Merge tag 'block-5.17-2022-03-18' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / mm / madvise.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *      linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34
35 #include <asm/tlb.h>
36
37 #include "internal.h"
38
39 struct madvise_walk_private {
40         struct mmu_gather *tlb;
41         bool pageout;
42 };
43
44 /*
45  * Any behaviour which results in changes to the vma->vm_flags needs to
46  * take mmap_lock for writing. Others, which simply traverse vmas, need
47  * to only take it for reading.
48  */
49 static int madvise_need_mmap_write(int behavior)
50 {
51         switch (behavior) {
52         case MADV_REMOVE:
53         case MADV_WILLNEED:
54         case MADV_DONTNEED:
55         case MADV_COLD:
56         case MADV_PAGEOUT:
57         case MADV_FREE:
58         case MADV_POPULATE_READ:
59         case MADV_POPULATE_WRITE:
60                 return 0;
61         default:
62                 /* be safe, default to 1. list exceptions explicitly */
63                 return 1;
64         }
65 }
66
67 #ifdef CONFIG_ANON_VMA_NAME
68 struct anon_vma_name *anon_vma_name_alloc(const char *name)
69 {
70         struct anon_vma_name *anon_name;
71         size_t count;
72
73         /* Add 1 for NUL terminator at the end of the anon_name->name */
74         count = strlen(name) + 1;
75         anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
76         if (anon_name) {
77                 kref_init(&anon_name->kref);
78                 memcpy(anon_name->name, name, count);
79         }
80
81         return anon_name;
82 }
83
84 void anon_vma_name_free(struct kref *kref)
85 {
86         struct anon_vma_name *anon_name =
87                         container_of(kref, struct anon_vma_name, kref);
88         kfree(anon_name);
89 }
90
91 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
92 {
93         mmap_assert_locked(vma->vm_mm);
94
95         if (vma->vm_file)
96                 return NULL;
97
98         return vma->anon_name;
99 }
100
101 /* mmap_lock should be write-locked */
102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103                                  struct anon_vma_name *anon_name)
104 {
105         struct anon_vma_name *orig_name = anon_vma_name(vma);
106
107         if (!anon_name) {
108                 vma->anon_name = NULL;
109                 anon_vma_name_put(orig_name);
110                 return 0;
111         }
112
113         if (anon_vma_name_eq(orig_name, anon_name))
114                 return 0;
115
116         vma->anon_name = anon_vma_name_reuse(anon_name);
117         anon_vma_name_put(orig_name);
118
119         return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123                                  struct anon_vma_name *anon_name)
124 {
125         if (anon_name)
126                 return -EINVAL;
127
128         return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132  * Update the vm_flags on region of a vma, splitting it or merging it as
133  * necessary.  Must be called with mmap_sem held for writing;
134  * Caller should ensure anon_name stability by raising its refcount even when
135  * anon_name belongs to a valid vma because this function might free that vma.
136  */
137 static int madvise_update_vma(struct vm_area_struct *vma,
138                               struct vm_area_struct **prev, unsigned long start,
139                               unsigned long end, unsigned long new_flags,
140                               struct anon_vma_name *anon_name)
141 {
142         struct mm_struct *mm = vma->vm_mm;
143         int error;
144         pgoff_t pgoff;
145
146         if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
147                 *prev = vma;
148                 return 0;
149         }
150
151         pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
152         *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
153                           vma->vm_file, pgoff, vma_policy(vma),
154                           vma->vm_userfaultfd_ctx, anon_name);
155         if (*prev) {
156                 vma = *prev;
157                 goto success;
158         }
159
160         *prev = vma;
161
162         if (start != vma->vm_start) {
163                 if (unlikely(mm->map_count >= sysctl_max_map_count))
164                         return -ENOMEM;
165                 error = __split_vma(mm, vma, start, 1);
166                 if (error)
167                         return error;
168         }
169
170         if (end != vma->vm_end) {
171                 if (unlikely(mm->map_count >= sysctl_max_map_count))
172                         return -ENOMEM;
173                 error = __split_vma(mm, vma, end, 0);
174                 if (error)
175                         return error;
176         }
177
178 success:
179         /*
180          * vm_flags is protected by the mmap_lock held in write mode.
181          */
182         vma->vm_flags = new_flags;
183         if (!vma->vm_file) {
184                 error = replace_anon_vma_name(vma, anon_name);
185                 if (error)
186                         return error;
187         }
188
189         return 0;
190 }
191
192 #ifdef CONFIG_SWAP
193 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
194         unsigned long end, struct mm_walk *walk)
195 {
196         pte_t *orig_pte;
197         struct vm_area_struct *vma = walk->private;
198         unsigned long index;
199
200         if (pmd_none_or_trans_huge_or_clear_bad(pmd))
201                 return 0;
202
203         for (index = start; index != end; index += PAGE_SIZE) {
204                 pte_t pte;
205                 swp_entry_t entry;
206                 struct page *page;
207                 spinlock_t *ptl;
208
209                 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
210                 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
211                 pte_unmap_unlock(orig_pte, ptl);
212
213                 if (pte_present(pte) || pte_none(pte))
214                         continue;
215                 entry = pte_to_swp_entry(pte);
216                 if (unlikely(non_swap_entry(entry)))
217                         continue;
218
219                 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
220                                                         vma, index, false);
221                 if (page)
222                         put_page(page);
223         }
224
225         return 0;
226 }
227
228 static const struct mm_walk_ops swapin_walk_ops = {
229         .pmd_entry              = swapin_walk_pmd_entry,
230 };
231
232 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
233                 unsigned long start, unsigned long end,
234                 struct address_space *mapping)
235 {
236         XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
237         pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
238         struct page *page;
239
240         rcu_read_lock();
241         xas_for_each(&xas, page, end_index) {
242                 swp_entry_t swap;
243
244                 if (!xa_is_value(page))
245                         continue;
246                 xas_pause(&xas);
247                 rcu_read_unlock();
248
249                 swap = radix_to_swp_entry(page);
250                 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
251                                                         NULL, 0, false);
252                 if (page)
253                         put_page(page);
254
255                 rcu_read_lock();
256         }
257         rcu_read_unlock();
258
259         lru_add_drain();        /* Push any new pages onto the LRU now */
260 }
261 #endif          /* CONFIG_SWAP */
262
263 /*
264  * Schedule all required I/O operations.  Do not wait for completion.
