455 }
4456
4457 /**
4458  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4459  * @wb: bdi_writeback in question
4460  * @pfilepages: out parameter for number of file pages
4461  * @pheadroom: out parameter for number of allocatable pages according to memcg
4462  * @pdirty: out parameter for number of dirty pages
4463  * @pwriteback: out parameter for number of pages under writeback
4464  *
4465  * Determine the numbers of file, headroom, dirty, and writeback pages in
4466  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4467  * is a bit more involved.
4468  *
4469  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4470  * headroom is calculated as the lowest headroom of itself and the
4471  * ancestors.  Note that this doesn't consider the actual amount of
4472  * available memory in the system.  The caller should further cap
4473  * *@pheadroom accordingly.
4474  */
4475 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4476                          unsigned long *pheadroom, unsigned long *pdirty,
4477                          unsigned long *pwriteback)
4478 {
4479         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4480         struct mem_cgroup *parent;
4481
4482         cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4483
4484         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4485         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4486         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4487                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4488
4489         *pheadroom = PAGE_COUNTER_MAX;
4490         while ((parent = parent_mem_cgroup(memcg))) {
4491                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4492                                             READ_ONCE(memcg->memory.high));
4493                 unsigned long used = page_counter_read(&memcg->memory);
4494
4495                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4496                 memcg = parent;
4497         }
4498 }
4499
4500 /*
4501  * Foreign dirty flushing
4502  *
4503  * There's an inherent mismatch between memcg and writeback.  The former
4504  * tracks ownership per-page while the latter per-inode.  This was a
4505  * deliberate design decision because honoring per-page ownership in the
4506  * writeback path is complicated, may lead to higher CPU and IO overheads
4507  * and deemed unnecessary given that write-sharing an inode across
4508  * different cgroups isn't a common use-case.
4509  *
4510  * Combined with inode majority-writer ownership switching, this works well
4511  * enough in most cases but there are some pathological cases.  For
4512  * example, let's say there are two cgroups A and B which keep writing to
4513  * different but confined parts of the same inode.  B owns the inode and
4514  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4515  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4516  * triggering background writeback.  A will be slowed down without a way to
4517  * make writeback of the dirty pages happen.
4518  *
4519  * Conditions like the above can lead to a cgroup getting repeatedly and
4520  * severely throttled after making some progress after each
4521  * dirty_expire_interval while the underlying IO device is almost
4522  * completely idle.
4523  *
4524  * Solving this problem completely requires matching the ownership tracking
4525  * granularities between memcg and writeback in either direction.  However,
4526  * the more egregious behaviors can be avoided by simply remembering the
4527  * most recent foreign dirtying events and initiating remote flushes on
4528  * them when local writeback isn't enough to keep the memory clean enough.
4529  *
4530  * The following two functions implement such mechanism.  When a foreign
4531  * page - a page whose memcg and writeback ownerships don't match - is
4532  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4533  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4534  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4535  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4536  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4537  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4538  * limited to MEMCG_CGWB_FRN_CNT.
4539  *
4540  * The mechanism only remembers IDs and doesn't hold any object references.
4541  * As being wrong occasionally doesn't matter, updates and accesses to the
4542  * records are lockless and racy.
4543  */
4544 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4545                                              struct bdi_writeback *wb)
4546 {
4547         struct mem_cgroup *memcg = page_memcg(page);
4548         struct memcg_cgwb_frn *frn;
4549         u64 now = get_jiffies_64();
4550         u64 oldest_at = now;
4551         int oldest = -1;
4552         int i;
4553
4554         trace_track_foreign_dirty(page, wb);
4555
4556         /*
4557          * Pick the slot to use.  If there is already a slot for @wb, keep
4558          * using it.  If not replace the oldest one which isn't being
4559          * written out.
4560          */
4561         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4562                 frn = &memcg->cgwb_frn[i];
4563                 if (frn->bdi_id == wb->bdi->id &&
4564                     frn->memcg_id == wb->memcg_css->id)
4565                         break;
4566                 if (time_before64(frn->at, oldest_at) &&
4567                     atomic_read(&frn->done.cnt) == 1) {
4568                         oldest = i;
4569                         oldest_at = frn->at;
4570                 }
4571         }
4572
4573         if (i < MEMCG_CGWB_FRN_CNT) {
4574                 /*
4575                  * Re-using an existing one.  Update timestamp lazily to
4576                  * avoid making the cacheline hot.  We want them to be
4577                  * reasonably up-to-date and significantly shorter than
4578                  * dirty_expire_interval as that's what expires the record.
4579                  * Use the shorter of 1s and dirty_expire_interval / 8.
4580                  */
4581                 unsigned long update_intv =
4582                         min_t(unsigned long, HZ,
4583                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4584
4585                 if (time_before64(frn->at, now - update_intv))
4586                         frn->at = now;
4587         } else if (oldest >= 0) {
4588                 /* replace the oldest free one */
4589                 frn = &memcg->cgwb_frn[oldest];
4590                 frn->bdi_id = wb->bdi->id;
4591                 frn->memcg_id = wb->memcg_css->id;
4592                 frn->at = now;
4593         }
4594 }
4595
4596 /* issue foreign writeback flushes for recorded foreign dirtying events */
4597 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4598 {
4599         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4600         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4601         u64 now = jiffies_64;
4602         int i;
4603
4604         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4605                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4606
4607                 /*
4608                  * If the record is older than dirty_expire_interval,
4609                  * writeback on it has already started.  No need to kick it
4610                  * off again.  Also, don't start a new one if there's
4611                  * already one in flight.
4612                  */
4613                 if (time_after64(frn->at, now - intv) &&
4614                     atomic_read(&frn->done.cnt) == 1) {
4615                         frn->at = 0;
4616                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4617                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4618                                                WB_REASON_FOREIGN_FLUSH,
4619                                                &frn->done);
4620                 }
4621         }
4622 }
4623
4624 #else   /* CONFIG_CGROUP_WRITEBACK */
4625
4626 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4627 {
4628         return 0;
4629 }
4630
4631 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4632 {
4633 }
4634
4635 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4636 {
4637 }
4638
4639 #endif  /* CONFIG_CGROUP_WRITEBACK */
4640
4641 /*
4642  * DO NOT USE IN NEW FILES.
4643  *
4644  * "cgroup.event_control" implementation.
4645  *
4646  * This is way over-engineered.  It tries to support fully configurable
4647  * events for each user.  Such level of flexibility is completely
4648  * unnecessary especially in the light of the planned unified hierarchy.
4649  *
4650  * Please deprecate this and replace with something simpler if at all
4651  * possible.
4652  */
4653
4654 /*
4655  * Unregister event and free resources.
4656  *
4657  * Gets called from workqueue.
4658  */
4659 static void memcg_event_remove(struct work_struct *work)
4660 {
4661         struct mem_cgroup_event *event =
4662                 container_of(work, struct mem_cgroup_event, remove);
4663         struct mem_cgroup *memcg = event->memcg;
4664
4665         remove_wait_queue(event->wqh, &event->wait);
4666
4667         event->unregister_event(memcg, event->eventfd);
4668
4669         /* Notify userspace the event is going away. */
4670         eventfd_signal(event->eventfd, 1);
4671
4672         eventfd_ctx_put(event->eventfd);
4673         kfree(event);
4674         css_put(&memcg->css);
4675 }
4676
4677 /*
4678  * Gets called on EPOLLHUP on eventfd when user closes it.
4679  *
4680  * Called with wqh->lock held and interrupts disabled.
4681  */
4682 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4683                             int sync, void *key)
4684 {
4685         struct mem_cgroup_event *event =
4686                 container_of(wait, struct mem_cgroup_event, wait);
4687         struct mem_cgroup *memcg = event->memcg;
4688         __poll_t flags = key_to_poll(key);
4689
4690         if (flags & EPOLLHUP) {
4691                 /*
4692                  * If the event has been detached at cgroup removal, we
4693                  * can simply return knowing the other side will cleanup
4694                  * for us.
4695                  *
4696                  * We can't race against event freeing since the other
4697                  * side will require wqh->lock via remove_wait_queue(),
4698                  * which we hold.
4699                  */
4700                 spin_lock(&memcg->event_list_lock);
4701                 if (!list_empty(&event->list)) {
4702                         list_del_init(&event->list);
4703                         /*
4704                          * We are in atomic context, but cgroup_event_remove()
4705                          * may sleep, so we have to call it in workqueue.
4706                          */
4707                         schedule_work(&event->remove);
4708                 }
4709                 spin_unlock(&memcg->event_list_lock);
4710         }
4711
4712         return 0;
4713 }
4714
4715 static void memcg_event_ptable_queue_proc(struct file *file,
4716                 wait_queue_head_t *wqh, poll_table *pt)
4717 {
4718         struct mem_cgroup_event *event =
4719                 container_of(pt, struct mem_cgroup_event, pt);
4720
4721         event->wqh = wqh;
4722         add_wait_queue(wqh, &event->wait);
4723 }
4724
4725 /*
4726  * DO NOT USE IN NEW FILES.
4727  *
4728  * Parse input and register new cgroup event handler.
4729  *
4730  * Input must be in format '<event_fd> <control_fd> <args>'.
4731  * Interpretation of args is defined by control file implementation.
4732  */
4733 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4734                                          char *buf, size_t nbytes, loff_t off)
4735 {
4736         struct cgroup_subsys_state *css = of_css(of);
4737         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4738         struct mem_cgroup_event *event;
4739         struct cgroup_subsys_state *cfile_css;
4740         unsigned int efd, cfd;
4741         struct fd efile;
4742         struct fd cfile;
4743         const char *name;
4744         char *endp;
4745         int ret;
4746
4747         buf = strstrip(buf);
4748
4749         efd = simple_strtoul(buf, &endp, 10);
4750         if (*endp != ' ')
4751                 return -EINVAL;
4752         buf = endp + 1;
4753
4754         cfd = simple_strtoul(buf, &endp, 10);
4755         if ((*endp != ' ') && (*endp != '\0'))
4756                 return -EINVAL;
4757         buf = endp + 1;
4758
4759         event = kzalloc(sizeof(*event), GFP_KERNEL);
4760         if (!event)
4761                 return -ENOMEM;
4762
4763         event->memcg = memcg;
4764         INIT_LIST_HEAD(&event->list);
4765         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4766         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4767         INIT_WORK(&event->remove, memcg_event_remove);
4768
4769         efile = fdget(efd);
4770         if (!efile.file) {
4771                 ret = -EBADF;
4772                 goto out_kfree;
4773         }
4774
4775         event->eventfd = eventfd_ctx_fileget(efile.file);
4776         if (IS_ERR(event->eventfd)) {
4777                 ret = PTR_ERR(event->eventfd);
4778                 goto out_put_efile;
4779         }
4780
4781         cfile = fdget(cfd);
4782         if (!cfile.file) {
4783                 ret = -EBADF;
4784                 goto out_put_eventfd;
4785         }
4786
4787         /* the process need read permission on control file */
4788         /* AV: shouldn't we check that it's been opened for read instead? */
4789         ret = file_permission(cfile.file, MAY_READ);
4790         if (ret < 0)
4791                 goto out_put_cfile;
4792
4793         /*
4794          * Determine the event callbacks and set them in @event.  This used
4795          * to be done via struct cftype but cgroup core no longer knows
4796          * about these events.  The following is crude but the whole thing
4797          * is for compatibility anyway.
4798          *
4799          * DO NOT ADD NEW FILES.