265  */
266 static long madvise_willneed(struct vm_area_struct *vma,
267                              struct vm_area_struct **prev,
268                              unsigned long start, unsigned long end)
269 {
270         struct mm_struct *mm = vma->vm_mm;
271         struct file *file = vma->vm_file;
272         loff_t offset;
273
274         *prev = vma;
275 #ifdef CONFIG_SWAP
276         if (!file) {
277                 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
278                 lru_add_drain(); /* Push any new pages onto the LRU now */
279                 return 0;
280         }
281
282         if (shmem_mapping(file->f_mapping)) {
283                 force_shm_swapin_readahead(vma, start, end,
284                                         file->f_mapping);
285                 return 0;
286         }
287 #else
288         if (!file)
289                 return -EBADF;
290 #endif
291
292         if (IS_DAX(file_inode(file))) {
293                 /* no bad return value, but ignore advice */
294                 return 0;
295         }
296
297         /*
298          * Filesystem's fadvise may need to take various locks.  We need to
299          * explicitly grab a reference because the vma (and hence the
300          * vma's reference to the file) can go away as soon as we drop
301          * mmap_lock.
302          */
303         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
304         get_file(file);
305         offset = (loff_t)(start - vma->vm_start)
306                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
307         mmap_read_unlock(mm);
308         vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
309         fput(file);
310         mmap_read_lock(mm);
311         return 0;
312 }
313
314 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
315                                 unsigned long addr, unsigned long end,
316                                 struct mm_walk *walk)
317 {
318         struct madvise_walk_private *private = walk->private;
319         struct mmu_gather *tlb = private->tlb;
320         bool pageout = private->pageout;
321         struct mm_struct *mm = tlb->mm;
322         struct vm_area_struct *vma = walk->vma;
323         pte_t *orig_pte, *pte, ptent;
324         spinlock_t *ptl;
325         struct page *page = NULL;
326         LIST_HEAD(page_list);
327
328         if (fatal_signal_pending(current))
329                 return -EINTR;
330
331 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
332         if (pmd_trans_huge(*pmd)) {
333                 pmd_t orig_pmd;
334                 unsigned long next = pmd_addr_end(addr, end);
335
336                 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
337                 ptl = pmd_trans_huge_lock(pmd, vma);
338                 if (!ptl)
339                         return 0;
340
341                 orig_pmd = *pmd;
342                 if (is_huge_zero_pmd(orig_pmd))
343                         goto huge_unlock;
344
345                 if (unlikely(!pmd_present(orig_pmd))) {
346                         VM_BUG_ON(thp_migration_supported() &&
347                                         !is_pmd_migration_entry(orig_pmd));
348                         goto huge_unlock;
349                 }
350
351                 page = pmd_page(orig_pmd);
352
353                 /* Do not interfere with other mappings of this page */
354                 if (page_mapcount(page) != 1)
355                         goto huge_unlock;
356
357                 if (next - addr != HPAGE_PMD_SIZE) {
358                         int err;
359
360                         get_page(page);
361                         spin_unlock(ptl);
362                         lock_page(page);
363                         err = split_huge_page(page);
364                         unlock_page(page);
365                         put_page(page);
366                         if (!err)
367                                 goto regular_page;
368                         return 0;
369                 }
370
371                 if (pmd_young(orig_pmd)) {
372                         pmdp_invalidate(vma, addr, pmd);
373                         orig_pmd = pmd_mkold(orig_pmd);
374
375                         set_pmd_at(mm, addr, pmd, orig_pmd);
376                         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
377                 }
378
379                 ClearPageReferenced(page);
380                 test_and_clear_page_young(page);
381                 if (pageout) {
382                         if (!isolate_lru_page(page)) {
383                                 if (PageUnevictable(page))
384                                         putback_lru_page(page);
385                                 else
386                                         list_add(&page->lru, &page_list);
387                         }
388                 } else
389                         deactivate_page(page);
390 huge_unlock:
391                 spin_unlock(ptl);
392                 if (pageout)
393                         reclaim_pages(&page_list);
394                 return 0;
395         }
396
397 regular_page:
398         if (pmd_trans_unstable(pmd))
399                 return 0;
400 #endif
401         tlb_change_page_size(tlb, PAGE_SIZE);
402         orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
403         flush_tlb_batched_pending(mm);
404         arch_enter_lazy_mmu_mode();
405         for (; addr < end; pte++, addr += PAGE_SIZE) {
406                 ptent = *pte;
407
408                 if (pte_none(ptent))
409                         continue;
410
411                 if (!pte_present(ptent))
412                         continue;
413
414                 page = vm_normal_page(vma, addr, ptent);
415                 if (!page)
416                         continue;
417
418                 /*
419                  * Creating a THP page is expensive so split it only if we
420                  * are sure it's worth. Split it if we are only owner.