4800          */
4801         name = cfile.file->f_path.dentry->d_name.name;
4802
4803         if (!strcmp(name, "memory.usage_in_bytes")) {
4804                 event->register_event = mem_cgroup_usage_register_event;
4805                 event->unregister_event = mem_cgroup_usage_unregister_event;
4806         } else if (!strcmp(name, "memory.oom_control")) {
4807                 event->register_event = mem_cgroup_oom_register_event;
4808                 event->unregister_event = mem_cgroup_oom_unregister_event;
4809         } else if (!strcmp(name, "memory.pressure_level")) {
4810                 event->register_event = vmpressure_register_event;
4811                 event->unregister_event = vmpressure_unregister_event;
4812         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4813                 event->register_event = memsw_cgroup_usage_register_event;
4814                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4815         } else {
4816                 ret = -EINVAL;
4817                 goto out_put_cfile;
4818         }
4819
4820         /*
4821          * Verify @cfile should belong to @css.  Also, remaining events are
4822          * automatically removed on cgroup destruction but the removal is
4823          * asynchronous, so take an extra ref on @css.
4824          */
4825         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4826                                                &memory_cgrp_subsys);
4827         ret = -EINVAL;
4828         if (IS_ERR(cfile_css))
4829                 goto out_put_cfile;
4830         if (cfile_css != css) {
4831                 css_put(cfile_css);
4832                 goto out_put_cfile;
4833         }
4834
4835         ret = event->register_event(memcg, event->eventfd, buf);
4836         if (ret)
4837                 goto out_put_css;
4838
4839         vfs_poll(efile.file, &event->pt);
4840
4841         spin_lock(&memcg->event_list_lock);
4842         list_add(&event->list, &memcg->event_list);
4843         spin_unlock(&memcg->event_list_lock);
4844
4845         fdput(cfile);
4846         fdput(efile);
4847
4848         return nbytes;
4849
4850 out_put_css:
4851         css_put(css);
4852 out_put_cfile:
4853         fdput(cfile);
4854 out_put_eventfd:
4855         eventfd_ctx_put(event->eventfd);
4856 out_put_efile:
4857         fdput(efile);
4858 out_kfree:
4859         kfree(event);
4860
4861         return ret;
4862 }
4863
4864 static struct cftype mem_cgroup_legacy_files[] = {
4865         {
4866                 .name = "usage_in_bytes",
4867                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4868                 .read_u64 = mem_cgroup_read_u64,
4869         },
4870         {
4871                 .name = "max_usage_in_bytes",
4872                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4873                 .write = mem_cgroup_reset,
4874                 .read_u64 = mem_cgroup_read_u64,
4875         },
4876         {
4877                 .name = "limit_in_bytes",
4878                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4879                 .write = mem_cgroup_write,
4880                 .read_u64 = mem_cgroup_read_u64,
4881         },
4882         {
4883                 .name = "soft_limit_in_bytes",
4884                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4885                 .write = mem_cgroup_write,
4886                 .read_u64 = mem_cgroup_read_u64,
4887         },
4888         {
4889                 .name = "failcnt",
4890                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4891                 .write = mem_cgroup_reset,
4892                 .read_u64 = mem_cgroup_read_u64,
4893         },
4894         {
4895                 .name = "stat",
4896                 .seq_show = memcg_stat_show,
4897         },
4898         {
4899                 .name = "force_empty",
4900                 .write = mem_cgroup_force_empty_write,
4901         },
4902         {
4903                 .name = "use_hierarchy",
4904                 .write_u64 = mem_cgroup_hierarchy_write,
4905                 .read_u64 = mem_cgroup_hierarchy_read,
4906         },
4907         {
4908                 .name = "cgroup.event_control",         /* XXX: for compat */
4909                 .write = memcg_write_event_control,
4910                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4911         },
4912         {
4913                 .name = "swappiness",
4914                 .read_u64 = mem_cgroup_swappiness_read,
4915                 .write_u64 = mem_cgroup_swappiness_write,
4916         },
4917         {
4918                 .name = "move_charge_at_immigrate",
4919                 .read_u64 = mem_cgroup_move_charge_read,
4920                 .write_u64 = mem_cgroup_move_charge_write,
4921         },
4922         {
4923                 .name = "oom_control",
4924                 .seq_show = mem_cgroup_oom_control_read,
4925                 .write_u64 = mem_cgroup_oom_control_write,
4926                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4927         },
4928         {
4929                 .name = "pressure_level",
4930         },
4931 #ifdef CONFIG_NUMA
4932         {
4933                 .name = "numa_stat",
4934                 .seq_show = memcg_numa_stat_show,
4935         },
4936 #endif
4937         {
4938                 .name = "kmem.limit_in_bytes",
4939                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4940                 .write = mem_cgroup_write,
4941                 .read_u64 = mem_cgroup_read_u64,
4942         },
4943         {
4944                 .name = "kmem.usage_in_bytes",
4945                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4946                 .read_u64 = mem_cgroup_read_u64,
4947         },
4948         {
4949                 .name = "kmem.failcnt",
4950                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4951                 .write = mem_cgroup_reset,
4952                 .read_u64 = mem_cgroup_read_u64,
4953         },
4954         {
4955                 .name = "kmem.max_usage_in_bytes",
4956                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4957                 .write = mem_cgroup_reset,
4958                 .read_u64 = mem_cgroup_read_u64,
4959         },
4960 #if defined(CONFIG_MEMCG_KMEM) && \
4961         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4962         {
4963                 .name = "kmem.slabinfo",
4964                 .seq_show = memcg_slab_show,
4965         },
4966 #endif
4967         {
4968                 .name = "kmem.tcp.limit_in_bytes",
4969                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4970                 .write = mem_cgroup_write,
4971                 .read_u64 = mem_cgroup_read_u64,
4972         },
4973         {
4974                 .name = "kmem.tcp.usage_in_bytes",
4975                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4976                 .read_u64 = mem_cgroup_read_u64,
4977         },
4978         {
4979                 .name = "kmem.tcp.failcnt",
4980                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4981                 .write = mem_cgroup_reset,
4982                 .read_u64 = mem_cgroup_read_u64,
4983         },
4984         {
4985                 .name = "kmem.tcp.max_usage_in_bytes",
4986                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4987                 .write = mem_cgroup_reset,
4988                 .read_u64 = mem_cgroup_read_u64,
4989         },
4990         { },    /* terminate */
4991 };
4992
4993 /*
4994  * Private memory cgroup IDR
4995  *
4996  * Swap-out records and page cache shadow entries need to store memcg
4997  * references in constrained space, so we maintain an ID space that is
4998  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4999  * memory-controlled cgroups to 64k.
5000  *
5001  * However, there usually are many references to the offline CSS after
5002  * the cgroup has been destroyed, such as page cache or reclaimable
5003  * slab objects, that don't need to hang on to the ID. We want to keep
5004  * those dead CSS from occupying IDs, or we might quickly exhaust the
5005  * relatively small ID space and prevent the creation of new cgroups
5006  * even when there are much fewer than 64k cgroups - possibly none.
5007  *
5008  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5009  * be freed and recycled when it's no longer needed, which is usually
5010  * when the CSS is offlined.
5011  *
5012  * The only exception to that are records of swapped out tmpfs/shmem
5013  * pages that need to be attributed to live ancestors on swapin. But
5014  * those references are manageable from userspace.
5015  */
5016
5017 static DEFINE_IDR(mem_cgroup_idr);
5018
5019 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5020 {
5021         if (memcg->id.id > 0) {
5022                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5023                 memcg->id.id = 0;
5024         }
5025 }
5026
5027 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5028                                                   unsigned int n)
5029 {
5030         refcount_add(n, &memcg->id.ref);
5031 }
5032
5033 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5034 {
5035         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5036                 mem_cgroup_id_remove(memcg);
5037
5038                 /* Memcg ID pins CSS */
5039                 css_put(&memcg->css);
5040         }
5041 }
5042
5043 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5044 {
5045         mem_cgroup_id_put_many(memcg, 1);
5046 }
5047
5048 /**
5049  * mem_cgroup_from_id - look up a memcg from a memcg id
5050  * @id: the memcg id to look up
5051  *
5052  * Caller must hold rcu_read_lock().
5053  */
5054 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5055 {
5056         WARN_ON_ONCE(!rcu_read_lock_held());
5057         return idr_find(&mem_cgroup_idr, id);
5058 }
5059
5060 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5061 {
5062         struct mem_cgroup_per_node *pn;
5063         int tmp = node;
5064         /*
5065          * This routine is called against possible nodes.
5066          * But it's BUG to call kmalloc() against offline node.
5067          *
5068          * TODO: this routine can waste much memory for nodes which will
5069          *       never be onlined. It's better to use memory hotplug callback
5070          *       function.
5071          */
5072         if (!node_state(node, N_NORMAL_MEMORY))
5073                 tmp = -1;
5074         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5075         if (!pn)
5076                 return 1;
5077
5078         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5079                                                    GFP_KERNEL_ACCOUNT);
5080         if (!pn->lruvec_stats_percpu) {
5081                 kfree(pn);
5082                 return 1;
5083         }
5084
5085         lruvec_init(&pn->lruvec);
5086         pn->usage_in_excess = 0;
5087         pn->on_tree = false;
5088         pn->memcg = memcg;
5089
5090         memcg->nodeinfo[node] = pn;
5091         return 0;
5092 }
5093
5094 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5095 {
5096         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5097
5098         if (!pn)
5099                 return;
5100
5101         free_percpu(pn->lruvec_stats_percpu);
5102         kfree(pn);
5103 }
5104
5105 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5106 {
5107         int node;
5108
5109         for_each_node(node)
5110                 free_mem_cgroup_per_node_info(memcg, node);
5111         free_percpu(memcg->vmstats_percpu);
5112         kfree(memcg);
5113 }
5114
5115 static void mem_cgroup_free(struct mem_cgroup *memcg)
5116 {
5117         memcg_wb_domain_exit(memcg);
5118         __mem_cgroup_free(memcg);
5119 }
5120
5121 static struct mem_cgroup *mem_cgroup_alloc(void)
5122 {
5123         struct mem_cgroup *memcg;
5124         unsigned int size;
5125         int node;
5126         int __maybe_unused i;
5127         long error = -ENOMEM;
5128
5129         size = sizeof(struct mem_cgroup);
5130         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5131
5132         memcg = kzalloc(size, GFP_KERNEL);
5133         if (!memcg)
5134                 return ERR_PTR(error);
5135
5136         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5137                                  1, MEM_CGROUP_ID_MAX,
5138                                  GFP_KERNEL);
5139         if (memcg->id.id < 0) {
5140                 error = memcg->id.id;
5141                 goto fail;
5142         }
5143
5144         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5145                                                  GFP_KERNEL_ACCOUNT);
5146         if (!memcg->vmstats_percpu)
5147                 goto fail;
5148
5149         for_each_node(node)
5150                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5151                         goto fail;
5152
5153         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5154                 goto fail;
5155
5156         INIT_WORK(&memcg->high_work, high_work_func);
5157         INIT_LIST_HEAD(&memcg->oom_notify);
5158         mutex_init(&memcg->thresholds_lock);
5159         spin_lock_init(&memcg->move_lock);
5160         vmpressure_init(&memcg->vmpressure);
5161         INIT_LIST_HEAD(&memcg->event_list);
5162         spin_lock_init(&memcg->event_list_lock);
5163         memcg->socket_pressure = jiffies;
5164 #ifdef CONFIG_MEMCG_KMEM
5165         memcg->kmemcg_id = -1;
5166         INIT_LIST_HEAD(&memcg->objcg_list);
5167 #endif
5168 #ifdef CONFIG_CGROUP_WRITEBACK
5169         INIT_LIST_HEAD(&memcg->cgwb_list);
5170         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5171                 memcg->cgwb_frn[i].done =
5172                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5173 #endif
5174 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5175         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5176         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5177         memcg->deferred_split_queue.split_queue_len = 0;
5178 #endif
5179         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5180         return memcg;
5181 fail:
5182         mem_cgroup_id_remove(memcg);
5183         __mem_cgroup_free(memcg);
5184         return ERR_PTR(error);
5185 }
5186
5187 static struct cgroup_subsys_state * __ref
5188 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5189 {
5190         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5191         struct mem_cgroup *memcg, *old_memcg;
5192         long error = -ENOMEM;
5193
5194         old_memcg = set_active_memcg(parent);
5195         memcg = mem_cgroup_alloc();
5196         set_active_memcg(old_memcg);
5197         if (IS_ERR(memcg))
5198                 return ERR_CAST(memcg);
5199
5200         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5201         memcg->soft_limit = PAGE_COUNTER_MAX;
5202         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5203         if (parent) {
5204                 memcg->swappiness = mem_cgroup_swappiness(parent);
5205                 memcg->oom_kill_disable = parent->oom_kill_disable;
5206
5207                 page_counter_init(&memcg->memory, &parent->memory);
5208                 page_counter_init(&memcg->swap, &parent->swap);
5209                 page_counter_init(&memcg->kmem, &parent->kmem);
5210                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5211         } else {
5212                 page_counter_init(&memcg->memory, NULL);
5213                 page_counter_init(&memcg->swap, NULL);
5214                 page_counter_init(&memcg->kmem, NULL);
5215                 page_counter_init(&memcg->tcpmem, NULL);
5216
5217                 root_mem_cgroup = memcg;
5218                 return &memcg->css;
5219         }
5220
5221         /* The following stuff does not apply to the root */
5222         error = memcg_online_kmem(memcg);
5223         if (error)
5224                 goto fail;
5225
5226         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5227                 static_branch_inc(&memcg_sockets_enabled_key);
5228
5229         return &memcg->css;
5230 fail:
5231         mem_cgroup_id_remove(memcg);
5232         mem_cgroup_free(memcg);
5233         return ERR_PTR(error);
5234 }
5235
5236 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5237 {
5238         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5239
5240         /*
5241          * A memcg must be visible for expand_shrinker_info()
5242          * by the time the maps are allocated. So, we allocate maps
5243          * here, when for_each_mem_cgroup() can't skip it.