421                  */
422                 if (PageTransCompound(page)) {
423                         if (page_mapcount(page) != 1)
424                                 break;
425                         get_page(page);
426                         if (!trylock_page(page)) {
427                                 put_page(page);
428                                 break;
429                         }
430                         pte_unmap_unlock(orig_pte, ptl);
431                         if (split_huge_page(page)) {
432                                 unlock_page(page);
433                                 put_page(page);
434                                 pte_offset_map_lock(mm, pmd, addr, &ptl);
435                                 break;
436                         }
437                         unlock_page(page);
438                         put_page(page);
439                         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
440                         pte--;
441                         addr -= PAGE_SIZE;
442                         continue;
443                 }
444
445                 /* Do not interfere with other mappings of this page */
446                 if (page_mapcount(page) != 1)
447                         continue;
448
449                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
450
451                 if (pte_young(ptent)) {
452                         ptent = ptep_get_and_clear_full(mm, addr, pte,
453                                                         tlb->fullmm);
454                         ptent = pte_mkold(ptent);
455                         set_pte_at(mm, addr, pte, ptent);
456                         tlb_remove_tlb_entry(tlb, pte, addr);
457                 }
458
459                 /*
460                  * We are deactivating a page for accelerating reclaiming.
461                  * VM couldn't reclaim the page unless we clear PG_young.
462                  * As a side effect, it makes confuse idle-page tracking
463                  * because they will miss recent referenced history.
464                  */
465                 ClearPageReferenced(page);
466                 test_and_clear_page_young(page);
467                 if (pageout) {
468                         if (!isolate_lru_page(page)) {
469                                 if (PageUnevictable(page))
470                                         putback_lru_page(page);
471                                 else
472                                         list_add(&page->lru, &page_list);
473                         }
474                 } else
475                         deactivate_page(page);
476         }
477
478         arch_leave_lazy_mmu_mode();
479         pte_unmap_unlock(orig_pte, ptl);
480         if (pageout)
481                 reclaim_pages(&page_list);
482         cond_resched();
483
484         return 0;
485 }
486
487 static const struct mm_walk_ops cold_walk_ops = {
488         .pmd_entry = madvise_cold_or_pageout_pte_range,
489 };
490
491 static void madvise_cold_page_range(struct mmu_gather *tlb,
492                              struct vm_area_struct *vma,
493                              unsigned long addr, unsigned long end)
494 {
495         struct madvise_walk_private walk_private = {
496                 .pageout = false,
497                 .tlb = tlb,
498         };
499
500         tlb_start_vma(tlb, vma);
501         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
502         tlb_end_vma(tlb, vma);
503 }
504
505 static long madvise_cold(struct vm_area_struct *vma,
506                         struct vm_area_struct **prev,
507                         unsigned long start_addr, unsigned long end_addr)
508 {
509         struct mm_struct *mm = vma->vm_mm;
510         struct mmu_gather tlb;
511
512         *prev = vma;
513         if (!can_madv_lru_vma(vma))
514                 return -EINVAL;
515
516         lru_add_drain();
517         tlb_gather_mmu(&tlb, mm);
518         madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
519         tlb_finish_mmu(&tlb);
520
521         return 0;
522 }
523
524 static void madvise_pageout_page_range(struct mmu_gather *tlb,
525                              struct vm_area_struct *vma,
526                              unsigned long addr, unsigned long end)
527 {
528         struct madvise_walk_private walk_private = {
529                 .pageout = true,
530                 .tlb = tlb,
531         };
532
533         tlb_start_vma(tlb, vma);
534         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
535         tlb_end_vma(tlb, vma);
536 }
537
538 static inline bool can_do_pageout(struct vm_area_struct *vma)
539 {
540         if (vma_is_anonymous(vma))
541                 return true;
542         if (!vma->vm_file)
543                 return false;
544         /*
545          * paging out pagecache only for non-anonymous mappings that correspond
546          * to the files the calling process could (if tried) open for writing;
547          * otherwise we'd be including shared non-exclusive mappings, which
548          * opens a side channel.
549          */
550         return inode_owner_or_capable(&init_user_ns,
551                                       file_inode(vma->vm_file)) ||
552                file_permission(vma->vm_file, MAY_WRITE) == 0;
553 }
554
555 static long madvise_pageout(struct vm_area_struct *vma,
556                         struct vm_area_struct **prev,
557                         unsigned long start_addr, unsigned long end_addr)
558 {
559         struct mm_struct *mm = vma->vm_mm;
560         struct mmu_gather tlb;
561
562         *prev = vma;
563         if (!can_madv_lru_vma(vma))
564                 return -EINVAL;
565
566         if (!can_do_pageout(vma))
567                 return 0;
568
569         lru_add_drain();
570         tlb_gather_mmu(&tlb, mm);
571         madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
572         tlb_finish_mmu(&tlb);
573
574         return 0;
575 }
576
577 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
578                                 unsigned long end, struct mm_walk *walk)
579
580 {
581         struct mmu_gather *tlb = walk->private;
582         struct mm_struct *mm = tlb->mm;
583         struct vm_area_struct *vma = walk->vma;
584         spinlock_t *ptl;
585         pte_t *orig_pte, *pte, ptent;
586         struct page *page;
587         int nr_swap = 0;
588         unsigned long next;
589
590         next = pmd_addr_end(addr, end);
591         if (pmd_trans_huge(*pmd))
592                 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
593                         goto next;
594
595         if (pmd_trans_unstable(pmd))
596                 return 0;
597
598         tlb_change_page_size(tlb, PAGE_SIZE);
599         orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
600         flush_tlb_batched_pending(mm);
601         arch_enter_lazy_mmu_mode();
602         for (; addr != end; pte++, addr += PAGE_SIZE) {
603                 ptent = *pte;
604
605                 if (pte_none(ptent))
606                         continue;
607                 /*
608                  * If the pte has swp_entry, just clear page table to
609                  * prevent swap-in which is more expensive rather than
610                  * (page allocation + zeroing).