5244          */
5245         if (alloc_shrinker_info(memcg)) {
5246                 mem_cgroup_id_remove(memcg);
5247                 return -ENOMEM;
5248         }
5249
5250         /* Online state pins memcg ID, memcg ID pins CSS */
5251         refcount_set(&memcg->id.ref, 1);
5252         css_get(css);
5253
5254         if (unlikely(mem_cgroup_is_root(memcg)))
5255                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5256                                    2UL*HZ);
5257         return 0;
5258 }
5259
5260 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5261 {
5262         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5263         struct mem_cgroup_event *event, *tmp;
5264
5265         /*
5266          * Unregister events and notify userspace.
5267          * Notify userspace about cgroup removing only after rmdir of cgroup
5268          * directory to avoid race between userspace and kernelspace.
5269          */
5270         spin_lock(&memcg->event_list_lock);
5271         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5272                 list_del_init(&event->list);
5273                 schedule_work(&event->remove);
5274         }
5275         spin_unlock(&memcg->event_list_lock);
5276
5277         page_counter_set_min(&memcg->memory, 0);
5278         page_counter_set_low(&memcg->memory, 0);
5279
5280         memcg_offline_kmem(memcg);
5281         reparent_shrinker_deferred(memcg);
5282         wb_memcg_offline(memcg);
5283
5284         drain_all_stock(memcg);
5285
5286         mem_cgroup_id_put(memcg);
5287 }
5288
5289 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5290 {
5291         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5292
5293         invalidate_reclaim_iterators(memcg);
5294 }
5295
5296 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5297 {
5298         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5299         int __maybe_unused i;
5300
5301 #ifdef CONFIG_CGROUP_WRITEBACK
5302         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5303                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5304 #endif
5305         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5306                 static_branch_dec(&memcg_sockets_enabled_key);
5307
5308         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5309                 static_branch_dec(&memcg_sockets_enabled_key);
5310
5311         vmpressure_cleanup(&memcg->vmpressure);
5312         cancel_work_sync(&memcg->high_work);
5313         mem_cgroup_remove_from_trees(memcg);
5314         free_shrinker_info(memcg);
5315         memcg_free_kmem(memcg);
5316         mem_cgroup_free(memcg);
5317 }
5318
5319 /**
5320  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5321  * @css: the target css
5322  *
5323  * Reset the states of the mem_cgroup associated with @css.  This is
5324  * invoked when the userland requests disabling on the default hierarchy
5325  * but the memcg is pinned through dependency.  The memcg should stop
5326  * applying policies and should revert to the vanilla state as it may be
5327  * made visible again.
5328  *
5329  * The current implementation only resets the essential configurations.
5330  * This needs to be expanded to cover all the visible parts.
5331  */
5332 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5333 {
5334         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5335
5336         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5337         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5338         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5339         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5340         page_counter_set_min(&memcg->memory, 0);
5341         page_counter_set_low(&memcg->memory, 0);
5342         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5343         memcg->soft_limit = PAGE_COUNTER_MAX;
5344         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5345         memcg_wb_domain_size_changed(memcg);
5346 }
5347
5348 void mem_cgroup_flush_stats(void)
5349 {
5350         if (!spin_trylock(&stats_flush_lock))
5351                 return;
5352
5353         cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
5354         spin_unlock(&stats_flush_lock);
5355 }
5356
5357 static void flush_memcg_stats_dwork(struct work_struct *w)
5358 {
5359         mem_cgroup_flush_stats();
5360         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
5361 }
5362
5363 static void flush_memcg_stats_work(struct work_struct *w)
5364 {
5365         mem_cgroup_flush_stats();
5366 }
5367
5368 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5369 {
5370         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5371         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5372         struct memcg_vmstats_percpu *statc;
5373         long delta, v;
5374         int i, nid;
5375
5376         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5377
5378         for (i = 0; i < MEMCG_NR_STAT; i++) {
5379                 /*
5380                  * Collect the aggregated propagation counts of groups
5381                  * below us. We're in a per-cpu loop here and this is
5382                  * a global counter, so the first cycle will get them.
5383                  */
5384                 delta = memcg->vmstats.state_pending[i];
5385                 if (delta)
5386                         memcg->vmstats.state_pending[i] = 0;
5387
5388                 /* Add CPU changes on this level since the last flush */
5389                 v = READ_ONCE(statc->state[i]);
5390                 if (v != statc->state_prev[i]) {
5391                         delta += v - statc->state_prev[i];
5392                         statc->state_prev[i] = v;
5393                 }
5394
5395                 if (!delta)
5396                         continue;
5397
5398                 /* Aggregate counts on this level and propagate upwards */
5399                 memcg->vmstats.state[i] += delta;
5400                 if (parent)
5401                         parent->vmstats.state_pending[i] += delta;
5402         }
5403
5404         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5405                 delta = memcg->vmstats.events_pending[i];
5406                 if (delta)
5407                         memcg->vmstats.events_pending[i] = 0;
5408
5409                 v = READ_ONCE(statc->events[i]);
5410                 if (v != statc->events_prev[i]) {
5411                         delta += v - statc->events_prev[i];
5412                         statc->events_prev[i] = v;
5413                 }
5414
5415                 if (!delta)
5416                         continue;
5417
5418                 memcg->vmstats.events[i] += delta;
5419                 if (parent)
5420                         parent->vmstats.events_pending[i] += delta;
5421         }
5422
5423         for_each_node_state(nid, N_MEMORY) {
5424                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5425                 struct mem_cgroup_per_node *ppn = NULL;
5426                 struct lruvec_stats_percpu *lstatc;
5427
5428                 if (parent)
5429                         ppn = parent->nodeinfo[nid];
5430
5431                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5432
5433                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5434                         delta = pn->lruvec_stats.state_pending[i];
5435                         if (delta)
5436                                 pn->lruvec_stats.state_pending[i] = 0;
5437
5438                         v = READ_ONCE(lstatc->state[i]);
5439                         if (v != lstatc->state_prev[i]) {
5440                                 delta += v - lstatc->state_prev[i];
5441                                 lstatc->state_prev[i] = v;
5442                         }
5443
5444                         if (!delta)
5445                                 continue;
5446
5447                         pn->lruvec_stats.state[i] += delta;
5448                         if (ppn)
5449                                 ppn->lruvec_stats.state_pending[i] += delta;
5450                 }
5451         }
5452 }
5453
5454 #ifdef CONFIG_MMU
5455 /* Handlers for move charge at task migration. */
5456 static int mem_cgroup_do_precharge(unsigned long count)
5457 {
5458         int ret;
5459
5460         /* Try a single bulk charge without reclaim first, kswapd may wake */
5461         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5462         if (!ret) {
5463                 mc.precharge += count;
5464                 return ret;
5465         }
5466
5467         /* Try charges one by one with reclaim, but do not retry */
5468         while (count--) {
5469                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5470                 if (ret)
5471                         return ret;
5472                 mc.precharge++;
5473                 cond_resched();
5474         }
5475         return 0;
5476 }
5477
5478 union mc_target {
5479         struct page     *page;
5480         swp_entry_t     ent;
5481 };
5482
5483 enum mc_target_type {
5484         MC_TARGET_NONE = 0,
5485         MC_TARGET_PAGE,
5486         MC_TARGET_SWAP,
5487         MC_TARGET_DEVICE,
5488 };
5489
5490 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5491                                                 unsigned long addr, pte_t ptent)
5492 {
5493         struct page *page = vm_normal_page(vma, addr, ptent);
5494
5495         if (!page || !page_mapped(page))
5496                 return NULL;
5497         if (PageAnon(page)) {
5498                 if (!(mc.flags & MOVE_ANON))
5499                         return NULL;
5500         } else {
5501                 if (!(mc.flags & MOVE_FILE))
5502                         return NULL;
5503         }
5504         if (!get_page_unless_zero(page))
5505                 return NULL;
5506
5507         return page;
5508 }
5509
5510 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5511 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5512                         pte_t ptent, swp_entry_t *entry)
5513 {
5514         struct page *page = NULL;
5515         swp_entry_t ent = pte_to_swp_entry(ptent);
5516
5517         if (!(mc.flags & MOVE_ANON))
5518                 return NULL;
5519
5520         /*
5521          * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5522          * a device and because they are not accessible by CPU they are store
5523          * as special swap entry in the CPU page table.
5524          */
5525         if (is_device_private_entry(ent)) {
5526                 page = pfn_swap_entry_to_page(ent);
5527                 /*
5528                  * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5529                  * a refcount of 1 when free (unlike normal page)
5530                  */
5531                 if (!page_ref_add_unless(page, 1, 1))
5532                         return NULL;
5533                 return page;
5534         }
5535
5536         if (non_swap_entry(ent))
5537                 return NULL;
5538
5539         /*
5540          * Because lookup_swap_cache() updates some statistics counter,
5541          * we call find_get_page() with swapper_space directly.
5542          */
5543         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5544         entry->val = ent.val;
5545
5546         return page;
5547 }
5548 #else
5549 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5550                         pte_t ptent, swp_entry_t *entry)
5551 {
5552         return NULL;
5553 }
5554 #endif
5555
5556 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5557                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5558 {
5559         if (!vma->vm_file) /* anonymous vma */
5560                 return NULL;
5561         if (!(mc.flags & MOVE_FILE))
5562                 return NULL;
5563
5564         /* page is moved even if it's not RSS of this task(page-faulted). */
5565         /* shmem/tmpfs may report page out on swap: account for that too. */
5566         return find_get_incore_page(vma->vm_file->f_mapping,
5567                         linear_page_index(vma, addr));
5568 }
5569
5570 /**
5571  * mem_cgroup_move_account - move account of the page
5572  * @page: the page
5573  * @compound: charge the page as compound or small page
5574  * @from: mem_cgroup which the page is moved from.
5575  * @to: mem_cgroup which the page is moved to. @from != @to.
5576  *
5577  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5578  *
5579  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5580  * from old cgroup.
5581  */
5582 static int mem_cgroup_move_account(struct page *page,
5583                                    bool compound,
5584                                    struct mem_cgroup *from,
5585                                    struct mem_cgroup *to)
5586 {
5587         struct lruvec *from_vec, *to_vec;
5588         struct pglist_data *pgdat;
5589         unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5590         int ret;
5591
5592         VM_BUG_ON(from == to);
5593         VM_BUG_ON_PAGE(PageLRU(page), page);
5594         VM_BUG_ON(compound && !PageTransHuge(page));
5595
5596         /*
5597          * Prevent mem_cgroup_migrate() from looking at
5598          * page's memory cgroup of its source page while we change it.
5599          */
5600         ret = -EBUSY;
5601         if (!trylock_page(page))
5602                 goto out;
5603
5604         ret = -EINVAL;
5605         if (page_memcg(page) != from)
5606                 goto out_unlock;
5607
5608         pgdat = page_pgdat(page);
5609         from_vec = mem_cgroup_lruvec(from, pgdat);
5610         to_vec = mem_cgroup_lruvec(to, pgdat);
5611
5612         lock_page_memcg(page);
5613
5614         if (PageAnon(page)) {
5615                 if (page_mapped(page)) {
5616                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5617                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5618                         if (PageTransHuge(page)) {
5619                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5620                                                    -nr_pages);
5621                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5622                                                    nr_pages);
5623                         }
5624                 }
5625         } else {
5626                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5627                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5628
5629                 if (PageSwapBacked(page)) {
5630                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5631                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5632                 }
5633
5634                 if (page_mapped(page)) {
5635                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5636                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5637                 }
5638
5639                 if (PageDirty(page)) {
5640                         struct address_space *mapping = page_mapping(page);
5641
5642                         if (mapping_can_writeback(mapping)) {
5643                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5644                                                    -nr_pages);
5645                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5646                                                    nr_pages);
5647                         }
5648                 }
5649         }
5650
5651         if (PageWriteback(page)) {
5652                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5653                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5654         }
5655
5656         /*
5657          * All state has been migrated, let's switch to the new memcg.
5658          *
5659          * It is safe to change page's memcg here because the page
5660          * is referenced, charged, isolated, and locked: we can't race
5661          * with (un)charging, migration, LRU putback, or anything else
5662          * that would rely on a stable page's memory cgroup.
5663          *
5664          * Note that lock_page_memcg is a memcg lock, not a page lock,
5665          * to save space. As soon as we switch page's memory cgroup to a
5666          * new memcg that isn't locked, the above state can change
5667          * concurrently again. Make sure we're truly done with it.
5668          */
5669         smp_mb();
5670
5671         css_get(&to->css);
5672         css_put(&from->css);
5673
5674         page->memcg_data = (unsigned long)to;
5675
5676         __unlock_page_memcg(from);
5677
5678         ret = 0;
5679
5680         local_irq_disable();
5681         mem_cgroup_charge_statistics(to, page, nr_pages);
5682         memcg_check_events(to, page);
5683         mem_cgroup_charge_statistics(from, page, -nr_pages);
5684         memcg_check_events(from, page);
5685         local_irq_enable();
5686 out_unlock:
5687         unlock_page(page);
5688 out:
5689         return ret;
5690 }
5691
5692 /**
5693  * get_mctgt_type - get target type of moving charge
5694  * @vma: the vma the pte to be checked belongs
5695  * @addr: the address corresponding to the pte to be checked
5696  * @ptent: the pte to be checked
5697  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5698  *
5699  * Returns
5700  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5701  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5702  *     move charge. if @target is not NULL, the page is stored in target->page
5703  *     with extra refcnt got(Callers should handle it).
5704  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5705  *     target for charge migration. if @target is not NULL, the entry is stored
5706  *     in target->ent.
5707  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5708  *     (so ZONE_DEVICE page and thus not on the lru).
5709  *     For now we such page is charge like a regular page would be as for all
5710  *     intent and purposes it is just special memory taking the place of a
5711  *     regular page.
5712  *
5713  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5714  *
5715  * Called with pte lock held.
5716  */
5717
5718 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5719                 unsigned long addr, pte_t ptent, union mc_target *target)
5720 {
5721         struct page *page = NULL;
5722         enum mc_target_type ret = MC_TARGET_NONE;
5723         swp_entry_t ent = { .val = 0 };
5724
5725         if (pte_present(ptent))
5726                 page = mc_handle_present_pte(vma, addr, ptent);
5727         else if (is_swap_pte(ptent))
5728                 page = mc_handle_swap_pte(vma, ptent, &ent);
5729         else if (pte_none(ptent))
5730                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5731
5732         if (!page && !ent.val)
5733                 return ret;
5734         if (page) {
5735                 /*
5736                  * Do only loose check w/o serialization.
5737                  * mem_cgroup_move_account() checks the page is valid or
5738                  * not under LRU exclusion.
5739                  */
5740                 if (page_memcg(page) == mc.from) {
5741                         ret = MC_TARGET_PAGE;
5742                         if (is_device_private_page(page))
5743                                 ret = MC_TARGET_DEVICE;
5744                         if (target)
5745                                 target->page = page;
5746                 }
5747                 if (!ret || !target)
5748                         put_page(page);
5749         }
5750         /*
5751          * There is a swap entry and a page doesn't exist or isn't charged.
5752          * But we cannot move a tail-page in a THP.
5753          */
5754         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5755             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5756                 ret = MC_TARGET_SWAP;
5757                 if (target)
5758                         target->ent = ent;
5759         }
5760         return ret;
5761 }
5762
5763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5764 /*
5765  * We don't consider PMD mapped swapping or file mapped pages because THP does
5766  * not support them for now.
5767  * Caller should make sure that pmd_trans_huge(pmd) is true.
5768  */
5769 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5770                 unsigned long addr, pmd_t pmd, union mc_target *target)
5771 {
5772         struct page *page = NULL;
5773         enum mc_target_type ret = MC_TARGET_NONE;
5774
5775         if (unlikely(is_swap_pmd(pmd))) {
5776                 VM_BUG_ON(thp_migration_supported() &&
5777                                   !is_pmd_migration_entry(pmd));
5778                 return ret;
5779         }
5780         page = pmd_page(pmd);
5781         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5782         if (!(mc.flags & MOVE_ANON))
5783                 return ret;
5784         if (page_memcg(page) == mc.from) {
5785                 ret = MC_TARGET_PAGE;
5786                 if (target) {
5787                         get_page(page);
5788                         target->page = page;
5789                 }
5790         }
5791         return ret;
5792 }
5793 #else
5794 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5795                 unsigned long addr, pmd_t pmd, union mc_target *target)
5796 {
5797         return MC_TARGET_NONE;
5798 }
5799 #endif
5800
5801 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5802                                         unsigned long addr, unsigned long end,
5803                                         struct mm_walk *walk)
5804 {
5805         struct vm_area_struct *vma = walk->vma;
5806         pte_t *pte;
5807         spinlock_t *ptl;
5808
5809         ptl = pmd_trans_huge_lock(pmd, vma);
5810         if (ptl) {
5811                 /*
5812                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5813                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5814                  * this might change.
5815                  */
5816                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5817                         mc.precharge += HPAGE_PMD_NR;
5818                 spin_unlock(ptl);
5819                 return 0;
5820         }
5821
5822         if (pmd_trans_unstable(pmd))
5823                 return 0;
5824         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5825         for (; addr != end; pte++, addr += PAGE_SIZE)
5826                 if (get_mctgt_type(vma, addr, *pte, NULL))
5827                         mc.precharge++; /* increment precharge temporarily */
5828         pte_unmap_unlock(pte - 1, ptl);
5829         cond_resched();
5830
5831         return 0;
5832 }
5833
5834 static const struct mm_walk_ops precharge_walk_ops = {
5835         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5836 };
5837
5838 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5839 {
5840         unsigned long precharge;
5841
5842         mmap_read_lock(mm);
5843         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5844         mmap_read_unlock(mm);
5845
5846         precharge = mc.precharge;
5847         mc.precharge = 0;
5848
5849         return precharge;
5850 }
5851
5852 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5853 {
5854         unsigned long precharge = mem_cgroup_count_precharge(mm);
5855
5856         VM_BUG_ON(mc.moving_task);
5857         mc.moving_task = current;
5858         return mem_cgroup_do_precharge(precharge);
5859 }
5860
5861 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5862 static void __mem_cgroup_clear_mc(void)
5863 {
5864         struct mem_cgroup *from = mc.from;
5865         struct mem_cgroup *to = mc.to;
5866
5867         /* we must uncharge all the leftover precharges from mc.to */
5868         if (mc.precharge) {
5869                 cancel_charge(mc.to, mc.precharge);
5870                 mc.precharge = 0;
5871         }
5872         /*
5873          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5874          * we must uncharge here.
5875          */
5876         if (mc.moved_charge) {
5877                 cancel_charge(mc.from, mc.moved_charge);
5878                 mc.moved_charge = 0;
5879         }
5880         /* we must fixup refcnts and charges */
5881         if (mc.moved_swap) {
5882                 /* uncharge swap account from the old cgroup */
5883                 if (!mem_cgroup_is_root(mc.from))
5884                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5885
5886                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5887
5888                 /*
5889                  * we charged both to->memory and to->memsw, so we
5890                  * should uncharge to->memory.
5891                  */
5892                 if (!mem_cgroup_is_root(mc.to))
5893                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5894
5895                 mc.moved_swap = 0;
5896         }
5897         memcg_oom_recover(from);
5898         memcg_oom_recover(to);
5899         wake_up_all(&mc.waitq);
5900 }
5901
5902 static void mem_cgroup_clear_mc(void)
5903 {
5904         struct mm_struct *mm = mc.mm;
5905
5906         /*
5907          * we must clear moving_task before waking up waiters at the end of
5908          * task migration.
5909          */
5910         mc.moving_task = NULL;
5911         __mem_cgroup_clear_mc();
5912         spin_lock(&mc.lock);
5913         mc.from = NULL;
5914         mc.to = NULL;
5915         mc.mm = NULL;
5916         spin_unlock(&mc.lock);
5917
5918         mmput(mm);
5919 }
5920
5921 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5922 {
5923         struct cgroup_subsys_state *css;
5924         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5925         struct mem_cgroup *from;
5926         struct task_struct *leader, *p;
5927         struct mm_struct *mm;
5928         unsigned long move_flags;
5929         int ret = 0;
5930
5931         /* charge immigration isn't supported on the default hierarchy */
5932         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5933                 return 0;
5934
5935         /*
5936          * Multi-process migrations only happen on the default hierarchy
5937          * where charge immigration is not used.  Perform charge
5938          * immigration if @tset contains a leader and whine if there are
5939          * multiple.