611                  */
612                 if (!pte_present(ptent)) {
613                         swp_entry_t entry;
614
615                         entry = pte_to_swp_entry(ptent);
616                         if (non_swap_entry(entry))
617                                 continue;
618                         nr_swap--;
619                         free_swap_and_cache(entry);
620                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
621                         continue;
622                 }
623
624                 page = vm_normal_page(vma, addr, ptent);
625                 if (!page)
626                         continue;
627
628                 /*
629                  * If pmd isn't transhuge but the page is THP and
630                  * is owned by only this process, split it and
631                  * deactivate all pages.
632                  */
633                 if (PageTransCompound(page)) {
634                         if (page_mapcount(page) != 1)
635                                 goto out;
636                         get_page(page);
637                         if (!trylock_page(page)) {
638                                 put_page(page);
639                                 goto out;
640                         }
641                         pte_unmap_unlock(orig_pte, ptl);
642                         if (split_huge_page(page)) {
643                                 unlock_page(page);
644                                 put_page(page);
645                                 pte_offset_map_lock(mm, pmd, addr, &ptl);
646                                 goto out;
647                         }
648                         unlock_page(page);
649                         put_page(page);
650                         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
651                         pte--;
652                         addr -= PAGE_SIZE;
653                         continue;
654                 }
655
656                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
657
658                 if (PageSwapCache(page) || PageDirty(page)) {
659                         if (!trylock_page(page))
660                                 continue;
661                         /*
662                          * If page is shared with others, we couldn't clear
663                          * PG_dirty of the page.
664                          */
665                         if (page_mapcount(page) != 1) {
666                                 unlock_page(page);
667                                 continue;
668                         }
669
670                         if (PageSwapCache(page) && !try_to_free_swap(page)) {
671                                 unlock_page(page);
672                                 continue;
673                         }
674
675                         ClearPageDirty(page);
676                         unlock_page(page);
677                 }
678
679                 if (pte_young(ptent) || pte_dirty(ptent)) {
680                         /*
681                          * Some of architecture(ex, PPC) don't update TLB
682                          * with set_pte_at and tlb_remove_tlb_entry so for
683                          * the portability, remap the pte with old|clean
684                          * after pte clearing.
685                          */
686                         ptent = ptep_get_and_clear_full(mm, addr, pte,
687                                                         tlb->fullmm);
688
689                         ptent = pte_mkold(ptent);
690                         ptent = pte_mkclean(ptent);
691                         set_pte_at(mm, addr, pte, ptent);
692                         tlb_remove_tlb_entry(tlb, pte, addr);
693                 }
694                 mark_page_lazyfree(page);
695         }
696 out:
697         if (nr_swap) {
698                 if (current->mm == mm)
699                         sync_mm_rss(mm);
700
701                 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
702         }
703         arch_leave_lazy_mmu_mode();
704         pte_unmap_unlock(orig_pte, ptl);
705         cond_resched();
706 next:
707         return 0;
708 }
709
710 static const struct mm_walk_ops madvise_free_walk_ops = {
711         .pmd_entry              = madvise_free_pte_range,
712 };
713
714 static int madvise_free_single_vma(struct vm_area_struct *vma,
715                         unsigned long start_addr, unsigned long end_addr)
716 {
717         struct mm_struct *mm = vma->vm_mm;
718         struct mmu_notifier_range range;
719         struct mmu_gather tlb;
720
721         /* MADV_FREE works for only anon vma at the moment */
722         if (!vma_is_anonymous(vma))
723                 return -EINVAL;
724
725         range.start = max(vma->vm_start, start_addr);
726         if (range.start >= vma->vm_end)
727                 return -EINVAL;
728         range.end = min(vma->vm_end, end_addr);
729         if (range.end <= vma->vm_start)
730                 return -EINVAL;
731         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
732                                 range.start, range.end);
733
734         lru_add_drain();
735         tlb_gather_mmu(&tlb, mm);
736         update_hiwater_rss(mm);
737
738         mmu_notifier_invalidate_range_start(&range);
739         tlb_start_vma(&tlb, vma);
740         walk_page_range(vma->vm_mm, range.start, range.end,
741                         &madvise_free_walk_ops, &tlb);
742         tlb_end_vma(&tlb, vma);
743         mmu_notifier_invalidate_range_end(&range);
744         tlb_finish_mmu(&tlb);
745
746         return 0;
747 }
748
749 /*
750  * Application no longer needs these pages.  If the pages are dirty,
751  * it's OK to just throw them away.  The app will be more careful about
752  * data it wants to keep.  Be sure to free swap resources too.  The
753  * zap_page_range call sets things up for shrink_active_list to actually free
754  * these pages later if no one else has touched them in the meantime,
755  * although we could add these pages to a global reuse list for
756  * shrink_active_list to pick up before reclaiming other pages.
757  *
758  * NB: This interface discards data rather than pushes it out to swap,
759  * as some implementations do.  This has performance implications for
760  * applications like large transactional databases which want to discard
761  * pages in anonymous maps after committing to backing store the data
762  * that was kept in them.  There is no reason to write this data out to
763  * the swap area if the application is discarding it.
764  *
765  * An interface that causes the system to free clean pages and flush
766  * dirty pages is already available as msync(MS_INVALIDATE).
767  */
768 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
769                                         unsigned long start, unsigned long end)
770 {
771         zap_page_range(vma, start, end - start);
772         return 0;
773 }
774
775 static long madvise_dontneed_free(struct vm_area_struct *vma,
776                                   struct vm_area_struct **prev,
777                                   unsigned long start, unsigned long end,
778                                   int behavior)
779 {
780         struct mm_struct *mm = vma->vm_mm;
781
782         *prev = vma;
783         if (!can_madv_lru_vma(vma))
784                 return -EINVAL;
785
786         if (!userfaultfd_remove(vma, start, end)) {
787                 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
788
789                 mmap_read_lock(mm);
790                 vma = find_vma(mm, start);
791                 if (!vma)
792                         return -ENOMEM;
793                 if (start < vma->vm_start) {
794                         /*
795                          * This "vma" under revalidation is the one
796                          * with the lowest vma->vm_start where start
797                          * is also < vma->vm_end. If start <
798                          * vma->vm_start it means an hole materialized
799                          * in the user address space within the
800                          * virtual range passed to MADV_DONTNEED
801                          * or MADV_FREE.
802                          */
803                         return -ENOMEM;
804                 }
805                 if (!can_madv_lru_vma(vma))
806                         return -EINVAL;
807                 if (end > vma->vm_end) {
808                         /*
809                          * Don't fail if end > vma->vm_end. If the old
810                          * vma was split while the mmap_lock was
811                          * released the effect of the concurrent
812                          * operation may not cause madvise() to
813                          * have an undefined result. There may be an
814                          * adjacent next vma that we'll walk
815                          * next. userfaultfd_remove() will generate an
816                          * UFFD_EVENT_REMOVE repetition on the
817                          * end-vma->vm_end range, but the manager can
818                          * handle a repetition fine.
819                          */
820                         end = vma->vm_end;
821                 }
822                 VM_WARN_ON(start >= end);
823         }
824
825         if (behavior == MADV_DONTNEED)
826                 return madvise_dontneed_single_vma(vma, start, end);
827         else if (behavior == MADV_FREE)
828                 return madvise_free_single_vma(vma, start, end);
829         else
830                 return -EINVAL;
831 }
832
833 static long madvise_populate(struct vm_area_struct *vma,
834                              struct vm_area_struct **prev,
835                              unsigned long start, unsigned long end,
836                              int behavior)
837 {
838         const bool write = behavior == MADV_POPULATE_WRITE;
839         struct mm_struct *mm = vma->vm_mm;
840         unsigned long tmp_end;
841         int locked = 1;
842         long pages;
843
844         *prev = vma;
845
846         while (start < end) {
847                 /*
848                  * We might have temporarily dropped the lock. For example,
849                  * our VMA might have been split.
850                  */
851                 if (!vma || start >= vma->vm_end) {
852                         vma = find_vma(mm, start);
853                         if (!vma || start < vma->vm_start)
854                                 return -ENOMEM;
855                 }
856
857                 tmp_end = min_t(unsigned long, end, vma->vm_end);
858                 /* Populate (prefault) page tables readable/writable. */
859                 pages = faultin_vma_page_range(vma, start, tmp_end, write,
860                                                &locked);
861                 if (!locked) {
862                         mmap_read_lock(mm);
863                         locked = 1;
864                         *prev = NULL;
865                         vma = NULL;
866                 }
867                 if (pages < 0) {
868                         switch (pages) {
869                         case -EINTR:
870                                 return -EINTR;
871                         case -EINVAL: /* Incompatible mappings / permissions. */
872                                 return -EINVAL;
873                         case -EHWPOISON:
874                                 return -EHWPOISON;
875                         case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
876                                 return -EFAULT;
877                         default:
878                                 pr_warn_once("%s: unhandled return value: %ld\n",
879                                              __func__, pages);
880                                 fallthrough;
881                         case -ENOMEM:
882                                 return -ENOMEM;
883                         }
884                 }
885                 start += pages * PAGE_SIZE;
886         }
887         return 0;
888 }
889
890 /*
891  * Application wants to free up the pages and associated backing store.
892  * This is effectively punching a hole into the middle of a file.
893  */
894 static long madvise_remove(struct vm_area_struct *vma,
895                                 struct vm_area_struct **prev,
896                                 unsigned long start, unsigned long end)
897 {
898         loff_t offset;
899         int error;
900         struct file *f;
901         struct mm_struct *mm = vma->vm_mm;
902
903         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
904
905         if (vma->vm_flags & VM_LOCKED)
906                 return -EINVAL;
907
908         f = vma->vm_file;
909
910         if (!f || !f->f_mapping || !f->f_mapping->host) {
911                         return -EINVAL;
912         }
913
914         if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
915                 return -EACCES;
916
917         offset = (loff_t)(start - vma->vm_start)
918                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
919
920         /*
921          * Filesystem's fallocate may need to take i_rwsem.  We need to
922          * explicitly grab a reference because the vma (and hence the
923          * vma's reference to the file) can go away as soon as we drop
924          * mmap_lock.
925          */
926         get_file(f);
927         if (userfaultfd_remove(vma, start, end)) {
928                 /* mmap_lock was not released by userfaultfd_remove() */
929                 mmap_read_unlock(mm);
930         }
931         error = vfs_fallocate(f,
932                                 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
933                                 offset, end - start);
934         fput(f);
935         mmap_read_lock(mm);
936         return error;
937 }
938
939 /*
940  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
941  * will handle splitting a vm area into separate areas, each area with its own
942  * behavior.