5940          */
5941         p = NULL;
5942         cgroup_taskset_for_each_leader(leader, css, tset) {
5943                 WARN_ON_ONCE(p);
5944                 p = leader;
5945                 memcg = mem_cgroup_from_css(css);
5946         }
5947         if (!p)
5948                 return 0;
5949
5950         /*
5951          * We are now committed to this value whatever it is. Changes in this
5952          * tunable will only affect upcoming migrations, not the current one.
5953          * So we need to save it, and keep it going.
5954          */
5955         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5956         if (!move_flags)
5957                 return 0;
5958
5959         from = mem_cgroup_from_task(p);
5960
5961         VM_BUG_ON(from == memcg);
5962
5963         mm = get_task_mm(p);
5964         if (!mm)
5965                 return 0;
5966         /* We move charges only when we move a owner of the mm */
5967         if (mm->owner == p) {
5968                 VM_BUG_ON(mc.from);
5969                 VM_BUG_ON(mc.to);
5970                 VM_BUG_ON(mc.precharge);
5971                 VM_BUG_ON(mc.moved_charge);
5972                 VM_BUG_ON(mc.moved_swap);
5973
5974                 spin_lock(&mc.lock);
5975                 mc.mm = mm;
5976                 mc.from = from;
5977                 mc.to = memcg;
5978                 mc.flags = move_flags;
5979                 spin_unlock(&mc.lock);
5980                 /* We set mc.moving_task later */
5981
5982                 ret = mem_cgroup_precharge_mc(mm);
5983                 if (ret)
5984                         mem_cgroup_clear_mc();
5985         } else {
5986                 mmput(mm);
5987         }
5988         return ret;
5989 }
5990
5991 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5992 {
5993         if (mc.to)
5994                 mem_cgroup_clear_mc();
5995 }
5996
5997 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5998                                 unsigned long addr, unsigned long end,
5999                                 struct mm_walk *walk)
6000 {
6001         int ret = 0;
6002         struct vm_area_struct *vma = walk->vma;
6003         pte_t *pte;
6004         spinlock_t *ptl;
6005         enum mc_target_type target_type;
6006         union mc_target target;
6007         struct page *page;
6008
6009         ptl = pmd_trans_huge_lock(pmd, vma);
6010         if (ptl) {
6011                 if (mc.precharge < HPAGE_PMD_NR) {
6012                         spin_unlock(ptl);
6013                         return 0;
6014                 }
6015                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6016                 if (target_type == MC_TARGET_PAGE) {
6017                         page = target.page;
6018                         if (!isolate_lru_page(page)) {
6019                                 if (!mem_cgroup_move_account(page, true,
6020                                                              mc.from, mc.to)) {
6021                                         mc.precharge -= HPAGE_PMD_NR;
6022                                         mc.moved_charge += HPAGE_PMD_NR;
6023                                 }
6024                                 putback_lru_page(page);
6025                         }
6026                         put_page(page);
6027                 } else if (target_type == MC_TARGET_DEVICE) {
6028                         page = target.page;
6029                         if (!mem_cgroup_move_account(page, true,
6030                                                      mc.from, mc.to)) {
6031                                 mc.precharge -= HPAGE_PMD_NR;
6032                                 mc.moved_charge += HPAGE_PMD_NR;
6033                         }
6034                         put_page(page);
6035                 }
6036                 spin_unlock(ptl);
6037                 return 0;
6038         }
6039
6040         if (pmd_trans_unstable(pmd))
6041                 return 0;
6042 retry:
6043         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6044         for (; addr != end; addr += PAGE_SIZE) {
6045                 pte_t ptent = *(pte++);
6046                 bool device = false;
6047                 swp_entry_t ent;
6048
6049                 if (!mc.precharge)
6050                         break;
6051
6052                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6053                 case MC_TARGET_DEVICE:
6054                         device = true;
6055                         fallthrough;
6056                 case MC_TARGET_PAGE:
6057                         page = target.page;
6058                         /*
6059                          * We can have a part of the split pmd here. Moving it
6060                          * can be done but it would be too convoluted so simply
6061                          * ignore such a partial THP and keep it in original
6062                          * memcg. There should be somebody mapping the head.
6063                          */
6064                         if (PageTransCompound(page))
6065                                 goto put;
6066                         if (!device && isolate_lru_page(page))
6067                                 goto put;
6068                         if (!mem_cgroup_move_account(page, false,
6069                                                 mc.from, mc.to)) {
6070                                 mc.precharge--;
6071                                 /* we uncharge from mc.from later. */
6072                                 mc.moved_charge++;
6073                         }
6074                         if (!device)
6075                                 putback_lru_page(page);
6076 put:                    /* get_mctgt_type() gets the page */
6077                         put_page(page);
6078                         break;
6079                 case MC_TARGET_SWAP:
6080                         ent = target.ent;
6081                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6082                                 mc.precharge--;
6083                                 mem_cgroup_id_get_many(mc.to, 1);
6084                                 /* we fixup other refcnts and charges later. */
6085                                 mc.moved_swap++;
6086                         }
6087                         break;
6088                 default:
6089                         break;
6090                 }
6091         }
6092         pte_unmap_unlock(pte - 1, ptl);
6093         cond_resched();
6094
6095         if (addr != end) {
6096                 /*
6097                  * We have consumed all precharges we got in can_attach().
6098                  * We try charge one by one, but don't do any additional
6099                  * charges to mc.to if we have failed in charge once in attach()
6100                  * phase.
6101                  */
6102                 ret = mem_cgroup_do_precharge(1);
6103                 if (!ret)
6104                         goto retry;
6105         }
6106
6107         return ret;
6108 }
6109
6110 static const struct mm_walk_ops charge_walk_ops = {
6111         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6112 };
6113
6114 static void mem_cgroup_move_charge(void)
6115 {
6116         lru_add_drain_all();
6117         /*
6118          * Signal lock_page_memcg() to take the memcg's move_lock
6119          * while we're moving its pages to another memcg. Then wait
6120          * for already started RCU-only updates to finish.
6121          */
6122         atomic_inc(&mc.from->moving_account);
6123         synchronize_rcu();
6124 retry:
6125         if (unlikely(!mmap_read_trylock(mc.mm))) {
6126                 /*
6127                  * Someone who are holding the mmap_lock might be waiting in
6128                  * waitq. So we cancel all extra charges, wake up all waiters,
6129                  * and retry. Because we cancel precharges, we might not be able
6130                  * to move enough charges, but moving charge is a best-effort
6131                  * feature anyway, so it wouldn't be a big problem.
6132                  */
6133                 __mem_cgroup_clear_mc();
6134                 cond_resched();
6135                 goto retry;
6136         }
6137         /*
6138          * When we have consumed all precharges and failed in doing
6139          * additional charge, the page walk just aborts.
6140          */
6141         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6142                         NULL);
6143
6144         mmap_read_unlock(mc.mm);
6145         atomic_dec(&mc.from->moving_account);
6146 }
6147
6148 static void mem_cgroup_move_task(void)
6149 {
6150         if (mc.to) {
6151                 mem_cgroup_move_charge();
6152                 mem_cgroup_clear_mc();
6153         }
6154 }
6155 #else   /* !CONFIG_MMU */
6156 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6157 {
6158         return 0;
6159 }
6160 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6161 {
6162 }
6163 static void mem_cgroup_move_task(void)
6164 {
6165 }
6166 #endif
6167
6168 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6169 {
6170         if (value == PAGE_COUNTER_MAX)
6171                 seq_puts(m, "max\n");
6172         else
6173                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6174
6175         return 0;
6176 }
6177
6178 static u64 memory_current_read(struct cgroup_subsys_state *css,
6179                                struct cftype *cft)
6180 {
6181         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6182
6183         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6184 }
6185
6186 static int memory_min_show(struct seq_file *m, void *v)
6187 {
6188         return seq_puts_memcg_tunable(m,
6189                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6190 }
6191
6192 static ssize_t memory_min_write(struct kernfs_open_file *of,
6193                                 char *buf, size_t nbytes, loff_t off)
6194 {
6195         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6196         unsigned long min;
6197         int err;
6198
6199         buf = strstrip(buf);
6200         err = page_counter_memparse(buf, "max", &min);
6201         if (err)
6202                 return err;
6203
6204         page_counter_set_min(&memcg->memory, min);
6205
6206         return nbytes;
6207 }
6208
6209 static int memory_low_show(struct seq_file *m, void *v)
6210 {
6211         return seq_puts_memcg_tunable(m,
6212                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6213 }
6214
6215 static ssize_t memory_low_write(struct kernfs_open_file *of,
6216                                 char *buf, size_t nbytes, loff_t off)
6217 {
6218         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6219         unsigned long low;
6220         int err;
6221
6222         buf = strstrip(buf);
6223         err = page_counter_memparse(buf, "max", &low);
6224         if (err)
6225                 return err;
6226
6227         page_counter_set_low(&memcg->memory, low);
6228
6229         return nbytes;
6230 }
6231
6232 static int memory_high_show(struct seq_file *m, void *v)
6233 {
6234         return seq_puts_memcg_tunable(m,
6235                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6236 }
6237
6238 static ssize_t memory_high_write(struct kernfs_open_file *of,
6239                                  char *buf, size_t nbytes, loff_t off)
6240 {
6241         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6242         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6243         bool drained = false;
6244         unsigned long high;
6245         int err;
6246
6247         buf = strstrip(buf);
6248         err = page_counter_memparse(buf, "max", &high);
6249         if (err)
6250                 return err;
6251
6252         page_counter_set_high(&memcg->memory, high);
6253
6254         for (;;) {
6255                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6256                 unsigned long reclaimed;
6257
6258                 if (nr_pages <= high)
6259                         break;
6260
6261                 if (signal_pending(current))
6262                         break;
6263
6264                 if (!drained) {
6265                         drain_all_stock(memcg);
6266                         drained = true;
6267                         continue;
6268                 }
6269
6270                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6271                                                          GFP_KERNEL, true);
6272
6273                 if (!reclaimed && !nr_retries--)
6274                         break;
6275         }
6276
6277         memcg_wb_domain_size_changed(memcg);
6278         return nbytes;
6279 }
6280
6281 static int memory_max_show(struct seq_file *m, void *v)
6282 {
6283         return seq_puts_memcg_tunable(m,
6284                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6285 }
6286
6287 static ssize_t memory_max_write(struct kernfs_open_file *of,
6288                                 char *buf, size_t nbytes, loff_t off)
6289 {
6290         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6291         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6292         bool drained = false;
6293         unsigned long max;
6294         int err;
6295
6296         buf = strstrip(buf);
6297         err = page_counter_memparse(buf, "max", &max);
6298         if (err)
6299                 return err;
6300
6301         xchg(&memcg->memory.max, max);
6302
6303         for (;;) {
6304                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6305
6306                 if (nr_pages <= max)
6307                         break;
6308
6309                 if (signal_pending(current))
6310                         break;
6311
6312                 if (!drained) {
6313                         drain_all_stock(memcg);
6314                         drained = true;
6315                         continue;
6316                 }
6317
6318                 if (nr_reclaims) {
6319                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6320                                                           GFP_KERNEL, true))
6321                                 nr_reclaims--;
6322                         continue;
6323                 }
6324
6325                 memcg_memory_event(memcg, MEMCG_OOM);
6326                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6327                         break;
6328         }
6329
6330         memcg_wb_domain_size_changed(memcg);
6331         return nbytes;
6332 }
6333
6334 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6335 {
6336         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6337         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6338         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6339         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6340         seq_printf(m, "oom_kill %lu\n",
6341                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6342 }
6343
6344 static int memory_events_show(struct seq_file *m, void *v)
6345 {
6346         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6347
6348         __memory_events_show(m, memcg->memory_events);
6349         return 0;
6350 }
6351
6352 static int memory_events_local_show(struct seq_file *m, void *v)
6353 {
6354         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6355
6356         __memory_events_show(m, memcg->memory_events_local);
6357         return 0;
6358 }
6359
6360 static int memory_stat_show(struct seq_file *m, void *v)
6361 {
6362         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6363         char *buf;
6364
6365         buf = memory_stat_format(memcg);
6366         if (!buf)
6367                 return -ENOMEM;
6368         seq_puts(m, buf);
6369         kfree(buf);
6370         return 0;
6371 }
6372
6373 #ifdef CONFIG_NUMA
6374 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6375                                                      int item)
6376 {
6377         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6378 }
6379
6380 static int memory_numa_stat_show(struct seq_file *m, void *v)
6381 {
6382         int i;
6383         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6384
6385         cgroup_rstat_flush(memcg->css.cgroup);
6386
6387         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6388                 int nid;
6389
6390                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6391                         continue;
6392
6393                 seq_printf(m, "%s", memory_stats[i].name);
6394                 for_each_node_state(nid, N_MEMORY) {
6395                         u64 size;
6396                         struct lruvec *lruvec;
6397
6398                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6399                         size = lruvec_page_state_output(lruvec,
6400                                                         memory_stats[i].idx);
6401                         seq_printf(m, " N%d=%llu", nid, size);
6402                 }
6403                 seq_putc(m, '\n');
6404         }
6405
6406         return 0;
6407 }
6408 #endif
6409
6410 static int memory_oom_group_show(struct seq_file *m, void *v)
6411 {
6412         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6413
6414         seq_printf(m, "%d\n", memcg->oom_group);
6415
6416         return 0;
6417 }
6418
6419 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6420                                       char *buf, size_t nbytes, loff_t off)
6421 {
6422         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6423         int ret, oom_group;
6424
6425         buf = strstrip(buf);
6426         if (!buf)
6427                 return -EINVAL;
6428
6429         ret = kstrtoint(buf, 0, &oom_group);
6430         if (ret)
6431                 return ret;
6432
6433         if (oom_group != 0 && oom_group != 1)
6434                 return -EINVAL;
6435
6436         memcg->oom_group = oom_group;
6437
6438         return nbytes;
6439 }
6440
6441 static struct cftype memory_files[] = {
6442         {
6443                 .name = "current",
6444                 .flags = CFTYPE_NOT_ON_ROOT,
6445                 .read_u64 = memory_current_read,
6446         },
6447         {
6448                 .name = "min",
6449                 .flags = CFTYPE_NOT_ON_ROOT,
6450                 .seq_show = memory_min_show,
6451                 .write = memory_min_write,
6452         },
6453         {
6454                 .name = "low",
6455                 .flags = CFTYPE_NOT_ON_ROOT,
6456                 .seq_show = memory_low_show,
6457                 .write = memory_low_write,
6458         },
6459         {
6460                 .name = "high",
6461                 .flags = CFTYPE_NOT_ON_ROOT,
6462                 .seq_show = memory_high_show,
6463                 .write = memory_high_write,
6464         },
6465         {
6466                 .name = "max",
6467                 .flags = CFTYPE_NOT_ON_ROOT,
6468                 .seq_show = memory_max_show,
6469                 .write = memory_max_write,
6470         },
6471         {
6472                 .name = "events",
6473                 .flags = CFTYPE_NOT_ON_ROOT,
6474                 .file_offset = offsetof(struct mem_cgroup, events_file),
6475                 .seq_show = memory_events_show,
6476         },
6477         {
6478                 .name = "events.local",
6479                 .flags = CFTYPE_NOT_ON_ROOT,
6480                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6481                 .seq_show = memory_events_local_show,
6482         },
6483         {
6484                 .name = "stat",
6485                 .seq_show = memory_stat_show,
6486         },
6487 #ifdef CONFIG_NUMA
6488         {
6489                 .name = "numa_stat",
6490                 .seq_show = memory_numa_stat_show,
6491         },
6492 #endif
6493         {
6494                 .name = "oom.group",
6495                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6496                 .seq_show = memory_oom_group_show,
6497                 .write = memory_oom_group_write,
6498         },
6499         { }     /* terminate */
6500 };
6501
6502 struct cgroup_subsys memory_cgrp_subsys = {
6503         .css_alloc = mem_cgroup_css_alloc,
6504         .css_online = mem_cgroup_css_online,
6505         .css_offline = mem_cgroup_css_offline,
6506         .css_released = mem_cgroup_css_released,
6507         .css_free = mem_cgroup_css_free,
6508         .css_reset = mem_cgroup_css_reset,
6509         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6510         .can_attach = mem_cgroup_can_attach,
6511         .cancel_attach = mem_cgroup_cancel_attach,
6512         .post_attach = mem_cgroup_move_task,
6513         .dfl_cftypes = memory_files,
6514         .legacy_cftypes = mem_cgroup_legacy_files,
6515         .early_init = 0,
6516 };
6517
6518 /*
6519  * This function calculates an individual cgroup's effective
6520  * protection which is derived from its own memory.min/low, its
6521  * parent's and siblings' settings, as well as the actual memory
6522  * distribution in the tree.
6523  *
6524  * The following rules apply to the effective protection values:
6525  *
6526  * 1. At the first level of reclaim, effective protection is equal to
6527  *    the declared protection in memory.min and memory.low.
6528  *
6529  * 2. To enable safe delegation of the protection configuration, at
6530  *    subsequent levels the effective protection is capped to the
6531  *    parent's effective protection.
6532  *
6533  * 3. To make complex and dynamic subtrees easier to configure, the
6534  *    user is allowed to overcommit the declared protection at a given
6535  *    level. If that is the case, the parent's effective protection is
6536  *    distributed to the children in proportion to how much protection
6537  *    they have declared and how much of it they are utilizing.
6538  *
6539  *    This makes distribution proportional, but also work-conserving:
6540  *    if one cgroup claims much more protection than it uses memory,
6541  *    the unused remainder is available to its siblings.
6542  *
6543  * 4. Conversely, when the declared protection is undercommitted at a
6544  *    given level, the distribution of the larger parental protection
6545  *    budget is NOT proportional. A cgroup's protection from a sibling
6546  *    is capped to its own memory.min/low setting.
6547  *
6548  * 5. However, to allow protecting recursive subtrees from each other
6549  *    without having to declare each individual cgroup's fixed share
6550  *    of the ancestor's claim to protection, any unutilized -
6551  *    "floating" - protection from up the tree is distributed in
6552  *    proportion to each cgroup's *usage*. This makes the protection
6553  *    neutral wrt sibling cgroups and lets them compete freely over
6554  *    the shared parental protection budget, but it protects the
6555  *    subtree as a whole from neighboring subtrees.
6556  *
6557  * Note that 4. and 5. are not in conflict: 4. is about protecting
6558  * against immediate siblings whereas 5. is about protecting against
6559  * neighboring subtrees.
6560  */
6561 static unsigned long effective_protection(unsigned long usage,
6562                                           unsigned long parent_usage,
6563                                           unsigned long setting,
6564                                           unsigned long parent_effective,
6565                                           unsigned long siblings_protected)
6566 {
6567         unsigned long protected;
6568         unsigned long ep;
6569
6570         protected = min(usage, setting);
6571         /*
6572          * If all cgroups at this level combined claim and use more
6573          * protection then what the parent affords them, distribute
6574          * shares in proportion to utilization.
6575          *
6576          * We are using actual utilization rather than the statically
6577          * claimed protection in order to be work-conserving: claimed
6578          * but unused protection is available to siblings that would
6579          * otherwise get a smaller chunk than what they claimed.
6580          */
6581         if (siblings_protected > parent_effective)
6582                 return protected * parent_effective / siblings_protected;
6583
6584         /*
6585          * Ok, utilized protection of all children is within what the
6586          * parent affords them, so we know whatever this child claims
6587          * and utilizes is effectively protected.
6588          *
6589          * If there is unprotected usage beyond this value, reclaim
6590          * will apply pressure in proportion to that amount.
6591          *
6592          * If there is unutilized protection, the cgroup will be fully
6593          * shielded from reclaim, but we do return a smaller value for
6594          * protection than what the group could enjoy in theory. This
6595          * is okay. With the overcommit distribution above, effective
6596          * protection is always dependent on how memory is actually
6597          * consumed among the siblings anyway.
6598          */
6599         ep = protected;
6600
6601         /*
6602          * If the children aren't claiming (all of) the protection
6603          * afforded to them by the parent, distribute the remainder in
6604          * proportion to the (unprotected) memory of each cgroup. That
6605          * way, cgroups that aren't explicitly prioritized wrt each
6606          * other compete freely over the allowance, but they are
6607          * collectively protected from neighboring trees.
6608          *
6609          * We're using unprotected memory for the weight so that if
6610          * some cgroups DO claim explicit protection, we don't protect
6611          * the same bytes twice.
6612          *
6613          * Check both usage and parent_usage against the respective
6614          * protected values. One should imply the other, but they
6615          * aren't read atomically - make sure the division is sane.
6616          */
6617         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6618                 return ep;
6619         if (parent_effective > siblings_protected &&
6620             parent_usage > siblings_protected &&
6621             usage > protected) {
6622                 unsigned long unclaimed;
6623
6624                 unclaimed = parent_effective - siblings_protected;
6625                 unclaimed *= usage - protected;
6626                 unclaimed /= parent_usage - siblings_protected;
6627
6628                 ep += unclaimed;
6629         }
6630
6631         return ep;
6632 }
6633
6634 /**
6635  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6636  * @root: the top ancestor of the sub-tree being checked
6637  * @memcg: the memory cgroup to check
6638  *
6639  * WARNING: This function is not stateless! It can only be used as part
6640  *          of a top-down tree iteration, not for isolated queries.
6641  */
6642 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6643                                      struct mem_cgroup *memcg)
6644 {
6645         unsigned long usage, parent_usage;
6646         struct mem_cgroup *parent;
6647
6648         if (mem_cgroup_disabled())
6649                 return;
6650
6651         if (!root)
6652                 root = root_mem_cgroup;
6653
6654         /*
6655          * Effective values of the reclaim targets are ignored so they
6656          * can be stale. Have a look at mem_cgroup_protection for more
6657          * details.
6658          * TODO: calculation should be more robust so that we do not need
6659          * that special casing.
6660          */
6661         if (memcg == root)
6662                 return;
6663
6664         usage = page_counter_read(&memcg->memory);
6665         if (!usage)
6666                 return;
6667
6668         parent = parent_mem_cgroup(memcg);
6669         /* No parent means a non-hierarchical mode on v1 memcg */
6670         if (!parent)
6671                 return;
6672
6673         if (parent == root) {
6674                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6675                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6676                 return;
6677         }
6678
6679         parent_usage = page_counter_read(&parent->memory);
6680
6681         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6682                         READ_ONCE(memcg->memory.min),
6683                         READ_ONCE(parent->memory.emin),
6684                         atomic_long_read(&parent->memory.children_min_usage)));
6685
6686         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6687                         READ_ONCE(memcg->memory.low),
6688                         READ_ONCE(parent->memory.elow),
6689                         atomic_long_read(&parent->memory.children_low_usage)));
6690 }
6691
6692 static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
6693 {
6694         unsigned int nr_pages = thp_nr_pages(page);
6695         int ret;
6696
6697         ret = try_charge(memcg, gfp, nr_pages);
6698         if (ret)
6699                 goto out;
6700
6701         css_get(&memcg->css);
6702         commit_charge(page, memcg);
6703
6704         local_irq_disable();
6705         mem_cgroup_charge_statistics(memcg, page, nr_pages);
6706         memcg_check_events(memcg, page);
6707         local_irq_enable();
6708 out:
6709         return ret;
6710 }
6711
6712 /**
6713  * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6714  * @page: page to charge
6715  * @mm: mm context of the victim
6716  * @gfp_mask: reclaim mode
6717  *
6718  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6719  * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6720  * charge to the active memcg.