943  */
944 static int madvise_vma_behavior(struct vm_area_struct *vma,
945                                 struct vm_area_struct **prev,
946                                 unsigned long start, unsigned long end,
947                                 unsigned long behavior)
948 {
949         int error;
950         struct anon_vma_name *anon_name;
951         unsigned long new_flags = vma->vm_flags;
952
953         switch (behavior) {
954         case MADV_REMOVE:
955                 return madvise_remove(vma, prev, start, end);
956         case MADV_WILLNEED:
957                 return madvise_willneed(vma, prev, start, end);
958         case MADV_COLD:
959                 return madvise_cold(vma, prev, start, end);
960         case MADV_PAGEOUT:
961                 return madvise_pageout(vma, prev, start, end);
962         case MADV_FREE:
963         case MADV_DONTNEED:
964                 return madvise_dontneed_free(vma, prev, start, end, behavior);
965         case MADV_POPULATE_READ:
966         case MADV_POPULATE_WRITE:
967                 return madvise_populate(vma, prev, start, end, behavior);
968         case MADV_NORMAL:
969                 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
970                 break;
971         case MADV_SEQUENTIAL:
972                 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
973                 break;
974         case MADV_RANDOM:
975                 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
976                 break;
977         case MADV_DONTFORK:
978                 new_flags |= VM_DONTCOPY;
979                 break;
980         case MADV_DOFORK:
981                 if (vma->vm_flags & VM_IO)
982                         return -EINVAL;
983                 new_flags &= ~VM_DONTCOPY;
984                 break;
985         case MADV_WIPEONFORK:
986                 /* MADV_WIPEONFORK is only supported on anonymous memory. */
987                 if (vma->vm_file || vma->vm_flags & VM_SHARED)
988                         return -EINVAL;
989                 new_flags |= VM_WIPEONFORK;
990                 break;
991         case MADV_KEEPONFORK:
992                 new_flags &= ~VM_WIPEONFORK;
993                 break;
994         case MADV_DONTDUMP:
995                 new_flags |= VM_DONTDUMP;
996                 break;
997         case MADV_DODUMP:
998                 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
999                         return -EINVAL;
1000                 new_flags &= ~VM_DONTDUMP;
1001                 break;
1002         case MADV_MERGEABLE:
1003         case MADV_UNMERGEABLE:
1004                 error = ksm_madvise(vma, start, end, behavior, &new_flags);
1005                 if (error)
1006                         goto out;
1007                 break;
1008         case MADV_HUGEPAGE:
1009         case MADV_NOHUGEPAGE:
1010                 error = hugepage_madvise(vma, &new_flags, behavior);
1011                 if (error)
1012                         goto out;
1013                 break;
1014         }
1015
1016         anon_name = anon_vma_name(vma);
1017         anon_vma_name_get(anon_name);
1018         error = madvise_update_vma(vma, prev, start, end, new_flags,
1019                                    anon_name);
1020         anon_vma_name_put(anon_name);
1021
1022 out:
1023         /*
1024          * madvise() returns EAGAIN if kernel resources, such as
1025          * slab, are temporarily unavailable.
1026          */
1027         if (error == -ENOMEM)
1028                 error = -EAGAIN;
1029         return error;
1030 }
1031
1032 #ifdef CONFIG_MEMORY_FAILURE
1033 /*
1034  * Error injection support for memory error handling.
1035  */
1036 static int madvise_inject_error(int behavior,
1037                 unsigned long start, unsigned long end)
1038 {
1039         unsigned long size;
1040
1041         if (!capable(CAP_SYS_ADMIN))
1042                 return -EPERM;
1043
1044
1045         for (; start < end; start += size) {
1046                 unsigned long pfn;
1047                 struct page *page;
1048                 int ret;
1049
1050                 ret = get_user_pages_fast(start, 1, 0, &page);
1051                 if (ret != 1)
1052                         return ret;
1053                 pfn = page_to_pfn(page);
1054
1055                 /*
1056                  * When soft offlining hugepages, after migrating the page
1057                  * we dissolve it, therefore in the second loop "page" will
1058                  * no longer be a compound page.
1059                  */
1060                 size = page_size(compound_head(page));
1061
1062                 if (behavior == MADV_SOFT_OFFLINE) {
1063                         pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1064                                  pfn, start);
1065                         ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1066                 } else {
1067                         pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1068                                  pfn, start);
1069                         ret = memory_failure(pfn, MF_COUNT_INCREASED);
1070                 }
1071
1072                 if (ret)
1073                         return ret;
1074         }
1075
1076         return 0;
1077 }
1078 #endif
1079
1080 static bool
1081 madvise_behavior_valid(int behavior)
1082 {
1083         switch (behavior) {
1084         case MADV_DOFORK:
1085         case MADV_DONTFORK:
1086         case MADV_NORMAL:
1087         case MADV_SEQUENTIAL:
1088         case MADV_RANDOM:
1089         case MADV_REMOVE:
1090         case MADV_WILLNEED:
1091         case MADV_DONTNEED:
1092         case MADV_FREE:
1093         case MADV_COLD:
1094         case MADV_PAGEOUT:
1095         case MADV_POPULATE_READ:
1096         case MADV_POPULATE_WRITE:
1097 #ifdef CONFIG_KSM
1098         case MADV_MERGEABLE:
1099         case MADV_UNMERGEABLE:
1100 #endif
1101 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1102         case MADV_HUGEPAGE:
1103         case MADV_NOHUGEPAGE:
1104 #endif
1105         case MADV_DONTDUMP:
1106         case MADV_DODUMP:
1107         case MADV_WIPEONFORK:
1108         case MADV_KEEPONFORK:
1109 #ifdef CONFIG_MEMORY_FAILURE
1110         case MADV_SOFT_OFFLINE:
1111         case MADV_HWPOISON:
1112 #endif
1113                 return true;
1114
1115         default:
1116                 return false;
1117         }
1118 }
1119
1120 static bool
1121 process_madvise_behavior_valid(int behavior)
1122 {
1123         switch (behavior) {
1124         case MADV_COLD:
1125         case MADV_PAGEOUT:
1126         case MADV_WILLNEED:
1127                 return true;
1128         default:
1129                 return false;
1130         }
1131 }
1132
1133 /*
1134  * Walk the vmas in range [start,end), and call the visit function on each one.