6721  *
6722  * Do not use this for pages allocated for swapin.
6723  *
6724  * Returns 0 on success. Otherwise, an error code is returned.
6725  */
6726 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6727                         gfp_t gfp_mask)
6728 {
6729         struct mem_cgroup *memcg;
6730         int ret;
6731
6732         memcg = get_mem_cgroup_from_mm(mm);
6733         ret = charge_memcg(page, memcg, gfp_mask);
6734         css_put(&memcg->css);
6735
6736         return ret;
6737 }
6738
6739 /**
6740  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6741  * @page: page to charge
6742  * @mm: mm context of the victim
6743  * @gfp: reclaim mode
6744  * @entry: swap entry for which the page is allocated
6745  *
6746  * This function charges a page allocated for swapin. Please call this before
6747  * adding the page to the swapcache.
6748  *
6749  * Returns 0 on success. Otherwise, an error code is returned.
6750  */
6751 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6752                                   gfp_t gfp, swp_entry_t entry)
6753 {
6754         struct mem_cgroup *memcg;
6755         unsigned short id;
6756         int ret;
6757
6758         if (mem_cgroup_disabled())
6759                 return 0;
6760
6761         id = lookup_swap_cgroup_id(entry);
6762         rcu_read_lock();
6763         memcg = mem_cgroup_from_id(id);
6764         if (!memcg || !css_tryget_online(&memcg->css))
6765                 memcg = get_mem_cgroup_from_mm(mm);
6766         rcu_read_unlock();
6767
6768         ret = charge_memcg(page, memcg, gfp);
6769
6770         css_put(&memcg->css);
6771         return ret;
6772 }
6773
6774 /*
6775  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6776  * @entry: swap entry for which the page is charged
6777  *
6778  * Call this function after successfully adding the charged page to swapcache.
6779  *
6780  * Note: This function assumes the page for which swap slot is being uncharged
6781  * is order 0 page.
6782  */
6783 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6784 {
6785         /*
6786          * Cgroup1's unified memory+swap counter has been charged with the
6787          * new swapcache page, finish the transfer by uncharging the swap
6788          * slot. The swap slot would also get uncharged when it dies, but
6789          * it can stick around indefinitely and we'd count the page twice
6790          * the entire time.
6791          *
6792          * Cgroup2 has separate resource counters for memory and swap,
6793          * so this is a non-issue here. Memory and swap charge lifetimes
6794          * correspond 1:1 to page and swap slot lifetimes: we charge the
6795          * page to memory here, and uncharge swap when the slot is freed.
6796          */
6797         if (!mem_cgroup_disabled() && do_memsw_account()) {
6798                 /*
6799                  * The swap entry might not get freed for a long time,
6800                  * let's not wait for it.  The page already received a
6801                  * memory+swap charge, drop the swap entry duplicate.
6802                  */
6803                 mem_cgroup_uncharge_swap(entry, 1);
6804         }
6805 }
6806
6807 struct uncharge_gather {
6808         struct mem_cgroup *memcg;
6809         unsigned long nr_memory;
6810         unsigned long pgpgout;
6811         unsigned long nr_kmem;
6812         struct page *dummy_page;
6813 };
6814
6815 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6816 {
6817         memset(ug, 0, sizeof(*ug));
6818 }
6819
6820 static void uncharge_batch(const struct uncharge_gather *ug)
6821 {
6822         unsigned long flags;
6823
6824         if (ug->nr_memory) {
6825                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6826                 if (do_memsw_account())
6827                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6828                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6829                         page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6830                 memcg_oom_recover(ug->memcg);
6831         }
6832
6833         local_irq_save(flags);
6834         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6835         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6836         memcg_check_events(ug->memcg, ug->dummy_page);
6837         local_irq_restore(flags);
6838
6839         /* drop reference from uncharge_page */
6840         css_put(&ug->memcg->css);
6841 }
6842
6843 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6844 {
6845         unsigned long nr_pages;
6846         struct mem_cgroup *memcg;
6847         struct obj_cgroup *objcg;
6848         bool use_objcg = PageMemcgKmem(page);
6849
6850         VM_BUG_ON_PAGE(PageLRU(page), page);
6851
6852         /*
6853          * Nobody should be changing or seriously looking at
6854          * page memcg or objcg at this point, we have fully
6855          * exclusive access to the page.
6856          */
6857         if (use_objcg) {
6858                 objcg = __page_objcg(page);
6859                 /*
6860                  * This get matches the put at the end of the function and
6861                  * kmem pages do not hold memcg references anymore.
6862                  */
6863                 memcg = get_mem_cgroup_from_objcg(objcg);
6864         } else {
6865                 memcg = __page_memcg(page);
6866         }
6867
6868         if (!memcg)
6869                 return;
6870
6871         if (ug->memcg != memcg) {
6872                 if (ug->memcg) {
6873                         uncharge_batch(ug);
6874                         uncharge_gather_clear(ug);
6875                 }
6876                 ug->memcg = memcg;
6877                 ug->dummy_page = page;
6878
6879                 /* pairs with css_put in uncharge_batch */
6880                 css_get(&memcg->css);
6881         }
6882
6883         nr_pages = compound_nr(page);
6884
6885         if (use_objcg) {
6886                 ug->nr_memory += nr_pages;
6887                 ug->nr_kmem += nr_pages;
6888
6889                 page->memcg_data = 0;
6890                 obj_cgroup_put(objcg);
6891         } else {
6892                 /* LRU pages aren't accounted at the root level */
6893                 if (!mem_cgroup_is_root(memcg))
6894                         ug->nr_memory += nr_pages;
6895                 ug->pgpgout++;
6896
6897                 page->memcg_data = 0;
6898         }
6899
6900         css_put(&memcg->css);
6901 }
6902
6903 /**
6904  * __mem_cgroup_uncharge - uncharge a page
6905  * @page: page to uncharge
6906  *
6907  * Uncharge a page previously charged with __mem_cgroup_charge().
6908  */
6909 void __mem_cgroup_uncharge(struct page *page)
6910 {
6911         struct uncharge_gather ug;
6912
6913         /* Don't touch page->lru of any random page, pre-check: */
6914         if (!page_memcg(page))
6915                 return;
6916
6917         uncharge_gather_clear(&ug);
6918         uncharge_page(page, &ug);
6919         uncharge_batch(&ug);
6920 }
6921
6922 /**
6923  * __mem_cgroup_uncharge_list - uncharge a list of page
6924  * @page_list: list of pages to uncharge
6925  *
6926  * Uncharge a list of pages previously charged with
6927  * __mem_cgroup_charge().
6928  */
6929 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6930 {
6931         struct uncharge_gather ug;
6932         struct page *page;
6933
6934         uncharge_gather_clear(&ug);
6935         list_for_each_entry(page, page_list, lru)
6936                 uncharge_page(page, &ug);
6937         if (ug.memcg)
6938                 uncharge_batch(&ug);
6939 }
6940
6941 /**
6942  * mem_cgroup_migrate - charge a page's replacement
6943  * @oldpage: currently circulating page
6944  * @newpage: replacement page
6945  *
6946  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6947  * be uncharged upon free.
6948  *
6949  * Both pages must be locked, @newpage->mapping must be set up.
6950  */
6951 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6952 {
6953         struct mem_cgroup *memcg;
6954         unsigned int nr_pages;
6955         unsigned long flags;
6956
6957         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6958         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6959         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6960         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6961                        newpage);
6962
6963         if (mem_cgroup_disabled())
6964                 return;
6965
6966         /* Page cache replacement: new page already charged? */
6967         if (page_memcg(newpage))
6968                 return;
6969
6970         memcg = page_memcg(oldpage);
6971         VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6972         if (!memcg)
6973                 return;
6974
6975         /* Force-charge the new page. The old one will be freed soon */
6976         nr_pages = thp_nr_pages(newpage);
6977
6978         if (!mem_cgroup_is_root(memcg)) {
6979                 page_counter_charge(&memcg->memory, nr_pages);
6980                 if (do_memsw_account())
6981                         page_counter_charge(&memcg->memsw, nr_pages);
6982         }
6983
6984         css_get(&memcg->css);
6985         commit_charge(newpage, memcg);
6986
6987         local_irq_save(flags);
6988         mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6989         memcg_check_events(memcg, newpage);
6990         local_irq_restore(flags);
6991 }
6992
6993 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6994 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6995
6996 void mem_cgroup_sk_alloc(struct sock *sk)
6997 {
6998         struct mem_cgroup *memcg;
6999
7000         if (!mem_cgroup_sockets_enabled)
7001                 return;
7002
7003         /* Do not associate the sock with unrelated interrupted task's memcg. */
7004         if (in_interrupt())
7005                 return;
7006
7007         rcu_read_lock();
7008         memcg = mem_cgroup_from_task(current);
7009         if (memcg == root_mem_cgroup)
7010                 goto out;
7011         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7012                 goto out;
7013         if (css_tryget(&memcg->css))
7014                 sk->sk_memcg = memcg;
7015 out:
7016         rcu_read_unlock();
7017 }
7018
7019 void mem_cgroup_sk_free(struct sock *sk)
7020 {
7021         if (sk->sk_memcg)
7022                 css_put(&sk->sk_memcg->css);
7023 }
7024
7025 /**
7026  * mem_cgroup_charge_skmem - charge socket memory
7027  * @memcg: memcg to charge
7028  * @nr_pages: number of pages to charge
7029  *
7030  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7031  * @memcg's configured limit, %false if the charge had to be forced.
7032  */
7033 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7034 {
7035         gfp_t gfp_mask = GFP_KERNEL;
7036
7037         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7038                 struct page_counter *fail;
7039
7040                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7041                         memcg->tcpmem_pressure = 0;
7042                         return true;
7043                 }
7044                 page_counter_charge(&memcg->tcpmem, nr_pages);
7045                 memcg->tcpmem_pressure = 1;
7046                 return false;
7047         }
7048
7049         /* Don't block in the packet receive path */
7050         if (in_softirq())
7051                 gfp_mask = GFP_NOWAIT;
7052
7053         mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7054
7055         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7056                 return true;
7057
7058         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7059         return false;
7060 }
7061
7062 /**
7063  * mem_cgroup_uncharge_skmem - uncharge socket memory
7064  * @memcg: memcg to uncharge
7065  * @nr_pages: number of pages to uncharge
7066  */
7067 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7068 {
7069         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7070                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7071                 return;
7072         }
7073
7074         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7075
7076         refill_stock(memcg, nr_pages);
7077 }
7078
7079 static int __init cgroup_memory(char *s)
7080 {
7081         char *token;
7082
7083         while ((token = strsep(&s, ",")) != NULL) {
7084                 if (!*token)
7085                         continue;
7086                 if (!strcmp(token, "nosocket"))
7087                         cgroup_memory_nosocket = true;
7088                 if (!strcmp(token, "nokmem"))
7089                         cgroup_memory_nokmem = true;
7090         }
7091         return 0;
7092 }
7093 __setup("cgroup.memory=", cgroup_memory);
7094
7095 /*
7096  * subsys_initcall() for memory controller.
7097  *
7098  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7099  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7100  * basically everything that doesn't depend on a specific mem_cgroup structure
7101  * should be initialized from here.
7102  */
7103 static int __init mem_cgroup_init(void)
7104 {
7105         int cpu, node;
7106
7107         /*
7108          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7109          * used for per-memcg-per-cpu caching of per-node statistics. In order
7110          * to work fine, we should make sure that the overfill threshold can't
7111          * exceed S32_MAX / PAGE_SIZE.
7112          */
7113         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7114
7115         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7116                                   memcg_hotplug_cpu_dead);
7117
7118         for_each_possible_cpu(cpu)
7119                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7120                           drain_local_stock);
7121
7122         for_each_node(node) {
7123                 struct mem_cgroup_tree_per_node *rtpn;
7124
7125                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7126                                     node_online(node) ? node : NUMA_NO_NODE);
7127
7128                 rtpn->rb_root = RB_ROOT;
7129                 rtpn->rb_rightmost = NULL;
7130                 spin_lock_init(&rtpn->lock);
7131                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7132         }
7133
7134         return 0;
7135 }
7136 subsys_initcall(mem_cgroup_init);
7137
7138 #ifdef CONFIG_MEMCG_SWAP
7139 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7140 {
7141         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7142                 /*
7143                  * The root cgroup cannot be destroyed, so it's refcount must
7144                  * always be >= 1.
7145                  */
7146                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7147                         VM_BUG_ON(1);
7148                         break;
7149                 }
7150                 memcg = parent_mem_cgroup(memcg);
7151                 if (!memcg)
7152                         memcg = root_mem_cgroup;
7153         }
7154         return memcg;
7155 }
7156
7157 /**
7158  * mem_cgroup_swapout - transfer a memsw charge to swap
7159  * @page: page whose memsw charge to transfer
7160  * @entry: swap entry to move the charge to
7161  *
7162  * Transfer the memsw charge of @page to @entry.
7163  */
7164 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7165 {
7166         struct mem_cgroup *memcg, *swap_memcg;
7167         unsigned int nr_entries;
7168         unsigned short oldid;
7169
7170         VM_BUG_ON_PAGE(PageLRU(page), page);
7171         VM_BUG_ON_PAGE(page_count(page), page);
7172
7173         if (mem_cgroup_disabled())
7174                 return;
7175
7176         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7177                 return;
7178
7179         memcg = page_memcg(page);
7180
7181         VM_WARN_ON_ONCE_PAGE(!memcg, page);
7182         if (!memcg)
7183                 return;
7184
7185         /*
7186          * In case the memcg owning these pages has been offlined and doesn't
7187          * have an ID allocated to it anymore, charge the closest online
7188          * ancestor for the swap instead and transfer the memory+swap charge.
7189          */
7190         swap_memcg = mem_cgroup_id_get_online(memcg);
7191         nr_entries = thp_nr_pages(page);
7192         /* Get references for the tail pages, too */
7193         if (nr_entries > 1)
7194                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7195         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7196                                    nr_entries);
7197         VM_BUG_ON_PAGE(oldid, page);
7198         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7199
7200         page->memcg_data = 0;
7201
7202         if (!mem_cgroup_is_root(memcg))
7203                 page_counter_uncharge(&memcg->memory, nr_entries);
7204
7205         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7206                 if (!mem_cgroup_is_root(swap_memcg))
7207                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7208                 page_counter_uncharge(&memcg->memsw, nr_entries);
7209         }
7210
7211         /*
7212          * Interrupts should be disabled here because the caller holds the
7213          * i_pages lock which is taken with interrupts-off. It is
7214          * important here to have the interrupts disabled because it is the
7215          * only synchronisation we have for updating the per-CPU variables.
7216          */
7217         VM_BUG_ON(!irqs_disabled());
7218         mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7219         memcg_check_events(memcg, page);
7220
7221         css_put(&memcg->css);
7222 }
7223
7224 /**
7225  * __mem_cgroup_try_charge_swap - try charging swap space for a page
7226  * @page: page being added to swap
7227  * @entry: swap entry to charge
7228  *
7229  * Try to charge @page's memcg for the swap space at @entry.
7230  *
7231  * Returns 0 on success, -ENOMEM on failure.
7232  */
7233 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7234 {
7235         unsigned int nr_pages = thp_nr_pages(page);
7236         struct page_counter *counter;
7237         struct mem_cgroup *memcg;
7238         unsigned short oldid;
7239
7240         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7241                 return 0;
7242
7243         memcg = page_memcg(page);
7244
7245         VM_WARN_ON_ONCE_PAGE(!memcg, page);
7246         if (!memcg)
7247                 return 0;
7248
7249         if (!entry.val) {
7250                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7251                 return 0;
7252         }
7253
7254         memcg = mem_cgroup_id_get_online(memcg);
7255
7256         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7257             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7258                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7259                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7260                 mem_cgroup_id_put(memcg);
7261                 return -ENOMEM;
7262         }
7263
7264         /* Get references for the tail pages, too */
7265         if (nr_pages > 1)
7266                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7267         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7268         VM_BUG_ON_PAGE(oldid, page);
7269         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7270
7271         return 0;
7272 }
7273
7274 /**
7275  * __mem_cgroup_uncharge_swap - uncharge swap space
7276  * @entry: swap entry to uncharge
7277  * @nr_pages: the amount of swap space to uncharge
7278  */
7279 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7280 {
7281         struct mem_cgroup *memcg;
7282         unsigned short id;
7283
7284         id = swap_cgroup_record(entry, 0, nr_pages);
7285         rcu_read_lock();
7286         memcg = mem_cgroup_from_id(id);
7287         if (memcg) {
7288                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7289                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7290                                 page_counter_uncharge(&memcg->swap, nr_pages);
7291                         else
7292                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7293                 }
7294                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7295                 mem_cgroup_id_put_many(memcg, nr_pages);
7296         }
7297         rcu_read_unlock();
7298 }
7299
7300 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7301 {
7302         long nr_swap_pages = get_nr_swap_pages();
7303
7304         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7305                 return nr_swap_pages;
7306         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7307                 nr_swap_pages = min_t(long, nr_swap_pages,
7308                                       READ_ONCE(memcg->swap.max) -
7309                                       page_counter_read(&memcg->swap));
7310         return nr_swap_pages;
7311 }
7312
7313 bool mem_cgroup_swap_full(struct page *page)
7314 {
7315         struct mem_cgroup *memcg;
7316
7317         VM_BUG_ON_PAGE(!PageLocked(page), page);
7318
7319         if (vm_swap_full())
7320                 return true;
7321         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7322                 return false;
7323
7324         memcg = page_memcg(page);
7325         if (!memcg)
7326                 return false;
7327
7328         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7329                 unsigned long usage = page_counter_read(&memcg->swap);
7330
7331                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7332                     usage * 2 >= READ_ONCE(memcg->swap.max))
7333                         return true;
7334         }
7335
7336         return false;
7337 }
7338
7339 static int __init setup_swap_account(char *s)
7340 {
7341         if (!strcmp(s, "1"))
7342                 cgroup_memory_noswap = false;
7343         else if (!strcmp(s, "0"))
7344                 cgroup_memory_noswap = true;
7345         return 1;
7346 }
7347 __setup("swapaccount=", setup_swap_account);
7348
7349 static u64 swap_current_read(struct cgroup_subsys_state *css,
7350                              struct cftype *cft)
7351 {
7352         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7353
7354         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7355 }
7356
7357 static int swap_high_show(struct seq_file *m, void *v)
7358 {
7359         return seq_puts_memcg_tunable(m,
7360                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7361 }
7362
7363 static ssize_t swap_high_write(struct kernfs_open_file *of,
7364                                char *buf, size_t nbytes, loff_t off)
7365 {
7366         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7367         unsigned long high;
7368         int err;
7369
7370         buf = strstrip(buf);
7371         err = page_counter_memparse(buf, "max", &high);
7372         if (err)
7373                 return err;
7374
7375         page_counter_set_high(&memcg->swap, high);
7376
7377         return nbytes;
7378 }
7379
7380 static int swap_max_show(struct seq_file *m, void *v)
7381 {
7382         return seq_puts_memcg_tunable(m,
7383                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7384 }
7385
7386 static ssize_t swap_max_write(struct kernfs_open_file *of,
7387                               char *buf, size_t nbytes, loff_t off)
7388 {
7389         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7390         unsigned long max;
7391         int err;
7392
7393         buf = strstrip(buf);
7394         err = page_counter_memparse(buf, "max", &max);
7395         if (err)
7396                 return err;
7397
7398         xchg(&memcg->swap.max, max);
7399
7400         return nbytes;
7401 }
7402
7403 static int swap_events_show(struct seq_file *m, void *v)
7404 {
7405         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7406
7407         seq_printf(m, "high %lu\n",
7408                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7409         seq_printf(m, "max %lu\n",
7410                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7411         seq_printf(m, "fail %lu\n",
7412                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7413
7414         return 0;
7415 }
7416
7417 static struct cftype swap_files[] = {
7418         {
7419                 .name = "swap.current",
7420                 .flags = CFTYPE_NOT_ON_ROOT,
7421                 .read_u64 = swap_current_read,
7422         },
7423         {
7424                 .name = "swap.high",
7425                 .flags = CFTYPE_NOT_ON_ROOT,
7426                 .seq_show = swap_high_show,
7427                 .write = swap_high_write,
7428         },
7429         {
7430                 .name = "swap.max",
7431                 .flags = CFTYPE_NOT_ON_ROOT,
7432                 .seq_show = swap_max_show,
7433                 .write = swap_max_write,
7434         },
7435         {
7436                 .name = "swap.events",
7437                 .flags = CFTYPE_NOT_ON_ROOT,
7438                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7439                 .seq_show = swap_events_show,
7440         },
7441         { }     /* terminate */
7442 };
7443
7444 static struct cftype memsw_files[] = {
7445         {
7446                 .name = "memsw.usage_in_bytes",
7447                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7448                 .read_u64 = mem_cgroup_read_u64,
7449         },
7450         {
7451                 .name = "memsw.max_usage_in_bytes",
7452                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7453                 .write = mem_cgroup_reset,
7454                 .read_u64 = mem_cgroup_read_u64,
7455         },
7456         {
7457                 .name = "memsw.limit_in_bytes",
7458                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7459                 .write = mem_cgroup_write,
7460                 .read_u64 = mem_cgroup_read_u64,
7461         },
7462         {
7463                 .name = "memsw.failcnt",
7464                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7465                 .write = mem_cgroup_reset,
7466                 .read_u64 = mem_cgroup_read_u64,
7467         },
7468         { },    /* terminate */
7469 };
7470
7471 /*
7472  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7473  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7474  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7475  * boot parameter. This may result in premature OOPS inside
7476  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7477  */
7478 static int __init mem_cgroup_swap_init(void)
7479 {
7480         /* No memory control -> no swap control */
7481         if (mem_cgroup_disabled())
7482                 cgroup_memory_noswap = true;
7483
7484         if (cgroup_memory_noswap)
7485                 return 0;
7486
7487         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7488         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7489
7490         return 0;
7491 }
7492 core_initcall(mem_cgroup_swap_init);
7493
7494 #endif /* CONFIG_MEMCG_SWAP */