1135  * The visit function will get start and end parameters that cover the overlap
1136  * between the current vma and the original range.  Any unmapped regions in the
1137  * original range will result in this function returning -ENOMEM while still
1138  * calling the visit function on all of the existing vmas in the range.
1139  * Must be called with the mmap_lock held for reading or writing.
1140  */
1141 static
1142 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1143                       unsigned long end, unsigned long arg,
1144                       int (*visit)(struct vm_area_struct *vma,
1145                                    struct vm_area_struct **prev, unsigned long start,
1146                                    unsigned long end, unsigned long arg))
1147 {
1148         struct vm_area_struct *vma;
1149         struct vm_area_struct *prev;
1150         unsigned long tmp;
1151         int unmapped_error = 0;
1152
1153         /*
1154          * If the interval [start,end) covers some unmapped address
1155          * ranges, just ignore them, but return -ENOMEM at the end.
1156          * - different from the way of handling in mlock etc.
1157          */
1158         vma = find_vma_prev(mm, start, &prev);
1159         if (vma && start > vma->vm_start)
1160                 prev = vma;
1161
1162         for (;;) {
1163                 int error;
1164
1165                 /* Still start < end. */
1166                 if (!vma)
1167                         return -ENOMEM;
1168
1169                 /* Here start < (end|vma->vm_end). */
1170                 if (start < vma->vm_start) {
1171                         unmapped_error = -ENOMEM;
1172                         start = vma->vm_start;
1173                         if (start >= end)
1174                                 break;
1175                 }
1176
1177                 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1178                 tmp = vma->vm_end;
1179                 if (end < tmp)
1180                         tmp = end;
1181
1182                 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1183                 error = visit(vma, &prev, start, tmp, arg);
1184                 if (error)
1185                         return error;
1186                 start = tmp;
1187                 if (prev && start < prev->vm_end)
1188                         start = prev->vm_end;
1189                 if (start >= end)
1190                         break;
1191                 if (prev)
1192                         vma = prev->vm_next;
1193                 else    /* madvise_remove dropped mmap_lock */
1194                         vma = find_vma(mm, start);
1195         }
1196
1197         return unmapped_error;
1198 }
1199
1200 #ifdef CONFIG_ANON_VMA_NAME
1201 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1202                                  struct vm_area_struct **prev,
1203                                  unsigned long start, unsigned long end,
1204                                  unsigned long anon_name)
1205 {
1206         int error;
1207
1208         /* Only anonymous mappings can be named */
1209         if (vma->vm_file)
1210                 return -EBADF;
1211
1212         error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1213                                    (struct anon_vma_name *)anon_name);
1214
1215         /*
1216          * madvise() returns EAGAIN if kernel resources, such as
1217          * slab, are temporarily unavailable.
1218          */
1219         if (error == -ENOMEM)
1220                 error = -EAGAIN;
1221         return error;
1222 }
1223
1224 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1225                           unsigned long len_in, struct anon_vma_name *anon_name)
1226 {
1227         unsigned long end;
1228         unsigned long len;
1229
1230         if (start & ~PAGE_MASK)
1231                 return -EINVAL;
1232         len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1233
1234         /* Check to see whether len was rounded up from small -ve to zero */
1235         if (len_in && !len)
1236                 return -EINVAL;
1237
1238         end = start + len;
1239         if (end < start)
1240                 return -EINVAL;
1241
1242         if (end == start)
1243                 return 0;
1244
1245         return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1246                                  madvise_vma_anon_name);
1247 }
1248 #endif /* CONFIG_ANON_VMA_NAME */
1249 /*
1250  * The madvise(2) system call.
1251  *
1252  * Applications can use madvise() to advise the kernel how it should
1253  * handle paging I/O in this VM area.  The idea is to help the kernel
1254  * use appropriate read-ahead and caching techniques.  The information
1255  * provided is advisory only, and can be safely disregarded by the
1256  * kernel without affecting the correct operation of the application.
1257  *
1258  * behavior values:
1259  *  MADV_NORMAL - the default behavior is to read clusters.  This
1260  *              results in some read-ahead and read-behind.
1261  *  MADV_RANDOM - the system should read the minimum amount of data
1262  *              on any access, since it is unlikely that the appli-
1263  *              cation will need more than what it asks for.
1264  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1265  *              once, so they can be aggressively read ahead, and
1266  *              can be freed soon after they are accessed.
1267  *  MADV_WILLNEED - the application is notifying the system to read
1268  *              some pages ahead.
1269  *  MADV_DONTNEED - the application is finished with the given range,
1270  *              so the kernel can free resources associated with it.
1271  *  MADV_FREE - the application marks pages in the given range as lazy free,
1272  *              where actual purges are postponed until memory pressure happens.
1273  *  MADV_REMOVE - the application wants to free up the given range of
1274  *              pages and associated backing store.
1275  *  MADV_DONTFORK - omit this area from child's address space when forking:
1276  *              typically, to avoid COWing pages pinned by get_user_pages().
1277  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1278  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1279  *              range after a fork.
1280  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1281  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1282  *              were corrupted by unrecoverable hardware memory failure.
1283  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1284  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1285  *              this area with pages of identical content from other such areas.
1286  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1287  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1288  *              huge pages in the future. Existing pages might be coalesced and
1289  *              new pages might be allocated as THP.
1290  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1291  *              transparent huge pages so the existing pages will not be
1292  *              coalesced into THP and new pages will not be allocated as THP.
1293  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1294  *              from being included in its core dump.
1295  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1296  *  MADV_COLD - the application is not expected to use this memory soon,
1297  *              deactivate pages in this range so that they can be reclaimed
1298  *              easily if memory pressure happens.
1299  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1300  *              page out the pages in this range immediately.
1301  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1302  *              triggering read faults if required
1303  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1304  *              triggering write faults if required
1305  *
1306  * return values:
1307  *  zero    - success
1308  *  -EINVAL - start + len < 0, start is not page-aligned,
1309  *              "behavior" is not a valid value, or application
1310  *              is attempting to release locked or shared pages,
1311  *              or the specified address range includes file, Huge TLB,
1312  *              MAP_SHARED or VMPFNMAP range.
1313  *  -ENOMEM - addresses in the specified range are not currently
1314  *              mapped, or are outside the AS of the process.
1315  *  -EIO    - an I/O error occurred while paging in data.
1316  *  -EBADF  - map exists, but area maps something that isn't a file.
1317  *  -EAGAIN - a kernel resource was temporarily unavailable.
1318  */
1319 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1320 {
1321         unsigned long end;
1322         int error;
1323         int write;
1324         size_t len;
1325         struct blk_plug plug;
1326
1327         start = untagged_addr(start);
1328
1329         if (!madvise_behavior_valid(behavior))
1330                 return -EINVAL;
1331
1332         if (!PAGE_ALIGNED(start))
1333                 return -EINVAL;
1334         len = PAGE_ALIGN(len_in);
1335
1336         /* Check to see whether len was rounded up from small -ve to zero */
1337         if (len_in && !len)
1338                 return -EINVAL;
1339
1340         end = start + len;
1341         if (end < start)
1342                 return -EINVAL;
1343
1344         if (end == start)
1345                 return 0;
1346
1347 #ifdef CONFIG_MEMORY_FAILURE
1348         if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1349                 return madvise_inject_error(behavior, start, start + len_in);
1350 #endif
1351
1352         write = madvise_need_mmap_write(behavior);
1353         if (write) {
1354                 if (mmap_write_lock_killable(mm))
1355                         return -EINTR;
1356         } else {
1357                 mmap_read_lock(mm);
1358         }
1359
1360         blk_start_plug(&plug);
1361         error = madvise_walk_vmas(mm, start, end, behavior,
1362                         madvise_vma_behavior);
1363         blk_finish_plug(&plug);
1364         if (write)
1365                 mmap_write_unlock(mm);
1366         else
1367                 mmap_read_unlock(mm);
1368
1369         return error;
1370 }
1371
1372 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1373 {
1374         return do_madvise(current->mm, start, len_in, behavior);
1375 }
1376
1377 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1378                 size_t, vlen, int, behavior, unsigned int, flags)
1379 {
1380         ssize_t ret;
1381         struct iovec iovstack[UIO_FASTIOV], iovec;
1382         struct iovec *iov = iovstack;
1383         struct iov_iter iter;
1384         struct task_struct *task;
1385         struct mm_struct *mm;
1386         size_t total_len;
1387         unsigned int f_flags;
1388
1389         if (flags != 0) {
1390                 ret = -EINVAL;
1391                 goto out;
1392         }
1393
1394         ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1395         if (ret < 0)
1396                 goto out;
1397
1398         task = pidfd_get_task(pidfd, &f_flags);
1399         if (IS_ERR(task)) {
1400                 ret = PTR_ERR(task);
1401                 goto free_iov;
1402         }
1403
1404         if (!process_madvise_behavior_valid(behavior)) {
1405                 ret = -EINVAL;
1406                 goto release_task;
1407         }
1408
1409         /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1410         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1411         if (IS_ERR_OR_NULL(mm)) {
1412                 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1413                 goto release_task;
1414         }
1415
1416         /*
1417          * Require CAP_SYS_NICE for influencing process performance. Note that
1418          * only non-destructive hints are currently supported.
1419          */
1420         if (!capable(CAP_SYS_NICE)) {
1421                 ret = -EPERM;
1422                 goto release_mm;
1423         }
1424
1425         total_len = iov_iter_count(&iter);
1426
1427         while (iov_iter_count(&iter)) {
1428                 iovec = iov_iter_iovec(&iter);
1429                 ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1430                                         iovec.iov_len, behavior);
1431                 if (ret < 0)
1432                         break;
1433                 iov_iter_advance(&iter, iovec.iov_len);
1434         }
1435
1436         if (ret == 0)
1437                 ret = total_len - iov_iter_count(&iter);
1438
1439 release_mm:
1440         mmput(mm);
1441 release_task:
1442         put_task_struct(task);
1443 free_iov:
1444         kfree(iov);
1445 out:
1446         return ret;
1447 }